Decoding
The simplest problem in error correction is the following

Step 1: Logical qubits are prepared in a state of the
stabilizer space
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Step 2: Time passes while we go and have a cup of tea.
Errors happen during this time
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Let's focus on phase flip errors. These happen on each
qubit with a probability
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This generates a random pattern of phase flip errors,EZ



Step 3: We measure the vertex operators to get some clues
about what phase flip errors occurred (equivalently and
iIndependently, we also measure plaquette operators for

bit flip errors). These measurements are noiseless.

This gives us a configuration of e anyons: the syndrome,S(%,)

Step 4: Using the syndrome, we try to find a correction
operator f;

Ideally we would like £ 7/, , but this is not possible in

general. The same syndrome results from many different
Pauli errors
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They form two classes: equivalent to Ez up to stabilizers
equivalent to/f, up to stabilizers



Apply any Iin the correct class and you correct the errrors
U
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Using the wrong class causes a logical error
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Note: If E applied a G, to a qubit j, we don't need to physicall

apply another to undo it. Instead we could just relabel the C,
basis states for |
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This leads us to interpret future measurement results
differently, getting the same results as ifS, had been applied

Also, If we are just using the code to store information, we

can leave all processing of the syndrome information until
just before we use It



Decoding Algorithms

Step 4 uses a 'decoding algorithm', This is a method to
determine a good £, to use for any given &

Best results would come from looking at all possible
that could cause the syndrome.
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These can be split into four classes, such that those within

the same class differ only by stabilizers. Those in different
classes differ by logical operators.

The probability that the error came from each class can then

be calculated. The operator £, can then be chosen from
the most likely class

This Is the best error correction we can hope to do. But the
required calculations mean summing over a number of
error configurations that is exponential in )

Something more efficient is required, even if it is a bit worse.



Decoding is a complicated optimization problem.

For ideas on how to do it efficiently, we can look at solutions

that have been found to other such problems
Thresholds

When we get decoding wrong, and E;EZ turns out to contain

a logical operator, we end up disturbing our stored qubit.
This Is called a logical error.

The probability that we get a logical error, given a noise
model and decoding algorithm, is called the logical error
rate. This typically looks something like
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Logical error rate is exponentially suppressed, and so

correction is good, as long as f is below a threshold value

This depends on decoder, and needs to be finite
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MWPM

One of the best algorithms we can use for the planar code
IS based on the problem of minimum weight perfect
matching (MWPM) from graph theory

A graph is a collection of

/ \ vertices | and edges (J,k)

\ / A matching is a subset of
edges so that no two edges

meet at the same vertex

/ \, A perfect matching involves

every vertex

If the edges have weights, we can calculate the total weight
of a matching

How can we find a perfect matching of minimum weight?



An efficient method to solve this kind of problem was
found by Edmonds in 1961

We can use this as the basis of a decoding algorithm

We construct a graph whose vertices are the anyons

There Is an edge between all pairs of anyons

The weight of the edge is the number of errors needed to
make that pair



What about the edges of the code?
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Each anyon has a 'virtual anyon' living on the nearest edge.

This Is connected only to its twin (weight=distance to edge)
and to all other virtuals with weight zero



The minimum weight matching then gives us the E with the
least number of errors

For f<o-5, this means it is also the most likely single error
chain

We can expect that the most likely single error chain will
belong to the most likely equivalence class (most likely) so
this should provide good error correction



Threshold Proof

If successful, the effect of [ 'F, is loops
of phase flips
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In each loop
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This Is because MWPM always corrects
with the minimal number. If there

were less errors, the correction would
have done that instead.

If unsuccessful, there Is at least one
line across the code for which
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For p<0.5, the probability of errors on more than half of
a given set of L qubits is very small. The Chernoff bound

gives us
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But the number of possible routes across the grid is
exponentially large

Lets look at the probability of n errors on a path of length( ,
and then use that to upper bound the logical error rate

An upper bound for the number of paths of length! is
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Let's just use SL for simplity. Not an upper bound, but it'll do



There are many ways to put 1 errors on [ qubits. But would
require a binomial coefficient. Much easier just to upper
bound with the total number of ways you can put any
number of errors on | qubits: 7"

So the total number of ways that you can getn errors on a
path (loop or string) of [ qubits is upper bounded by
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The probability for any given chain of such errors is
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So the total probability forn errors on any path of | qubits
IS upper bounded by
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The only cases that can cause a logical error are
L
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For a given | , the probability is upper bounded by using /| :_Li
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For the total probability, we sum over all [ >/A
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This will clearly vanish for

(TP <1+ Py

This shows us that there is indeed a finite threshold when
using MWPM, and we have a lower bound for its value
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Continuous error correction

ldeally we would like to protect a logical qubit state for
long time periods

This could be while we wait to use it for some quantum

communication protocol, or while it is being used in a
gquantum computation

Previously we looked at the one-shot case: we prepare the
state, then errors happen, then we decode

To preserve for long time, we need to continuously perform
error correction

The entire syndrome is measured periodically, with a time /At
between measurements



Perfect syndrome measurements

At each time slice, the syndrome tells us the anyon config
at that time

By looking at the anyon config, and comparing it for different
times, we want to be able to determine which errors occured

To do this we look at the change in the anyon config
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The time slices then correspond to independent decoding
problems, each equivalent to the one shot case

Error model is (for charge syndrome)
c(P)= D (-AP+p oipsy,  FP=0at)+ £ t)

The exponential suppression of the logical error rate in the
one-shot case then become an exponentially long lifetime
for continuous error correction
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The time before the logical error rate reaches some
unacceptable value can be made arbitrarily long by
Increasing the code size



