
Quantum Information

So far we have learned about

Qubits

Mixed states

Classical information theory (Shannon entropy)

Today we will begin to mash these together into a
quantum theory of information

For that we'll need

Partial trace

Generalized measurement

Schumacher Compression
(Von Neumann entropy)



Schumacher Compression

Classical:

bits required to store N outcomes

Compression rate

Quantum:

How many qubits     required to store N outcomes?

What is the best possible compression rate?

(N+C:12.2, P: 5.3)



Can be easily found using the classical results:

Suppose the possible states are orthogonal

We first store the possible states (this is just some
meta data)

Then we store the       as a classical variable, using qubits
as bits

Total number of qubits required

This lets us measure the outcomes to determine the states



What if the states are not orthogonal?

Recall that everything is calculated from the density matrix

So getting states       with probs     is equivalent to getting
states      with probs       if

So then we can find an equivalent distribution that has
orthogonal states by diagonalizing

The compression rate then follows from before

Which can be more easily expressed

The Von Neumann entropy



We can also do it from the very begining:
Schumacher Compression ( generalization of Shannon's
source coding theorem to density matrices)

A simple preliminary example

Diagonalizing this

The latter state is quite unlikely, so we could store N
outcomes in a single      and be right most of the time

This approximation isn't awful, but it isn't good enough for
good compression



Consider three outcomes

Most of the state is within a 4D subspace

Using the approximation

We lose little, but can encode in 2 qubits instead of 3



In general, a random source generates states of a quantum
system such that

So for N outcomes

Consider the projector      onto the k most likely eigenstates

We consider k for which

This is the subspace on which most of         has support

N outcomes can be compressed to                  qubits



So what k do we need?

Law of large numbers:

The most likely strings have

Number of such states:

Using this for k, the number of qubits required is



This k leads to quite a large    , since most likely the string
is not one of the most likely strings

It can be shown (exercises) that      can be made arbitrarily
small when the number of qubits used is

For arbitrarily small     and          

So our compression rate is

This holds for any dimension, D, of the quantum system

The quantity

Is the Von Neumann entropy: quantum version of Shannon



Generalized measurement
(POVM: N+C 2.2.6, P 3.1.2)

So far we've just considered projective measurements

This is not the most general form

For example, suppose you want to measure both      and

This is impossible due to the uncertainty principle

What if you need to be pretty sure about      , but not certain.
And only have a little hint about      ?

You could take your qubit and an additional 'ancilla' qubit,
and interact them a little bit

The ancilla now knows a little bit about the z basis state of
our qubit



If we measure the ancilla in the Z basis and get the result       ,
it tells us very little. If we get      we know that our qubit is
in state      too. But this is very rare            . So, on average,
we get very little Z basis information.

What about the X basis?

The state of our qubit has hardly changed, so the X basis
measurement will give almost the same result as it would've
without the interaction. It will be a bit messed up, though. So
we can not entirely trust the result.

Here we have done two measurements. Equivalently, it's a
measurement with four outcomes. You can't do that on a
qubit using only projectors!



Consider a system, S, whose state want to measure

And another system, M, whose state we know. 

We can then perform projective measurements on the
combined system

These could be entangling measurements, or they could
measure a product basis after interaction.

They could be one big measurement with many outcomes,
or the combination of multiple ones.

If multiple, the basis choice for later measurements could
depend on the outcome of earlier ones



The bigger system means more outcomes are possible. But
because the state of the ancilla system is known, all
information extracted comes from the our system.

For simplicity, consider the basis for B that includes

Can we calculate the probabilties using the state of S alone?



The more general form of measurement in QM is then

   Measurements correspond to a POVM

   and yield outcome   with probability

Since the probabilities must sum to 1 for any state of A

Since probabilities are non-negative, the operators must
be positive

Any set of operators satisfying these conditions corresponds
to a valid measurement, and is knows as a POVM

Note that we have lost the ability to calculate final states,
but we usually don't need this in situations where we need
POVMs

These operators clearly satisfy the following conditions



Partial trace

The state of two systems A and B can be described by
a density matrix (or wave function if pure) acting on the
joint Hilbert space

We don't care about B, we only want to make calculations
regarding A. We want a density matrix that acts on      
alone and gives us all information about A

So given the state of A and B:

We want to find a       such that

For some observable O acting on A



If both A and B are qubits, then for 

The expectation value for an observable O, acting only on
A is then

The state      can be written 

If the observables are Paulis, we find

The B part of       is then simply replaced with a number,
that comes from tracing over



This is called the partial trace

First, what is the normal trace?

It takes a matrix and removes the bits we don't want
(off diagonal elements and outer products)

Note: any orthonormal basis can be used. The result is
basis independent

This gives intuition for the general case

To find the density matrix for a A, given that for AB, we
need to perform a trace that only traces over B

Rather than outputing a number, like a normal trace, it
results in a smaller matrix, that acts only on A



Partial trace can be thought of in the same way

First express the matrix in an orthonormal product basis

Then remove terms than are off diagonal on subsystem B
(the one we are tracing over)

Then remove the outer products that act on subsystem B



Example: General case of two qubits



More formally, the trace is defined on a Hilbert space
for a general matrix

as

The partial trace over system B for a composite space
is defined for a general matrix

as


