Quantum Information

So far we have learned about
Qubits
Mixed states

Classical information theory (Shannon entropy)

Today we will begin to mash these together into a
quantum theory of information

For that we'll need

Partial trace
Generalized measurement

Schumacher Compression
(Von Neumann entropy)



Schumacher Compression
(N+C:12.2, P: 5.3)

Classical: X: X ég:cfl_..,acaﬁ) vt froLS. gP,,...,PA

l<l\] [Xl bits required to store N outcomes

Compression rate H[;(\l = [EI:A@O KN&X’&

Quantum: X :\x>é§\bﬁ.>{...,\x(@> vkl \woLS, §_P,,.--,"A

. Q .
How many qubits K required to store N outcomes?

What is the best possible compression rate?
K,y [X]

Hox1=C[xT= b =25




Can be easily found using the classical results:

We first store the possible states (this is just some
meta data)

Suppose the possible states are orthogonal <I;[3cd.§:g,“}

This lets us measure the outcomes to determine the states

Then we store the . as a classical variable, using qubits
as bits ¢ %Io> [ =S [1)

Total number of qubits required

KeLxXD= 4 + Kl -+ WA= HLAC

| =



What if the states are not orthogonal?

Recall that everything is calculated from the density matrix

So getting states |x;> with probs f; is equivalent to getting
states |i ) with probs 7 ; if

A D~ ~
/Q:ZQ)iQX&QJZ Z‘Z;,IJ XJ |

So then we can find an equivalent distribution that has
orthogonal states by diagonalizing <7 | >- 51(

The compressiog rate then follows from before
HE[x1=HLEg 3] = ~29,"99;
Which can be more easily expressed

H3[X1=S(P)= ~tclp loyf)

The Von Neumann entropy




We can also do it from the very begining:

Schumacher Compression ( generalization of Shannon's
source coding theorem to density matrices)

A simple preliminary example
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Diagonalizing this /=7, (8x&(+ 7, [TxT|
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The latter state Is quite unlikely, so we could store N
outcomes in a single |o>and be right most of the time

This approximation isn't awful, but it isn't good enough for
good compression



Consider three outcomes
™ = Pepep=7 7 7 9,99, [Tk XTT kI
/O 1€fo} Jeﬁ,l}kefo,n}7 Z 7L ke X1
|350) wiH PRoB.  Cosb(F)% 062
62,1785 wiH pRog. [054(1}?)$lw7(%)::o‘”
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Most of the state is within a 4D subspace
{1865, 16575 1576, 1758} v pron. & 0:94

Using the approximation \
/003 ,’t. H)/OHD /P IS PRogECTOR ONTO

tr(P0)

We lose little, but can encode in 2 qubits instead of 3




In general, a random source generates states of a quantum
system such that

D-f
P=Z 91771 <T13 525
js0 ( 1
So for N outcomes

P22 g 13 du X0 | Livs,s 1ix-xq,
i

Jd,

Consider the projector [?k onto the k most likely eigenstates
o\ ~
(R p™)= ¢

We consider k for which €<«

AN
This is the subspace on which most of /O has support

N outcomes can be compressed to Kf/: \oj.tl(qubits

HY(p) =Ki = [og,k
N \/



So what k do we need?

Law of large numbers:

The most likely strings have q¢,v 1855 Avo g 1105

Number of such states:

N\ N | _ _N!
( Nz,) B ARCEAINGARAL

Using this for k, the number of qubits required is

KQN: ’Oﬁz_(z\//\;,): Nlog, N - NZJOjZNZo‘ N7, log, N9, O(\gj N)
= NH(g,) + 0ols N)

\J.S\V\'ﬂ SL!/‘()\:)J ’q O/Yf{olennAwV) ’Qj 0‘,‘ — A \ciﬂ a - a + D(\ﬁ o.)




This k leads to quite a large &, since most likely the string
IS not one of the most likely strings

It can be shown (exercises) that & can be made arbitrarily
small when the number of qubits used is

Koz N(H)+8)  H(z) -t (Plar)
For arbitrarily small & and N -
SO our compression rate is
= [X]=HE)E Py

This holds for any dimension, D, of the quantum system

The quantity ¢ (/0) - —-/0{37/0

Is the Von Neumann entropy: quantum version of Shannon



Generalized measurement
(POVM: N+C 2.2.6, P 3.1.2)

So far we've just considered projective measurements

S.VUL ZUM : gloil\?B ) gJ %)ﬂ%)}

This Is not the most general form

For example, suppose you want to measure both O« and O:
This Is impossible due to the uncertainty principle

What if you need to be pretty sure about Q. , but not certain.
And only have a little hint about G, ?

You could take your qubit and an additional 'ancilla’ qubit,
and interact them a little bit

19D ®10) =a1oY@I0D+ Liddle)  —  alodew>+ bl (FFo>211>)

The ancilla now knows a little bit about the z basis state of
our qubit



alo> oD + bli1d® (J€1ed+ l>)

If we measure the ancilla in the Z basis and get the result [0 )
it tells us very little. If we get [1) we know that our qubit is

in state[,) too. But this Is very rare (g«r) . 50, on average,
we get very little Z basis information.

What about the X basis?
a\o>®d+ bliD® (jﬁs"-|o>+g||>) — (&t (0) + L{T} |l>>®lo> + sLiiyon>

/144) ?(&t(O>4— LE‘II>>(4*<0’ * L*\F‘;’((() welhal = [¢xel

The state of our qubit has hardly changed, so the X basis
measurement will give almost the same result as it would've
without the interaction. It will be a bit messed up, though. So
we can not entirely trust the result.

Here we have done two measurements. Equivalently, it's a
measurement with four outcomes. You can't do that on a
qubit using only projectors!



Consider a system, S, whose state want to measure
AR
And another system, M, whose state we know.

/g:)‘:()(ﬂ”l & Hn

We can then perform projective measurements on the
combined system

(Btmﬂ(/"jléys@ﬂm B:J”'(@ ﬂ@ﬁ!)
These could be entangling measurements, or they could

measure a product basis after interaction.

They could be one big measurement with many outcomes,
or the combination of multiple ones.

If multiple, the basis choice for later measurements could
depend on the outcome of earlier ones



The bigger system means more outcomes are possible. But
because the state of the ancilla system is known, all
iInformation extracted comes from the our system.

Can we calculate the probabilties using the state of S alone?
tr(4e B)=Z ok |([A eiexa] B 1y 8l

For simplicity, conS|der the basis for B that includes (¢

tr( e B)=Z daleds LI LIED
~ Z[((lf Rle<t 1) B gy el e))
-tr (4 E)
Ej=<oiPiey =t (P iexel)




These operators clearly satisfy the following conditions
Since the probabilities must sum to 1 for any state of A

) E;=1
-

Since probabilities are non-negative, the operators must
be positive

tf OWL{/I Ed) o Ylv) €l,

Any set of operators satisfying these conditions corresponds
to a valid measurement, and is knows as a POVM

The more general form of measurement in QM is then

Measurements correspond to a POVM gEg

J
and yield outcome jwith probability P¢j)= éf(EJ' /0)

Note that we have lost the ability to calculate final states,
but we usually don't need this in situations where we need
POVMs



Partial trace

The state of two systems A and B can be described by
a density matrix (or wave function if pure) acting on the
joint Hilbert space H,eH,

We don't care about B, we only want to make calculations
regarding A. We want a density matrix that acts on H,
alone and gives us all information about A

So given the state of A and B: ﬁg

We want to find a /£ such that

C0y=tr(0f4)

For some observable O acting on A



If both A and B are qubits, then for /A
<Q> tr (O/OA)~/ 2 tr (00}3 (Ox ) 0(6{0,1,3,2}

The state /9& can be wrltten
f \ r
:—Z@-Q— 9.8, - — ) O SV DY x £ E (0,x,v,?
ﬁ& L"°‘,ﬂ<o{'@> °‘®ﬁ 4% a©&Zﬁ.<d/¢>;j} ,F g J l

The expectation value for an observable O, acting only on
A is then A ot R part

C0Y= tr([o o1 1) = tr(7 2(0c)e R A |

LZ

th (OG&) =2 CG_«U’,«>67;

If the observables are Paulls we find

| f -
f=2 20 tr[z Z (o020 ©- tr) %CG«WDG; =G5,
The B part of /, is then simply replaced with a number,
that comes from tracing over Hg




This gives intuition for the general case

To find the density matrix for a A, given that for AB, we
need to perform a trace that only traces over B

Rather than outputing a number, like a normal trace, it
results in a smaller matrix, that acts only on A

This Is called the partial trace
/51) =ty (Ag)

First, what is the normal trace?

M: Moo lD)(o|+ Mo]fO,(l’-('.--'l" mlO‘lXOI + Mllll)(”"""‘

L P Lo B+ S 13 5 = T

v

It takes a matrix and removes the bits we don't want
(off diagonal elements and outer products)

Note: any orthonormal basis can be used. The result is
basis independent



Partial trace can be thought of in the same way

First express the matrix in an orthonormal product basis

(97 7 G ixal a1 A, oy €Ha , 18> €Ha
ARk GHCO NI

Then remove terms than are off diagonal on subsystem B
(the one we are tracing over)

ﬁZC\jLJ IO(;)(O(IJ@IPJ Xé[
1ahl ¥ '
Then remove the outer products that act on subsystem B

= D Cig 106X | :/?4

15k



Example: General case
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More formally, the trace is defined on a Hilbert space -
for a general matrix

L)
asS
tr (M): Zmi't

The partial trace over system B for a composite space H H
is defined for a general matrix .

M=o m . Tipelic) <Jyle<ic]

‘A 0
iR Nr
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b (M) = <M W<
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