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What is error correction?

* Suppose you are talking on the phone
* You need to answer a question with ‘yes’ or 'no’

* How likely are you to be misunderstood? Is it a noisy line?
p = probability that ‘no’ sounds like ‘yes’, and vice-versa

* How much do you care about being misunderstood?
P_= maximum acceptable error probability



What is error correction?

* Usually p< P, , sowe don't need to worry
* What if we are being asked life-or-death questions over a noisy line?

* How can we make ourselves understood?



The Repetition Code

We could repeat ourselves
A torrent of ‘no’s will sound like you mean ‘no’
So would lots of ‘no’s with a few apparent ‘yes'’s thrown in

Message becomes tolerant to small faults



The Repetition Code

Receiver will interpret message using majority voting

If they hear mostly ‘no’, they’ll think you are saying ‘no’

If they hear mostly ‘yes’, they’ll think you are saying ‘yes’

You will only be misunderstood if noise causes the majority to flip

For d repetitions

d

P = Zn:d/2

Probably decays exponentially with d

d

d/?2
n1— d-n __ |_D
P (1—p) ( )

We can ensure that P < P_ for any p, just by using enough repetitions



Encoding and decoding
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* This simple example contains the basics error correction
> Input: Some information to protect from errors
> Encoding: Input is altered to make it fault tolerant
> Transmission: Noise affects the encoded message, altering it

> Decoding: Most likely input is deduced, given the message received



Storage

So far we've been focussing on sending information. What about storing
it?

The probability for errors increases with time

p(t)20.5, as t=>ow

How can we store information for indefinitely long times?



Storage

Just keep decoding and encoding

Store for At
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To store foratime T, use n=T/At rounds
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Exponential decay depends on error probability for each round

Lifetime increases exponentially with d
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What about qubits?

This process works fine with bits
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But for qubits we might store a superposition state

%(|o>+|1>) > %(|000>+|111>)

Decoding requires measurement, which collapses superposition

How do we extract the information we want (effects of noise)
without getting information we don’t (measurement of stored qubit)?



What about qubits?

* Even with bits, we don’t actually need the values to decode

 Just need domains walls between errors and non-errors
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* NOT gate can be applied to minority domain to correct

* So how to measure the domain walls?



Quantum repetition code
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Can be done with the controlled-NOT gate cx|00/=[00]
cx|01)=1]01,
Does nothing when control qubit is in state 0, cx[10)=|11]
Applies an X to target qubit when control is in state 1 cx|11)=|10,

cx(1,2) cx(3,2) |x, 0, y) = |x, x®y, y
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Corresponds to measuring the observable o’c



Quantum repetition code
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By repeating this process
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, arbitary quantum states can be protected
from bit flip noise (random application of o, )

X
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But they become even more susceptible to dephasing
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Towards a better quantum code

* How does the repetition code protect against bit flip noise (o) ?

* Anisolated 0" creates a pair of defects 2] %

* Further ¢"s can move the defects = =

* Or create new pairs of defects Z -J0F 3 IF-

* Or annihilate pairs of defects Z Z

* Adistance of >d/2 is needed for a logical error 7z 7z

* Then decoding will complete the job, pulling the
defects off the ends

* The code is like a ‘universe’ in which the defects are its particles

* Bit flips create and manipulate these particles, but only large scale
effects can cause a logical error



Towards a better quantum code

Why doesn’t the repetition code protect against phase flip noise (o,) ?

Measurement is too easy, even when the information is encoded
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Once errors are removed, a quick peek at any qubit reveals the stored
information

If it is easy for us to see, it is easy for the environment to dephase

Consider measuring in the X basis instead
1 1
+) = —|(|0/)x|1)] & —(|000)=*|111
£l = l0/[t] > —{l000/=[111)

Requires multi qubit process for the encoded states



Imperfect measurement

What about imperfect measurements throughout?

Consider a measurement of a single qubit that lies with prob. P,
but doesn’t disturb the measured qubit (beyond projection)

How do we extract information correctly? Repetition!

Lies create pairs of defects in the time direction



Imperfect measurement

* Combine this with the repetition code:
* Defects = changes in ancilla measurement result
* Bit flips create space-like separated defect pairs

* Lies create time-like separate defect pairs

* Combinations create combinations k(%
o—0 O
* Noisy measurements just increase the o >
space of the ‘universe’ by 1 dimension | }
4 d
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arXiv:quant-ph/0110143



Repetition code experiments

* We can run repetition codes with current devices
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* An experiment has been done with limited size, but many rounds
J. Kelly, et al., Nature 519, 66—69 (2015)

* Let’s look at the other extreme: large size but a single round



Repetition code experiments

* This means we simply
* Prepare a bit state b
* Perform syndrome measurements, moving error info to ancillas
* Measure everything, and try to work out what was encoded

0)— —

* From many samples, and different encoded states, we can calculate
logical error probabilities (P)

* We can compare with using just a single qubit (p)



Repetition code experiments

* | did this using IBM’s cloud based 16 qubit processor

github.com/decodoku/repetition _code
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Full and partial decoding

* Note that we could just ignore the ancillas

* The syndrome measurement is then useless: just a source of noise
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* We'll compare decoding with the ancillas (full decoding) to that just
with code qubits (partial decoding), to see how effective the cx-
assisted measurements really are
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Full and partial decoding
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Look up table decoder

We can do better than just majority voting
We can use experimental data to determine the most likely encoded bit

For example, with partial decoding
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Probability (log base 10)

How can partial be better than full?

Biased noise shifts
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Thanks for listening!
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