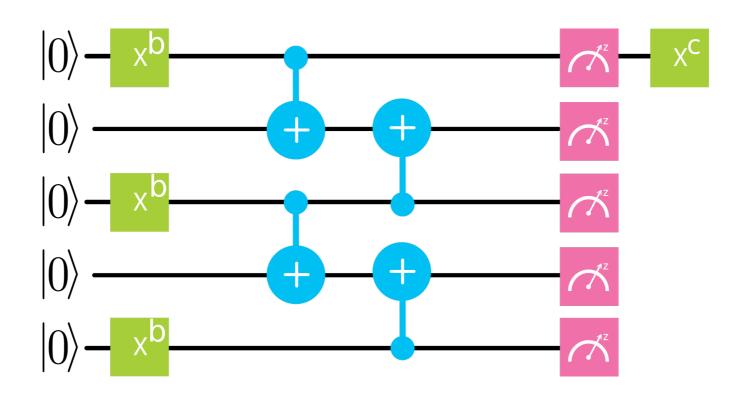
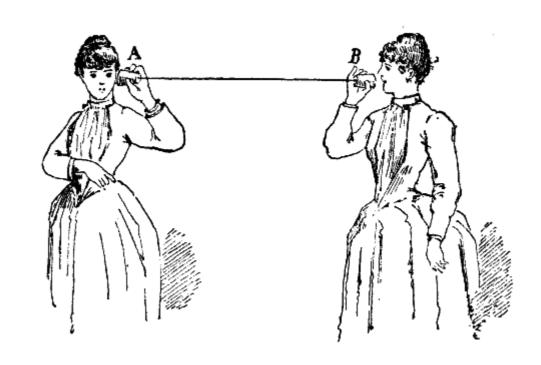
Introduction to the Repetition Code

Dr James R. Wootton University of Basel

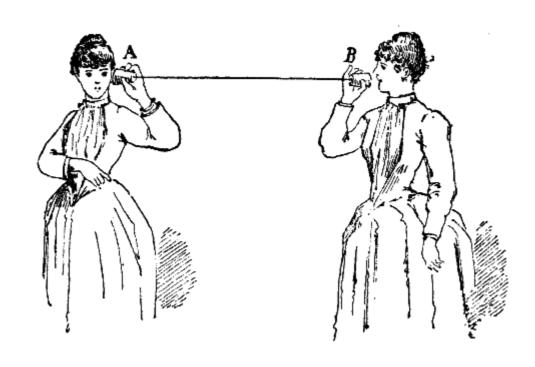


What is error correction?



- Suppose you are talking on the phone
- You need to answer a question with 'yes' or 'no'
- How likely are you to be misunderstood? Is it a noisy line?
 p = probability that 'no' sounds like 'yes', and vice-versa
- How much do you care about being misunderstood?
 P_a = maximum acceptable error probability

What is error correction?



- Usually $p \ll P_a$, so we don't need to worry
- What if we are being asked life-or-death questions over a noisy line?
- How can we make ourselves understood?

The Repetition Code

- We could repeat ourselves
- A torrent of 'no's will sound like you mean 'no'
- So would lots of 'no's with a few apparent 'yes's thrown in
- Message becomes tolerant to small faults

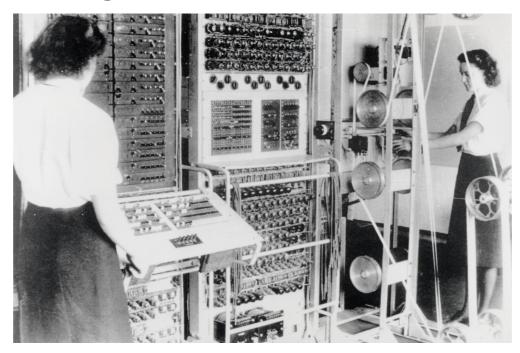
The Repetition Code

- Receiver will interpret message using majority voting
- If they hear mostly 'no', they'll think you are saying 'no'
- If they hear mostly 'yes', they'll think you are saying 'yes'
- You will only be misunderstood if noise causes the majority to flip
- For d repetitions

$$P = \sum_{n=d/2}^{d} {d \choose n} p^{n} (1-p)^{d-n} \sim \left(\frac{p}{1-p}\right)^{d/2}$$

- Probably decays exponentially with d
- We can ensure that $P \ll P_a$ for any p, just by using enough repetitions

Encoding and decoding



- This simple example contains the basics error correction
 - Input: Some information to protect from errors
 - Encoding: Input is altered to make it fault tolerant
 - > Transmission: Noise affects the encoded message, altering it
 - Decoding: Most likely input is deduced, given the message received

Storage

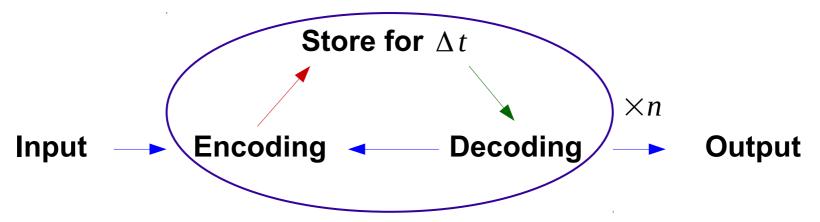
- So far we've been focussing on sending information. What about storing it?
- The probability for errors increases with time

$$p(t) \rightarrow 0.5$$
, as $t \rightarrow \infty$ \therefore $\left(\frac{p}{1-p}\right)^{d/2} = O(1)$

How can we store information for indefinitely long times?

Storage

Just keep decoding and encoding



• To store for a time T, use $n=T/\Delta t$ rounds

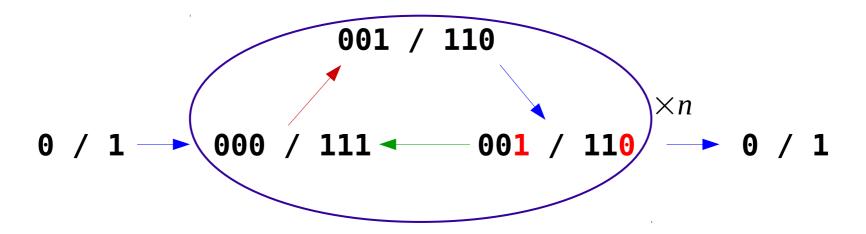
$$P(T) < n \ P(\Delta t) \sim \frac{T}{\Delta t} \left(\frac{p(\Delta t)}{1 - p(\Delta t)} \right)^{d/2}$$

- Exponential decay depends on error probability for each round
- Lifetime increases exponentially with d

$$T_{\text{max}} > P_a \Delta t \left(\frac{1 - p(\Delta t)}{p(\Delta t)} \right)^{d/2}$$

What about qubits?

This process works fine with bits



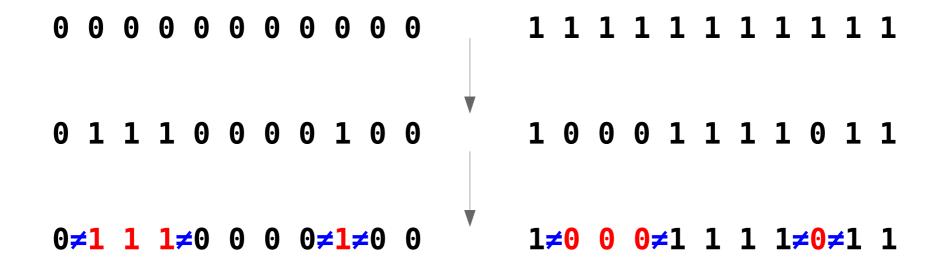
But for qubits we might store a superposition state

$$\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \rightarrow \frac{1}{\sqrt{2}}(|000\rangle + |111\rangle)$$

- Decoding requires measurement, which collapses superposition
- How do we extract the information we want (effects of noise)
 without getting information we don't (measurement of stored qubit)?

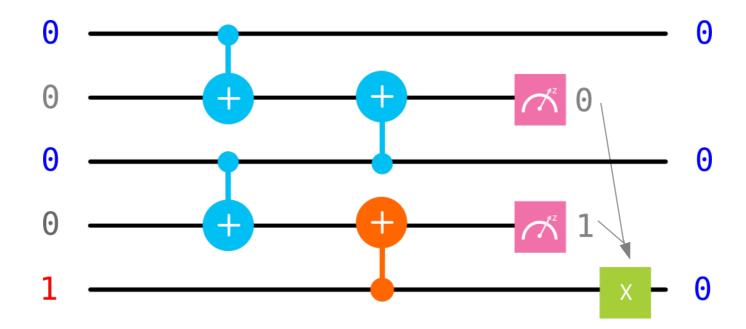
What about qubits?

- Even with bits, we don't actually need the values to decode
- Just need domains walls between errors and non-errors



- NOT gate can be applied to minority domain to correct
- So how to measure the domain walls?

Quantum repetition code



- Can be done with the controlled-NOT gate
- Does nothing when control qubit is in state 0,
 Applies an X to target qubit when control is in state 1

$$cx(1,2)$$
 $cx(3,2)$ $|x, 0, y\rangle = |x, x \oplus y, y\rangle$

• Corresponds to measuring the observable $\sigma_z^j \sigma_z^{j+1}$

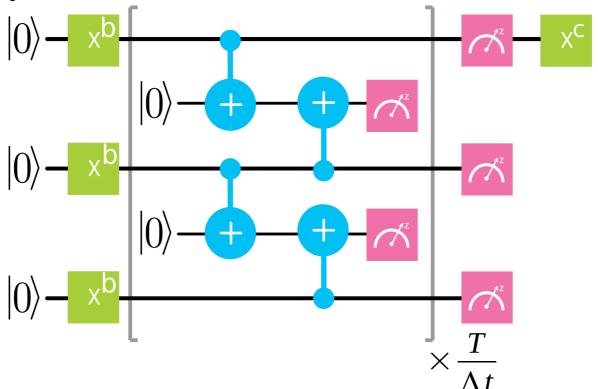
$$cx |00\rangle = |00\rangle$$

$$cx |01\rangle = |01\rangle$$

$$cx |10\rangle = |11\rangle$$

$$cx |11\rangle = |10\rangle$$

Quantum repetition code



 By repeating this process, arbitary quantum states can be protected from bit flip noise (random application of σ_x)

$$|a|0\rangle + b|1\rangle \rightarrow a|000\rangle + b|111\rangle \rightarrow a|0\rangle + b|1\rangle$$

But they become even more susceptible to dephasing

$$\begin{array}{ll} a |000\rangle - b |111\rangle & = \sigma_z^1 \left(a |000\rangle + b |111\rangle \right) \\ & = \sigma_z^2 \left(a |000\rangle + b |111\rangle \right) \\ & = \sigma_z^3 \left(a |000\rangle + b |111\rangle \right) \end{array} \qquad P_x \sim \left(\frac{p_x}{1 - p_x} \right)^{d/2}$$

$$P_z \sim d p_z$$

Towards a better quantum code

- How does the repetition code protect against bit flip noise (σ_x) ?
 - An isolated σ^x creates a pair of *defects*

 $0 \quad 0 \quad 0 \neq 1 \neq 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$

• Further σ^x s can move the defects

 $0 \ 0 \ 0 \neq 1 \ 1 \neq 0 \ 0 \ 0 \ 0 \ 0$

Or create new pairs of defects

 $0 \ 0 \ 0 \neq 1 \ 1 \neq 0 \neq 1 \neq 0 \ 0 \ 0$

Or annihilate pairs of defects

- 0 0 0**≠1 1 1 1≠**0 0 0 0
- A distance of >d/2 is needed for a logical error
- $0 \ 0 \ 0 \neq 1 \ 1 \ 1 \ 1 \ 1 \neq 0 \ 0$
- The code is like a 'universe' in which the defects are its particles
- Bit flips create and manipulate these particles, but only large scale effects can cause a logical error

Towards a better quantum code

- Why doesn't the repetition code protect against phase flip noise (σ_z) ?
- Measurement is too easy, even when the information is encoded

- Once errors are removed, a quick peek at any qubit reveals the stored information
- If it is easy for us to see, it is easy for the environment to dephase
- Consider measuring in the X basis instead

$$|\pm\rangle = \frac{1}{\sqrt{2}}(|0\rangle\pm|1\rangle) \rightarrow \frac{1}{\sqrt{2}}(|000\rangle\pm|111\rangle)$$

Requires multi qubit process for the encoded states

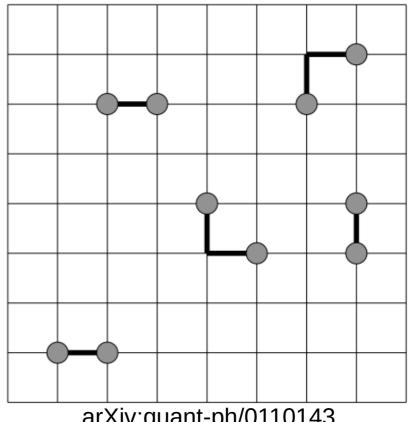
Imperfect measurement

- What about imperfect measurements throughout?
- Consider a measurement of a single qubit that lies with prob. P, but doesn't disturb the measured qubit (beyond projection)
- How do we extract information correctly? Repetition!
- Lies create pairs of defects in the time direction

Imperfect measurement

- Combine this with the repetition code:
 - Defects = changes in ancilla measurement result
 - Bit flips create space-like separated defect pairs
 - Lies create time-like separate defect pairs
 - Combinations create combinations

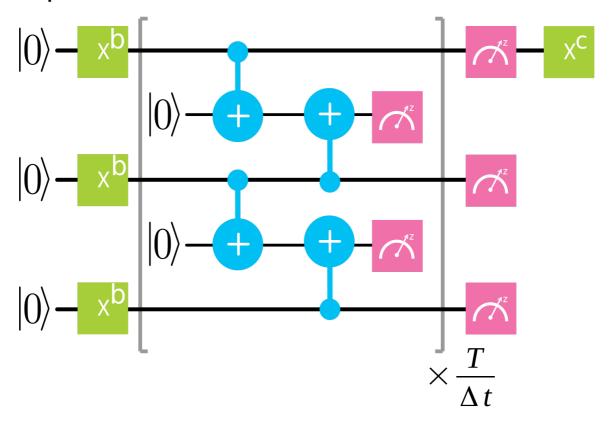
Noisy measurements just increase the space of the 'universe' by 1 dimension



arXiv:quant-ph/0110143

Repetition code experiments

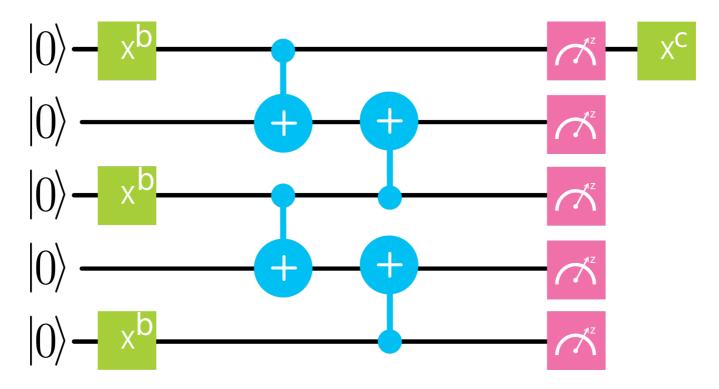
We can run repetition codes with current devices



- An experiment has been done with limited size, but many rounds
 J. Kelly, et al., Nature 519, 66–69 (2015)
- Let's look at the other extreme: large size but a single round

Repetition code experiments

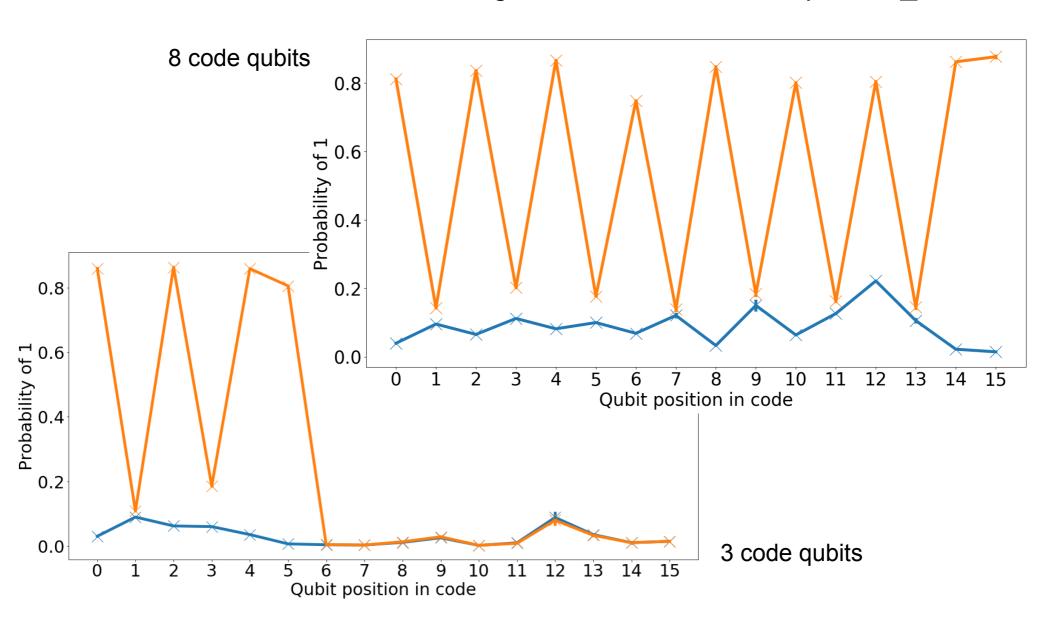
- This means we simply
 - Prepare a bit state b
 - Perform syndrome measurements, moving error info to ancillas
 - Measure everything, and try to work out what was encoded



- From many samples, and different encoded states, we can calculate logical error probabilities (P)
- We can compare with using just a single qubit (p)

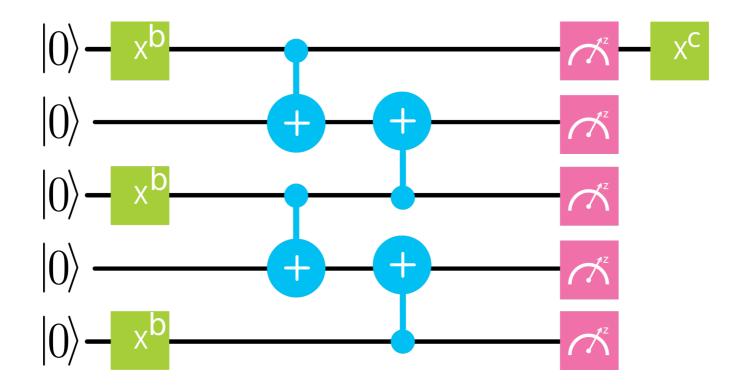
Repetition code experiments

I did this using IBM's cloud based 16 qubit processor
 github.com/decodoku/repetition_code



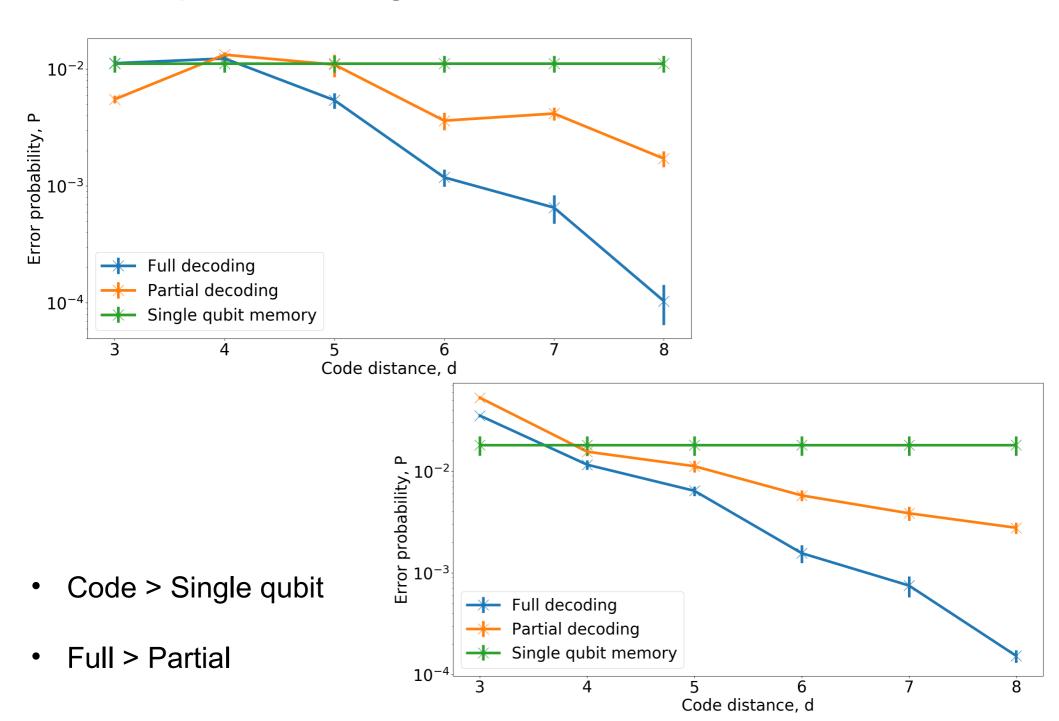
Full and partial decoding

- Note that we could just ignore the ancillas
- The syndrome measurement is then useless: just a source of noise



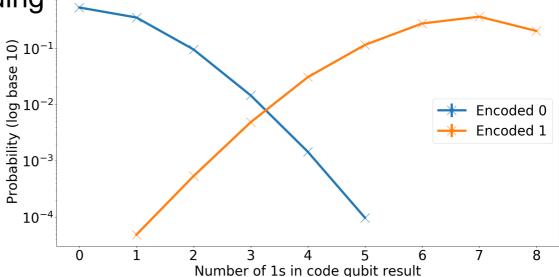
 We'll compare decoding with the ancillas (full decoding) to that just with code qubits (partial decoding), to see how effective the cxassisted measurements really are

Full and partial decoding

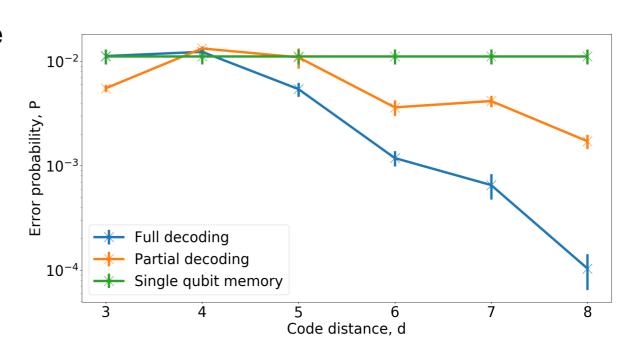


Look up table decoder

- We can do better than just majority voting
- We can use experimental data to determine the most likely encoded bit
- For example, with partial decoding
- Accounts for true nature of noise (bias, correlations, ...)



 Can explain counterintuitive finite size effects



How can partial be better than full?

- Biased noise shifts crossover point
- Smaller codes are less able to adapt

