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What is error correction?

• Suppose you are talking on the phone
• You need to answer a question with ‘yes’ or ‘no’

• How likely are you to be misunderstood? Is it a noisy line?
p = probability that ‘no’ sounds like ‘yes’, and vice-versa

• How much do you care about being misunderstood?
P

a
 = maximum acceptable error probability



What is error correction?

• Usually              , so we don’t need to worry 

• What if we are being asked life-or-death questions over a noisy line?

• How can we make ourselves understood?

p≪Pa



The Repetition Code

• We could repeat ourselves 

• A torrent of ‘no’s will sound like you mean ‘no’

• So would lots of ‘no’s with a few apparent ‘yes’s thrown in

• Message becomes tolerant to small faults



The Repetition Code

• Receiver will interpret message using majority voting

• If they hear mostly ‘no’, they’ll think you are saying ‘no’

• If they hear mostly ‘yes’, they’ll think you are saying ‘yes’

• You will only be misunderstood if noise causes the majority to flip

• For d repetitions

• Probably decays exponentially with d

• We can ensure that               for any p, just by using enough repetitions

P  =  ∑n=d /2

d
  (dn)   pn(1−p)d−n  ∼  ( p

1−p )
d /2

P≪Pa



Encoding and decoding

• This simple example contains the basics error correction

➢ Input: Some information to protect from errors

➢ Encoding: Input is altered to make it fault tolerant

➢ Transmission: Noise affects the encoded message, altering it

➢ Decoding: Most likely input is deduced, given the message received



Storage

• So far we’ve been focussing on sending information. What about storing 
it?

• The probability for errors increases with time

• How can we store information for indefinitely long times?

p(t )→0.5,  as  t→∞ ∴     ( p
1−p )

d /2

=  O(1)



Storage

• Just keep decoding and encoding

• To store for a time T, use                  rounds

• Exponential decay depends on error probability for each round

• Lifetime increases exponentially with d

                                   Store for     

Input             Encoding               Decoding               Output

Δ t

n=T /Δ t

P(T )  <  n  P (Δ t )  ∼  
T
Δ t

 (
p(Δ t)

1−p(Δ t))
d /2

Tmax  >  Pa  Δ t  (
1−p (Δ t)
p(Δ t) )

d /2

×n



What about qubits?

• This process works fine with bits

• But for qubits we might store a superposition state

• Decoding requires measurement, which collapses superposition

• How do we extract the information we want (effects of noise)
without getting information we don’t (measurement of stored qubit)?

               001 / 110

0 / 1     000 / 111      001 / 110      0 / 1
×n

1

√2
(|0 ⟩+|1 ⟩ )  →  

1

√2
(|000 ⟩+|111 ⟩ )



What about qubits?

• Even with bits, we don’t actually need the values to decode

• Just need domains walls between errors and non-errors

• NOT gate can be applied to minority domain to correct

• So how to measure the domain walls?

0 0 0 0 0 0 0 0 0 0 0      1 1 1 1 1 1 1 1 1 1 1 

0 1 1 1 0 0 0 0 1 0 0      1 0 0 0 1 1 1 1 0 1 1

0≠1 1 1≠0 0 0 0≠1≠0 0      1≠0 0 0≠1 1 1 1≠0≠1 1



Quantum repetition code

• Can be done with the controlled-NOT gate

• Does nothing when control qubit is in state 0,
Applies an X to target qubit when control is in state 1

• Corresponds to measuring the observable

cx|0 0 ⟩=|00 ⟩
cx|0 1 ⟩=|01 ⟩
cx|10 ⟩=|1 1 ⟩
cx|11 ⟩=|10 ⟩

cx (1,2)  cx (3,2)   |x ,   0,   y ⟩  =  |x ,   x⊕ y ,   y ⟩

σ z
j
σ z
j+1



Quantum repetition code

• By repeating this process, arbitary quantum states can be protected
from bit flip noise (random application of        )

• But they become even more susceptible to dephasing

a|0 ⟩+b|1 ⟩   →  a|000 ⟩+b|111 ⟩  →a|0 ⟩+b|1 ⟩  

            =  σ z
1  (  a|000 ⟩+b|111 ⟩  )

            =  σ z
2  (  a|000 ⟩+b|111 ⟩  )

            =  σ z
3  (  a|000 ⟩+b|111 ⟩  )

a|000 ⟩−b|111 ⟩ Px  ∼  (
px

1− px )
d/2

Pz  ∼ d  pz

σ x

×
T
Δ t



Towards a better quantum code

• How does the repetition code protect against bit flip noise (    ) ?

● An isolated       creates a pair of defects

● Further      s can move the defects

● Or create new pairs of defects

● Or annihilate pairs of defects

● A distance of >d/2 is needed for a logical error

● Then decoding will complete the job, pulling the
defects off the ends

• The code is like a ‘universe’ in which the defects are its particles

• Bit flips create and manipulate these particles, but only large scale 
effects can cause a logical error

0 0 0≠1≠0 0 0 0 0 0 0
 
0 0 0≠1 1≠0 0 0 0 0 0
 
0 0 0≠1 1≠0≠1≠0 0 0 0
 
0 0 0≠1 1 1 1≠0 0 0 0
 
0 0 0≠1 1 1 1 1 1≠0 0
 
≠1 1 1 1 1 1 1 1 1 1 1≠

σ x

σ
x

σ
x



Towards a better quantum code

• Why doesn’t the repetition code protect against phase flip noise (    ) ?

• Measurement is too easy, even when the information is encoded

• Once errors are removed, a quick peek at any qubit reveals the stored 
information

• If it is easy for us to see, it is easy for the environment to dephase

• Consider measuring in the X basis instead

• Requires multi qubit process for the encoded states

σ z

0 0 0 0 0 0 0 0 0 0 0      1 1 1 1 1 1 1 1 1 1 1 

|± ⟩  = 
1

√2
(|0 ⟩±|1 ⟩ )  →  

1

√2
(|000 ⟩±|111 ⟩ )



Imperfect measurement

• What about imperfect measurements throughout?

• Consider a measurement of a single qubit that lies with prob. P,
but doesn’t disturb the measured qubit (beyond projection)

• How do we extract information correctly? Repetition!

• Lies create pairs of defects in the time direction 

 

0

0
≠
1
≠
0
 
0
 
0t



Imperfect measurement

• Combine this with the repetition code:

● Defects = changes in ancilla measurement result

● Bit flips create space-like separated defect pairs

● Lies create time-like separate defect pairs

● Combinations create combinations

 
arXiv:quant-ph/0110143

• Noisy measurements just increase the
space of the ‘universe’ by 1 dimension

 



Repetition code experiments

• We can run repetition codes with current devices

• An experiment has been done with limited size, but many rounds
J. Kelly, et al., Nature 519, 66–69 (2015)

• Let’s look at the other extreme: large size but a single round

×
T
Δ t



Repetition code experiments

• This means we simply
● Prepare a bit state b
● Perform syndrome measurements, moving error info to ancillas
● Measure everything, and try to work out what was encoded

• From many samples, and different encoded states, we can calculate
logical error probabilities (P)

• We can compare with using just a single qubit (p)



Repetition code experiments

• I did this using IBM’s cloud based 16 qubit processor
     github.com/decodoku/repetition_code

3 code qubits

8 code qubits



Full and partial decoding

• Note that we could just ignore the ancillas

• The syndrome measurement is then useless: just a source of noise

• We’ll compare decoding with the ancillas (full decoding) to that just 
with code qubits (partial decoding), to see how effective the cx-
assisted measurements really are



Full and partial decoding

• Code > Single qubit

• Full > Partial



Look up table decoder

• We can do better than just majority voting
• We can use experimental data to determine the most likely encoded bit
• For example, with partial decoding

• Accounts for true nature of
noise (bias, correlations, …)

• Can explain counterintuitive
finite size effects



How can partial be better than full?

• Biased noise shifts
crossover point

• Smaller codes are
less able to adapt



Thanks for listening!
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