Exercise 3

Due November 25 before noon

1 Readout errors and stochastic matrices

At the end of a quantum computation, the state of the qubits is measured. The act of measurement
is a classical communication problem — the computer is sending messages to the user. Let’s say that
at the end of the computation, the probability that the qubit is in state |1) is p, while the probability
that the qubit is in |0) is 1 — p. A noisy measurement device is then used to make an inference —
“0” or “1” — about the state of the qubit, with errors ¢y and €; described by an asymmetric bitflip
channel:

1)

(a) Write down the matrix S that relates the vector of pre-measurement probabilities, P = (1—p,p) T,
to the vector of post-measurement probabilities, P/ = (1 — p/,p')T. The matrix should satisfy
P’ = SP. (2 marks)

(b) The measurement fidelity F' gives the probability of correctly identifying the qubit state in a
given measurement. Consider the case of equal priors, p = 1/2. What is F' in terms of Tr S? Hint:
The fidelity can be computed as F' = P(“0”,0) + P(“1”,1), where P(“j”, j) is the joint probability
of the qubit being in state |j) and of correctly inferring the outcome “;”. (2 marks)

(c) A matrix M is stochastic if (1) M;; > 0Vi,j and (2) Y, M;; = 1 Vj. If S™1 is not stochastic,
then the channel is irreversible and information has been lost. Compute S~! for ¢y = ¢; = €. Find
all values of ¢ for which S~! is a stochastic matrix. Explain why your result makes sense. (4 marks)

2 Control power in quantum teleportation

Let’s consider a three-party quantum teleportation scheme involving Alice, Bob, and Charlie. Alice
has a single-qubit state |¢)) = a|0) + b|1) that she wants to send to Bob. Alice, Bob, and Charlie
share a three-qubit GHZ state given by |¥) = (|000) + |[111)) /v/2. Charlie is an agent of chaos who



may or may not cooperate. Let’s see whether Alice and Bob can still benefit from shared entangle-
ment without Charlie’s help.

(a) Alice performs a Bell measurement on |t) and her portion of the shared GHZ state. She obtains
one of four measurements, given by

o) = %uom +[11)), (1)
W) = —(j01) + [10)). (2)

V2

Calculate the post-measurement state of Bob and Charlie’s qubits conditioned on the outcome of
Alice’s Bell measurement. (Make sure this state is properly normalized.) Record your answers in
the following table (2 marks):

Alice’s outcome || State of Bob and Charlie’s qubits
[27)
™)
)
)

(b) Charlie is in a good mood and decides to help out. He now performs an X-basis measurement
of his qubit and communicates the outcome to Bob. Building on your answer from (a), write down
the state of Bob’s qubit following Alice’s Bell measurement and Charlie’s X-basis measurement.
Identify the correction operator Bob needs to apply to recover the original state |1). Assume a basis
ordering in which |4+) = (|0) £[1))/v/2 and Z = |0)0| — |1)(1], and record your answers in the table
below (4 marks).

Alice’s outcome | Charlie’s outcome || State of Bob’s qubit | Correction
[27) I+)
[©7) )
|©7) I+)
1©7) )
) I+)
) )
) I+)
") )

Note that with Charlie’s cooperation, Bob can recover Alice’s state with perfect fidelity.

(¢) Charlie is in a bad mood and wants no part in Alice and Bob’s shenanigans. He measures his
qubit but does not record the outcome. Without Charlie’s help, Bob does his best to reconstruct
Alice’s original state |¢): Having received the outcome of Alice’s Bell measurement, he applies the
following correction operator to his qubit conditioned on Alice’s outcome:

[ot) — 1, (3)
27) — Z, (4)
Uty - X, ()
™) = ZX. (6)



Building on your results from (a), apply the correction given above, then trace over Charlie’s qubit
to model Charlie’s lack of cooperation. In other words, evaluate the state pg of Bob’s qubit as

ps = Trc(pBe), (7)

where ppc is the state of Bob and Charlie’s qubits with the appropriate correction operator already
applied. Note that tracing over Charlie’s qubit amounts to discarding the outcome of Charlie’s
measurement. (3 marks)

(d) For an initial state |¢), Fyy = (¢|pg|¢) gives the fidelity of the teleportation achieved without
Charlie’s help. Average F, over the single-qubit Haar measure di) to obtain the state-averaged
fidelity F' of the teleportation protocol:

Fe / d (¥]psl). (8)

(3 marks) Hint: This average can be performed as an average over the polar and azimuthal coor-

dinates 6 and ¢ as )
1 s ™ .
/dw(“.)zﬂ/o d(b/o df sinf (---). 9)

The factor of 47 in the denominator accounts for the 47 solid angle of the Bloch sphere. You may
want to express a and b in terms of 6 and ¢.

The highest attainable fidelity for a “classical” teleportation protocol is F' = 2/3. Such a strat-
egy involves Alice making a measurement of her qubit (which is not entangled with Bob’s qubit),
sending the outcome to Bob over a classical communication channel, and having Bob perform oper-
ations on another qubit in an attempt to reconstruct Alice’s original state. If Charlie withholds his
measurement outcome, does quantum teleportation with the GHZ state provide an advantage over
classical resources? (1 mark)

(e) Let’s say we wanted to implement such a teleportation scheme experimentally, and to measure the
state-averaged fidelity F'. Having the initial state |)) parameterized by a continuum of angles (6, ¢)
would make evaluating ' somewhat inconvenient in such a scenario. (What 6,¢ do we choose?
How finely do we need to sample the Bloch sphere, and would a finite mesh even reproduce the
statistics of the Haar measure dy?) Express (¢|pg|¢)) as a polynomial p(x) in two variables a and
b,i.e. = (a,b)", and compute (2 marks)

% S plx). (10)

xeX

Here, |X| = 6 is the cardinality of the set X, i.e. the number of elements in X, while X itself is
given by

x = {1,000, 501 50,1 S5 (1,0). S5 0.0 | )

= ) ) ) s T =\ y —=\L, —1), —={L, 1), —= (L, =1 .
V2 V2 V2 V2

Does this quantity look familiar? If you were an experimentalist, what initial states |1) would you
prepare in order measure the average fidelity of your teleportation protocol without averaging over
all € [0,7] and ¢ € [0,27)7 (1 mark)



