Classical computation on a quantum computer
(Nielsen and Chuang 3.2.5)

Last week we considered the order finding algorithm, which

requires controlled U's for
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This unitary Is just doing modular multiplication, which is
efficient on a classical computer

We've seen before that a guantum computer can efficiently
simulate a qguantum computer
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So can we just use classical methods (on a quantum
computer) to perform these operations?

More generally, can we run classical subroutines within our
quantum computations?



Yes! But it is not completely straightforward

Consider only reversible classical circuits
(since unitary circuits are of this form)

Consider a circuit that maps an input z to an output f(z),
and also ouputs z to ensure reversibility

In general it will also output 'garbage’ g(z)
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If the iInput was not included in the output, the garbage
might be required for unitarity. But this is not the case here

So g(z) Is just some undeleted remnants of the computation



For a classical computation, this garbage can be ignored or
deleted

For a guantum computation, we have superpositions to
worry about
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The operations U and U' are fundamentally different. U’
entangles the computation to garbage in an ancilla, which
could mess up required interference effects
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S0, can a function f(z) that can be computed efficiently
with a classical computer also be computed efficiently with
a reversible classical computer that produces no garbage?

Yes! By means of 'uncomputation’

(2,0,0, 0 ) We use 4 reqisters, one with input, rest set to 0O

— (2, 5c®) 9, 0> Then do the computation, including
garbage output

Then copy f(x) to the — ( 2 ) 3(2)/5@)
fourth register
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Finally invert the computation (but not the copy) to reset the
second and third registers

Same complexity, but no garbage



Note: we assumed above that the additional registers
were initialized in the zero state
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This need not be true in general, they can be initialized in
any state
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This allows us to have nontrivial a, b and c if we want
(pre-stored constants, mathematical convenience)

Coming back to the quantum realm (and ignoring any
systems that start and finish in the same state) an efficient
classical computation
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Modular Exponentiation

The method we considered last week requires us to
iImplement the circuit
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Clearly this is of size 2°«2" and the second register holds
L qubits

How do we perform this efficiently?



The state of the first register can be expressed
| .
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Let's consider application of the circuit for a given z on the
first register, and a basis state y for the second

B Nice thing about this basis:
12> 12> state on first register does
[ not change
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So the circuit can be simply understood as
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Also remember from last week that we cannot prepare the
eigenstates [/, ) needed for the input of the 2nd reqister

However, it Is fine to use the superposition state
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S0 the circuit we need to implement is
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We only need to run the circuit for y=1, not abitrary values
of y. This will make life easier, since we don't need to
fully implement the unitary )
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But instead we can implement any unitary such that
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This can be done efficiently on a classical computer,
and so also on a guantum one without garbage

Total complexity upper bounded by 0(/*)

Note: The full U can also be efficiently implemented

However, this iIs more complex, so we just consider
the simpler case here



Factoring

We now have an efficient algorithm for calculating r, the
smallest integer such that

x' =l mad N x<N

This might make number theorists happy, but we want to
rob banks and spy on people by breaking RSA. We want to

factor!
To find all prime factors it is sufficient to have an algorithm
that can find a non-trivial factor for a given number N

Repeated calls to this can then be used to find all prime
factors

Primality tests can be used to determine whether outputs
are prime, these are classically efficient

There are two theorems that help us to build a factor finding
algorithm



Theorem 1: If N is an L bit number and y satisfies
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Then g¢d (Y.~ )and/or q¢4 (9+.~) is a non-trivial factor
of N computable with complexity O¢L3?)
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From this theorem, it is clear that an efficient means to
calculate y could be used to efficiently factor numbers

To find a factor of N, just find the corresponding y
Ytz mok N
Then compute 3w( (91N ) owmd qed (9+1,N)

This gives at least one nontrivial factor, N', of N

Then calculate N/ “= /N’ and apply the same method again
for both N' and N"

Continue to break down each factor into further factors
until only primes remain

This will yield all primes in time
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Classical computation of y is not efficient. What about
quantum?



Theorem 2: For an odd positive integer N expressed in
terms of m distinct prime factors as

N=[1¢

And for a randomly chosen integer x that satisfies
] {x {N-I ged (x N)= |
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Proof: Nielsen and Chuang A4.3

If r is even then x* IS an integer such that (acr’z)z'; | wmok V

And since x"# - wmd N, then | ¢ &= md N <N-I

So, with O(1) probability, ¢ == ne N



Shor's Algoritm

Using order finding, a quantum computer can efficiently
find y, and so efficiently factor

The whole algorithm to find a factor for an L bit number N
Is then as follows

Grey steps use a classical computer, black use a quantum
computer

Step 1: Determine whether N is prime or composite
Can be done efficiently with AKS primality test

If prime, output N;
Else, continue

Step 2: Determine whether N Is even

If even, output 2;
Else, continue



Step 3: Determine whether N is of the form Nrotb, ayl, b2
where a and b are integers

Can be done efficiently (N+C exercise 5.17)

If so, output a;
Else, continue

Step 4: Randomly choose x in the range 2 to N-1 and
calculate gecd (s, V)

Sampling can be done in O(L) time and gcd is
efficient using the Euclidean algorithm

If gcd (x,N)>1 output this;

Else, continue

Step 5: Take the x from step 3 for which 9cd (x, V)=
and find r, the order of x mod N. This can be done
efficiently using quantum order finding

If ris odd or x" md N=-U qutput 1 (fail);
Else, set 4= "% mod N



Step 6: Calculate ged (v, ~N) and ged (v+,V]
Efficient using Euclidean algorithm

Outputﬂw( (:ﬂ *\,N> and gca( (9+1,N)

This algorithm succeeds (outputs only trivial factor 1) only
when

1) The number does not require step 4 or later

2) If the number requires up to step 4, step 5 outputs
an r such that
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where m>2 Is the number of distinct prime factors

So it succeeds with O(1) probability



Factorizing 15

Step 1: Not prime, so continue
Step 2: Not even, so continue
Step 3: Not of this form, so continue

Step 4: Let's consider the case that x=4 is the
randomly chosen value. gcd(4,15)=1, so continue

Step 5:
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y=x"%4
Step 6:
Yrr= & 8(0((5,%'}:3_
Y-1 = 3 ged (3,1€) =2

Algorithm outputs both factors



