
Classical computation on a quantum computer
(Nielsen and Chuang 3.2.5)

Last week we considered the order finding algorithm, which
requires controlled U's for

This unitary is just doing modular multiplication, which is
efficient on a classical computer

We've seen before that a quantum computer can efficiently
simulate a quantum computer

So can we just use classical methods (on a quantum 
computer) to perform these operations?

More generally, can we run classical subroutines within our
quantum computations?



Consider a circuit that maps an input z to an output f(z),
and also ouputs z to ensure reversibility

Consider only reversible classical circuits
(since unitary circuits are of this form)

In general it will also output 'garbage' g(z)

Yes! But it is not completely straightforward

If the input was not included in the output, the garbage
might be required for unitarity. But this is not the case here

So g(z) is just some undeleted remnants of the computation



For a classical computation, this garbage can be ignored or
deleted

For a quantum computation, we have superpositions to
worry about

The operations U and U' are fundamentally different. U'
entangles the computation to garbage in an ancilla, which
could mess up required interference effects



So, can a function f(z) that can be computed efficiently
with a classical computer also be computed efficiently with
a reversible classical computer that produces no garbage?

Yes! By means of 'uncomputation'

We use 4 registers, one with input, rest set to 0

Then do the computation, including
garbage output

Then copy f(x) to the
fourth register

Finally invert the computation (but not the copy) to reset the
second and third registers

Same complexity, but no garbage



Note: we assumed above that the additional registers
were initialized in the zero state

This need not be true in general, they can be initialized in
any state

This allows us to have nontrivial a, b and c if we want
(pre-stored constants, mathematical convenience)

Coming back to the quantum realm (and ignoring any
systems that start and finish in the same state) an efficient
classical computation

Implies an efficient quantum computation



Modular Exponentiation

The method we considered last week requires us to
implement the circuit

Clearly this is of size              and the second register holds
L qubits

For the unitary

How do we perform this efficiently?



The state of the first register can be expressed

Let's consider application of the circuit for a given z on the
first register, and a basis state y for the second

So the circuit can be simply understood as

Nice thing about this basis:
state on first register does
not change



Also remember from last week that we cannot prepare the
eigenstates         needed for the input of the 2nd register           

However, it is fine to use the superposition state

So the circuit we need to implement is

We only need to run the circuit for y=1, not abitrary values
of y. This will make life easier, since we don't need to
fully implement the unitary

But instead we can implement any unitary such that



This can be done efficiently on a classical computer,
and so also on a quantum one without garbage

Total complexity upper bounded by

Note: The full U can also be efficiently implemented

However, this is more complex, so we just consider
the simpler case here



Factoring

We now have an efficient algorithm for calculating r, the
smallest integer such that

This might make number theorists happy, but we want to
rob banks and spy on people by breaking RSA. We want to
factor!

There are two theorems that help us to build a factor finding
algorithm

To find all prime factors it is sufficient to have an algorithm
that can find a non-trivial factor for a given number N

Repeated calls to this can then be used to find all prime
factors

Primality tests can be used to determine whether outputs
are prime, these are classically efficient



Proof:

Theorem 1: If N is an L bit number and y satisfies

Then                 and/or                is a non-trivial factor
of N computable with complexity



From this theorem, it is clear that an efficient means to
calculate y could be used to efficiently factor numbers

To find a factor of N, just find the corresponding y

Then compute

This gives at least one nontrivial factor, N', of N

Then calculate                 and apply the same method again
for both N' and N''

Continue to break down each factor into further factors
until only primes remain

This will yield all primes in time

Classical computation of y is not efficient. What about
quantum?



Theorem 2: For an odd positive integer N expressed in
terms of m distinct prime factors as

And for a randomly chosen integer x that satisfies

Consider r, the order of x mod N

Proof: Nielsen and Chuang A4.3

If r is even then       is an integer such that

And since                      , then

So, with O(1) probability, 



The whole algorithm to find a factor for an L bit number N
is then as follows

Step 1: Determine whether N is prime or composite

Can be done efficiently with AKS primality test

Grey steps use a classical computer, black use a quantum
computer

Using order finding, a quantum computer can efficiently
find y, and so efficiently factor

If prime, output N;
Else, continue

Step 2: Determine whether N is even

If even, output 2;
Else, continue

Shor's Algoritm



Step 3: Determine whether N is of the form
             where a and b are integers

If so, output a;
Else, continue

Can be done efficiently (N+C exercise 5.17)

Step 4: Randomly choose x in the range 2 to N-1 and
            calculate

If                      output this;
Else, continue

Sampling can be done in O(L) time and gcd is
efficient using the Euclidean algorithm

Step 5: Take the x from step 3 for which
            and find r, the order of x mod N. This can be done
            efficiently using quantum order finding 

If r is odd or                     output 1 (fail);
Else, set



Step 6: Calculate                   and

Efficient using Euclidean algorithm

Output                 and

This algorithm succeeds (outputs only trivial factor 1) only
when

1) The number does not require step 4 or later

2) If the number requires up to step 4, step 5 outputs
an r such that

and theorem 2 guarantees that

where m>2 is the number of distinct prime factors

So it succeeds with O(1) probability



Factorizing 15

Step 1: Not prime, so continue
Step 2: Not even, so continue
Step 3: Not of this form, so continue

Step 4: Let's consider the case that x=4 is the
randomly chosen value. gcd(4,15)=1, so continue

Step 5:

Step 6:

Algorithm outputs both factors


