{ "cells": [ { "cell_type": "markdown", "id": "9ae539e2", "metadata": {}, "source": [ "# Exercise 3" ] }, { "cell_type": "markdown", "id": "fe84364c", "metadata": {}, "source": [ "## 1. Mutually unbiased bases\n", "Show that the $X$, $Y$ and $Z$ bases are all unbiased with respect to each other: each\n", "state for one basis results in a completely random result for the other two bases." ] }, { "cell_type": "markdown", "id": "7e5f84c8", "metadata": {}, "source": [ "## 2. Shifting certainty\n", "\n", "The state of a single qubit is characterized by three numbers, $\\langle \\sigma^x \\rangle$, $\\langle \\sigma^y \\rangle$ and $\\langle \\sigma^z \\rangle$,\n", "defined as\n", "\n", "$$\n", "\\langle \\sigma^\\alpha \\rangle = p^\\alpha_0 - p^\\alpha_1,\n", "$$\n", "\n", "where $p^z_0$ is the probability of the outcome \\texttt{0} for a $Z$ measurement, and so on.\n", "\n", "For any single qubit superposition $|\\psi\\rangle = c_0 |0\\rangle + c_1 |1\\rangle$,\n", "\n", "$\n", "\\langle \\sigma^x \\rangle^2 + \\langle \\sigma^y \\rangle^2 + \\langle \\sigma^z \\rangle^2 = 1\n", "$\n", "\n", "Verify this for the following states.\n", "\n", "* (a) $|\\psi\\rangle = \\cos \\theta \\, |0\\rangle + \\sin \\theta \\, |1\\rangle$\n", "* (b) $|\\psi\\rangle = \\frac{1}{\\sqrt{2}} \\, \\left( |0\\rangle \\,+\\, e^{i \\phi} |1\\rangle \\right)$\n", "\n", "## 3. A useful matrix\n", "\n", "Find the $2\\times2$ matrix $M$ such that\n", "\n", "$$\n", "p^z_0 - p^z_1 = \\langle \\psi | M | \\psi \\rangle \\,\\,\\, \\forall |\\psi\\rangle\n", "$$" ] }, { "cell_type": "code", "execution_count": null, "id": "ac918ed2", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.1" } }, "nbformat": 4, "nbformat_minor": 5 }