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Towards a better quantum code

• How does the repetition code protect against bit flip noise (    ) ?

● An isolated       creates a pair of defects

● Further      s can move the defects

● Or create new pairs of defects

● Or annihilate pairs of defects

● A distance of >d/2 is needed for a logical error

● Then decoding will complete the job, pulling the
defects off the ends

• The code is like a ‘universe’ in which the defects are its particles

• Bit flips create and manipulate these particles, but only large scale 
effects can cause a logical error
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Towards a better quantum code

• Why doesn’t the repetition code protect against phase flip noise (    ) ?

• Measurement is too easy, even when the information is encoded

• Once errors are removed, a quick peek at any qubit reveals the stored 
information

• If it is easy for us to see, it is easy for the environment to dephase

• Consider measuring in the X basis instead

• Requires multi qubit process for the encoded states
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Towards a better quantum code

• This code treats the X and Z basis of the qubit very differently

• We need a code that treats them the same

✔      creates particle-like defects that can be detected
✔ Large scale effects are needed for a logical bit flip
✔ Multiqubit measurement needed to distinguish encoded

✔      creates particle-like defects that can be detected
✔ Large scale effects are needed for a logical phase flip
✔ Multiqubit measurement needed to distinguish encoded

• Other methods of generalizing the repetition code also exist, like the Shor code
• But these don’t create new universes, and are therefore boring
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The Surface Code

• To do this, we put our grid on a 2D lattice

• The            observables between neighbouring qubits become ones for 
qubits around plaquettes

• Similar observables for      are defined on vertices
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The plaquette operators

• Let’s focus on the plaquette operators

• Generalization of the measurement in the repetition code

• Can be similarly implemented with the controlled-NOT

• They tell us whether there is an odd or even # 1s around the plaquette



The plaquette operators

• How do we store a bit in this code?

• Valid encoded states are those for which the measurements don’t 
detect an error

• We associate this with outcome 0, so all plauettes need an even # 1s

• Let’s again encode 0 with the ‘all qubits are 0’ state
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The plaquette operators

• There are other ‘nearby’ states that have the same results for 
plaquette measurements

• They can’t be our encoded 1, because they differ by only a few bit flips

• So let’s treat them as other possible ways to encode 0

 



Encoding 0 and 1

• Given any possible encoding for 0:

1) Pick a vertex
2) Apply a bit flip on all qubits around the vertex

• Now you have another possible encoding for 1

• This generates an exponentially large family

 



Encoding 0 and 1

• The states in this family can be very different

• But there is one feature shared:
A line from top to bottom will always have an even number of 1s

• This is how we can measure our encoded 0 state

• And it gives us a hint on how to encode a 1

 



Encoding 0 and 1

• As our basic encoded 1, we can use a bunch of 0s with a line of 1s 
across

• This also spawns an exponentially large family

• For each state in that family, the number of 1s on a line from top to 
bottom is odd

• Measuring our encoded bit has become hard (which is good!)
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X and Z for encoded qubit

• Measuring 0 and 1 corresponds to measuring an observable Z for the 
encoded qubit

• The observable that detects what we need is

• Or the same on any line from top to bottom

• If we use the edges, we can think of them as large and unenforced 
plaquettes

 



X and Z for encoded qubit

• If we want to do a bit flip on the encoded bit, clearly we need a line of 
flips from left to right

• So the X operation for an encoded qubit is

• Or the same on any other line across
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Effects of errors

• What happens when a       is applied?

• Changes measurement outcome for neighbouring plaquettes

● An isolated       creates a pair of defects

● Further      s can move the defects

● Or create new pairs of defects

● Or annihilate pairs of defects

● A distance of >d/2 is needed for a
logical error, where d is the width

• With the plaquette operators we can encode and protect a bit using Z 
basis states
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Vertex operators

• Now forget the plaquettes, and focus on the vertices

• These can also be measured with controlled ops and an ancilla

• Looks at       and      states, and tell us whether there is an even 
number of       s
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Encoding + and -

• We can also store a bit using only the vertex ops
• Let’s associate this with the x basis instead
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Encoding + and -

• This leads to exactly the same logical operators as before
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Effects of errors

• What happens when a       is applied?

• Changes measurement outcome for neighbouring plaquettes

● An isolated       creates a pair of defects

● Further      s can move the defects

● Or create new pairs of defects

● Or annihilate pairs of defects

● A distance of >d/2 is needed for a
logical error, where d is the height

• With the vertex operators we can enocde and protect a bit using X basis 
states
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Vertex and plaquette operators together

• The vertex and plaquette operators commute

• We can measure these observable simultaneously

• Detect and correct       and       errors simulaneouslyσ zσ x



Vertex and plaquette operators together

• Encoded states now unique: superposition of all previous solutions
• Highly entangled states

• Pauli X and Z for encoded qubits exactly as they were for plaquettes 
and vertices alone
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Vertex and plaquette operators together

• But aren’t many-body entangled states hard to make?

• They are the mutual eigenstates of the observables we measure

• If we can measure them, we can create and maintain the entanglement
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Vertex and plaquette operators together

• We are not just protected against       and       noise, but all local noise

• Any noise operator can be expressed in terms of Paulis

• And so creates a superposition of different measurement outcomes for 
the plaquettes and vertices

• Measurement collapses this superposition, reducing noise to a simple 
Pauli

• So any noise can be detected and corrected
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Final Readout

• The logical operators are many body operations

• How do we read out stored information without error?
• When you decide on a basis, you stop caring about one kind of error
• We can just measure in a product basis

• Logical Z and plaquette info can be constructed from the result

• Imperfect measurement can be corrected like a bit flip

 



Imperfect measurement

• What about imperfect measurements throughout?

• Consider a measurement of a single qubit that lies with prob. P,
but doesn’t disturb the measured qubit (beyond projection)

• How do we extract information correctly? Repetition!

• Lies create pairs of defects in the time direction 
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Imperfect measurement

• Combine this with the repetition code or surface code:

● Defects = changes in ancilla measurement result

● Bit flips create space-like separated defect pairs

● Lies create time-like separate defect pairs

● Combinations create combinations

 
arXiv:quant-
ph/0110143

• Noisy measurements just increase the
space of the ‘universe’ by 1 dimension

 



The surface code is a good quantum code

• X and Z basis are treated the same

✔      creates particle-like defects that can be detected
✔ Large scale effects are needed for a logical bit flip
✔ Multiqubit measurement needed to distinguish encoded

✔      creates particle-like defects that can be detected
✔ Large scale effects are needed for a logical phase flip
✔ Multiqubit measurement needed to distinguish encoded

• Other good quantum codes also exist

● Topological codes: Color code, quantum double modes, …
● Concatenated codes: Shor code, ...
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