Quantum Information Sheet 4

2018

Shor Code

The Shor (or 9 Qubit) code is a method for quantum error correction based on the classical repetition code. First a logical qubit is stored in three physical qubits using the encoding

$$|+\rangle_3 = |+++\rangle$$
, $|-\rangle_3 = |---\rangle$.

This protects against errors that try to flip $|+\rangle_3$ to $|-\rangle_3$, and vice-versa. But the corresponding errors for the Z basis states

$$|0\rangle_3 = \frac{1}{\sqrt{2}}(|+++\rangle + |---\rangle), \ |1\rangle_3 = \frac{1}{\sqrt{2}}(|+++\rangle - |---\rangle)$$

become more likely. To deal with this we take three of these logical qubits and use them (like the original physical qubits) to encode a single logical qubit. This uses the encoding:

$$|\hspace{.06cm} 0\rangle_9 = |\hspace{.06cm} 0\rangle_3 \otimes |\hspace{.06cm} 0\rangle_3 \otimes |\hspace{.06cm} 0\rangle_3 \hspace{.1cm}, \hspace{.1cm} |\hspace{.06cm} 1\rangle_9 = |\hspace{.06cm} 1\rangle_3 \otimes |\hspace{.06cm} 1\rangle_3 \otimes |\hspace{.06cm} 1\rangle_3 \hspace{.1cm}.$$

The end result is then a code that stores one logical qubit in 9 physical qubits, with stabilizer states

$$|0\rangle_9 = \left\lceil \frac{1}{\sqrt{2}} \left(|+++\rangle + |---\rangle \right) \right\rceil^{\otimes 3}, \ |1\rangle_9 = \left\lceil \frac{1}{\sqrt{2}} \left(|+++\rangle - |---\rangle \right) \right\rceil^{\otimes 3}$$

- a) Find operators that act as X and Z on the logical qubit. What are the minimal number of qubits these act on?
- b) Suppose σ_x errors occur independently on each qubit with probability p_x . What is the probability P_x that a logical X occurs after syndrome measurement and error correction? For simplicity you can determine this only up to lowest order in p_x .
- c) Similarly, what is the probability P_z of Z errors, given that σ_z errors occur with probability p_z ? For simplicity you can determine this only up to lowest order in p_z .