Stabilizer formalism

The repetition code, surface code, Shor code, color code and
many others use the stabilizer formalism

Suppose we wish to store k logical qubits in n physical ones

We select n-k mutually commuting operators from the set
of all n qubit tensor products of Paulis
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These must be independent (none can be expressed as a
product of others)

These are our check operators S}, which we call stabilizers

Since they are products of Paulis, they too are observables

with eigenvalues +1/-1. So they define measurements
corresponding to the projectors
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The results of these are called the syndrome



Consider the states which are within the +1 eigenspace of

all stabilizers. We call the space spanned by these the
stabilizer space
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Since there are n-k independent stabilizers on an n qubit
space, the stabilizer space is 2* dimensional. It is within
this space that we store the k logical qubits

If the state of the system is within this space, all stabilizer
measurements will give the result +1. This is known as
the trivial syndrome

If the effect of errors have disturbed the logical state,
taking it out of the stabilizer space, some measurements
will give the result -1. This is the spoor of the errors, by
which we can hope to determine how to correct them

Note: the measurements extract no information about the
logical state, only the errors



Logical Pauli Operators

Consider the case of k=1, so stabilizer space is 2D
We can choose an arbitrary pair of orthogonal states within
the stabilizer space to form the logical Z basis {103, '23
Other Pauli basis states are then defined in terms of these
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Logical Pauli operators can also be defined accordingly
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The Pauli bases are usually chosen such that these are also
products of Paulis

They will commute with the stabilizers (since applying them
remains within stabilizer space) but they'll be independent

If errors manage to implement a logical Pauli, no trace will
be left in the syndrome: A logical Pauli error!

Minimum number of qubits the noise must act on to do this
is called the code distance /|



Basis states for stabilizer codes

A stabilizer code Is a state of n qubits, and so complete
basis requires 2" states

We could choose any basis we want, like the product Z

basis
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This specifies the state of the n qubits using the eigenstates
of n commuting binary observables (the G; )

But, for stabilizer codes, there is a more natural choice of
n commuting binary observables:
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Pauli Twirl Approximation

Note that the unitary operators that move between Paull
basis states are products of Paulis
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In general the action of a Kraus operator will not be of this
form, and will create superpositions of Pauli basis states
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When the syndrome measurement is made, this means
measurement of the {$;} and so measurement in this basis

The superposition created by the Kraus operator is then
(mostly) destroyed

The effects of FE,[VXYIE, = Z 24 a(M* TG YT
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are then much the same as those of
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So any Kraus operator that is not a product of Paulis can
be replaced by some that are to good approximation
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Combined with our previous assumption of independent
environments, this means we need only worry about single
qubit Kraus operators of the form
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Measuring Stabilizers

Stabilizer codes have many-body operators, called stabilizers
which we need to measure to detect and correct errors

But how do we measure a many body observable?
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This has eigenvalues +/- 1
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+1 for even number of 11>'s, -1 for odd number

If we just wish to determine +/- 1, and don't care what
happens to the state after, we can just measure in the Z

basis on every qubit and see which of the above two groups
the result belongs to



But this extracts more information than required, and so
does not preserve superpositions
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How do we measure in a way that leaves the superpositions
intact (required so that logical qubits aren't disturbed)?

We use an extra qubit to help: an ancilla
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Example 1: Qubits in state 0000

code 9.b ¢ e o gt
Y 1,234

Start with  |gooo [s
>‘\t2‘sw product

A w Mva Aye Aew acts trivially since all controls are 6)

Measuring ancilla in Z basis gives (0>, and therefore +1
with probability 1 (as required)

Example 2: Qubits in state || 000>

Start with |1 o00)io>

When A%« Ava A, .. is applied only A"« acts
non-trivially: It applies O

Measuring ancilla in Z basis gives 11>, and therefore -1
with probability 1 (as required)

Same for Jooo) 100107, 101007



Example 3: Qubits in state |11 00
Start with 110910

When A%« Ave A, . is applied only A%~ and A%, act
non-trivially

Both apply o7, but since two applications of this gives
the identity, net effect is trivial

Measuring ancilla in Z basis gives (0>, and therefore +1
with probability 1 (as required)

Same for [1o10), lieer) etio), (1017, 100117, [0

In conclusion: number of 1>'s In state iIs number of times
Is applied to the ancilla. Even number of times results In
final state 10>, odd number results in 11> . Measuring the
ancilla then tells you whether there was an odd or even
number of 11>'s and nothing else, as required.



Does this method preserve superpositions with the
eigenspaces of A?

Example 4:
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Measurement has outcome 1> with probability a4 e
State of the four qubits projected to (yisoosd +gini))/(1217+181%)

Measurement has outcome 1> with probability iy
State of the four qubits projected to (Yot +s1000))/(1¥+ 1412

Superpositions are not disturbed: This Is truly a
measurement of A



We can similarly define B type stabilizers
*Ox I <1 3 4
S - o, *0. - Q,Q, 0, S

°c

+] e\gwﬁ‘)a@ g‘oawmov‘ l@ o exgms‘ma S‘Dowﬂ’l-bﬂl Lg

I+ + ++) |-+ +-) I+ + +=) |-+ ++)
tr-=y -7 -1 tr =4y |=T ==
|+ - +~) 1~-- +4%) |+ - +4) |-~ +-)
t= -1 === t= ") ===

Now we use an ancilla in initial state |+, and use CNOTs
with ancilla as control and others as targets
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This shows that the interpretation of 'control' and 'target’

IS abitrary, because now it applies a G, to the 'control', based
on the X basis state of the 'target’

An even or odd number of S,'s is applied to the ancilla
according to the eigenvalue of B, and the final ancilla state

IS Wy or |- accordingly. So, again, measuring the ancilla
gives the result for the measurement of B



Finding the states of the stabilizer space
As you all must know, ¢ and o,' do not commute
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But they do commute if they act on different qubits
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What about s, and S:oy
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Two anticommutes make a commute!



Two commuting operators are simultaneously diagonalizable

[M N]:O = /Vlr-ZMJW\:(MII N:zSnimXm|
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So this is true fors.c.)and s;'sy
A state can be in: +1 eigenspace of both

+1 eigenspace of one, -1 of the other
-1 eigenspae of both

But since the single qubit operators don't commute, such

states cannot be product states. They must be entangled
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To find such mutual eigenstates, we first find an eigenstate
of one

[00) 1S a +] %“‘JL‘W of IOV
And a projector to an eigenspace of another
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Then apply the latter to the former \){*):}P: |00

The result then belongs to the required eigenspaces
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Note that there are four ways we could've tried to get [\*)>
Cl):|00>: 2'(1’ fcjsj)loo) = %(\00>+|II>)
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In all cases we get the same result

This Is not true in general, but only when subspaces are 1D



