
Stabilizer formalism

The repetition code, surface code, Shor code, color code and
many others use the stabilizer formalism

Suppose we wish to store k logical qubits in n physical ones

We select n-k mutually commuting operators from the set
of all n qubit tensor products of Paulis

These must be independent (none can be expressed as a
product of others)

These are our check operators       , which we call stabilizers

Since they are products of Paulis, they too are observables
with eigenvalues +1/-1. So they define measurements
corresponding to the projectors

The results of these are called the syndrome



Consider the states which are within the +1 eigenspace of
all stabilizers. We call the space spanned by these the
stabilizer space

Since there are n-k independent stabilizers on an n qubit
space, the stabilizer space is       dimensional. It is within
this space that we store the k logical qubits

If the state of the system is within this space, all stabilizer
measurements will give the result +1. This is known as
the trivial syndrome

If the effect of errors have disturbed the logical state, 
taking it out of the stabilizer space, some measurements
will give the result -1. This is the spoor of the errors, by
which we can hope to determine how to correct them

Note: the measurements extract no information about the
logical state, only the errors



Logical Pauli Operators

Consider the case of k=1, so stabilizer space is 2D

We can choose an arbitrary pair of orthogonal states within
the stabilizer space to form the logical Z basis

Other Pauli basis states are then defined in terms of these

Logical Pauli operators can also be defined accordingly

The Pauli bases are usually chosen such that these are also
products of Paulis

They will commute with the stabilizers (since applying them
remains within stabilizer space) but they'll be independent

If errors manage to implement a logical Pauli, no trace will
be left in the syndrome: A logical Pauli error!

Minimum number of qubits the noise must act on to do this
is called the code distance



Basis states for stabilizer codes

A stabilizer code is a state of n qubits, and so complete
basis requires       states

We could choose any basis we want, like the product Z
basis

This specifies the state of the n qubits using the eigenstates
of n commuting binary observables (the       ) 

But, for stabilizer codes, there is a more natural choice of
n commuting binary observables:

Stabilizer space:



Note that the unitary operators that move between Pauli
basis states are products of Paulis

Pauli Twirl Approximation

In general the action of a Kraus operator will not be of this
form, and will create superpositions of Pauli basis states



When the syndrome measurement is made, this means
measurement of the       and so measurement in this basis

The superposition created by the Kraus operator is then
(mostly) destroyed

The effects of                       

are then much the same as those of

So any Kraus operator that is not a product of Paulis can
be replaced by some that are to good approximation

Combined with our previous assumption of independent
environments, this means we need only worry about single
qubit Kraus operators of the form



Measuring Stabilizers

Stabilizer codes have many-body operators, called stabilizers
which we need to measure to detect and correct errors

But how do we measure a many body observable?

Consider a four-body observable

This has eigenvalues +/- 1

If we just wish to determine +/- 1, and don't care what
happens to the state after, we can just measure in the Z
basis on every qubit and see which of the above two groups
the result belongs to

+1 for even number of     's, -1 for odd number



But this extracts more information than required, and so
does not preserve superpositions

How do we measure in a way that leaves the superpositions
intact (required so that logical qubits aren't disturbed)?

We use an extra qubit to help: an ancilla



Example 1: Qubits in state

Start with

acts trivially since all controls are

Measuring ancilla in Z basis gives      , and therefore +1
with probability 1 (as required)

Example 2: Qubits in state

Start with

When                             is applied only         acts
non-trivially: It applies

Measuring ancilla in Z basis gives      , and therefore -1
with probability 1 (as required)

Same for



Example 3: Qubits in state

Start with

When                             is applied only        and          act
non-trivially

Measuring ancilla in Z basis gives      , and therefore +1
with probability 1 (as required)

Same for

Both apply      , but since two applications of this gives
the identity, net effect is trivial

In conclusion: number of     's in state is number of times
is applied to the ancilla. Even number of times results in
final state      , odd number results in       . Measuring the
ancilla then tells you whether there was an odd or even
number of      's and nothing else, as required.



Does this method preserve superpositions with the
eigenspaces of A?

Measurement has outcome      with probability
State of the four qubits projected to

Measurement has outcome      with probability
State of the four qubits projected to

Example 4:

Superpositions are not disturbed: This is truly a
measurement of A



We can similarly define B type stabilizers

Now we use an ancilla in initial state      , and use CNOTs
with ancilla as control and others as targets

This shows that the interpretation of 'control' and 'target'
is abitrary, because now it applies a     to the 'control', based
on the X basis state of the 'target'

An even or odd number of     's is applied to the ancilla
according to the eigenvalue of B, and the final ancilla state
is     or       accordingly. So, again, measuring the ancilla
gives the result for the measurement of B



Finding the states of the stabilizer space

As you all must know,      and       do not commute

But they do commute if they act on different qubits

What about          and

Two anticommutes make a commute!



Two commuting operators are simultaneously diagonalizable

So this is true for        and         

A state can be in: +1 eigenspace of both
     +1 eigenspace of one, -1 of the other
      -1 eigenspae of both

But since the single qubit operators don't commute, such
states cannot be product states. They must be entangled



To find such mutual eigenstates, we first find an eigenstate
of one

And a projector to an eigenspace of another

Then apply the latter to the former

The result then belongs to the required eigenspaces



Note that there are four ways we could've tried to get

In all cases we get the same result

This is not true in general, but only when subspaces are 1D


