Some quantum algorithms
Nielsen and Chuang, Chapter 5

We know that a quantum computer can efficiently simulate
gquantum dynamics

We know that it can efficiently simulate a classical computer

But what else can it do?

Today we will start to look at some algorithms that are

unrelated to physics, all based on the guantum Fourier
transform



Quantum Fourier Transform

We know about the Fourier transform
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This takes a function and outputs its spectrum
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Useful iIn many applications, such as when a function has
some periodicity that must be found and analyzed



A discreet version (DFT) can also be defined, where instead
of a function we have a list of values (in a vector)
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The transform acts on basis states according to
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And so acts on a general vector as
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We consider the case that N=2 and express the basis
10>, N> 125 IN-D
In binary (and so as n qubits)
\o...oo>, [Q,..©l>r O ... |0>, l\..,)\>



So for a general Z basis state
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Let's also consider the following notation for binary
fractions (numbers less than 1 expressed in binary)
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Now lets see if we can simplify the Fourier transform basis
states a bit
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So it turns out to be a product state
A : ~L
N 1Ly 2 ,|>
L 12

Let's also convert j to binary
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This product represention allows us to see how to perform
the DFT on a quantum computer

For the last qubit we could use R, =( [ e+ )
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Better to use controlled ops so we can deal with a
superposition of different |'s

We then find that the circuit
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Peforms the FT (and reverses qubit order)



This clearly requires 0(n’) gates

So the DFT (and its inverse) can be implemented on a
gquantum state efficiently by a guantum computer

The fastest known classical algorithm requiresOCV\Z"‘)
S0 can we use quantum computers to do fast DFTs?

Yes and No

'No' because preparing a general state to be transformed
IS Inefficient, even If the transformation itself is efficient

So we cannot use it to do a DFT on any vector that we
be interested from a real-world problem

'Yes' because it can be used as a component in larger
quantum algorithms that do have efficient read-in and
read-out



Phase Estimation

Consider a unitary operation for which we know an
eigenstate, and wish to find out the corresponding

eigenvalue .
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Assume that we have the ability to prepare the eigenstate
and apply a controlled-U

This means we can apply the circuit
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Outcome for the first reqgister is
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Let's change our variable a little
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So the outcome is the FT of the state |§)-]% ¢,.. ¢,)
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Performing the inverse FT and measuring the state in the
Z basis then gives the binary representation of the phase
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Note that this method assumes
the phase can be written using a finite number of bits, t

we know what t is (or at least an upper bound)
In general, this is not the case

However, even if the t we use is too small, it will give a
good approximation

To get the phase accurate to n bits with high probability, we
need to use
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Which is efficient

But can phase estimation be used for anything useful?



Order Finding

Consider the positive integers ¥ and AN for which oc< n
and there are no common factors

What is the smallest possible integer r such that
2l =) me NV

This Is called the order of x modulo N

It Is believed that no poly(L) algorithm exists to compute
this on a classical computer, where L is the number of bits

needed to specify N L= Tleg NT - )Ly N

To compute it with a guantum computer, consider the
operator L

Where we use the convention
dej wak V = g fer N¢G €2



The eigenstates of this are

_ & - Le
H/{S> *3:; go@(\o[ ~27;f—]|:>cl‘ Madk I\/}
With eigenvalues (exercises)
.\ZTZ(P(-S) . ;i 2TC & . - i
= —QX‘D[ r ‘] - e r

If we can use phase estimation to find these, we can find r

For that we need to efficiently perform the controlled-U's

Efficient methods exist for this (next week)



We also need to prepare eigenvalues of U

This cannot be done efficiently, so is there another option?

Consider the superposition of the first r eigenstates
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This can be efficiently prepared



Roots of unity can be written
(D= oxP [-— ’3}] o TR0

Summing all powers of roots of unity gives zero
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The same Is true integer powers of roots of unity
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But things are obviously different if the power is zero (or r)
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Putting it all together .
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If this Is used as the input state of the second register
and the phase estimation algorithm is applied, the final
state Is
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By applying the method OC(r)=0(/) times, we can find
(approximations of) all the phases @(s), ¢=0,...,r-1

But since - 20(” this would be inefficient

Fortunately we need only one (randomly chosen) phase
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For unknown s and r

These unknowns can be determined by the continued
fractions algorithm if the phase is sufficiently accurate



The relevant theorem
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Since the phase Is accurate to n bits with, we have
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So for the theorem to apply we require
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For a good enough approximation, we need to use
= 2l+1+[leg (2t)] = O (L)
bits on the first register, which is efficient



Problem: s and r may have common factors, so the s'
and r' output by continued fractions may not be the
numbers we want
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But recall the definition of r. It Is the smallest integer such
that /=] wed NV

We can efficiently (and classically) check if "= mod N
If it is, we know that 1':-r

If not, we can try again until we get it right

This will certainly occur i‘f s IS prime, which occurs with
probability Q(‘—ér):g(@v)

So only O(lyN) repetitions are required until r is found

Better methods with only O(1) repetitions also exist



Another problem: Approximation of the phase is bad with
probability ¢

This probability is efficiently suppressed by using a large
enough register
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So we can find r efficiently with a quantum computer using

modular exponentiation O(/*) (or los )

Fourier transform O (L)
continued fractions O (L)
repetitions O ()

Total complexity is (o (L*)+Q)+ 0([3)>O (N=0(L")



