
Some quantum algorithms

We know that a quantum computer can efficiently simulate
quantum dynamics

We know that it can efficiently simulate a classical computer

But what else can it do?

Today we will start to look at some algorithms that are
unrelated to physics, all based on the quantum Fourier
transform

Nielsen and Chuang, Chapter 5



Quantum Fourier Transform

We know about the Fourier transform

This takes a function and outputs its spectrum

Useful in many applications, such as when a function has
some periodicity that must be found and analyzed



A discreet version (DFT) can also be defined, where instead
of a function we have a list of values (in a vector)

The transform acts on basis states according to

And so acts on a general vector as

We consider the case that             and express the basis

In binary (and so as n qubits)



So for a general Z basis state

Let's also consider the following notation for binary
fractions (numbers less than 1 expressed in binary)

Now lets see if we can simplify the Fourier transform basis
states a bit



So it turns out to be a product state

Let's also convert j to binary



This product represention allows us to see how to perform
the DFT on a quantum computer

For the last qubit we could use

We then find that the circuit

Better to use controlled ops so we can deal with a
superposition of different j's

Peforms the FT (and reverses qubit order)



This clearly requires       gates

So the DFT (and its inverse) can be implemented on a
quantum state efficiently by a quantum computer

The fastest known classical algorithm requires

So can we use quantum computers to do fast DFTs?

Yes and No

'No' because preparing a general state to be transformed
is inefficient, even if the transformation itself is efficient

So we cannot use it to do a DFT on any vector that we
be interested from a real-world problem

'Yes' because it can be used as a component in larger
quantum algorithms that do have efficient read-in and
read-out



Phase Estimation

Consider a unitary operation for which we know an
eigenstate, and wish to find out the corresponding
eigenvalue

Assume that we have the ability to prepare the eigenstate
and apply a controlled-U

This means we can apply the circuit



Outcome for the first register is

Let's change our variable a little

So the outcome is the FT of the state

Performing the inverse FT and measuring the state in the
Z basis then gives the binary representation of the phase



Note that this method assumes

the phase can be written using a finite number of bits, t

we know what t is (or at least an upper bound)

In general, this is not the case

However, even if the t we use is too small, it will give a
good approximation

To get the phase accurate to n bits with high probability, we
need to use

Which is efficient

But can phase estimation be used for anything useful?



Order Finding

Consider the positive integers      and       for which          
and there are no common factors

What is the smallest possible integer    such that

This is called the order of x modulo N

It is believed that no poly(L) algorithm exists to compute
this on a classical computer, where L is the number of bits
needed to specify N

To compute it with a quantum computer, consider the
operator

Where we use the convention



The eigenstates of this are

With eigenvalues (exercises)

If we can use phase estimation to find these, we can find r

For that we need to efficiently perform the controlled-U's

Efficient methods exist for this (next week)



We also need to prepare eigenvalues of U

This cannot be done efficiently, so is there another option?

Consider the superposition of the first r eigenstates

This can be efficiently prepared



Roots of unity can be written

Summing all powers of roots of unity gives zero

For example

The same is true integer powers of roots of unity

But things are obviously different if the power is zero (or r)

Putting it all together



If this is used as the input state of the second register
and the phase estimation algorithm is applied, the final
state is

By applying the method                       times, we can find
(approximations of) all the phases

Fortunately we need only one (randomly chosen) phase

For unknown s and r

These unknowns can be determined by the continued
fractions algorithm if the phase is sufficiently accurate

But since                  this would be inefficient



For a good enough approximation, we need to use

bits on the first register, which is efficient

The relevant theorem

Since the phase is accurate to n bits with, we have

So for the theorem to apply we require



Problem: s and r may have common factors, so the s'
and r' output by continued fractions may not be the
numbers we want

But recall the definition of r. It is the smallest integer such
that

We can efficiently (and classically) check if

If it is, we know that

If not, we can try again until we get it right

This will certainly occur if s is prime, which occurs with
probability

So only              repetitions are required until r is found

Better methods with only O(1) repetitions also exist



So we can find r efficiently with a quantum computer using

modular exponentiation

Fourier transform

continued fractions

Total complexity is

Another problem: Approximation of the phase is bad with
probability 

This probability is efficiently suppressed by using a large
enough register

repetitions


