The story so far

We have classical computers
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This can reproduce any mathematical function, and so
solve any mathematical problem
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But for some problems, like guantum simulation, they
are really slow
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So we created the quantum simulator
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This can simulate realistic Hamiltonians evolutions
efficiently Poly (n)  gotes (omd  Eime)



This Is a big breakthrough!

The quantum simulator is a computing device that can

solve a mathematical problem more efficiently than a
classical computer

Can it solve problems that are not related to simulation?

If so, can it do it faster than a classical computer?

These are the kind of questions we will now consider.

We are going to stop thinking of our device as a guantum
simulator, and start thinking of it as a quantum computer.

We will look at the 'models of guantum computation’,
which move us away from the concrete example of
simulation, and towards a more abstract idea



The circuit model

The simplest and most widely used model of QC is the
circuit model

It Is based on the circuit model of classical computation
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We have, basically, been using the circuit model so far:
applied to the case of guantum simulation

without the nice notation

So it needs little introduction



Let's return to our first simple model of quantum simulation
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We gave the simulator numbers (to specify the initial state),
it does some quantum stuff, and then gives us numbers
(measurement results)

The numbers in can be considered to be binary
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These correspond directly to a multi gubit state
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We assume that n qubit states can be prepared in O(n) time
We can consider this to be the input to our quantum circuit

Even if the actual computation does not act on states

with this encoding, a rotation to the right encoding can be
made. So no loss of generality



Once we have the input state, we act on it with guantum

gates

Using only single qubit and controlled gates, we can do any
unitary, so lets consider only these for now

Common unitaries have their own special notation
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Any evolution on any initial state can then be represented
by circuits of the form
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The output Is made using measurements. Without loss of
generality, we can consider these to in the Z basis only
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Any other measurements (even multi qubit) can be made
by rotating first
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All measurement can be deferred to the end

Any operations that depend on measurement results can
be performed using controlled operations
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This Is not always practical, but it makes our abstract model
simpler

Any quantum computation is then of the form
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This Is a quantum computer, according to the circuit model

No reference to simulation. It just takes a number, makes it

iInto a quantum state, applies gates, measures and outputs
the results

What can such a device be used for?

We know it can be used as a quantum simulator

We can show that it can also reproduce any classical circuit

with n Boolean gates using O(n) quantum gates
(but not vice-versa)
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Since the NAND is universal for classical computation, so

is the reversible (N)AND & b C | A=@ANDL)XR <
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If we can produce a quantum circuit to simulate this gate,
quantum circuits are also universal for classical computation

We can, since any reversible truth table can be easily turned
into a unitary .
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And any unitary can be reproduced using one qubit
rotations and controlled-NOTs

So quantum computers can be used for Mariokart!



The circuit model gives us a general framework in which
to determine

What a guantum computer is

What it can do (and how it can do it)
How efficiently it can do it

In summary, it assumes:

1) Qubits are available

2) Computational basis states of n qubits can be
prepared in O(n) time

3) Any of a certain set of unitary operations (gates)
can be applied to any qubit as and when desired

4) Measurement can be made in the computational
basis on any qubits as and when desired

These are then used to take a classical input using (2),
process it with (3) and produce a classical output with (4)



Note that, for the circuit model, the program run by the
gquantum computer is equivalent to the unitary performed

In order for a qguantum computer to be universal (to be able
to run any possible program) it must therefore be able to
generate any unitary

The set of gates that we are allowed to use is called
universal if it can generate (or approximate to any degree)
any unitary

We know, from our studies of simulation, that
arb‘l:»’ﬁij S'v\:pl( Zué'é {,Lﬂ{mms +CNOT = Univaysalk

But, more simply, it's also true that
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To prove this, it is sufficient to show that
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Let's remind ourselves what these gates are
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So H and T can map between all Pauli bases
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Also, T gives us Pauli Z's
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Conjugation gives Pauli X and Pauli Y
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Already we can see that H and T can do a lot. But we've
not got arbitrary rotations quite yet

To proceed, note that
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So we can rotate around the Z and X axis by pi/8



What if we do both?
T HTH=c " &'t s (L] 10y 9§ )(Lest §-iGh 00 F)

: 1 C°$1g -’i(Gx'\'G?) 51«\7?' (o&% ~ 6'26'1_ 51,\1£

~ j’_ Co_f'g *i[(@:uca) fo!»% + G:j Snv‘%:l S1n %

Any single qubit rotation is a rotation by some angle
about some axis, and so may be expressed
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It can be shown that § is an irrational multiple of 2 T



Repeated rotations by an irrational angle can be used
to approximate any angle to any degree of accuracy
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This Is just for rotation around a single axis. What about
arbitrary rotations?
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Any single qubit unitary can then be expressed (exercises)

U= Rz (o) Rz () Ra(s) Ra, (o) &9



Since we can expect the angles to be distributed uniformly,
we can expect n =0 (%)

So the method is efficient

But this trick isn't the only way to rotate, for example we
would use
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Rather than
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Using such tricks, the Solvay Kitaev theorem shows that
the number of H's and T's used to approximate any single

qubit unitary is
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Which is much faster!



