
Perfect syndrome measurements

At each time slice, the syndrome tells us the anyon config
at that time

By looking at the anyon config, and comparing it for different
times, we want to be able to determine which errors occured

To do this we look at the change in the anyon config



The exponential suppression of the logical error rate in the
one-shot case then become an exponentially long lifetime
for continuous error correction

The time before the logical error rate reaches some
unacceptable value can be made arbitrarily long by
increasing the code size

The time slices then correspond to independent decoding
problems, each equivalent to the one shot case

Error model is (for charge syndrome)



Noisy Syndrome Measurements

What about the more realistic case, where syndrome
measurements are noisy

Simplest way to model this is to simply say that there is
some probability, q, that the measurement lies

- tells us there's an anyon when there isn't
- tells us there isn't when there is

For q>0, we can no longer use the same methods as for q=0

Attempting to correct anyons that aren't really there, and
not correcting ones that we cannot see, will lead to a high
probability of logical errors.

So how do we deal with measurement errors?



Exactly the same as before: look at changes in syndrome

This denotes a z error on the qubit between
vertices v and w between rounds t-1 and t.
This will cause these vertices v to give
unexpected results at measurement round t.

This denotes that the measurement of vertex
v at time t gave the wrong value, and therefore
the result is unexpected.
Since the false result is expected again at t+1,
but result will actually be the true one (without
further errors), this will also be unexpected.



Instead we get a 3D syndrome of defect pairs

We no longer have many independent 2D syndromes

Probability of errors on space-like edges given by

Probability for time-like edges given by

Again we find that errors create pairs of 'defects' (we can't
really call them anyons any more)

Both errors on qubits and measurement errors do this

The example here looks at the vertex defects, but there is
also an equivalent 3D syndrome for plaqutte defects

Probability for errors on space-like edges in this case is



Time boundaries

For e anyons (created by z errors) we know that the left and
right boundaries are 'hard' and the top and bottom are
'soft'.

This means we can have isolated
e anyons on the top and bottom
edges, because the edge can
absorb the antiparticle.

But for left and right edges, this
can't be done

For our 3D syndrome of defects, we have a new dimension,
and hence new edges: initial and final



Consider a qubit initialized in the + state (+1 eigenstate of
logical X), and finally measured later in the X basis

Can be initialized using a product state that is
 +1 eigenstate of all vertex stabilizers
 +1 eigenstate of logical X

Both A and B stabilizers then measured in usual ancilla
assisted way for many rounds

Given that we know the initial value of the A stabilizers
with certainty (all +1), the bottom time boundary is hard
to vertex defects

Whether these edges are hard or soft depends on initial and
final conditions

But it is soft to plaquette defects, because the initial value
for these stabilizers is random



When we want to measure X, we measure all code qubits
in the x basis

Result will be something like

With this info we can infer the X eigenvalue the number of
-'s on the top line

We can also infer one last syndrome for the vertex
stabilizers (the ones needed to correct X)

These measurements will also be noisy (lie with prob. q),
but we can imagine them as perfect measurements
following bit flips with prob q.

Since measurements are 'perfect', there will be no time-like
edges to cross the top boundary. So it will also be hard.



Note that no vertex measurements can be made in this
round. The last round of vertex measurements are the
normal faulty ones. So the final time boundary will be soft
for vertex defects.

What does this imply for logical operators?

Minimum logical X must place a plaquette defect on the 
top boundary (on which we have defined logical X), and
leave no trace on the bulk.

Since the only other soft boundary is on the right, this
requires us to act on a chain of qubits from top to bottom.

Code distance (for Z errors) is therefore still L

Logical X errors, however, could take a short cut into the
soft final boundary

But it is only soft because we are making an X measurement.
Since X errors would not affect the result, their effect is
trivial



Since L paulis must be applied to L qubits to make a logical
operation, we need errors chains of length at least
L/2 to fool a decoder

MWPM can still be used, just in 3D instead of 2

This gives more possible error paths, and hence a lower
threshold



Finding the threshold

For a given decoder, it is always good to prove a finite lower
bound for the threshold

But usually these are quite far from the true threshold that
the decoder corrects up to. Typically these must be found
numerically

Under threshold we expect

Above threshold we have little idea of what's going on.
Decoding using a 'good' method is not much different than
a 'bad' method, like just throwing all m anyons off the right
edge and all e anyons off the bottom.

The probability that this causes a logical error increases with
system size before converging



Using this behaviour we can determine the threshold
numerically:

1. generate a random error, E, according to the error
model (a list of what error happened on each qubit)

2. determine the corresponding syndrome, S

3. run the decoder to determine the corresponding
correction operator

4. Repeat for many samples, N, and count the
number of times the decoding fails

Determine this for many different     and



Plot      for different    and a single L

Increases monotonically, but tells
us nothing about the threshold

Plot also the results for L'>L

We can expect    to be the crossing
point, but finite size effects might
mean it is not correct

So we add a few more, and
maybe analyze how the crossing
scales with L to find the true



This is much better than the bound of 1/36 that we proved

However, it is worse that the threshold we would get from
brute force. This is

Including measurement errors (q=p) typically causes these
thresholds to lose an order of magnitude

For MWPM and perfect measurements, the threshold
is


