Mention CA expiration in the README (#1378)
Some checks failed
gofmt / Run gofmt (push) Successful in 10s
smoke-extra / Run extra smoke tests (push) Failing after 20s
smoke / Run multi node smoke test (push) Failing after 1m21s
Build and test / Build all and test on ubuntu-linux (push) Failing after 17m44s
Build and test / Build and test on linux with boringcrypto (push) Failing after 2m20s
Build and test / Build and test on linux with pkcs11 (push) Failing after 2m27s
Build and test / Build and test on macos-latest (push) Has been cancelled
Build and test / Build and test on windows-latest (push) Has been cancelled

This commit is contained in:
John Maguire 2025-04-28 13:36:06 -04:00 committed by GitHub
parent 8536c57645
commit 83ff2461e2
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -4,7 +4,7 @@ It lets you seamlessly connect computers anywhere in the world. Nebula is portab
It can be used to connect a small number of computers, but is also able to connect tens of thousands of computers.
Nebula incorporates a number of existing concepts like encryption, security groups, certificates,
and tunneling, and each of those individual pieces existed before Nebula in various forms.
and tunneling.
What makes Nebula different to existing offerings is that it brings all of these ideas together,
resulting in a sum that is greater than its individual parts.
@ -64,10 +64,10 @@ Check the [releases](https://github.com/slackhq/nebula/releases/latest) page for
## Technical Overview
Nebula is a mutually authenticated peer-to-peer software defined network based on the [Noise Protocol Framework](https://noiseprotocol.org/).
Nebula is a mutually authenticated peer-to-peer software-defined network based on the [Noise Protocol Framework](https://noiseprotocol.org/).
Nebula uses certificates to assert a node's IP address, name, and membership within user-defined groups.
Nebula's user-defined groups allow for provider agnostic traffic filtering between nodes.
Discovery nodes allow individual peers to find each other and optionally use UDP hole punching to establish connections from behind most firewalls or NATs.
Discovery nodes (aka lighthouses) allow individual peers to find each other and optionally use UDP hole punching to establish connections from behind most firewalls or NATs.
Users can move data between nodes in any number of cloud service providers, datacenters, and endpoints, without needing to maintain a particular addressing scheme.
Nebula uses Elliptic-curve Diffie-Hellman (`ECDH`) key exchange and `AES-256-GCM` in its default configuration.
@ -82,19 +82,22 @@ To set up a Nebula network, you'll need:
#### 2. (Optional, but you really should..) At least one discovery node with a routable IP address, which we call a lighthouse.
Nebula lighthouses allow nodes to find each other, anywhere in the world. A lighthouse is the only node in a Nebula network whose IP should not change. Running a lighthouse requires very few compute resources, and you can easily use the least expensive option from a cloud hosting provider. If you're not sure which provider to use, a number of us have used $5/mo [DigitalOcean](https://digitalocean.com) droplets as lighthouses.
Nebula lighthouses allow nodes to find each other, anywhere in the world. A lighthouse is the only node in a Nebula network whose IP should not change. Running a lighthouse requires very few compute resources, and you can easily use the least expensive option from a cloud hosting provider. If you're not sure which provider to use, a number of us have used $6/mo [DigitalOcean](https://digitalocean.com) droplets as lighthouses.
Once you have launched an instance, ensure that Nebula udp traffic (default port udp/4242) can reach it over the internet.
#### 3. A Nebula certificate authority, which will be the root of trust for a particular Nebula network.
```
./nebula-cert ca -name "Myorganization, Inc"
```
This will create files named `ca.key` and `ca.cert` in the current directory. The `ca.key` file is the most sensitive file you'll create, because it is the key used to sign the certificates for individual nebula nodes/hosts. Please store this file somewhere safe, preferably with strong encryption.
**Be aware!** By default, certificate authorities have a 1-year lifetime before expiration. See [this guide](https://nebula.defined.net/docs/guides/rotating-certificate-authority/) for details on rotating a CA.
#### 4. Nebula host keys and certificates generated from that certificate authority
This assumes you have four nodes, named lighthouse1, laptop, server1, host3. You can name the nodes any way you'd like, including FQDN. You'll also need to choose IP addresses and the associated subnet. In this example, we are creating a nebula network that will use 192.168.100.x/24 as its network range. This example also demonstrates nebula groups, which can later be used to define traffic rules in a nebula network.
```
./nebula-cert sign -name "lighthouse1" -ip "192.168.100.1/24"
@ -103,7 +106,10 @@ This assumes you have four nodes, named lighthouse1, laptop, server1, host3. You
./nebula-cert sign -name "host3" -ip "192.168.100.10/24"
```
By default, host certificates will expire 1 second before the CA expires. Use the `-duration` flag to specify a shorter lifetime.
#### 5. Configuration files for each host
Download a copy of the nebula [example configuration](https://github.com/slackhq/nebula/blob/master/examples/config.yml).
* On the lighthouse node, you'll need to ensure `am_lighthouse: true` is set.
@ -118,10 +124,13 @@ For each host, copy the nebula binary to the host, along with `config.yml` from
**DO NOT COPY `ca.key` TO INDIVIDUAL NODES.**
#### 7. Run nebula on each host
```
./nebula -config /path/to/config.yml
```
For more detailed instructions, [find the full documentation here](https://nebula.defined.net/docs/).
## Building Nebula from source
Make sure you have [go](https://go.dev/doc/install) installed and clone this repo. Change to the nebula directory.
@ -140,8 +149,10 @@ The default curve used for cryptographic handshakes and signatures is Curve25519
In addition, Nebula can be built using the [BoringCrypto GOEXPERIMENT](https://github.com/golang/go/blob/go1.20/src/crypto/internal/boring/README.md) by running either of the following make targets:
```
make bin-boringcrypto
make release-boringcrypto
```
This is not the recommended default deployment, but may be useful based on your compliance requirements.
@ -149,5 +160,3 @@ This is not the recommended default deployment, but may be useful based on your
Nebula was created at Slack Technologies, Inc by Nate Brown and Ryan Huber, with contributions from Oliver Fross, Alan Lam, Wade Simmons, and Lining Wang.