add calculated_remotes (#759)

* add calculated_remotes

This setting allows us to "guess" what the remote might be for a host
while we wait for the lighthouse response. For networks that hard
designed with in mind, it can help speed up handshake performance, as well as
improve resiliency in the case that all lighthouses are down.

Example:

    lighthouse:
      # ...

      calculated_remotes:
        # For any Nebula IPs in 10.0.10.0/24, this will apply the mask and add
        # the calculated IP as an initial remote (while we wait for the response
        # from the lighthouse). Both CIDRs must have the same mask size.
        # For example, Nebula IP 10.0.10.123 will have a calculated remote of
        # 192.168.1.123

        10.0.10.0/24:
          - mask: 192.168.1.0/24
            port: 4242

* figure out what is up with this test

* add test

* better logic for sending handshakes

Keep track of the last light of hosts we sent handshakes to. Only log
handshake sent messages if the list has changed.

Remove the test Test_NewHandshakeManagerTrigger because it is faulty and
makes no sense. It relys on the fact that no handshake packets actually
get sent, but with these changes we would send packets now (which it
should!)

* use atomic.Pointer

* cleanup to make it clearer

* fix typo in example
This commit is contained in:
Wade Simmons
2023-03-13 15:09:08 -04:00
committed by GitHub
parent 6e0ae4f9a3
commit e1af37e46d
9 changed files with 300 additions and 69 deletions

View File

@@ -66,46 +66,6 @@ func Test_NewHandshakeManagerVpnIp(t *testing.T) {
assert.NotContains(t, blah.pendingHostMap.Hosts, ip)
}
func Test_NewHandshakeManagerTrigger(t *testing.T) {
l := test.NewLogger()
_, tuncidr, _ := net.ParseCIDR("172.1.1.1/24")
_, vpncidr, _ := net.ParseCIDR("172.1.1.1/24")
_, localrange, _ := net.ParseCIDR("10.1.1.1/24")
ip := iputil.Ip2VpnIp(net.ParseIP("172.1.1.2"))
preferredRanges := []*net.IPNet{localrange}
mw := &mockEncWriter{}
mainHM := NewHostMap(l, "test", vpncidr, preferredRanges)
lh := newTestLighthouse()
blah := NewHandshakeManager(l, tuncidr, preferredRanges, mainHM, lh, &udp.Conn{}, defaultHandshakeConfig)
now := time.Now()
blah.NextOutboundHandshakeTimerTick(now, mw)
assert.Equal(t, 0, testCountTimerWheelEntries(blah.OutboundHandshakeTimer))
hi := blah.AddVpnIp(ip, nil)
hi.HandshakeReady = true
assert.Equal(t, 1, testCountTimerWheelEntries(blah.OutboundHandshakeTimer))
assert.Equal(t, 0, hi.HandshakeCounter, "Should not have attempted a handshake yet")
// Trigger the same method the channel will but, this should set our remotes pointer
blah.handleOutbound(ip, mw, true)
assert.Equal(t, 1, hi.HandshakeCounter, "Trigger should have done a handshake attempt")
assert.NotNil(t, hi.remotes, "Manager should have set my remotes pointer")
// Make sure the trigger doesn't double schedule the timer entry
assert.Equal(t, 1, testCountTimerWheelEntries(blah.OutboundHandshakeTimer))
uaddr := udp.NewAddrFromString("10.1.1.1:4242")
hi.remotes.unlockedPrependV4(ip, NewIp4AndPort(uaddr.IP, uint32(uaddr.Port)))
// We now have remotes but only the first trigger should have pushed things forward
blah.handleOutbound(ip, mw, true)
assert.Equal(t, 1, hi.HandshakeCounter, "Trigger should have not done a handshake attempt")
assert.Equal(t, 1, testCountTimerWheelEntries(blah.OutboundHandshakeTimer))
}
func testCountTimerWheelEntries(tw *LockingTimerWheel[iputil.VpnIp]) (c int) {
for _, i := range tw.t.wheel {
n := i.Head