add calculated_remotes (#759)

* add calculated_remotes

This setting allows us to "guess" what the remote might be for a host
while we wait for the lighthouse response. For networks that hard
designed with in mind, it can help speed up handshake performance, as well as
improve resiliency in the case that all lighthouses are down.

Example:

    lighthouse:
      # ...

      calculated_remotes:
        # For any Nebula IPs in 10.0.10.0/24, this will apply the mask and add
        # the calculated IP as an initial remote (while we wait for the response
        # from the lighthouse). Both CIDRs must have the same mask size.
        # For example, Nebula IP 10.0.10.123 will have a calculated remote of
        # 192.168.1.123

        10.0.10.0/24:
          - mask: 192.168.1.0/24
            port: 4242

* figure out what is up with this test

* add test

* better logic for sending handshakes

Keep track of the last light of hosts we sent handshakes to. Only log
handshake sent messages if the list has changed.

Remove the test Test_NewHandshakeManagerTrigger because it is faulty and
makes no sense. It relys on the fact that no handshake packets actually
get sent, but with these changes we would send packets now (which it
should!)

* use atomic.Pointer

* cleanup to make it clearer

* fix typo in example
This commit is contained in:
Wade Simmons
2023-03-13 15:09:08 -04:00
committed by GitHub
parent 6e0ae4f9a3
commit e1af37e46d
9 changed files with 300 additions and 69 deletions

View File

@@ -155,22 +155,23 @@ func (rs *RelayState) InsertRelay(ip iputil.VpnIp, idx uint32, r *Relay) {
type HostInfo struct {
sync.RWMutex
remote *udp.Addr
remotes *RemoteList
promoteCounter atomic.Uint32
ConnectionState *ConnectionState
handshakeStart time.Time //todo: this an entry in the handshake manager
HandshakeReady bool //todo: being in the manager means you are ready
HandshakeCounter int //todo: another handshake manager entry
HandshakeComplete bool //todo: this should go away in favor of ConnectionState.ready
HandshakePacket map[uint8][]byte //todo: this is other handshake manager entry
packetStore []*cachedPacket //todo: this is other handshake manager entry
remoteIndexId uint32
localIndexId uint32
vpnIp iputil.VpnIp
recvError int
remoteCidr *cidr.Tree4
relayState RelayState
remote *udp.Addr
remotes *RemoteList
promoteCounter atomic.Uint32
ConnectionState *ConnectionState
handshakeStart time.Time //todo: this an entry in the handshake manager
HandshakeReady bool //todo: being in the manager means you are ready
HandshakeCounter int //todo: another handshake manager entry
HandshakeLastRemotes []*udp.Addr //todo: another handshake manager entry, which remotes we sent to last time
HandshakeComplete bool //todo: this should go away in favor of ConnectionState.ready
HandshakePacket map[uint8][]byte //todo: this is other handshake manager entry
packetStore []*cachedPacket //todo: this is other handshake manager entry
remoteIndexId uint32
localIndexId uint32
vpnIp iputil.VpnIp
recvError int
remoteCidr *cidr.Tree4
relayState RelayState
// lastRebindCount is the other side of Interface.rebindCount, if these values don't match then we need to ask LH
// for a punch from the remote end of this tunnel. The goal being to prime their conntrack for our traffic just like