More correct ipv6 header parsing (#1323)

This commit is contained in:
Nate Brown 2025-02-04 16:36:34 -06:00 committed by GitHub
parent e4daed3563
commit fbff6a1487
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 549 additions and 85 deletions

View File

@ -3,7 +3,6 @@ package nebula
import (
"encoding/binary"
"errors"
"fmt"
"net/netip"
"time"
@ -271,10 +270,19 @@ func (f *Interface) handleEncrypted(ci *ConnectionState, addr netip.AddrPort, h
return true
}
var (
ErrPacketTooShort = errors.New("packet is too short")
ErrUnknownIPVersion = errors.New("packet is an unknown ip version")
ErrIPv4InvalidHeaderLength = errors.New("invalid ipv4 header length")
ErrIPv4PacketTooShort = errors.New("ipv4 packet is too short")
ErrIPv6PacketTooShort = errors.New("ipv6 packet is too short")
ErrIPv6CouldNotFindPayload = errors.New("could not find payload in ipv6 packet")
)
// newPacket validates and parses the interesting bits for the firewall out of the ip and sub protocol headers
func newPacket(data []byte, incoming bool, fp *firewall.Packet) error {
if len(data) < 1 {
return errors.New("packet too short")
return ErrPacketTooShort
}
version := int((data[0] >> 4) & 0x0f)
@ -284,13 +292,13 @@ func newPacket(data []byte, incoming bool, fp *firewall.Packet) error {
case ipv6.Version:
return parseV6(data, incoming, fp)
}
return fmt.Errorf("packet is an unknown ip version: %v", version)
return ErrUnknownIPVersion
}
func parseV6(data []byte, incoming bool, fp *firewall.Packet) error {
dataLen := len(data)
if dataLen < ipv6.HeaderLen {
return fmt.Errorf("ipv6 packet is less than %v bytes", ipv4.HeaderLen)
return ErrIPv6PacketTooShort
}
if incoming {
@ -301,11 +309,10 @@ func parseV6(data []byte, incoming bool, fp *firewall.Packet) error {
fp.RemoteAddr, _ = netip.AddrFromSlice(data[24:40])
}
//TODO: CERT-V2 whats a reasonable number of extension headers to attempt to parse?
//https://www.ietf.org/archive/id/draft-ietf-6man-eh-limits-00.html
protoAt := 6
offset := 40
for i := 0; i < 24; i++ {
protoAt := 6 // NextHeader is at 6 bytes into the ipv6 header
offset := ipv6.HeaderLen // Start at the end of the ipv6 header
next := 0
for {
if dataLen < offset {
break
}
@ -313,32 +320,18 @@ func parseV6(data []byte, incoming bool, fp *firewall.Packet) error {
proto := layers.IPProtocol(data[protoAt])
//fmt.Println(proto, protoAt)
switch proto {
case layers.IPProtocolICMPv6:
case layers.IPProtocolICMPv6, layers.IPProtocolESP, layers.IPProtocolNoNextHeader:
fp.Protocol = uint8(proto)
fp.RemotePort = 0
fp.LocalPort = 0
fp.Fragment = false
return nil
case layers.IPProtocolTCP:
case layers.IPProtocolTCP, layers.IPProtocolUDP:
if dataLen < offset+4 {
return fmt.Errorf("ipv6 packet was too small")
return ErrIPv6PacketTooShort
}
fp.Protocol = uint8(proto)
if incoming {
fp.RemotePort = binary.BigEndian.Uint16(data[offset : offset+2])
fp.LocalPort = binary.BigEndian.Uint16(data[offset+2 : offset+4])
} else {
fp.LocalPort = binary.BigEndian.Uint16(data[offset : offset+2])
fp.RemotePort = binary.BigEndian.Uint16(data[offset+2 : offset+4])
}
fp.Fragment = false
return nil
case layers.IPProtocolUDP:
if dataLen < offset+4 {
return fmt.Errorf("ipv6 packet was too small")
}
fp.Protocol = uint8(proto)
if incoming {
fp.RemotePort = binary.BigEndian.Uint16(data[offset : offset+2])
@ -347,47 +340,71 @@ func parseV6(data []byte, incoming bool, fp *firewall.Packet) error {
fp.LocalPort = binary.BigEndian.Uint16(data[offset : offset+2])
fp.RemotePort = binary.BigEndian.Uint16(data[offset+2 : offset+4])
}
fp.Fragment = false
return nil
case layers.IPProtocolIPv6Fragment:
//TODO: CERT-V2 can we determine the protocol?
// Fragment header is 8 bytes, need at least offset+4 to read the offset field
if dataLen < offset+8 {
return ErrIPv6PacketTooShort
}
// Check if this is the first fragment
fragmentOffset := binary.BigEndian.Uint16(data[offset+2:offset+4]) &^ uint16(0x7) // Remove the reserved and M flag bits
if fragmentOffset != 0 {
// Non-first fragment, use what we have now and stop processing
fp.Protocol = data[offset]
fp.Fragment = true
fp.RemotePort = 0
fp.LocalPort = 0
fp.Fragment = true
return nil
}
default:
// The next loop should be the transport layer since we are the first fragment
next = 8 // Fragment headers are always 8 bytes
case layers.IPProtocolAH:
// Auth headers, used by IPSec, have a different meaning for header length
if dataLen < offset+1 {
break
}
next := int(data[offset+1]) * 8
if next == 0 {
// each extension is at least 8 bytes
next = int(data[offset+1]+2) << 2
default:
// Normal ipv6 header length processing
if dataLen < offset+1 {
break
}
next = int(data[offset+1]+1) << 3
}
if next <= 0 {
// Safety check, each ipv6 header has to be at least 8 bytes
next = 8
}
protoAt = offset
offset = offset + next
}
}
return fmt.Errorf("could not find payload in ipv6 packet")
return ErrIPv6CouldNotFindPayload
}
func parseV4(data []byte, incoming bool, fp *firewall.Packet) error {
// Do we at least have an ipv4 header worth of data?
if len(data) < ipv4.HeaderLen {
return fmt.Errorf("ipv4 packet is less than %v bytes", ipv4.HeaderLen)
return ErrIPv4PacketTooShort
}
// Adjust our start position based on the advertised ip header length
ihl := int(data[0]&0x0f) << 2
// Well formed ip header length?
// Well-formed ip header length?
if ihl < ipv4.HeaderLen {
return fmt.Errorf("ipv4 packet had an invalid header length: %v", ihl)
return ErrIPv4InvalidHeaderLength
}
// Check if this is the second or further fragment of a fragmented packet.
@ -403,7 +420,7 @@ func parseV4(data []byte, incoming bool, fp *firewall.Packet) error {
minLen += minFwPacketLen
}
if len(data) < minLen {
return fmt.Errorf("ipv4 packet is less than %v bytes, ip header len: %v", minLen, ihl)
return ErrIPv4InvalidHeaderLength
}
// Firewall packets are locally oriented
@ -501,7 +518,7 @@ func (f *Interface) sendRecvError(endpoint netip.AddrPort, index uint32) {
f.messageMetrics.Tx(header.RecvError, 0, 1)
b := header.Encode(make([]byte, header.Len), header.Version, header.RecvError, 0, index, 0)
f.outside.WriteTo(b, endpoint)
_ = f.outside.WriteTo(b, endpoint)
if f.l.Level >= logrus.DebugLevel {
f.l.WithField("index", index).
WithField("udpAddr", endpoint).

View File

@ -1,6 +1,8 @@
package nebula
import (
"bytes"
"encoding/binary"
"net"
"net/netip"
"testing"
@ -18,13 +20,13 @@ func Test_newPacket(t *testing.T) {
// length fails
err := newPacket([]byte{}, true, p)
assert.EqualError(t, err, "packet too short")
assert.ErrorIs(t, err, ErrPacketTooShort)
err = newPacket([]byte{0x40}, true, p)
assert.EqualError(t, err, "ipv4 packet is less than 20 bytes")
assert.ErrorIs(t, err, ErrIPv4PacketTooShort)
err = newPacket([]byte{0x60}, true, p)
assert.EqualError(t, err, "ipv6 packet is less than 20 bytes")
assert.ErrorIs(t, err, ErrIPv6PacketTooShort)
// length fail with ip options
h := ipv4.Header{
@ -37,16 +39,15 @@ func Test_newPacket(t *testing.T) {
b, _ := h.Marshal()
err = newPacket(b, true, p)
assert.EqualError(t, err, "ipv4 packet is less than 28 bytes, ip header len: 24")
assert.ErrorIs(t, err, ErrIPv4InvalidHeaderLength)
// not an ipv4 packet
err = newPacket([]byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, true, p)
assert.EqualError(t, err, "packet is an unknown ip version: 0")
assert.ErrorIs(t, err, ErrUnknownIPVersion)
// invalid ihl
err = newPacket([]byte{4<<4 | (8 >> 2 & 0x0f), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, true, p)
assert.EqualError(t, err, "ipv4 packet had an invalid header length: 8")
assert.ErrorIs(t, err, ErrIPv4InvalidHeaderLength)
// account for variable ip header length - incoming
h = ipv4.Header{
@ -63,11 +64,12 @@ func Test_newPacket(t *testing.T) {
err = newPacket(b, true, p)
assert.Nil(t, err)
assert.Equal(t, p.Protocol, uint8(firewall.ProtoTCP))
assert.Equal(t, p.LocalAddr, netip.MustParseAddr("10.0.0.2"))
assert.Equal(t, p.RemoteAddr, netip.MustParseAddr("10.0.0.1"))
assert.Equal(t, p.RemotePort, uint16(3))
assert.Equal(t, p.LocalPort, uint16(4))
assert.Equal(t, uint8(firewall.ProtoTCP), p.Protocol)
assert.Equal(t, netip.MustParseAddr("10.0.0.2"), p.LocalAddr)
assert.Equal(t, netip.MustParseAddr("10.0.0.1"), p.RemoteAddr)
assert.Equal(t, uint16(3), p.RemotePort)
assert.Equal(t, uint16(4), p.LocalPort)
assert.False(t, p.Fragment)
// account for variable ip header length - outgoing
h = ipv4.Header{
@ -84,17 +86,94 @@ func Test_newPacket(t *testing.T) {
err = newPacket(b, false, p)
assert.Nil(t, err)
assert.Equal(t, p.Protocol, uint8(2))
assert.Equal(t, p.LocalAddr, netip.MustParseAddr("10.0.0.1"))
assert.Equal(t, p.RemoteAddr, netip.MustParseAddr("10.0.0.2"))
assert.Equal(t, p.RemotePort, uint16(6))
assert.Equal(t, p.LocalPort, uint16(5))
assert.Equal(t, uint8(2), p.Protocol)
assert.Equal(t, netip.MustParseAddr("10.0.0.1"), p.LocalAddr)
assert.Equal(t, netip.MustParseAddr("10.0.0.2"), p.RemoteAddr)
assert.Equal(t, uint16(6), p.RemotePort)
assert.Equal(t, uint16(5), p.LocalPort)
assert.False(t, p.Fragment)
}
func Test_newPacket_v6(t *testing.T) {
p := &firewall.Packet{}
// invalid ipv6
ip := layers.IPv6{
Version: 6,
HopLimit: 128,
SrcIP: net.IPv6linklocalallrouters,
DstIP: net.IPv6linklocalallnodes,
}
buffer := gopacket.NewSerializeBuffer()
opt := gopacket.SerializeOptions{
ComputeChecksums: false,
FixLengths: false,
}
err := gopacket.SerializeLayers(buffer, opt, &ip)
assert.NoError(t, err)
err = newPacket(buffer.Bytes(), true, p)
assert.ErrorIs(t, err, ErrIPv6CouldNotFindPayload)
// A good ICMP packet
ip = layers.IPv6{
Version: 6,
NextHeader: layers.IPProtocolICMPv6,
HopLimit: 128,
SrcIP: net.IPv6linklocalallrouters,
DstIP: net.IPv6linklocalallnodes,
}
icmp := layers.ICMPv6{}
buffer.Clear()
err = gopacket.SerializeLayers(buffer, opt, &ip, &icmp)
if err != nil {
panic(err)
}
err = newPacket(buffer.Bytes(), true, p)
assert.Nil(t, err)
assert.Equal(t, uint8(layers.IPProtocolICMPv6), p.Protocol)
assert.Equal(t, netip.MustParseAddr("ff02::2"), p.RemoteAddr)
assert.Equal(t, netip.MustParseAddr("ff02::1"), p.LocalAddr)
assert.Equal(t, uint16(0), p.RemotePort)
assert.Equal(t, uint16(0), p.LocalPort)
assert.False(t, p.Fragment)
// A good ESP packet
b := buffer.Bytes()
b[6] = byte(layers.IPProtocolESP)
err = newPacket(b, true, p)
assert.Nil(t, err)
assert.Equal(t, uint8(layers.IPProtocolESP), p.Protocol)
assert.Equal(t, netip.MustParseAddr("ff02::2"), p.RemoteAddr)
assert.Equal(t, netip.MustParseAddr("ff02::1"), p.LocalAddr)
assert.Equal(t, uint16(0), p.RemotePort)
assert.Equal(t, uint16(0), p.LocalPort)
assert.False(t, p.Fragment)
// A good None packet
b = buffer.Bytes()
b[6] = byte(layers.IPProtocolNoNextHeader)
err = newPacket(b, true, p)
assert.Nil(t, err)
assert.Equal(t, uint8(layers.IPProtocolNoNextHeader), p.Protocol)
assert.Equal(t, netip.MustParseAddr("ff02::2"), p.RemoteAddr)
assert.Equal(t, netip.MustParseAddr("ff02::1"), p.LocalAddr)
assert.Equal(t, uint16(0), p.RemotePort)
assert.Equal(t, uint16(0), p.LocalPort)
assert.False(t, p.Fragment)
// An unknown protocol packet
b = buffer.Bytes()
b[6] = 255 // 255 is a reserved protocol number
err = newPacket(b, true, p)
assert.ErrorIs(t, err, ErrIPv6CouldNotFindPayload)
// A good UDP packet
ip = layers.IPv6{
Version: 6,
NextHeader: firewall.ProtoUDP,
HopLimit: 128,
@ -106,39 +185,407 @@ func Test_newPacket_v6(t *testing.T) {
SrcPort: layers.UDPPort(36123),
DstPort: layers.UDPPort(22),
}
err := udp.SetNetworkLayerForChecksum(&ip)
if err != nil {
panic(err)
}
err = udp.SetNetworkLayerForChecksum(&ip)
assert.NoError(t, err)
buffer := gopacket.NewSerializeBuffer()
opt := gopacket.SerializeOptions{
ComputeChecksums: true,
FixLengths: true,
}
buffer.Clear()
err = gopacket.SerializeLayers(buffer, opt, &ip, &udp, gopacket.Payload([]byte{0xde, 0xad, 0xbe, 0xef}))
if err != nil {
panic(err)
}
b := buffer.Bytes()
b = buffer.Bytes()
//test incoming
// incoming
err = newPacket(b, true, p)
assert.Nil(t, err)
assert.Equal(t, p.Protocol, uint8(firewall.ProtoUDP))
assert.Equal(t, p.RemoteAddr, netip.MustParseAddr("ff02::2"))
assert.Equal(t, p.LocalAddr, netip.MustParseAddr("ff02::1"))
assert.Equal(t, p.RemotePort, uint16(36123))
assert.Equal(t, p.LocalPort, uint16(22))
assert.Equal(t, uint8(firewall.ProtoUDP), p.Protocol)
assert.Equal(t, netip.MustParseAddr("ff02::2"), p.RemoteAddr)
assert.Equal(t, netip.MustParseAddr("ff02::1"), p.LocalAddr)
assert.Equal(t, uint16(36123), p.RemotePort)
assert.Equal(t, uint16(22), p.LocalPort)
assert.False(t, p.Fragment)
//test outgoing
// outgoing
err = newPacket(b, false, p)
assert.Nil(t, err)
assert.Equal(t, p.Protocol, uint8(firewall.ProtoUDP))
assert.Equal(t, p.LocalAddr, netip.MustParseAddr("ff02::2"))
assert.Equal(t, p.RemoteAddr, netip.MustParseAddr("ff02::1"))
assert.Equal(t, p.LocalPort, uint16(36123))
assert.Equal(t, p.RemotePort, uint16(22))
assert.Equal(t, uint8(firewall.ProtoUDP), p.Protocol)
assert.Equal(t, netip.MustParseAddr("ff02::2"), p.LocalAddr)
assert.Equal(t, netip.MustParseAddr("ff02::1"), p.RemoteAddr)
assert.Equal(t, uint16(36123), p.LocalPort)
assert.Equal(t, uint16(22), p.RemotePort)
assert.False(t, p.Fragment)
// Too short UDP packet
err = newPacket(b[:len(b)-10], false, p) // pull off the last 10 bytes
assert.ErrorIs(t, err, ErrIPv6PacketTooShort)
// A good TCP packet
b[6] = byte(layers.IPProtocolTCP)
// incoming
err = newPacket(b, true, p)
assert.Nil(t, err)
assert.Equal(t, uint8(firewall.ProtoTCP), p.Protocol)
assert.Equal(t, netip.MustParseAddr("ff02::2"), p.RemoteAddr)
assert.Equal(t, netip.MustParseAddr("ff02::1"), p.LocalAddr)
assert.Equal(t, uint16(36123), p.RemotePort)
assert.Equal(t, uint16(22), p.LocalPort)
assert.False(t, p.Fragment)
// outgoing
err = newPacket(b, false, p)
assert.Nil(t, err)
assert.Equal(t, uint8(firewall.ProtoTCP), p.Protocol)
assert.Equal(t, netip.MustParseAddr("ff02::2"), p.LocalAddr)
assert.Equal(t, netip.MustParseAddr("ff02::1"), p.RemoteAddr)
assert.Equal(t, uint16(36123), p.LocalPort)
assert.Equal(t, uint16(22), p.RemotePort)
assert.False(t, p.Fragment)
// Too short TCP packet
err = newPacket(b[:len(b)-10], false, p) // pull off the last 10 bytes
assert.ErrorIs(t, err, ErrIPv6PacketTooShort)
// A good UDP packet with an AH header
ip = layers.IPv6{
Version: 6,
NextHeader: layers.IPProtocolAH,
HopLimit: 128,
SrcIP: net.IPv6linklocalallrouters,
DstIP: net.IPv6linklocalallnodes,
}
ah := layers.IPSecAH{
AuthenticationData: []byte{0xde, 0xad, 0xbe, 0xef, 0xde, 0xad, 0xbe, 0xef},
}
ah.NextHeader = layers.IPProtocolUDP
udpHeader := []byte{
0x8d, 0x1b, // Source port 36123
0x00, 0x16, // Destination port 22
0x00, 0x00, // Length
0x00, 0x00, // Checksum
}
buffer.Clear()
err = ip.SerializeTo(buffer, opt)
if err != nil {
panic(err)
}
b = buffer.Bytes()
ahb := serializeAH(&ah)
b = append(b, ahb...)
b = append(b, udpHeader...)
err = newPacket(b, true, p)
assert.Nil(t, err)
assert.Equal(t, uint8(firewall.ProtoUDP), p.Protocol)
assert.Equal(t, netip.MustParseAddr("ff02::2"), p.RemoteAddr)
assert.Equal(t, netip.MustParseAddr("ff02::1"), p.LocalAddr)
assert.Equal(t, uint16(36123), p.RemotePort)
assert.Equal(t, uint16(22), p.LocalPort)
assert.False(t, p.Fragment)
// Invalid AH header
b = buffer.Bytes()
err = newPacket(b, true, p)
assert.ErrorIs(t, err, ErrIPv6CouldNotFindPayload)
}
func Test_newPacket_ipv6Fragment(t *testing.T) {
p := &firewall.Packet{}
ip := &layers.IPv6{
Version: 6,
NextHeader: layers.IPProtocolIPv6Fragment,
HopLimit: 64,
SrcIP: net.IPv6linklocalallrouters,
DstIP: net.IPv6linklocalallnodes,
}
// First fragment
fragHeader1 := []byte{
uint8(layers.IPProtocolUDP), // Next Header (UDP)
0x00, // Reserved
0x00, // Fragment Offset high byte (0)
0x01, // Fragment Offset low byte & flags (M=1)
0x00, 0x00, 0x00, 0x01, // Identification
}
udpHeader := []byte{
0x8d, 0x1b, // Source port 36123
0x00, 0x16, // Destination port 22
0x00, 0x00, // Length
0x00, 0x00, // Checksum
}
buffer := gopacket.NewSerializeBuffer()
opts := gopacket.SerializeOptions{
ComputeChecksums: true,
FixLengths: true,
}
err := ip.SerializeTo(buffer, opts)
if err != nil {
t.Fatal(err)
}
firstFrag := buffer.Bytes()
firstFrag = append(firstFrag, fragHeader1...)
firstFrag = append(firstFrag, udpHeader...)
firstFrag = append(firstFrag, []byte{0xde, 0xad, 0xbe, 0xef}...)
// Test first fragment incoming
err = newPacket(firstFrag, true, p)
assert.NoError(t, err)
assert.Equal(t, netip.MustParseAddr("ff02::2"), p.RemoteAddr)
assert.Equal(t, netip.MustParseAddr("ff02::1"), p.LocalAddr)
assert.Equal(t, uint8(layers.IPProtocolUDP), p.Protocol)
assert.Equal(t, uint16(36123), p.RemotePort)
assert.Equal(t, uint16(22), p.LocalPort)
assert.False(t, p.Fragment)
// Test first fragment outgoing
err = newPacket(firstFrag, false, p)
assert.NoError(t, err)
assert.Equal(t, netip.MustParseAddr("ff02::2"), p.LocalAddr)
assert.Equal(t, netip.MustParseAddr("ff02::1"), p.RemoteAddr)
assert.Equal(t, uint8(layers.IPProtocolUDP), p.Protocol)
assert.Equal(t, uint16(36123), p.LocalPort)
assert.Equal(t, uint16(22), p.RemotePort)
assert.False(t, p.Fragment)
// Second fragment
fragHeader2 := []byte{
uint8(layers.IPProtocolUDP), // Next Header (UDP)
0x00, // Reserved
0xb9, // Fragment Offset high byte (185)
0x01, // Fragment Offset low byte & flags (M=1)
0x00, 0x00, 0x00, 0x01, // Identification
}
buffer.Clear()
err = ip.SerializeTo(buffer, opts)
if err != nil {
t.Fatal(err)
}
secondFrag := buffer.Bytes()
secondFrag = append(secondFrag, fragHeader2...)
secondFrag = append(secondFrag, []byte{0xde, 0xad, 0xbe, 0xef}...)
// Test second fragment incoming
err = newPacket(secondFrag, true, p)
assert.NoError(t, err)
assert.Equal(t, netip.MustParseAddr("ff02::2"), p.RemoteAddr)
assert.Equal(t, netip.MustParseAddr("ff02::1"), p.LocalAddr)
assert.Equal(t, uint8(layers.IPProtocolUDP), p.Protocol)
assert.Equal(t, uint16(0), p.RemotePort)
assert.Equal(t, uint16(0), p.LocalPort)
assert.True(t, p.Fragment)
// Test second fragment outgoing
err = newPacket(secondFrag, false, p)
assert.NoError(t, err)
assert.Equal(t, netip.MustParseAddr("ff02::2"), p.LocalAddr)
assert.Equal(t, netip.MustParseAddr("ff02::1"), p.RemoteAddr)
assert.Equal(t, uint8(layers.IPProtocolUDP), p.Protocol)
assert.Equal(t, uint16(0), p.LocalPort)
assert.Equal(t, uint16(0), p.RemotePort)
assert.True(t, p.Fragment)
// Too short of a fragment packet
err = newPacket(secondFrag[:len(secondFrag)-10], false, p)
assert.ErrorIs(t, err, ErrIPv6PacketTooShort)
}
func BenchmarkParseV6(b *testing.B) {
// Regular UDP packet
ip := &layers.IPv6{
Version: 6,
NextHeader: layers.IPProtocolUDP,
HopLimit: 64,
SrcIP: net.IPv6linklocalallrouters,
DstIP: net.IPv6linklocalallnodes,
}
udp := &layers.UDP{
SrcPort: layers.UDPPort(36123),
DstPort: layers.UDPPort(22),
}
buffer := gopacket.NewSerializeBuffer()
opts := gopacket.SerializeOptions{
ComputeChecksums: false,
FixLengths: true,
}
err := gopacket.SerializeLayers(buffer, opts, ip, udp)
if err != nil {
b.Fatal(err)
}
normalPacket := buffer.Bytes()
// First Fragment packet
ipFrag := &layers.IPv6{
Version: 6,
NextHeader: layers.IPProtocolIPv6Fragment,
HopLimit: 64,
SrcIP: net.IPv6linklocalallrouters,
DstIP: net.IPv6linklocalallnodes,
}
fragHeader := []byte{
uint8(layers.IPProtocolUDP), // Next Header (UDP)
0x00, // Reserved
0x00, // Fragment Offset high byte (0)
0x01, // Fragment Offset low byte & flags (M=1)
0x00, 0x00, 0x00, 0x01, // Identification
}
udpHeader := []byte{
0x8d, 0x7b, // Source port 36123
0x00, 0x16, // Destination port 22
0x00, 0x00, // Length
0x00, 0x00, // Checksum
}
buffer.Clear()
err = ipFrag.SerializeTo(buffer, opts)
if err != nil {
b.Fatal(err)
}
firstFrag := buffer.Bytes()
firstFrag = append(firstFrag, fragHeader...)
firstFrag = append(firstFrag, udpHeader...)
firstFrag = append(firstFrag, []byte{0xde, 0xad, 0xbe, 0xef}...)
// Second Fragment packet
fragHeader[2] = 0xb9 // offset 185
buffer.Clear()
err = ipFrag.SerializeTo(buffer, opts)
if err != nil {
b.Fatal(err)
}
secondFrag := buffer.Bytes()
secondFrag = append(secondFrag, fragHeader...)
secondFrag = append(secondFrag, []byte{0xde, 0xad, 0xbe, 0xef}...)
fp := &firewall.Packet{}
b.Run("Normal", func(b *testing.B) {
for i := 0; i < b.N; i++ {
if err = parseV6(normalPacket, true, fp); err != nil {
b.Fatal(err)
}
}
})
b.Run("FirstFragment", func(b *testing.B) {
for i := 0; i < b.N; i++ {
if err = parseV6(firstFrag, true, fp); err != nil {
b.Fatal(err)
}
}
})
b.Run("SecondFragment", func(b *testing.B) {
for i := 0; i < b.N; i++ {
if err = parseV6(secondFrag, true, fp); err != nil {
b.Fatal(err)
}
}
})
// Evil packet
evilPacket := &layers.IPv6{
Version: 6,
NextHeader: layers.IPProtocolIPv6HopByHop,
HopLimit: 64,
SrcIP: net.IPv6linklocalallrouters,
DstIP: net.IPv6linklocalallnodes,
}
hopHeader := []byte{
uint8(layers.IPProtocolIPv6HopByHop), // Next Header (HopByHop)
0x00, // Length
0x00, 0x00, // Options and padding
0x00, 0x00, 0x00, 0x00, // More options and padding
}
lastHopHeader := []byte{
uint8(layers.IPProtocolUDP), // Next Header (UDP)
0x00, // Length
0x00, 0x00, // Options and padding
0x00, 0x00, 0x00, 0x00, // More options and padding
}
buffer.Clear()
err = evilPacket.SerializeTo(buffer, opts)
if err != nil {
b.Fatal(err)
}
evilBytes := buffer.Bytes()
for i := 0; i < 200; i++ {
evilBytes = append(evilBytes, hopHeader...)
}
evilBytes = append(evilBytes, lastHopHeader...)
evilBytes = append(evilBytes, udpHeader...)
evilBytes = append(evilBytes, []byte{0xde, 0xad, 0xbe, 0xef}...)
b.Run("200 HopByHop headers", func(b *testing.B) {
for i := 0; i < b.N; i++ {
if err = parseV6(evilBytes, false, fp); err != nil {
b.Fatal(err)
}
}
})
}
// Ensure authentication data is a multiple of 8 bytes by padding if necessary
func padAuthData(authData []byte) []byte {
// Length of Authentication Data must be a multiple of 8 bytes
paddingLength := (8 - (len(authData) % 8)) % 8 // Only pad if necessary
if paddingLength > 0 {
authData = append(authData, make([]byte, paddingLength)...)
}
return authData
}
// Custom function to manually serialize IPSecAH for both IPv4 and IPv6
func serializeAH(ah *layers.IPSecAH) []byte {
buf := new(bytes.Buffer)
// Ensure Authentication Data is a multiple of 8 bytes
ah.AuthenticationData = padAuthData(ah.AuthenticationData)
// Calculate Payload Length (in 32-bit words, minus 2)
payloadLen := uint8((12+len(ah.AuthenticationData))/4) - 2
// Serialize fields
if err := binary.Write(buf, binary.BigEndian, ah.NextHeader); err != nil {
panic(err)
}
if err := binary.Write(buf, binary.BigEndian, payloadLen); err != nil {
panic(err)
}
if err := binary.Write(buf, binary.BigEndian, ah.Reserved); err != nil {
panic(err)
}
if err := binary.Write(buf, binary.BigEndian, ah.SPI); err != nil {
panic(err)
}
if err := binary.Write(buf, binary.BigEndian, ah.Seq); err != nil {
panic(err)
}
if len(ah.AuthenticationData) > 0 {
if err := binary.Write(buf, binary.BigEndian, ah.AuthenticationData); err != nil {
panic(err)
}
}
return buf.Bytes()
}