Compare commits

..

7 Commits

Author SHA1 Message Date
Ryan Huber
a4b7f624da sure 2025-11-03 17:23:57 +00:00
Ryan Huber
1c069a8e42 reuse control on gso 2025-11-03 11:14:52 +00:00
Ryan Huber
0d8bd11818 reuse GRO slices 2025-11-03 11:06:07 +00:00
Ryan Huber
5128e2653e reuse packet buffer 2025-11-03 10:52:09 +00:00
Ryan Huber
c73b2dfbc7 fixed fallback for non io_uring packet send/recv 2025-11-03 10:45:30 +00:00
Ryan Huber
3dea761530 fix compile for 386 2025-11-03 10:12:02 +00:00
Ryan Huber
b394112ad9 gso and gro with uring on send/receive for udp 2025-11-03 09:59:45 +00:00
54 changed files with 4890 additions and 4997 deletions

View File

@@ -1,164 +0,0 @@
package nebula
import (
"net/netip"
"github.com/slackhq/nebula/overlay"
"github.com/slackhq/nebula/udp"
)
// batchPipelines tracks whether the inside device can operate on packet batches
// and, if so, holds the shared packet pool sized for the virtio headroom and
// payload limits advertised by the device. It also owns the fan-in/fan-out
// queues between the TUN readers, encrypt/decrypt workers, and the UDP writers.
type batchPipelines struct {
enabled bool
inside overlay.BatchCapableDevice
headroom int
payloadCap int
pool *overlay.PacketPool
batchSize int
routines int
rxQueues []chan *overlay.Packet
txQueues []chan queuedDatagram
tunQueues []chan *overlay.Packet
}
type queuedDatagram struct {
packet *overlay.Packet
addr netip.AddrPort
}
func (bp *batchPipelines) init(device overlay.Device, routines int, queueDepth int, maxSegments int) {
if device == nil || routines <= 0 {
return
}
bcap, ok := device.(overlay.BatchCapableDevice)
if !ok {
return
}
headroom := bcap.BatchHeadroom()
payload := bcap.BatchPayloadCap()
if maxSegments < 1 {
maxSegments = 1
}
requiredPayload := udp.MTU * maxSegments
if payload < requiredPayload {
payload = requiredPayload
}
batchSize := bcap.BatchSize()
if headroom <= 0 || payload <= 0 || batchSize <= 0 {
return
}
bp.enabled = true
bp.inside = bcap
bp.headroom = headroom
bp.payloadCap = payload
bp.batchSize = batchSize
bp.routines = routines
bp.pool = overlay.NewPacketPool(headroom, payload)
queueCap := batchSize * defaultBatchQueueDepthFactor
if queueDepth > 0 {
queueCap = queueDepth
}
if queueCap < batchSize {
queueCap = batchSize
}
bp.rxQueues = make([]chan *overlay.Packet, routines)
bp.txQueues = make([]chan queuedDatagram, routines)
bp.tunQueues = make([]chan *overlay.Packet, routines)
for i := 0; i < routines; i++ {
bp.rxQueues[i] = make(chan *overlay.Packet, queueCap)
bp.txQueues[i] = make(chan queuedDatagram, queueCap)
bp.tunQueues[i] = make(chan *overlay.Packet, queueCap)
}
}
func (bp *batchPipelines) Pool() *overlay.PacketPool {
if bp == nil || !bp.enabled {
return nil
}
return bp.pool
}
func (bp *batchPipelines) Enabled() bool {
return bp != nil && bp.enabled
}
func (bp *batchPipelines) batchSizeHint() int {
if bp == nil || bp.batchSize <= 0 {
return 1
}
return bp.batchSize
}
func (bp *batchPipelines) rxQueue(i int) chan *overlay.Packet {
if bp == nil || !bp.enabled || i < 0 || i >= len(bp.rxQueues) {
return nil
}
return bp.rxQueues[i]
}
func (bp *batchPipelines) txQueue(i int) chan queuedDatagram {
if bp == nil || !bp.enabled || i < 0 || i >= len(bp.txQueues) {
return nil
}
return bp.txQueues[i]
}
func (bp *batchPipelines) tunQueue(i int) chan *overlay.Packet {
if bp == nil || !bp.enabled || i < 0 || i >= len(bp.tunQueues) {
return nil
}
return bp.tunQueues[i]
}
func (bp *batchPipelines) txQueueLen(i int) int {
q := bp.txQueue(i)
if q == nil {
return 0
}
return len(q)
}
func (bp *batchPipelines) tunQueueLen(i int) int {
q := bp.tunQueue(i)
if q == nil {
return 0
}
return len(q)
}
func (bp *batchPipelines) enqueueRx(i int, pkt *overlay.Packet) bool {
q := bp.rxQueue(i)
if q == nil {
return false
}
q <- pkt
return true
}
func (bp *batchPipelines) enqueueTx(i int, pkt *overlay.Packet, addr netip.AddrPort) bool {
q := bp.txQueue(i)
if q == nil {
return false
}
q <- queuedDatagram{packet: pkt, addr: addr}
return true
}
func (bp *batchPipelines) enqueueTun(i int, pkt *overlay.Packet) bool {
q := bp.tunQueue(i)
if q == nil {
return false
}
q <- pkt
return true
}
func (bp *batchPipelines) newPacket() *overlay.Packet {
if bp == nil || !bp.enabled || bp.pool == nil {
return nil
}
return bp.pool.Get()
}

View File

@@ -140,101 +140,6 @@ func MarshalSigningPrivateKeyToPEM(curve Curve, b []byte) []byte {
}
}
// Backward compatibility functions for older API
func MarshalX25519PublicKey(b []byte) []byte {
return MarshalPublicKeyToPEM(Curve_CURVE25519, b)
}
func MarshalX25519PrivateKey(b []byte) []byte {
return MarshalPrivateKeyToPEM(Curve_CURVE25519, b)
}
func MarshalPublicKey(curve Curve, b []byte) []byte {
return MarshalPublicKeyToPEM(curve, b)
}
func MarshalPrivateKey(curve Curve, b []byte) []byte {
return MarshalPrivateKeyToPEM(curve, b)
}
// NebulaCertificate is a compatibility wrapper for the old API
type NebulaCertificate struct {
Details NebulaCertificateDetails
Signature []byte
cert Certificate
}
// NebulaCertificateDetails is a compatibility wrapper for certificate details
type NebulaCertificateDetails struct {
Name string
NotBefore time.Time
NotAfter time.Time
PublicKey []byte
IsCA bool
Issuer []byte
Curve Curve
}
// UnmarshalNebulaCertificateFromPEM provides backward compatibility with the old API
func UnmarshalNebulaCertificateFromPEM(b []byte) (*NebulaCertificate, []byte, error) {
c, rest, err := UnmarshalCertificateFromPEM(b)
if err != nil {
return nil, rest, err
}
issuerBytes, err := func() ([]byte, error) {
issuer := c.Issuer()
if issuer == "" {
return nil, nil
}
decoded, err := hex.DecodeString(issuer)
if err != nil {
return nil, fmt.Errorf("failed to decode issuer fingerprint: %w", err)
}
return decoded, nil
}()
if err != nil {
return nil, rest, err
}
pubKey := c.PublicKey()
if pubKey != nil {
pubKey = append([]byte(nil), pubKey...)
}
sig := c.Signature()
if sig != nil {
sig = append([]byte(nil), sig...)
}
return &NebulaCertificate{
Details: NebulaCertificateDetails{
Name: c.Name(),
NotBefore: c.NotBefore(),
NotAfter: c.NotAfter(),
PublicKey: pubKey,
IsCA: c.IsCA(),
Issuer: issuerBytes,
Curve: c.Curve(),
},
Signature: sig,
cert: c,
}, rest, nil
}
// IssuerString returns the issuer in hex format for compatibility
func (n *NebulaCertificate) IssuerString() string {
if n.Details.Issuer == nil {
return ""
}
return hex.EncodeToString(n.Details.Issuer)
}
// Certificate returns the underlying certificate (read-only)
func (n *NebulaCertificate) Certificate() Certificate {
return n.cert
}
// UnmarshalPrivateKeyFromPEM will try to unmarshal the first pem block in a byte array, returning any non
// consumed data or an error on failure
func UnmarshalPrivateKeyFromPEM(b []byte) ([]byte, []byte, Curve, error) {
@@ -286,3 +191,71 @@ func UnmarshalSigningPrivateKeyFromPEM(b []byte) ([]byte, []byte, Curve, error)
}
return k.Bytes, r, curve, nil
}
// Backward compatibility functions for older API
func MarshalX25519PublicKey(b []byte) []byte {
return MarshalPublicKeyToPEM(Curve_CURVE25519, b)
}
func MarshalX25519PrivateKey(b []byte) []byte {
return MarshalPrivateKeyToPEM(Curve_CURVE25519, b)
}
func MarshalPublicKey(curve Curve, b []byte) []byte {
return MarshalPublicKeyToPEM(curve, b)
}
func MarshalPrivateKey(curve Curve, b []byte) []byte {
return MarshalPrivateKeyToPEM(curve, b)
}
// NebulaCertificate is a compatibility wrapper for the old API
type NebulaCertificate struct {
Details NebulaCertificateDetails
Signature []byte
cert Certificate
}
// NebulaCertificateDetails is a compatibility wrapper for certificate details
type NebulaCertificateDetails struct {
Name string
NotBefore time.Time
NotAfter time.Time
PublicKey []byte
IsCA bool
Issuer []byte
Curve Curve
}
// UnmarshalNebulaCertificateFromPEM provides backward compatibility with the old API
func UnmarshalNebulaCertificateFromPEM(b []byte) (*NebulaCertificate, []byte, error) {
c, rest, err := UnmarshalCertificateFromPEM(b)
if err != nil {
return nil, rest, err
}
// Convert to old format
nc := &NebulaCertificate{
Details: NebulaCertificateDetails{
Name: c.Name(),
NotBefore: c.NotBefore(),
NotAfter: c.NotAfter(),
PublicKey: c.PublicKey(),
IsCA: c.IsCA(),
Curve: c.Curve(),
},
Signature: c.Signature(),
cert: c,
}
// Handle issuer
if c.Issuer() != "" {
issuerBytes, err := hex.DecodeString(c.Issuer())
if err != nil {
return nil, rest, fmt.Errorf("failed to decode issuer fingerprint: %w", err)
}
nc.Details.Issuer = issuerBytes
}
return nc, rest, nil
}

View File

@@ -114,33 +114,6 @@ func NewTestCert(v cert.Version, curve cert.Curve, ca cert.Certificate, key []by
return c, pub, cert.MarshalPrivateKeyToPEM(curve, priv), pem
}
func NewTestCertDifferentVersion(c cert.Certificate, v cert.Version, ca cert.Certificate, key []byte) (cert.Certificate, []byte) {
nc := &cert.TBSCertificate{
Version: v,
Curve: c.Curve(),
Name: c.Name(),
Networks: c.Networks(),
UnsafeNetworks: c.UnsafeNetworks(),
Groups: c.Groups(),
NotBefore: time.Unix(c.NotBefore().Unix(), 0),
NotAfter: time.Unix(c.NotAfter().Unix(), 0),
PublicKey: c.PublicKey(),
IsCA: false,
}
c, err := nc.Sign(ca, ca.Curve(), key)
if err != nil {
panic(err)
}
pem, err := c.MarshalPEM()
if err != nil {
panic(err)
}
return c, pem
}
func X25519Keypair() ([]byte, []byte) {
privkey := make([]byte, 32)
if _, err := io.ReadFull(rand.Reader, privkey); err != nil {

View File

@@ -354,6 +354,7 @@ func (cm *connectionManager) makeTrafficDecision(localIndex uint32, now time.Tim
if mainHostInfo {
decision = tryRehandshake
} else {
if cm.shouldSwapPrimary(hostinfo) {
decision = swapPrimary
@@ -460,10 +461,6 @@ func (cm *connectionManager) shouldSwapPrimary(current *HostInfo) bool {
}
crt := cm.intf.pki.getCertState().getCertificate(current.ConnectionState.myCert.Version())
if crt == nil {
//my cert was reloaded away. We should definitely swap from this tunnel
return true
}
// If this tunnel is using the latest certificate then we should swap it to primary for a bit and see if things
// settle down.
return bytes.Equal(current.ConnectionState.myCert.Signature(), crt.Signature())
@@ -478,34 +475,31 @@ func (cm *connectionManager) swapPrimary(current, primary *HostInfo) {
cm.hostMap.Unlock()
}
// isInvalidCertificate decides if we should destroy a tunnel.
// returns true if pki.disconnect_invalid is true and the certificate is no longer valid.
// Blocklisted certificates will skip the pki.disconnect_invalid check and return true.
// isInvalidCertificate will check if we should destroy a tunnel if pki.disconnect_invalid is true and
// the certificate is no longer valid. Block listed certificates will skip the pki.disconnect_invalid
// check and return true.
func (cm *connectionManager) isInvalidCertificate(now time.Time, hostinfo *HostInfo) bool {
remoteCert := hostinfo.GetCert()
if remoteCert == nil {
return false //don't tear down tunnels for handshakes in progress
return false
}
caPool := cm.intf.pki.GetCAPool()
err := caPool.VerifyCachedCertificate(now, remoteCert)
if err == nil {
return false //cert is still valid! yay!
} else if err == cert.ErrBlockListed { //avoiding errors.Is for speed
// Block listed certificates should always be disconnected
hostinfo.logger(cm.l).WithError(err).
WithField("fingerprint", remoteCert.Fingerprint).
Info("Remote certificate is blocked, tearing down the tunnel")
return true
} else if cm.intf.disconnectInvalid.Load() {
hostinfo.logger(cm.l).WithError(err).
WithField("fingerprint", remoteCert.Fingerprint).
Info("Remote certificate is no longer valid, tearing down the tunnel")
return true
} else {
//if we reach here, the cert is no longer valid, but we're configured to keep tunnels from now-invalid certs open
return false
}
if !cm.intf.disconnectInvalid.Load() && err != cert.ErrBlockListed {
// Block listed certificates should always be disconnected
return false
}
hostinfo.logger(cm.l).WithError(err).
WithField("fingerprint", remoteCert.Fingerprint).
Info("Remote certificate is no longer valid, tearing down the tunnel")
return true
}
func (cm *connectionManager) sendPunch(hostinfo *HostInfo) {
@@ -536,45 +530,15 @@ func (cm *connectionManager) sendPunch(hostinfo *HostInfo) {
func (cm *connectionManager) tryRehandshake(hostinfo *HostInfo) {
cs := cm.intf.pki.getCertState()
curCrt := hostinfo.ConnectionState.myCert
curCrtVersion := curCrt.Version()
myCrt := cs.getCertificate(curCrtVersion)
if myCrt == nil {
cm.l.WithField("vpnAddrs", hostinfo.vpnAddrs).
WithField("version", curCrtVersion).
WithField("reason", "local certificate removed").
Info("Re-handshaking with remote")
cm.intf.handshakeManager.StartHandshake(hostinfo.vpnAddrs[0], nil)
myCrt := cs.getCertificate(curCrt.Version())
if curCrt.Version() >= cs.initiatingVersion && bytes.Equal(curCrt.Signature(), myCrt.Signature()) == true {
// The current tunnel is using the latest certificate and version, no need to rehandshake.
return
}
peerCrt := hostinfo.ConnectionState.peerCert
if peerCrt != nil && curCrtVersion < peerCrt.Certificate.Version() {
// if our certificate version is less than theirs, and we have a matching version available, rehandshake?
if cs.getCertificate(peerCrt.Certificate.Version()) != nil {
cm.l.WithField("vpnAddrs", hostinfo.vpnAddrs).
WithField("version", curCrtVersion).
WithField("peerVersion", peerCrt.Certificate.Version()).
WithField("reason", "local certificate version lower than peer, attempting to correct").
Info("Re-handshaking with remote")
cm.intf.handshakeManager.StartHandshake(hostinfo.vpnAddrs[0], func(hh *HandshakeHostInfo) {
hh.initiatingVersionOverride = peerCrt.Certificate.Version()
})
return
}
}
if !bytes.Equal(curCrt.Signature(), myCrt.Signature()) {
cm.l.WithField("vpnAddrs", hostinfo.vpnAddrs).
WithField("reason", "local certificate is not current").
Info("Re-handshaking with remote")
cm.intf.handshakeManager.StartHandshake(hostinfo.vpnAddrs[0], nil)
return
}
if curCrtVersion < cs.initiatingVersion {
cm.l.WithField("vpnAddrs", hostinfo.vpnAddrs).
WithField("reason", "current cert version < pki.initiatingVersion").
Info("Re-handshaking with remote")
cm.l.WithField("vpnAddrs", hostinfo.vpnAddrs).
WithField("reason", "local certificate is not current").
Info("Re-handshaking with remote")
cm.intf.handshakeManager.StartHandshake(hostinfo.vpnAddrs[0], nil)
return
}
cm.intf.handshakeManager.StartHandshake(hostinfo.vpnAddrs[0], nil)
}

View File

@@ -129,109 +129,6 @@ func newSimpleServer(v cert.Version, caCrt cert.Certificate, caKey []byte, name
return control, vpnNetworks, udpAddr, c
}
// newServer creates a nebula instance with fewer assumptions
func newServer(caCrt []cert.Certificate, certs []cert.Certificate, key []byte, overrides m) (*nebula.Control, []netip.Prefix, netip.AddrPort, *config.C) {
l := NewTestLogger()
vpnNetworks := certs[len(certs)-1].Networks()
var udpAddr netip.AddrPort
if vpnNetworks[0].Addr().Is4() {
budpIp := vpnNetworks[0].Addr().As4()
budpIp[1] -= 128
udpAddr = netip.AddrPortFrom(netip.AddrFrom4(budpIp), 4242)
} else {
budpIp := vpnNetworks[0].Addr().As16()
// beef for funsies
budpIp[2] = 190
budpIp[3] = 239
udpAddr = netip.AddrPortFrom(netip.AddrFrom16(budpIp), 4242)
}
caStr := ""
for _, ca := range caCrt {
x, err := ca.MarshalPEM()
if err != nil {
panic(err)
}
caStr += string(x)
}
certStr := ""
for _, c := range certs {
x, err := c.MarshalPEM()
if err != nil {
panic(err)
}
certStr += string(x)
}
mc := m{
"pki": m{
"ca": caStr,
"cert": certStr,
"key": string(key),
},
//"tun": m{"disabled": true},
"firewall": m{
"outbound": []m{{
"proto": "any",
"port": "any",
"host": "any",
}},
"inbound": []m{{
"proto": "any",
"port": "any",
"host": "any",
}},
},
//"handshakes": m{
// "try_interval": "1s",
//},
"listen": m{
"host": udpAddr.Addr().String(),
"port": udpAddr.Port(),
},
"logging": m{
"timestamp_format": fmt.Sprintf("%v 15:04:05.000000", certs[0].Name()),
"level": l.Level.String(),
},
"timers": m{
"pending_deletion_interval": 2,
"connection_alive_interval": 2,
},
}
if overrides != nil {
final := m{}
err := mergo.Merge(&final, overrides, mergo.WithAppendSlice)
if err != nil {
panic(err)
}
err = mergo.Merge(&final, mc, mergo.WithAppendSlice)
if err != nil {
panic(err)
}
mc = final
}
cb, err := yaml.Marshal(mc)
if err != nil {
panic(err)
}
c := config.NewC(l)
cStr := string(cb)
c.LoadString(cStr)
control, err := nebula.Main(c, false, "e2e-test", l, nil)
if err != nil {
panic(err)
}
return control, vpnNetworks, udpAddr, c
}
type doneCb func()
func deadline(t *testing.T, seconds time.Duration) doneCb {

View File

@@ -4,16 +4,12 @@
package e2e
import (
"fmt"
"net/netip"
"testing"
"time"
"github.com/slackhq/nebula/cert"
"github.com/slackhq/nebula/cert_test"
"github.com/slackhq/nebula/e2e/router"
"github.com/stretchr/testify/assert"
"gopkg.in/yaml.v3"
)
func TestDropInactiveTunnels(t *testing.T) {
@@ -59,262 +55,3 @@ func TestDropInactiveTunnels(t *testing.T) {
myControl.Stop()
theirControl.Stop()
}
func TestCertUpgrade(t *testing.T) {
// The goal of this test is to ensure the shortest inactivity timeout will close the tunnel on both sides
// under ideal conditions
ca, _, caKey, _ := cert_test.NewTestCaCert(cert.Version1, cert.Curve_CURVE25519, time.Now(), time.Now().Add(10*time.Minute), nil, nil, []string{})
caB, err := ca.MarshalPEM()
if err != nil {
panic(err)
}
ca2, _, caKey2, _ := cert_test.NewTestCaCert(cert.Version2, cert.Curve_CURVE25519, time.Now(), time.Now().Add(10*time.Minute), nil, nil, []string{})
ca2B, err := ca2.MarshalPEM()
if err != nil {
panic(err)
}
caStr := fmt.Sprintf("%s\n%s", caB, ca2B)
myCert, _, myPrivKey, _ := cert_test.NewTestCert(cert.Version1, cert.Curve_CURVE25519, ca, caKey, "me", time.Now(), time.Now().Add(5*time.Minute), []netip.Prefix{netip.MustParsePrefix("10.128.0.1/24")}, nil, []string{})
_, myCert2Pem := cert_test.NewTestCertDifferentVersion(myCert, cert.Version2, ca2, caKey2)
theirCert, _, theirPrivKey, _ := cert_test.NewTestCert(cert.Version1, cert.Curve_CURVE25519, ca, caKey, "them", time.Now(), time.Now().Add(5*time.Minute), []netip.Prefix{netip.MustParsePrefix("10.128.0.2/24")}, nil, []string{})
theirCert2, _ := cert_test.NewTestCertDifferentVersion(theirCert, cert.Version2, ca2, caKey2)
myControl, myVpnIpNet, myUdpAddr, myC := newServer([]cert.Certificate{ca, ca2}, []cert.Certificate{myCert}, myPrivKey, m{})
theirControl, theirVpnIpNet, theirUdpAddr, _ := newServer([]cert.Certificate{ca, ca2}, []cert.Certificate{theirCert, theirCert2}, theirPrivKey, m{})
// Share our underlay information
myControl.InjectLightHouseAddr(theirVpnIpNet[0].Addr(), theirUdpAddr)
theirControl.InjectLightHouseAddr(myVpnIpNet[0].Addr(), myUdpAddr)
// Start the servers
myControl.Start()
theirControl.Start()
r := router.NewR(t, myControl, theirControl)
defer r.RenderFlow()
r.Log("Assert the tunnel between me and them works")
assertTunnel(t, myVpnIpNet[0].Addr(), theirVpnIpNet[0].Addr(), myControl, theirControl, r)
r.Log("yay")
//todo ???
time.Sleep(1 * time.Second)
r.FlushAll()
mc := m{
"pki": m{
"ca": caStr,
"cert": string(myCert2Pem),
"key": string(myPrivKey),
},
//"tun": m{"disabled": true},
"firewall": myC.Settings["firewall"],
//"handshakes": m{
// "try_interval": "1s",
//},
"listen": myC.Settings["listen"],
"logging": myC.Settings["logging"],
"timers": myC.Settings["timers"],
}
cb, err := yaml.Marshal(mc)
if err != nil {
panic(err)
}
r.Logf("reload new v2-only config")
err = myC.ReloadConfigString(string(cb))
assert.NoError(t, err)
r.Log("yay, spin until their sees it")
waitStart := time.Now()
for {
assertTunnel(t, myVpnIpNet[0].Addr(), theirVpnIpNet[0].Addr(), myControl, theirControl, r)
c := theirControl.GetHostInfoByVpnAddr(myVpnIpNet[0].Addr(), false)
if c == nil {
r.Log("nil")
} else {
version := c.Cert.Version()
r.Logf("version %d", version)
if version == cert.Version2 {
break
}
}
since := time.Since(waitStart)
if since > time.Second*10 {
t.Fatal("Cert should be new by now")
}
time.Sleep(time.Second)
}
r.RenderHostmaps("Final hostmaps", myControl, theirControl)
myControl.Stop()
theirControl.Stop()
}
func TestCertDowngrade(t *testing.T) {
// The goal of this test is to ensure the shortest inactivity timeout will close the tunnel on both sides
// under ideal conditions
ca, _, caKey, _ := cert_test.NewTestCaCert(cert.Version1, cert.Curve_CURVE25519, time.Now(), time.Now().Add(10*time.Minute), nil, nil, []string{})
caB, err := ca.MarshalPEM()
if err != nil {
panic(err)
}
ca2, _, caKey2, _ := cert_test.NewTestCaCert(cert.Version2, cert.Curve_CURVE25519, time.Now(), time.Now().Add(10*time.Minute), nil, nil, []string{})
ca2B, err := ca2.MarshalPEM()
if err != nil {
panic(err)
}
caStr := fmt.Sprintf("%s\n%s", caB, ca2B)
myCert, _, myPrivKey, myCertPem := cert_test.NewTestCert(cert.Version1, cert.Curve_CURVE25519, ca, caKey, "me", time.Now(), time.Now().Add(5*time.Minute), []netip.Prefix{netip.MustParsePrefix("10.128.0.1/24")}, nil, []string{})
myCert2, _ := cert_test.NewTestCertDifferentVersion(myCert, cert.Version2, ca2, caKey2)
theirCert, _, theirPrivKey, _ := cert_test.NewTestCert(cert.Version1, cert.Curve_CURVE25519, ca, caKey, "them", time.Now(), time.Now().Add(5*time.Minute), []netip.Prefix{netip.MustParsePrefix("10.128.0.2/24")}, nil, []string{})
theirCert2, _ := cert_test.NewTestCertDifferentVersion(theirCert, cert.Version2, ca2, caKey2)
myControl, myVpnIpNet, myUdpAddr, myC := newServer([]cert.Certificate{ca, ca2}, []cert.Certificate{myCert2}, myPrivKey, m{})
theirControl, theirVpnIpNet, theirUdpAddr, _ := newServer([]cert.Certificate{ca, ca2}, []cert.Certificate{theirCert, theirCert2}, theirPrivKey, m{})
// Share our underlay information
myControl.InjectLightHouseAddr(theirVpnIpNet[0].Addr(), theirUdpAddr)
theirControl.InjectLightHouseAddr(myVpnIpNet[0].Addr(), myUdpAddr)
// Start the servers
myControl.Start()
theirControl.Start()
r := router.NewR(t, myControl, theirControl)
defer r.RenderFlow()
r.Log("Assert the tunnel between me and them works")
//assertTunnel(t, theirVpnIpNet[0].Addr(), myVpnIpNet[0].Addr(), theirControl, myControl, r)
//r.Log("yay")
assertTunnel(t, myVpnIpNet[0].Addr(), theirVpnIpNet[0].Addr(), myControl, theirControl, r)
r.Log("yay")
//todo ???
time.Sleep(1 * time.Second)
r.FlushAll()
mc := m{
"pki": m{
"ca": caStr,
"cert": string(myCertPem),
"key": string(myPrivKey),
},
"firewall": myC.Settings["firewall"],
"listen": myC.Settings["listen"],
"logging": myC.Settings["logging"],
"timers": myC.Settings["timers"],
}
cb, err := yaml.Marshal(mc)
if err != nil {
panic(err)
}
r.Logf("reload new v1-only config")
err = myC.ReloadConfigString(string(cb))
assert.NoError(t, err)
r.Log("yay, spin until their sees it")
waitStart := time.Now()
for {
assertTunnel(t, myVpnIpNet[0].Addr(), theirVpnIpNet[0].Addr(), myControl, theirControl, r)
c := theirControl.GetHostInfoByVpnAddr(myVpnIpNet[0].Addr(), false)
c2 := myControl.GetHostInfoByVpnAddr(theirVpnIpNet[0].Addr(), false)
if c == nil || c2 == nil {
r.Log("nil")
} else {
version := c.Cert.Version()
theirVersion := c2.Cert.Version()
r.Logf("version %d,%d", version, theirVersion)
if version == cert.Version1 {
break
}
}
since := time.Since(waitStart)
if since > time.Second*5 {
r.Log("it is unusual that the cert is not new yet, but not a failure yet")
}
if since > time.Second*10 {
r.Log("wtf")
t.Fatal("Cert should be new by now")
}
time.Sleep(time.Second)
}
r.RenderHostmaps("Final hostmaps", myControl, theirControl)
myControl.Stop()
theirControl.Stop()
}
func TestCertMismatchCorrection(t *testing.T) {
// The goal of this test is to ensure the shortest inactivity timeout will close the tunnel on both sides
// under ideal conditions
ca, _, caKey, _ := cert_test.NewTestCaCert(cert.Version1, cert.Curve_CURVE25519, time.Now(), time.Now().Add(10*time.Minute), nil, nil, []string{})
ca2, _, caKey2, _ := cert_test.NewTestCaCert(cert.Version2, cert.Curve_CURVE25519, time.Now(), time.Now().Add(10*time.Minute), nil, nil, []string{})
myCert, _, myPrivKey, _ := cert_test.NewTestCert(cert.Version1, cert.Curve_CURVE25519, ca, caKey, "me", time.Now(), time.Now().Add(5*time.Minute), []netip.Prefix{netip.MustParsePrefix("10.128.0.1/24")}, nil, []string{})
myCert2, _ := cert_test.NewTestCertDifferentVersion(myCert, cert.Version2, ca2, caKey2)
theirCert, _, theirPrivKey, _ := cert_test.NewTestCert(cert.Version1, cert.Curve_CURVE25519, ca, caKey, "them", time.Now(), time.Now().Add(5*time.Minute), []netip.Prefix{netip.MustParsePrefix("10.128.0.2/24")}, nil, []string{})
theirCert2, _ := cert_test.NewTestCertDifferentVersion(theirCert, cert.Version2, ca2, caKey2)
myControl, myVpnIpNet, myUdpAddr, _ := newServer([]cert.Certificate{ca, ca2}, []cert.Certificate{myCert2}, myPrivKey, m{})
theirControl, theirVpnIpNet, theirUdpAddr, _ := newServer([]cert.Certificate{ca, ca2}, []cert.Certificate{theirCert, theirCert2}, theirPrivKey, m{})
// Share our underlay information
myControl.InjectLightHouseAddr(theirVpnIpNet[0].Addr(), theirUdpAddr)
theirControl.InjectLightHouseAddr(myVpnIpNet[0].Addr(), myUdpAddr)
// Start the servers
myControl.Start()
theirControl.Start()
r := router.NewR(t, myControl, theirControl)
defer r.RenderFlow()
r.Log("Assert the tunnel between me and them works")
//assertTunnel(t, theirVpnIpNet[0].Addr(), myVpnIpNet[0].Addr(), theirControl, myControl, r)
//r.Log("yay")
assertTunnel(t, myVpnIpNet[0].Addr(), theirVpnIpNet[0].Addr(), myControl, theirControl, r)
r.Log("yay")
//todo ???
time.Sleep(1 * time.Second)
r.FlushAll()
waitStart := time.Now()
for {
assertTunnel(t, myVpnIpNet[0].Addr(), theirVpnIpNet[0].Addr(), myControl, theirControl, r)
c := theirControl.GetHostInfoByVpnAddr(myVpnIpNet[0].Addr(), false)
c2 := myControl.GetHostInfoByVpnAddr(theirVpnIpNet[0].Addr(), false)
if c == nil || c2 == nil {
r.Log("nil")
} else {
version := c.Cert.Version()
theirVersion := c2.Cert.Version()
r.Logf("version %d,%d", version, theirVersion)
if version == theirVersion {
break
}
}
since := time.Since(waitStart)
if since > time.Second*5 {
r.Log("wtf")
}
if since > time.Second*10 {
r.Log("wtf")
t.Fatal("Cert should be new by now")
}
time.Sleep(time.Second)
}
r.RenderHostmaps("Final hostmaps", myControl, theirControl)
myControl.Stop()
theirControl.Stop()
}

View File

@@ -423,7 +423,7 @@ var ErrNoMatchingRule = errors.New("no matching rule in firewall table")
// Drop returns an error if the packet should be dropped, explaining why. It
// returns nil if the packet should not be dropped.
func (f *Firewall) Drop(fp firewall.Packet, incoming bool, h *HostInfo, caPool *cert.CAPool, localCache *firewall.ConntrackCache) error {
func (f *Firewall) Drop(fp firewall.Packet, incoming bool, h *HostInfo, caPool *cert.CAPool, localCache firewall.ConntrackCache) error {
// Check if we spoke to this tuple, if we did then allow this packet
if f.inConns(fp, h, caPool, localCache) {
return nil
@@ -490,9 +490,11 @@ func (f *Firewall) EmitStats() {
metrics.GetOrRegisterGauge("firewall.rules.hash", nil).Update(int64(f.GetRuleHashFNV()))
}
func (f *Firewall) inConns(fp firewall.Packet, h *HostInfo, caPool *cert.CAPool, localCache *firewall.ConntrackCache) bool {
if localCache != nil && localCache.Has(fp) {
return true
func (f *Firewall) inConns(fp firewall.Packet, h *HostInfo, caPool *cert.CAPool, localCache firewall.ConntrackCache) bool {
if localCache != nil {
if _, ok := localCache[fp]; ok {
return true
}
}
conntrack := f.Conntrack
conntrack.Lock()
@@ -557,7 +559,7 @@ func (f *Firewall) inConns(fp firewall.Packet, h *HostInfo, caPool *cert.CAPool,
conntrack.Unlock()
if localCache != nil {
localCache.Add(fp)
localCache[fp] = struct{}{}
}
return true

View File

@@ -1,7 +1,6 @@
package firewall
import (
"sync"
"sync/atomic"
"time"
@@ -10,58 +9,13 @@ import (
// ConntrackCache is used as a local routine cache to know if a given flow
// has been seen in the conntrack table.
type ConntrackCache struct {
mu sync.Mutex
entries map[Packet]struct{}
}
func newConntrackCache() *ConntrackCache {
return &ConntrackCache{entries: make(map[Packet]struct{})}
}
func (c *ConntrackCache) Has(p Packet) bool {
if c == nil {
return false
}
c.mu.Lock()
_, ok := c.entries[p]
c.mu.Unlock()
return ok
}
func (c *ConntrackCache) Add(p Packet) {
if c == nil {
return
}
c.mu.Lock()
c.entries[p] = struct{}{}
c.mu.Unlock()
}
func (c *ConntrackCache) Len() int {
if c == nil {
return 0
}
c.mu.Lock()
l := len(c.entries)
c.mu.Unlock()
return l
}
func (c *ConntrackCache) Reset(capHint int) {
if c == nil {
return
}
c.mu.Lock()
c.entries = make(map[Packet]struct{}, capHint)
c.mu.Unlock()
}
type ConntrackCache map[Packet]struct{}
type ConntrackCacheTicker struct {
cacheV uint64
cacheTick atomic.Uint64
cache *ConntrackCache
cache ConntrackCache
}
func NewConntrackCacheTicker(d time.Duration) *ConntrackCacheTicker {
@@ -69,7 +23,9 @@ func NewConntrackCacheTicker(d time.Duration) *ConntrackCacheTicker {
return nil
}
c := &ConntrackCacheTicker{cache: newConntrackCache()}
c := &ConntrackCacheTicker{
cache: ConntrackCache{},
}
go c.tick(d)
@@ -85,17 +41,17 @@ func (c *ConntrackCacheTicker) tick(d time.Duration) {
// Get checks if the cache ticker has moved to the next version before returning
// the map. If it has moved, we reset the map.
func (c *ConntrackCacheTicker) Get(l *logrus.Logger) *ConntrackCache {
func (c *ConntrackCacheTicker) Get(l *logrus.Logger) ConntrackCache {
if c == nil {
return nil
}
if tick := c.cacheTick.Load(); tick != c.cacheV {
c.cacheV = tick
if ll := c.cache.Len(); ll > 0 {
if ll := len(c.cache); ll > 0 {
if l.Level == logrus.DebugLevel {
l.WithField("len", ll).Debug("resetting conntrack cache")
}
c.cache.Reset(ll)
c.cache = make(ConntrackCache, ll)
}
}

View File

@@ -23,17 +23,13 @@ func ixHandshakeStage0(f *Interface, hh *HandshakeHostInfo) bool {
return false
}
// If we're connecting to a v6 address we must use a v2 cert
cs := f.pki.getCertState()
v := cs.initiatingVersion
if hh.initiatingVersionOverride != cert.VersionPre1 {
v = hh.initiatingVersionOverride
} else if v < cert.Version2 {
// If we're connecting to a v6 address we should encourage use of a V2 cert
for _, a := range hh.hostinfo.vpnAddrs {
if a.Is6() {
v = cert.Version2
break
}
for _, a := range hh.hostinfo.vpnAddrs {
if a.Is6() {
v = cert.Version2
break
}
}
@@ -52,7 +48,6 @@ func ixHandshakeStage0(f *Interface, hh *HandshakeHostInfo) bool {
WithField("handshake", m{"stage": 0, "style": "ix_psk0"}).
WithField("certVersion", v).
Error("Unable to handshake with host because no certificate handshake bytes is available")
return false
}
ci, err := NewConnectionState(f.l, cs, crt, true, noise.HandshakeIX)
@@ -108,7 +103,6 @@ func ixHandshakeStage1(f *Interface, addr netip.AddrPort, via *ViaSender, packet
WithField("handshake", m{"stage": 0, "style": "ix_psk0"}).
WithField("certVersion", cs.initiatingVersion).
Error("Unable to handshake with host because no certificate is available")
return
}
ci, err := NewConnectionState(f.l, cs, crt, false, noise.HandshakeIX)
@@ -149,8 +143,8 @@ func ixHandshakeStage1(f *Interface, addr netip.AddrPort, via *ViaSender, packet
remoteCert, err := f.pki.GetCAPool().VerifyCertificate(time.Now(), rc)
if err != nil {
fp, fperr := rc.Fingerprint()
if fperr != nil {
fp, err := rc.Fingerprint()
if err != nil {
fp = "<error generating certificate fingerprint>"
}
@@ -169,19 +163,16 @@ func ixHandshakeStage1(f *Interface, addr netip.AddrPort, via *ViaSender, packet
if remoteCert.Certificate.Version() != ci.myCert.Version() {
// We started off using the wrong certificate version, lets see if we can match the version that was sent to us
myCertOtherVersion := cs.getCertificate(remoteCert.Certificate.Version())
if myCertOtherVersion == nil {
if f.l.Level >= logrus.DebugLevel {
f.l.WithError(err).WithFields(m{
"udpAddr": addr,
"handshake": m{"stage": 1, "style": "ix_psk0"},
"cert": remoteCert,
}).Debug("Might be unable to handshake with host due to missing certificate version")
}
} else {
// Record the certificate we are actually using
ci.myCert = myCertOtherVersion
rc := cs.getCertificate(remoteCert.Certificate.Version())
if rc == nil {
f.l.WithError(err).WithField("udpAddr", addr).
WithField("handshake", m{"stage": 1, "style": "ix_psk0"}).WithField("cert", remoteCert).
Info("Unable to handshake with host due to missing certificate version")
return
}
// Record the certificate we are actually using
ci.myCert = rc
}
if len(remoteCert.Certificate.Networks()) == 0 {

View File

@@ -68,12 +68,11 @@ type HandshakeManager struct {
type HandshakeHostInfo struct {
sync.Mutex
startTime time.Time // Time that we first started trying with this handshake
ready bool // Is the handshake ready
initiatingVersionOverride cert.Version // Should we use a non-default cert version for this handshake?
counter int64 // How many attempts have we made so far
lastRemotes []netip.AddrPort // Remotes that we sent to during the previous attempt
packetStore []*cachedPacket // A set of packets to be transmitted once the handshake completes
startTime time.Time // Time that we first started trying with this handshake
ready bool // Is the handshake ready
counter int64 // How many attempts have we made so far
lastRemotes []netip.AddrPort // Remotes that we sent to during the previous attempt
packetStore []*cachedPacket // A set of packets to be transmitted once the handshake completes
hostinfo *HostInfo
}

108
inside.go
View File

@@ -2,18 +2,16 @@ package nebula
import (
"net/netip"
"unsafe"
"github.com/sirupsen/logrus"
"github.com/slackhq/nebula/firewall"
"github.com/slackhq/nebula/header"
"github.com/slackhq/nebula/iputil"
"github.com/slackhq/nebula/noiseutil"
"github.com/slackhq/nebula/overlay"
"github.com/slackhq/nebula/routing"
)
func (f *Interface) consumeInsidePacket(packet []byte, fwPacket *firewall.Packet, nb, out []byte, q int, localCache *firewall.ConntrackCache) {
func (f *Interface) consumeInsidePacket(packet []byte, fwPacket *firewall.Packet, nb, out []byte, q int, localCache firewall.ConntrackCache) {
err := newPacket(packet, false, fwPacket)
if err != nil {
if f.l.Level >= logrus.DebugLevel {
@@ -337,21 +335,9 @@ func (f *Interface) sendNoMetrics(t header.MessageType, st header.MessageSubType
if ci.eKey == nil {
return
}
target := remote
if !target.IsValid() {
target = hostinfo.remote
}
useRelay := !target.IsValid()
useRelay := !remote.IsValid() && !hostinfo.remote.IsValid()
fullOut := out
var pkt *overlay.Packet
if !useRelay && f.batches.Enabled() {
pkt = f.batches.newPacket()
if pkt != nil {
out = pkt.Payload()[:0]
}
}
if useRelay {
if len(out) < header.Len {
// out always has a capacity of mtu, but not always a length greater than the header.Len.
@@ -385,85 +371,41 @@ func (f *Interface) sendNoMetrics(t header.MessageType, st header.MessageSubType
}
var err error
if len(p) > 0 && slicesOverlap(out, p) {
tmp := make([]byte, len(p))
copy(tmp, p)
p = tmp
}
out, err = ci.eKey.EncryptDanger(out, out, p, c, nb)
if noiseutil.EncryptLockNeeded {
ci.writeLock.Unlock()
}
if err != nil {
if pkt != nil {
pkt.Release()
}
hostinfo.logger(f.l).WithError(err).
WithField("udpAddr", target).WithField("counter", c).
WithField("udpAddr", remote).WithField("counter", c).
WithField("attemptedCounter", c).
Error("Failed to encrypt outgoing packet")
return
}
if target.IsValid() {
if pkt != nil {
pkt.Len = len(out)
if f.l.Level >= logrus.DebugLevel {
f.l.WithFields(logrus.Fields{
"queue": q,
"dest": target,
"payload_len": pkt.Len,
"use_batches": true,
"remote_index": hostinfo.remoteIndexId,
}).Debug("enqueueing packet to UDP batch queue")
}
if f.tryQueuePacket(q, pkt, target) {
return
}
if f.l.Level >= logrus.DebugLevel {
f.l.WithFields(logrus.Fields{
"queue": q,
"dest": target,
}).Debug("failed to enqueue packet; falling back to immediate send")
}
f.writeImmediatePacket(q, pkt, target, hostinfo)
return
}
if f.tryQueueDatagram(q, out, target) {
return
}
f.writeImmediate(q, out, target, hostinfo)
return
}
// fall back to relay path
if pkt != nil {
pkt.Release()
}
// Try to send via a relay
for _, relayIP := range hostinfo.relayState.CopyRelayIps() {
relayHostInfo, relay, err := f.hostMap.QueryVpnAddrsRelayFor(hostinfo.vpnAddrs, relayIP)
if remote.IsValid() {
err = f.writers[q].WriteTo(out, remote)
if err != nil {
hostinfo.relayState.DeleteRelay(relayIP)
hostinfo.logger(f.l).WithField("relay", relayIP).WithError(err).Info("sendNoMetrics failed to find HostInfo")
continue
hostinfo.logger(f.l).WithError(err).
WithField("udpAddr", remote).Error("Failed to write outgoing packet")
}
} else if hostinfo.remote.IsValid() {
err = f.writers[q].WriteTo(out, hostinfo.remote)
if err != nil {
hostinfo.logger(f.l).WithError(err).
WithField("udpAddr", remote).Error("Failed to write outgoing packet")
}
} else {
// Try to send via a relay
for _, relayIP := range hostinfo.relayState.CopyRelayIps() {
relayHostInfo, relay, err := f.hostMap.QueryVpnAddrsRelayFor(hostinfo.vpnAddrs, relayIP)
if err != nil {
hostinfo.relayState.DeleteRelay(relayIP)
hostinfo.logger(f.l).WithField("relay", relayIP).WithError(err).Info("sendNoMetrics failed to find HostInfo")
continue
}
f.SendVia(relayHostInfo, relay, out, nb, fullOut[:header.Len+len(out)], true)
break
}
f.SendVia(relayHostInfo, relay, out, nb, fullOut[:header.Len+len(out)], true)
break
}
}
// slicesOverlap reports whether the two byte slices share any portion of memory.
// cipher.AEAD.Seal requires plaintext and dst to live in disjoint regions.
func slicesOverlap(a, b []byte) bool {
if len(a) == 0 || len(b) == 0 {
return false
}
aStart := uintptr(unsafe.Pointer(&a[0]))
aEnd := aStart + uintptr(len(a))
bStart := uintptr(unsafe.Pointer(&b[0]))
bEnd := bStart + uintptr(len(b))
return aStart < bEnd && bStart < aEnd
}

View File

@@ -8,7 +8,6 @@ import (
"net/netip"
"os"
"runtime"
"strings"
"sync/atomic"
"time"
@@ -22,13 +21,7 @@ import (
"github.com/slackhq/nebula/udp"
)
const (
mtu = 9001
defaultGSOFlushInterval = 150 * time.Microsecond
defaultBatchQueueDepthFactor = 4
defaultGSOMaxSegments = 8
maxKernelGSOSegments = 64
)
const mtu = 9001
type InterfaceConfig struct {
HostMap *HostMap
@@ -43,9 +36,6 @@ type InterfaceConfig struct {
connectionManager *connectionManager
DropLocalBroadcast bool
DropMulticast bool
EnableGSO bool
EnableGRO bool
GSOMaxSegments int
routines int
MessageMetrics *MessageMetrics
version string
@@ -57,8 +47,6 @@ type InterfaceConfig struct {
reQueryWait time.Duration
ConntrackCacheTimeout time.Duration
BatchFlushInterval time.Duration
BatchQueueDepth int
l *logrus.Logger
}
@@ -96,20 +84,9 @@ type Interface struct {
version string
conntrackCacheTimeout time.Duration
batchQueueDepth int
enableGSO bool
enableGRO bool
gsoMaxSegments int
batchUDPQueueGauge metrics.Gauge
batchUDPFlushCounter metrics.Counter
batchTunQueueGauge metrics.Gauge
batchTunFlushCounter metrics.Counter
batchFlushInterval atomic.Int64
sendSem chan struct{}
writers []udp.Conn
readers []io.ReadWriteCloser
batches batchPipelines
metricHandshakes metrics.Histogram
messageMetrics *MessageMetrics
@@ -184,22 +161,6 @@ func NewInterface(ctx context.Context, c *InterfaceConfig) (*Interface, error) {
return nil, errors.New("no connection manager")
}
if c.GSOMaxSegments <= 0 {
c.GSOMaxSegments = defaultGSOMaxSegments
}
if c.GSOMaxSegments > maxKernelGSOSegments {
c.GSOMaxSegments = maxKernelGSOSegments
}
if c.BatchQueueDepth <= 0 {
c.BatchQueueDepth = c.routines * defaultBatchQueueDepthFactor
}
if c.BatchFlushInterval < 0 {
c.BatchFlushInterval = 0
}
if c.BatchFlushInterval == 0 && c.EnableGSO {
c.BatchFlushInterval = defaultGSOFlushInterval
}
cs := c.pki.getCertState()
ifce := &Interface{
pki: c.pki,
@@ -225,10 +186,6 @@ func NewInterface(ctx context.Context, c *InterfaceConfig) (*Interface, error) {
relayManager: c.relayManager,
connectionManager: c.connectionManager,
conntrackCacheTimeout: c.ConntrackCacheTimeout,
batchQueueDepth: c.BatchQueueDepth,
enableGSO: c.EnableGSO,
enableGRO: c.EnableGRO,
gsoMaxSegments: c.GSOMaxSegments,
metricHandshakes: metrics.GetOrRegisterHistogram("handshakes", nil, metrics.NewExpDecaySample(1028, 0.015)),
messageMetrics: c.MessageMetrics,
@@ -241,25 +198,8 @@ func NewInterface(ctx context.Context, c *InterfaceConfig) (*Interface, error) {
}
ifce.tryPromoteEvery.Store(c.tryPromoteEvery)
ifce.batchUDPQueueGauge = metrics.GetOrRegisterGauge("batch.udp.queue_depth", nil)
ifce.batchUDPFlushCounter = metrics.GetOrRegisterCounter("batch.udp.flushes", nil)
ifce.batchTunQueueGauge = metrics.GetOrRegisterGauge("batch.tun.queue_depth", nil)
ifce.batchTunFlushCounter = metrics.GetOrRegisterCounter("batch.tun.flushes", nil)
ifce.batchFlushInterval.Store(int64(c.BatchFlushInterval))
ifce.sendSem = make(chan struct{}, c.routines)
ifce.batches.init(c.Inside, c.routines, c.BatchQueueDepth, c.GSOMaxSegments)
ifce.reQueryEvery.Store(c.reQueryEvery)
ifce.reQueryWait.Store(int64(c.reQueryWait))
if c.l.Level >= logrus.DebugLevel {
c.l.WithFields(logrus.Fields{
"enableGSO": c.EnableGSO,
"enableGRO": c.EnableGRO,
"gsoMaxSegments": c.GSOMaxSegments,
"batchQueueDepth": c.BatchQueueDepth,
"batchFlush": c.BatchFlushInterval,
"batching": ifce.batches.Enabled(),
}).Debug("initialized batch pipelines")
}
ifce.connectionManager.intf = ifce
@@ -308,18 +248,6 @@ func (f *Interface) run() {
go f.listenOut(i)
}
if f.l.Level >= logrus.DebugLevel {
f.l.WithField("batching", f.batches.Enabled()).Debug("starting interface run loops")
}
if f.batches.Enabled() {
for i := 0; i < f.routines; i++ {
go f.runInsideBatchWorker(i)
go f.runTunWriteQueue(i)
go f.runSendQueue(i)
}
}
// Launch n queues to read packets from tun dev
for i := 0; i < f.routines; i++ {
go f.listenIn(f.readers[i], i)
@@ -343,7 +271,10 @@ func (f *Interface) listenOut(i int) {
fwPacket := &firewall.Packet{}
nb := make([]byte, 12, 12)
li.ListenOut(func(fromUdpAddr netip.AddrPort, payload []byte) {
li.ListenOut(func(fromUdpAddr netip.AddrPort, payload []byte, release func()) {
if release != nil {
defer release()
}
f.readOutsidePackets(fromUdpAddr, nil, plaintext[:0], payload, h, fwPacket, lhh, nb, i, ctCache.Get(f.l))
})
}
@@ -351,17 +282,6 @@ func (f *Interface) listenOut(i int) {
func (f *Interface) listenIn(reader io.ReadWriteCloser, i int) {
runtime.LockOSThread()
if f.batches.Enabled() {
if br, ok := reader.(overlay.BatchReader); ok {
f.listenInBatchLocked(reader, br, i)
return
}
}
f.listenInLegacyLocked(reader, i)
}
func (f *Interface) listenInLegacyLocked(reader io.ReadWriteCloser, i int) {
packet := make([]byte, mtu)
out := make([]byte, mtu)
fwPacket := &firewall.Packet{}
@@ -385,581 +305,6 @@ func (f *Interface) listenInLegacyLocked(reader io.ReadWriteCloser, i int) {
}
}
func (f *Interface) listenInBatchLocked(raw io.ReadWriteCloser, reader overlay.BatchReader, i int) {
pool := f.batches.Pool()
if pool == nil {
f.l.Warn("batch pipeline enabled without an allocated pool; falling back to single-packet reads")
f.listenInLegacyLocked(raw, i)
return
}
for {
packets, err := reader.ReadIntoBatch(pool)
if err != nil {
if errors.Is(err, os.ErrClosed) && f.closed.Load() {
return
}
if isVirtioHeadroomError(err) {
f.l.WithError(err).Warn("Batch reader fell back due to tun headroom issue")
f.listenInLegacyLocked(raw, i)
return
}
f.l.WithError(err).Error("Error while reading outbound packet batch")
os.Exit(2)
}
if len(packets) == 0 {
continue
}
for _, pkt := range packets {
if pkt == nil {
continue
}
if !f.batches.enqueueRx(i, pkt) {
pkt.Release()
}
}
}
}
func (f *Interface) runInsideBatchWorker(i int) {
queue := f.batches.rxQueue(i)
if queue == nil {
return
}
out := make([]byte, mtu)
fwPacket := &firewall.Packet{}
nb := make([]byte, 12, 12)
conntrackCache := firewall.NewConntrackCacheTicker(f.conntrackCacheTimeout)
for pkt := range queue {
if pkt == nil {
continue
}
f.consumeInsidePacket(pkt.Payload(), fwPacket, nb, out, i, conntrackCache.Get(f.l))
pkt.Release()
}
}
func (f *Interface) runSendQueue(i int) {
queue := f.batches.txQueue(i)
if queue == nil {
if f.l.Level >= logrus.DebugLevel {
f.l.WithField("queue", i).Debug("tx queue not initialized; batching disabled for writer")
}
return
}
writer := f.writerForIndex(i)
if writer == nil {
if f.l.Level >= logrus.DebugLevel {
f.l.WithField("queue", i).Debug("no UDP writer for batch queue")
}
return
}
if f.l.Level >= logrus.DebugLevel {
f.l.WithField("queue", i).Debug("send queue worker started")
}
defer func() {
if f.l.Level >= logrus.WarnLevel {
f.l.WithField("queue", i).Warn("send queue worker exited")
}
}()
batchCap := f.batches.batchSizeHint()
if batchCap <= 0 {
batchCap = 1
}
gsoLimit := f.effectiveGSOMaxSegments()
if gsoLimit > batchCap {
batchCap = gsoLimit
}
pending := make([]queuedDatagram, 0, batchCap)
var (
flushTimer *time.Timer
flushC <-chan time.Time
)
dispatch := func(reason string, timerFired bool) {
if len(pending) == 0 {
return
}
batch := pending
f.flushAndReleaseBatch(i, writer, batch, reason)
for idx := range batch {
batch[idx] = queuedDatagram{}
}
pending = pending[:0]
if flushTimer != nil {
if !timerFired {
if !flushTimer.Stop() {
select {
case <-flushTimer.C:
default:
}
}
}
flushTimer = nil
flushC = nil
}
}
armTimer := func() {
delay := f.currentBatchFlushInterval()
if delay <= 0 {
dispatch("nogso", false)
return
}
if flushTimer == nil {
flushTimer = time.NewTimer(delay)
flushC = flushTimer.C
}
}
for {
select {
case d := <-queue:
if d.packet == nil {
continue
}
if f.l.Level >= logrus.DebugLevel {
f.l.WithFields(logrus.Fields{
"queue": i,
"payload_len": d.packet.Len,
"dest": d.addr,
}).Debug("send queue received packet")
}
pending = append(pending, d)
if gsoLimit > 0 && len(pending) >= gsoLimit {
dispatch("gso", false)
continue
}
if len(pending) >= cap(pending) {
dispatch("cap", false)
continue
}
armTimer()
f.observeUDPQueueLen(i)
case <-flushC:
dispatch("timer", true)
}
}
}
func (f *Interface) runTunWriteQueue(i int) {
queue := f.batches.tunQueue(i)
if queue == nil {
return
}
writer := f.batches.inside
if writer == nil {
return
}
requiredHeadroom := writer.BatchHeadroom()
batchCap := f.batches.batchSizeHint()
if batchCap <= 0 {
batchCap = 1
}
pending := make([]*overlay.Packet, 0, batchCap)
var (
flushTimer *time.Timer
flushC <-chan time.Time
)
flush := func(reason string, timerFired bool) {
if len(pending) == 0 {
return
}
valid := pending[:0]
for idx := range pending {
if !f.ensurePacketHeadroom(&pending[idx], requiredHeadroom, i, reason) {
pending[idx] = nil
continue
}
if pending[idx] != nil {
valid = append(valid, pending[idx])
}
}
if len(valid) > 0 {
if _, err := writer.WriteBatch(valid); err != nil {
f.l.WithError(err).
WithField("queue", i).
WithField("reason", reason).
Warn("Failed to write tun batch")
for _, pkt := range valid {
if pkt != nil {
f.writePacketToTun(i, pkt)
}
}
}
}
pending = pending[:0]
if flushTimer != nil {
if !timerFired {
if !flushTimer.Stop() {
select {
case <-flushTimer.C:
default:
}
}
}
flushTimer = nil
flushC = nil
}
}
armTimer := func() {
delay := f.currentBatchFlushInterval()
if delay <= 0 {
return
}
if flushTimer == nil {
flushTimer = time.NewTimer(delay)
flushC = flushTimer.C
}
}
for {
select {
case pkt := <-queue:
if pkt == nil {
continue
}
if f.ensurePacketHeadroom(&pkt, requiredHeadroom, i, "queue") {
pending = append(pending, pkt)
}
if len(pending) >= cap(pending) {
flush("cap", false)
continue
}
armTimer()
f.observeTunQueueLen(i)
case <-flushC:
flush("timer", true)
}
}
}
func (f *Interface) flushAndReleaseBatch(index int, writer udp.Conn, batch []queuedDatagram, reason string) {
if len(batch) == 0 {
return
}
f.flushDatagrams(index, writer, batch, reason)
for idx := range batch {
if batch[idx].packet != nil {
batch[idx].packet.Release()
batch[idx].packet = nil
}
}
if f.batchUDPFlushCounter != nil {
f.batchUDPFlushCounter.Inc(int64(len(batch)))
}
}
func (f *Interface) flushDatagrams(index int, writer udp.Conn, batch []queuedDatagram, reason string) {
if len(batch) == 0 {
return
}
if f.l.Level >= logrus.DebugLevel {
f.l.WithFields(logrus.Fields{
"writer": index,
"reason": reason,
"pending": len(batch),
}).Debug("udp batch flush summary")
}
maxSeg := f.effectiveGSOMaxSegments()
if bw, ok := writer.(udp.BatchConn); ok {
chunkCap := maxSeg
if chunkCap <= 0 {
chunkCap = len(batch)
}
chunk := make([]udp.Datagram, 0, chunkCap)
var (
currentAddr netip.AddrPort
segments int
)
flushChunk := func() {
if len(chunk) == 0 {
return
}
if f.l.Level >= logrus.DebugLevel {
f.l.WithFields(logrus.Fields{
"writer": index,
"segments": len(chunk),
"dest": chunk[0].Addr,
"reason": reason,
"pending_total": len(batch),
}).Debug("flushing UDP batch")
}
if err := bw.WriteBatch(chunk); err != nil {
f.l.WithError(err).
WithField("writer", index).
WithField("reason", reason).
Warn("Failed to write UDP batch")
}
chunk = chunk[:0]
segments = 0
}
for _, item := range batch {
if item.packet == nil || !item.addr.IsValid() {
continue
}
payload := item.packet.Payload()[:item.packet.Len]
if segments == 0 {
currentAddr = item.addr
}
if item.addr != currentAddr || (maxSeg > 0 && segments >= maxSeg) {
flushChunk()
currentAddr = item.addr
}
chunk = append(chunk, udp.Datagram{Payload: payload, Addr: item.addr})
segments++
}
flushChunk()
return
}
for _, item := range batch {
if item.packet == nil || !item.addr.IsValid() {
continue
}
if f.l.Level >= logrus.DebugLevel {
f.l.WithFields(logrus.Fields{
"writer": index,
"reason": reason,
"dest": item.addr,
"segments": 1,
}).Debug("flushing UDP batch")
}
if err := writer.WriteTo(item.packet.Payload()[:item.packet.Len], item.addr); err != nil {
f.l.WithError(err).
WithField("writer", index).
WithField("udpAddr", item.addr).
WithField("reason", reason).
Warn("Failed to write UDP packet")
}
}
}
func (f *Interface) tryQueueDatagram(q int, buf []byte, addr netip.AddrPort) bool {
if !addr.IsValid() || !f.batches.Enabled() {
return false
}
pkt := f.batches.newPacket()
if pkt == nil {
return false
}
payload := pkt.Payload()
if len(payload) < len(buf) {
pkt.Release()
return false
}
copy(payload, buf)
pkt.Len = len(buf)
if f.batches.enqueueTx(q, pkt, addr) {
f.observeUDPQueueLen(q)
return true
}
pkt.Release()
return false
}
func (f *Interface) writerForIndex(i int) udp.Conn {
if i < 0 || i >= len(f.writers) {
return nil
}
return f.writers[i]
}
func (f *Interface) writeImmediate(q int, buf []byte, addr netip.AddrPort, hostinfo *HostInfo) {
writer := f.writerForIndex(q)
if writer == nil {
f.l.WithField("udpAddr", addr).
WithField("writer", q).
Error("Failed to write outgoing packet: no writer available")
return
}
if err := writer.WriteTo(buf, addr); err != nil {
hostinfo.logger(f.l).
WithError(err).
WithField("udpAddr", addr).
Error("Failed to write outgoing packet")
}
}
func (f *Interface) tryQueuePacket(q int, pkt *overlay.Packet, addr netip.AddrPort) bool {
if pkt == nil || !addr.IsValid() || !f.batches.Enabled() {
return false
}
if f.batches.enqueueTx(q, pkt, addr) {
f.observeUDPQueueLen(q)
return true
}
return false
}
func (f *Interface) writeImmediatePacket(q int, pkt *overlay.Packet, addr netip.AddrPort, hostinfo *HostInfo) {
if pkt == nil {
return
}
writer := f.writerForIndex(q)
if writer == nil {
f.l.WithField("udpAddr", addr).
WithField("writer", q).
Error("Failed to write outgoing packet: no writer available")
pkt.Release()
return
}
if err := writer.WriteTo(pkt.Payload()[:pkt.Len], addr); err != nil {
hostinfo.logger(f.l).
WithError(err).
WithField("udpAddr", addr).
Error("Failed to write outgoing packet")
}
pkt.Release()
}
func (f *Interface) writePacketToTun(q int, pkt *overlay.Packet) {
if pkt == nil {
return
}
writer := f.readers[q]
if writer == nil {
pkt.Release()
return
}
if bw, ok := writer.(interface {
WriteBatch([]*overlay.Packet) (int, error)
}); ok {
if _, err := bw.WriteBatch([]*overlay.Packet{pkt}); err != nil {
f.l.WithError(err).WithField("queue", q).Warn("Failed to write tun packet via batch writer")
pkt.Release()
}
return
}
if _, err := writer.Write(pkt.Payload()[:pkt.Len]); err != nil {
f.l.WithError(err).Error("Failed to write to tun")
}
pkt.Release()
}
func (f *Interface) clonePacketWithHeadroom(pkt *overlay.Packet, required int) *overlay.Packet {
if pkt == nil {
return nil
}
payload := pkt.Payload()[:pkt.Len]
if len(payload) == 0 && required <= 0 {
return pkt
}
pool := f.batches.Pool()
if pool != nil {
if clone := pool.Get(); clone != nil {
if len(clone.Payload()) >= len(payload) {
clone.Len = copy(clone.Payload(), payload)
pkt.Release()
return clone
}
clone.Release()
}
}
if required < 0 {
required = 0
}
buf := make([]byte, required+len(payload))
n := copy(buf[required:], payload)
pkt.Release()
return &overlay.Packet{
Buf: buf,
Offset: required,
Len: n,
}
}
func (f *Interface) observeUDPQueueLen(i int) {
if f.batchUDPQueueGauge == nil {
return
}
f.batchUDPQueueGauge.Update(int64(f.batches.txQueueLen(i)))
}
func (f *Interface) observeTunQueueLen(i int) {
if f.batchTunQueueGauge == nil {
return
}
f.batchTunQueueGauge.Update(int64(f.batches.tunQueueLen(i)))
}
func (f *Interface) currentBatchFlushInterval() time.Duration {
if v := f.batchFlushInterval.Load(); v > 0 {
return time.Duration(v)
}
return 0
}
func (f *Interface) ensurePacketHeadroom(pkt **overlay.Packet, required int, queue int, reason string) bool {
p := *pkt
if p == nil {
return false
}
if required <= 0 || p.Offset >= required {
return true
}
clone := f.clonePacketWithHeadroom(p, required)
if clone == nil {
f.l.WithFields(logrus.Fields{
"queue": queue,
"reason": reason,
}).Warn("dropping packet lacking tun headroom")
return false
}
*pkt = clone
return true
}
func isVirtioHeadroomError(err error) bool {
if err == nil {
return false
}
msg := err.Error()
return strings.Contains(msg, "headroom") || strings.Contains(msg, "virtio")
}
func (f *Interface) effectiveGSOMaxSegments() int {
max := f.gsoMaxSegments
if max <= 0 {
max = defaultGSOMaxSegments
}
if max > maxKernelGSOSegments {
max = maxKernelGSOSegments
}
if !f.enableGSO {
return 1
}
return max
}
type udpOffloadConfigurator interface {
ConfigureOffload(enableGSO, enableGRO bool, maxSegments int)
}
func (f *Interface) applyOffloadConfig(enableGSO, enableGRO bool, maxSegments int) {
if maxSegments <= 0 {
maxSegments = defaultGSOMaxSegments
}
if maxSegments > maxKernelGSOSegments {
maxSegments = maxKernelGSOSegments
}
f.enableGSO = enableGSO
f.enableGRO = enableGRO
f.gsoMaxSegments = maxSegments
for _, writer := range f.writers {
if cfg, ok := writer.(udpOffloadConfigurator); ok {
cfg.ConfigureOffload(enableGSO, enableGRO, maxSegments)
}
}
}
func (f *Interface) RegisterConfigChangeCallbacks(c *config.C) {
c.RegisterReloadCallback(f.reloadFirewall)
c.RegisterReloadCallback(f.reloadSendRecvError)
@@ -1062,42 +407,6 @@ func (f *Interface) reloadMisc(c *config.C) {
f.reQueryWait.Store(int64(n))
f.l.Info("timers.requery_wait_duration has changed")
}
if c.HasChanged("listen.gso_flush_timeout") {
d := c.GetDuration("listen.gso_flush_timeout", defaultGSOFlushInterval)
if d < 0 {
d = 0
}
f.batchFlushInterval.Store(int64(d))
f.l.WithField("duration", d).Info("listen.gso_flush_timeout has changed")
} else if c.HasChanged("batch.flush_interval") {
d := c.GetDuration("batch.flush_interval", defaultGSOFlushInterval)
if d < 0 {
d = 0
}
f.batchFlushInterval.Store(int64(d))
f.l.WithField("duration", d).Warn("batch.flush_interval is deprecated; use listen.gso_flush_timeout")
}
if c.HasChanged("batch.queue_depth") {
n := c.GetInt("batch.queue_depth", f.batchQueueDepth)
if n != f.batchQueueDepth {
f.batchQueueDepth = n
f.l.Warn("batch.queue_depth changes require a restart to take effect")
}
}
if c.HasChanged("listen.enable_gso") || c.HasChanged("listen.enable_gro") || c.HasChanged("listen.gso_max_segments") {
enableGSO := c.GetBool("listen.enable_gso", f.enableGSO)
enableGRO := c.GetBool("listen.enable_gro", f.enableGRO)
maxSeg := c.GetInt("listen.gso_max_segments", f.gsoMaxSegments)
f.applyOffloadConfig(enableGSO, enableGRO, maxSeg)
f.l.WithFields(logrus.Fields{
"enableGSO": enableGSO,
"enableGRO": enableGRO,
"gsoMaxSegments": maxSeg,
}).Info("listen GSO/GRO configuration updated")
}
}
func (f *Interface) emitStats(ctx context.Context, i time.Duration) {

37
main.go
View File

@@ -5,7 +5,6 @@ import (
"fmt"
"net"
"net/netip"
"runtime"
"time"
"github.com/sirupsen/logrus"
@@ -144,20 +143,6 @@ func Main(c *config.C, configTest bool, buildVersion string, logger *logrus.Logg
// set up our UDP listener
udpConns := make([]udp.Conn, routines)
port := c.GetInt("listen.port", 0)
enableGSO := c.GetBool("listen.enable_gso", true)
enableGRO := c.GetBool("listen.enable_gro", true)
gsoMaxSegments := c.GetInt("listen.gso_max_segments", defaultGSOMaxSegments)
if gsoMaxSegments <= 0 {
gsoMaxSegments = defaultGSOMaxSegments
}
if gsoMaxSegments > maxKernelGSOSegments {
gsoMaxSegments = maxKernelGSOSegments
}
gsoFlushTimeout := c.GetDuration("listen.gso_flush_timeout", defaultGSOFlushInterval)
if gsoFlushTimeout < 0 {
gsoFlushTimeout = 0
}
batchQueueDepth := c.GetInt("batch.queue_depth", 0)
if !configTest {
rawListenHost := c.GetString("listen.host", "0.0.0.0")
@@ -177,27 +162,13 @@ func Main(c *config.C, configTest bool, buildVersion string, logger *logrus.Logg
listenHost = ips[0].Unmap()
}
useWGDefault := runtime.GOOS == "linux"
useWG := c.GetBool("listen.use_wireguard_stack", useWGDefault)
var mkListener func(*logrus.Logger, netip.Addr, int, bool, int) (udp.Conn, error)
if useWG {
mkListener = udp.NewWireguardListener
} else {
mkListener = udp.NewListener
}
for i := 0; i < routines; i++ {
l.Infof("listening on %v", netip.AddrPortFrom(listenHost, uint16(port)))
udpServer, err := mkListener(l, listenHost, port, routines > 1, c.GetInt("listen.batch", 64))
udpServer, err := udp.NewListener(l, listenHost, port, routines > 1, c.GetInt("listen.batch", 64))
if err != nil {
return nil, util.NewContextualError("Failed to open udp listener", m{"queue": i}, err)
}
udpServer.ReloadConfig(c)
if cfg, ok := udpServer.(interface {
ConfigureOffload(bool, bool, int)
}); ok {
cfg.ConfigureOffload(enableGSO, enableGRO, gsoMaxSegments)
}
udpConns[i] = udpServer
// If port is dynamic, discover it before the next pass through the for loop
@@ -265,17 +236,12 @@ func Main(c *config.C, configTest bool, buildVersion string, logger *logrus.Logg
reQueryWait: c.GetDuration("timers.requery_wait_duration", defaultReQueryWait),
DropLocalBroadcast: c.GetBool("tun.drop_local_broadcast", false),
DropMulticast: c.GetBool("tun.drop_multicast", false),
EnableGSO: enableGSO,
EnableGRO: enableGRO,
GSOMaxSegments: gsoMaxSegments,
routines: routines,
MessageMetrics: messageMetrics,
version: buildVersion,
relayManager: NewRelayManager(ctx, l, hostMap, c),
punchy: punchy,
ConntrackCacheTimeout: conntrackCacheTimeout,
BatchFlushInterval: gsoFlushTimeout,
BatchQueueDepth: batchQueueDepth,
l: l,
}
@@ -287,7 +253,6 @@ func Main(c *config.C, configTest bool, buildVersion string, logger *logrus.Logg
}
ifce.writers = udpConns
ifce.applyOffloadConfig(enableGSO, enableGRO, gsoMaxSegments)
lightHouse.ifce = ifce
ifce.RegisterConfigChangeCallbacks(c)

View File

@@ -12,7 +12,6 @@ import (
"github.com/sirupsen/logrus"
"github.com/slackhq/nebula/firewall"
"github.com/slackhq/nebula/header"
"github.com/slackhq/nebula/overlay"
"golang.org/x/net/ipv4"
)
@@ -20,7 +19,7 @@ const (
minFwPacketLen = 4
)
func (f *Interface) readOutsidePackets(ip netip.AddrPort, via *ViaSender, out []byte, packet []byte, h *header.H, fwPacket *firewall.Packet, lhf *LightHouseHandler, nb []byte, q int, localCache *firewall.ConntrackCache) {
func (f *Interface) readOutsidePackets(ip netip.AddrPort, via *ViaSender, out []byte, packet []byte, h *header.H, fwPacket *firewall.Packet, lhf *LightHouseHandler, nb []byte, q int, localCache firewall.ConntrackCache) {
err := h.Parse(packet)
if err != nil {
// Hole punch packets are 0 or 1 byte big, so lets ignore printing those errors
@@ -62,7 +61,7 @@ func (f *Interface) readOutsidePackets(ip netip.AddrPort, via *ViaSender, out []
switch h.Subtype {
case header.MessageNone:
if !f.decryptToTun(hostinfo, h.MessageCounter, out, packet, fwPacket, nb, q, localCache, ip, h.RemoteIndex) {
if !f.decryptToTun(hostinfo, h.MessageCounter, out, packet, fwPacket, nb, q, localCache) {
return
}
case header.MessageRelay:
@@ -466,45 +465,23 @@ func (f *Interface) decrypt(hostinfo *HostInfo, mc uint64, out []byte, packet []
return out, nil
}
func (f *Interface) decryptToTun(hostinfo *HostInfo, messageCounter uint64, out []byte, packet []byte, fwPacket *firewall.Packet, nb []byte, q int, localCache *firewall.ConntrackCache, addr netip.AddrPort, recvIndex uint32) bool {
var (
err error
pkt *overlay.Packet
)
if f.batches.tunQueue(q) != nil {
pkt = f.batches.newPacket()
if pkt != nil {
out = pkt.Payload()[:0]
}
}
func (f *Interface) decryptToTun(hostinfo *HostInfo, messageCounter uint64, out []byte, packet []byte, fwPacket *firewall.Packet, nb []byte, q int, localCache firewall.ConntrackCache) bool {
var err error
out, err = hostinfo.ConnectionState.dKey.DecryptDanger(out, packet[:header.Len], packet[header.Len:], messageCounter, nb)
if err != nil {
if pkt != nil {
pkt.Release()
}
hostinfo.logger(f.l).WithError(err).Error("Failed to decrypt packet")
if addr.IsValid() {
f.maybeSendRecvError(addr, recvIndex)
}
return false
}
err = newPacket(out, true, fwPacket)
if err != nil {
if pkt != nil {
pkt.Release()
}
hostinfo.logger(f.l).WithError(err).WithField("packet", out).
Warnf("Error while validating inbound packet")
return false
}
if !hostinfo.ConnectionState.window.Update(f.l, messageCounter) {
if pkt != nil {
pkt.Release()
}
hostinfo.logger(f.l).WithField("fwPacket", fwPacket).
Debugln("dropping out of window packet")
return false
@@ -512,9 +489,6 @@ func (f *Interface) decryptToTun(hostinfo *HostInfo, messageCounter uint64, out
dropReason := f.firewall.Drop(*fwPacket, true, hostinfo, f.pki.GetCAPool(), localCache)
if dropReason != nil {
if pkt != nil {
pkt.Release()
}
// NOTE: We give `packet` as the `out` here since we already decrypted from it and we don't need it anymore
// This gives us a buffer to build the reject packet in
f.rejectOutside(out, hostinfo.ConnectionState, hostinfo, nb, packet, q)
@@ -527,17 +501,8 @@ func (f *Interface) decryptToTun(hostinfo *HostInfo, messageCounter uint64, out
}
f.connectionManager.In(hostinfo)
if pkt != nil {
pkt.Len = len(out)
if f.batches.enqueueTun(q, pkt) {
f.observeTunQueueLen(q)
return true
}
f.writePacketToTun(q, pkt)
return true
}
if _, err = f.readers[q].Write(out); err != nil {
_, err = f.readers[q].Write(out)
if err != nil {
f.l.WithError(err).Error("Failed to write to tun")
}
return true

View File

@@ -3,7 +3,6 @@ package overlay
import (
"io"
"net/netip"
"sync"
"github.com/slackhq/nebula/routing"
)
@@ -16,84 +15,3 @@ type Device interface {
RoutesFor(netip.Addr) routing.Gateways
NewMultiQueueReader() (io.ReadWriteCloser, error)
}
// Packet represents a single packet buffer with optional headroom to carry
// metadata (for example virtio-net headers).
type Packet struct {
Buf []byte
Offset int
Len int
release func()
}
func (p *Packet) Payload() []byte {
return p.Buf[p.Offset : p.Offset+p.Len]
}
func (p *Packet) Reset() {
p.Len = 0
p.Offset = 0
p.release = nil
}
func (p *Packet) Release() {
if p.release != nil {
p.release()
p.release = nil
}
}
func (p *Packet) Capacity() int {
return len(p.Buf) - p.Offset
}
// PacketPool manages reusable buffers with headroom.
type PacketPool struct {
headroom int
blksz int
pool sync.Pool
}
func NewPacketPool(headroom, payload int) *PacketPool {
p := &PacketPool{headroom: headroom, blksz: headroom + payload}
p.pool.New = func() any {
buf := make([]byte, p.blksz)
return &Packet{Buf: buf, Offset: headroom}
}
return p
}
func (p *PacketPool) Get() *Packet {
pkt := p.pool.Get().(*Packet)
pkt.Offset = p.headroom
pkt.Len = 0
pkt.release = func() { p.put(pkt) }
return pkt
}
func (p *PacketPool) put(pkt *Packet) {
pkt.Reset()
p.pool.Put(pkt)
}
// BatchReader allows reading multiple packets into a shared pool with
// preallocated headroom (e.g. virtio-net headers).
type BatchReader interface {
ReadIntoBatch(pool *PacketPool) ([]*Packet, error)
}
// BatchWriter writes a slice of packets that carry their own metadata.
type BatchWriter interface {
WriteBatch(packets []*Packet) (int, error)
}
// BatchCapableDevice describes a device that can efficiently read and write
// batches of packets with virtio headroom.
type BatchCapableDevice interface {
Device
BatchReader
BatchWriter
BatchHeadroom() int
BatchPayloadCap() int
BatchSize() int
}

View File

@@ -9,7 +9,6 @@ import (
"net"
"net/netip"
"os"
"runtime"
"strings"
"sync/atomic"
"time"
@@ -20,7 +19,6 @@ import (
"github.com/slackhq/nebula/config"
"github.com/slackhq/nebula/routing"
"github.com/slackhq/nebula/util"
wgtun "github.com/slackhq/nebula/wgstack/tun"
"github.com/vishvananda/netlink"
"golang.org/x/sys/unix"
)
@@ -35,7 +33,6 @@ type tun struct {
TXQueueLen int
deviceIndex int
ioctlFd uintptr
wgDevice wgtun.Device
Routes atomic.Pointer[[]Route]
routeTree atomic.Pointer[bart.Table[routing.Gateways]]
@@ -71,9 +68,7 @@ type ifreqQLEN struct {
func newTunFromFd(c *config.C, l *logrus.Logger, deviceFd int, vpnNetworks []netip.Prefix) (*tun, error) {
file := os.NewFile(uintptr(deviceFd), "/dev/net/tun")
useWGDefault := runtime.GOOS == "linux"
useWG := c.GetBool("tun.use_wireguard_stack", c.GetBool("listen.use_wireguard_stack", useWGDefault))
t, err := newTunGeneric(c, l, file, vpnNetworks, useWG)
t, err := newTunGeneric(c, l, file, vpnNetworks)
if err != nil {
return nil, err
}
@@ -118,9 +113,7 @@ func newTun(c *config.C, l *logrus.Logger, vpnNetworks []netip.Prefix, multiqueu
name := strings.Trim(string(req.Name[:]), "\x00")
file := os.NewFile(uintptr(fd), "/dev/net/tun")
useWGDefault := runtime.GOOS == "linux"
useWG := c.GetBool("tun.use_wireguard_stack", c.GetBool("listen.use_wireguard_stack", useWGDefault))
t, err := newTunGeneric(c, l, file, vpnNetworks, useWG)
t, err := newTunGeneric(c, l, file, vpnNetworks)
if err != nil {
return nil, err
}
@@ -130,45 +123,16 @@ func newTun(c *config.C, l *logrus.Logger, vpnNetworks []netip.Prefix, multiqueu
return t, nil
}
func newTunGeneric(c *config.C, l *logrus.Logger, file *os.File, vpnNetworks []netip.Prefix, useWireguard bool) (*tun, error) {
var (
rw io.ReadWriteCloser = file
fd = int(file.Fd())
wgDev wgtun.Device
)
if useWireguard {
dev, err := wgtun.CreateTUNFromFile(file, c.GetInt("tun.mtu", DefaultMTU))
if err != nil {
return nil, fmt.Errorf("failed to initialize wireguard tun device: %w", err)
}
wgDev = dev
rw = newWireguardTunIO(dev, c.GetInt("tun.mtu", DefaultMTU))
fd = int(dev.File().Fd())
}
func newTunGeneric(c *config.C, l *logrus.Logger, file *os.File, vpnNetworks []netip.Prefix) (*tun, error) {
t := &tun{
ReadWriteCloser: rw,
fd: fd,
ReadWriteCloser: file,
fd: int(file.Fd()),
vpnNetworks: vpnNetworks,
TXQueueLen: c.GetInt("tun.tx_queue", 500),
useSystemRoutes: c.GetBool("tun.use_system_route_table", false),
useSystemRoutesBufferSize: c.GetInt("tun.use_system_route_table_buffer_size", 0),
l: l,
}
if wgDev != nil {
t.wgDevice = wgDev
}
if wgDev != nil {
// replace ioctl fd with device file descriptor to keep route management working
file = wgDev.File()
t.fd = int(file.Fd())
t.ioctlFd = file.Fd()
}
if t.ioctlFd == 0 {
t.ioctlFd = file.Fd()
}
err := t.reload(c, true)
if err != nil {
@@ -714,14 +678,6 @@ func (t *tun) Close() error {
_ = t.ReadWriteCloser.Close()
}
if t.wgDevice != nil {
_ = t.wgDevice.Close()
if t.ioctlFd > 0 {
// underlying fd already closed by the device
t.ioctlFd = 0
}
}
if t.ioctlFd > 0 {
_ = os.NewFile(t.ioctlFd, "ioctlFd").Close()
}

View File

@@ -1,56 +0,0 @@
//go:build linux && !android && !e2e_testing
package overlay
import "fmt"
func (t *tun) batchIO() (*wireguardTunIO, bool) {
io, ok := t.ReadWriteCloser.(*wireguardTunIO)
return io, ok
}
func (t *tun) ReadIntoBatch(pool *PacketPool) ([]*Packet, error) {
io, ok := t.batchIO()
if !ok {
return nil, fmt.Errorf("wireguard batch I/O not enabled")
}
return io.ReadIntoBatch(pool)
}
func (t *tun) WriteBatch(packets []*Packet) (int, error) {
io, ok := t.batchIO()
if ok {
return io.WriteBatch(packets)
}
for _, pkt := range packets {
if pkt == nil {
continue
}
if _, err := t.Write(pkt.Payload()[:pkt.Len]); err != nil {
return 0, err
}
pkt.Release()
}
return len(packets), nil
}
func (t *tun) BatchHeadroom() int {
if io, ok := t.batchIO(); ok {
return io.BatchHeadroom()
}
return 0
}
func (t *tun) BatchPayloadCap() int {
if io, ok := t.batchIO(); ok {
return io.BatchPayloadCap()
}
return 0
}
func (t *tun) BatchSize() int {
if io, ok := t.batchIO(); ok {
return io.BatchSize()
}
return 1
}

View File

@@ -1,220 +0,0 @@
//go:build linux && !android && !e2e_testing
package overlay
import (
"fmt"
"sync"
wgtun "github.com/slackhq/nebula/wgstack/tun"
)
type wireguardTunIO struct {
dev wgtun.Device
mtu int
batchSize int
readMu sync.Mutex
readBuffers [][]byte
readLens []int
legacyBuf []byte
writeMu sync.Mutex
writeBuf []byte
writeWrap [][]byte
writeBuffers [][]byte
}
func newWireguardTunIO(dev wgtun.Device, mtu int) *wireguardTunIO {
batch := dev.BatchSize()
if batch <= 0 {
batch = 1
}
if mtu <= 0 {
mtu = DefaultMTU
}
return &wireguardTunIO{
dev: dev,
mtu: mtu,
batchSize: batch,
readLens: make([]int, batch),
legacyBuf: make([]byte, wgtun.VirtioNetHdrLen+mtu),
writeBuf: make([]byte, wgtun.VirtioNetHdrLen+mtu),
writeWrap: make([][]byte, 1),
}
}
func (w *wireguardTunIO) Read(p []byte) (int, error) {
w.readMu.Lock()
defer w.readMu.Unlock()
bufs := w.readBuffers
if len(bufs) == 0 {
bufs = [][]byte{w.legacyBuf}
w.readBuffers = bufs
}
n, err := w.dev.Read(bufs[:1], w.readLens[:1], wgtun.VirtioNetHdrLen)
if err != nil {
return 0, err
}
if n == 0 {
return 0, nil
}
length := w.readLens[0]
copy(p, w.legacyBuf[wgtun.VirtioNetHdrLen:wgtun.VirtioNetHdrLen+length])
return length, nil
}
func (w *wireguardTunIO) Write(p []byte) (int, error) {
if len(p) > w.mtu {
return 0, fmt.Errorf("wireguard tun: payload exceeds MTU (%d > %d)", len(p), w.mtu)
}
w.writeMu.Lock()
defer w.writeMu.Unlock()
buf := w.writeBuf[:wgtun.VirtioNetHdrLen+len(p)]
for i := 0; i < wgtun.VirtioNetHdrLen; i++ {
buf[i] = 0
}
copy(buf[wgtun.VirtioNetHdrLen:], p)
w.writeWrap[0] = buf
n, err := w.dev.Write(w.writeWrap, wgtun.VirtioNetHdrLen)
if err != nil {
return n, err
}
return len(p), nil
}
func (w *wireguardTunIO) ReadIntoBatch(pool *PacketPool) ([]*Packet, error) {
if pool == nil {
return nil, fmt.Errorf("wireguard tun: packet pool is nil")
}
w.readMu.Lock()
defer w.readMu.Unlock()
if len(w.readBuffers) < w.batchSize {
w.readBuffers = make([][]byte, w.batchSize)
}
if len(w.readLens) < w.batchSize {
w.readLens = make([]int, w.batchSize)
}
packets := make([]*Packet, w.batchSize)
requiredHeadroom := w.BatchHeadroom()
requiredPayload := w.BatchPayloadCap()
headroom := 0
for i := 0; i < w.batchSize; i++ {
pkt := pool.Get()
if pkt == nil {
releasePackets(packets[:i])
return nil, fmt.Errorf("wireguard tun: packet pool returned nil packet")
}
if pkt.Capacity() < requiredPayload {
pkt.Release()
releasePackets(packets[:i])
return nil, fmt.Errorf("wireguard tun: packet capacity %d below required %d", pkt.Capacity(), requiredPayload)
}
if i == 0 {
headroom = pkt.Offset
if headroom < requiredHeadroom {
pkt.Release()
releasePackets(packets[:i])
return nil, fmt.Errorf("wireguard tun: packet headroom %d below virtio requirement %d", headroom, requiredHeadroom)
}
} else if pkt.Offset != headroom {
pkt.Release()
releasePackets(packets[:i])
return nil, fmt.Errorf("wireguard tun: inconsistent packet headroom (%d != %d)", pkt.Offset, headroom)
}
packets[i] = pkt
w.readBuffers[i] = pkt.Buf
}
n, err := w.dev.Read(w.readBuffers[:w.batchSize], w.readLens[:w.batchSize], headroom)
if err != nil {
releasePackets(packets)
return nil, err
}
if n == 0 {
releasePackets(packets)
return nil, nil
}
for i := 0; i < n; i++ {
packets[i].Len = w.readLens[i]
}
for i := n; i < w.batchSize; i++ {
packets[i].Release()
packets[i] = nil
}
return packets[:n], nil
}
func (w *wireguardTunIO) WriteBatch(packets []*Packet) (int, error) {
if len(packets) == 0 {
return 0, nil
}
requiredHeadroom := w.BatchHeadroom()
offset := packets[0].Offset
if offset < requiredHeadroom {
releasePackets(packets)
return 0, fmt.Errorf("wireguard tun: packet offset %d smaller than required headroom %d", offset, requiredHeadroom)
}
for _, pkt := range packets {
if pkt == nil {
continue
}
if pkt.Offset != offset {
releasePackets(packets)
return 0, fmt.Errorf("wireguard tun: mixed packet offsets not supported")
}
limit := pkt.Offset + pkt.Len
if limit > len(pkt.Buf) {
releasePackets(packets)
return 0, fmt.Errorf("wireguard tun: packet length %d exceeds buffer capacity %d", pkt.Len, len(pkt.Buf)-pkt.Offset)
}
}
w.writeMu.Lock()
defer w.writeMu.Unlock()
if len(w.writeBuffers) < len(packets) {
w.writeBuffers = make([][]byte, len(packets))
}
for i, pkt := range packets {
if pkt == nil {
w.writeBuffers[i] = nil
continue
}
limit := pkt.Offset + pkt.Len
w.writeBuffers[i] = pkt.Buf[:limit]
}
n, err := w.dev.Write(w.writeBuffers[:len(packets)], offset)
if err != nil {
return n, err
}
releasePackets(packets)
return n, nil
}
func (w *wireguardTunIO) BatchHeadroom() int {
return wgtun.VirtioNetHdrLen
}
func (w *wireguardTunIO) BatchPayloadCap() int {
return w.mtu
}
func (w *wireguardTunIO) BatchSize() int {
return w.batchSize
}
func (w *wireguardTunIO) Close() error {
return nil
}
func releasePackets(pkts []*Packet) {
for _, pkt := range pkts {
if pkt != nil {
pkt.Release()
}
}
}

83
pki.go
View File

@@ -100,62 +100,55 @@ func (p *PKI) reloadCerts(c *config.C, initial bool) *util.ContextualError {
currentState := p.cs.Load()
if newState.v1Cert != nil {
if currentState.v1Cert == nil {
//adding certs is fine, actually. Networks-in-common confirmed in newCertState().
} else {
// did IP in cert change? if so, don't set
if !slices.Equal(currentState.v1Cert.Networks(), newState.v1Cert.Networks()) {
return util.NewContextualError(
"Networks in new cert was different from old",
m{"new_networks": newState.v1Cert.Networks(), "old_networks": currentState.v1Cert.Networks(), "cert_version": cert.Version1},
nil,
)
}
if currentState.v1Cert.Curve() != newState.v1Cert.Curve() {
return util.NewContextualError(
"Curve in new v1 cert was different from old",
m{"new_curve": newState.v1Cert.Curve(), "old_curve": currentState.v1Cert.Curve(), "cert_version": cert.Version1},
nil,
)
}
return util.NewContextualError("v1 certificate was added, restart required", nil, err)
}
// did IP in cert change? if so, don't set
if !slices.Equal(currentState.v1Cert.Networks(), newState.v1Cert.Networks()) {
return util.NewContextualError(
"Networks in new cert was different from old",
m{"new_networks": newState.v1Cert.Networks(), "old_networks": currentState.v1Cert.Networks()},
nil,
)
}
if currentState.v1Cert.Curve() != newState.v1Cert.Curve() {
return util.NewContextualError(
"Curve in new cert was different from old",
m{"new_curve": newState.v1Cert.Curve(), "old_curve": currentState.v1Cert.Curve()},
nil,
)
}
} else if currentState.v1Cert != nil {
//TODO: CERT-V2 we should be able to tear this down
return util.NewContextualError("v1 certificate was removed, restart required", nil, err)
}
if newState.v2Cert != nil {
if currentState.v2Cert == nil {
//adding certs is fine, actually
} else {
// did IP in cert change? if so, don't set
if !slices.Equal(currentState.v2Cert.Networks(), newState.v2Cert.Networks()) {
return util.NewContextualError(
"Networks in new cert was different from old",
m{"new_networks": newState.v2Cert.Networks(), "old_networks": currentState.v2Cert.Networks(), "cert_version": cert.Version2},
nil,
)
}
if currentState.v2Cert.Curve() != newState.v2Cert.Curve() {
return util.NewContextualError(
"Curve in new cert was different from old",
m{"new_curve": newState.v2Cert.Curve(), "old_curve": currentState.v2Cert.Curve(), "cert_version": cert.Version2},
nil,
)
}
return util.NewContextualError("v2 certificate was added, restart required", nil, err)
}
} else if currentState.v2Cert != nil {
//newState.v1Cert is non-nil bc empty certstates aren't permitted
if newState.v1Cert == nil {
return util.NewContextualError("v1 and v2 certs are nil, this should be impossible", nil, err)
}
//if we're going to v1-only, we need to make sure we didn't orphan any v2-cert vpnaddrs
if !slices.Equal(currentState.v2Cert.Networks(), newState.v1Cert.Networks()) {
// did IP in cert change? if so, don't set
if !slices.Equal(currentState.v2Cert.Networks(), newState.v2Cert.Networks()) {
return util.NewContextualError(
"Removing a V2 cert is not permitted unless it has identical networks to the new V1 cert",
m{"new_v1_networks": newState.v1Cert.Networks(), "old_v2_networks": currentState.v2Cert.Networks()},
"Networks in new cert was different from old",
m{"new_networks": newState.v2Cert.Networks(), "old_networks": currentState.v2Cert.Networks()},
nil,
)
}
if currentState.v2Cert.Curve() != newState.v2Cert.Curve() {
return util.NewContextualError(
"Curve in new cert was different from old",
m{"new_curve": newState.v2Cert.Curve(), "old_curve": currentState.v2Cert.Curve()},
nil,
)
}
} else if currentState.v2Cert != nil {
return util.NewContextualError("v2 certificate was removed, restart required", nil, err)
}
// Cipher cant be hot swapped so just leave it at what it was before

16
udp/config.go Normal file
View File

@@ -0,0 +1,16 @@
package udp
import "sync/atomic"
var disableUDPCsum atomic.Bool
// SetDisableUDPCsum controls whether IPv4 UDP sockets opt out of kernel
// checksum calculation via SO_NO_CHECK. Only applicable on platforms that
// support the option (Linux). IPv6 always keeps the checksum enabled.
func SetDisableUDPCsum(disable bool) {
disableUDPCsum.Store(disable)
}
func udpChecksumDisabled() bool {
return disableUDPCsum.Load()
}

View File

@@ -11,6 +11,7 @@ const MTU = 9001
type EncReader func(
addr netip.AddrPort,
payload []byte,
release func(),
)
type Conn interface {
@@ -22,18 +23,6 @@ type Conn interface {
Close() error
}
// Datagram represents a UDP payload destined to a specific address.
type Datagram struct {
Payload []byte
Addr netip.AddrPort
}
// BatchConn can send multiple datagrams in one syscall.
type BatchConn interface {
Conn
WriteBatch(pkts []Datagram) error
}
type NoopConn struct{}
func (NoopConn) Rebind() error {

1740
udp/io_uring_linux.go Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,25 @@
//go:build linux && (386 || amd64p32 || arm || mips || mipsle) && !android && !e2e_testing
// +build linux
// +build 386 amd64p32 arm mips mipsle
// +build !android
// +build !e2e_testing
package udp
import "golang.org/x/sys/unix"
func controllen(n int) uint32 {
return uint32(n)
}
func setCmsgLen(h *unix.Cmsghdr, n int) {
h.Len = uint32(unix.CmsgLen(n))
}
func setIovecLen(v *unix.Iovec, n int) {
v.Len = uint32(n)
}
func setMsghdrIovlen(m *unix.Msghdr, n int) {
m.Iovlen = uint32(n)
}

View File

@@ -0,0 +1,25 @@
//go:build linux && (amd64 || arm64 || ppc64 || ppc64le || mips64 || mips64le || s390x || riscv64 || loong64) && !android && !e2e_testing
// +build linux
// +build amd64 arm64 ppc64 ppc64le mips64 mips64le s390x riscv64 loong64
// +build !android
// +build !e2e_testing
package udp
import "golang.org/x/sys/unix"
func controllen(n int) uint64 {
return uint64(n)
}
func setCmsgLen(h *unix.Cmsghdr, n int) {
h.Len = uint64(unix.CmsgLen(n))
}
func setIovecLen(v *unix.Iovec, n int) {
v.Len = uint64(n)
}
func setMsghdrIovlen(m *unix.Msghdr, n int) {
m.Iovlen = uint64(n)
}

25
udp/sendmmsg_linux_32.go Normal file
View File

@@ -0,0 +1,25 @@
//go:build linux && (386 || amd64p32 || arm || mips || mipsle) && !android && !e2e_testing
package udp
import (
"unsafe"
"golang.org/x/sys/unix"
)
type linuxMmsgHdr struct {
Hdr unix.Msghdr
Len uint32
}
func sendmmsg(fd int, hdrs []linuxMmsgHdr, flags int) (int, error) {
if len(hdrs) == 0 {
return 0, nil
}
n, _, errno := unix.Syscall6(unix.SYS_SENDMMSG, uintptr(fd), uintptr(unsafe.Pointer(&hdrs[0])), uintptr(len(hdrs)), uintptr(flags), 0, 0)
if errno != 0 {
return int(n), errno
}
return int(n), nil
}

26
udp/sendmmsg_linux_64.go Normal file
View File

@@ -0,0 +1,26 @@
//go:build linux && (amd64 || arm64 || ppc64 || ppc64le || mips64 || mips64le || s390x || riscv64 || loong64) && !android && !e2e_testing
package udp
import (
"unsafe"
"golang.org/x/sys/unix"
)
type linuxMmsgHdr struct {
Hdr unix.Msghdr
Len uint32
_ uint32
}
func sendmmsg(fd int, hdrs []linuxMmsgHdr, flags int) (int, error) {
if len(hdrs) == 0 {
return 0, nil
}
n, _, errno := unix.Syscall6(unix.SYS_SENDMMSG, uintptr(fd), uintptr(unsafe.Pointer(&hdrs[0])), uintptr(len(hdrs)), uintptr(flags), 0, 0)
if errno != 0 {
return int(n), errno
}
return int(n), nil
}

View File

@@ -180,7 +180,7 @@ func (u *StdConn) ListenOut(r EncReader) {
u.l.WithError(err).Error("unexpected udp socket receive error")
}
r(netip.AddrPortFrom(rua.Addr().Unmap(), rua.Port()), buffer[:n])
r(netip.AddrPortFrom(rua.Addr().Unmap(), rua.Port()), buffer[:n], nil)
}
}

View File

@@ -82,6 +82,6 @@ func (u *GenericConn) ListenOut(r EncReader) {
return
}
r(netip.AddrPortFrom(rua.Addr().Unmap(), rua.Port()), buffer[:n])
r(netip.AddrPortFrom(rua.Addr().Unmap(), rua.Port()), buffer[:n], nil)
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -7,6 +7,9 @@
package udp
import (
"errors"
"fmt"
"golang.org/x/sys/unix"
)
@@ -30,17 +33,29 @@ type rawMessage struct {
Len uint32
}
func (u *StdConn) PrepareRawMessages(n int) ([]rawMessage, [][]byte, [][]byte) {
func (u *StdConn) PrepareRawMessages(n int) ([]rawMessage, [][]byte, [][]byte, [][]byte) {
controlLen := int(u.controlLen.Load())
msgs := make([]rawMessage, n)
buffers := make([][]byte, n)
names := make([][]byte, n)
var controls [][]byte
if controlLen > 0 {
controls = make([][]byte, n)
}
for i := range msgs {
buffers[i] = make([]byte, MTU)
size := int(u.groBufSize.Load())
if size < MTU {
size = MTU
}
buf := u.borrowRxBuffer(size)
buffers[i] = buf
names[i] = make([]byte, unix.SizeofSockaddrInet6)
vs := []iovec{
{Base: &buffers[i][0], Len: uint32(len(buffers[i]))},
{Base: &buf[0], Len: uint32(len(buf))},
}
msgs[i].Hdr.Iov = &vs[0]
@@ -48,7 +63,71 @@ func (u *StdConn) PrepareRawMessages(n int) ([]rawMessage, [][]byte, [][]byte) {
msgs[i].Hdr.Name = &names[i][0]
msgs[i].Hdr.Namelen = uint32(len(names[i]))
if controlLen > 0 {
controls[i] = make([]byte, controlLen)
msgs[i].Hdr.Control = &controls[i][0]
msgs[i].Hdr.Controllen = controllen(len(controls[i]))
} else {
msgs[i].Hdr.Control = nil
msgs[i].Hdr.Controllen = controllen(0)
}
}
return msgs, buffers, names
return msgs, buffers, names, controls
}
func setIovecBase(msg *rawMessage, buf []byte) {
iov := (*iovec)(msg.Hdr.Iov)
iov.Base = &buf[0]
iov.Len = uint32(len(buf))
}
func rawMessageToUnixMsghdr(msg *rawMessage) (unix.Msghdr, unix.Iovec, error) {
var hdr unix.Msghdr
var iov unix.Iovec
if msg == nil {
return hdr, iov, errors.New("nil rawMessage")
}
if msg.Hdr.Iov == nil || msg.Hdr.Iov.Base == nil {
return hdr, iov, errors.New("rawMessage missing payload buffer")
}
payloadLen := int(msg.Hdr.Iov.Len)
if payloadLen < 0 {
return hdr, iov, fmt.Errorf("invalid payload length: %d", payloadLen)
}
iov.Base = msg.Hdr.Iov.Base
iov.Len = uint32(payloadLen)
hdr.Iov = &iov
hdr.Iovlen = 1
hdr.Name = msg.Hdr.Name
// CRITICAL: Always set to full buffer size for receive, not what kernel wrote last time
if hdr.Name != nil {
hdr.Namelen = uint32(unix.SizeofSockaddrInet6)
} else {
hdr.Namelen = 0
}
hdr.Control = msg.Hdr.Control
// CRITICAL: Use the allocated size, not what was previously returned
if hdr.Control != nil {
// Control buffer size is stored in Controllen from PrepareRawMessages
hdr.Controllen = msg.Hdr.Controllen
} else {
hdr.Controllen = 0
}
hdr.Flags = 0 // Reset flags for new receive
return hdr, iov, nil
}
func updateRawMessageFromUnixMsghdr(msg *rawMessage, hdr *unix.Msghdr, n int) {
if msg == nil || hdr == nil {
return
}
msg.Hdr.Namelen = hdr.Namelen
msg.Hdr.Controllen = hdr.Controllen
msg.Hdr.Flags = hdr.Flags
if n < 0 {
n = 0
}
msg.Len = uint32(n)
}

View File

@@ -7,6 +7,9 @@
package udp
import (
"errors"
"fmt"
"golang.org/x/sys/unix"
)
@@ -33,25 +36,99 @@ type rawMessage struct {
Pad0 [4]byte
}
func (u *StdConn) PrepareRawMessages(n int) ([]rawMessage, [][]byte, [][]byte) {
func (u *StdConn) PrepareRawMessages(n int) ([]rawMessage, [][]byte, [][]byte, [][]byte) {
controlLen := int(u.controlLen.Load())
msgs := make([]rawMessage, n)
buffers := make([][]byte, n)
names := make([][]byte, n)
var controls [][]byte
if controlLen > 0 {
controls = make([][]byte, n)
}
for i := range msgs {
buffers[i] = make([]byte, MTU)
size := int(u.groBufSize.Load())
if size < MTU {
size = MTU
}
buf := u.borrowRxBuffer(size)
buffers[i] = buf
names[i] = make([]byte, unix.SizeofSockaddrInet6)
vs := []iovec{
{Base: &buffers[i][0], Len: uint64(len(buffers[i]))},
}
vs := []iovec{{Base: &buf[0], Len: uint64(len(buf))}}
msgs[i].Hdr.Iov = &vs[0]
msgs[i].Hdr.Iovlen = uint64(len(vs))
msgs[i].Hdr.Name = &names[i][0]
msgs[i].Hdr.Namelen = uint32(len(names[i]))
if controlLen > 0 {
controls[i] = make([]byte, controlLen)
msgs[i].Hdr.Control = &controls[i][0]
msgs[i].Hdr.Controllen = controllen(len(controls[i]))
} else {
msgs[i].Hdr.Control = nil
msgs[i].Hdr.Controllen = controllen(0)
}
}
return msgs, buffers, names
return msgs, buffers, names, controls
}
func setIovecBase(msg *rawMessage, buf []byte) {
iov := (*iovec)(msg.Hdr.Iov)
iov.Base = &buf[0]
iov.Len = uint64(len(buf))
}
func rawMessageToUnixMsghdr(msg *rawMessage) (unix.Msghdr, unix.Iovec, error) {
var hdr unix.Msghdr
var iov unix.Iovec
if msg == nil {
return hdr, iov, errors.New("nil rawMessage")
}
if msg.Hdr.Iov == nil || msg.Hdr.Iov.Base == nil {
return hdr, iov, errors.New("rawMessage missing payload buffer")
}
payloadLen := int(msg.Hdr.Iov.Len)
if payloadLen < 0 {
return hdr, iov, fmt.Errorf("invalid payload length: %d", payloadLen)
}
iov.Base = msg.Hdr.Iov.Base
iov.Len = uint64(payloadLen)
hdr.Iov = &iov
hdr.Iovlen = 1
hdr.Name = msg.Hdr.Name
// CRITICAL: Always set to full buffer size for receive, not what kernel wrote last time
if hdr.Name != nil {
hdr.Namelen = uint32(unix.SizeofSockaddrInet6)
} else {
hdr.Namelen = 0
}
hdr.Control = msg.Hdr.Control
// CRITICAL: Use the allocated size, not what was previously returned
if hdr.Control != nil {
// Control buffer size is stored in Controllen from PrepareRawMessages
hdr.Controllen = msg.Hdr.Controllen
} else {
hdr.Controllen = 0
}
hdr.Flags = 0 // Reset flags for new receive
return hdr, iov, nil
}
func updateRawMessageFromUnixMsghdr(msg *rawMessage, hdr *unix.Msghdr, n int) {
if msg == nil || hdr == nil {
return
}
msg.Hdr.Namelen = hdr.Namelen
msg.Hdr.Controllen = hdr.Controllen
msg.Hdr.Flags = hdr.Flags
if n < 0 {
n = 0
}
msg.Len = uint32(n)
}

View File

@@ -149,7 +149,7 @@ func (u *RIOConn) ListenOut(r EncReader) {
continue
}
r(netip.AddrPortFrom(netip.AddrFrom16(rua.Addr).Unmap(), (rua.Port>>8)|((rua.Port&0xff)<<8)), buffer[:n])
r(netip.AddrPortFrom(netip.AddrFrom16(rua.Addr).Unmap(), (rua.Port>>8)|((rua.Port&0xff)<<8)), buffer[:n], nil)
}
}

View File

@@ -112,7 +112,7 @@ func (u *TesterConn) ListenOut(r EncReader) {
if !ok {
return
}
r(p.From, p.Data)
r(p.From, p.Data, func() {})
}
}

View File

@@ -1,225 +0,0 @@
//go:build linux && !android && !e2e_testing
package udp
import (
"errors"
"net"
"net/netip"
"sync"
"sync/atomic"
"github.com/sirupsen/logrus"
"github.com/slackhq/nebula/config"
wgconn "github.com/slackhq/nebula/wgstack/conn"
)
// WGConn adapts WireGuard's batched UDP bind implementation to Nebula's udp.Conn interface.
type WGConn struct {
l *logrus.Logger
bind *wgconn.StdNetBind
recvers []wgconn.ReceiveFunc
batch int
reqBatch int
localIP netip.Addr
localPort uint16
enableGSO bool
enableGRO bool
gsoMaxSeg int
closed atomic.Bool
closeOnce sync.Once
}
// NewWireguardListener creates a UDP listener backed by WireGuard's StdNetBind.
func NewWireguardListener(l *logrus.Logger, ip netip.Addr, port int, multi bool, batch int) (Conn, error) {
bind := wgconn.NewStdNetBindForAddr(ip, multi)
recvers, actualPort, err := bind.Open(uint16(port))
if err != nil {
return nil, err
}
if batch <= 0 {
batch = bind.BatchSize()
} else if batch > bind.BatchSize() {
batch = bind.BatchSize()
}
return &WGConn{
l: l,
bind: bind,
recvers: recvers,
batch: batch,
reqBatch: batch,
localIP: ip,
localPort: actualPort,
}, nil
}
func (c *WGConn) Rebind() error {
// WireGuard's bind does not support rebinding in place.
return nil
}
func (c *WGConn) LocalAddr() (netip.AddrPort, error) {
if !c.localIP.IsValid() || c.localIP.IsUnspecified() {
// Fallback to wildcard IPv4 for display purposes.
return netip.AddrPortFrom(netip.IPv4Unspecified(), c.localPort), nil
}
return netip.AddrPortFrom(c.localIP, c.localPort), nil
}
func (c *WGConn) listen(fn wgconn.ReceiveFunc, r EncReader) {
batchSize := c.batch
packets := make([][]byte, batchSize)
for i := range packets {
packets[i] = make([]byte, MTU)
}
sizes := make([]int, batchSize)
endpoints := make([]wgconn.Endpoint, batchSize)
for {
if c.closed.Load() {
return
}
n, err := fn(packets, sizes, endpoints)
if err != nil {
if errors.Is(err, net.ErrClosed) {
return
}
if c.l != nil {
c.l.WithError(err).Debug("wireguard UDP listener receive error")
}
continue
}
for i := 0; i < n; i++ {
if sizes[i] == 0 {
continue
}
stdEp, ok := endpoints[i].(*wgconn.StdNetEndpoint)
if !ok {
if c.l != nil {
c.l.Warn("wireguard UDP listener received unexpected endpoint type")
}
continue
}
addr := stdEp.AddrPort
r(addr, packets[i][:sizes[i]])
endpoints[i] = nil
}
}
}
func (c *WGConn) ListenOut(r EncReader) {
for _, fn := range c.recvers {
go c.listen(fn, r)
}
}
func (c *WGConn) WriteTo(b []byte, addr netip.AddrPort) error {
if len(b) == 0 {
return nil
}
if c.closed.Load() {
return net.ErrClosed
}
ep := &wgconn.StdNetEndpoint{AddrPort: addr}
return c.bind.Send([][]byte{b}, ep)
}
func (c *WGConn) WriteBatch(datagrams []Datagram) error {
if len(datagrams) == 0 {
return nil
}
if c.closed.Load() {
return net.ErrClosed
}
max := c.batch
if max <= 0 {
max = len(datagrams)
if max == 0 {
max = 1
}
}
bufs := make([][]byte, 0, max)
var (
current netip.AddrPort
endpoint *wgconn.StdNetEndpoint
haveAddr bool
)
flush := func() error {
if len(bufs) == 0 || endpoint == nil {
bufs = bufs[:0]
return nil
}
err := c.bind.Send(bufs, endpoint)
bufs = bufs[:0]
return err
}
for _, d := range datagrams {
if len(d.Payload) == 0 || !d.Addr.IsValid() {
continue
}
if !haveAddr || d.Addr != current {
if err := flush(); err != nil {
return err
}
current = d.Addr
endpoint = &wgconn.StdNetEndpoint{AddrPort: current}
haveAddr = true
}
bufs = append(bufs, d.Payload)
if len(bufs) >= max {
if err := flush(); err != nil {
return err
}
}
}
return flush()
}
func (c *WGConn) ConfigureOffload(enableGSO, enableGRO bool, maxSegments int) {
c.enableGSO = enableGSO
c.enableGRO = enableGRO
if maxSegments <= 0 {
maxSegments = 1
} else if maxSegments > wgconn.IdealBatchSize {
maxSegments = wgconn.IdealBatchSize
}
c.gsoMaxSeg = maxSegments
effectiveBatch := c.reqBatch
if enableGSO && c.bind != nil {
bindBatch := c.bind.BatchSize()
if effectiveBatch < bindBatch {
if c.l != nil {
c.l.WithFields(logrus.Fields{
"requested": c.reqBatch,
"effective": bindBatch,
}).Warn("listen.batch below wireguard minimum; using bind batch size for UDP GSO support")
}
effectiveBatch = bindBatch
}
}
c.batch = effectiveBatch
if c.l != nil {
c.l.WithFields(logrus.Fields{
"enableGSO": enableGSO,
"enableGRO": enableGRO,
"gsoMaxSegments": maxSegments,
}).Debug("configured wireguard UDP offload")
}
}
func (c *WGConn) ReloadConfig(*config.C) {
// WireGuard bind currently does not expose runtime configuration knobs.
}
func (c *WGConn) Close() error {
var err error
c.closeOnce.Do(func() {
c.closed.Store(true)
err = c.bind.Close()
})
return err
}

View File

@@ -1,15 +0,0 @@
//go:build !linux || android || e2e_testing
package udp
import (
"fmt"
"net/netip"
"github.com/sirupsen/logrus"
)
// NewWireguardListener is only available on Linux builds.
func NewWireguardListener(*logrus.Logger, netip.Addr, int, bool, int) (Conn, error) {
return nil, fmt.Errorf("wireguard experimental UDP listener is only supported on Linux")
}

View File

@@ -1,539 +0,0 @@
// SPDX-License-Identifier: MIT
//
// Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved.
package conn
import (
"context"
"errors"
"net"
"net/netip"
"runtime"
"strconv"
"sync"
"syscall"
"golang.org/x/net/ipv4"
"golang.org/x/net/ipv6"
"golang.org/x/sys/unix"
)
var (
_ Bind = (*StdNetBind)(nil)
)
// StdNetBind implements Bind for all platforms. While Windows has its own Bind
// (see bind_windows.go), it may fall back to StdNetBind.
// TODO: Remove usage of ipv{4,6}.PacketConn when net.UDPConn has comparable
// methods for sending and receiving multiple datagrams per-syscall. See the
// proposal in https://github.com/golang/go/issues/45886#issuecomment-1218301564.
type StdNetBind struct {
mu sync.Mutex // protects all fields except as specified
ipv4 *net.UDPConn
ipv6 *net.UDPConn
ipv4PC *ipv4.PacketConn // will be nil on non-Linux
ipv6PC *ipv6.PacketConn // will be nil on non-Linux
// these three fields are not guarded by mu
udpAddrPool sync.Pool
ipv4MsgsPool sync.Pool
ipv6MsgsPool sync.Pool
blackhole4 bool
blackhole6 bool
listenAddr4 string
listenAddr6 string
bindV4 bool
bindV6 bool
reusePort bool
}
func newStdNetBind() *StdNetBind {
return &StdNetBind{
udpAddrPool: sync.Pool{
New: func() any {
return &net.UDPAddr{
IP: make([]byte, 16),
}
},
},
ipv4MsgsPool: sync.Pool{
New: func() any {
msgs := make([]ipv4.Message, IdealBatchSize)
for i := range msgs {
msgs[i].Buffers = make(net.Buffers, 1)
msgs[i].OOB = make([]byte, srcControlSize)
}
return &msgs
},
},
ipv6MsgsPool: sync.Pool{
New: func() any {
msgs := make([]ipv6.Message, IdealBatchSize)
for i := range msgs {
msgs[i].Buffers = make(net.Buffers, 1)
msgs[i].OOB = make([]byte, srcControlSize)
}
return &msgs
},
},
bindV4: true,
bindV6: true,
reusePort: false,
}
}
// NewStdNetBind creates a bind that listens on all interfaces.
func NewStdNetBind() *StdNetBind {
return newStdNetBind()
}
// NewStdNetBindForAddr creates a bind that listens on a specific address.
// If addr is IPv4, only the IPv4 socket will be created. For IPv6, only the
// IPv6 socket will be created.
func NewStdNetBindForAddr(addr netip.Addr, reusePort bool) *StdNetBind {
b := newStdNetBind()
if addr.IsValid() {
if addr.IsUnspecified() {
// keep dual-stack defaults with empty listen addresses
} else if addr.Is4() {
b.listenAddr4 = addr.Unmap().String()
b.bindV4 = true
b.bindV6 = false
} else {
b.listenAddr6 = addr.Unmap().String()
b.bindV6 = true
b.bindV4 = false
}
}
b.reusePort = reusePort
return b
}
type StdNetEndpoint struct {
// AddrPort is the endpoint destination.
netip.AddrPort
// src is the current sticky source address and interface index, if supported.
src struct {
netip.Addr
ifidx int32
}
}
var (
_ Bind = (*StdNetBind)(nil)
_ Endpoint = &StdNetEndpoint{}
)
func (*StdNetBind) ParseEndpoint(s string) (Endpoint, error) {
e, err := netip.ParseAddrPort(s)
if err != nil {
return nil, err
}
return &StdNetEndpoint{
AddrPort: e,
}, nil
}
func (e *StdNetEndpoint) ClearSrc() {
e.src.ifidx = 0
e.src.Addr = netip.Addr{}
}
func (e *StdNetEndpoint) DstIP() netip.Addr {
return e.AddrPort.Addr()
}
func (e *StdNetEndpoint) SrcIP() netip.Addr {
return e.src.Addr
}
func (e *StdNetEndpoint) SrcIfidx() int32 {
return e.src.ifidx
}
func (e *StdNetEndpoint) DstToBytes() []byte {
b, _ := e.AddrPort.MarshalBinary()
return b
}
func (e *StdNetEndpoint) DstToString() string {
return e.AddrPort.String()
}
func (e *StdNetEndpoint) SrcToString() string {
return e.src.Addr.String()
}
func (s *StdNetBind) listenNet(network string, host string, port int) (*net.UDPConn, int, error) {
lc := listenConfig()
if s.reusePort {
base := lc.Control
lc.Control = func(network, address string, c syscall.RawConn) error {
if base != nil {
if err := base(network, address, c); err != nil {
return err
}
}
return c.Control(func(fd uintptr) {
_ = unix.SetsockoptInt(int(fd), unix.SOL_SOCKET, unix.SO_REUSEPORT, 1)
})
}
}
addr := ":" + strconv.Itoa(port)
if host != "" {
addr = net.JoinHostPort(host, strconv.Itoa(port))
}
conn, err := lc.ListenPacket(context.Background(), network, addr)
if err != nil {
return nil, 0, err
}
// Retrieve port.
laddr := conn.LocalAddr()
uaddr, err := net.ResolveUDPAddr(
laddr.Network(),
laddr.String(),
)
if err != nil {
return nil, 0, err
}
return conn.(*net.UDPConn), uaddr.Port, nil
}
func (s *StdNetBind) openIPv4(port int) (*net.UDPConn, *ipv4.PacketConn, int, error) {
if !s.bindV4 {
return nil, nil, port, nil
}
host := s.listenAddr4
conn, actualPort, err := s.listenNet("udp4", host, port)
if err != nil {
if errors.Is(err, syscall.EAFNOSUPPORT) {
return nil, nil, port, nil
}
return nil, nil, port, err
}
if runtime.GOOS != "linux" {
return conn, nil, actualPort, nil
}
pc := ipv4.NewPacketConn(conn)
return conn, pc, actualPort, nil
}
func (s *StdNetBind) openIPv6(port int) (*net.UDPConn, *ipv6.PacketConn, int, error) {
if !s.bindV6 {
return nil, nil, port, nil
}
host := s.listenAddr6
conn, actualPort, err := s.listenNet("udp6", host, port)
if err != nil {
if errors.Is(err, syscall.EAFNOSUPPORT) {
return nil, nil, port, nil
}
return nil, nil, port, err
}
if runtime.GOOS != "linux" {
return conn, nil, actualPort, nil
}
pc := ipv6.NewPacketConn(conn)
return conn, pc, actualPort, nil
}
func (s *StdNetBind) Open(uport uint16) ([]ReceiveFunc, uint16, error) {
s.mu.Lock()
defer s.mu.Unlock()
var err error
var tries int
if s.ipv4 != nil || s.ipv6 != nil {
return nil, 0, ErrBindAlreadyOpen
}
// Attempt to open ipv4 and ipv6 listeners on the same port.
// If uport is 0, we can retry on failure.
again:
port := int(uport)
var v4conn *net.UDPConn
var v6conn *net.UDPConn
var v4pc *ipv4.PacketConn
var v6pc *ipv6.PacketConn
v4conn, v4pc, port, err = s.openIPv4(port)
if err != nil {
return nil, 0, err
}
// Listen on the same port as we're using for ipv4.
v6conn, v6pc, port, err = s.openIPv6(port)
if uport == 0 && errors.Is(err, syscall.EADDRINUSE) && tries < 100 {
if v4conn != nil {
v4conn.Close()
}
tries++
goto again
}
if err != nil {
if v4conn != nil {
v4conn.Close()
}
return nil, 0, err
}
var fns []ReceiveFunc
if v4conn != nil {
s.ipv4 = v4conn
if v4pc != nil {
s.ipv4PC = v4pc
}
fns = append(fns, s.makeReceiveIPv4(v4pc, v4conn))
}
if v6conn != nil {
s.ipv6 = v6conn
if v6pc != nil {
s.ipv6PC = v6pc
}
fns = append(fns, s.makeReceiveIPv6(v6pc, v6conn))
}
if len(fns) == 0 {
return nil, 0, syscall.EAFNOSUPPORT
}
return fns, uint16(port), nil
}
func (s *StdNetBind) makeReceiveIPv4(pc *ipv4.PacketConn, conn *net.UDPConn) ReceiveFunc {
return func(bufs [][]byte, sizes []int, eps []Endpoint) (n int, err error) {
msgs := s.ipv4MsgsPool.Get().(*[]ipv4.Message)
defer s.ipv4MsgsPool.Put(msgs)
for i := range bufs {
(*msgs)[i].Buffers[0] = bufs[i]
}
var numMsgs int
if runtime.GOOS == "linux" && pc != nil {
numMsgs, err = pc.ReadBatch(*msgs, 0)
if err != nil {
return 0, err
}
} else {
msg := &(*msgs)[0]
msg.N, msg.NN, _, msg.Addr, err = conn.ReadMsgUDP(msg.Buffers[0], msg.OOB)
if err != nil {
return 0, err
}
numMsgs = 1
}
for i := 0; i < numMsgs; i++ {
msg := &(*msgs)[i]
sizes[i] = msg.N
addrPort := msg.Addr.(*net.UDPAddr).AddrPort()
ep := &StdNetEndpoint{AddrPort: addrPort} // TODO: remove allocation
getSrcFromControl(msg.OOB[:msg.NN], ep)
eps[i] = ep
}
return numMsgs, nil
}
}
func (s *StdNetBind) makeReceiveIPv6(pc *ipv6.PacketConn, conn *net.UDPConn) ReceiveFunc {
return func(bufs [][]byte, sizes []int, eps []Endpoint) (n int, err error) {
msgs := s.ipv6MsgsPool.Get().(*[]ipv6.Message)
defer s.ipv6MsgsPool.Put(msgs)
for i := range bufs {
(*msgs)[i].Buffers[0] = bufs[i]
}
var numMsgs int
if runtime.GOOS == "linux" && pc != nil {
numMsgs, err = pc.ReadBatch(*msgs, 0)
if err != nil {
return 0, err
}
} else {
msg := &(*msgs)[0]
msg.N, msg.NN, _, msg.Addr, err = conn.ReadMsgUDP(msg.Buffers[0], msg.OOB)
if err != nil {
return 0, err
}
numMsgs = 1
}
for i := 0; i < numMsgs; i++ {
msg := &(*msgs)[i]
sizes[i] = msg.N
addrPort := msg.Addr.(*net.UDPAddr).AddrPort()
ep := &StdNetEndpoint{AddrPort: addrPort} // TODO: remove allocation
getSrcFromControl(msg.OOB[:msg.NN], ep)
eps[i] = ep
}
return numMsgs, nil
}
}
// TODO: When all Binds handle IdealBatchSize, remove this dynamic function and
// rename the IdealBatchSize constant to BatchSize.
func (s *StdNetBind) BatchSize() int {
if runtime.GOOS == "linux" {
return IdealBatchSize
}
return 1
}
func (s *StdNetBind) Close() error {
s.mu.Lock()
defer s.mu.Unlock()
var err1, err2 error
if s.ipv4 != nil {
err1 = s.ipv4.Close()
s.ipv4 = nil
s.ipv4PC = nil
}
if s.ipv6 != nil {
err2 = s.ipv6.Close()
s.ipv6 = nil
s.ipv6PC = nil
}
s.blackhole4 = false
s.blackhole6 = false
if err1 != nil {
return err1
}
return err2
}
func (s *StdNetBind) Send(bufs [][]byte, endpoint Endpoint) error {
s.mu.Lock()
blackhole := s.blackhole4
conn := s.ipv4
var (
pc4 *ipv4.PacketConn
pc6 *ipv6.PacketConn
)
is6 := false
if endpoint.DstIP().Is6() {
blackhole = s.blackhole6
conn = s.ipv6
pc6 = s.ipv6PC
is6 = true
} else {
pc4 = s.ipv4PC
}
s.mu.Unlock()
if blackhole {
return nil
}
if conn == nil {
return syscall.EAFNOSUPPORT
}
if is6 {
return s.send6(conn, pc6, endpoint, bufs)
} else {
return s.send4(conn, pc4, endpoint, bufs)
}
}
func (s *StdNetBind) send4(conn *net.UDPConn, pc *ipv4.PacketConn, ep Endpoint, bufs [][]byte) error {
ua := s.udpAddrPool.Get().(*net.UDPAddr)
as4 := ep.DstIP().As4()
copy(ua.IP, as4[:])
ua.IP = ua.IP[:4]
ua.Port = int(ep.(*StdNetEndpoint).Port())
msgs := s.ipv4MsgsPool.Get().(*[]ipv4.Message)
for i, buf := range bufs {
(*msgs)[i].Buffers[0] = buf
(*msgs)[i].Addr = ua
setSrcControl(&(*msgs)[i].OOB, ep.(*StdNetEndpoint))
}
var (
n int
err error
start int
)
if runtime.GOOS == "linux" && pc != nil {
for {
n, err = pc.WriteBatch((*msgs)[start:len(bufs)], 0)
if err != nil {
if errors.Is(err, syscall.EAFNOSUPPORT) {
for j := start; j < len(bufs); j++ {
_, _, werr := conn.WriteMsgUDP(bufs[j], (*msgs)[j].OOB, ua)
if werr != nil {
err = werr
break
}
}
}
break
}
if n == len((*msgs)[start:len(bufs)]) {
break
}
start += n
}
} else {
for i, buf := range bufs {
_, _, err = conn.WriteMsgUDP(buf, (*msgs)[i].OOB, ua)
if err != nil {
break
}
}
}
s.udpAddrPool.Put(ua)
s.ipv4MsgsPool.Put(msgs)
return err
}
func (s *StdNetBind) send6(conn *net.UDPConn, pc *ipv6.PacketConn, ep Endpoint, bufs [][]byte) error {
ua := s.udpAddrPool.Get().(*net.UDPAddr)
as16 := ep.DstIP().As16()
copy(ua.IP, as16[:])
ua.IP = ua.IP[:16]
ua.Port = int(ep.(*StdNetEndpoint).Port())
msgs := s.ipv6MsgsPool.Get().(*[]ipv6.Message)
for i, buf := range bufs {
(*msgs)[i].Buffers[0] = buf
(*msgs)[i].Addr = ua
setSrcControl(&(*msgs)[i].OOB, ep.(*StdNetEndpoint))
}
var (
n int
err error
start int
)
if runtime.GOOS == "linux" && pc != nil {
for {
n, err = pc.WriteBatch((*msgs)[start:len(bufs)], 0)
if err != nil {
if errors.Is(err, syscall.EAFNOSUPPORT) {
for j := start; j < len(bufs); j++ {
_, _, werr := conn.WriteMsgUDP(bufs[j], (*msgs)[j].OOB, ua)
if werr != nil {
err = werr
break
}
}
}
break
}
if n == len((*msgs)[start:len(bufs)]) {
break
}
start += n
}
} else {
for i, buf := range bufs {
_, _, err = conn.WriteMsgUDP(buf, (*msgs)[i].OOB, ua)
if err != nil {
break
}
}
}
s.udpAddrPool.Put(ua)
s.ipv6MsgsPool.Put(msgs)
return err
}

View File

@@ -1,131 +0,0 @@
// SPDX-License-Identifier: MIT
//
// Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved.
package conn
import (
"errors"
"fmt"
"net/netip"
"reflect"
"runtime"
"strings"
)
const (
IdealBatchSize = 128 // maximum number of packets handled per read and write
)
// A ReceiveFunc receives at least one packet from the network and writes them
// into packets. On a successful read it returns the number of elements of
// sizes, packets, and endpoints that should be evaluated. Some elements of
// sizes may be zero, and callers should ignore them. Callers must pass a sizes
// and eps slice with a length greater than or equal to the length of packets.
// These lengths must not exceed the length of the associated Bind.BatchSize().
type ReceiveFunc func(packets [][]byte, sizes []int, eps []Endpoint) (n int, err error)
// A Bind listens on a port for both IPv6 and IPv4 UDP traffic.
//
// A Bind interface may also be a PeekLookAtSocketFd or BindSocketToInterface,
// depending on the platform-specific implementation.
type Bind interface {
// Open puts the Bind into a listening state on a given port and reports the actual
// port that it bound to. Passing zero results in a random selection.
// fns is the set of functions that will be called to receive packets.
Open(port uint16) (fns []ReceiveFunc, actualPort uint16, err error)
// Close closes the Bind listener.
// All fns returned by Open must return net.ErrClosed after a call to Close.
Close() error
// SetMark sets the mark for each packet sent through this Bind.
// This mark is passed to the kernel as the socket option SO_MARK.
SetMark(mark uint32) error
// Send writes one or more packets in bufs to address ep. The length of
// bufs must not exceed BatchSize().
Send(bufs [][]byte, ep Endpoint) error
// ParseEndpoint creates a new endpoint from a string.
ParseEndpoint(s string) (Endpoint, error)
// BatchSize is the number of buffers expected to be passed to
// the ReceiveFuncs, and the maximum expected to be passed to SendBatch.
BatchSize() int
}
// BindSocketToInterface is implemented by Bind objects that support being
// tied to a single network interface. Used by wireguard-windows.
type BindSocketToInterface interface {
BindSocketToInterface4(interfaceIndex uint32, blackhole bool) error
BindSocketToInterface6(interfaceIndex uint32, blackhole bool) error
}
// PeekLookAtSocketFd is implemented by Bind objects that support having their
// file descriptor peeked at. Used by wireguard-android.
type PeekLookAtSocketFd interface {
PeekLookAtSocketFd4() (fd int, err error)
PeekLookAtSocketFd6() (fd int, err error)
}
// An Endpoint maintains the source/destination caching for a peer.
//
// dst: the remote address of a peer ("endpoint" in uapi terminology)
// src: the local address from which datagrams originate going to the peer
type Endpoint interface {
ClearSrc() // clears the source address
SrcToString() string // returns the local source address (ip:port)
DstToString() string // returns the destination address (ip:port)
DstToBytes() []byte // used for mac2 cookie calculations
DstIP() netip.Addr
SrcIP() netip.Addr
}
var (
ErrBindAlreadyOpen = errors.New("bind is already open")
ErrWrongEndpointType = errors.New("endpoint type does not correspond with bind type")
)
func (fn ReceiveFunc) PrettyName() string {
name := runtime.FuncForPC(reflect.ValueOf(fn).Pointer()).Name()
// 0. cheese/taco.beansIPv6.func12.func21218-fm
name = strings.TrimSuffix(name, "-fm")
// 1. cheese/taco.beansIPv6.func12.func21218
if idx := strings.LastIndexByte(name, '/'); idx != -1 {
name = name[idx+1:]
// 2. taco.beansIPv6.func12.func21218
}
for {
var idx int
for idx = len(name) - 1; idx >= 0; idx-- {
if name[idx] < '0' || name[idx] > '9' {
break
}
}
if idx == len(name)-1 {
break
}
const dotFunc = ".func"
if !strings.HasSuffix(name[:idx+1], dotFunc) {
break
}
name = name[:idx+1-len(dotFunc)]
// 3. taco.beansIPv6.func12
// 4. taco.beansIPv6
}
if idx := strings.LastIndexByte(name, '.'); idx != -1 {
name = name[idx+1:]
// 5. beansIPv6
}
if name == "" {
return fmt.Sprintf("%p", fn)
}
if strings.HasSuffix(name, "IPv4") {
return "v4"
}
if strings.HasSuffix(name, "IPv6") {
return "v6"
}
return name
}

View File

@@ -1,42 +0,0 @@
// SPDX-License-Identifier: MIT
//
// Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved.
package conn
import (
"net"
"syscall"
)
// UDP socket read/write buffer size (7MB). The value of 7MB is chosen as it is
// the max supported by a default configuration of macOS. Some platforms will
// silently clamp the value to other maximums, such as linux clamping to
// net.core.{r,w}mem_max (see _linux.go for additional implementation that works
// around this limitation)
const socketBufferSize = 7 << 20
// controlFn is the callback function signature from net.ListenConfig.Control.
// It is used to apply platform specific configuration to the socket prior to
// bind.
type controlFn func(network, address string, c syscall.RawConn) error
// controlFns is a list of functions that are called from the listen config
// that can apply socket options.
var controlFns = []controlFn{}
// listenConfig returns a net.ListenConfig that applies the controlFns to the
// socket prior to bind. This is used to apply socket buffer sizing and packet
// information OOB configuration for sticky sockets.
func listenConfig() *net.ListenConfig {
return &net.ListenConfig{
Control: func(network, address string, c syscall.RawConn) error {
for _, fn := range controlFns {
if err := fn(network, address, c); err != nil {
return err
}
}
return nil
},
}
}

View File

@@ -1,62 +0,0 @@
//go:build linux
// SPDX-License-Identifier: MIT
//
// Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved.
package conn
import (
"fmt"
"runtime"
"syscall"
"golang.org/x/sys/unix"
)
func init() {
controlFns = append(controlFns,
// Attempt to set the socket buffer size beyond net.core.{r,w}mem_max by
// using SO_*BUFFORCE. This requires CAP_NET_ADMIN, and is allowed here to
// fail silently - the result of failure is lower performance on very fast
// links or high latency links.
func(network, address string, c syscall.RawConn) error {
return c.Control(func(fd uintptr) {
// Set up to *mem_max
_ = unix.SetsockoptInt(int(fd), unix.SOL_SOCKET, unix.SO_RCVBUF, socketBufferSize)
_ = unix.SetsockoptInt(int(fd), unix.SOL_SOCKET, unix.SO_SNDBUF, socketBufferSize)
// Set beyond *mem_max if CAP_NET_ADMIN
_ = unix.SetsockoptInt(int(fd), unix.SOL_SOCKET, unix.SO_RCVBUFFORCE, socketBufferSize)
_ = unix.SetsockoptInt(int(fd), unix.SOL_SOCKET, unix.SO_SNDBUFFORCE, socketBufferSize)
})
},
// Enable receiving of the packet information (IP_PKTINFO for IPv4,
// IPV6_PKTINFO for IPv6) that is used to implement sticky socket support.
func(network, address string, c syscall.RawConn) error {
var err error
switch network {
case "udp4":
if runtime.GOOS != "android" {
c.Control(func(fd uintptr) {
err = unix.SetsockoptInt(int(fd), unix.IPPROTO_IP, unix.IP_PKTINFO, 1)
})
}
case "udp6":
c.Control(func(fd uintptr) {
if runtime.GOOS != "android" {
err = unix.SetsockoptInt(int(fd), unix.IPPROTO_IPV6, unix.IPV6_RECVPKTINFO, 1)
if err != nil {
return
}
}
err = unix.SetsockoptInt(int(fd), unix.IPPROTO_IPV6, unix.IPV6_V6ONLY, 1)
})
default:
err = fmt.Errorf("unhandled network: %s: %w", network, unix.EINVAL)
}
return err
},
)
}

View File

@@ -1,9 +0,0 @@
//go:build !windows
// SPDX-License-Identifier: MIT
//
// Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved.
package conn
func NewDefaultBind() Bind { return NewStdNetBind() }

View File

@@ -1,12 +0,0 @@
//go:build !linux
/* SPDX-License-Identifier: MIT
*
* Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved.
*/
package conn
func errShouldDisableUDPGSO(err error) bool {
return false
}

View File

@@ -1,26 +0,0 @@
/* SPDX-License-Identifier: MIT
*
* Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved.
*/
package conn
import (
"errors"
"os"
"golang.org/x/sys/unix"
)
func errShouldDisableUDPGSO(err error) bool {
var serr *os.SyscallError
if errors.As(err, &serr) {
// EIO is returned by udp_send_skb() if the device driver does not have
// tx checksumming enabled, which is a hard requirement of UDP_SEGMENT.
// See:
// https://git.kernel.org/pub/scm/docs/man-pages/man-pages.git/tree/man7/udp.7?id=806eabd74910447f21005160e90957bde4db0183#n228
// https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/net/ipv4/udp.c?h=v6.2&id=c9c3395d5e3dcc6daee66c6908354d47bf98cb0c#n942
return serr.Err == unix.EIO
}
return false
}

View File

@@ -1,15 +0,0 @@
//go:build !linux
// +build !linux
/* SPDX-License-Identifier: MIT
*
* Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved.
*/
package conn
import "net"
func supportsUDPOffload(conn *net.UDPConn) (txOffload, rxOffload bool) {
return
}

View File

@@ -1,29 +0,0 @@
/* SPDX-License-Identifier: MIT
*
* Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved.
*/
package conn
import (
"net"
"golang.org/x/sys/unix"
)
func supportsUDPOffload(conn *net.UDPConn) (txOffload, rxOffload bool) {
rc, err := conn.SyscallConn()
if err != nil {
return
}
err = rc.Control(func(fd uintptr) {
_, errSyscall := unix.GetsockoptInt(int(fd), unix.IPPROTO_UDP, unix.UDP_SEGMENT)
txOffload = errSyscall == nil
opt, errSyscall := unix.GetsockoptInt(int(fd), unix.IPPROTO_UDP, unix.UDP_GRO)
rxOffload = errSyscall == nil && opt == 1
})
if err != nil {
return false, false
}
return txOffload, rxOffload
}

View File

@@ -1,21 +0,0 @@
//go:build !linux
/* SPDX-License-Identifier: MIT
*
* Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved.
*/
package conn
// getGSOSize parses control for UDP_GRO and if found returns its GSO size data.
func getGSOSize(control []byte) (int, error) {
return 0, nil
}
// setGSOSize sets a UDP_SEGMENT in control based on gsoSize.
func setGSOSize(control *[]byte, gsoSize uint16) {
}
// gsoControlSize returns the recommended buffer size for pooling sticky and UDP
// offloading control data.
const gsoControlSize = 0

View File

@@ -1,65 +0,0 @@
//go:build linux
/* SPDX-License-Identifier: MIT
*
* Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved.
*/
package conn
import (
"fmt"
"unsafe"
"golang.org/x/sys/unix"
)
const (
sizeOfGSOData = 2
)
// getGSOSize parses control for UDP_GRO and if found returns its GSO size data.
func getGSOSize(control []byte) (int, error) {
var (
hdr unix.Cmsghdr
data []byte
rem = control
err error
)
for len(rem) > unix.SizeofCmsghdr {
hdr, data, rem, err = unix.ParseOneSocketControlMessage(rem)
if err != nil {
return 0, fmt.Errorf("error parsing socket control message: %w", err)
}
if hdr.Level == unix.SOL_UDP && hdr.Type == unix.UDP_GRO && len(data) >= sizeOfGSOData {
var gso uint16
copy(unsafe.Slice((*byte)(unsafe.Pointer(&gso)), sizeOfGSOData), data[:sizeOfGSOData])
return int(gso), nil
}
}
return 0, nil
}
// setGSOSize sets a UDP_SEGMENT in control based on gsoSize. It leaves existing
// data in control untouched.
func setGSOSize(control *[]byte, gsoSize uint16) {
existingLen := len(*control)
avail := cap(*control) - existingLen
space := unix.CmsgSpace(sizeOfGSOData)
if avail < space {
return
}
*control = (*control)[:cap(*control)]
gsoControl := (*control)[existingLen:]
hdr := (*unix.Cmsghdr)(unsafe.Pointer(&(gsoControl)[0]))
hdr.Level = unix.SOL_UDP
hdr.Type = unix.UDP_SEGMENT
hdr.SetLen(unix.CmsgLen(sizeOfGSOData))
copy((gsoControl)[unix.CmsgLen(0):], unsafe.Slice((*byte)(unsafe.Pointer(&gsoSize)), sizeOfGSOData))
*control = (*control)[:existingLen+space]
}
// gsoControlSize returns the recommended buffer size for pooling UDP
// offloading control data.
var gsoControlSize = unix.CmsgSpace(sizeOfGSOData)

View File

@@ -1,64 +0,0 @@
//go:build linux || openbsd || freebsd
// SPDX-License-Identifier: MIT
//
// Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved.
package conn
import (
"runtime"
"golang.org/x/sys/unix"
)
var fwmarkIoctl int
func init() {
switch runtime.GOOS {
case "linux", "android":
fwmarkIoctl = 36 /* unix.SO_MARK */
case "freebsd":
fwmarkIoctl = 0x1015 /* unix.SO_USER_COOKIE */
case "openbsd":
fwmarkIoctl = 0x1021 /* unix.SO_RTABLE */
}
}
func (s *StdNetBind) SetMark(mark uint32) error {
var operr error
if fwmarkIoctl == 0 {
return nil
}
if s.ipv4 != nil {
fd, err := s.ipv4.SyscallConn()
if err != nil {
return err
}
err = fd.Control(func(fd uintptr) {
operr = unix.SetsockoptInt(int(fd), unix.SOL_SOCKET, fwmarkIoctl, int(mark))
})
if err == nil {
err = operr
}
if err != nil {
return err
}
}
if s.ipv6 != nil {
fd, err := s.ipv6.SyscallConn()
if err != nil {
return err
}
err = fd.Control(func(fd uintptr) {
operr = unix.SetsockoptInt(int(fd), unix.SOL_SOCKET, fwmarkIoctl, int(mark))
})
if err == nil {
err = operr
}
if err != nil {
return err
}
}
return nil
}

View File

@@ -1,42 +0,0 @@
//go:build !linux || android
/* SPDX-License-Identifier: MIT
*
* Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved.
*/
package conn
import "net/netip"
func (e *StdNetEndpoint) SrcIP() netip.Addr {
return netip.Addr{}
}
func (e *StdNetEndpoint) SrcIfidx() int32 {
return 0
}
func (e *StdNetEndpoint) SrcToString() string {
return ""
}
// TODO: macOS, FreeBSD and other BSDs likely do support the sticky sockets
// {get,set}srcControl feature set, but use alternatively named flags and need
// ports and require testing.
// getSrcFromControl parses the control for PKTINFO and if found updates ep with
// the source information found.
func getSrcFromControl(control []byte, ep *StdNetEndpoint) {
}
// setSrcControl parses the control for PKTINFO and if found updates ep with
// the source information found.
func setSrcControl(control *[]byte, ep *StdNetEndpoint) {
}
// stickyControlSize returns the recommended buffer size for pooling sticky
// offloading control data.
const stickyControlSize = 0
const StdNetSupportsStickySockets = false

View File

@@ -1,116 +0,0 @@
//go:build linux && !android
// SPDX-License-Identifier: MIT
//
// Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved.
package conn
import (
"net/netip"
"unsafe"
"golang.org/x/sys/unix"
)
// getSrcFromControl parses the control for PKTINFO and if found updates ep with
// the source information found.
func getSrcFromControl(control []byte, ep *StdNetEndpoint) {
ep.ClearSrc()
var (
hdr unix.Cmsghdr
data []byte
rem []byte = control
err error
)
for len(rem) > unix.SizeofCmsghdr {
hdr, data, rem, err = unix.ParseOneSocketControlMessage(rem)
if err != nil {
return
}
if hdr.Level == unix.IPPROTO_IP &&
hdr.Type == unix.IP_PKTINFO {
info := pktInfoFromBuf[unix.Inet4Pktinfo](data)
ep.src.Addr = netip.AddrFrom4(info.Spec_dst)
ep.src.ifidx = info.Ifindex
return
}
if hdr.Level == unix.IPPROTO_IPV6 &&
hdr.Type == unix.IPV6_PKTINFO {
info := pktInfoFromBuf[unix.Inet6Pktinfo](data)
ep.src.Addr = netip.AddrFrom16(info.Addr)
ep.src.ifidx = int32(info.Ifindex)
return
}
}
}
// pktInfoFromBuf returns type T populated from the provided buf via copy(). It
// panics if buf is of insufficient size.
func pktInfoFromBuf[T unix.Inet4Pktinfo | unix.Inet6Pktinfo](buf []byte) (t T) {
size := int(unsafe.Sizeof(t))
if len(buf) < size {
panic("pktInfoFromBuf: buffer too small")
}
copy(unsafe.Slice((*byte)(unsafe.Pointer(&t)), size), buf)
return t
}
// setSrcControl sets an IP{V6}_PKTINFO in control based on the source address
// and source ifindex found in ep. control's len will be set to 0 in the event
// that ep is a default value.
func setSrcControl(control *[]byte, ep *StdNetEndpoint) {
*control = (*control)[:cap(*control)]
if len(*control) < int(unsafe.Sizeof(unix.Cmsghdr{})) {
*control = (*control)[:0]
return
}
if ep.src.ifidx == 0 && !ep.SrcIP().IsValid() {
*control = (*control)[:0]
return
}
if len(*control) < srcControlSize {
*control = (*control)[:0]
return
}
hdr := (*unix.Cmsghdr)(unsafe.Pointer(&(*control)[0]))
if ep.SrcIP().Is4() {
hdr.Level = unix.IPPROTO_IP
hdr.Type = unix.IP_PKTINFO
hdr.SetLen(unix.CmsgLen(unix.SizeofInet4Pktinfo))
info := (*unix.Inet4Pktinfo)(unsafe.Pointer(&(*control)[unix.SizeofCmsghdr]))
info.Ifindex = ep.src.ifidx
if ep.SrcIP().IsValid() {
info.Spec_dst = ep.SrcIP().As4()
}
*control = (*control)[:unix.CmsgSpace(unix.SizeofInet4Pktinfo)]
} else {
hdr.Level = unix.IPPROTO_IPV6
hdr.Type = unix.IPV6_PKTINFO
hdr.SetLen(unix.CmsgLen(unix.SizeofInet6Pktinfo))
info := (*unix.Inet6Pktinfo)(unsafe.Pointer(&(*control)[unix.SizeofCmsghdr]))
info.Ifindex = uint32(ep.src.ifidx)
if ep.SrcIP().IsValid() {
info.Addr = ep.SrcIP().As16()
}
*control = (*control)[:unix.CmsgSpace(unix.SizeofInet6Pktinfo)]
}
}
var srcControlSize = unix.CmsgSpace(unix.SizeofInet6Pktinfo)
const StdNetSupportsStickySockets = true

View File

@@ -1,42 +0,0 @@
package tun
import "encoding/binary"
// TODO: Explore SIMD and/or other assembly optimizations.
func checksumNoFold(b []byte, initial uint64) uint64 {
ac := initial
i := 0
n := len(b)
for n >= 4 {
ac += uint64(binary.BigEndian.Uint32(b[i : i+4]))
n -= 4
i += 4
}
for n >= 2 {
ac += uint64(binary.BigEndian.Uint16(b[i : i+2]))
n -= 2
i += 2
}
if n == 1 {
ac += uint64(b[i]) << 8
}
return ac
}
func checksum(b []byte, initial uint64) uint16 {
ac := checksumNoFold(b, initial)
ac = (ac >> 16) + (ac & 0xffff)
ac = (ac >> 16) + (ac & 0xffff)
ac = (ac >> 16) + (ac & 0xffff)
ac = (ac >> 16) + (ac & 0xffff)
return uint16(ac)
}
func pseudoHeaderChecksumNoFold(protocol uint8, srcAddr, dstAddr []byte, totalLen uint16) uint64 {
sum := checksumNoFold(srcAddr, 0)
sum = checksumNoFold(dstAddr, sum)
sum = checksumNoFold([]byte{0, protocol}, sum)
tmp := make([]byte, 2)
binary.BigEndian.PutUint16(tmp, totalLen)
return checksumNoFold(tmp, sum)
}

View File

@@ -1,3 +0,0 @@
package tun
const VirtioNetHdrLen = virtioNetHdrLen

View File

@@ -1,630 +0,0 @@
//go:build linux
// SPDX-License-Identifier: MIT
//
// Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved.
package tun
import (
"bytes"
"encoding/binary"
"errors"
"io"
"unsafe"
wgconn "github.com/slackhq/nebula/wgstack/conn"
"golang.org/x/sys/unix"
)
var ErrTooManySegments = errors.New("tun: too many segments for TSO")
const tcpFlagsOffset = 13
const (
tcpFlagFIN uint8 = 0x01
tcpFlagPSH uint8 = 0x08
tcpFlagACK uint8 = 0x10
)
// virtioNetHdr is defined in the kernel in include/uapi/linux/virtio_net.h. The
// kernel symbol is virtio_net_hdr.
type virtioNetHdr struct {
flags uint8
gsoType uint8
hdrLen uint16
gsoSize uint16
csumStart uint16
csumOffset uint16
}
func (v *virtioNetHdr) decode(b []byte) error {
if len(b) < virtioNetHdrLen {
return io.ErrShortBuffer
}
copy(unsafe.Slice((*byte)(unsafe.Pointer(v)), virtioNetHdrLen), b[:virtioNetHdrLen])
return nil
}
func (v *virtioNetHdr) encode(b []byte) error {
if len(b) < virtioNetHdrLen {
return io.ErrShortBuffer
}
copy(b[:virtioNetHdrLen], unsafe.Slice((*byte)(unsafe.Pointer(v)), virtioNetHdrLen))
return nil
}
const (
// virtioNetHdrLen is the length in bytes of virtioNetHdr. This matches the
// shape of the C ABI for its kernel counterpart -- sizeof(virtio_net_hdr).
virtioNetHdrLen = int(unsafe.Sizeof(virtioNetHdr{}))
)
// flowKey represents the key for a flow.
type flowKey struct {
srcAddr, dstAddr [16]byte
srcPort, dstPort uint16
rxAck uint32 // varying ack values should not be coalesced. Treat them as separate flows.
}
// tcpGROTable holds flow and coalescing information for the purposes of GRO.
type tcpGROTable struct {
itemsByFlow map[flowKey][]tcpGROItem
itemsPool [][]tcpGROItem
}
func newTCPGROTable() *tcpGROTable {
t := &tcpGROTable{
itemsByFlow: make(map[flowKey][]tcpGROItem, wgconn.IdealBatchSize),
itemsPool: make([][]tcpGROItem, wgconn.IdealBatchSize),
}
for i := range t.itemsPool {
t.itemsPool[i] = make([]tcpGROItem, 0, wgconn.IdealBatchSize)
}
return t
}
func newFlowKey(pkt []byte, srcAddr, dstAddr, tcphOffset int) flowKey {
key := flowKey{}
addrSize := dstAddr - srcAddr
copy(key.srcAddr[:], pkt[srcAddr:dstAddr])
copy(key.dstAddr[:], pkt[dstAddr:dstAddr+addrSize])
key.srcPort = binary.BigEndian.Uint16(pkt[tcphOffset:])
key.dstPort = binary.BigEndian.Uint16(pkt[tcphOffset+2:])
key.rxAck = binary.BigEndian.Uint32(pkt[tcphOffset+8:])
return key
}
// lookupOrInsert looks up a flow for the provided packet and metadata,
// returning the packets found for the flow, or inserting a new one if none
// is found.
func (t *tcpGROTable) lookupOrInsert(pkt []byte, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, bufsIndex int) ([]tcpGROItem, bool) {
key := newFlowKey(pkt, srcAddrOffset, dstAddrOffset, tcphOffset)
items, ok := t.itemsByFlow[key]
if ok {
return items, ok
}
// TODO: insert() performs another map lookup. This could be rearranged to avoid.
t.insert(pkt, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, bufsIndex)
return nil, false
}
// insert an item in the table for the provided packet and packet metadata.
func (t *tcpGROTable) insert(pkt []byte, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, bufsIndex int) {
key := newFlowKey(pkt, srcAddrOffset, dstAddrOffset, tcphOffset)
item := tcpGROItem{
key: key,
bufsIndex: uint16(bufsIndex),
gsoSize: uint16(len(pkt[tcphOffset+tcphLen:])),
iphLen: uint8(tcphOffset),
tcphLen: uint8(tcphLen),
sentSeq: binary.BigEndian.Uint32(pkt[tcphOffset+4:]),
pshSet: pkt[tcphOffset+tcpFlagsOffset]&tcpFlagPSH != 0,
}
items, ok := t.itemsByFlow[key]
if !ok {
items = t.newItems()
}
items = append(items, item)
t.itemsByFlow[key] = items
}
func (t *tcpGROTable) updateAt(item tcpGROItem, i int) {
items, _ := t.itemsByFlow[item.key]
items[i] = item
}
func (t *tcpGROTable) deleteAt(key flowKey, i int) {
items, _ := t.itemsByFlow[key]
items = append(items[:i], items[i+1:]...)
t.itemsByFlow[key] = items
}
// tcpGROItem represents bookkeeping data for a TCP packet during the lifetime
// of a GRO evaluation across a vector of packets.
type tcpGROItem struct {
key flowKey
sentSeq uint32 // the sequence number
bufsIndex uint16 // the index into the original bufs slice
numMerged uint16 // the number of packets merged into this item
gsoSize uint16 // payload size
iphLen uint8 // ip header len
tcphLen uint8 // tcp header len
pshSet bool // psh flag is set
}
func (t *tcpGROTable) newItems() []tcpGROItem {
var items []tcpGROItem
items, t.itemsPool = t.itemsPool[len(t.itemsPool)-1], t.itemsPool[:len(t.itemsPool)-1]
return items
}
func (t *tcpGROTable) reset() {
for k, items := range t.itemsByFlow {
items = items[:0]
t.itemsPool = append(t.itemsPool, items)
delete(t.itemsByFlow, k)
}
}
// canCoalesce represents the outcome of checking if two TCP packets are
// candidates for coalescing.
type canCoalesce int
const (
coalescePrepend canCoalesce = -1
coalesceUnavailable canCoalesce = 0
coalesceAppend canCoalesce = 1
)
// tcpPacketsCanCoalesce evaluates if pkt can be coalesced with the packet
// described by item. This function makes considerations that match the kernel's
// GRO self tests, which can be found in tools/testing/selftests/net/gro.c.
func tcpPacketsCanCoalesce(pkt []byte, iphLen, tcphLen uint8, seq uint32, pshSet bool, gsoSize uint16, item tcpGROItem, bufs [][]byte, bufsOffset int) canCoalesce {
pktTarget := bufs[item.bufsIndex][bufsOffset:]
if tcphLen != item.tcphLen {
// cannot coalesce with unequal tcp options len
return coalesceUnavailable
}
if tcphLen > 20 {
if !bytes.Equal(pkt[iphLen+20:iphLen+tcphLen], pktTarget[item.iphLen+20:iphLen+tcphLen]) {
// cannot coalesce with unequal tcp options
return coalesceUnavailable
}
}
if pkt[0]>>4 == 6 {
if pkt[0] != pktTarget[0] || pkt[1]>>4 != pktTarget[1]>>4 {
// cannot coalesce with unequal Traffic class values
return coalesceUnavailable
}
if pkt[7] != pktTarget[7] {
// cannot coalesce with unequal Hop limit values
return coalesceUnavailable
}
} else {
if pkt[1] != pktTarget[1] {
// cannot coalesce with unequal ToS values
return coalesceUnavailable
}
if pkt[6]>>5 != pktTarget[6]>>5 {
// cannot coalesce with unequal DF or reserved bits. MF is checked
// further up the stack.
return coalesceUnavailable
}
if pkt[8] != pktTarget[8] {
// cannot coalesce with unequal TTL values
return coalesceUnavailable
}
}
// seq adjacency
lhsLen := item.gsoSize
lhsLen += item.numMerged * item.gsoSize
if seq == item.sentSeq+uint32(lhsLen) { // pkt aligns following item from a seq num perspective
if item.pshSet {
// We cannot append to a segment that has the PSH flag set, PSH
// can only be set on the final segment in a reassembled group.
return coalesceUnavailable
}
if len(pktTarget[iphLen+tcphLen:])%int(item.gsoSize) != 0 {
// A smaller than gsoSize packet has been appended previously.
// Nothing can come after a smaller packet on the end.
return coalesceUnavailable
}
if gsoSize > item.gsoSize {
// We cannot have a larger packet following a smaller one.
return coalesceUnavailable
}
return coalesceAppend
} else if seq+uint32(gsoSize) == item.sentSeq { // pkt aligns in front of item from a seq num perspective
if pshSet {
// We cannot prepend with a segment that has the PSH flag set, PSH
// can only be set on the final segment in a reassembled group.
return coalesceUnavailable
}
if gsoSize < item.gsoSize {
// We cannot have a larger packet following a smaller one.
return coalesceUnavailable
}
if gsoSize > item.gsoSize && item.numMerged > 0 {
// There's at least one previous merge, and we're larger than all
// previous. This would put multiple smaller packets on the end.
return coalesceUnavailable
}
return coalescePrepend
}
return coalesceUnavailable
}
func tcpChecksumValid(pkt []byte, iphLen uint8, isV6 bool) bool {
srcAddrAt := ipv4SrcAddrOffset
addrSize := 4
if isV6 {
srcAddrAt = ipv6SrcAddrOffset
addrSize = 16
}
tcpTotalLen := uint16(len(pkt) - int(iphLen))
tcpCSumNoFold := pseudoHeaderChecksumNoFold(unix.IPPROTO_TCP, pkt[srcAddrAt:srcAddrAt+addrSize], pkt[srcAddrAt+addrSize:srcAddrAt+addrSize*2], tcpTotalLen)
return ^checksum(pkt[iphLen:], tcpCSumNoFold) == 0
}
// coalesceResult represents the result of attempting to coalesce two TCP
// packets.
type coalesceResult int
const (
coalesceInsufficientCap coalesceResult = 0
coalescePSHEnding coalesceResult = 1
coalesceItemInvalidCSum coalesceResult = 2
coalescePktInvalidCSum coalesceResult = 3
coalesceSuccess coalesceResult = 4
)
// coalesceTCPPackets attempts to coalesce pkt with the packet described by
// item, returning the outcome. This function may swap bufs elements in the
// event of a prepend as item's bufs index is already being tracked for writing
// to a Device.
func coalesceTCPPackets(mode canCoalesce, pkt []byte, pktBuffsIndex int, gsoSize uint16, seq uint32, pshSet bool, item *tcpGROItem, bufs [][]byte, bufsOffset int, isV6 bool) coalesceResult {
var pktHead []byte // the packet that will end up at the front
headersLen := item.iphLen + item.tcphLen
coalescedLen := len(bufs[item.bufsIndex][bufsOffset:]) + len(pkt) - int(headersLen)
// Copy data
if mode == coalescePrepend {
pktHead = pkt
if cap(pkt)-bufsOffset < coalescedLen {
// We don't want to allocate a new underlying array if capacity is
// too small.
return coalesceInsufficientCap
}
if pshSet {
return coalescePSHEnding
}
if item.numMerged == 0 {
if !tcpChecksumValid(bufs[item.bufsIndex][bufsOffset:], item.iphLen, isV6) {
return coalesceItemInvalidCSum
}
}
if !tcpChecksumValid(pkt, item.iphLen, isV6) {
return coalescePktInvalidCSum
}
item.sentSeq = seq
extendBy := coalescedLen - len(pktHead)
bufs[pktBuffsIndex] = append(bufs[pktBuffsIndex], make([]byte, extendBy)...)
copy(bufs[pktBuffsIndex][bufsOffset+len(pkt):], bufs[item.bufsIndex][bufsOffset+int(headersLen):])
// Flip the slice headers in bufs as part of prepend. The index of item
// is already being tracked for writing.
bufs[item.bufsIndex], bufs[pktBuffsIndex] = bufs[pktBuffsIndex], bufs[item.bufsIndex]
} else {
pktHead = bufs[item.bufsIndex][bufsOffset:]
if cap(pktHead)-bufsOffset < coalescedLen {
// We don't want to allocate a new underlying array if capacity is
// too small.
return coalesceInsufficientCap
}
if item.numMerged == 0 {
if !tcpChecksumValid(bufs[item.bufsIndex][bufsOffset:], item.iphLen, isV6) {
return coalesceItemInvalidCSum
}
}
if !tcpChecksumValid(pkt, item.iphLen, isV6) {
return coalescePktInvalidCSum
}
if pshSet {
// We are appending a segment with PSH set.
item.pshSet = pshSet
pktHead[item.iphLen+tcpFlagsOffset] |= tcpFlagPSH
}
extendBy := len(pkt) - int(headersLen)
bufs[item.bufsIndex] = append(bufs[item.bufsIndex], make([]byte, extendBy)...)
copy(bufs[item.bufsIndex][bufsOffset+len(pktHead):], pkt[headersLen:])
}
if gsoSize > item.gsoSize {
item.gsoSize = gsoSize
}
hdr := virtioNetHdr{
flags: unix.VIRTIO_NET_HDR_F_NEEDS_CSUM, // this turns into CHECKSUM_PARTIAL in the skb
hdrLen: uint16(headersLen),
gsoSize: uint16(item.gsoSize),
csumStart: uint16(item.iphLen),
csumOffset: 16,
}
// Recalculate the total len (IPv4) or payload len (IPv6). Recalculate the
// (IPv4) header checksum.
if isV6 {
hdr.gsoType = unix.VIRTIO_NET_HDR_GSO_TCPV6
binary.BigEndian.PutUint16(pktHead[4:], uint16(coalescedLen)-uint16(item.iphLen)) // set new payload len
} else {
hdr.gsoType = unix.VIRTIO_NET_HDR_GSO_TCPV4
pktHead[10], pktHead[11] = 0, 0 // clear checksum field
binary.BigEndian.PutUint16(pktHead[2:], uint16(coalescedLen)) // set new total length
iphCSum := ^checksum(pktHead[:item.iphLen], 0) // compute checksum
binary.BigEndian.PutUint16(pktHead[10:], iphCSum) // set checksum field
}
hdr.encode(bufs[item.bufsIndex][bufsOffset-virtioNetHdrLen:])
// Calculate the pseudo header checksum and place it at the TCP checksum
// offset. Downstream checksum offloading will combine this with computation
// of the tcp header and payload checksum.
addrLen := 4
addrOffset := ipv4SrcAddrOffset
if isV6 {
addrLen = 16
addrOffset = ipv6SrcAddrOffset
}
srcAddrAt := bufsOffset + addrOffset
srcAddr := bufs[item.bufsIndex][srcAddrAt : srcAddrAt+addrLen]
dstAddr := bufs[item.bufsIndex][srcAddrAt+addrLen : srcAddrAt+addrLen*2]
psum := pseudoHeaderChecksumNoFold(unix.IPPROTO_TCP, srcAddr, dstAddr, uint16(coalescedLen-int(item.iphLen)))
binary.BigEndian.PutUint16(pktHead[hdr.csumStart+hdr.csumOffset:], checksum([]byte{}, psum))
item.numMerged++
return coalesceSuccess
}
const (
ipv4FlagMoreFragments uint8 = 0x20
)
const (
ipv4SrcAddrOffset = 12
ipv6SrcAddrOffset = 8
maxUint16 = 1<<16 - 1
)
// tcpGRO evaluates the TCP packet at pktI in bufs for coalescing with
// existing packets tracked in table. It will return false when pktI is not
// coalesced, otherwise true. This indicates to the caller if bufs[pktI]
// should be written to the Device.
func tcpGRO(bufs [][]byte, offset int, pktI int, table *tcpGROTable, isV6 bool) (pktCoalesced bool) {
pkt := bufs[pktI][offset:]
if len(pkt) > maxUint16 {
// A valid IPv4 or IPv6 packet will never exceed this.
return false
}
iphLen := int((pkt[0] & 0x0F) * 4)
if isV6 {
iphLen = 40
ipv6HPayloadLen := int(binary.BigEndian.Uint16(pkt[4:]))
if ipv6HPayloadLen != len(pkt)-iphLen {
return false
}
} else {
totalLen := int(binary.BigEndian.Uint16(pkt[2:]))
if totalLen != len(pkt) {
return false
}
}
if len(pkt) < iphLen {
return false
}
tcphLen := int((pkt[iphLen+12] >> 4) * 4)
if tcphLen < 20 || tcphLen > 60 {
return false
}
if len(pkt) < iphLen+tcphLen {
return false
}
if !isV6 {
if pkt[6]&ipv4FlagMoreFragments != 0 || pkt[6]<<3 != 0 || pkt[7] != 0 {
// no GRO support for fragmented segments for now
return false
}
}
tcpFlags := pkt[iphLen+tcpFlagsOffset]
var pshSet bool
// not a candidate if any non-ACK flags (except PSH+ACK) are set
if tcpFlags != tcpFlagACK {
if pkt[iphLen+tcpFlagsOffset] != tcpFlagACK|tcpFlagPSH {
return false
}
pshSet = true
}
gsoSize := uint16(len(pkt) - tcphLen - iphLen)
// not a candidate if payload len is 0
if gsoSize < 1 {
return false
}
seq := binary.BigEndian.Uint32(pkt[iphLen+4:])
srcAddrOffset := ipv4SrcAddrOffset
addrLen := 4
if isV6 {
srcAddrOffset = ipv6SrcAddrOffset
addrLen = 16
}
items, existing := table.lookupOrInsert(pkt, srcAddrOffset, srcAddrOffset+addrLen, iphLen, tcphLen, pktI)
if !existing {
return false
}
for i := len(items) - 1; i >= 0; i-- {
// In the best case of packets arriving in order iterating in reverse is
// more efficient if there are multiple items for a given flow. This
// also enables a natural table.deleteAt() in the
// coalesceItemInvalidCSum case without the need for index tracking.
// This algorithm makes a best effort to coalesce in the event of
// unordered packets, where pkt may land anywhere in items from a
// sequence number perspective, however once an item is inserted into
// the table it is never compared across other items later.
item := items[i]
can := tcpPacketsCanCoalesce(pkt, uint8(iphLen), uint8(tcphLen), seq, pshSet, gsoSize, item, bufs, offset)
if can != coalesceUnavailable {
result := coalesceTCPPackets(can, pkt, pktI, gsoSize, seq, pshSet, &item, bufs, offset, isV6)
switch result {
case coalesceSuccess:
table.updateAt(item, i)
return true
case coalesceItemInvalidCSum:
// delete the item with an invalid csum
table.deleteAt(item.key, i)
case coalescePktInvalidCSum:
// no point in inserting an item that we can't coalesce
return false
default:
}
}
}
// failed to coalesce with any other packets; store the item in the flow
table.insert(pkt, srcAddrOffset, srcAddrOffset+addrLen, iphLen, tcphLen, pktI)
return false
}
func isTCP4NoIPOptions(b []byte) bool {
if len(b) < 40 {
return false
}
if b[0]>>4 != 4 {
return false
}
if b[0]&0x0F != 5 {
return false
}
if b[9] != unix.IPPROTO_TCP {
return false
}
return true
}
func isTCP6NoEH(b []byte) bool {
if len(b) < 60 {
return false
}
if b[0]>>4 != 6 {
return false
}
if b[6] != unix.IPPROTO_TCP {
return false
}
return true
}
// handleGRO evaluates bufs for GRO, and writes the indices of the resulting
// packets into toWrite. toWrite, tcp4Table, and tcp6Table should initially be
// empty (but non-nil), and are passed in to save allocs as the caller may reset
// and recycle them across vectors of packets.
func handleGRO(bufs [][]byte, offset int, tcp4Table, tcp6Table *tcpGROTable, toWrite *[]int) error {
for i := range bufs {
if offset < virtioNetHdrLen || offset > len(bufs[i])-1 {
return errors.New("invalid offset")
}
var coalesced bool
switch {
case isTCP4NoIPOptions(bufs[i][offset:]): // ipv4 packets w/IP options do not coalesce
coalesced = tcpGRO(bufs, offset, i, tcp4Table, false)
case isTCP6NoEH(bufs[i][offset:]): // ipv6 packets w/extension headers do not coalesce
coalesced = tcpGRO(bufs, offset, i, tcp6Table, true)
}
if !coalesced {
hdr := virtioNetHdr{}
err := hdr.encode(bufs[i][offset-virtioNetHdrLen:])
if err != nil {
return err
}
*toWrite = append(*toWrite, i)
}
}
return nil
}
// tcpTSO splits packets from in into outBuffs, writing the size of each
// element into sizes. It returns the number of buffers populated, and/or an
// error.
func tcpTSO(in []byte, hdr virtioNetHdr, outBuffs [][]byte, sizes []int, outOffset int) (int, error) {
iphLen := int(hdr.csumStart)
srcAddrOffset := ipv6SrcAddrOffset
addrLen := 16
if hdr.gsoType == unix.VIRTIO_NET_HDR_GSO_TCPV4 {
in[10], in[11] = 0, 0 // clear ipv4 header checksum
srcAddrOffset = ipv4SrcAddrOffset
addrLen = 4
}
tcpCSumAt := int(hdr.csumStart + hdr.csumOffset)
in[tcpCSumAt], in[tcpCSumAt+1] = 0, 0 // clear tcp checksum
firstTCPSeqNum := binary.BigEndian.Uint32(in[hdr.csumStart+4:])
nextSegmentDataAt := int(hdr.hdrLen)
i := 0
for ; nextSegmentDataAt < len(in); i++ {
if i == len(outBuffs) {
return i - 1, ErrTooManySegments
}
nextSegmentEnd := nextSegmentDataAt + int(hdr.gsoSize)
if nextSegmentEnd > len(in) {
nextSegmentEnd = len(in)
}
segmentDataLen := nextSegmentEnd - nextSegmentDataAt
totalLen := int(hdr.hdrLen) + segmentDataLen
sizes[i] = totalLen
out := outBuffs[i][outOffset:]
copy(out, in[:iphLen])
if hdr.gsoType == unix.VIRTIO_NET_HDR_GSO_TCPV4 {
// For IPv4 we are responsible for incrementing the ID field,
// updating the total len field, and recalculating the header
// checksum.
if i > 0 {
id := binary.BigEndian.Uint16(out[4:])
id += uint16(i)
binary.BigEndian.PutUint16(out[4:], id)
}
binary.BigEndian.PutUint16(out[2:], uint16(totalLen))
ipv4CSum := ^checksum(out[:iphLen], 0)
binary.BigEndian.PutUint16(out[10:], ipv4CSum)
} else {
// For IPv6 we are responsible for updating the payload length field.
binary.BigEndian.PutUint16(out[4:], uint16(totalLen-iphLen))
}
// TCP header
copy(out[hdr.csumStart:hdr.hdrLen], in[hdr.csumStart:hdr.hdrLen])
tcpSeq := firstTCPSeqNum + uint32(hdr.gsoSize*uint16(i))
binary.BigEndian.PutUint32(out[hdr.csumStart+4:], tcpSeq)
if nextSegmentEnd != len(in) {
// FIN and PSH should only be set on last segment
clearFlags := tcpFlagFIN | tcpFlagPSH
out[hdr.csumStart+tcpFlagsOffset] &^= clearFlags
}
// payload
copy(out[hdr.hdrLen:], in[nextSegmentDataAt:nextSegmentEnd])
// TCP checksum
tcpHLen := int(hdr.hdrLen - hdr.csumStart)
tcpLenForPseudo := uint16(tcpHLen + segmentDataLen)
tcpCSumNoFold := pseudoHeaderChecksumNoFold(unix.IPPROTO_TCP, in[srcAddrOffset:srcAddrOffset+addrLen], in[srcAddrOffset+addrLen:srcAddrOffset+addrLen*2], tcpLenForPseudo)
tcpCSum := ^checksum(out[hdr.csumStart:totalLen], tcpCSumNoFold)
binary.BigEndian.PutUint16(out[hdr.csumStart+hdr.csumOffset:], tcpCSum)
nextSegmentDataAt += int(hdr.gsoSize)
}
return i, nil
}
func gsoNoneChecksum(in []byte, cSumStart, cSumOffset uint16) error {
cSumAt := cSumStart + cSumOffset
// The initial value at the checksum offset should be summed with the
// checksum we compute. This is typically the pseudo-header checksum.
initial := binary.BigEndian.Uint16(in[cSumAt:])
in[cSumAt], in[cSumAt+1] = 0, 0
binary.BigEndian.PutUint16(in[cSumAt:], ^checksum(in[cSumStart:], uint64(initial)))
return nil
}

View File

@@ -1,52 +0,0 @@
// SPDX-License-Identifier: MIT
//
// Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved.
package tun
import (
"os"
)
type Event int
const (
EventUp = 1 << iota
EventDown
EventMTUUpdate
)
type Device interface {
// File returns the file descriptor of the device.
File() *os.File
// Read one or more packets from the Device (without any additional headers).
// On a successful read it returns the number of packets read, and sets
// packet lengths within the sizes slice. len(sizes) must be >= len(bufs).
// A nonzero offset can be used to instruct the Device on where to begin
// reading into each element of the bufs slice.
Read(bufs [][]byte, sizes []int, offset int) (n int, err error)
// Write one or more packets to the device (without any additional headers).
// On a successful write it returns the number of packets written. A nonzero
// offset can be used to instruct the Device on where to begin writing from
// each packet contained within the bufs slice.
Write(bufs [][]byte, offset int) (int, error)
// MTU returns the MTU of the Device.
MTU() (int, error)
// Name returns the current name of the Device.
Name() (string, error)
// Events returns a channel of type Event, which is fed Device events.
Events() <-chan Event
// Close stops the Device and closes the Event channel.
Close() error
// BatchSize returns the preferred/max number of packets that can be read or
// written in a single read/write call. BatchSize must not change over the
// lifetime of a Device.
BatchSize() int
}

View File

@@ -1,664 +0,0 @@
//go:build linux
// SPDX-License-Identifier: MIT
//
// Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved.
package tun
/* Implementation of the TUN device interface for linux
*/
import (
"errors"
"fmt"
"os"
"sync"
"syscall"
"time"
"unsafe"
wgconn "github.com/slackhq/nebula/wgstack/conn"
"golang.org/x/sys/unix"
"golang.zx2c4.com/wireguard/rwcancel"
)
const (
cloneDevicePath = "/dev/net/tun"
ifReqSize = unix.IFNAMSIZ + 64
)
type NativeTun struct {
tunFile *os.File
index int32 // if index
errors chan error // async error handling
events chan Event // device related events
netlinkSock int
netlinkCancel *rwcancel.RWCancel
hackListenerClosed sync.Mutex
statusListenersShutdown chan struct{}
batchSize int
vnetHdr bool
closeOnce sync.Once
nameOnce sync.Once // guards calling initNameCache, which sets following fields
nameCache string // name of interface
nameErr error
readOpMu sync.Mutex // readOpMu guards readBuff
readBuff [virtioNetHdrLen + 65535]byte // if vnetHdr every read() is prefixed by virtioNetHdr
writeOpMu sync.Mutex // writeOpMu guards toWrite, tcp4GROTable, tcp6GROTable
toWrite []int
tcp4GROTable, tcp6GROTable *tcpGROTable
}
func (tun *NativeTun) File() *os.File {
return tun.tunFile
}
func (tun *NativeTun) routineHackListener() {
defer tun.hackListenerClosed.Unlock()
/* This is needed for the detection to work across network namespaces
* If you are reading this and know a better method, please get in touch.
*/
last := 0
const (
up = 1
down = 2
)
for {
sysconn, err := tun.tunFile.SyscallConn()
if err != nil {
return
}
err2 := sysconn.Control(func(fd uintptr) {
_, err = unix.Write(int(fd), nil)
})
if err2 != nil {
return
}
switch err {
case unix.EINVAL:
if last != up {
// If the tunnel is up, it reports that write() is
// allowed but we provided invalid data.
tun.events <- EventUp
last = up
}
case unix.EIO:
if last != down {
// If the tunnel is down, it reports that no I/O
// is possible, without checking our provided data.
tun.events <- EventDown
last = down
}
default:
return
}
select {
case <-time.After(time.Second):
// nothing
case <-tun.statusListenersShutdown:
return
}
}
}
func createNetlinkSocket() (int, error) {
sock, err := unix.Socket(unix.AF_NETLINK, unix.SOCK_RAW|unix.SOCK_CLOEXEC, unix.NETLINK_ROUTE)
if err != nil {
return -1, err
}
saddr := &unix.SockaddrNetlink{
Family: unix.AF_NETLINK,
Groups: unix.RTMGRP_LINK | unix.RTMGRP_IPV4_IFADDR | unix.RTMGRP_IPV6_IFADDR,
}
err = unix.Bind(sock, saddr)
if err != nil {
return -1, err
}
return sock, nil
}
func (tun *NativeTun) routineNetlinkListener() {
defer func() {
unix.Close(tun.netlinkSock)
tun.hackListenerClosed.Lock()
close(tun.events)
tun.netlinkCancel.Close()
}()
for msg := make([]byte, 1<<16); ; {
var err error
var msgn int
for {
msgn, _, _, _, err = unix.Recvmsg(tun.netlinkSock, msg[:], nil, 0)
if err == nil || !rwcancel.RetryAfterError(err) {
break
}
if !tun.netlinkCancel.ReadyRead() {
tun.errors <- fmt.Errorf("netlink socket closed: %w", err)
return
}
}
if err != nil {
tun.errors <- fmt.Errorf("failed to receive netlink message: %w", err)
return
}
select {
case <-tun.statusListenersShutdown:
return
default:
}
wasEverUp := false
for remain := msg[:msgn]; len(remain) >= unix.SizeofNlMsghdr; {
hdr := *(*unix.NlMsghdr)(unsafe.Pointer(&remain[0]))
if int(hdr.Len) > len(remain) {
break
}
switch hdr.Type {
case unix.NLMSG_DONE:
remain = []byte{}
case unix.RTM_NEWLINK:
info := *(*unix.IfInfomsg)(unsafe.Pointer(&remain[unix.SizeofNlMsghdr]))
remain = remain[hdr.Len:]
if info.Index != tun.index {
// not our interface
continue
}
if info.Flags&unix.IFF_RUNNING != 0 {
tun.events <- EventUp
wasEverUp = true
}
if info.Flags&unix.IFF_RUNNING == 0 {
// Don't emit EventDown before we've ever emitted EventUp.
// This avoids a startup race with HackListener, which
// might detect Up before we have finished reporting Down.
if wasEverUp {
tun.events <- EventDown
}
}
tun.events <- EventMTUUpdate
default:
remain = remain[hdr.Len:]
}
}
}
}
func getIFIndex(name string) (int32, error) {
fd, err := unix.Socket(
unix.AF_INET,
unix.SOCK_DGRAM|unix.SOCK_CLOEXEC,
0,
)
if err != nil {
return 0, err
}
defer unix.Close(fd)
var ifr [ifReqSize]byte
copy(ifr[:], name)
_, _, errno := unix.Syscall(
unix.SYS_IOCTL,
uintptr(fd),
uintptr(unix.SIOCGIFINDEX),
uintptr(unsafe.Pointer(&ifr[0])),
)
if errno != 0 {
return 0, errno
}
return *(*int32)(unsafe.Pointer(&ifr[unix.IFNAMSIZ])), nil
}
func (tun *NativeTun) setMTU(n int) error {
name, err := tun.Name()
if err != nil {
return err
}
// open datagram socket
fd, err := unix.Socket(
unix.AF_INET,
unix.SOCK_DGRAM|unix.SOCK_CLOEXEC,
0,
)
if err != nil {
return err
}
defer unix.Close(fd)
var ifr [ifReqSize]byte
copy(ifr[:], name)
*(*uint32)(unsafe.Pointer(&ifr[unix.IFNAMSIZ])) = uint32(n)
_, _, errno := unix.Syscall(
unix.SYS_IOCTL,
uintptr(fd),
uintptr(unix.SIOCSIFMTU),
uintptr(unsafe.Pointer(&ifr[0])),
)
if errno != 0 {
return errno
}
return nil
}
func (tun *NativeTun) routineNetlinkRead() {
defer func() {
unix.Close(tun.netlinkSock)
tun.hackListenerClosed.Lock()
close(tun.events)
tun.netlinkCancel.Close()
}()
for msg := make([]byte, 1<<16); ; {
var err error
var msgn int
for {
msgn, _, _, _, err = unix.Recvmsg(tun.netlinkSock, msg[:], nil, 0)
if err == nil || !rwcancel.RetryAfterError(err) {
break
}
if !tun.netlinkCancel.ReadyRead() {
tun.errors <- fmt.Errorf("netlink socket closed: %w", err)
return
}
}
if err != nil {
tun.errors <- fmt.Errorf("failed to receive netlink message: %w", err)
return
}
wasEverUp := false
for remain := msg[:msgn]; len(remain) >= unix.SizeofNlMsghdr; {
hdr := *(*unix.NlMsghdr)(unsafe.Pointer(&remain[0]))
if int(hdr.Len) > len(remain) {
break
}
switch hdr.Type {
case unix.NLMSG_DONE:
remain = []byte{}
case unix.RTM_NEWLINK:
info := *(*unix.IfInfomsg)(unsafe.Pointer(&remain[unix.SizeofNlMsghdr]))
remain = remain[hdr.Len:]
if info.Index != tun.index {
continue
}
if info.Flags&unix.IFF_RUNNING != 0 {
tun.events <- EventUp
wasEverUp = true
}
if info.Flags&unix.IFF_RUNNING == 0 {
if wasEverUp {
tun.events <- EventDown
}
}
tun.events <- EventMTUUpdate
default:
remain = remain[hdr.Len:]
}
}
}
}
func (tun *NativeTun) routineNetlink() {
var err error
tun.netlinkSock, err = createNetlinkSocket()
if err != nil {
tun.errors <- fmt.Errorf("failed to create netlink socket: %w", err)
return
}
tun.netlinkCancel, err = rwcancel.NewRWCancel(tun.netlinkSock)
if err != nil {
tun.errors <- fmt.Errorf("failed to create netlink cancel: %w", err)
return
}
go tun.routineNetlinkListener()
}
func (tun *NativeTun) Close() error {
var err1, err2 error
tun.closeOnce.Do(func() {
if tun.statusListenersShutdown != nil {
close(tun.statusListenersShutdown)
if tun.netlinkCancel != nil {
err1 = tun.netlinkCancel.Cancel()
}
} else if tun.events != nil {
close(tun.events)
}
err2 = tun.tunFile.Close()
})
if err1 != nil {
return err1
}
return err2
}
func (tun *NativeTun) BatchSize() int {
return tun.batchSize
}
const (
// TODO: support TSO with ECN bits
tunOffloads = unix.TUN_F_CSUM | unix.TUN_F_TSO4 | unix.TUN_F_TSO6
)
func (tun *NativeTun) initFromFlags(name string) error {
sc, err := tun.tunFile.SyscallConn()
if err != nil {
return err
}
if e := sc.Control(func(fd uintptr) {
var (
ifr *unix.Ifreq
)
ifr, err = unix.NewIfreq(name)
if err != nil {
return
}
err = unix.IoctlIfreq(int(fd), unix.TUNGETIFF, ifr)
if err != nil {
return
}
got := ifr.Uint16()
if got&unix.IFF_VNET_HDR != 0 {
err = unix.IoctlSetInt(int(fd), unix.TUNSETOFFLOAD, tunOffloads)
if err != nil {
return
}
tun.vnetHdr = true
tun.batchSize = wgconn.IdealBatchSize
} else {
tun.batchSize = 1
}
}); e != nil {
return e
}
return err
}
// CreateTUN creates a Device with the provided name and MTU.
func CreateTUN(name string, mtu int) (Device, error) {
nfd, err := unix.Open(cloneDevicePath, unix.O_RDWR|unix.O_CLOEXEC, 0)
if err != nil {
return nil, fmt.Errorf("CreateTUN(%q) failed; %s does not exist", name, cloneDevicePath)
}
fd := os.NewFile(uintptr(nfd), cloneDevicePath)
tun, err := CreateTUNFromFile(fd, mtu)
if err != nil {
return nil, err
}
if name != "tun" {
if err := tun.(*NativeTun).initFromFlags(name); err != nil {
tun.Close()
return nil, fmt.Errorf("CreateTUN(%q) failed to set flags: %w", name, err)
}
}
return tun, nil
}
// CreateTUNFromFile creates a Device from an os.File with the provided MTU.
func CreateTUNFromFile(file *os.File, mtu int) (Device, error) {
tun := &NativeTun{
tunFile: file,
errors: make(chan error, 5),
events: make(chan Event, 5),
}
name, err := tun.Name()
if err != nil {
return nil, fmt.Errorf("failed to determine TUN name: %w", err)
}
if err := tun.initFromFlags(name); err != nil {
return nil, fmt.Errorf("failed to query TUN flags: %w", err)
}
if tun.batchSize == 0 {
tun.batchSize = 1
}
tun.index, err = getIFIndex(name)
if err != nil {
return nil, fmt.Errorf("failed to get TUN index: %w", err)
}
if err = tun.setMTU(mtu); err != nil {
return nil, fmt.Errorf("failed to set MTU: %w", err)
}
tun.statusListenersShutdown = make(chan struct{})
go tun.routineNetlink()
if tun.batchSize == 0 {
tun.batchSize = 1
}
tun.tcp4GROTable = newTCPGROTable()
tun.tcp6GROTable = newTCPGROTable()
return tun, nil
}
func (tun *NativeTun) Name() (string, error) {
tun.nameOnce.Do(tun.initNameCache)
return tun.nameCache, tun.nameErr
}
func (tun *NativeTun) initNameCache() {
sysconn, err := tun.tunFile.SyscallConn()
if err != nil {
tun.nameErr = err
return
}
err = sysconn.Control(func(fd uintptr) {
var ifr [ifReqSize]byte
_, _, errno := unix.Syscall(
unix.SYS_IOCTL,
fd,
uintptr(unix.TUNGETIFF),
uintptr(unsafe.Pointer(&ifr[0])),
)
if errno != 0 {
tun.nameErr = errno
return
}
tun.nameCache = unix.ByteSliceToString(ifr[:])
})
if err != nil && tun.nameErr == nil {
tun.nameErr = err
}
}
func (tun *NativeTun) MTU() (int, error) {
name, err := tun.Name()
if err != nil {
return 0, err
}
// open datagram socket
fd, err := unix.Socket(
unix.AF_INET,
unix.SOCK_DGRAM|unix.SOCK_CLOEXEC,
0,
)
if err != nil {
return 0, err
}
defer unix.Close(fd)
var ifr [ifReqSize]byte
copy(ifr[:], name)
_, _, errno := unix.Syscall(
unix.SYS_IOCTL,
uintptr(fd),
uintptr(unix.SIOCGIFMTU),
uintptr(unsafe.Pointer(&ifr[0])),
)
if errno != 0 {
return 0, errno
}
return int(*(*uint32)(unsafe.Pointer(&ifr[unix.IFNAMSIZ]))), nil
}
func (tun *NativeTun) Events() <-chan Event {
return tun.events
}
func (tun *NativeTun) Write(bufs [][]byte, offset int) (int, error) {
tun.writeOpMu.Lock()
defer func() {
tun.tcp4GROTable.reset()
tun.tcp6GROTable.reset()
tun.writeOpMu.Unlock()
}()
var (
errs error
total int
)
tun.toWrite = tun.toWrite[:0]
if tun.vnetHdr {
err := handleGRO(bufs, offset, tun.tcp4GROTable, tun.tcp6GROTable, &tun.toWrite)
if err != nil {
return 0, err
}
offset -= virtioNetHdrLen
} else {
for i := range bufs {
tun.toWrite = append(tun.toWrite, i)
}
}
for _, bufsI := range tun.toWrite {
n, err := tun.tunFile.Write(bufs[bufsI][offset:])
if errors.Is(err, syscall.EBADFD) {
return total, os.ErrClosed
}
if err != nil {
errs = errors.Join(errs, err)
} else {
total += n
}
}
return total, errs
}
// handleVirtioRead splits in into bufs, leaving offset bytes at the front of
// each buffer. It mutates sizes to reflect the size of each element of bufs,
// and returns the number of packets read.
func handleVirtioRead(in []byte, bufs [][]byte, sizes []int, offset int) (int, error) {
var hdr virtioNetHdr
if err := hdr.decode(in); err != nil {
return 0, err
}
in = in[virtioNetHdrLen:]
if hdr.gsoType == unix.VIRTIO_NET_HDR_GSO_NONE {
if hdr.flags&unix.VIRTIO_NET_HDR_F_NEEDS_CSUM != 0 {
if err := gsoNoneChecksum(in, hdr.csumStart, hdr.csumOffset); err != nil {
return 0, err
}
}
if len(in) > len(bufs[0][offset:]) {
return 0, fmt.Errorf("read len %d overflows bufs element len %d", len(in), len(bufs[0][offset:]))
}
n := copy(bufs[0][offset:], in)
sizes[0] = n
return 1, nil
}
if hdr.gsoType != unix.VIRTIO_NET_HDR_GSO_TCPV4 && hdr.gsoType != unix.VIRTIO_NET_HDR_GSO_TCPV6 {
return 0, fmt.Errorf("unsupported virtio GSO type: %d", hdr.gsoType)
}
ipVersion := in[0] >> 4
switch ipVersion {
case 4:
if hdr.gsoType != unix.VIRTIO_NET_HDR_GSO_TCPV4 {
return 0, fmt.Errorf("ip header version: %d, GSO type: %d", ipVersion, hdr.gsoType)
}
case 6:
if hdr.gsoType != unix.VIRTIO_NET_HDR_GSO_TCPV6 {
return 0, fmt.Errorf("ip header version: %d, GSO type: %d", ipVersion, hdr.gsoType)
}
default:
return 0, fmt.Errorf("invalid ip header version: %d", ipVersion)
}
if len(in) <= int(hdr.csumStart+12) {
return 0, errors.New("packet is too short")
}
tcpHLen := uint16(in[hdr.csumStart+12] >> 4 * 4)
if tcpHLen < 20 || tcpHLen > 60 {
return 0, fmt.Errorf("tcp header len is invalid: %d", tcpHLen)
}
hdr.hdrLen = hdr.csumStart + tcpHLen
if len(in) < int(hdr.hdrLen) {
return 0, fmt.Errorf("length of packet (%d) < virtioNetHdr.hdrLen (%d)", len(in), hdr.hdrLen)
}
if hdr.hdrLen < hdr.csumStart {
return 0, fmt.Errorf("virtioNetHdr.hdrLen (%d) < virtioNetHdr.csumStart (%d)", hdr.hdrLen, hdr.csumStart)
}
cSumAt := int(hdr.csumStart + hdr.csumOffset)
if cSumAt+1 >= len(in) {
return 0, fmt.Errorf("end of checksum offset (%d) exceeds packet length (%d)", cSumAt+1, len(in))
}
return tcpTSO(in, hdr, bufs, sizes, offset)
}
func (tun *NativeTun) Read(bufs [][]byte, sizes []int, offset int) (int, error) {
tun.readOpMu.Lock()
defer tun.readOpMu.Unlock()
select {
case err := <-tun.errors:
return 0, err
default:
readInto := bufs[0][offset:]
if tun.vnetHdr {
readInto = tun.readBuff[:]
}
n, err := tun.tunFile.Read(readInto)
if errors.Is(err, syscall.EBADFD) {
err = os.ErrClosed
}
if err != nil {
return 0, err
}
if tun.vnetHdr {
return handleVirtioRead(readInto[:n], bufs, sizes, offset)
}
sizes[0] = n
return 1, nil
}
}