nebula/handshake_manager.go
Wade Simmons 326fc8758d Support multiple UDP source ports (multiport)
The goal of this work is to send packets between two hosts using more than one
5-tuple. When running on networks like AWS where the underlying network driver
and overlay fabric makes routing, load balancing, and failover decisions based
on the flow hash, this enables more than one flow between pairs of hosts.

Multiport spreads outgoing UDP packets across multiple UDP send ports,
which allows nebula to work around any issues on the underlay network.
Some example issues this could work around:

- UDP rate limits on a per flow basis.
- Partial underlay network failure in which some flows work and some don't

Agreement is done during the handshake to decide if multiport mode will
be used for a given tunnel (one side must have tx_enabled set, the other
side must have rx_enabled set)

NOTE: you cannot use multiport on a host if you are relying on UDP hole
punching to get through a NAT or firewall.

NOTE: Linux only (uses raw sockets to send). Also currently only works
with IPv4 underlay network remotes.

This is implemented by opening a raw socket and sending packets with
a source port that is based on a hash of the overlay source/destiation
port. For ICMP and Nebula metadata packets, we use a random source port.

Example configuration:

    multiport:
      # This host support sending via multiple UDP ports.
      tx_enabled: false

      # This host supports receiving packets sent from multiple UDP ports.
      rx_enabled: false

      # How many UDP ports to use when sending. The lowest source port will be
      # listen.port and go up to (but not including) listen.port + tx_ports.
      tx_ports: 100

      # NOTE: All of your hosts must be running a version of Nebula that supports
      # multiport if you want to enable this feature. Older versions of Nebula
      # will be confused by these multiport handshakes.
      #
      # If handshakes are not getting a response, attempt to transmit handshakes
      # using random UDP source ports (to get around partial underlay network
      # failures).
      tx_handshake: false

      # How many unresponded handshakes we should send before we attempt to
      # send multiport handshakes.
      tx_handshake_delay: 2
2022-10-17 12:58:06 -04:00

503 lines
18 KiB
Go

package nebula
import (
"bytes"
"context"
"crypto/rand"
"encoding/binary"
"errors"
"net"
"time"
"github.com/rcrowley/go-metrics"
"github.com/sirupsen/logrus"
"github.com/slackhq/nebula/header"
"github.com/slackhq/nebula/iputil"
"github.com/slackhq/nebula/udp"
)
const (
DefaultHandshakeTryInterval = time.Millisecond * 100
DefaultHandshakeRetries = 10
DefaultHandshakeTriggerBuffer = 64
DefaultUseRelays = true
)
var (
defaultHandshakeConfig = HandshakeConfig{
tryInterval: DefaultHandshakeTryInterval,
retries: DefaultHandshakeRetries,
triggerBuffer: DefaultHandshakeTriggerBuffer,
useRelays: DefaultUseRelays,
}
)
type HandshakeConfig struct {
tryInterval time.Duration
retries int
triggerBuffer int
useRelays bool
messageMetrics *MessageMetrics
}
type HandshakeManager struct {
pendingHostMap *HostMap
mainHostMap *HostMap
lightHouse *LightHouse
outside *udp.Conn
config HandshakeConfig
OutboundHandshakeTimer *SystemTimerWheel
messageMetrics *MessageMetrics
metricInitiated metrics.Counter
metricTimedOut metrics.Counter
l *logrus.Logger
multiPort MultiPortConfig
udpRaw *udp.RawConn
// can be used to trigger outbound handshake for the given vpnIp
trigger chan iputil.VpnIp
}
func NewHandshakeManager(l *logrus.Logger, tunCidr *net.IPNet, preferredRanges []*net.IPNet, mainHostMap *HostMap, lightHouse *LightHouse, outside *udp.Conn, config HandshakeConfig) *HandshakeManager {
return &HandshakeManager{
pendingHostMap: NewHostMap(l, "pending", tunCidr, preferredRanges),
mainHostMap: mainHostMap,
lightHouse: lightHouse,
outside: outside,
config: config,
trigger: make(chan iputil.VpnIp, config.triggerBuffer),
OutboundHandshakeTimer: NewSystemTimerWheel(config.tryInterval, hsTimeout(config.retries, config.tryInterval)),
messageMetrics: config.messageMetrics,
metricInitiated: metrics.GetOrRegisterCounter("handshake_manager.initiated", nil),
metricTimedOut: metrics.GetOrRegisterCounter("handshake_manager.timed_out", nil),
l: l,
}
}
func (c *HandshakeManager) Run(ctx context.Context, f udp.EncWriter) {
clockSource := time.NewTicker(c.config.tryInterval)
defer clockSource.Stop()
for {
select {
case <-ctx.Done():
return
case vpnIP := <-c.trigger:
c.handleOutbound(vpnIP, f, true)
case now := <-clockSource.C:
c.NextOutboundHandshakeTimerTick(now, f)
}
}
}
func (c *HandshakeManager) NextOutboundHandshakeTimerTick(now time.Time, f udp.EncWriter) {
c.OutboundHandshakeTimer.advance(now)
for {
ep := c.OutboundHandshakeTimer.Purge()
if ep == nil {
break
}
vpnIp := ep.(iputil.VpnIp)
c.handleOutbound(vpnIp, f, false)
}
}
func (c *HandshakeManager) handleOutbound(vpnIp iputil.VpnIp, f udp.EncWriter, lighthouseTriggered bool) {
hostinfo, err := c.pendingHostMap.QueryVpnIp(vpnIp)
if err != nil {
return
}
hostinfo.Lock()
defer hostinfo.Unlock()
// We may have raced to completion but now that we have a lock we should ensure we have not yet completed.
if hostinfo.HandshakeComplete {
// Ensure we don't exist in the pending hostmap anymore since we have completed
c.pendingHostMap.DeleteHostInfo(hostinfo)
return
}
// Check if we have a handshake packet to transmit yet
if !hostinfo.HandshakeReady {
// There is currently a slight race in getOrHandshake due to ConnectionState not being part of the HostInfo directly
// Our hostinfo here was added to the pending map and the wheel may have ticked to us before we created ConnectionState
c.OutboundHandshakeTimer.Add(vpnIp, c.config.tryInterval*time.Duration(hostinfo.HandshakeCounter))
return
}
// If we are out of time, clean up
if hostinfo.HandshakeCounter >= c.config.retries {
hostinfo.logger(c.l).WithField("udpAddrs", hostinfo.remotes.CopyAddrs(c.pendingHostMap.preferredRanges)).
WithField("initiatorIndex", hostinfo.localIndexId).
WithField("remoteIndex", hostinfo.remoteIndexId).
WithField("handshake", m{"stage": 1, "style": "ix_psk0"}).
WithField("durationNs", time.Since(hostinfo.handshakeStart).Nanoseconds()).
Info("Handshake timed out")
c.metricTimedOut.Inc(1)
c.pendingHostMap.DeleteHostInfo(hostinfo)
return
}
// We only care about a lighthouse trigger before the first handshake transmit attempt. This is a very specific
// optimization for a fast lighthouse reply
//TODO: it would feel better to do this once, anytime, as our delay increases over time
if lighthouseTriggered && hostinfo.HandshakeCounter > 0 {
// If we didn't return here a lighthouse could cause us to aggressively send handshakes
return
}
// Get a remotes object if we don't already have one.
// This is mainly to protect us as this should never be the case
// NB ^ This comment doesn't jive. It's how the thing gets intiailized.
// It's the common path. Should it update every time, in case a future LH query/queries give us more info?
if hostinfo.remotes == nil {
hostinfo.remotes = c.lightHouse.QueryCache(vpnIp)
}
//TODO: this will generate a load of queries for hosts with only 1 ip (i'm not using a lighthouse, static mapped)
if hostinfo.remotes.Len(c.pendingHostMap.preferredRanges) <= 1 {
// If we only have 1 remote it is highly likely our query raced with the other host registered within the lighthouse
// Our vpnIp here has a tunnel with a lighthouse but has yet to send a host update packet there so we only know about
// the learned public ip for them. Query again to short circuit the promotion counter
c.lightHouse.QueryServer(vpnIp, f)
}
// Send a the handshake to all known ips, stage 2 takes care of assigning the hostinfo.remote based on the first to reply
var sentTo []*udp.Addr
var sentMultiport bool
hostinfo.remotes.ForEach(c.pendingHostMap.preferredRanges, func(addr *udp.Addr, _ bool) {
c.messageMetrics.Tx(header.Handshake, header.MessageSubType(hostinfo.HandshakePacket[0][1]), 1)
err = c.outside.WriteTo(hostinfo.HandshakePacket[0], addr)
if err != nil {
hostinfo.logger(c.l).WithField("udpAddr", addr).
WithField("initiatorIndex", hostinfo.localIndexId).
WithField("handshake", m{"stage": 1, "style": "ix_psk0"}).
WithError(err).Error("Failed to send handshake message")
} else {
sentTo = append(sentTo, addr)
}
// Attempt a multiport handshake if we are past the TxHandshakeDelay attempts
if c.multiPort.TxHandshake && c.udpRaw != nil && hostinfo.HandshakeCounter >= c.multiPort.TxHandshakeDelay {
sentMultiport = true
// We need to re-allocate with 8 bytes at the start of SOCK_RAW
raw := hostinfo.HandshakePacket[0x80]
if raw == nil {
raw = make([]byte, len(hostinfo.HandshakePacket[0])+udp.RawOverhead)
copy(raw[udp.RawOverhead:], hostinfo.HandshakePacket[0])
hostinfo.HandshakePacket[0x80] = raw
}
c.messageMetrics.Tx(header.Handshake, header.MessageSubType(hostinfo.HandshakePacket[0][1]), 1)
err = c.udpRaw.WriteTo(raw, udp.RandomSendPort.UDPSendPort(c.multiPort.TxPorts), addr)
if err != nil {
hostinfo.logger(c.l).WithField("udpAddr", addr).
WithField("initiatorIndex", hostinfo.localIndexId).
WithField("handshake", m{"stage": 1, "style": "ix_psk0"}).
WithError(err).Error("Failed to send handshake message")
}
}
})
// Don't be too noisy or confusing if we fail to send a handshake - if we don't get through we'll eventually log a timeout
if len(sentTo) > 0 {
hostinfo.logger(c.l).WithField("udpAddrs", sentTo).
WithField("initiatorIndex", hostinfo.localIndexId).
WithField("handshake", m{"stage": 1, "style": "ix_psk0"}).
WithField("multiportHandshake", sentMultiport).
Info("Handshake message sent")
}
if c.config.useRelays && len(hostinfo.remotes.relays) > 0 {
hostinfo.logger(c.l).WithField("relayIps", hostinfo.remotes.relays).Info("Attempt to relay through hosts")
// Send a RelayRequest to all known Relay IP's
for _, relay := range hostinfo.remotes.relays {
// Don't relay to myself, and don't relay through the host I'm trying to connect to
if *relay == vpnIp || *relay == c.lightHouse.myVpnIp {
continue
}
relayHostInfo, err := c.mainHostMap.QueryVpnIp(*relay)
if err != nil || relayHostInfo.remote == nil {
hostinfo.logger(c.l).WithError(err).WithField("relay", relay.String()).Info("Establish tunnel to relay target.")
f.Handshake(*relay)
continue
}
// Check the relay HostInfo to see if we already established a relay through it
if existingRelay, ok := relayHostInfo.relayState.QueryRelayForByIp(vpnIp); ok {
switch existingRelay.State {
case Established:
hostinfo.logger(c.l).WithField("relay", relay.String()).Info("Send handshake via relay")
f.SendVia(relayHostInfo, existingRelay, hostinfo.HandshakePacket[0], make([]byte, 12), make([]byte, mtu), false)
case Requested:
hostinfo.logger(c.l).WithField("relay", relay.String()).Info("Re-send CreateRelay request")
// Re-send the CreateRelay request, in case the previous one was lost.
m := NebulaControl{
Type: NebulaControl_CreateRelayRequest,
InitiatorRelayIndex: existingRelay.LocalIndex,
RelayFromIp: uint32(c.lightHouse.myVpnIp),
RelayToIp: uint32(vpnIp),
}
msg, err := m.Marshal()
if err != nil {
hostinfo.logger(c.l).
WithError(err).
Error("Failed to marshal Control message to create relay")
} else {
f.SendMessageToVpnIp(header.Control, 0, *relay, msg, make([]byte, 12), make([]byte, mtu))
}
default:
hostinfo.logger(c.l).
WithField("vpnIp", vpnIp).
WithField("state", existingRelay.State).
WithField("relayVpnIp", relayHostInfo.vpnIp).
Errorf("Relay unexpected state")
}
} else {
// No relays exist or requested yet.
if relayHostInfo.remote != nil {
idx, err := AddRelay(c.l, relayHostInfo, c.mainHostMap, vpnIp, nil, TerminalType, Requested)
if err != nil {
hostinfo.logger(c.l).WithField("relay", relay.String()).WithError(err).Info("Failed to add relay to hostmap")
}
m := NebulaControl{
Type: NebulaControl_CreateRelayRequest,
InitiatorRelayIndex: idx,
RelayFromIp: uint32(c.lightHouse.myVpnIp),
RelayToIp: uint32(vpnIp),
}
msg, err := m.Marshal()
if err != nil {
hostinfo.logger(c.l).
WithError(err).
Error("Failed to marshal Control message to create relay")
} else {
f.SendMessageToVpnIp(header.Control, 0, *relay, msg, make([]byte, 12), make([]byte, mtu))
}
}
}
}
}
// Increment the counter to increase our delay, linear backoff
hostinfo.HandshakeCounter++
// If a lighthouse triggered this attempt then we are still in the timer wheel and do not need to re-add
if !lighthouseTriggered {
//TODO: feel like we dupe handshake real fast in a tight loop, why?
c.OutboundHandshakeTimer.Add(vpnIp, c.config.tryInterval*time.Duration(hostinfo.HandshakeCounter))
}
}
func (c *HandshakeManager) AddVpnIp(vpnIp iputil.VpnIp, init func(*HostInfo)) *HostInfo {
hostinfo, created := c.pendingHostMap.AddVpnIp(vpnIp, init)
if created {
c.OutboundHandshakeTimer.Add(vpnIp, c.config.tryInterval)
c.metricInitiated.Inc(1)
}
return hostinfo
}
var (
ErrExistingHostInfo = errors.New("existing hostinfo")
ErrAlreadySeen = errors.New("already seen")
ErrLocalIndexCollision = errors.New("local index collision")
ErrExistingHandshake = errors.New("existing handshake")
)
// CheckAndComplete checks for any conflicts in the main and pending hostmap
// before adding hostinfo to main. If err is nil, it was added. Otherwise err will be:
//
// ErrAlreadySeen if we already have an entry in the hostmap that has seen the
// exact same handshake packet
//
// ErrExistingHostInfo if we already have an entry in the hostmap for this
// VpnIp and the new handshake was older than the one we currently have
//
// ErrLocalIndexCollision if we already have an entry in the main or pending
// hostmap for the hostinfo.localIndexId.
func (c *HandshakeManager) CheckAndComplete(hostinfo *HostInfo, handshakePacket uint8, overwrite bool, f *Interface) (*HostInfo, error) {
c.pendingHostMap.Lock()
defer c.pendingHostMap.Unlock()
c.mainHostMap.Lock()
defer c.mainHostMap.Unlock()
// Check if we already have a tunnel with this vpn ip
existingHostInfo, found := c.mainHostMap.Hosts[hostinfo.vpnIp]
if found && existingHostInfo != nil {
// Is it just a delayed handshake packet?
if bytes.Equal(hostinfo.HandshakePacket[handshakePacket], existingHostInfo.HandshakePacket[handshakePacket]) {
return existingHostInfo, ErrAlreadySeen
}
// Is this a newer handshake?
if existingHostInfo.lastHandshakeTime >= hostinfo.lastHandshakeTime {
return existingHostInfo, ErrExistingHostInfo
}
existingHostInfo.logger(c.l).Info("Taking new handshake")
}
existingIndex, found := c.mainHostMap.Indexes[hostinfo.localIndexId]
if found {
// We have a collision, but for a different hostinfo
return existingIndex, ErrLocalIndexCollision
}
existingIndex, found = c.pendingHostMap.Indexes[hostinfo.localIndexId]
if found && existingIndex != hostinfo {
// We have a collision, but for a different hostinfo
return existingIndex, ErrLocalIndexCollision
}
existingRemoteIndex, found := c.mainHostMap.RemoteIndexes[hostinfo.remoteIndexId]
if found && existingRemoteIndex != nil && existingRemoteIndex.vpnIp != hostinfo.vpnIp {
// We have a collision, but this can happen since we can't control
// the remote ID. Just log about the situation as a note.
hostinfo.logger(c.l).
WithField("remoteIndex", hostinfo.remoteIndexId).WithField("collision", existingRemoteIndex.vpnIp).
Info("New host shadows existing host remoteIndex")
}
// Check if we are also handshaking with this vpn ip
pendingHostInfo, found := c.pendingHostMap.Hosts[hostinfo.vpnIp]
if found && pendingHostInfo != nil {
if !overwrite {
// We won, let our pending handshake win
return pendingHostInfo, ErrExistingHandshake
}
// We lost, take this handshake and move any cached packets over so they get sent
pendingHostInfo.ConnectionState.queueLock.Lock()
hostinfo.packetStore = append(hostinfo.packetStore, pendingHostInfo.packetStore...)
c.pendingHostMap.unlockedDeleteHostInfo(pendingHostInfo)
pendingHostInfo.ConnectionState.queueLock.Unlock()
pendingHostInfo.logger(c.l).Info("Handshake race lost, replacing pending handshake with completed tunnel")
}
if existingHostInfo != nil {
// We are going to overwrite this entry, so remove the old references
delete(c.mainHostMap.Hosts, existingHostInfo.vpnIp)
delete(c.mainHostMap.Indexes, existingHostInfo.localIndexId)
delete(c.mainHostMap.RemoteIndexes, existingHostInfo.remoteIndexId)
for _, relayIdx := range existingHostInfo.relayState.CopyRelayForIdxs() {
delete(c.mainHostMap.Relays, relayIdx)
}
}
c.mainHostMap.addHostInfo(hostinfo, f)
return existingHostInfo, nil
}
// Complete is a simpler version of CheckAndComplete when we already know we
// won't have a localIndexId collision because we already have an entry in the
// pendingHostMap
func (c *HandshakeManager) Complete(hostinfo *HostInfo, f *Interface) {
c.pendingHostMap.Lock()
defer c.pendingHostMap.Unlock()
c.mainHostMap.Lock()
defer c.mainHostMap.Unlock()
existingHostInfo, found := c.mainHostMap.Hosts[hostinfo.vpnIp]
if found && existingHostInfo != nil {
// We are going to overwrite this entry, so remove the old references
delete(c.mainHostMap.Hosts, existingHostInfo.vpnIp)
delete(c.mainHostMap.Indexes, existingHostInfo.localIndexId)
delete(c.mainHostMap.RemoteIndexes, existingHostInfo.remoteIndexId)
for _, relayIdx := range existingHostInfo.relayState.CopyRelayForIdxs() {
delete(c.mainHostMap.Relays, relayIdx)
}
}
existingRemoteIndex, found := c.mainHostMap.RemoteIndexes[hostinfo.remoteIndexId]
if found && existingRemoteIndex != nil {
// We have a collision, but this can happen since we can't control
// the remote ID. Just log about the situation as a note.
hostinfo.logger(c.l).
WithField("remoteIndex", hostinfo.remoteIndexId).WithField("collision", existingRemoteIndex.vpnIp).
Info("New host shadows existing host remoteIndex")
}
c.mainHostMap.addHostInfo(hostinfo, f)
c.pendingHostMap.unlockedDeleteHostInfo(hostinfo)
}
// AddIndexHostInfo generates a unique localIndexId for this HostInfo
// and adds it to the pendingHostMap. Will error if we are unable to generate
// a unique localIndexId
func (c *HandshakeManager) AddIndexHostInfo(h *HostInfo) error {
c.pendingHostMap.Lock()
defer c.pendingHostMap.Unlock()
c.mainHostMap.RLock()
defer c.mainHostMap.RUnlock()
for i := 0; i < 32; i++ {
index, err := generateIndex(c.l)
if err != nil {
return err
}
_, inPending := c.pendingHostMap.Indexes[index]
_, inMain := c.mainHostMap.Indexes[index]
if !inMain && !inPending {
h.localIndexId = index
c.pendingHostMap.Indexes[index] = h
return nil
}
}
return errors.New("failed to generate unique localIndexId")
}
func (c *HandshakeManager) addRemoteIndexHostInfo(index uint32, h *HostInfo) {
c.pendingHostMap.addRemoteIndexHostInfo(index, h)
}
func (c *HandshakeManager) DeleteHostInfo(hostinfo *HostInfo) {
//l.Debugln("Deleting pending hostinfo :", hostinfo)
c.pendingHostMap.DeleteHostInfo(hostinfo)
}
func (c *HandshakeManager) QueryIndex(index uint32) (*HostInfo, error) {
return c.pendingHostMap.QueryIndex(index)
}
func (c *HandshakeManager) EmitStats() {
c.pendingHostMap.EmitStats("pending")
c.mainHostMap.EmitStats("main")
}
// Utility functions below
func generateIndex(l *logrus.Logger) (uint32, error) {
b := make([]byte, 4)
// Let zero mean we don't know the ID, so don't generate zero
var index uint32
for index == 0 {
_, err := rand.Read(b)
if err != nil {
l.Errorln(err)
return 0, err
}
index = binary.BigEndian.Uint32(b)
}
if l.Level >= logrus.DebugLevel {
l.WithField("index", index).
Debug("Generated index")
}
return index, nil
}
func hsTimeout(tries int, interval time.Duration) time.Duration {
return time.Duration(tries / 2 * ((2 * int(interval)) + (tries-1)*int(interval)))
}