

# **IOTTB**

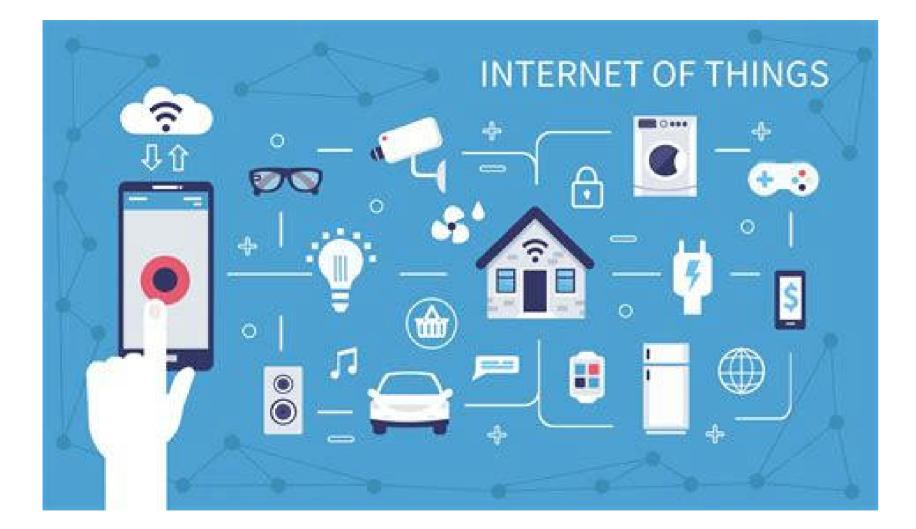
### An Automation Testbed for IoT Devices

Sebastian Lenzlinger

University of Basel
Department of Mathematics and Computer Science
Privacy-Enhancing Technologies Group

2024-07-11

- 1. **Introduction**
- 2. Motivation
- 3. Background
- 4. Adaptation
- 5. **<u>Demo</u>**
- 6. Outlook
- 7. Questions
- 8. <u>Appendix</u>


Sebastian Lenzlinger IOTTB 2024-07-11 1

## Introduction

Why are we here?

Why are we here?

University of Basel



https://tse3.mm.bing.net/th?id=OIP.o3AVQNkQCCG\_2cmhQzD1zQHaEW&pid=Api,

Sebastian Lenzlinger 2024-07-11 2 /

Introduction

1. Introduction

- Why are we here?

Why are we here?

University
of Bosel

1. Introduction

## **Project Description**

To study the privacy and security aspects of IoT devices

- systematically and
- reproducibly,

we need an easy-to-use

testbed

that

automates

(some aspects of) the process of experimenting with IoT devices.

In this presentation I describe an implementation of such a testbed: IOTTB

Sebastian Lenzlinger 2024-07-11 3 / 29

#### Introduction

- Why are we here?
  - systematically: standardization,
  - *reproducible*: a systematic approach promises more reproducible experiments, and thus better verifiable results.
  - *testbed*: and environment which fixes certain parameters
  - *automates*: beyond reproducibility, the level of manual involvement influences feasibility w.r.t. reproduction

## **Principal Objectives**



1. Introduction

# **Objectives**

Key objectives:

- 1. *Automation recipes* [1] for repeated execution of experiments, including data collection and analysis.
- 2. FAIR data storage (Findable, Accessible, Interoperable, Reusable) (see [2], [3] and [4]).

 Sebastian Lenzlinger
 2024-07-11
 4 / 29

Introduction

Principal Objectives

- 1. Introduction
- 2. Motivation
- 3. Background
- 4. Adaptation
- 5. **<u>Demo</u>**
- 6. Outlook
- 7. Questions
- 8. <u>Appendix</u>

Sebastian Lenzlinger 10TTB 2024-07-11 5

## Motivation

- 1 Manual setup and configuration of tools
- e.g. tcpdump, Wireshark, Frida
- configurations not interoperable between tools

 Sebastian Lenzlinger
 2024-07-11
 6 / 29

Motivation

Problem(s) 2. Motivation

- 1 Manual setup and configuration of tools
- e.g. tcpdump, Wireshark, Frida
- configurations not interoperable between tools
- 2 Ad-hoc decisions
- file/artefact naming
- measured/extracted data features
- metadata recorded

 Sebastian Lenzlinger
 2024-07-11
 6 / 29

Motivation

Problem(s) 2. Motivation

- 1 Manual setup and configuration of tools
- e.g. tcpdump, Wireshark, Frida
- configurations not interoperable between tools
- 2 Ad-hoc decisions
- file/artefact naming
- measured/extracted data features
- metadata recorded
- 3 Tailored utilities
- lack interoperability
- require adaptation depending on project

Sebastian Lenzlinger 2024-07-11 6 / 29

Motivation

Problem(s) 2. Motivation

- 1 Manual setup and configuration of tools
- e.g. tcpdump, Wireshark, Frida
- configurations not interoperable between tools
- 2 Ad-hoc decisions
- file/artefact naming
- measured/extracted data features
- metadata recorded
- 3 Tailored utilities
- lack interoperability
- require adaptation depending on project

- 4 Scattered data and lack of standardization
- Inconsistent data collection and storage
- Difficult to maintain compatibility across projects

Sebastian Lenzlinger 2024-07-11 6 / 29

Motivation

- 1 Manual setup and configuration of tools
- e.g. tcpdump, Wireshark, Frida
- configurations not interoperable between tools
- 2 Ad-hoc decisions
- file/artefact naming
- measured/extracted data features
- metadata recorded
- 3 Tailored utilities
- lack interoperability
- require adaptation depending on project

- 4 Scattered data and lack of standardization
- Inconsistent data collection and storage
- Difficult to maintain compatibility across projects
- 5 Onboarding challenges
- New members create ad-hoc solutions
- Perpetuates inefficiency and inconsistency

Sebastian Lenzlinger 2024-07-11 6 / 29

Motivation

Change 2. Motivation

- Security researchers' challenges:
  - 1. Scattered data
  - 2. Lack of standardized tools
  - 3. Ad-hoc methods
- Difficulty in:
  - 1. Producing valid, reproducible results
- 2. Reusing scripts across projects

 Sebastian Lenzlinger
 2024-07-11
 7 / 29

Motivation

Change

Challenges Faced University 2. Motivation

- Problems with current approach:
  - 1. Inconsistent data collection
  - 2. Lack of standardized tools and methods
  - 3. Issues with file naming and data structuring
- Resulting difficulties:
  - 1. Compatibility across projects
  - 2. Onboarding new members
  - 3. Ad-hoc solutions perpetuating inefficiency

Sebastian Lenzlinger 2024-07-11 8 / 29

#### Motivation

Challenges Faced

- 1. Introduction
- 2. Motivation
- 3. Background
- 4. Adaptation
- 5. **<u>Demo</u>**
- 6. Outlook
- 7. Questions
- 8. <u>Appendix</u>

Sebastian Lenzlinger 2024-07-11 9 /

# Background

University of Basel **IoT Devices** 3. Background



Figure 1: Smart Lighting



Figure 2: Smart Speakers



Figure 3: Home Surveillance Camera





Figure 5: Dall-E Diagram of a Smart Home Network

IoT devices offer **benefits**:

- Home lighting control
- Remote video monitoring
- Automated cleaning and more! But, they because
- Used in Homes
- 2. Connected
- LAN only
- Internet
- ▶ May lead to information leakage

- $\Rightarrow$  Security and privacy **risks**
- Surveillance potential
- Unauthorized data sharing
- Vulnerable to bugs and security failures



Figure 6: Dall-E Schematic Smart Home Network

Sebastian Lenzlinger 2024-07-11 10 / 29



# Background

– IoT Devices

IoT Devices 3. Background

- IoT Devices Overview:
  - ▶ Devices connected to the internet (voice assistants, smart watches, smart home gadgets)
  - ► Embedded with microprocessors and software
- Examples of IoT Devices:
  - Security cameras
  - ► Home lighting systems
  - Children's toys
- Importance of IoT:
  - Physical dimension (sensors, controllers)
  - ► Internet connectivity

Sebastian Lenzlinger 2024-07-11 11 / 29

# Background

– IoT Devices

Testbeds University of Basel 3. Background

- What is a Testbed?
- Controlled environment for experiments
- ► Ensures reproducibility and standardization
- Examples of Testbeds:
  - ► Industry and Engineering: Platforms for product development
  - ▶ Natural Sciences: Laboratories (e.g., climate chambers, wind tunnels, see [5])
  - Computing: Software testing environments (unit tests, IDEs)
- ► Interdisciplinary: Complex systems (e.g., smart electric grid testbeds, see [6])

 Sebastian Lenzlinger
 2024-07-11
 12 / 29

Background

Testbeds

### **FAIR Data Principles**



3. Background

- FAIR Data Principles: [4], [3]
  - Findability: Data should be easy to find
  - Accessibility: Data should be accessible under well-defined conditions
  - **Interoperability:** Data should be integrated with other data
- **Reusability:** Data should be reusable for future research
- Purpose:
  - Improve reusability of scientific data
  - ► Guide for designing *data storage* systems

 Sebastian Lenzlinger
 2024-07-11
 13 / 29

# Background

# FAIR Data Principles

#### Findability:

- Ensuring data is easily locatable and identifiable.
- Use of persistent identifiers like DOIs.
- Metadata should be richly described to enable precise searching.
- **Positive Example:** A dataset with a DOI and comprehensive metadata that is indexed in major search engines.
- **Negative Example:** A dataset stored on a personal computer with no metadata and no persistent identifier.

#### Accessibility:

- Data should be retrievable by authorized users.
- Use of standardized protocols for data access.
- Clear access conditions and usage licenses.
- **Positive Example:** A dataset available through a well-documented API with clear access guidelines and permissions.
- Negative Example: A dataset stored in a proprietary format that requires special software to access, with unclear or restrictive access conditions.

#### Interoperability:

- Data should integrate with other datasets.
- Use of standardized formats and vocabularies.
- Ensure compatibility with existing data and tools.
- **Positive Example:** A dataset in CSV format using standardized column headers that align with other datasets in the field.
- **Negative Example:** A dataset in a non-standard format with custom jargon that is difficult to merge with other data sources.

#### Reusability:

- Data should be well-documented to allow future use.
- Include clear licensing for reuse.
- Ensure data quality and provenance are maintained.
- **Positive Example:** A dataset with a clear Creative Commons license, detailed documentation, and a version history.
- **Negative Example:** A dataset with no documentation, unclear provenance, and no stated reuse policy.

Network Traffic

University of Basel

3. Background

#### • Importance of Network Traffic in IoT:

- 1. Captures communication patterns (device-to-server (internet), device-to-device (LAN, e.g., companion apps))
- 2. Essential for evaluating performance and identifying unauthorized communications

### • Protocol Analysis:

- 1. Understand device operation and communication protocols
- 2. Identify compatibility, efficiency, and security issues

#### • Flow Monitoring:

- 1. Detect potential security threats (data breaches, unauthorized access, malware)
- 2. Monitor for anomalies indicating security incidents or vulnerabilities

#### • Information Leakage:

- 1. Adversaries can passively observe traffic and extract sensitive information
- 2. Even encrypted traffic can leak information about the smart environment and users

see [7], [8], [9], [7] and [10]

 Sebastian Lenzlinger
 2024-07-11
 14 / 29

# Background

Network Traffic

### **Findings from Key Studies**



3. Background

#### **Examples:**

- **Leakage:** Personal data and device usage patterns. [7]
  - **Details:** The study found that IoT devices often leak personal data and detailed usage patterns to third-party servers.
- **Leakage:** Home device interactions and usage. [8]
- **Details:** This research revealed that interactions with home devices can be intercepted, providing insights into daily routines and activities.
- **Leakage:** Device/Network communication *patterns*.[9]
  - **Details:** Sniffing tools can capture communications between IoT devices. WiFi packets expose usage patterns regardless of encryption[10]. Those patterns contain features which can be extracted (i.e. leaked) and fed into machine learning models which are capable of exposing more meaningful information (e.g., identifying devices and their functionality) [11].

In the end these are all some aspect of the same issue: even encrypted traffic leaks information which can be valuable to adversaries.

 Sebastian Lenzlinger
 2024-07-11
 15 / 29

# Background

Findings from Key Studies

Packet Capture 
University of Basel 
3. Background

- Network Packet Capture:
- 1. Intercepting and storing data packets on a network
- 2. Principal technique for studying device behavior and communication patterns
- Importance in IoT Security Research:
  - 1. Main data collection mechanism
- 2. Essential for analyzing network traffic
- ⇒ Wireshark Example

Sebastian Lenzlinger 2024-07-11 16 / 29

# Background

Packet Capture

**Automation Recipes** 



3. Background

### • Automation Recipes:

- 1. Define a sequence of steps for a process
- 2. Used in various fields like machine learning
- Collective Mind Framework: [12], [1]
  - 1. Provides reusable recipes for building, running, benchmarking, and optimizing applications
- 2. Platform-independent or supplemented with user-specific scripts

#### • Importance of Automation:

- 1. Automates workflows irrespective of underlying tools
- 2. Again: enhances reproducibility and efficiency in experiments

 Sebastian Lenzlinger
 2024-07-11
 17 / 29

# Background

Automation Recipes

### **Summary of Key Points**



3. Background

#### • Key Issues Identified:

- 1. Manual setup and configuration of tools
- 2. Ad-hoc decisions in file naming, data features, and metadata
- 3. Tailored utilities lacking interoperability
- 4. Scattered data and lack of standardization
- 5. Onboarding challenges for new members

#### • Importance of Addressing These Issues:

- 1. Improve reproducibility and reliability of experiments
- 2. Enhance data quality and interoperability
- 3. Facilitate easier onboarding and collaboration

 Sebastian Lenzlinger
 2024-07-11
 18 / 29

# Background

Summary of Key Points

Return to ... 3. Background

#### • How IOTTB Addresses These Issues:

#### 1. Automation Recipes:

- Standardize the setup and configuration of tools
- ► Ensure consistent data collection and analysis processes

#### 2. FAIR Data Storage:

- ► Enhance findability, accessibility, interoperability, and reusability of data
- ► Improve data management and sharing practices

#### 3. Testbed Design:

- Provide a controlled environment for reproducible experiments
- Simplify onboarding and collaboration through standardized procedures

Sebastian Lenzlinger 2024-07-11 19 / 29

Background

- Return to ...

- 1. Introduction
- 2. Motivation
- 3. Background
- 4. Adaptation
- 5. **<u>Demo</u>**
- 6. Outlook
- 7. Questions
- 8. <u>Appendix</u>

Sebastian Lenzlinger 2024-07-11 20

# Adaptation

- 1. Introduction
- 2. Motivation
- 3. Background
- 4. Adaptation
- 5. **<u>Demo</u>**
- 6. Outlook
- 7. Questions
- 8. <u>Appendix</u>

Sebastian Lenzlinger 2024-07-11 21

## Demo

- 1. Introduction
- 2. Motivation
- 3. Background
- 4. Adaptation
- 5. **<u>Demo</u>**
- 6. Outlook
- 7. Questions
- 8. <u>Appendix</u>

Sebastian Lenzlinger 2024-07-11 22

# Outlook

- 1. Introduction
- 2. Motivation
- 3. Background
- 4. Adaptation
- 5. **<u>Demo</u>**
- 6. Outlook
- 7. Questions
- 8. <u>Appendix</u>

Sebastian Lenzlinger 2024-07-11 23

# Questions

- 1. Introduction
- 2. Motivation
- 3. Background
- 4. Adaptation
- 5. **<u>Demo</u>**
- 6. Outlook
- 7. Questions
- 8. <u>Appendix</u>

Sebastian Lenzlinger 2024-07-11 24

# Appendix

# **Bibliography**

- [1] G. Fursin, "Collective Knowledge: Organizing Research Projects as a Database of Reusable Components and Portable Workflows with Common Interfaces," *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*, vol. 379, no. 2197, p. 20200211–20200212, Mar. 2021, doi: 10.1098/rsta.2020.0211.
- [2] D. Balenson *et al.*, "Toward Findable, Accessible, Interoperable, and Reusable Cybersecurity Artifacts," in *Proceedings of the 15th Workshop on Cyber Security Experimentation and Test*, in Cset '22. New York, NY, USA: Association for Computing Machinery, 2022, pp. 65–70. doi: 10.1145/3546096.3546104.
- [3] "FAIR Principles." Accessed: Jun. 22, 2024. [Online]. Available: <a href="https://www.go-fair.org/fair-principles/">https://www.go-fair.org/fair-principles/</a>

 Sebastian Lenzlinger
 2024-07-11
 25 / 29

## Appendix

- [4] M. D. Wilkinson, M. A. Swertz, and et al., "The FAIR Guiding Principles for Scientific Data Management and Stewardship," *Scientific Data*, vol. 3, no. 1, p. 160018–160019, Mar. 2016, doi: 10.1038/sdata.2016.18.
- [5] T. Vaughan, S. Battle, and K. Walker, "The Use of Climate Chambers in Biological Research," *Environmental Science & Technology*, vol. 39, no. 14, pp. 5121–5127, 2005.
- [6] A. Hahn, A. Ashok, S. Sridhar, and M. Govindarasu, "Cyber-Physical Security Testbeds: Architecture, Application, and Evaluation for Smart Grid," *IEEE Transactions on Smart Grid*, vol. 4, no. 2, pp. 847–855, Jun. 2013, doi: 10.1109/TSG.2012.2226919.
- [7] J. Ren, D. J. Dubois, D. Choffnes, A. M. Mandalari, R. Kolcun, and H. Haddadi, "Information Exposure From Consumer IoT Devices: A Multidimensional, Network-Informed Measurement Approach," in *Proceedings of the Internet Measurement Conference*, in IMC '19. New York, NY, USA: Association for Computing Machinery, Oct. 2019, pp. 267–279. doi: 10.1145/3355369.3355577.

 Sebastian Lenzlinger
 2024-07-11
 26 / 29

## Appendix

- [8] D. Kumar *et al.*, "All Things Considered: An Analysis of IoT Devices on Home Networks," in *28th USENIX Security Symposium (USENIX Security 19)*, Santa Clara, CA: USENIX Association, Aug. 2019, pp. 1169–1185. [Online]. Available: <a href="https://www.usenix.org/conference/usenixsecurity19/presentation/kumar-deepak">https://www.usenix.org/conference/usenixsecurity19/presentation/kumar-deepak</a>
- [9] K. Friess, "Multichannel-Sniffing-System for Real-World Analysing of Wi-Fi-Packets," in 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN), Jul. 2018, pp. 358–364. doi: 10.1109/ICUFN.2018.8436715.
- [10] A. Acar *et al.*, "Peek-a-Boo: I See Your Smart Home Activities, Even Encrypted!," in *Proceedings of the 13th ACM Conference on Security and Privacy in Wireless and Mobile Networks*, Jul. 2020, pp. 207–218. doi: 10.1145/3395351.3399421.
- [11] M. Alyami, I. Alharbi, C. Zou, Y. Solihin, and K. Ackerman, "WiFi-based IoT Devices Profiling Attack Based on Eavesdropping of Encrypted WiFi Traffic," in *2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)*, Las Vegas, NV, USA: IEEE, Jan. 2022, pp. 385–392. doi: 10.1109/CCNC49033.2022.9700674.

 Sebastian Lenzlinger
 2024-07-11
 27 / 29

## Appendix

[12] "Toward a Common Language to Facilitate Reproducible Research and Technology Transfer: Challenges and Solutions," Jun. 28, 2023. doi: 10.5281/zenodo.8105339.

 Sebastian Lenzlinger
 2024-07-11
 28 / 29

# Appendix

**Images** University of Basel 8. Appendix

#### Introduction<sup>1</sup>

- IoT Network Diagram: <a href="https://tse3.mm.bing.net/th?id=OIP.o3AVQNkQCCG\_2cmhQzD1zQHaEW&pid=Api">https://tse3.mm.bing.net/th?id=OIP.o3AVQNkQCCG\_2cmhQzD1zQHaEW&pid=Api</a>
- Figure 2: https://io.wp.com/thegroyne.com/wp-content/uploads/2018/04/Amazon-Echo-Dot-Altavoces-inteligentes-04.jpeg
- Figure 1: <a href="https://www.multimediaplayer.it/wp-content/uploads/kit-philips-hue.jpg">https://www.multimediaplayer.it/wp-content/uploads/kit-philips-hue.jpg</a>
- Figure 3: https://d.otto.de/files/bd42f6e9-ac45-5e1c-8d5f-ac3affcee9d6.pdf<sup>2</sup>

Sebastian Lenzlinger 2024-07-11 29 / 29 Appendix
- Images

<sup>&</sup>lt;sup>1</sup>Images licenced for free share and use to the best of my knowledge.

<sup>&</sup>lt;sup>2</sup>Unclear licence