

IOTTB

An Automation Testbed for IoT Devices

Sebastian Lenzlinger

University of Basel
Department of Mathematics and Computer Science
Privacy-Enhancing Technologies Group

2024-07-17

- 1. Introduction
- 2. Motivation
- 3. Background
- 4. **IOTDB**
- 5. Outlook
- 6. Questions
- 7. Appendix

https://tse3.mm.bing.net/th?id=OIP.o3AVQNkQCCG_2cmhQzD1zQHaEW&pid=Api,

Project Description

To study the privacy and security aspects of IoT devices

- systematically and
- reproducibly,

we need an easy-to-use

testbed

that

• automates

(some aspects of) the process of experimenting with IoT devices.

In this presentation I describe an implementation of such a testbed: IOTTB

Objectives

Key objectives:

- 1. *Automation recipes* [1] for repeated execution of experiments, including data collection and analysis.
- 2. FAIR data storage (Findable, Accessible, Interoperable, Reusable) (see [2], [3] and [4]).

- 1. Introduction
- 2. Motivation
- 3. Background
- 4. **IOTDB**
- 5. Outlook
- 6. Questions
- 7. Appendix

- 1 Manual setup and configuration of tools
- e.g. tcpdump, Wireshark, Frida
- configurations not interoperable between tools

- 1 Manual setup and configuration of tools
- e.g. tcpdump, Wireshark, Frida
- configurations not interoperable between tools
- 2 Ad-hoc decisions
- file/artefact naming
- measured/extracted data features
- metadata recorded

- 1 Manual setup and configuration of tools
- e.g. tcpdump, Wireshark, Frida
- configurations not interoperable between tools
- 2 Ad-hoc decisions
- file/artefact naming
- measured/extracted data features
- metadata recorded
- 3 Tailored utilities
- lack interoperability
- require adaptation depending on project

- 1 Manual setup and configuration of tools
- e.g. tcpdump, Wireshark, Frida
- configurations not interoperable between tools
- 2 Ad-hoc decisions
- file/artefact naming
- measured/extracted data features
- metadata recorded
- 3 Tailored utilities
- lack interoperability
- require adaptation depending on project

- 4 Scattered data and lack of standardization
- Inconsistent data collection and storage
- Difficult to maintain compatibility across projects

- 1 Manual setup and configuration of tools
- e.g. tcpdump, Wireshark, Frida
- configurations not interoperable between tools
- 2 Ad-hoc decisions
- file/artefact naming
- measured/extracted data features
- metadata recorded
- 3 Tailored utilities
- lack interoperability
- require adaptation depending on project

- 4 Scattered data and lack of standardization
- Inconsistent data collection and storage
- Difficult to maintain compatibility across projects
- 5 Onboarding challenges
- New members create ad-hoc solutions
- Perpetuates inefficiency and inconsistency

- Problems with current approach:
 - 1. Inconsistent data collection
 - 2. Lack of standardized tools and methods
 - 3. Issues with file naming and data structuring
- Resulting difficulties:
 - 1. Compatibility across projects
 - 2. Onboarding new members
 - 3. Ad-hoc solutions perpetuating inefficiency

- 1. Introduction
- 2. Motivation
- 3. Background
- 4. **IOTDB**
- 5. Outlook
- 6. Questions
- 7. Appendix

Figure 1: Smart Lighting

Figure 2: Smart Speakers

Figure 3: Home Surveillance
Camera

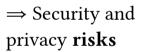

Figure 4: VR Headset

Figure 5: Dall-E Diagram of a Smart Home Network

IoT devices offer **benefits**:

- Home lighting control
- Remote video monitoring
- Automated cleaning and more! But, they because
- 1. Used in Homes
- 2. Connected
 - LAN only
 - Internet
 - May lead to information leakage

- Surveillance potential
- Unauthorized data sharing
- Vulnerable to bugs and security failures

Figure 6: Dall-E Schematic Smart Home Network

• IoT Devices Overview:

- ▶ Devices connected to the internet (voice assistants, smart watches, smart home gadgets)
- ► Embedded with microprocessors and software

• Examples of IoT Devices:

- Security cameras
- Home lighting systems
- Children's toys

• Importance of IoT:

- Physical dimension (sensors, controllers)
- Internet connectivity

- What is a Testbed?
 - Controlled environment for experiments
 - Ensures reproducibility and standardization
- Examples of Testbeds:
 - ▶ Industry and Engineering: Platforms for product development
 - ▶ Natural Sciences: Laboratories (e.g., climate chambers, wind tunnels, see [5])
 - ► Computing: Software testing environments (unit tests, IDEs)
 - ► Interdisciplinary: Complex systems (e.g., smart electric grid testbeds, see [6])

- FAIR Data Principles: [4], [3]
 - Findability: Data should be easy to find
 - Accessibility: Data should be accessible under well-defined conditions
 - **Interoperability:** Data should be integrated with other data
 - **Reusability:** Data should be reusable for future research
- Purpose:
 - Improve reusability of scientific data
 - Guide for designing *data storage* systems

• Importance of Network Traffic in IoT:

- 1. Captures communication patterns (device-to-server (internet), device-to-device (LAN, e.g., companion apps))
- 2. Essential for evaluating performance and identifying unauthorized communications

• Protocol Analysis:

- 1. Understand device operation and communication protocols
- 2. Identify compatibility, efficiency, and security issues

• Flow Monitoring:

- 1. Detect potential security threats (data breaches, unauthorized access, malware)
- 2. Monitor for anomalies indicating security incidents or vulnerabilities

• Information Leakage:

- 1. Adversaries can passively observe traffic and extract sensitive information
- 2. Even encrypted traffic can leak information about the smart environment and users

see [7], [8], [9], [7] and [10]

Examples:

- Leakage: Personal data and device usage patterns. [7]
 - **Details:** The study found that IoT devices often leak personal data and detailed usage patterns to third-party servers.
- Leakage: Home device interactions and usage. [8]
 - **Details:** This research revealed that interactions with home devices can be intercepted, providing insights into daily routines and activities.
- Leakage: Device/Network communication patterns.[9]
 - **Details:** Sniffing tools can capture communications between IoT devices. WiFi packets expose usage patterns regardless of encryption[10]. Those patterns contain features which can be extracted (i.e. leaked) and fed into machine learning models which are capable of exposing more meaningful information (e.g., identifying devices and their functionality) [11].

In the end these are all some aspect of the same issue: even encrypted traffic leaks information which can be valuable to adversaries.

- Network Packet Capture:
 - 1. Intercepting and storing data packets on a network
 - 2. Principal technique for studying device behavior and communication patterns
- Importance in IoT Security Research:
 - 1. Main data collection mechanism
 - 2. Essential for analyzing network traffic

• Automation Recipes:

- Platform agnostic automation
 - e.g., install tool y, retrieve dataset x
- Integrate with existing scripts/tools
- Examples in ML
- ► Collective Mind Framework: [12], [1]
 - Provides reusable recipes for building, running, benchmarking, and optimizing applications
 - Platform-independent or supplemented with user-specific scripts

• Key Issues Identified:

- 1. Manual setup and configuration of tools
- 2. Ad-hoc decisions in file naming, data features, and metadata
- 3. Tailored utilities lacking interoperability
- 4. Scattered data and lack of standardization
- 5. Onboarding challenges for new members

• Importance of Addressing These Issues:

- 1. Improve reproducibility and reliability of experiments
- 2. Enhance data quality and interoperability
- 3. Facilitate easier onboarding and collaboration

• How IOTTB Addresses These Issues:

1. Automation Recipes:

- Standardize the setup and configuration of tools
- Ensure consistent data collection and analysis processes

2. FAIR Data Storage:

- Enhance findability, accessibility, interoperability, and reusability of data
- ► Improve data management and sharing practices

3. Testbed Design:

- Provide a controlled environment for reproducible experiments
- Simplify onboarding and collaboration through standardized procedures

- 1. Introduction
- 2. Motivation
- 3. Background
- 4. **<u>IoTdb</u>**
- 5. Outlook
- 6. Questions
- 7. Appendix

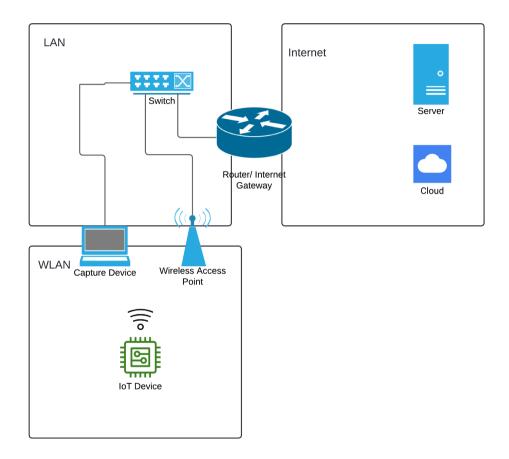


Figure 7: Common capture setup. Separate AP, switch and capturing device.

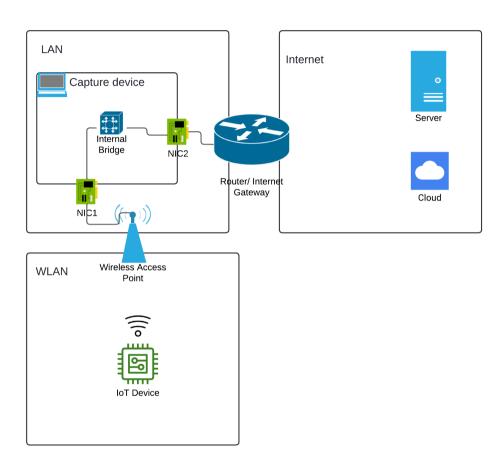


Figure 8: Setup with AP and "Capture Device" on same machine.

How is this realized?

How is this realized?

iottb:

- Python Package
 - Defines Data Storage (implicit in behaviour)
 - Database is a directory hierarchy in a file system
 - DB is a collection of "device"-folders
 - Devices in turn hold some metadata and can have subfolders containing capture data

How is this realized?

iottb:

- Python Package
 - Defines Data Storage (implicit in behaviour)
 - Database is a directory hierarchy in a file system
 - DB is a collection of "device"-folders
 - Devices in turn hold some metadata and can have subfolders containing capture data
 - Defines a metadata schema for devices, as well as captures
 - Automates collecting of metadata + data

DEMO

- 1. Introduction
- 2. Motivation
- 3. Background
- 4. **IOTDB**
- 5. Outlook
- 6. Questions
- 7. Appendix

Findability:

• supported through use of UUIDs, while maintaining human readability.

Findability:

• supported through use of UUIDs, while maintaining human readability.

Accessibility:

- to a degree up to user of testbed
- UUID precondition for data met
- metadata makes sense also without data

Findability:

• supported through use of UUIDs, while maintaining human readability.

Accessibility:

- to a degree up to user of testbed
- UUID precondition for data met
- metadata makes sense also without data

Interoperability:

- Used data formats are common and well known (json, pcap)
- Metadata schema understandable given example

Findability:

• supported through use of UUIDs, while maintaining human readability.

Accessibility:

- to a degree up to user of testbed
- UUID precondition for data met
- metadata makes sense also without data

Interoperability:

- Used data formats are common and well known (json, pcap)
- Metadata schema understandable given example

Reusability:

- Used formats support this.
- Data capture tool (iottb) can be made available
- + rerun with the same configuration

Automation Recipes?

- iottb automates capture
- Metadata should allow repeating experiments
- want: configure capture based on metadata

- 1. Introduction
- 2. Motivation
- 3. Background
- 4. **IOTDB**
- 5. Outlook
- 6. Questions
- 7. Appendix

- 1. Introduction
- 2. Motivation
- 3. Background
- 4. **IOTDB**
- 5. Outlook
- 6. Questions
- 7. Appendix

Bibliography

- [1] G. Fursin, "Collective Knowledge: Organizing Research Projects as a Database of Reusable Components and Portable Workflows with Common Interfaces," *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*, vol. 379, no. 2197, p. 20200211–20200212, Mar. 2021, doi: 10.1098/rsta.2020.0211.
- [2] D. Balenson *et al.*, "Toward Findable, Accessible, Interoperable, and Reusable Cybersecurity Artifacts," in *Proceedings of the 15th Workshop on Cyber Security Experimentation and Test*, in Cset '22. New York, NY, USA: Association for Computing Machinery, 2022, pp. 65–70. doi: 10.1145/3546096.3546104.
- [3] "FAIR Principles." Accessed: Jun. 22, 2024. [Online]. Available: https://www.go-fair.org/fair-principles/

- [4] M. D. Wilkinson, M. A. Swertz, and et al., "The FAIR Guiding Principles for Scientific Data Management and Stewardship," *Scientific Data*, vol. 3, no. 1, p. 160018–160019, Mar. 2016, doi: 10.1038/sdata.2016.18.
- [5] T. Vaughan, S. Battle, and K. Walker, "The Use of Climate Chambers in Biological Research," *Environmental Science & Technology*, vol. 39, no. 14, pp. 5121–5127, 2005.
- [6] A. Hahn, A. Ashok, S. Sridhar, and M. Govindarasu, "Cyber-Physical Security Testbeds: Architecture, Application, and Evaluation for Smart Grid," *IEEE Transactions on Smart Grid*, vol. 4, no. 2, pp. 847–855, Jun. 2013, doi: 10.1109/TSG.2012.2226919.
- [7] J. Ren, D. J. Dubois, D. Choffnes, A. M. Mandalari, R. Kolcun, and H. Haddadi, "Information Exposure From Consumer IoT Devices: A Multidimensional, Network-Informed Measurement Approach," in *Proceedings of the Internet Measurement Conference*, in IMC '19. New York, NY, USA: Association for Computing Machinery, Oct. 2019, pp. 267–279. doi: 10.1145/3355369.3355577.

- [8] D. Kumar *et al.*, "All Things Considered: An Analysis of IoT Devices on Home Networks," in *28th USENIX Security Symposium (USENIX Security 19)*, Santa Clara, CA: USENIX Association, Aug. 2019, pp. 1169–1185. [Online]. Available: https://www.usenix.org/conference/usenixsecurity19/presentation/kumar-deepak
- [9] K. Friess, "Multichannel-Sniffing-System for Real-World Analysing of Wi-Fi-Packets," in 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN), Jul. 2018, pp. 358–364. doi: 10.1109/ICUFN.2018.8436715.
- [10] A. Acar *et al.*, "Peek-a-Boo: I See Your Smart Home Activities, Even Encrypted!," in *Proceedings of the 13th ACM Conference on Security and Privacy in Wireless and Mobile Networks*, Jul. 2020, pp. 207–218. doi: 10.1145/3395351.3399421.
- [11] M. Alyami, I. Alharbi, C. Zou, Y. Solihin, and K. Ackerman, "WiFi-based IoT Devices Profiling Attack Based on Eavesdropping of Encrypted WiFi Traffic," in *2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)*, Las Vegas, NV, USA: IEEE, Jan. 2022, pp. 385–392. doi: 10.1109/CCNC49033.2022.9700674.

[12] "Toward a Common Language to Facilitate Reproducible Research and Technology Transfer: Challenges and Solutions," Jun. 28, 2023. doi: <u>10.5281/zenodo.8105339</u>.

Introduction¹

- IoT Network Diagram: https://tse3.mm.bing.net/th?id=OIP.o3AVQNkQCCG_2cmhQzD1zQHaEW&pid=Api
- Figure 2: https://io.wp.com/thegroyne.com/wp-content/uploads/2018/04/Amazon-Echo-Dot-Altavoces-inteligentes-04.jpeg

7. Appendix

- Figure 1: https://www.multimediaplayer.it/wp-content/uploads/kit-philips-hue.jpg
- Figure 3: https://d.otto.de/files/bd42f6e9-ac45-5e1c-8d5f-ac3affcee9d6.pdf²

¹Images licenced for free share and use to the best of my knowledge.

²Unclear licence