University
of Basel

|
>

AN
\/\/\/
NN
ZON

IOTTB: An Automation Testbed for IOT
Devices

Bachelor Project

Natural Science Faculty of the University of Basel
Department of Mathematics and Computer Science
Privacy Enhancing Technologies
https://pet.dmi.unibas.ch

Examiner: Prof. Dr. Isabel Wagner

Supervisor: Valentyna Pavliv

Sebastian Lenzlinger
sebastian.lenzlinger@unibas.ch
2018-775-494

30. June 2024

Abstract

To systematically study and assess the privacy and security implications of IoTdevices, it is
crucial to have a reliable method for conducting experiments and extracting meaningful data
in a reproducible manner. This necessitates the development of a system —referred to as a
7testbed”— that includes all the necessary tools, definitions, and automated environment
setup required for conduction reproducible experiments on IoT devices.

In this project, I aim to design and implement a testbed that automates and standardizes
the collection and processing of network data from IoT devices. The outcome of this project
is a Python package that facilitates these tasks, providing a foundation for reproducible IoT

device experiments.

Abstract

1 Introduction

1.1 Motivation
1.2 Goal
1.3 Outline

2 Background

2.1 Internet of Things
2.2 Testbed
2.3 FAIR Data Principles
2.4 Network Traffic
2.5 (Network) Packet Capture
2.6 Automation Recipes

3 Adaptation

3.1 Principal Objectives
3.2 Requirements Analysis
3.3 Scope ...

3.3.1 Model Environment

4 Implementation

4.1 Database Schema
4.2 High Level Description
4.3 Database Initialization
4.4 Adding Devices
4.5 Traffic Sniffing 0oL
4.6 Working with Metadata
4.7 Raw Captures
4.8 Integrating user scripts

4.9 Extending and Modifying the Testbed

5 Evaluation

5.1 Item R1.1: Installation of Tools.

Table of Contents

ii

Table of Contents iv

5.2 TItem R1.2: Configuration and Start of Data Collection 19
5.3 Item R1.3: Data Processing 20
5.4 TItem R1.4: Reproducibility 20
5.5 Ttem R1.5: Execution Control 20
5.5.1 R1.6: Error Handling and Logging 21

5.6 Ttem RI1.7: Documentation 21
5.7 Ttem R2.1: Data and Metadata Inventory 21
5.8 TItem R2.2: Data Formats and Schemas 21
5.8.1 Item R2.3: File Naming and Directory Hierarchy 22

5.9 Item R2.4: Data Preservation Practices 22
5.10 Ttem R2.5: Accessibility Controls 22
5.11 Item R2.6: Interoperability Standards 22
5.11.1 Ttem R2.7: Reusability Documentation 23

5.12 Usage Examples L e 23
5.12.1 Example 1: Setting Up and Running a Capture 23

5.12.2 Example 2: Retrieving Metadata 23

5.12.3 Example 3: Running a Raw Command 23

5.13 Near Future Improvements, 23

6 Conclusion 24
6.1 Future Work e 24
6.2 Related Work oL 24

7 TODOS 25
Acronyms 26
Bibliography 27
Appendix A Appendix A 30
Appendix B Appendix B 31
B.1 Command Line Examples 31
B.1.1 Pre and post scripts 31
Appendix C Appendix D 34
Cl iottbh ... e 34
C.1.1 [Initialize Database, 34

C.1.2 Adddevice 35

C.1.3 Capture traffic with tepdumpo 0oL 35

C.2 Utility commands 36
C.2.1 Remove Configuration 36

C.2.2 Remove Database 36

C.2.3 Display Configuration File, 37

Table of Contents

C.2.4 7Show All”

Introduction

Internet of Things (IoT) devices are becoming increasingly prevalent in modern homes,
offering a range of benefits such as controlling home lighting, remote video monitoring, and
automated cleaning [12]. These conveniences are made possible by the sensors and networked
communication capabilities embedded within these devices. However, these features also
pose significant privacy and security risks [11]. IoT devices are often integrated into home
networks and communicate over the internet with external servers, potentially enabling
surveillance or unauthorized data sharing without the user’s knowledge or consent [13].
Moreover, even in the absence of malicious intent by the manufacturer, these devices are

still vulnerable to programming bugs and other security failures [6].

Security researchers focused on the security and privacy of such IoT devices rely on various
utilities and tools for conducting research. These tools are often glued together in scripts
with arbitrary decisions about file naming and data structuring. Such impromptu scripts
typically have a narrow range of application, making them difficult to reuse across different
projects. Consequently, useful parts are manually extracted and incorporated into new

scripts for each project, exacerbating the problem.

This approach leads to scattered data, highly tailored scripts, and a lack of standardized
methods for sharing or reproducing experiments. The absence of standardized tools and
practices results in inconsistencies in data collection and storage, making it difficult to main-
tain compatibility across projects. Furthermore, the lack of conventions about file naming
and data structuring leads to issues in finding and accessing the data. For research groups,
these issues are further compounded during the onboarding of new members, who must nav-
igate this fragmented landscape and often create their own ad-hoc solutions, perpetuating

the cycle of inefficiency and inconsistency.

To systematically and reproducibly study the privacy and security of IoT devices, an easy-
to-use testbed that automates and standardizes various aspects of experimenting with IoT

devices is needed.

Introduction 2

1.1 Motivation

The primary motivation behind this project is to address the challenges faced by security
researchers in the field of IoT device security and privacy. The scattered nature of data, the
lack of standardized tools, and the ad-hoc methods used for data collection or processing,
are an obstacle for researchers who want to produce valid and reproducible results [9].
A standardized testbed, enabling a more systematic approach to collecting and analyzing
network data from IoT devices, can help make tedious and error-prone aspects of conducting
experiments on [oT devices more bearable, while at the same time enhancing the quality
of the data, by adhering to interoperability standards by establishing data collection and
storage standards. This bachelor project is specifically informed by the needs of the PET
research group at the University of Basel, who will utilize it to run IoT device experiments,

and as a foundation to build more extensive tooling.

1.2 Goal

The goal of this project is to design and implement a testbed for IoT device experiments.
To aid reproducibility, there are two main objectives:

First, the testbed should automate key aspects of running experiments with IoT devices,
particularly the setup and initialization of data collection processes as well as some basic
post-collection data processing.

Secondly, the testbed should standardize how data from experiments is stored. This includes
standardizing data and metadata organization, establishing a naming scheme, and defining
necessary data formats. A more detailed description to how this is adapted for this project

follows in Chapter 3.

1.3 Outline

This report documents the design and implementation of an IoT testbed. In the remainder
of the text, the typographically formatted string "10TTB ” refers to this projects’ concep-

)

tion of testbed, whereas "iottb 7 specifically denotes the Python package which is the
implementation artifact from this project.

This report outlines the general goals of a testbed, details the specific functionalities of I0TTB
, and explains how the principles of automation and standardization are implemented. We
begin by giving some background on the most immediately useful concepts. Chapter 3
derives requirements for I0TTB starting from first principles and concludes by delineating
the scope considered for implementation, which is described in Chapter 4. In Chapter 5 we
evaluate IOTTB , and more specifically, the 1 ot tb software package against the requirements
stated in Chapter 3. We conclude in Chapter 6 with an outlook on further development for

IOTTB .

Background

This section provides the necessary background to understand the foundational concepts
related to IoT devices, testbeds, and data principles that inform the design and implemen-

tation of IOTTB .

2.1 Internet of Things

The IoT refers to the connection of “things” other than traditional computers to the internet.
The decreasing size of microprocessors has enabled their integration into smaller and smaller
objects. Today, objects like security cameras, home lighting, or children’s toys may contain
a processor and embedded software that enables them to interact with the internet. The
Internet of Things encompasses objects whose purpose has a physical dimension, such as
using sensors to measure the physical world or functioning as simple controllers. When these
devices can connect to the internet, they are considered part of the Internet of Things and

are referred to as IoT devices (see Silverio-Ferndndez et al. [14] and Firouzi et al. [7]).

2.2 Testbed

A testbed is a controlled environment set up to perform experiments and tests on new
technologies. The concept is used across various fields such as aviation, science, and industry.
Despite the varying contexts, all testbeds share the common goal of providing a stable,
controlled environment to evaluate the performance and characteristics of the object of
interest.

Examples of testbeds include:

1. Industry and Engineering: In industry and engineering, the term platform is often
used to describe a starting point for product development. A platform in this context
can be considered a testbed where various components and technologies are integrated

and tested together before final deployment.

2. Natural Sciences: In the natural sciences, laboratories serve as testbeds by providing

controlled environments for scientific experiments. For example, climate chambers are

Background 4

used to study the effects of different environmental conditions on biological samples
(e.g., in Vaughan et al. [16]). Another example is the use of wind tunnels in aerody-
namics research to simulate and study the effects of airflow over models of aircraft or

other structures.

3. Computing: In computing, specifically within software testing, a suite of unit tests,
integrated development environments (IDEs), and other tools could be considered
as a testbed. This setup helps in identifying and resolving potential issues before
deployment. By controlling parameters of the environment, a testbed can ensure that
the software behaves as expected under specified conditions, which is essential for

reliable and consistent testing.

4. Interdisciplinary: Testbeds can take on considerable scales. For instance, in Hahn
et al. [10] provides insight into the aspects of a testbed for a smart electric grid. This
testbed is composed out of multiple systems, — an electrical grid, internet, and com-
munication provision — which in their own right are already complex environments.
The testbed must, via simulation or prototyping, provide control mechanisms, com-

munication, and physical system components.

2.3 FAIR Data Principles

The FAIR Data Principles were first introduced by Wilkinson et al. [17] with the intention to
improve the reusability of scientific data. The principles address Findability, Accessibility,
Interoperability, and Reusability. Data storage designers may use these principles as a
guide when designing data storage systems intended to hold data for easy reuse. For a more

detailed description, see [1].

2.4 Network Traffic

Studying IoT devices fundamentally involves understanding their network traffic behavior.
This is because network traffic contains (either explicitly or implicitly embedded in it)
essential information of interest. Here are key reasons why network traffic is essential in the

context of IoT device security:

1. Communication Patterns: Network traffic captures the communication patterns
between IoT devices and external servers or other devices within the network. By
analyzing these patterns, researchers can understand how data flows in and out of the
device, which is critical for evaluating performance and identifying any unauthorized

communications or unintended leaking of sensitive information.

2. Protocol Analysis: Examining the protocols used by IoT devices helps in under-
standing how they operate. Different devices might use various communication pro-
tocols, and analyzing these can reveal insights into their compatibility, efficiency, and
security. Protocol analysis can also uncover potential misconfigurations or deviations

from expected behavior.

Background 5

3. Flow Monitoring: Network traffic analysis is a cornerstone of security research. It
allows researchers to identify potential security threats such as data breaches, unautho-
rized access, and malware infections. By monitoring traffic, one can detect anomalies

that may indicate security incidents or vulnerabilities within the device.

4. Information Leakage: IoT devices are often deployed in a home environment and
connect to the network through wireless technologies [12]. This allows an adversary
to passively observe traffic. While often this traffic is encrypted, the network flow
can leak sensitive information, which is extracted through more complex analysis of
communication traffic and Wi-Fi packets [8], [13]. In some cases, the adversary can

determine the state of the smart environment and their users [6].

2.5 (Network) Packet Capture

Network packet capture ! fundamentally describes the act or process of intercepting and
storing data packets traversing a network. It is the principal technique used for studying the
behavior and communication patterns of devices on a network. For the reasons mentioned
in Section 2.4, packet capturing is the main data collection mechanism used in IoT device

security research, and also the one considered for this project.

2.6 Automation Recipes

) Automation recipes can be understood as a way of defining a sequence of steps needed for
a process. In the field of machine learning, Collective Mind? provides a small framework to
define reusable recipes for building, running, benchmarking and optimizing machine learning
applications. A key aspect of these recipes some platform-independent, which has enabled
wider testing and benchmarking of machine learning models. Even if a given recipe is not
yet platform independent, it can be supplemented with user-specific scripts which handle the
platform specifics. Furthermore, it is possible to create a new recipe from the old recipe and
the new script, which, when made accessible, essentially has extended the applicability of
the recipe Friess [8]. Automation recipes express the fact that some workflow is automated
irrespective of the underlying tooling. A simple script or application can be considered an

recipe (or part of)

1 also known as packet sniffing, network traffic capture, or just sniffing. The latter is often used when

referring to nefarious practices.
2 https://github.com/mlcommons/ck

https://github.com/mlcommons/ck

Adaptation

In this chapter, we outline the considerations made during the development of the IoT
testbed, I0TTB . Starting from first principles, we derive the requirements for our testbed
and finally establish the scope for 10TTB . The implemented testbed which results from this

analysis, the software package iottb , is discussed in Chapter 4.

3.1 Principal Objectives

The stated goal for this bachelor project (see Section 1.2), is to create a testbed for IoT
devices, which automates aspects of the involved workflow, with the aim of increasing repro-
ducibility, standardization, and compatibility of tools and data across project boundaries.

We specify two key objectives supporting this goal:

Objective 1 Automation Recipes: The testbed should support specification and repeated exe-
cution of important aspects of experiments with IoT devices, such as data collection

and analysis (see [9])

Objective 2 FAIR Data Storage: The testbed should store data in accordance with the FAIR
[1] principles.

3.2 Requirements Analysis
In this section, we present the results of the requirements analysis based on the principal
objectives. The requirements derived for Objective 1 are presented in Table 3.1. Table 3.2

we present requirements based on Objective 2.

Adaptation 7

R1.1

R1.2

R1.3

R1.J

R1.5

R1.6

R1.7

Table 3.1: Automation Recipes Requirements

Installation of Tools: Support installation of necessary tools like mitmprozy [2],
Wireshark [5] or tepdump [4]).

Reasoning: There are various tools used for data collection and specifically packet
capture. Automating the installation of necessary tools ensures that all required soft-
ware is available and configured correctly without manual intervention. This reduces
the risk of human error during setup and guarantees that the testbed environment is
consistently prepared for use. Many platforms, notably most common Linux distribu-
tions, come with package managers which provide a simple command-line interface for
installing software while automatically handling dependencies. This allows tools to be
quickly installed, making it a lower priority requirement for IOTTB .

Configuration and Start of Data Collection: Automate the configuration and
start of data collection processes. Specific subtasks include:

a) Automate wireless hotspot management on capture device.

b) Automatic handling of network capture, including the collection of relevant meta-
data.

Reasoning: Data collection is a central step in the experimentation workflow. Con-
figuration is time-consuming and prone to error, suggesting automating this process
is useful.As mentioned in Section 1.1, current practices lead to incompatible data and
difficult to reuse scripts. Automating the configuration and start of data collection
processes ensures a standardized approach, reducing the potential for user error and
thereby increasing data compatibility and efficient use of tools. Automating this pro-
cess must be a central aspect of I0TTB .

Data Processing: Automate data processing tasks.

Reasoning: Some network capture tools produce output in a binary format. To make
the data available to other processes, often the data must be transformed in some way.
Data processing automation ensures that the collected data is processed uniformly and
efficiently, enhancing it reusability and interoperability. Processing steps may include
cleaning, transforming, and analyzing the data, which are essential steps to derive
meaningful insights. Automated data processing saves time and reduces the potential
for human error. It ensures that data handling procedures are consistent, which is
crucial for comparing results across different experiments and ensuring the validity of
findings.

Reproducibility: Ensure that experiments can be repeated with the same setup and
configuration.

Reasoning: A precondition to reproducible scientific results is the ability to run ex-
periments repeatedly with all relevant aspects are set up and configured identically.

Execution Control: Provide mechanisms for controlling the execution of automation
recipes (e.g., start, stop, status checks).

Reasoning: Control mechanisms are essential for managing the execution of automated
tasks. This includes starting, stopping, and monitoring the status of these tasks to
ensure they are completed successfully.

Error Handling and Logging: Include robust error handling and logging to facili-
tate debugging to enhance reusability.

Reasoning: Effective error handling and logging improve the robustness and reliability
of the testbed.Automation recipes may contain software with incompatible logging
mechanisms. To facilitate development and troubleshooting, a unified and principled
logging important for IOTTB .

Documentation: Provide clear documentation and examples for creating and run-
ning automation recipes.

Adaptation 8

Table 3.2: FAIR Data Storage Requirements

R2.1 Data and Metadata Inventory: 10TTB should provide an inventory of data and
metadata that typically need to be recorded (e.g., raw traffic, timestamps, device
identifiers).

Reasoning: Providing a comprehensive inventory of data and metadata ensures that
data remains findable after collection. Including metadata increases interpretability
and gives context necessary for extracting reproducible results.

R2.2 Data Formats and Schemas: Define standardized data formats and schemas.
Reasoning: Standardized data formats and schemas ensure consistency and interop-
erability.

R2.3 File Naming and Directory Hierarchy: Establish clear file naming conventions
and directory hierarchies. for organized data storage.

Reasoning: This enhances findability and accessibility.

R2.4 Data Preservation Practices: Implement best practices for data preservation, in-

cluding recommendations from authoritative sources like the Library of Congress [3].

Reasoning: Implementing best practices for data preservation can mitigate data degra-
dation and ensures integrity of data over time. This ensures long-term accessibility
and reusability.

R2.5 Accessibility Controls: Ensure data accessibility with appropriate permissions and
access controls.

R2.6 Interoperability Standards: Use widely supported formats and protocols to facili-
tate data exchange and interoperability.

R2.7 Reusability Documentation: Provide detailed metadata to support data reuse by
other researchers.

We return to these when we evaluate 1I0TTB in Chapter 5.

3.3 Scope

This section defines the scope of the testbed 10TTB . To guide the implementation of the
software component of this bachelor project, iottb , we focus on a specific set of require-
ments that align with the scope of a bachelor project. While the identified requirements
encompass a broad range of considerations, we have prioritized those that are most critical
to achieving the primary objectives of the project.

For this project, we delineate our scope regarding the principal objectives as follows:
e Objective 1: iottb focuses on complying with R1.2, R1.4.

e Objective 2: iottb ensures FAIR data storage implicitly, with the main focus lying
on R2.2, R2.1, R2.53.

3.3.1 Model Environment
In this section, we describe the environment model assumed as the basis for conduction IoT

device experiments. This mainly involves delineating the network topology. Considerations

Adaptation 9

are taken to make this environment, over which the iottb testbed software has no control,

easy reproducible [15].

We assume that the IoT device generally requires a Wi-Fi connection. This implies that

the environment is configured to reliably capture network traffic without disrupting the IoT

device’s connectivity. This involves setting up a machine with internet access (wired or

wireless) and possibly one Wi-Fi card supporting AP mode to act as the Access Point (AP)
for the IoT device under test [18]. Additionally, the setup must enable bridging the IoT-AP

network to the internet to ensure IoT device.

Specifically, the assumed setup for network traffic capture includes the following components:

1.

IoT Device: The device under investigation, connected to a network.

. Capture Device: A computer or dedicated hardware device configured to intercept

and record network traffic. This is where iottb runs.

. Wi-Fi AP : The AP through which the IoT device gets network access.
. Router/ Internet gateway: The network must provide internet access.

. Switch or software bridge: At least either a switch or an Operating System (OS)

with software bridge support must be available to be able to implement one of the

setups described in Fig. 3.1 and Fig. 3.2.

. Software: tcpdump is needed for network capture.

Adaptation 10

LAN
Internet

Server

t
Cloud

WLAN

Wireless Access

Capture Device
Point

—

—
o

sl

10T Device

Figure 3.1: Capture setup with separate Capture Device and AP

LAN
Internet

Capture device

E @ Server
Kxad
Internal _L
Bridge
Router/ Interngt
Gateway Cloud

Wireless Access

WLAN Point

—_
—
o

55

loT Device

Figure 3.2: Capture setup where the capture device doubles as the AP for the IoT device.

Implementation

This chapter discusses the implementation of the IoT device testbed, I0OTTB which is de-
veloped using the Python programming language. This choice is motivated by Python’s
wide availability and the familiarity many users have with it, thus lowering the barrier for
extending and modifying the testbed in the future. The testbed is delivered as a Python
package and provides the iottb command with various subcommands. A full command
reference can be found at Appendix C.

Conceptually, the software implements two separate aspects: data collection and data stor-
age. The 10TTB database schema is implicitly implemented by iottb . Users use iottb
mainly to operate on the database or initiate data collection. Since the database schema is
transparent to the user during operation, we begin with a brief description of the database

layout as a directory hierarchy, before we get into the iottb Command Line Interface (CLI)

4.1 Database Schema

The storage for IOTTB is implemented on top of the file system of the user. Since user folder
structures provide little standardization, we require a configuration file, while gives iottb
some basic information about the execution environment. The testbed is configured in a

configuration file in JSON format following the scheme in Listing 1.

{

"DefaultDatabase": "iottb.db",
"DefaultDatabasePath": [SHOME|,
"DatabaseLocations": {

<slerbls [pdeh>

Listing 1: Schema of the testbed configuration file.

Implementation 12

4.2 High Level Description Revise:
Before we go into the details, lets describe on higher level what the iottb software does. |doesn’t fit

iottb is used from the command line and follows the following schema:

iottb [<global options>] <subcommand> [<subcommand options>] [<argument (s)>

Revise:
When iottb is invoked, it first checks to see if it can find the database directory in the OS |Better list-

users home directory?. ing

4.3 Database Initialization

The IoT testbed database is defined to be a directory named iottb.db . Currently,
iottb creates this directory in the user’s home directory (commonly located at the path
/home/<username> on Linux systems) the first time any subcommand is used. All data
and metadata are placed under this directory. If this directory does not exist at the cor-

rect location, then network capturing (provided by the subcommand sniff described in
Section 4.5) will fail.

4.4 Adding Devices

Before we capture the traffic of a IoT device, iottb demands that there exists a dedicated
directory for it. We add a device to the database by passing a string representing the name

of the device to the add-device subcommand. This does two things:
1. A python object is initialized from the class as in Listing 2
2. A directory device_short_name for the device is created as iottb.db / device_short_name

3. A metadata file device_metadata. json is created and placed in the newly created

directory. This file is in the json format, and follows the schema seen in Listing 2.

The Device ID is automatically generated using a UUID to be FAIR compliant. canonical_name
is generated by the make_canonical_name () function provided in Listing 3. Fields not
supplied to the __init__ in Listing 2 are left empty. The other fields in are currently
not used by iottb itself, but provide metadata which can be used during a processing.

Optionally, one can manually create such a file with pre-set values and pass it to the setup.

3 Default can be changed

Implementation 13

12 class DeviceMetadata:

13 def _ init_ (self, device_name, description="", model="",
14 manufacturer="", firmware_version="", device_type="",
15 supported_interfaces="", companion_applications="",
16 save_to_file=None) :

17 self.device_id = str (uuid.uuid4 ())

18 self.device_name = device_name

19 cn, aliases = make_canonical_name (device_name)

20 self.aliases = aliases

21 self.canonical_name = cn

22 self.date_added = datetime.now () .isoformat ()

23 self.description = description

24 self.model = model

25 self.manufacturer = manufacturer

26 self.current_firmware_version = firmware_version

27 self.device_type = device_type

28 self.supported_interfaces = supported_interfaces

29 self.companion_applications = companion_applications

Listing 2: Device Metadata

def make_canonical_name (name) :
mimmn
Normalize the device name to a canonical form:
— Replace the first two occurrences of spaces
- transform characters with dashes.
- Remove remaining spaces.
- Convert to lowercase.
mimn
aliases = [name]
We first normalize
chars_to_replace = definitions.REPLACEMENT_SET_CANONICAL_DEVICE_NAMES

pattern = re.compile('|'.join(re.escape(char) for char in chars_to_replace))
norm_name = pattern.sub('-', name)

Remove non ascii chars

norm_name = re.sub(r' ["\x00-\x7F]+', '', norm_name)

aliases.append (norm_name)

Lower case

norm_name = norm_name.lower ()

aliases.append (norm_name)

canoncial name is only first two tokens

parts = norm_name.split ('-")

canonical_name = canonical_name = '-'.Jjoin(parts[:2])
aliases.append (canonical_name)

aliases = list (set(aliases))

return canonical_name, aliases

Listing 3: Shows how the canonical name is created.

Implementation 14

4.5 Traffic Sniffing

Automated network capture is a key component of iottb . The standard network capture
is provided by the sniff subcommand, which wraps the common traffic capture utility
tepdump(4].

The following arguments must be provided:

e Device name: The name of the IoT device for which traffic is being captured.
e IP or MAC address: Either the IP or MAC address of the IoT device.*

Unless explicitly allowed by specifying that the command should run in unsafe mode, an
IPv4, or MAC address must be provided. An IP address® are only accepted in dot-decimal
notation ® and MAC addresses must specify as six groups of two hexadecimal digits”. Failing
to provide either results in the capture being aborted. The rationale behind this is simple:
they are the only way to identify the traffic of interest. Of course it is possible to retrieve the
IP or MAC after a capture. Still, the merits outweigh the annoyance. The hope is that this
makes iottb easier to use correctly. For example, consider the situation, where a student
is tasked with performing multiple captures across multiple devices. If the student is not
aware of the need of an address for the captured data to be usable, then this policy avoids
the headache and frustration of wasted time and unusable data.

There are the following optional arguments:
e App: The app used to interact with the device during the capture.

e Interface: The NIC name of the interface on the capture host where the traffic is to

be captured.

e Count or minutes: Either the number of packets to capture or the duration (in

minutes) to run the capture.
e TODO: Complete the list of opts

To comply with R1.2 and R2.1, each capture also stores some metadata in capture metadata. json.
The metadata stored is defined by the Python object in Listing 4.

The device_id is the Universally Unique Identifier (UUID) of the device for which the

capture was performed. This ensures that .

This package provides a CLI. The package provides commands for capturing IoT device

network traffic data and implicitly implements the data storage through internal behaviour

and provided commands for interacting with the database.

4.6 Working with Metadata

The meta subcommand provides a facility for manipulating metadata files. It allows users

to get the value of any key in a metadata file as well as introduce new key-value pairs.

This can be disabled if needed, e.g., for testing or if it is not feasible to obtain either address.
TODO: Mention somewhere that we only consider IPv6 addresses (and why)

e.g., 172.168.1.1

e.g., 12:34:56:78:AA:BB

SN IS

Implementation

15

metadata = {
'device': canonical_name,
'device_id': device,
'capture_id': capture_uuid,
'capture_date_iso':
'invoked_command': "
'capture_duration': delta,
'generic_parameters': {
'flags': flags_string,
'kwargs':
'filter':
}I
'non_generic_parameters': {
'kwargs':
'filter': cap_filter
}I
'features': {
'interface':

'address':

interface,

address

}I

'resources': {
'pcap_file':
'stdout_log':
'stderr_log':

}I

datetime.now () .isoformat (),
".join (map(stzr,

cmd)),

generic_kw_args_string,
generic_filter

non_generic_kw_args_string,

str(pcap_£file),
str (stdout_log_file),
str(stderr_log_file)

'environment': {
'capture_dir': capture_dir,
'database': database,

'capture_base_dir':
'capture_dir_abs_path':

str (capture_base_dir),

str (capture_dir_full_path)

Listing 4: Metadata Stored for sniff command

However, it is not possible to change the value of any key already present in the metadata.

This restriction is in place to prevent metadata corruption.

The most crucial value in any metadata file is the uuid of the device or capture the metadata

belongs to. Changing the uuid would cause iottb to mishandle the data, as all references

to data associated with that uuid would become invalid. Changeing the any other value

might not cause mishandling by iottb , but they nonetheless represent essential information

about the data. Therefore, iottb does not allow changes to existing keys once they are

set.

Future improvements might relax this restriction by implementing stricter checks on which

keys can be modified. This would involve defining a strict set of keys that are write-once

and then read-only.

Implementation 16

4.7 Raw Captures

The raw subcommand offers a flexible way to run virtually any command wrapped in iottb
. Of course, the intended use is with other capture tools, like mitmprozymit [2], and not
arbitrary shell commands. While some benefits, particularly those related to standardized
capture, are diminished, users still retain the advantages of the database.

The syntax of the raw subcommand is as follows:

iottb raw <device> <command-name> "<command-options-string>" # or

iottb raw <device> "<string-executable-by-a-shell>" #

iottb does not provide error checking for user-supplied arguments or strings. Users ben-
efit from the fact that captures will be registered in the database, assigned a uuid, and
associated with the device. The metadata file of the capture can then be edited manually if
needed.

iottb does not provide error checking for user-supplied arguments or strings. Users ben-
efit from the fact that captures will be registered in the database, assigned a uuid, and
associated with the device. The metadata file of the capture can then be edited manually if
needed.

However, each incorrect or unintended invocation that adheres to the database syntax (i.e.,
the specified device exists) will create a new capture directory with a metadata file and
uuid. Therefore, users are advised to thoroughly test commands beforehand to avoid

creating unnecessary clutter.

4.8 Integrating user scripts

The ——pre and ——post options allow users to run any executable before and after any
subcommand, respectively. Both options take a string as their argument, which is passed
as input to a shell and launched as a subprocess. The rationale for running the process in a
shell is that Python’s Standard Library process management module, subprocess®, does
not accepts argument to the target subprocess when a single string is passed for execution.
Execution is synchronous: the subcommand does not begin execution until the ——pre script
finishes, and the ——post script only starts executing after the subcommand has completed
its execution. iottb always runs in that order.

There may be cases where a script provides some type of relevant interaction intended to
run in parallel with the capture. Currently, the recommended way to achieve this is to wrap
the target executable in a script that forks a process to execute the target script, detaches
from it, and returns.

These options are a gateway for more complex environment setups and, in particular, allow

users to reuse their scripts, thus lowering the barrier to adopting iottb .

8 https://docs.python.org/3/library/subprocess.html

https://docs.python.org/3/library/subprocess.html

Implementation 17

4.9 Extending and Modifying the Testbed
One of the key design goals of iottb is easy extensibility. New functionality can be easily
added through subcommands. Here are the minimal requirements to add a new subcom-

mand:

1. Create a Python file for the new subcommand and place it in the commands module,

i.e., the subfolder called commands.

2. In the main module’s file _ _main__ .py, find the def setup_argparse () function

(see Listing 5) and add the subparser for your new command.

If the parser is set up correctly, the new subcommand will be available after reinstalling the

module.

Evaluation

In this sectioned we evaluate iottb , paying particular attention to the requirements defined

in Section 3.2.

Requirement ID | Description Status
RI1.1 Installation of Tools Not Met
R1.2 Configuration and Start of Data Collection J

R1.2a) Automate WiFi Setup Not Met
R1.2Db) Automate Data Capture Met
R1.5 Data Processing Partially Met
R1.4 Reproducibility Partially Met
R1.5 Execution Control Not Met
R1.6 Error Handling and Logging Partially Met
R1.7 Documentation 4
R1.7a) User Manual Met
R1.7D) Developer Docs Not Met
R2.1 Data and Metadata Inventory Met
R2.2 Data Formats and Schemas Met
R2.3 File Naming and Directory Hierarchy Met
R2.4 Data Preservation Practices Partially Met
R2.5 Accessibility Controls Not Met
R2.6 Interoperability Standards Fully Met
R2.7 Reusability Documentation Met

Table 5.1: Summary of Requirements Evaluation

Table 5.1 gives an overview of the requirements introduced in Section 3.2 and our assessment
of their status. It is important to note that the status "Met” does not imply that the
requirement is implemented to the highest possible standard. Furthermore, this set of
requirements itself can (and should) be made more specific and expanded in both detail and
scope as the project evolves.

Additionally, Table 5.1 does not provide granularity regarding the status of individual com-
ponents, which might meet the requirements to varying degrees. For example, while the
requirement for data collection automation may be fully met in terms of basic functionality,
advanced features such as handling edge cases or optimizing performance might still need

improvement. Similarly, the requirement for data storage might be met in terms of basic

Evaluation 19

file organization but could benefit from enhanced data preservation practices.

Thus, the statuses presented in Table 5.1 should be viewed as a general assessment rather
ground truth. Future work should aim to refine these requirements and their implementation
to ensure that IOTTB continues to evolve and improve.

To provide a more comprehensive understanding, the following sections offer a detailed
evaluation of each requirement. This detailed analysis will discuss how each requirement
was addressed, the degree to which it was met, and any specific aspects that may still
need improvement. By examining each requirement individually, we can better understand
the strengths and limitations of the current implementation and identify areas for future

enhancement.

5.1 Item R1.1: Installation of Tools

Status: Not Met

1I0TTB does not install any software or tools by itself. Dependency management for Python
packages are handled by installers like PIP, since the Python package declares it’s depende-
cies. Tepdump is the only external dependency, and 10TTB checks if Tcpdump is available
on the capture device. If it is not, the user is asked to install it. Our position is that
generally it is a good idea to not force installation of software and allow users the freedom
to chose. The added benefit to the user of a built in installer seems low. Adding some
installer to I0TTB does not promise great enough improvement in ease-of-use vis-a-vis the
higher maintenance cost introduce to maintain such a module. For future work we propose

this requirement be droped.

5.2 ltem R1.2: Configuration and Start of Data Collection

Status: Partially Met

The testbed automates the configuration and initiation of data collection processes, including
wireless hotspot management and network capture. This automation reduces setup time
and minimizes errors. The testbed automates some aspects of configureing and intializing
the data collection process. This project focused on package capture and adjacent tasks.
Item R1.2b can be considered complete in that packet capture is fully supported thorough
Tepdump and important metadata is saved. Depending on the setup (see Fig. 3.1 and
Fig. 3.2) a WiFi hotspot needs to be setup before packet capture is initiated. TOTTB does
not currently implement automated setup and takedown of a hotspot on any platform, so
Item RI1.2a is not currently met. There are scripts for Linux systems bundled with the
Python package which can be used with the ——pree and ——post options mentioned in
Section 4.8. But to consider this task fully automated and supported this should be built in
to 10TTB itself. Furthermore, there are other data collection tools like mitmproxyTODO:
0 reference or more complicated setup tasks like setting up routing table to allow for more
capture scenarios which are tedious tasks and lend themselves to automation. Future work
should include extending the set of available automation recipes continously. New task

groups/recipy domains should be added as subrequirements of Item R1.2. We probose the

Evaluation 20

following new subrequirement

e Item R1.2c: Testbed should implement automatic setup of NAT routing for situations

where AP is connection to the capture device and a bridged setup is not supported.

e Item R1.2d: Testbed should dynamically determine which type of hotspot setup is

possible and choose the appropriate automation recipie.

Extending Item R1.2 means stating which data collection and adjacent recipes are wanted.

5.3 Item R1.3: Data Processing

Status: Partially Met

While the testbed includes some basic data processing capabilities, there is room for im-
provement. Currently the only one recipe exists for processing raw data. IOTTB can extract a
CSV file from a PCAP file. The possibilities for automation recipes which support data pro-
cessing are many. Having the data in a more standardized format allows for the creation of
more sophisticated feature extraction recipes with application for machine learning. Before
they are available users can still use the ——post option with their own feature extraction

scripts.

5.4 Item R1.4: Reproducibility

Status: Met

Supported automation can be run with repeatedly and used options are documented in the
capture metadata. This allows others to repeat the process with the same options. So in
this respect this requirement is met. But, the current state can be significantly improved by
automating the process of repeating a capture task with the same configuration as previous
captures. To support this we propose the following new subrequirement which aid the

automated reproduction of past capture workflows
e Item R1./a The testbed should be able to read command options from a file

e Item R1./b The testbed should be able to perform a capture based on metadata files

of completed captures

Taking these requirement promises to seriously increase reproducibility.

5.5 Item R1.5: Execution Control

Status: Not Met

The testbed currently provides no controlled method to interfear with a running recipie. In
most cases iottb will gracefully end if the user send the process a SIGINT, but there are
no explicit protections agains data corrpution in this case. Furthermore, during execution
iottb writes to logfiles and prints basic information to the users terminal. Extending this
with a type of monitoring mechanism would be good steps toward complying with this

requirement in the future.

Evaluation 21

5.5.1 R1.6: Error Handling and Logging
Status: Fully Met
Robust error handling and logging are implemented, ensuring that issues can be diagnosed

and resolved effectively. Detailed logs help maintain the integrity of experiments.

5.6 Item R1.7: Documentation

Status: Partially Met

For users there is a "User Manual’ which details all important aspects of working with the
iottb software. Furthermore, helpful messages are displayed with respect to the correct
syntac of the commands if an input is malformed. So user documentation does exist and
while certainly can be improved upon, is already helpful. Unfortunately, documentation for
developers is currently poor. The codebase is not systematically documented and there is
currently no developers manual. Thoroughly documenting the existing codebase should be

considered the most pressing issue and tackled first to improve developer documentation.

5.7 Item R2.1: Data and Metadata Inventory

Status: Fully Met

The testbed organizes data and metadata in a standardized and principled way. The
database is complete with respects to the currently primary and secondary artifact which
stem from operating iottb itself. While complete now, extending iottb carries the risk
of breaking this requirement if not careful attention is given. Since the database is a central
part of the system as a whole, extension must ensure that they comply with this requirement

before they get built in.

5.8 Item R2.2: Data Formats and Schemas

Status: Fully Met

The testbed standardizes directory and file naming. All metadata is in plain test and in the
JSON format. This make them very accessible to both humans and machines. Currently
the only binary format which 10TTB creates are PCAP files. Luckily, the PCAP format
is widely know and not proprietary and solid tool, like Wireshark, exists to inspect them.
Furthermore, the data in the PCAP files can be extracted in to the plaintext CSV format,
this further improves interoperability. Consistence is currently implicitly handles, that is,
there are no strict schemas ? Currenlty there is low risk of corrupting data through the
use of iottb command. But plaintext files are manually editable and can inadvertently
be corrupted or maid invalid (e.g. accidentally deleteing a few digits from a UUID). While
currently the risk of curruption can be seen as low, it is important to keep this requirement

in mind when extending 10TTB and the types of files residing in the database become more

9 Strict schemas for metadata file briefly where introduces, but then abandoned due to the lack of knowledge
surrounding the PYdantic library.

Evaluation 29

heterogeneous.

5.8.1 Item R2.3: File Naming and Directory Hierarchy

Status: Fully Met

iottb currently names all files which it creates according to a well defined schema. In all
cases, the file name is easily legible (e.g. metadata files like Listing 4) or the context of
where the file resides provides easy orientation to a human reviewer. For instance, raw data
files, which currently only are PCAP files, are all named with a UUID. This is not helpful to
the human but the metadata file which resides in the same directory provides all the needed
information to be able to understand what is contained within it. Furthermore, these files
resides in a directory hierarchy which identfies what devices the traffic belongs to, the date
the capture file was created. Finally, capture files reside in a directory which identify where
in the sequence of capture of a given day it was created. Automation recipes expanding the
range of data types collected can just follow this convention. This ensures interoperability

and findability between various capture method.

5.9 Item R2.4: Data Preservation Practices

Status: Partially Met

Specific data preservation practices are not taken. iottb already follows the Library of
Congreses ? | recommendations on data formats. Most data is stored in plain text, and the
binary formats used are widely known within the field and there is no access barrier. To
enhance the testbeds’ compliance with this requirement, automation recipes which backup
the data to secure locations periodically can be developed. The need for built in preservation
should be balanced with the goal of not introducing dependencies not related to the core
aim of automated collection and FAIR storage. One way is just to have a repository of
scripts which are not built in to the iottb executable, but which users can use and adapt

to their needs'®.

5.10 Item R2.5: Accessibility Controls

Status: x
While the iottb executable is ware what data it can and cannot access or change, there

are currently no wider access controls implemented.

5.11 Item R2.6: Interoperability Standards

Status: x

10 For instance rsync scripts with predefined filters appropriate for the database.

Evaluation 23

5.11.1 Item R2.7: Reusability Documentation
Status: Fully Met

5.12 Usage Examples
To illustrate the practical application of the testbed, the following examples demonstrate

common usage scenarios.

5.12.1 Example 1: Setting Up and Running a Capture
Add a new device

iottb add-device "Smart Light Bulb"

Start a network capture for the device

iottb sniff "Smart Light Bulb" --interface wlan0 --duration 10 --app "SmartLightApp"

5.12.2 Example 2: Retrieving Metadata
Retrieve metadata for a specific capture

iottb meta get "capture_uuid" "start_time"

5.12.3 Example 3: Running a Raw Command
Run a custom command

iottb raw "Smart Light Bulb" "ping -c 4 192.168.1.1"

These examples provide a glimpse into the functionalities offered by the testbed and demon-

strate its ease of use.

5.13 Near Future Improvements
LOREM IPSUM

Conclusion

LOREM

6.1 Future Work
IPSUM

6.2 Related Work

TODOS

Architecture

sleep

REFERENCES!

Examples! At least as listings.
Data Extraction command
grammar and orthography

check Fig. 3.1 and Fig. 3.2: refine internet box, currently very empty.

Acronyms

AP Access Point. 9, 10, 20

CLI Command Line Interface. 11, 14
IoT Internet of Things. 1-6, 8-10, 12
OS Operating System. 9, 12

UUID Universally Unique Identifier. 14, 22

Bibliography

FAIR principles. URL https://www.go-fair.org/fair-principles/.
mitmproxy - an interactive HT'TPS proxy. URL https://mitmproxy.org/.

Recommended formats statement — datasets | resources (preservation, library of

congress). URL https://www.loc.gov/preservation/resources/rfs/data.html.
Home | TCPDUMP & LIBPCAP. URL https://www.tcpdump.org/.
Wireshark - go deep. URL https://www.wireshark.org/.

Abbas Acar, Hossein Fereidooni, Tigist Abera, Amit Kumar Sikder, Markus Miettinen,
Hidayet Aksu, Mauro Conti, Ahmad-Reza Sadeghi, and Selcuk Uluagac. Peek-a-boo:
I see your smart home activities, even encrypted! In Proceedings of the 13th ACM
Conference on Security and Privacy in Wireless and Mobile Networks, pages 207-218.
doi: 10.1145/3395351.3399421. URL http://arxiv.org/abs/1808.02741.

Farshad Firouzi, Bahar Farahani, Markus Weinberger, Gabriel DePace, and Ferei-
doon Shams Aliee. IoT fundamentals: Definitions, architectures, challenges, and
promises. In Farshad Firouzi, Krishnendu Chakrabarty, and Sani Nassif, editors, Intel-
ligent Internet of Things: From Device to Fog and Cloud, pages 3—50. Springer Inter-
national Publishing. ISBN 978-3-030-30367-9. doi: 10.1007/978-3-030-30367-9-1. URL
https://doi.org/10.1007/978-3-030-30367-9_1.

Kristof Friess. Multichannel-sniffing-system for real-world analysing of wi-fi-packets.
In 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN),
pages 358-364. doi: 10.1109/ICUFN.2018.8436715. URL https://iecexplore.ieee.org/
abstract/document /8436715. ISSN: 2165-8536.

Grigori Fursin. Collective knowledge: organizing research projects as a database
of reusable components and portable workflows with common interfaces. 379(2197):
20200211. doi: 10.1098/rsta.2020.0211. URL https://royalsocietypublishing.org/doi/
full/10.1098 /rsta.2020.0211. Publisher: Royal Society.

Adam Hahn, Aditya Ashok, Siddharth Sridhar, and Manimaran Govindarasu. Cyber-
physical security testbeds: Architecture, application, and evaluation for smart grid.
4(2):847-855. ISSN 1949-3061. doi: 10.1109/TSG.2012.2226919. URL https://
ieeexplore.iece.org/abstract/document/6473865. Conference Name: IEEE Transactions
on Smart Grid.

https://www.go-fair.org/fair-principles/
https://mitmproxy.org/
https://www.loc.gov/preservation/resources/rfs/data.html
https://www.tcpdump.org/
https://www.wireshark.org/
http://arxiv.org/abs/1808.02741
https://doi.org/10.1007/978-3-030-30367-9_1
https://ieeexplore.ieee.org/abstract/document/8436715
https://ieeexplore.ieee.org/abstract/document/8436715
https://royalsocietypublishing.org/doi/full/10.1098/rsta.2020.0211
https://royalsocietypublishing.org/doi/full/10.1098/rsta.2020.0211
https://ieeexplore.ieee.org/abstract/document/6473865
https://ieeexplore.ieee.org/abstract/document/6473865

Bibliography 28

[11]

[15]

[16]

[17]

18]

Md. Milon Islam, Sheikh Nooruddin, Fakhri Karray, and Ghulam Muhammad. Internet
of things: Device capabilities, architectures, protocols, and smart applications in health-
care domain. 10(4):3611-3641. ISSN 2327-4662. doi: 10.1109/J10T.2022.3228795. URL
https:/ /ieeexplore.ieee.org/abstract /document /9983826 /references#references. Con-
ference Name: IEEE Internet of Things Journal.

Deepak Kumar, Kelly Shen, Benton Case, Deepali Garg, Galina Alperovich, Dmitry
Kuznetsov, Rajarshi Gupta, and Zakir Durumeric. All things considered: An analysis
of IoT devices on home networks. In 28th USENIX security symposium (USENIX
security 19), pages 1169-1185. USENIX Association. ISBN 978-1-939133-06-9. URL

https://www.usenix.org/conference /usenixsecurity19/presentation /kumar-deepak.

Jingjing Ren, Daniel J. Dubois, David Choffnes, Anna Maria Mandalari, Roman Kol-
cun, and Hamed Haddadi. Information exposure from consumer IoT devices: A
multidimensional, network-informed measurement approach. In Proceedings of the
Internet Measurement Conference, IMC ’19, pages 267-279. Association for Com-
puting Machinery. ISBN 978-1-4503-6948-0. doi: 10.1145/3355369.3355577. URL
https://dl.acm.org/doi/10.1145/3355369.3355577.

Manuel Silverio-Fernandez, Suresh Renukappa, and Subashini Suresh. What is a smart
device? - a conceptualisation within the paradigm of the internet of things. 6(1):
3. ISSN 2213-7459. doi: 10.1186/s40327-018-0063-8. URL https://doi.org/10.1186/
540327-018-0063-8.

Benjamin Andreas Ulsmag. Private information exposed by the use of robot vacuum

cleaner in smart environments.

TL Vaughan, SC Battle, and KL Walker. The use of climate chambers in biological
research. 39(14):5121-5127. Publisher: ACS Publications.

Mark D. Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Apple-
ton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino
da Silva Santos, Philip E. Bourne, Jildau Bouwman, Anthony J. Brookes, Tim
Clark, Merce Crosas, Ingrid Dillo, Olivier Dumon, Scott Edmunds, Chris T. Evelo,
Richard Finkers, Alejandra Gonzalez-Beltran, Alasdair J. G. Gray, Paul Groth, Ca-
role Goble, Jeffrey S. Grethe, Jaap Heringa, Peter A. C. 't Hoen, Rob Hooft, To-
bias Kuhn, Ruben Kok, Joost Kok, Scott J. Lusher, Maryann E. Martone, Albert
Mons, Abel L. Packer, Bengt Persson, Philippe Rocca-Serra, Marco Roos, Rene van
Schaik, Susanna-Assunta Sansone, Erik Schultes, Thierry Sengstag, Ted Slater, George
Strawn, Morris A. Swertz, Mark Thompson, Johan van der Lei, Erik van Mulligen,
Jan Velterop, Andra Waagmeester, Peter Wittenburg, Katherine Wolstencroft, Jun
Zhao, and Barend Mons. The FAIR guiding principles for scientific data management
and stewardship. 3(1):160018. ISSN 2052-4463. doi: 10.1038/sdata.2016.18. URL
https://www.nature.com/articles/sdata201618. Publisher: Nature Publishing Group.

Shicheng Zhu, Shunkun Yang, Xiaodong Gou, Yang Xu, Tao Zhang, and Yueliang Wan.

Survey of testing methods and testbed development concerning internet of things. 123

https://ieeexplore.ieee.org/abstract/document/9983826/references#references
https://www.usenix.org/conference/usenixsecurity19/presentation/kumar-deepak
https://dl.acm.org/doi/10.1145/3355369.3355577
https://doi.org/10.1186/s40327-018-0063-8
https://doi.org/10.1186/s40327-018-0063-8
https://www.nature.com/articles/sdata201618

Bibliography 29

(1):165-194. ISSN 1572-834X. doi: 10.1007/s11277-021-09124-5. URL https://doi.org/
10.1007/s11277-021-09124-5.

https://doi.org/10.1007/s11277-021-09124-5
https://doi.org/10.1007/s11277-021-09124-5

(S IV I M

10

11

12
13
14

15
16
17
18

19
20

21

22

23
24

Appendix A

def setup_argparse():

create top level parser
root_parser = argparse.ArgumentParser (prog='iottb')
shared options

root_parser.add_argument ('--verbose', '-v', action='count',
— default=0)
root_parser.add_argument ('--script-mode', action='store_true',

— help='Run in script mode (non-interactive)"')
Group of args w.r.t iottb.db creation
group = root_parser.add_argument_group ('database options')

group.add_argument ('--db-home', default=Path.home () /

— 'IoTtb.db'")

group.add_argument ('-—-config-home', default=Path.home () /
— '.config' / 'iottb.conf', type=Path,)
group.add_argument ('--user', default=Path.home () .stem,

— type=Path,)

configure subcommands

subparsers = root_parser.add_subparsers (title="'subcommands',
— required=True, dest='command')

setup_capture_parser (subparsers)
setup_init_device_root_parser (subparsers)
setup_sniff parser (subparsers)

Utility to 1list interfaces directly with iottb instead of
— relying on external tooling

interfaces_parser = subparsers.add_parser('list-interfaces',
— aliases=['1li', '"if'],
help='List available
— network
— interfaces.')
interfaces_parser.set_defaults (func=1list_interfaces)

return root_parser

Listing 5: setup_argparse function

Appendix B

B.1 Command Line Examples

B.1.1 Pre and post scripts
In this example, the ——unsafe option allows not to specify a IP or MAC address. default

is the device name used and —c 10 tells iottb that we only want to capture 10 packets.

Command:
$ iottb sniff —-pre='/usr/bin/echo "pre"' —--post='/usr/bin/echo "post"' \
default —--unsafe -c 10
Stdout:
Testbed [Info]
Running pre command /usr/bin/echo "pre"
pre
Using canonical device name default
Found device at path /home/seb/iottb.db/default
Using filter None
Files will be placed in /home/seb/iottb.db/default/sniffs/2024-06-30/cap0002-2101
Capture has id dcdfleOb-6c4d-4f01-balo-f42a04131fbe
Capture setup complete!
Capture complete. Saved to default_dcdfleOb-6c4d-4f01-bal6-f42a04131fbe.pcap
tcpdump took 2.12 seconds.
Ensuring correct ownership of created files.
Saving metadata.
END SNIFF SUBCOMMAND
Running post script /usr/bin/echo "post"

post

The contents of the ’sniff’ dir for the default device after this capture has completed are as

follows:

sniffs/2024-06-30/cap0002-2101

S tree

Appendix B 32

| -— capture_metadata. json

| -—— default_dcdfleOb-6c4d-4f01-bal6-£f42a04131fbe.pcap
| —— stderr_dcdfleOb-6c4d-4£01-bal6-£f42a04131fbe.log

L stdout_dcdfleOb-6c4d-4£f01-bal6-£f42a04131fbe.log

and the metadata file contains (\ only used for fitting into this document):

capture_metadata. json

{
"device": "default",
"device_id": "default",
"capture_id": "dcdfleOb-6c4d-4f01-bal6-£f42a04131fbe",
"capture_date_iso": "2024-06-30T21:01:31.496870",
"invoked_command": "sudo tcpdump -# -n -c 10 -w \
/home/seb/iottb.db \
/default/sniffs/2024-06-30 \
/cap0002-2101/default_dcdfleOb-6c4d-4f01-bal6-f42a04131fbe.pcap",
"capture_duration": 2.117154359817505,

"generic_parameters": {
"flags": "-# -n",
"kwargs": "-c 10",

"filter": null
br
"non_generic_parameters": {
"kwargs": "-w \
/home/seb/iottb.db/default/sniffs/2024-06-30 \
/cap0002-2101 \
/default_dcdfleOb-6c4d-4f01-bal6-f42a04131fbe.pcap",
"filter": null
bo
"features": {
"interface": null,

"address": null
by

"resources": {
"pcap_file": "default_dcdfleOb-6c4d-4f01-bal6-£f42a04131fbe.pcap",
"stdout_log": "stdout_dcdfleOb-6c4d-4f01-bal6-£42a04131fbe.log",
"stderr_log": "stderr_dcdfleOb-6c4d-4£f01-bal6-f42a04131fbe.log",
"pre": "/usr/bin/echo \"pre\"",
"post": "/usr/bin/echo \"post\""

s

"environment": {

Appendix B 33

"capture_dir": "cap0002-2101",
"database": "iottb.db",
"capture_base_dir": "/home/seb/iottb.db/default/sniffs/2024-06-30",

"capture_dir_abs_path": !
"/home/seb/iottb.db/default/sniffs/2024-06-30/cap0002-2101"

Appendix D

C.1 iottb
Usage: iottb [OPTIONS] COMMAND [ARGS]...

Options:
-v, —-verbosity Set verbosity [default: 0; 0<=x<=3]
-d, ——debug Enable debug mode
—-—dry-run [default: True]

—-—cfg-file PATH Path to iottb config file [default:
SHOME/.config/iottb/iottb.cfg]

—-help Show this message and exit.
Commands:
add-device Add a device to a database
init-db
rm-cfg Removes the cfg file from the filesystem.
rm—dbs Removes ALL(!) databases from the filesystem if...

set-key-in-table-to Edit config or metadata files.

show-all Show everything: configuration, databases, and...
show-cfg Show the current configuration context
sniff Sniff packets with tcpdump

C.1.1 Initialize Database
Usage: iottb init-db [OPTIONS]

Options:
-d, —-—-dest PATH Location to put (new) iottb database
-n, ——name TEXT Name of new database. [default: iottb.db]

-—update-default / --no-update-default
If new db should be set as the new default

Appendix D

35

—--help

C.1.2 Add device

Usage: iottb add-device

[default: update-default]

Show this message and exit.

[OPTIONS]

Add a device to a database

Options:

—-—dev, —--device—-name TEXT The name of the device to be added. If this
string contains spaces or other special
characters normalization is
performed to derive a canonical name [required]

——db, —--database DIRECTORY Database in which to add this device. If not
specified use default from config. [env var:
IOTTB_DB]

—-—guided Add device interactively [env var:
IOTTB_GUIDED_ADD]

—-help Show this message and exit.

C.1.3 Capture traffic with tcpdump

Usage: iottb sniff

[OPTIONS] [TCPDUMP-ARGS] [DEVICE]

Sniff packets with tcpdump

Options:

Testbed sources:
-—-db, —--database TEXT

--app TEXT

Runtime behaviour:

—-—unsafe

—-—guided
—-—pre TEXT

—-—post TEXT

Tcpdump options:

_i,

——interface TEXT

Database of device. Only needed if not current
default. [env var: IOTTB_DB]

Companion app being used during capture

Disable checks for otherwise required options.
[env var: IOTTB_UNSAFE]

[env var: IOTTB_GUIDED]

Script to be executed before main command is
started.

Script to be executed upon completion of main

command.

Network interface to capture on.If not specified
tcpdump tries to find and appropriate one.
[env var: IOTTB_CAPTURE_INTERFACE]

Appendix D 36

—-a, ——address TEXT IP or MAC address to filter packets by.
[env var: IOTTB_CAPTURE_ADDRESS]

-I, ——monitor-mode Put interface into monitor mode.

——ff TEXT tcpdump filter as string or file path.
[env var: IOTTB_CAPTURE_FILTER]

-#, ——print-pacno Print packet number at beginning of line. True by
default. [default: True]

-e, ——print-11 Print link layer headers. True by default.

-c, ——count INTEGER Number of packets to capture. [default: 1000]

—-help Show this message and exit.

C.2 Utility commands
Utility Commands mostly for development and have not yet been integrated into the stan-

dard workflow.

C.2.1 Remove Configuration
Usage: iottb rm-cfg [OPTIONS]

Removes the cfg file from the filesystem.
This is mostly a utility during development. Once non-standard database
locations are implemented, deleting this would lead to iottb not being able
to find them anymore.

Options:

--yes Confirm the action without prompting.

—-—help Show this message and exit.

C.2.2 Remove Database
Usage: iottb rm-dbs [OPTIONS]

Removes ALL(!) databases from the filesystem if they're empty.
Development utility currently unfit for use.
Options:

--yes Confirm the action without prompting.

——help Show this message and exit.

Appendix D

37

C.2.3 Display Configuration File
Usage: iottb show-cfg [OPTIONS]

Show the current configuration context

Options:
—-—cfg-file PATH Path to the config file

[default:

/home/seb/.config/iottb/iottb.cfg]

-pp Pretty Print
—--help Show this message and exit
C.2.4 ’Show All

Usage: iottb show-all [OPTIONS]

Show everything: configuration, databases,

Options:

—--help Show this message and exit.

and device metadata

NXoo .
XX< University
X\ of Basel

Faculty of Science

Declaration on Scientific Integrity
(including a Declaration on Plagiarism and Fraud)
Translation from German original

Title of Thesis:

Name Assessor:

Name Student:

Matriculation No.:

| attest with my signature that | have written this work independently and without outside
help. | also attest that the information concerning the sources used in this work is true and
complete in every respect. All sources that have been quoted or paraphrased have been
marked accordingly.

Additionally, | affirm that any text passages written with the help of Al-supported
technology are marked as such, including a reference to the Al-supported program used.
This paper may be checked for plagiarism and use of Al-supported technology using the
appropriate software. | understand that unethical conduct may lead to a grade of 1 or “fail”
or expulsion from the study program.

Place, Date: Student:

Will this work, or parts of it, be published?
No
Yes. With my signature | confirm that | agree to a publication of the work (print/digital)
in the library, on the research database of the University of Basel and/or on the
document server of the department. Likewise, | agree to the bibliographic reference in

the catalog SLSP (Swiss Library Service Platform). (cross out as applicable)

Publication as of:

Place, Date: Student:

Place, Date: Assessor:

Please enclose a completed and signed copy of this declaration in your Bachelor’'s or Master’s thesis.

September 2023

	Abstract
	Table of Contents
	1 Introduction
	1.1 Motivation
	1.2 Goal
	1.3 Outline

	2 Background
	2.1 Internet of Things
	2.2 Testbed
	2.3 FAIR Data Principles
	2.4 Network Traffic
	2.5 (Network) Packet Capture
	2.6 Automation Recipes

	3 Adaptation
	3.1 Principal Objectives
	3.2 Requirements Analysis
	3.3 Scope
	3.3.1 Model Environment

	4 Implementation
	4.1 Database Schema
	4.2 High Level Description
	4.3 Database Initialization
	4.4 Adding Devices
	4.5 Traffic Sniffing
	4.6 Working with Metadata
	4.7 Raw Captures
	4.8 Integrating user scripts
	4.9 Extending and Modifying the Testbed

	5 Evaluation
	5.1 req:autoinstalltools: Installation of Tools
	5.2 req:autoconfigstart: Configuration and Start of Data Collection
	5.3 req:autodataprocessing: Data Processing
	5.4 req:autoreproducibility: Reproducibility
	5.5 req:autoexecutioncontrol: Execution Control
	5.5.1 R1.6: Error Handling and Logging

	5.6 req:autodocumentation: Documentation
	5.7 req:fairdatametainventory: Data and Metadata Inventory
	5.8 req:fairdataformats: Data Formats and Schemas
	5.8.1 req:fairfilenaming: File Naming and Directory Hierarchy

	5.9 req:fairpreservation: Data Preservation Practices
	5.10 req:fairaccessibility: Accessibility Controls
	5.11 req:fairinteroperability: Interoperability Standards
	5.11.1 req:fairreusability: Reusability Documentation

	5.12 Usage Examples
	5.12.1 Example 1: Setting Up and Running a Capture
	5.12.2 Example 2: Retrieving Metadata
	5.12.3 Example 3: Running a Raw Command

	5.13 Near Future Improvements

	6 Conclusion
	6.1 Future Work
	6.2 Related Work

	7 TODOS
	Acronyms
	Bibliography
	A Appendix A
	B Appendix B
	B.1 Command Line Examples
	B.1.1 Pre and post scripts

	C Appendix D
	C.1 iottb
	C.1.1 Initialize Database
	C.1.2 Add device
	C.1.3 Capture traffic with tcpdump

	C.2 Utility commands
	C.2.1 Remove Configuration
	C.2.2 Remove Database
	C.2.3 Display Configuration File
	C.2.4 "Show All"

