
IOTTB: An Automation Testbed for IOT
Devices
Bachelor Project

Natural Science Faculty of the University of Basel

Department of Mathematics and Computer Science

Privacy Enhancing Technologies

https://pet.dmi.unibas.ch

Examiner: Prof. Dr. Isabel Wagner

Supervisor: Valentyna Pavliv

Sebastian Lenzlinger

sebastian.lenzlinger@unibas.ch

2018-775-494

30. June 2024

Abstract

To systematically study and assess the privacy and security implications of IoTdevices, it is

crucial to have a reliable method for conducting experiments and extracting meaningful data

in a reproducible manner. This necessitates the development of a system —referred to as a

”testbed”— that includes all the necessary tools, definitions, and automated environment

setup required for conduction reproducible experiments on IoT devices.

In this project, I aim to design and implement a testbed that automates and standardizes

the collection and processing of network data from IoT devices. The outcome of this project

is a Python package that facilitates these tasks, providing a foundation for reproducible IoT

device experiments.

Table of Contents

Abstract ii

1 Introduction 1

1.1 Motivation . 2

1.2 Goal . 2

1.3 Outline . 2

2 Background 3

2.1 Internet of Things . 3

2.2 Testbed . 3

2.3 FAIR Data Principles . 4

2.4 Network Traffic . 4

2.5 (Network) Packet Capture . 5

2.6 Automation Recipes . 5

3 Adaptation 6

3.1 Principal Objectives . 6

3.2 Requirements Analysis . 6

3.3 Scope . 8

3.3.1 Model Environment . 8

4 Implementation 11

4.1 Database Schema . 11

4.2 High Level Description . 12

4.3 Database Initialization . 12

4.4 Adding Devices . 12

4.5 Traffic Sniffing . 14

4.6 Working with Metadata . 14

4.7 Raw Captures . 16

4.8 Integrating user scripts . 16

4.9 Extending and Modifying the Testbed . 17

5 Evaluation 18

5.1 Item R1.1 : Installation of Tools . 19

Table of Contents iv

5.2 Item R1.2 : Configuration and Start of Data Collection 19

5.3 Item R1.3 : Data Processing . 20

5.4 Item R1.4 : Reproducibility . 20

5.5 Item R1.5 : Execution Control . 20

5.5.1 R1.6: Error Handling and Logging . 21

5.6 Item R1.7 : Documentation . 21

5.7 Item R2.1 : Data and Metadata Inventory . 21

5.8 Item R2.2 : Data Formats and Schemas . 21

5.8.1 Item R2.3 : File Naming and Directory Hierarchy 22

5.9 Item R2.4 : Data Preservation Practices . 22

5.10 Item R2.5 : Accessibility Controls . 22

5.11 Item R2.6 : Interoperability Standards . 22

5.11.1 Item R2.7 : Reusability Documentation 23

5.12 Usage Examples . 23

5.12.1 Example 1: Setting Up and Running a Capture 23

5.12.2 Example 2: Retrieving Metadata . 23

5.12.3 Example 3: Running a Raw Command 23

5.13 Near Future Improvements . 23

6 Conclusion 24

6.1 Future Work . 24

6.2 Related Work . 24

7 TODOS 25

Acronyms 26

Bibliography 27

Appendix A Appendix A 30

Appendix B Appendix B 31

B.1 Command Line Examples . 31

B.1.1 Pre and post scripts . 31

Appendix C Appendix D 34

C.1 iottb . 34

C.1.1 Initialize Database . 34

C.1.2 Add device . 35

C.1.3 Capture traffic with tcpdump . 35

C.2 Utility commands . 36

C.2.1 Remove Configuration . 36

C.2.2 Remove Database . 36

C.2.3 Display Configuration File . 37

Table of Contents v

C.2.4 ”Show All” . 37

1
Introduction

Internet of Things (IoT) devices are becoming increasingly prevalent in modern homes,

offering a range of benefits such as controlling home lighting, remote video monitoring, and

automated cleaning [12]. These conveniences are made possible by the sensors and networked

communication capabilities embedded within these devices. However, these features also

pose significant privacy and security risks [11]. IoT devices are often integrated into home

networks and communicate over the internet with external servers, potentially enabling

surveillance or unauthorized data sharing without the user’s knowledge or consent [13].

Moreover, even in the absence of malicious intent by the manufacturer, these devices are

still vulnerable to programming bugs and other security failures [6].

Security researchers focused on the security and privacy of such IoT devices rely on various

utilities and tools for conducting research. These tools are often glued together in scripts

with arbitrary decisions about file naming and data structuring. Such impromptu scripts

typically have a narrow range of application, making them difficult to reuse across different

projects. Consequently, useful parts are manually extracted and incorporated into new

scripts for each project, exacerbating the problem.

This approach leads to scattered data, highly tailored scripts, and a lack of standardized

methods for sharing or reproducing experiments. The absence of standardized tools and

practices results in inconsistencies in data collection and storage, making it difficult to main-

tain compatibility across projects. Furthermore, the lack of conventions about file naming

and data structuring leads to issues in finding and accessing the data. For research groups,

these issues are further compounded during the onboarding of new members, who must nav-

igate this fragmented landscape and often create their own ad-hoc solutions, perpetuating

the cycle of inefficiency and inconsistency.

To systematically and reproducibly study the privacy and security of IoT devices, an easy-

to-use testbed that automates and standardizes various aspects of experimenting with IoT

devices is needed.

Introduction 2

1.1 Motivation
The primary motivation behind this project is to address the challenges faced by security

researchers in the field of IoT device security and privacy. The scattered nature of data, the

lack of standardized tools, and the ad-hoc methods used for data collection or processing,

are an obstacle for researchers who want to produce valid and reproducible results [9].

A standardized testbed, enabling a more systematic approach to collecting and analyzing

network data from IoT devices, can help make tedious and error-prone aspects of conducting

experiments on IoT devices more bearable, while at the same time enhancing the quality

of the data, by adhering to interoperability standards by establishing data collection and

storage standards. This bachelor project is specifically informed by the needs of the PET

research group at the University of Basel, who will utilize it to run IoT device experiments,

and as a foundation to build more extensive tooling.

1.2 Goal
The goal of this project is to design and implement a testbed for IoT device experiments.

To aid reproducibility, there are two main objectives:

First, the testbed should automate key aspects of running experiments with IoT devices,

particularly the setup and initialization of data collection processes as well as some basic

post-collection data processing.

Secondly, the testbed should standardize how data from experiments is stored. This includes

standardizing data and metadata organization, establishing a naming scheme, and defining

necessary data formats. A more detailed description to how this is adapted for this project

follows in Chapter 3.

1.3 Outline
This report documents the design and implementation of an IoT testbed. In the remainder

of the text, the typographically formatted string ”iottb ” refers to this projects’ concep-

tion of testbed, whereas ”iottb ” specifically denotes the Python package which is the

implementation artifact from this project.

This report outlines the general goals of a testbed, details the specific functionalities of iottb

, and explains how the principles of automation and standardization are implemented. We

begin by giving some background on the most immediately useful concepts. Chapter 3

derives requirements for iottb starting from first principles and concludes by delineating

the scope considered for implementation, which is described in Chapter 4. In Chapter 5 we

evaluate iottb , and more specifically, the iottb software package against the requirements

stated in Chapter 3. We conclude in Chapter 6 with an outlook on further development for

iottb .

2
Background

This section provides the necessary background to understand the foundational concepts

related to IoT devices, testbeds, and data principles that inform the design and implemen-

tation of iottb .

2.1 Internet of Things
The IoT refers to the connection of “things” other than traditional computers to the internet.

The decreasing size of microprocessors has enabled their integration into smaller and smaller

objects. Today, objects like security cameras, home lighting, or children’s toys may contain

a processor and embedded software that enables them to interact with the internet. The

Internet of Things encompasses objects whose purpose has a physical dimension, such as

using sensors to measure the physical world or functioning as simple controllers. When these

devices can connect to the internet, they are considered part of the Internet of Things and

are referred to as IoT devices (see Silverio-Fernández et al. [14] and Firouzi et al. [7]).

2.2 Testbed
A testbed is a controlled environment set up to perform experiments and tests on new

technologies. The concept is used across various fields such as aviation, science, and industry.

Despite the varying contexts, all testbeds share the common goal of providing a stable,

controlled environment to evaluate the performance and characteristics of the object of

interest.

Examples of testbeds include:

1. Industry and Engineering: In industry and engineering, the term platform is often

used to describe a starting point for product development. A platform in this context

can be considered a testbed where various components and technologies are integrated

and tested together before final deployment.

2. Natural Sciences: In the natural sciences, laboratories serve as testbeds by providing

controlled environments for scientific experiments. For example, climate chambers are

Background 4

used to study the effects of different environmental conditions on biological samples

(e.g., in Vaughan et al. [16]). Another example is the use of wind tunnels in aerody-

namics research to simulate and study the effects of airflow over models of aircraft or

other structures.

3. Computing: In computing, specifically within software testing, a suite of unit tests,

integrated development environments (IDEs), and other tools could be considered

as a testbed. This setup helps in identifying and resolving potential issues before

deployment. By controlling parameters of the environment, a testbed can ensure that

the software behaves as expected under specified conditions, which is essential for

reliable and consistent testing.

4. Interdisciplinary: Testbeds can take on considerable scales. For instance, in Hahn

et al. [10] provides insight into the aspects of a testbed for a smart electric grid. This

testbed is composed out of multiple systems, — an electrical grid, internet, and com-

munication provision — which in their own right are already complex environments.

The testbed must, via simulation or prototyping, provide control mechanisms, com-

munication, and physical system components.

2.3 FAIR Data Principles
The FAIR Data Principles were first introduced by Wilkinson et al. [17] with the intention to

improve the reusability of scientific data. The principles address Findability, Accessibility,

Interoperability, and Reusability. Data storage designers may use these principles as a

guide when designing data storage systems intended to hold data for easy reuse. For a more

detailed description, see [1].

2.4 Network Traffic
Studying IoT devices fundamentally involves understanding their network traffic behavior.

This is because network traffic contains (either explicitly or implicitly embedded in it)

essential information of interest. Here are key reasons why network traffic is essential in the

context of IoT device security:

1. Communication Patterns: Network traffic captures the communication patterns

between IoT devices and external servers or other devices within the network. By

analyzing these patterns, researchers can understand how data flows in and out of the

device, which is critical for evaluating performance and identifying any unauthorized

communications or unintended leaking of sensitive information.

2. Protocol Analysis: Examining the protocols used by IoT devices helps in under-

standing how they operate. Different devices might use various communication pro-

tocols, and analyzing these can reveal insights into their compatibility, efficiency, and

security. Protocol analysis can also uncover potential misconfigurations or deviations

from expected behavior.

Background 5

3. Flow Monitoring: Network traffic analysis is a cornerstone of security research. It

allows researchers to identify potential security threats such as data breaches, unautho-

rized access, and malware infections. By monitoring traffic, one can detect anomalies

that may indicate security incidents or vulnerabilities within the device.

4. Information Leakage: IoT devices are often deployed in a home environment and

connect to the network through wireless technologies [12]. This allows an adversary

to passively observe traffic. While often this traffic is encrypted, the network flow

can leak sensitive information, which is extracted through more complex analysis of

communication traffic and Wi-Fi packets [8], [13]. In some cases, the adversary can

determine the state of the smart environment and their users [6].

2.5 (Network) Packet Capture
Network packet capture 1 fundamentally describes the act or process of intercepting and

storing data packets traversing a network. It is the principal technique used for studying the

behavior and communication patterns of devices on a network. For the reasons mentioned

in Section 2.4, packet capturing is the main data collection mechanism used in IoT device

security research, and also the one considered for this project.

2.6 Automation Recipes Revise: (

) Automation recipes can be understood as a way of defining a sequence of steps needed for

a process. In the field of machine learning, Collective Mind2 provides a small framework to

define reusable recipes for building, running, benchmarking and optimizing machine learning

applications. A key aspect of these recipes some platform-independent, which has enabled

wider testing and benchmarking of machine learning models. Even if a given recipe is not

yet platform independent, it can be supplemented with user-specific scripts which handle the

platform specifics. Furthermore, it is possible to create a new recipe from the old recipe and

the new script, which, when made accessible, essentially has extended the applicability of

the recipe Friess [8]. Automation recipes express the fact that some workflow is automated

irrespective of the underlying tooling. A simple script or application can be considered an

recipe (or part of)

1 also known as packet sniffing, network traffic capture, or just sniffing. The latter is often used when
referring to nefarious practices.

2 https://github.com/mlcommons/ck

https://github.com/mlcommons/ck

3
Adaptation

In this chapter, we outline the considerations made during the development of the IoT

testbed, iottb . Starting from first principles, we derive the requirements for our testbed

and finally establish the scope for iottb . The implemented testbed which results from this

analysis, the software package iottb , is discussed in Chapter 4.

3.1 Principal Objectives
The stated goal for this bachelor project (see Section 1.2), is to create a testbed for IoT

devices, which automates aspects of the involved workflow, with the aim of increasing repro-

ducibility, standardization, and compatibility of tools and data across project boundaries.

We specify two key objectives supporting this goal:

Objective 1 Automation Recipes: The testbed should support specification and repeated exe-

cution of important aspects of experiments with IoT devices, such as data collection

and analysis (see [9])

Objective 2 FAIR Data Storage: The testbed should store data in accordance with the FAIR

[1] principles.

3.2 Requirements Analysis
In this section, we present the results of the requirements analysis based on the principal

objectives. The requirements derived for Objective 1 are presented in Table 3.1. Table 3.2

we present requirements based on Objective 2 .

Adaptation 7

Table 3.1: Automation Recipes Requirements

R1.1 Installation of Tools: Support installation of necessary tools like mitmproxy [2],
Wireshark [5] or tcpdump [4]).

Reasoning: There are various tools used for data collection and specifically packet
capture. Automating the installation of necessary tools ensures that all required soft-
ware is available and configured correctly without manual intervention. This reduces
the risk of human error during setup and guarantees that the testbed environment is
consistently prepared for use. Many platforms, notably most common Linux distribu-
tions, come with package managers which provide a simple command-line interface for
installing software while automatically handling dependencies. This allows tools to be
quickly installed, making it a lower priority requirement for iottb .

R1.2 Configuration and Start of Data Collection: Automate the configuration and
start of data collection processes. Specific subtasks include:

a) Automate wireless hotspot management on capture device.

b) Automatic handling of network capture, including the collection of relevant meta-
data.

Reasoning: Data collection is a central step in the experimentation workflow. Con-
figuration is time-consuming and prone to error, suggesting automating this process
is useful.As mentioned in Section 1.1, current practices lead to incompatible data and
difficult to reuse scripts. Automating the configuration and start of data collection
processes ensures a standardized approach, reducing the potential for user error and
thereby increasing data compatibility and efficient use of tools. Automating this pro-
cess must be a central aspect of iottb .

R1.3 Data Processing: Automate data processing tasks.

Reasoning: Some network capture tools produce output in a binary format. To make
the data available to other processes, often the data must be transformed in some way.
Data processing automation ensures that the collected data is processed uniformly and
efficiently, enhancing it reusability and interoperability. Processing steps may include
cleaning, transforming, and analyzing the data, which are essential steps to derive
meaningful insights. Automated data processing saves time and reduces the potential
for human error. It ensures that data handling procedures are consistent, which is
crucial for comparing results across different experiments and ensuring the validity of
findings.

R1.4 Reproducibility: Ensure that experiments can be repeated with the same setup and
configuration.

Reasoning: A precondition to reproducible scientific results is the ability to run ex-
periments repeatedly with all relevant aspects are set up and configured identically.

R1.5 Execution Control: Provide mechanisms for controlling the execution of automation
recipes (e.g., start, stop, status checks).

Reasoning: Control mechanisms are essential for managing the execution of automated
tasks. This includes starting, stopping, and monitoring the status of these tasks to
ensure they are completed successfully.

R1.6 Error Handling and Logging: Include robust error handling and logging to facili-
tate debugging to enhance reusability.

Reasoning: Effective error handling and logging improve the robustness and reliability
of the testbed.Automation recipes may contain software with incompatible logging
mechanisms. To facilitate development and troubleshooting, a unified and principled
logging important for iottb .

R1.7 Documentation: Provide clear documentation and examples for creating and run-
ning automation recipes.

Adaptation 8

Table 3.2: FAIR Data Storage Requirements

R2.1 Data and Metadata Inventory: iottb should provide an inventory of data and
metadata that typically need to be recorded (e.g., raw traffic, timestamps, device
identifiers).

Reasoning: Providing a comprehensive inventory of data and metadata ensures that
data remains findable after collection. Including metadata increases interpretability
and gives context necessary for extracting reproducible results.

R2.2 Data Formats and Schemas: Define standardized data formats and schemas.

Reasoning: Standardized data formats and schemas ensure consistency and interop-
erability.

R2.3 File Naming and Directory Hierarchy: Establish clear file naming conventions
and directory hierarchies. for organized data storage.

Reasoning: This enhances findability and accessibility.

R2.4 Data Preservation Practices: Implement best practices for data preservation, in-
cluding recommendations from authoritative sources like the Library of Congress [3].

Reasoning: Implementing best practices for data preservation can mitigate data degra-
dation and ensures integrity of data over time. This ensures long-term accessibility
and reusability.

R2.5 Accessibility Controls: Ensure data accessibility with appropriate permissions and
access controls.

R2.6 Interoperability Standards: Use widely supported formats and protocols to facili-
tate data exchange and interoperability.

R2.7 Reusability Documentation: Provide detailed metadata to support data reuse by
other researchers.

We return to these when we evaluate iottb in Chapter 5.

3.3 Scope
This section defines the scope of the testbed iottb . To guide the implementation of the

software component of this bachelor project, iottb , we focus on a specific set of require-

ments that align with the scope of a bachelor project. While the identified requirements

encompass a broad range of considerations, we have prioritized those that are most critical

to achieving the primary objectives of the project.

For this project, we delineate our scope regarding the principal objectives as follows:

• Objective 1 : iottb focuses on complying with R1.2 , R1.4 .

• Objective 2 : iottb ensures FAIR data storage implicitly, with the main focus lying

on R2.2 , R2.1 , R2.3 .

3.3.1 Model Environment
In this section, we describe the environment model assumed as the basis for conduction IoT

device experiments. This mainly involves delineating the network topology. Considerations

Adaptation 9

are taken to make this environment, over which the iottb testbed software has no control,

easy reproducible [15].

We assume that the IoT device generally requires a Wi-Fi connection. This implies that

the environment is configured to reliably capture network traffic without disrupting the IoT

device’s connectivity. This involves setting up a machine with internet access (wired or

wireless) and possibly one Wi-Fi card supporting AP mode to act as the Access Point (AP)

for the IoT device under test [18]. Additionally, the setup must enable bridging the IoT-AP

network to the internet to ensure IoT device.

Specifically, the assumed setup for network traffic capture includes the following components:

1. IoT Device: The device under investigation, connected to a network.

2. Capture Device: A computer or dedicated hardware device configured to intercept

and record network traffic. This is where iottb runs.

3. Wi-Fi AP : The AP through which the IoT device gets network access.

4. Router/ Internet gateway: The network must provide internet access.

5. Switch or software bridge: At least either a switch or an Operating System (OS)

with software bridge support must be available to be able to implement one of the

setups described in Fig. 3.1 and Fig. 3.2.

6. Software: tcpdump is needed for network capture.

Adaptation 10

Figure 3.1: Capture setup with separate Capture Device and AP

Figure 3.2: Capture setup where the capture device doubles as the AP for the IoT device.

4
Implementation

This chapter discusses the implementation of the IoT device testbed, iottb which is de-

veloped using the Python programming language. This choice is motivated by Python’s

wide availability and the familiarity many users have with it, thus lowering the barrier for

extending and modifying the testbed in the future. The testbed is delivered as a Python

package and provides the iottb command with various subcommands. A full command

reference can be found at Appendix C.

Conceptually, the software implements two separate aspects: data collection and data stor-

age. The iottb database schema is implicitly implemented by iottb . Users use iottb

mainly to operate on the database or initiate data collection. Since the database schema is

transparent to the user during operation, we begin with a brief description of the database

layout as a directory hierarchy, before we get into the iottb Command Line Interface (CLI)

.

4.1 Database Schema
The storage for iottb is implemented on top of the file system of the user. Since user folder

structures provide little standardization, we require a configuration file, while gives iottb

some basic information about the execution environment. The testbed is configured in a

configuration file in JSON format following the scheme in Listing 1.

{
"DefaultDatabase": "iottb.db",
"DefaultDatabasePath": $HOME,
"DatabaseLocations": {

<str>: <path>
}

}

Listing 1: Schema of the testbed configuration file.

Implementation 12

4.2 High Level Description Revise:

doesn’t fitBefore we go into the details, lets describe on higher level what the iottb software does.

iottb is used from the command line and follows the following schema:

iottb [<global options>] <subcommand> [<subcommand options>] [<argument(s)>]
Revise:

Better list-

ing

When iottb is invoked, it first checks to see if it can find the database directory in the OS

users home directory3.

4.3 Database Initialization
The IoT testbed database is defined to be a directory named iottb.db . Currently,

iottb creates this directory in the user’s home directory (commonly located at the path

/home/<username> on Linux systems) the first time any subcommand is used. All data

and metadata are placed under this directory. If this directory does not exist at the cor-

rect location, then network capturing (provided by the subcommand sniff described in

Section 4.5) will fail.

4.4 Adding Devices
Before we capture the traffic of a IoT device, iottb demands that there exists a dedicated

directory for it. We add a device to the database by passing a string representing the name

of the device to the add-device subcommand. This does two things:

1. A python object is initialized from the class as in Listing 2

2. A directory device short name for the device is created as iottb.db / device short name

3. A metadata file device_metadata.json is created and placed in the newly created

directory. This file is in the json format, and follows the schema seen in Listing 2.

The Device ID is automatically generated using a UUID to be FAIR compliant. canonical_name

is generated by the make_canonical_name() function provided in Listing 3. Fields not

supplied to the __init__ in Listing 2 are left empty. The other fields in are currently

not used by iottb itself, but provide metadata which can be used during a processing.

Optionally, one can manually create such a file with pre-set values and pass it to the setup.

3 Default can be changed

Implementation 13

12 class DeviceMetadata:
13 def __init__(self, device_name, description="", model="",
14 manufacturer="", firmware_version="", device_type="",
15 supported_interfaces="", companion_applications="",
16 save_to_file=None):
17 self.device_id = str(uuid.uuid4())
18 self.device_name = device_name
19 cn, aliases = make_canonical_name(device_name)
20 self.aliases = aliases
21 self.canonical_name = cn
22 self.date_added = datetime.now().isoformat()
23 self.description = description
24 self.model = model
25 self.manufacturer = manufacturer
26 self.current_firmware_version = firmware_version
27 self.device_type = device_type
28 self.supported_interfaces = supported_interfaces
29 self.companion_applications = companion_applications

Listing 2: Device Metadata

def make_canonical_name(name):
"""
Normalize the device name to a canonical form:
- Replace the first two occurrences of spaces
- transform characters with dashes.
- Remove remaining spaces.
- Convert to lowercase.
"""
aliases = [name]
We first normalize
chars_to_replace = definitions.REPLACEMENT_SET_CANONICAL_DEVICE_NAMES
pattern = re.compile('|'.join(re.escape(char) for char in chars_to_replace))
norm_name = pattern.sub('-', name)
Remove non ascii chars
norm_name = re.sub(r'[ˆ\x00-\x7F]+', '', norm_name)

aliases.append(norm_name)
Lower case
norm_name = norm_name.lower()
aliases.append(norm_name)
canoncial name is only first two tokens
parts = norm_name.split('-')
canonical_name = canonical_name = '-'.join(parts[:2])
aliases.append(canonical_name)
aliases = list(set(aliases))
return canonical_name, aliases

Listing 3: Shows how the canonical name is created.

Implementation 14

4.5 Traffic Sniffing
Automated network capture is a key component of iottb . The standard network capture

is provided by the sniff subcommand, which wraps the common traffic capture utility

tcpdump[4].

The following arguments must be provided:

• Device name: The name of the IoT device for which traffic is being captured.

• IP or MAC address: Either the IP or MAC address of the IoT device.4

Unless explicitly allowed by specifying that the command should run in unsafe mode, an

IPv4, or MAC address must be provided. An IP address5 are only accepted in dot-decimal

notation 6 and MAC addresses must specify as six groups of two hexadecimal digits7. Failing

to provide either results in the capture being aborted. The rationale behind this is simple:

they are the only way to identify the traffic of interest. Of course it is possible to retrieve the

IP or MAC after a capture. Still, the merits outweigh the annoyance. The hope is that this

makes iottb easier to use correctly. For example, consider the situation, where a student

is tasked with performing multiple captures across multiple devices. If the student is not

aware of the need of an address for the captured data to be usable, then this policy avoids

the headache and frustration of wasted time and unusable data.

There are the following optional arguments:

• App: The app used to interact with the device during the capture.

• Interface: The NIC name of the interface on the capture host where the traffic is to

be captured.

• Count or minutes: Either the number of packets to capture or the duration (in

minutes) to run the capture.

• TODO: Complete the list of opts

To comply with R1.2 and R2.1 , each capture also stores some metadata in capture metadata.json.

The metadata stored is defined by the Python object in Listing 4.

The device id is the Universally Unique Identifier (UUID) of the device for which the

capture was performed. This ensures that .

This package provides a CLI. The package provides commands for capturing IoT device

network traffic data and implicitly implements the data storage through internal behaviour

and provided commands for interacting with the database.

4.6 Working with Metadata
The meta subcommand provides a facility for manipulating metadata files. It allows users

to get the value of any key in a metadata file as well as introduce new key-value pairs.

4 This can be disabled if needed, e.g., for testing or if it is not feasible to obtain either address.
5 TODO: Mention somewhere that we only consider IPv6 addresses (and why)
6 e.g., 172.168.1.1
7 e.g., 12:34:56:78:AA:BB

Implementation 15

metadata = {
'device': canonical_name,
'device_id': device,
'capture_id': capture_uuid,
'capture_date_iso': datetime.now().isoformat(),
'invoked_command': " ".join(map(str, cmd)),
'capture_duration': delta,
'generic_parameters': {

'flags': flags_string,
'kwargs': generic_kw_args_string,
'filter': generic_filter

},
'non_generic_parameters': {

'kwargs': non_generic_kw_args_string,
'filter': cap_filter

},
'features': {

'interface': interface,
'address': address

},
'resources': {

'pcap_file': str(pcap_file),
'stdout_log': str(stdout_log_file),
'stderr_log': str(stderr_log_file)

},
'environment': {

'capture_dir': capture_dir,
'database': database,
'capture_base_dir': str(capture_base_dir),
'capture_dir_abs_path': str(capture_dir_full_path)

}
}

Listing 4: Metadata Stored for sniff command

However, it is not possible to change the value of any key already present in the metadata.

This restriction is in place to prevent metadata corruption.

The most crucial value in any metadata file is the uuid of the device or capture the metadata

belongs to. Changing the uuid would cause iottb to mishandle the data, as all references

to data associated with that uuid would become invalid. Changeing the any other value

might not cause mishandling by iottb , but they nonetheless represent essential information

about the data. Therefore, iottb does not allow changes to existing keys once they are

set.

Future improvements might relax this restriction by implementing stricter checks on which

keys can be modified. This would involve defining a strict set of keys that are write-once

and then read-only.

Implementation 16

4.7 Raw Captures
The raw subcommand offers a flexible way to run virtually any command wrapped in iottb

. Of course, the intended use is with other capture tools, like mitmproxymit [2], and not

arbitrary shell commands. While some benefits, particularly those related to standardized

capture, are diminished, users still retain the advantages of the database.

The syntax of the raw subcommand is as follows:

iottb raw <device> <command-name> "<command-options-string>" # or

iottb raw <device> "<string-executable-by-a-shell>" #

iottb does not provide error checking for user-supplied arguments or strings. Users ben-

efit from the fact that captures will be registered in the database, assigned a uuid, and

associated with the device. The metadata file of the capture can then be edited manually if

needed.

iottb does not provide error checking for user-supplied arguments or strings. Users ben-

efit from the fact that captures will be registered in the database, assigned a uuid, and

associated with the device. The metadata file of the capture can then be edited manually if

needed.

However, each incorrect or unintended invocation that adheres to the database syntax (i.e.,

the specified device exists) will create a new capture directory with a metadata file and

uuid. Therefore, users are advised to thoroughly test commands beforehand to avoid

creating unnecessary clutter.

4.8 Integrating user scripts
The --pre and --post options allow users to run any executable before and after any

subcommand, respectively. Both options take a string as their argument, which is passed

as input to a shell and launched as a subprocess. The rationale for running the process in a

shell is that Python’s Standard Library process management module, subprocess8, does

not accepts argument to the target subprocess when a single string is passed for execution.

Execution is synchronous: the subcommand does not begin execution until the --pre script

finishes, and the --post script only starts executing after the subcommand has completed

its execution. iottb always runs in that order.

There may be cases where a script provides some type of relevant interaction intended to

run in parallel with the capture. Currently, the recommended way to achieve this is to wrap

the target executable in a script that forks a process to execute the target script, detaches

from it, and returns.

These options are a gateway for more complex environment setups and, in particular, allow

users to reuse their scripts, thus lowering the barrier to adopting iottb .

8 https://docs.python.org/3/library/subprocess.html

https://docs.python.org/3/library/subprocess.html

Implementation 17

4.9 Extending and Modifying the Testbed
One of the key design goals of iottb is easy extensibility. New functionality can be easily

added through subcommands. Here are the minimal requirements to add a new subcom-

mand:

1. Create a Python file for the new subcommand and place it in the commands module,

i.e., the subfolder called commands.

2. In the main module’s file __main__.py, find the def setup_argparse() function

(see Listing 5) and add the subparser for your new command.

If the parser is set up correctly, the new subcommand will be available after reinstalling the

module.

5
Evaluation

In this sectioned we evaluate iottb , paying particular attention to the requirements defined

in Section 3.2.

Requirement ID Description Status
R1.1 Installation of Tools Not Met
R1.2 Configuration and Start of Data Collection ↓
R1.2a) Automate WiFi Setup Not Met
R1.2b) Automate Data Capture Met
R1.3 Data Processing Partially Met
R1.4 Reproducibility Partially Met
R1.5 Execution Control Not Met
R1.6 Error Handling and Logging Partially Met
R1.7 Documentation ↓
R1.7a) User Manual Met
R1.7b) Developer Docs Not Met
R2.1 Data and Metadata Inventory Met
R2.2 Data Formats and Schemas Met
R2.3 File Naming and Directory Hierarchy Met
R2.4 Data Preservation Practices Partially Met
R2.5 Accessibility Controls Not Met
R2.6 Interoperability Standards Fully Met
R2.7 Reusability Documentation Met

Table 5.1: Summary of Requirements Evaluation

Table 5.1 gives an overview of the requirements introduced in Section 3.2 and our assessment

of their status. It is important to note that the status ”Met” does not imply that the

requirement is implemented to the highest possible standard. Furthermore, this set of

requirements itself can (and should) be made more specific and expanded in both detail and

scope as the project evolves.

Additionally, Table 5.1 does not provide granularity regarding the status of individual com-

ponents, which might meet the requirements to varying degrees. For example, while the

requirement for data collection automation may be fully met in terms of basic functionality,

advanced features such as handling edge cases or optimizing performance might still need

improvement. Similarly, the requirement for data storage might be met in terms of basic

Evaluation 19

file organization but could benefit from enhanced data preservation practices.

Thus, the statuses presented in Table 5.1 should be viewed as a general assessment rather

ground truth. Future work should aim to refine these requirements and their implementation

to ensure that iottb continues to evolve and improve.

To provide a more comprehensive understanding, the following sections offer a detailed

evaluation of each requirement. This detailed analysis will discuss how each requirement

was addressed, the degree to which it was met, and any specific aspects that may still

need improvement. By examining each requirement individually, we can better understand

the strengths and limitations of the current implementation and identify areas for future

enhancement.

5.1 Item R1.1: Installation of Tools
Status: Not Met

iottb does not install any software or tools by itself. Dependency management for Python

packages are handled by installers like PIP, since the Python package declares it’s depende-

cies. Tcpdump is the only external dependency, and iottb checks if Tcpdump is available

on the capture device. If it is not, the user is asked to install it. Our position is that

generally it is a good idea to not force installation of software and allow users the freedom

to chose. The added benefit to the user of a built in installer seems low. Adding some

installer to iottb does not promise great enough improvement in ease-of-use vis-á-vis the

higher maintenance cost introduce to maintain such a module. For future work we propose

this requirement be droped.

5.2 Item R1.2: Configuration and Start of Data Collection
Status: Partially Met

The testbed automates the configuration and initiation of data collection processes, including

wireless hotspot management and network capture. This automation reduces setup time

and minimizes errors. The testbed automates some aspects of configureing and intializing

the data collection process. This project focused on package capture and adjacent tasks.

Item R1.2b can be considered complete in that packet capture is fully supported thorough

Tcpdump and important metadata is saved. Depending on the setup (see Fig. 3.1 and

Fig. 3.2) a WiFi hotspot needs to be setup before packet capture is initiated. iottb does

not currently implement automated setup and takedown of a hotspot on any platform, so

Item R1.2a is not currently met. There are scripts for Linux systems bundled with the

Python package which can be used with the --pree and --post options mentioned in

Section 4.8. But to consider this task fully automated and supported this should be built in

to iottb itself. Furthermore, there are other data collection tools like mitmproxyTODO:

0 reference or more complicated setup tasks like setting up routing table to allow for more

capture scenarios which are tedious tasks and lend themselves to automation. Future work

should include extending the set of available automation recipes continously. New task

groups/recipy domains should be added as subrequirements of Item R1.2 . We probose the

Evaluation 20

following new subrequirement

• Item R1.2 c: Testbed should implement automatic setup of NAT routing for situations

where AP is connection to the capture device and a bridged setup is not supported.

• Item R1.2d: Testbed should dynamically determine which type of hotspot setup is

possible and choose the appropriate automation recipie.

Extending Item R1.2 means stating which data collection and adjacent recipes are wanted.

5.3 Item R1.3: Data Processing
Status: Partially Met

While the testbed includes some basic data processing capabilities, there is room for im-

provement. Currently the only one recipe exists for processing raw data. iottb can extract a

CSV file from a PCAP file. The possibilities for automation recipes which support data pro-

cessing are many. Having the data in a more standardized format allows for the creation of

more sophisticated feature extraction recipes with application for machine learning. Before

they are available users can still use the --post option with their own feature extraction

scripts.

5.4 Item R1.4: Reproducibility
Status: Met

Supported automation can be run with repeatedly and used options are documented in the

capture metadata. This allows others to repeat the process with the same options. So in

this respect this requirement is met. But, the current state can be significantly improved by

automating the process of repeating a capture task with the same configuration as previous

captures. To support this we propose the following new subrequirement which aid the

automated reproduction of past capture workflows

• Item R1.4a The testbed should be able to read command options from a file

• Item R1.4b The testbed should be able to perform a capture based on metadata files

of completed captures

Taking these requirement promises to seriously increase reproducibility.

5.5 Item R1.5: Execution Control
Status: Not Met

The testbed currently provides no controlled method to interfear with a running recipie. In

most cases iottb will gracefully end if the user send the process a SIGINT, but there are

no explicit protections agains data corrpution in this case. Furthermore, during execution

iottb writes to logfiles and prints basic information to the users terminal. Extending this

with a type of monitoring mechanism would be good steps toward complying with this

requirement in the future.

Evaluation 21

5.5.1 R1.6: Error Handling and Logging
Status: Fully Met

Robust error handling and logging are implemented, ensuring that issues can be diagnosed

and resolved effectively. Detailed logs help maintain the integrity of experiments.

5.6 Item R1.7 : Documentation
Status: Partially Met

For users there is a ’User Manual’ which details all important aspects of working with the

iottb software. Furthermore, helpful messages are displayed with respect to the correct

syntac of the commands if an input is malformed. So user documentation does exist and

while certainly can be improved upon, is already helpful. Unfortunately, documentation for

developers is currently poor. The codebase is not systematically documented and there is

currently no developers manual. Thoroughly documenting the existing codebase should be

considered the most pressing issue and tackled first to improve developer documentation.

5.7 Item R2.1: Data and Metadata Inventory
Status: Fully Met

The testbed organizes data and metadata in a standardized and principled way. The

database is complete with respects to the currently primary and secondary artifact which

stem from operating iottb itself. While complete now, extending iottb carries the risk

of breaking this requirement if not careful attention is given. Since the database is a central

part of the system as a whole, extension must ensure that they comply with this requirement

before they get built in.

5.8 Item R2.2: Data Formats and Schemas
Status: Fully Met

The testbed standardizes directory and file naming. All metadata is in plain test and in the

JSON format. This make them very accessible to both humans and machines. Currently

the only binary format which iottb creates are PCAP files. Luckily, the PCAP format

is widely know and not proprietary and solid tool, like Wireshark, exists to inspect them.

Furthermore, the data in the PCAP files can be extracted in to the plaintext CSV format,

this further improves interoperability. Consistence is currently implicitly handles, that is,

there are no strict schemas 9 Currenlty there is low risk of corrupting data through the

use of iottb command. But plaintext files are manually editable and can inadvertently

be corrupted or maid invalid (e.g. accidentally deleteing a few digits from a UUID). While

currently the risk of curruption can be seen as low, it is important to keep this requirement

in mind when extending iottb and the types of files residing in the database become more

9 Strict schemas for metadata file briefly where introduces, but then abandoned due to the lack of knowledge
surrounding the PYdantic library.

Evaluation 22

heterogeneous.

5.8.1 Item R2.3: File Naming and Directory Hierarchy
Status: Fully Met

iottb currently names all files which it creates according to a well defined schema. In all

cases, the file name is easily legible (e.g. metadata files like Listing 4) or the context of

where the file resides provides easy orientation to a human reviewer. For instance, raw data

files, which currently only are PCAP files, are all named with a UUID. This is not helpful to

the human but the metadata file which resides in the same directory provides all the needed

information to be able to understand what is contained within it. Furthermore, these files

resides in a directory hierarchy which identfies what devices the traffic belongs to, the date

the capture file was created. Finally, capture files reside in a directory which identify where

in the sequence of capture of a given day it was created. Automation recipes expanding the

range of data types collected can just follow this convention. This ensures interoperability

and findability between various capture method.

5.9 Item R2.4: Data Preservation Practices
Status: Partially Met

Specific data preservation practices are not taken. iottb already follows the Library of

Congreses ?] recommendations on data formats. Most data is stored in plain text, and the

binary formats used are widely known within the field and there is no access barrier. To

enhance the testbeds’ compliance with this requirement, automation recipes which backup

the data to secure locations periodically can be developed. The need for built in preservation

should be balanced with the goal of not introducing dependencies not related to the core

aim of automated collection and FAIR storage. One way is just to have a repository of

scripts which are not built in to the iottb executable, but which users can use and adapt

to their needs10.

5.10 Item R2.5: Accessibility Controls
Status: x

While the iottb executable is ware what data it can and cannot access or change, there

are currently no wider access controls implemented.

5.11 Item R2.6: Interoperability Standards
Status: x

Missing

10 For instance rsync scripts with predefined filters appropriate for the database.

Evaluation 23

5.11.1 Item R2.7 : Reusability Documentation
Status: Fully Met

Missing

5.12 Usage Examples
To illustrate the practical application of the testbed, the following examples demonstrate

common usage scenarios.

5.12.1 Example 1: Setting Up and Running a Capture
Add a new device

iottb add-device "Smart Light Bulb"

Start a network capture for the device

iottb sniff "Smart Light Bulb" --interface wlan0 --duration 10 --app "SmartLightApp"

5.12.2 Example 2: Retrieving Metadata
Retrieve metadata for a specific capture

iottb meta get "capture_uuid" "start_time"

5.12.3 Example 3: Running a Raw Command
Run a custom command

iottb raw "Smart Light Bulb" "ping -c 4 192.168.1.1"

These examples provide a glimpse into the functionalities offered by the testbed and demon-

strate its ease of use.

5.13 Near Future Improvements
LOREM IPSUM

6
Conclusion

LOREM

6.1 Future Work
IPSUM

6.2 Related Work

7
TODOS

• Architecture

• sleep

• REFERENCES!

• Examples! At least as listings.

• Data Extraction command

• grammar and orthography

• check Fig. 3.1 and Fig. 3.2: refine internet box, currently very empty.

Acronyms

AP Access Point. 9, 10, 20

CLI Command Line Interface. 11, 14

IoT Internet of Things. 1–6, 8–10, 12

OS Operating System. 9, 12

UUID Universally Unique Identifier. 14, 22

Bibliography

[1] FAIR principles. URL https://www.go-fair.org/fair-principles/.

[2] mitmproxy - an interactive HTTPS proxy. URL https://mitmproxy.org/.

[3] Recommended formats statement – datasets | resources (preservation, library of

congress). URL https://www.loc.gov/preservation/resources/rfs/data.html.

[4] Home | TCPDUMP & LIBPCAP. URL https://www.tcpdump.org/.

[5] Wireshark · go deep. URL https://www.wireshark.org/.

[6] Abbas Acar, Hossein Fereidooni, Tigist Abera, Amit Kumar Sikder, Markus Miettinen,

Hidayet Aksu, Mauro Conti, Ahmad-Reza Sadeghi, and Selcuk Uluagac. Peek-a-boo:

I see your smart home activities, even encrypted! In Proceedings of the 13th ACM

Conference on Security and Privacy in Wireless and Mobile Networks, pages 207–218.

doi: 10.1145/3395351.3399421. URL http://arxiv.org/abs/1808.02741.

[7] Farshad Firouzi, Bahar Farahani, Markus Weinberger, Gabriel DePace, and Ferei-

doon Shams Aliee. IoT fundamentals: Definitions, architectures, challenges, and

promises. In Farshad Firouzi, Krishnendu Chakrabarty, and Sani Nassif, editors, Intel-

ligent Internet of Things: From Device to Fog and Cloud, pages 3–50. Springer Inter-

national Publishing. ISBN 978-3-030-30367-9. doi: 10.1007/978-3-030-30367-9 1. URL

https://doi.org/10.1007/978-3-030-30367-9 1.

[8] Kristof Friess. Multichannel-sniffing-system for real-world analysing of wi-fi-packets.

In 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN),

pages 358–364. doi: 10.1109/ICUFN.2018.8436715. URL https://ieeexplore.ieee.org/

abstract/document/8436715. ISSN: 2165-8536.

[9] Grigori Fursin. Collective knowledge: organizing research projects as a database

of reusable components and portable workflows with common interfaces. 379(2197):

20200211. doi: 10.1098/rsta.2020.0211. URL https://royalsocietypublishing.org/doi/

full/10.1098/rsta.2020.0211. Publisher: Royal Society.

[10] Adam Hahn, Aditya Ashok, Siddharth Sridhar, and Manimaran Govindarasu. Cyber-

physical security testbeds: Architecture, application, and evaluation for smart grid.

4(2):847–855. ISSN 1949-3061. doi: 10.1109/TSG.2012.2226919. URL https://

ieeexplore.ieee.org/abstract/document/6473865. Conference Name: IEEE Transactions

on Smart Grid.

https://www.go-fair.org/fair-principles/
https://mitmproxy.org/
https://www.loc.gov/preservation/resources/rfs/data.html
https://www.tcpdump.org/
https://www.wireshark.org/
http://arxiv.org/abs/1808.02741
https://doi.org/10.1007/978-3-030-30367-9_1
https://ieeexplore.ieee.org/abstract/document/8436715
https://ieeexplore.ieee.org/abstract/document/8436715
https://royalsocietypublishing.org/doi/full/10.1098/rsta.2020.0211
https://royalsocietypublishing.org/doi/full/10.1098/rsta.2020.0211
https://ieeexplore.ieee.org/abstract/document/6473865
https://ieeexplore.ieee.org/abstract/document/6473865

Bibliography 28

[11] Md. Milon Islam, Sheikh Nooruddin, Fakhri Karray, and Ghulam Muhammad. Internet

of things: Device capabilities, architectures, protocols, and smart applications in health-

care domain. 10(4):3611–3641. ISSN 2327-4662. doi: 10.1109/JIOT.2022.3228795. URL

https://ieeexplore.ieee.org/abstract/document/9983826/references#references. Con-

ference Name: IEEE Internet of Things Journal.

[12] Deepak Kumar, Kelly Shen, Benton Case, Deepali Garg, Galina Alperovich, Dmitry

Kuznetsov, Rajarshi Gupta, and Zakir Durumeric. All things considered: An analysis

of IoT devices on home networks. In 28th USENIX security symposium (USENIX

security 19), pages 1169–1185. USENIX Association. ISBN 978-1-939133-06-9. URL

https://www.usenix.org/conference/usenixsecurity19/presentation/kumar-deepak.

[13] Jingjing Ren, Daniel J. Dubois, David Choffnes, Anna Maria Mandalari, Roman Kol-

cun, and Hamed Haddadi. Information exposure from consumer IoT devices: A

multidimensional, network-informed measurement approach. In Proceedings of the

Internet Measurement Conference, IMC ’19, pages 267–279. Association for Com-

puting Machinery. ISBN 978-1-4503-6948-0. doi: 10.1145/3355369.3355577. URL

https://dl.acm.org/doi/10.1145/3355369.3355577.

[14] Manuel Silverio-Fernández, Suresh Renukappa, and Subashini Suresh. What is a smart

device? - a conceptualisation within the paradigm of the internet of things. 6(1):

3. ISSN 2213-7459. doi: 10.1186/s40327-018-0063-8. URL https://doi.org/10.1186/

s40327-018-0063-8.

[15] Benjamin Andreas Ulsm̊ag. Private information exposed by the use of robot vacuum

cleaner in smart environments.

[16] TL Vaughan, SC Battle, and KL Walker. The use of climate chambers in biological

research. 39(14):5121–5127. Publisher: ACS Publications.

[17] Mark D. Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Apple-

ton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino

da Silva Santos, Philip E. Bourne, Jildau Bouwman, Anthony J. Brookes, Tim

Clark, Mercè Crosas, Ingrid Dillo, Olivier Dumon, Scott Edmunds, Chris T. Evelo,

Richard Finkers, Alejandra Gonzalez-Beltran, Alasdair J. G. Gray, Paul Groth, Ca-

role Goble, Jeffrey S. Grethe, Jaap Heringa, Peter A. C. ’t Hoen, Rob Hooft, To-

bias Kuhn, Ruben Kok, Joost Kok, Scott J. Lusher, Maryann E. Martone, Albert

Mons, Abel L. Packer, Bengt Persson, Philippe Rocca-Serra, Marco Roos, Rene van

Schaik, Susanna-Assunta Sansone, Erik Schultes, Thierry Sengstag, Ted Slater, George

Strawn, Morris A. Swertz, Mark Thompson, Johan van der Lei, Erik van Mulligen,

Jan Velterop, Andra Waagmeester, Peter Wittenburg, Katherine Wolstencroft, Jun

Zhao, and Barend Mons. The FAIR guiding principles for scientific data management

and stewardship. 3(1):160018. ISSN 2052-4463. doi: 10.1038/sdata.2016.18. URL

https://www.nature.com/articles/sdata201618. Publisher: Nature Publishing Group.

[18] Shicheng Zhu, Shunkun Yang, Xiaodong Gou, Yang Xu, Tao Zhang, and Yueliang Wan.

Survey of testing methods and testbed development concerning internet of things. 123

https://ieeexplore.ieee.org/abstract/document/9983826/references#references
https://www.usenix.org/conference/usenixsecurity19/presentation/kumar-deepak
https://dl.acm.org/doi/10.1145/3355369.3355577
https://doi.org/10.1186/s40327-018-0063-8
https://doi.org/10.1186/s40327-018-0063-8
https://www.nature.com/articles/sdata201618

Bibliography 29

(1):165–194. ISSN 1572-834X. doi: 10.1007/s11277-021-09124-5. URL https://doi.org/

10.1007/s11277-021-09124-5.

https://doi.org/10.1007/s11277-021-09124-5
https://doi.org/10.1007/s11277-021-09124-5

A
Appendix A

1 def setup_argparse():
2 # create top level parser
3 root_parser = argparse.ArgumentParser(prog='iottb')
4 # shared options
5 root_parser.add_argument('--verbose', '-v', action='count',

default=0)↪→

6 root_parser.add_argument('--script-mode', action='store_true',
help='Run in script mode (non-interactive)')↪→

7 # Group of args w.r.t iottb.db creation
8 group = root_parser.add_argument_group('database options')
9 group.add_argument('--db-home', default=Path.home() /

'IoTtb.db')↪→

10 group.add_argument('--config-home', default=Path.home() /
'.config' / 'iottb.conf', type=Path,)↪→

11 group.add_argument('--user', default=Path.home().stem,
type=Path,)↪→

12

13 # configure subcommands
14 subparsers = root_parser.add_subparsers(title='subcommands',

required=True, dest='command')↪→

15 # setup_capture_parser(subparsers)
16 setup_init_device_root_parser(subparsers)
17 setup_sniff_parser(subparsers)
18 # Utility to list interfaces directly with iottb instead of

relying on external tooling↪→

19

20 interfaces_parser = subparsers.add_parser('list-interfaces',
aliases=['li', 'if'],↪→

21 help='List available
network
interfaces.')

↪→

↪→

22 interfaces_parser.set_defaults(func=list_interfaces)
23

24 return root_parser

Listing 5: setup argparse function

B
Appendix B

B.1 Command Line Examples
B.1.1 Pre and post scripts
In this example, the --unsafe option allows not to specify a IP or MAC address. default

is the device name used and -c 10 tells iottb that we only want to capture 10 packets.

Command:

$ iottb sniff --pre='/usr/bin/echo "pre"' --post='/usr/bin/echo "post"' \

default --unsafe -c 10

Stdout:

Testbed [Info]

Running pre command /usr/bin/echo "pre"

pre

Using canonical device name default

Found device at path /home/seb/iottb.db/default

Using filter None

Files will be placed in /home/seb/iottb.db/default/sniffs/2024-06-30/cap0002-2101

Capture has id dcdf1e0b-6c4d-4f01-ba16-f42a04131fbe

Capture setup complete!

Capture complete. Saved to default_dcdf1e0b-6c4d-4f01-ba16-f42a04131fbe.pcap

tcpdump took 2.12 seconds.

Ensuring correct ownership of created files.

Saving metadata.

END SNIFF SUBCOMMAND

Running post script /usr/bin/echo "post"

post

The contents of the ’sniff’ dir for the default device after this capture has completed are as

follows:

sniffs/2024-06-30/cap0002-2101

$ tree

Appendix B 32

.

|-- capture_metadata.json

|-- default_dcdf1e0b-6c4d-4f01-ba16-f42a04131fbe.pcap

|-- stderr_dcdf1e0b-6c4d-4f01-ba16-f42a04131fbe.log

L__ stdout_dcdf1e0b-6c4d-4f01-ba16-f42a04131fbe.log

and the metadata file contains (\ only used for fitting into this document):

capture_metadata.json

{

"device": "default",

"device_id": "default",

"capture_id": "dcdf1e0b-6c4d-4f01-ba16-f42a04131fbe",

"capture_date_iso": "2024-06-30T21:01:31.496870",

"invoked_command": "sudo tcpdump -# -n -c 10 -w \

/home/seb/iottb.db \

/default/sniffs/2024-06-30 \

/cap0002-2101/default_dcdf1e0b-6c4d-4f01-ba16-f42a04131fbe.pcap",

"capture_duration": 2.117154359817505,

"generic_parameters": {

"flags": "-# -n",

"kwargs": "-c 10",

"filter": null

},

"non_generic_parameters": {

"kwargs": "-w \

/home/seb/iottb.db/default/sniffs/2024-06-30 \

/cap0002-2101 \

/default_dcdf1e0b-6c4d-4f01-ba16-f42a04131fbe.pcap",

"filter": null

},

"features": {

"interface": null,

"address": null

},

"resources": {

"pcap_file": "default_dcdf1e0b-6c4d-4f01-ba16-f42a04131fbe.pcap",

"stdout_log": "stdout_dcdf1e0b-6c4d-4f01-ba16-f42a04131fbe.log",

"stderr_log": "stderr_dcdf1e0b-6c4d-4f01-ba16-f42a04131fbe.log",

"pre": "/usr/bin/echo \"pre\"",

"post": "/usr/bin/echo \"post\""

},

"environment": {

Appendix B 33

"capture_dir": "cap0002-2101",

"database": "iottb.db",

"capture_base_dir": "/home/seb/iottb.db/default/sniffs/2024-06-30",

"capture_dir_abs_path": \

"/home/seb/iottb.db/default/sniffs/2024-06-30/cap0002-2101"

}

}

C
Appendix D

C.1 iottb

Usage: iottb [OPTIONS] COMMAND [ARGS]...

Options:

-v, --verbosity Set verbosity [default: 0; 0<=x<=3]

-d, --debug Enable debug mode

--dry-run [default: True]

--cfg-file PATH Path to iottb config file [default:

$HOME/.config/iottb/iottb.cfg]

--help Show this message and exit.

Commands:

add-device Add a device to a database

init-db

rm-cfg Removes the cfg file from the filesystem.

rm-dbs Removes ALL(!) databases from the filesystem if...

set-key-in-table-to Edit config or metadata files.

show-all Show everything: configuration, databases, and...

show-cfg Show the current configuration context

sniff Sniff packets with tcpdump

C.1.1 Initialize Database
Usage: iottb init-db [OPTIONS]

Options:

-d, --dest PATH Location to put (new) iottb database

-n, --name TEXT Name of new database. [default: iottb.db]

--update-default / --no-update-default

If new db should be set as the new default

Appendix D 35

[default: update-default]

--help Show this message and exit.

C.1.2 Add device
Usage: iottb add-device [OPTIONS]

Add a device to a database

Options:

--dev, --device-name TEXT The name of the device to be added. If this

string contains spaces or other special

characters normalization is

performed to derive a canonical name [required]

--db, --database DIRECTORY Database in which to add this device. If not

specified use default from config. [env var:

IOTTB_DB]

--guided Add device interactively [env var:

IOTTB_GUIDED_ADD]

--help Show this message and exit.

C.1.3 Capture traffic with tcpdump
Usage: iottb sniff [OPTIONS] [TCPDUMP-ARGS] [DEVICE]

Sniff packets with tcpdump

Options:

Testbed sources:

--db, --database TEXT Database of device. Only needed if not current

default. [env var: IOTTB_DB]

--app TEXT Companion app being used during capture

Runtime behaviour:

--unsafe Disable checks for otherwise required options.

[env var: IOTTB_UNSAFE]

--guided [env var: IOTTB_GUIDED]

--pre TEXT Script to be executed before main command is

started.

--post TEXT Script to be executed upon completion of main

command.

Tcpdump options:

-i, --interface TEXT Network interface to capture on.If not specified

tcpdump tries to find and appropriate one.

[env var: IOTTB_CAPTURE_INTERFACE]

Appendix D 36

-a, --address TEXT IP or MAC address to filter packets by.

[env var: IOTTB_CAPTURE_ADDRESS]

-I, --monitor-mode Put interface into monitor mode.

--ff TEXT tcpdump filter as string or file path.

[env var: IOTTB_CAPTURE_FILTER]

-#, --print-pacno Print packet number at beginning of line. True by

default. [default: True]

-e, --print-ll Print link layer headers. True by default.

-c, --count INTEGER Number of packets to capture. [default: 1000]

--help Show this message and exit.

C.2 Utility commands
Utility Commands mostly for development and have not yet been integrated into the stan-

dard workflow.

C.2.1 Remove Configuration
Usage: iottb rm-cfg [OPTIONS]

Removes the cfg file from the filesystem.

This is mostly a utility during development. Once non-standard database

locations are implemented, deleting this would lead to iottb not being able

to find them anymore.

Options:

--yes Confirm the action without prompting.

--help Show this message and exit.

C.2.2 Remove Database
Usage: iottb rm-dbs [OPTIONS]

Removes ALL(!) databases from the filesystem if they're empty.

Development utility currently unfit for use.

Options:

--yes Confirm the action without prompting.

--help Show this message and exit.

Appendix D 37

C.2.3 Display Configuration File
Usage: iottb show-cfg [OPTIONS]

Show the current configuration context

Options:

--cfg-file PATH Path to the config file [default:

/home/seb/.config/iottb/iottb.cfg]

-pp Pretty Print

--help Show this message and exit

C.2.4 ”Show All”
Usage: iottb show-all [OPTIONS]

Show everything: configuration, databases, and device metadata

Options:

--help Show this message and exit.

Declaration on Scientific Integrity
(including a Declaration on Plagiarism and Fraud)
Translation from German original

Title of Thesis:

Name Assessor: __

Name Student: __

Matriculation No.: __

I attest with my signature that I have written this work independently and without outside
help. I also attest that the information concerning the sources used in this work is true and
complete in every respect. All sources that have been quoted or paraphrased have been
marked accordingly.

Additionally, I affirm that any text passages written with the help of AI-supported
technology are marked as such, including a reference to the AI-supported program used.
This paper may be checked for plagiarism and use of AI-supported technology using the
appropriate software. I understand that unethical conduct may lead to a grade of 1 or “fail”
or expulsion from the study program.

Place, Date: _______________________ Student: ____________________________

Will this work, or parts of it, be published?

No

Yes. With my signature I confirm that I agree to a publication of the work (print/digital)
in the library, on the research database of the University of Basel and/or on the
document server of the department. Likewise, I agree to the bibliographic reference in
the catalog SLSP (Swiss Library Service Platform). (cross out as applicable)

Publication as of: ___

Place, Date: _______________________ Student: ____________________________

Place, Date: _______________________ Assessor: ____________________________

Please enclose a completed and signed copy of this declaration in your Bachelor’s or Master’s thesis.

September 2023

	Abstract
	Table of Contents
	1 Introduction
	1.1 Motivation
	1.2 Goal
	1.3 Outline

	2 Background
	2.1 Internet of Things
	2.2 Testbed
	2.3 FAIR Data Principles
	2.4 Network Traffic
	2.5 (Network) Packet Capture
	2.6 Automation Recipes

	3 Adaptation
	3.1 Principal Objectives
	3.2 Requirements Analysis
	3.3 Scope
	3.3.1 Model Environment

	4 Implementation
	4.1 Database Schema
	4.2 High Level Description
	4.3 Database Initialization
	4.4 Adding Devices
	4.5 Traffic Sniffing
	4.6 Working with Metadata
	4.7 Raw Captures
	4.8 Integrating user scripts
	4.9 Extending and Modifying the Testbed

	5 Evaluation
	5.1 req:autoinstalltools: Installation of Tools
	5.2 req:autoconfigstart: Configuration and Start of Data Collection
	5.3 req:autodataprocessing: Data Processing
	5.4 req:autoreproducibility: Reproducibility
	5.5 req:autoexecutioncontrol: Execution Control
	5.5.1 R1.6: Error Handling and Logging

	5.6 req:autodocumentation: Documentation
	5.7 req:fairdatametainventory: Data and Metadata Inventory
	5.8 req:fairdataformats: Data Formats and Schemas
	5.8.1 req:fairfilenaming: File Naming and Directory Hierarchy

	5.9 req:fairpreservation: Data Preservation Practices
	5.10 req:fairaccessibility: Accessibility Controls
	5.11 req:fairinteroperability: Interoperability Standards
	5.11.1 req:fairreusability: Reusability Documentation

	5.12 Usage Examples
	5.12.1 Example 1: Setting Up and Running a Capture
	5.12.2 Example 2: Retrieving Metadata
	5.12.3 Example 3: Running a Raw Command

	5.13 Near Future Improvements

	6 Conclusion
	6.1 Future Work
	6.2 Related Work

	7 TODOS
	Acronyms
	Bibliography
	A Appendix A
	B Appendix B
	B.1 Command Line Examples
	B.1.1 Pre and post scripts

	C Appendix D
	C.1 iottb
	C.1.1 Initialize Database
	C.1.2 Add device
	C.1.3 Capture traffic with tcpdump

	C.2 Utility commands
	C.2.1 Remove Configuration
	C.2.2 Remove Database
	C.2.3 Display Configuration File
	C.2.4 "Show All"

