428 lines
18 KiB
TeX
428 lines
18 KiB
TeX
\documentclass[10pt]{extarticle}
|
||
|
||
\usepackage[english]{babel}
|
||
\usepackage{graphicx}
|
||
\usepackage{framed}
|
||
\usepackage[normalem]{ulem}
|
||
\usepackage{indentfirst}
|
||
\usepackage{amsmath,amsthm,amssymb,amsfonts}
|
||
\usepackage[italicdiff]{physics}
|
||
\usepackage[T1]{fontenc}
|
||
%\usepackage{pifont} %For unusual symbols
|
||
%\usepackage{mathdots} %For unusual combinations of dots
|
||
\usepackage{wrapfig}
|
||
\usepackage{lmodern,mathrsfs}
|
||
\usepackage[inline,shortlabels]{enumitem}
|
||
\setlist{topsep=2pt,itemsep=2pt,parsep=0pt,partopsep=0pt}
|
||
\usepackage[dvipsnames]{xcolor}
|
||
\usepackage[utf8]{inputenc}
|
||
\usepackage[a4paper, top=0.5in,bottom=0.2in, left=0.5in, right=0.5in, footskip=0.3in, includefoot]{geometry}
|
||
\usepackage[most]{tcolorbox}
|
||
\usepackage{tikz,tikz-3dplot,tikz-cd,tkz-tab,tkz-euclide,pgf,pgfplots}
|
||
\pgfplotsset{compat=newest}
|
||
\usepackage{multicol}
|
||
\usepackage[bottom,multiple]{footmisc} %ensures footnotes are at the bottom of the page, and separates footnotes by a comma if they are adjacent
|
||
\usepackage[backend=bibtex,style=numeric]{biblatex}
|
||
\renewcommand*{\finalnamedelim}{\addcomma\addspace} %forces authors' names to be separated by comma, instead of "and"
|
||
\addbibresource{bibliography}
|
||
\usepackage{hyperref}
|
||
\usepackage[nameinlink]{cleveref} %nameinlink ensures that the entire element is clickable in the pdf, not just the number
|
||
|
||
\newcommand{\remind}[1]{\textcolor{red}{\textbf{#1}}} %To remind me of unfinished work to fix later
|
||
\newcommand{\hide}[1]{} %To hide large blocks of code without using % symbols
|
||
|
||
\newcommand{\ep}{\varepsilon}
|
||
\newcommand{\vp}{\varphi}
|
||
\newcommand{\lam}{\lambda}
|
||
\newcommand{\Lam}{\Lambda}
|
||
%\newcommand{\abs}[1]{\ensuremath{\left\lvert#1\right\rvert}} % This clashes with the physics package
|
||
%\newcommand{\norm}[1]{\ensuremath{\left\lVert#1\right\rVert}} % This clashes with the physics package
|
||
\renewcommand{\ip}[1]{\ensuremath{\left\langle#1\right\rangle}}
|
||
\newcommand{\floor}[1]{\ensuremath{\left\lfloor#1\right\rfloor}}
|
||
\newcommand{\ceil}[1]{\ensuremath{\left\lceil#1\right\rceil}}
|
||
\newcommand{\A}{\mathbb{A}}
|
||
\newcommand{\B}{\mathbb{B}}
|
||
\newcommand{\C}{\mathbb{C}}
|
||
\newcommand{\D}{\mathbb{D}}
|
||
\newcommand{\E}{\mathbb{E}}
|
||
\newcommand{\F}{\mathbb{F}}
|
||
\newcommand{\K}{\mathbb{K}}
|
||
\newcommand{\N}{\mathbb{N}}
|
||
\newcommand{\Q}{\mathbb{Q}}
|
||
\newcommand{\R}{\mathbb{R}}
|
||
\newcommand{\T}{\mathbb{T}}
|
||
\newcommand{\X}{\mathbb{X}}
|
||
\newcommand{\Y}{\mathbb{Y}}
|
||
\newcommand{\Z}{\mathbb{Z}}
|
||
\newcommand{\As}{\mathcal{A}}
|
||
\newcommand{\Bs}{\mathcal{B}}
|
||
\newcommand{\Cs}{\mathcal{C}}
|
||
\newcommand{\Ds}{\mathcal{D}}
|
||
\newcommand{\Es}{\mathcal{E}}
|
||
\newcommand{\Fs}{\mathcal{F}}
|
||
\newcommand{\Gs}{\mathcal{G}}
|
||
\newcommand{\Hs}{\mathcal{H}}
|
||
\newcommand{\Is}{\mathcal{I}}
|
||
\newcommand{\Js}{\mathcal{J}}
|
||
\newcommand{\Ks}{\mathcal{K}}
|
||
\newcommand{\Ls}{\mathcal{L}}
|
||
\newcommand{\Ms}{\mathcal{M}}
|
||
\newcommand{\Ns}{\mathcal{N}}
|
||
\newcommand{\Os}{\mathcal{O}}
|
||
\newcommand{\Ps}{\mathcal{P}}
|
||
\newcommand{\Qs}{\mathcal{Q}}
|
||
\newcommand{\Rs}{\mathcal{R}}
|
||
\newcommand{\Ss}{\mathcal{S}}
|
||
\newcommand{\Ts}{\mathcal{T}}
|
||
\newcommand{\Us}{\mathcal{U}}
|
||
\newcommand{\Vs}{\mathcal{V}}
|
||
\newcommand{\Ws}{\mathcal{W}}
|
||
\newcommand{\Xs}{\mathcal{X}}
|
||
\newcommand{\Ys}{\mathcal{Y}}
|
||
\newcommand{\Zs}{\mathcal{Z}}
|
||
\newcommand{\ab}{\textbf{a}}
|
||
\newcommand{\bb}{\textbf{b}}
|
||
\newcommand{\cb}{\textbf{c}}
|
||
\newcommand{\db}{\textbf{d}}
|
||
\newcommand{\ub}{\textbf{u}}
|
||
%\renewcommand{\vb}{\textbf{v}} % This clashes with the physics package (the physics package already defines the \vb command)
|
||
\newcommand{\wb}{\textbf{w}}
|
||
\newcommand{\xb}{\textbf{x}}
|
||
\newcommand{\yb}{\textbf{y}}
|
||
\newcommand{\zb}{\textbf{z}}
|
||
\newcommand{\Ab}{\textbf{A}}
|
||
\newcommand{\Bb}{\textbf{B}}
|
||
\newcommand{\Cb}{\textbf{C}}
|
||
\newcommand{\Db}{\textbf{D}}
|
||
\newcommand{\eb}{\textbf{e}}
|
||
\newcommand{\ex}{\textbf{e}_x}
|
||
\newcommand{\ey}{\textbf{e}_y}
|
||
\newcommand{\ez}{\textbf{e}_z}
|
||
\newcommand{\abar}{\overline{a}}
|
||
\newcommand{\bbar}{\overline{b}}
|
||
\newcommand{\cbar}{\overline{c}}
|
||
\newcommand{\dbar}{\overline{d}}
|
||
\newcommand{\ubar}{\overline{u}}
|
||
\newcommand{\vbar}{\overline{v}}
|
||
\newcommand{\wbar}{\overline{w}}
|
||
\newcommand{\xbar}{\overline{x}}
|
||
\newcommand{\ybar}{\overline{y}}
|
||
\newcommand{\zbar}{\overline{z}}
|
||
\newcommand{\Abar}{\overline{A}}
|
||
\newcommand{\Bbar}{\overline{B}}
|
||
\newcommand{\Cbar}{\overline{C}}
|
||
\newcommand{\Dbar}{\overline{D}}
|
||
\newcommand{\Ubar}{\overline{U}}
|
||
\newcommand{\Vbar}{\overline{V}}
|
||
\newcommand{\Wbar}{\overline{W}}
|
||
\newcommand{\Xbar}{\overline{X}}
|
||
\newcommand{\Ybar}{\overline{Y}}
|
||
\newcommand{\Zbar}{\overline{Z}}
|
||
\newcommand{\Aint}{A^\circ}
|
||
\newcommand{\Bint}{B^\circ}
|
||
\newcommand{\limk}{\lim_{k\to\infty}}
|
||
\newcommand{\limm}{\lim_{m\to\infty}}
|
||
\newcommand{\limn}{\lim_{n\to\infty}}
|
||
\newcommand{\limx}[1][a]{\lim_{x\to#1}}
|
||
\newcommand{\liminfm}{\liminf_{m\to\infty}}
|
||
\newcommand{\limsupm}{\limsup_{m\to\infty}}
|
||
\newcommand{\liminfn}{\liminf_{n\to\infty}}
|
||
\newcommand{\limsupn}{\limsup_{n\to\infty}}
|
||
\newcommand{\sumkn}{\sum_{k=1}^n}
|
||
\newcommand{\sumk}[1][1]{\sum_{k=#1}^\infty}
|
||
\newcommand{\summ}[1][1]{\sum_{m=#1}^\infty}
|
||
\newcommand{\sumn}[1][1]{\sum_{n=#1}^\infty}
|
||
\newcommand{\emp}{\varnothing}
|
||
\newcommand{\exc}{\backslash}
|
||
\newcommand{\sub}{\subseteq}
|
||
\newcommand{\sups}{\supseteq}
|
||
\newcommand{\capp}{\bigcap}
|
||
\newcommand{\cupp}{\bigcup}
|
||
\newcommand{\kupp}{\bigsqcup}
|
||
\newcommand{\cappkn}{\bigcap_{k=1}^n}
|
||
\newcommand{\cuppkn}{\bigcup_{k=1}^n}
|
||
\newcommand{\kuppkn}{\bigsqcup_{k=1}^n}
|
||
\newcommand{\cappk}[1][1]{\bigcap_{k=#1}^\infty}
|
||
\newcommand{\cuppk}[1][1]{\bigcup_{k=#1}^\infty}
|
||
\newcommand{\cappm}[1][1]{\bigcap_{m=#1}^\infty}
|
||
\newcommand{\cuppm}[1][1]{\bigcup_{m=#1}^\infty}
|
||
\newcommand{\cappn}[1][1]{\bigcap_{n=#1}^\infty}
|
||
\newcommand{\cuppn}[1][1]{\bigcup_{n=#1}^\infty}
|
||
\newcommand{\kuppk}[1][1]{\bigsqcup_{k=#1}^\infty}
|
||
\newcommand{\kuppm}[1][1]{\bigsqcup_{m=#1}^\infty}
|
||
\newcommand{\kuppn}[1][1]{\bigsqcup_{n=#1}^\infty}
|
||
\newcommand{\cappa}{\bigcap_{\alpha\in I}}
|
||
\newcommand{\cuppa}{\bigcup_{\alpha\in I}}
|
||
\newcommand{\kuppa}{\bigsqcup_{\alpha\in I}}
|
||
\newcommand{\Rx}{\overline{\mathbb{R}}}
|
||
\newcommand{\dx}{\,dx}
|
||
\newcommand{\dy}{\,dy}
|
||
\newcommand{\dt}{\,dt}
|
||
\newcommand{\dax}{\,d\alpha(x)}
|
||
\newcommand{\dbx}{\,d\beta(x)}
|
||
\DeclareMathOperator{\glb}{\text{glb}}
|
||
\DeclareMathOperator{\lub}{\text{lub}}
|
||
\newcommand{\xh}{\widehat{x}}
|
||
\newcommand{\yh}{\widehat{y}}
|
||
\newcommand{\zh}{\widehat{z}}
|
||
\newcommand{\<}{\langle}
|
||
\renewcommand{\>}{\rangle}
|
||
\renewcommand{\iff}{\Leftrightarrow}
|
||
\DeclareMathOperator{\im}{\text{im}}
|
||
\let\spn\relax\let\Re\relax\let\Im\relax
|
||
\DeclareMathOperator{\spn}{\text{span}}
|
||
\DeclareMathOperator{\Re}{\text{Re}}
|
||
\DeclareMathOperator{\Im}{\text{Im}}
|
||
\DeclareMathOperator{\diag}{\text{diag}}
|
||
|
||
\newtheoremstyle{mystyle}{}{}{}{}{\sffamily\bfseries}{.}{ }{}
|
||
\newtheoremstyle{cstyle}{}{}{}{}{\sffamily\bfseries}{.}{ }{\thmnote{#3}}
|
||
\makeatletter
|
||
\renewenvironment{proof}[1][\proofname] {\par\pushQED{\qed}{\normalfont\sffamily\bfseries\topsep6\p@\@plus6\p@\relax #1\@addpunct{.} }}{\popQED\endtrivlist\@endpefalse}
|
||
\makeatother
|
||
\newcommand{\coolqed}[1]{\includegraphics[width=#1cm]{sunglasses_emoji.png}} %Defines the new QED symbol
|
||
\renewcommand{\qedsymbol}{\coolqed{0.32}} %Implements the new QED symbol
|
||
\theoremstyle{mystyle}{\newtheorem{definition}{Definition}[section]}
|
||
\theoremstyle{mystyle}{\newtheorem{proposition}[definition]{Proposition}}
|
||
\theoremstyle{mystyle}{\newtheorem{theorem}[definition]{Theorem}}
|
||
\theoremstyle{mystyle}{\newtheorem{lemma}[definition]{Lemma}}
|
||
\theoremstyle{mystyle}{\newtheorem{corollary}[definition]{Corollary}}
|
||
\theoremstyle{mystyle}{\newtheorem*{remark}{Remark}}
|
||
\theoremstyle{mystyle}{\newtheorem*{remarks}{Remarks}}
|
||
\theoremstyle{mystyle}{\newtheorem*{example}{Example}}
|
||
\theoremstyle{mystyle}{\newtheorem*{examples}{Examples}}
|
||
\theoremstyle{definition}{\newtheorem*{exercise}{Exercise}}
|
||
\theoremstyle{cstyle}{\newtheorem*{cthm}{}}
|
||
|
||
%Warning environment
|
||
\newtheoremstyle{warn}{}{}{}{}{\normalfont}{}{ }{}
|
||
\theoremstyle{warn}
|
||
\newtheorem*{warning}{\warningsign{0.2}\relax}
|
||
|
||
%Symbol for the warning environment, designed to be easily scalable
|
||
\newcommand{\warningsign}[1]{\tikz[scale=#1,every node/.style={transform shape}]{\draw[-,line width={#1*0.8mm},red,fill=yellow,rounded corners={#1*2.5mm}] (0,0)--(1,{-sqrt(3)})--(-1,{-sqrt(3)})--cycle;
|
||
\node at (0,-1) {\fontsize{48}{60}\selectfont\bfseries!};}}
|
||
|
||
\tcolorboxenvironment{definition}{boxrule=0pt,boxsep=0pt,colback={red!10},left=8pt,right=8pt,enhanced jigsaw, borderline west={2pt}{0pt}{red},sharp corners,before skip=10pt,after skip=10pt,breakable}
|
||
\tcolorboxenvironment{proposition}{boxrule=0pt,boxsep=0pt,colback={Orange!10},left=8pt,right=8pt,enhanced jigsaw, borderline west={2pt}{0pt}{Orange},sharp corners,before skip=10pt,after skip=10pt,breakable}
|
||
\tcolorboxenvironment{theorem}{boxrule=0pt,boxsep=0pt,colback={blue!10},left=8pt,right=8pt,enhanced jigsaw, borderline west={2pt}{0pt}{blue},sharp corners,before skip=10pt,after skip=10pt,breakable}
|
||
\tcolorboxenvironment{lemma}{boxrule=0pt,boxsep=0pt,colback={Cyan!10},left=8pt,right=8pt,enhanced jigsaw, borderline west={2pt}{0pt}{Cyan},sharp corners,before skip=10pt,after skip=10pt,breakable}
|
||
\tcolorboxenvironment{corollary}{boxrule=0pt,boxsep=0pt,colback={violet!10},left=8pt,right=8pt,enhanced jigsaw, borderline west={2pt}{0pt}{violet},sharp corners,before skip=10pt,after skip=10pt,breakable}
|
||
\tcolorboxenvironment{proof}{boxrule=0pt,boxsep=0pt,blanker,borderline west={2pt}{0pt}{CadetBlue!80!white},left=8pt,right=8pt,sharp corners,before skip=10pt,after skip=10pt,breakable}
|
||
\tcolorboxenvironment{remark}{boxrule=0pt,boxsep=0pt,blanker,borderline west={2pt}{0pt}{Green},left=8pt,right=8pt,before skip=10pt,after skip=10pt,breakable}
|
||
\tcolorboxenvironment{remarks}{boxrule=0pt,boxsep=0pt,blanker,borderline west={2pt}{0pt}{Green},left=8pt,right=8pt,before skip=10pt,after skip=10pt,breakable}
|
||
\tcolorboxenvironment{example}{boxrule=0pt,boxsep=0pt,blanker,borderline west={2pt}{0pt}{Black},left=8pt,right=8pt,sharp corners,before skip=10pt,after skip=10pt,breakable}
|
||
\tcolorboxenvironment{examples}{boxrule=0pt,boxsep=0pt,blanker,borderline west={2pt}{0pt}{Black},left=8pt,right=8pt,sharp corners,before skip=10pt,after skip=10pt,breakable}
|
||
\tcolorboxenvironment{cthm}{boxrule=0pt,boxsep=0pt,colback={gray!10},left=8pt,right=8pt,enhanced jigsaw, borderline west={2pt}{0pt}{gray},sharp corners,before skip=10pt,after skip=10pt,breakable}
|
||
|
||
%align and align* environments with inline size
|
||
\newenvironment{talign}{\let\displaystyle\textstyle\align}{\endalign}
|
||
\newenvironment{talign*}{\let\displaystyle\textstyle\csname align*\endcsname}{\endalign}
|
||
|
||
\usepackage[explicit]{titlesec}
|
||
\titleformat{\section}{\fontsize{24}{30}\sffamily\bfseries}{\thesection}{20pt}{#1}
|
||
\titleformat{\subsection}{\fontsize{16}{18}\sffamily\bfseries}{\thesubsection}{12pt}{#1}
|
||
\titleformat{\subsubsection}{\fontsize{10}{12}\sffamily\large\bfseries}{\thesubsubsection}{8pt}{#1}
|
||
|
||
\titlespacing*{\section}{0pt}{5pt}{5pt}
|
||
\titlespacing*{\subsection}{0pt}{5pt}{5pt}
|
||
\titlespacing*{\subsubsection}{0pt}{5pt}{5pt}
|
||
|
||
%\newcommand{\sectionbreak}{\clearpage} %Start every section on a new page
|
||
|
||
\newcommand{\Disp}{\displaystyle}
|
||
\newcommand{\qe}{\hfill\(\bigtriangledown\)}
|
||
\DeclareMathAlphabet\mathbfcal{OMS}{cmsy}{b}{n}
|
||
\setlength{\parindent}{0.2in}
|
||
\setlength{\parskip}{0pt}
|
||
\setlength{\columnseprule}{0pt}
|
||
|
||
\title{\huge\sffamily\bfseries A Fun Template}
|
||
\author{\Large\sffamily Senan Sekhon}
|
||
\date{\sffamily October 4, 2020}
|
||
|
||
\begin{document}
|
||
|
||
\setlength{\abovedisplayskip}{3pt}
|
||
\setlength{\belowdisplayskip}{3pt}
|
||
\setlength{\abovedisplayshortskip}{0pt}
|
||
\setlength{\belowdisplayshortskip}{0pt}
|
||
\maketitle
|
||
|
||
%Custom colors for different environments
|
||
\definecolor{contcol1}{HTML}{72E094}
|
||
\definecolor{contcol2}{HTML}{24E2D6}
|
||
\definecolor{convcol1}{HTML}{C0392B}
|
||
\definecolor{convcol2}{HTML}{8E44AD}
|
||
|
||
\begin{tcolorbox}[title=Contents, fonttitle=\huge\sffamily\bfseries\selectfont,interior style={left color=contcol1!40!white,right color=contcol2!40!white},frame style={left color=contcol1!80!white,right color=contcol2!80!white},coltitle=black,top=2mm,bottom=2mm,left=2mm,right=2mm,drop fuzzy shadow,enhanced,breakable]
|
||
\makeatletter
|
||
\@starttoc{toc}
|
||
\makeatother
|
||
\end{tcolorbox}
|
||
|
||
\vspace*{10mm}
|
||
|
||
\begin{tcolorbox}[title=Conventions, fonttitle=\large\sffamily\bfseries\selectfont,interior style={left color=convcol1!40!white,right color=convcol2!40!white},frame style={left color=convcol1!80!white,right color=convcol2!80!white},coltitle=black,top=2mm,bottom=2mm,left=2mm,right=2mm,drop fuzzy shadow,enhanced,breakable]
|
||
$\F$ denotes either $\R$ or $\C$.\\
|
||
$\N$ denotes the set $\{1,2,3,...\}$ of natural numbers (excluding $0$).
|
||
\end{tcolorbox}
|
||
|
||
\newpage
|
||
|
||
\section{Sample Chapter}
|
||
Let's dive right in!
|
||
|
||
\subsection{Some Definitions}
|
||
\begin{definition}
|
||
The \textbf{derivative} of a function $f:I\to\R$ at $a\in I$ is given by:
|
||
\begin{equation*}
|
||
f'(x)=\limx\frac{f(x)-f(a)}{x-a}
|
||
\end{equation*}
|
||
\end{definition}
|
||
|
||
\begin{center}
|
||
You know those awesome commutative diagrams?
|
||
|
||
\begin{tikzcd}
|
||
A \arrow[r,"p"] \arrow[d,red,"q"'] & B \arrow[d,"r" red] \\
|
||
C \arrow[r,red,"s"' blue] & D
|
||
\end{tikzcd}
|
||
|
||
The derivative has \emph{nothing} to do with them!
|
||
\end{center}
|
||
|
||
\begin{proposition}\label{diffcont}
|
||
If $f$ is differentiable at $a$, then $f$ is continuous at $a$.
|
||
\end{proposition}
|
||
\begin{proof}
|
||
Exercise (but only because this is a template).
|
||
\end{proof}
|
||
|
||
The converse of \Cref{diffcont} is not true in general.
|
||
|
||
\begin{examples}\leavevmode % This is needed to start the list in the next line so it won't be misaligned
|
||
\begin{enumerate}
|
||
\item $f(x)=\abs{x}$
|
||
\item $f(x)=\begin{cases} \sin(x) & x\ge 0 \\ 0 & x<0 \end{cases}$
|
||
\end{enumerate}
|
||
\end{examples}
|
||
|
||
\begin{theorem}
|
||
The following statements are true:
|
||
\begin{enumerate}
|
||
\item First statement
|
||
\item Second statement
|
||
\end{enumerate}
|
||
\end{theorem}
|
||
\begin{proof}% For some reason, the proof environment does not need \leavevmode
|
||
\begin{enumerate}
|
||
\item Trivial.
|
||
\item Trivial.\qedhere % qedhere is to place the qed symbol here instead of in the next line
|
||
\end{enumerate}
|
||
\end{proof}
|
||
|
||
\begin{corollary}
|
||
We are both very lucky to have each other as a collaborator.
|
||
\end{corollary}
|
||
\begin{proof}
|
||
We simply note that:
|
||
\begin{equation*}
|
||
\frac{1}{1}+\frac{1}{1}\gg\frac{1}{1} \qedhere
|
||
\end{equation*}
|
||
\end{proof}
|
||
\begin{remark}
|
||
This corollary is also obvious from empirical evidence.
|
||
\end{remark}
|
||
|
||
\begin{lemma}
|
||
$(a+b)^2=a^2+2ab+b^2$
|
||
\end{lemma}
|
||
\begin{proof}
|
||
Expand the left side.
|
||
\end{proof}
|
||
\begin{remarks}\leavevmode
|
||
\begin{enumerate}
|
||
\item It's also kind of obvious.
|
||
\item No extra points for guessing what $(a-b)^2$ is.
|
||
\end{enumerate}
|
||
\end{remarks}
|
||
|
||
\begin{example}
|
||
$(2+4)^2=2^2+2\cdot 2\cdot 4+4^2=36$
|
||
\end{example}
|
||
|
||
\begin{theorem}[Pythagoras' Theorem]\label{pythagoras}
|
||
If $c$ is the hypotenuse of a right triangle and $a$ and $b$ are the other two sides, then $a^2+b^2=c^2$.
|
||
\end{theorem}
|
||
\begin{proof}
|
||
Draw a picture and convince yourself.
|
||
\end{proof}
|
||
|
||
\hyperref[pythagoras]{Pythagoras' theorem} helps motivate the study of metric spaces, which you can learn about in \cite{sekhon}.\\
|
||
|
||
A lot of nice integrals can be computed using the residue theorem, see \cite[Section 5.2]{taylor}.
|
||
|
||
|
||
\newpage
|
||
\appendix
|
||
\section{Bonus Material}
|
||
The \verb!talign! and \verb!talign*! environments work like the \verb!align! and \verb!align*! environments, except they render equations in inline size. For example, \verb!\begin{align*}...\end{align*}! yields:
|
||
\begin{align*}
|
||
\sumn\frac{1}{n^2}=\frac{\pi^2}{6}
|
||
\end{align*}
|
||
While \verb!\begin{talign*}...\end{talign*}! yields:
|
||
\begin{talign*}
|
||
\sumn\frac{1}{n^2}=\frac{\pi^2}{6}
|
||
\end{talign*}
|
||
As usual, the purpose of \verb!*! is to prevent numbering of the equation.\\
|
||
|
||
Some commands, like \verb!\sumn!, can be used with or without a starting value (the default starting value is 1). For example, \verb!$\sumn\frac{1}{n^2}$! yields $\sumn\frac{1}{n^2}$, while \verb!$\sumn[69]\frac{1}{n^2}$! yields $\sumn[69]\frac{1}{n^2}$. This can be used in inline mode as well as display mode.
|
||
|
||
\newpage
|
||
|
||
\section{Combinatorial Optimization}
|
||
previous chapters: classical state-space search
|
||
- find action sequence (path) from initial to goal state
|
||
- difficulty: large number of states (“state explosion”)
|
||
next chapters: combinatorial optimization
|
||
$\rightsquigarrow$ similar scenario, but:
|
||
- no actions or transitions
|
||
- don’t search for path, but for configuration (“state”)
|
||
with low cost/high quality
|
||
German: Zustandsraumexplosion, kombinatorische Optimierung,
|
||
Konfiguration
|
||
\subsection{Intro and Hill-Climbing}
|
||
|
||
\begin{definition}\label{cop}
|
||
A \textbf{combinatorial optimization problem \emph{COP}} is given by a tuple
|
||
$\langle C, S, opt, v\rangle$
|
||
consisting of:
|
||
\begin{itemize}
|
||
\item a finite set of (solution) \textbf{candidates} $C$
|
||
\item a finite set of \textbf{solutions} $S\subseteq C$
|
||
\item an \textbf{objective sense} $opt\in\{min,max\}$
|
||
\item an \textbf{objective function} $v:S\rightarrow \R$
|
||
\end{itemize}
|
||
\textbf{Remarks:} "problem" here means "instance". Interesting COPs usually have to many candidates to enumerate explicitly.
|
||
\end{definition}
|
||
\begin{definition}\label{opt}
|
||
Let $\Os = \langle C,S,opt,v\rangle$ be a COP. The \textbf{optimal solution quality} $v^*$ of $\Os$ is defined as $v^*= \mathsf{min/max}_{c\in S}v(c) | \ opt=\mathsf{min/max}$ (undefined if $S=\emptyset$). A solution $s$ of $\Os$ is called \textbf{optimal} if $v(s)=v^*$.
|
||
\end{definition}
|
||
\textbf{Algorithmic Problem we want to solve:} Find a \emph{solution} to a COP $\Os$ which is as close to $v^*$ as possible. \\
|
||
\textbf{Special cases:} \emph{pure search:} all sols same quality; finding any sol is hard to begin with; formal: $v$ is a constant function and $opt$ can be chosen arbitrarily. \emph{pure optimization:} all candidates are sols; difficulty is finding sol of high quality; formal: $S = C$. \\
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%%%% D1 CSP
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
\section{Constraint Satisfaction Problems}
|
||
\subsection{Intro}
|
||
\textbf{Summary:} {\color{red} Constrain Satisfaction} is the problem of finding an {\color{red}assignment} for a set of \emph{variables} from a given \emph{domain}, which satisfies a given set of \emph{constraints}.
|
||
\begin{definition}
|
||
|
||
\end{definition}
|
||
|
||
|
||
\printbibliography
|
||
|
||
\end{document} |