mirror of
https://github.com/fverdugo/XM_40017.git
synced 2025-11-08 22:24:25 +01:00
Adding solutions for matrix-matrix multiplication
This commit is contained in:
parent
0b81f39564
commit
3d7fcb4d8e
@ -160,4 +160,57 @@ end
|
||||
msg = 2
|
||||
@fetchfrom 2 work(msg)
|
||||
```
|
||||
## Matrix-matrix multiplication
|
||||
|
||||
### Exercise 1
|
||||
|
||||
```julia
|
||||
function matmul_dist_3!(C,A,B)
|
||||
m = size(C,1)
|
||||
n = size(C,2)
|
||||
l = size(A,2)
|
||||
@assert size(A,1) == m
|
||||
@assert size(B,2) == n
|
||||
@assert size(B,1) == l
|
||||
@assert mod(m,nworkers()) == 0
|
||||
nrows_w = div(m,nworkers())
|
||||
@sync for (iw,w) in enumerate(workers())
|
||||
lb = 1 + (iw-1)*nrows_w
|
||||
ub = iw*nrows_w
|
||||
A_w = A[lb:ub,:]
|
||||
ftr = @spawnat w begin
|
||||
C_w = similar(A_w)
|
||||
matmul_seq!(C_w,A_w,B)
|
||||
C_w
|
||||
end
|
||||
@async C[lb:ub,:] = fetch(ftr)
|
||||
end
|
||||
C
|
||||
end
|
||||
|
||||
@everywhere function matmul_seq!(C,A,B)
|
||||
m = size(C,1)
|
||||
n = size(C,2)
|
||||
l = size(A,2)
|
||||
@assert size(A,1) == m
|
||||
@assert size(B,2) == n
|
||||
@assert size(B,1) == l
|
||||
z = zero(eltype(C))
|
||||
for j in 1:n
|
||||
for i in 1:m
|
||||
Cij = z
|
||||
for k in 1:l
|
||||
@inbounds Cij = Cij + A[i,k]*B[k,j]
|
||||
end
|
||||
C[i,j] = Cij
|
||||
end
|
||||
end
|
||||
C
|
||||
end
|
||||
```
|
||||
|
||||
### Exercise 2
|
||||
|
||||
At each call to @spawnat we will communicate O(N) and compute O(N) in a worker process just like in algorithm 1. However, we will do this work N^2/P times on average at each worker. Thus, the total communication and computation on a worker will be O(N^3/P) for both communication and computation. Thus, the communication over computation ratio will still be O(1) and thus the communication will dominate in practice, making the algorithm inefficient.
|
||||
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user