Add exercise solution for measuring TSP search overhead

This commit is contained in:
Gelieza K 2023-08-21 16:06:05 +02:00
parent 7899998863
commit 5c03b6cf33
2 changed files with 190 additions and 119 deletions

View File

@ -291,6 +291,194 @@
"rmprocs(workers())"
]
},
{
"cell_type": "markdown",
"id": "19641daf",
"metadata": {},
"source": [
"## TSP Exercise: Measure search overhead"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f00557a0",
"metadata": {},
"outputs": [],
"source": [
"## TSP serial \n",
"function tsp_serial(connections,city)\n",
" num_cities = length(connections)\n",
" path=zeros(Int,num_cities)\n",
" hops = 1\n",
" path[hops] = city\n",
" min_path = zeros(Int, num_cities)\n",
" current_distance = 0\n",
" min_distance = typemax(Int)\n",
" # Collect search time \n",
" search_time = @elapsed min_path, min_distance = tsp_serial_impl(connections,hops,path,current_distance, min_path, min_distance)\n",
" (;path=min_path,distance=min_distance, search_time)\n",
"end"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "30784da2",
"metadata": {},
"outputs": [],
"source": [
"## TSP distributed\n",
"@everywhere function tsp_dist_impl(wait_time, connections,hops,path,current_distance,min_dist_chnl, max_hops,jobs_chnl,ftr_result)\n",
" num_cities = length(connections)\n",
" if hops == num_cities\n",
" min_distance = fetch(min_dist_chnl)\n",
" if current_distance < min_distance\n",
" take!(min_dist_chnl)\n",
" # Collect wait time to substract from overall search time \n",
" if ftr_result !== nothing\n",
" wait_time += @elapsed @spawnat 1 begin\n",
" result = fetch(ftr_result)\n",
" result.path .= path\n",
" result.min_distance_ref[] = current_distance\n",
" end |> wait\n",
" end\n",
" put!(min_dist_chnl, current_distance)\n",
" end\n",
" elseif hops <= max_hops\n",
" current_city = path[hops]\n",
" next_hops = hops + 1\n",
" for (next_city,distance_increment) in connections[current_city]\n",
" if !visited(next_city,hops,path)\n",
" path[next_hops] = next_city\n",
" next_distance = current_distance + distance_increment\n",
" # Collect wait time because fetch may block\n",
" wait_time += @elapsed min_distance = fetch(min_dist_chnl)\n",
" if next_distance < min_distance\n",
" tsp_dist_impl(wait_time, connections,next_hops,path,next_distance,min_dist_chnl,max_hops,jobs_chnl,ftr_result)\n",
" end\n",
" end\n",
" end \n",
" else\n",
" # Collect communication time and add to wait time\n",
" wait_time += @elapsed if jobs_chnl !== nothing \n",
" path_copy = copy(path) \n",
" put!(jobs_chnl,(;hops,path=path_copy,current_distance))\n",
" end\n",
" end\n",
" # Return wait time\n",
" wait_time\n",
"end\n",
"\n",
"function tsp_dist(connections,city)\n",
" max_hops = 2\n",
" num_cities = length(connections)\n",
" path=zeros(Int,num_cities)\n",
" result_path=zeros(Int, num_cities)\n",
" wait_time = 0\n",
" search_time = 0\n",
" hops = 1\n",
" path[hops] = city\n",
" current_distance = 0\n",
" min_distance = typemax(Int)\n",
" jobs_chnl = RemoteChannel(()->Channel{Any}(10))\n",
" min_dist_chnl = RemoteChannel(()->Channel{Int}(1))\n",
" put!(min_dist_chnl, min_distance)\n",
" ftr_result = @spawnat 1 (;path=result_path,min_distance_ref=Ref(min_distance))\n",
" @async begin\n",
" # Collect search time from master process\n",
" search_time += @elapsed wait_time += tsp_dist_impl(wait_time,connections,hops,path,current_distance,min_dist_chnl,max_hops,jobs_chnl,nothing)\n",
" for w in workers()\n",
" put!(jobs_chnl,nothing)\n",
" end\n",
" end\n",
" @sync for w in workers()\n",
" @spawnat w begin\n",
" path = zeros(Int, num_cities)\n",
" max_hops = typemax(Int)\n",
" while true\n",
" job = take!(jobs_chnl)\n",
" if job == nothing\n",
" break\n",
" end\n",
" hops = job.hops\n",
" path = job.path \n",
" current_distance = job.current_distance\n",
" min_distance = fetch(min_dist_chnl)\n",
" if current_distance < min_distance\n",
" # Collect search time from worker processes \n",
" search_time += @elapsed wait_time += tsp_dist_impl(wait_time,connections,hops,path,current_distance,min_dist_chnl,max_hops,nothing,ftr_result)\n",
" end\n",
" end\n",
" end\n",
" end \n",
" result = fetch(ftr_result)\n",
" (;path = result.path, distance = result.min_distance_ref[], search_time, wait_time)\n",
"end\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "694de934",
"metadata": {},
"outputs": [],
"source": [
"using Distributed\n",
"using RandomMatrix\n",
"using Plots\n",
"\n",
"function generate_rand_connections(city_range, distance_range)\n",
" # generate random connections matrix \n",
" n_cities = rand(city_range)\n",
" matrix = randTriangular(distance_range, n_cities; Diag=false)\n",
"\n",
" connections = Array{Array{Tuple{Int64,Int64},1},1}(undef, n_cities)\n",
" for i in 1:n_cities\n",
" connections[i] = Array{Tuple{Int64,Int64},1}(undef, n_cities)\n",
" end\n",
" for i in 1:n_cities\n",
" for j in i:n_cities\n",
" distance = matrix[i,j]\n",
" connections[i][j] = (j,distance)\n",
" connections[j][i] = (i,distance)\n",
" end\n",
" end\n",
" return connections\n",
"end\n",
"\n",
"# Run once so compile times are not measured\n",
"distance_range = 1:100\n",
"connections = generate_rand_connections(4:4, distance_range)\n",
"tsp_dist(connections,1)\n",
"tsp_serial(connections,1)\n",
"\n",
"# Measure runtimes of serial and parallel algorithm\n",
"n_it = 5\n",
"city_ranges = [4:4, 6:6, 8:8, 10:10]\n",
"search_overhead = zeros(Float64, length(city_ranges), n_it )\n",
"for (i, n) in enumerate(city_ranges)\n",
" for k in 1:n_it\n",
" connections = generate_rand_connections(n, distance_range)\n",
" @show n, k\n",
" path_dist, distance_dist, search_time_dist, wait_time_dist = tsp_dist(connections,1)\n",
" path_serial, distance_serial, search_time_serial = tsp_serial(connections,1)\n",
" # Compute search overhead as difference between distributed program and serial program\n",
" # (without time spent communicating or waiting)\n",
" search_overhead[i, k] = search_time_dist - wait_time_dist - search_time_serial\n",
" end\n",
"end\n",
"\n",
"min_search_oh = minimum(search_overhead, dims=2)\n",
"city_sizes = [4,6,8,10]\n",
"plot(city_sizes, min_search_oh, yaxis=:log, seriestype=:scatter,legend=false)\n",
"plot!(city_sizes, min_search_oh, yaxis=:log, legend=false)\n",
"\n",
"xlabel!(\"Number of cities\")\n",
"ylabel!(\"Search overhead (s)\")\n",
"title!(\"Minimum search overhead for different problem sizes\")"
]
},
{
"cell_type": "markdown",
"id": "47d88e7a",
@ -314,7 +502,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Julia 1.9.0",
"display_name": "Julia 1.9.1",
"language": "julia",
"name": "julia-1.9"
},
@ -322,7 +510,7 @@
"file_extension": ".jl",
"mimetype": "application/julia",
"name": "julia",
"version": "1.9.0"
"version": "1.9.1"
}
},
"nbformat": 4,

View File

@ -1,117 +0,0 @@
using Distributed
if procs() == workers()
addprocs(4)
end
@everywhere function visited(city,hops,path)
for i = 1:hops
if path[i] == city
return true
end
end
return false
end
# solution [1, 4, 5, 2, 3, 6], distance = 222
connections = [
[(1,0),(4,39),(5,76), (6,78),(3,94),(2,97)],
[(2,0),(5,25),(4,58),(3,62),(1,97),(6,109)],
[(3,0),(6,58),(2,62),(4,68),(5,70),(1,94)],
[(4,0),(5,38),(1,39),(2,58),(3,68),(6,78)],
[(5,0),(2,25),(4,38),(3,70),(1,76),(6,104)],
[(6,0),(3,58),(1,78),(4,78),(5,104),(2,109)]
]
# Shortest route with start 1: 1-3-2-4 (distance: 7)
con2 = [
[(1,0), (2,2), (3,3), (4,4)],
[(2,0), (4,1), (1,2), (3,3)],
[(3,0), (1,3), (2,3), (4,10)],
[(4,0), (2,1), (1,4), (3,10)]
]
## TSP distributed
@everywhere function tsp_dist_impl(connections,hops,path,current_distance,min_dist_chnl, max_hops,jobs_chnl,ftr_result)
num_cities = length(connections)
if hops == num_cities
min_distance = fetch(min_dist_chnl)
if current_distance < min_distance
take!(min_dist_chnl)
# Wait until results are written to future
if ftr_result !== nothing
@spawnat 1 begin
result = fetch(ftr_result)
result.path .= path
result.min_distance_ref[] = current_distance
end |> wait
end
# Unblock waiting processes
put!(min_dist_chnl, current_distance)
end
elseif hops <= max_hops
current_city = path[hops]
next_hops = hops + 1
for (next_city,distance_increment) in connections[current_city]
if !visited(next_city,hops,path)
path[next_hops] = next_city
next_distance = current_distance + distance_increment
min_distance = fetch(min_dist_chnl)
if next_distance < min_distance
tsp_dist_impl(connections,next_hops,path,next_distance,min_dist_chnl,max_hops,jobs_chnl,ftr_result)
end
end
end
else
if jobs_chnl !== nothing
# Allocate new memory so paths are not overwritten in queue
path_copy = copy(path)
put!(jobs_chnl,(;hops,path=path_copy,current_distance))
end
end
end
function tsp_dist(connections,city)
max_hops = 2
num_cities = length(connections)
path=zeros(Int,num_cities)
result_path=zeros(Int, num_cities)
hops = 1
path[hops] = city
current_distance = 0
min_distance = typemax(Int)
jobs_chnl = RemoteChannel(()->Channel{Any}(10))
# Initialize min distance channel with Intmax
min_dist_chnl = RemoteChannel(()->Channel{Int}(1))
put!(min_dist_chnl, min_distance)
# Future to store overall result
ftr_result = @spawnat 1 (;path=result_path,min_distance_ref=Ref(min_distance))
@async begin
tsp_dist_impl(connections,hops,path,current_distance,min_dist_chnl,max_hops,jobs_chnl,nothing)
for w in workers()
put!(jobs_chnl,nothing)
end
end
@sync for w in workers()
@spawnat w begin
path = zeros(Int, num_cities)
max_hops = typemax(Int)
jobs_channel = nothing
while true
job = take!(jobs_chnl)
if job == nothing
break
end
hops = job.hops
path = job.path
current_distance = job.current_distance
tsp_dist_impl(connections,hops,path,current_distance,min_dist_chnl,max_hops,jobs_channel,ftr_result)
end
end
end
result = fetch(ftr_result)
(;path = result.path, distance = result.min_distance_ref[])
end
city = 1
tsp_dist(con2,city)