diff --git a/docs/make.jl b/docs/make.jl index f34cb0a..184e213 100644 --- a/docs/make.jl +++ b/docs/make.jl @@ -126,7 +126,7 @@ makedocs(; "Jacobi method" => "jacobi_method.md", "All pairs of shortest paths" => "asp.md", "Gaussian elimination" => "LEQ.md", - #"Traveling salesperson problem" => "tsp.md", + "Traveling salesperson problem" => "tsp.md", #"Partial differential equations" => "pdes.md", ], "Solutions" => "solutions_for_all_notebooks.md", diff --git a/notebooks/figures/fig_jacobi.svg b/notebooks/figures/fig_jacobi.svg index 653fa80..c82de58 100644 --- a/notebooks/figures/fig_jacobi.svg +++ b/notebooks/figures/fig_jacobi.svg @@ -3095,9 +3095,9 @@ borderopacity="1.0" inkscape:pageopacity="0.0" inkscape:pageshadow="2" - inkscape:zoom="0.24475533" - inkscape:cx="3538.2486" - inkscape:cy="-74.706304" + inkscape:zoom="0.97902132" + inkscape:cx="2241.9322" + inkscape:cy="-4516.1288" inkscape:document-units="mm" inkscape:current-layer="layer1" inkscape:document-rotation="0" @@ -3641,6 +3641,7 @@ + 66124134332323223141422243433232342123141133342241133343444434446767991243433232314234479 println\n", "end\n", - "tsp_check_2(answer) = answer_checker(answer, 2)\n", + "tsp_check_2(answer) = answer_checker(answer, 4)\n", "tsp_check_3(answer) = answer_checker(answer, \"d\")\n", - "tsp_check_4(answer) = answer_checker(answer, \"a\")" + "tsp_check_4(answer) = answer_checker(answer, \"a\")\n", + "function q_superlinear_answer(bool)\n", + " bool || return\n", + " msg = \"\"\"\n", + " Negative search overhead can explain the superlinear speedup in this algorithm. The optimal speedup (speedup equal to the numer of processors) assumes that the work done in the sequental and parallel algorithm is the same. If the parallel code does less work, it is possible to go beyond the optimal speedup. Cache effects are not likely to have a positive impact here. Even large search spaces can be represented with rather small distance matrices. Moreover, we are not partitioning the distance matrix.\n", + " \"\"\"\n", + " println(msg)\n", + "end\n", + "println(\"🥳 Well done!\")" ] }, { @@ -64,9 +72,16 @@ "## The traveling sales person (TSP) problem\n", "\n", "\n", + "In this notebook we will study another algorithm that works with graphs, the [traveling sales person (TSP) problem](https://en.wikipedia.org/wiki/Travelling_salesman_problem). The classical formulation of this problem is as follows (quoted from Wikipedia) \"Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once?\" This problem as applications in combinatorial optimization, theoretical computer science, and operations research. It is very expensive problem to solve (NP-hard problem) which often needs parallel computing.\n", + "\n", + "
\n", + "Note: There are two key variations of this problem. One in which the sales person returns to the initial city, and another in which the sales person does not return to the initial city. We will consider the second variant for simplicity.\n", + "
\n", + "\n", + "\n", "### Problem statement\n", "\n", - "Given a graph $G$ with a distance table $C$ and an initial node (i.e. a city) in the graph, compute the shortest route that visits all cities exactly once, without returning to the initial city." + "Our version of the TSP problem can be formalized as follows. Given a graph $G$ with a distance table $C$ and an initial node in the graph, compute the shortest route that visits all nodes exactly once, without returning to the initial node. The nodes on the graph can be interpreted as the \"cities\", and the solution is the optimal route for the traveling salesperson to visit all cities. The following figure shows a simple TSP problem and its solution." ] }, { @@ -86,14 +101,12 @@ }, { "cell_type": "markdown", - "id": "c303dddf", + "id": "fd4f87fc", "metadata": {}, "source": [ "### Sequential algorithm (branch and bound)\n", "\n", - "The sequential algorithm finds a shortest path by traversing the paths tree of the problem. The root of this tree is the initial city. The children of each node in the graph are the neighbour cities that have not been visited on the path so far. When all neighbour cities are already visited, the city becomes a leaf node in the tree.\n", - "\n", - "The possile solutions of the problem are the paths from the root of the tree to a leaf node. Note that we assume the children are sorted using the **nearest city first heuristic**. This allows to quickly find a minimum bound for the distance which will be used to prune the remaining paths (see next section). " + "A well known method to solve this problem is based on a [branch and bound](https://en.wikipedia.org/wiki/Branch_and_bound) strategy. It consisting in organizing all possible routes in a tree-like structure (this is the \"branch\" part). The root of this tree is the initial city. The children of each node in the graph are the neighbor cities that have not been visited in the path so far. When all neighbor cities are already visited, the city becomes a leaf node in the tree. See figure below for the tree associated with our TSP problem example. The TSP problem consists now in finding which is the \"shortest\" branch in this tree. The tree data structure is just a convenient way of organizing all possible routes in order to search for the shortest one. We refer to it as the *search tree* or the *search space*." ] }, { @@ -113,10 +126,12 @@ }, { "cell_type": "markdown", - "id": "9da5f5ae", + "id": "c303dddf", "metadata": {}, "source": [ - "Of course, visiting all paths in the tree is impractical for moderate and large numbers of cities. The number of possible paths might be up to $O(N!)$. Therefore, an essential part of the algorithm is to bound the search by remembering the current minimum distance. " + "### Nearest city first heuristic\n", + "\n", + "When building the search tree we are free to choose any order when defining the children of a node. A clever order is using the *nearest city first heuristic*. I.e., we sort the children according to how far they are from the current node, in ascending order. This allows to quickly find a minimum bound for the distance which will be used to prune the remaining paths (see next section). The figure above used the nearest city first heuristic. In blue you can see the distance between cities. The first child is always the one with the shortest distance." ] }, { @@ -126,9 +141,9 @@ "source": [ "### Pruning the search tree\n", "\n", - "The algorithm keeps track of the best solution of all paths visited so far. This allows to skip searching paths that already exceed this value. \n", + "The basic idea of the algorithm is to loop over all possible routes (all branches in the search tree) and find find the one with the shortest distance. One can optimize this process by \"pruning\" the search tree. We keep track of the best solution of all paths visited so far, which allows us to skip searching paths that already exceed this value. This is the \"bound\" part of the branch and bound strategy. \n", "\n", - "For example, in the following graph only 3 out of 6 possible routes need to be visted when we cut off the search after the minimum distance is exceeded. (The grey nodes are the ones we don't visit because the minimum distance had been exceeded at the previous node already.)" + "For example, in the following graph only 3 out of 6 possible routes need to be fully traversed to find the shortest route. In particular, we do not need to fully traverse the second branch/route (figure below left). when visiting the third city in this branch the current distance is already equal to the full previous route. It means that the solution will not be in this part of the tree for sure. In figure below (right), the gray nodes are the ones we do not visit because the minimum distance had been exceeded before completing the route." ] }, { @@ -148,37 +163,14 @@ }, { "cell_type": "markdown", - "id": "f3c78a1d", + "id": "9da5f5ae", "metadata": {}, "source": [ - "Note that it is not necessary that the graph be fully connected. Variations of this algorithm work for sparse graphs or directed graphs as well. \n", + "### Computation complexity\n", "\n", - "In the previous example, the shortest route was also the leftmost path in the graph. Although it is more likely that the shortest route be found in the left part of the graph when using the nearest city first heuristic, the solution can be anywhere in the search tree." - ] - }, - { - "cell_type": "markdown", - "id": "85d771de", - "metadata": {}, - "source": [ - "
\n", - " Example: Look at the following graph and its corresponding search tree. If $x\\leq 15$, the shortest route is the leftmost branch of the search tree. If $x > 16$, the route is situated on the right side of the search tree. \n", - "
" - ] - }, - { - "attachments": { - "fig-tsp-question-1.png": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACQQAAAJCCAYAAACcIlijAAAACXBIWXMAAB7CAAAewgFu0HU+AAAAGXRFWHRTb2Z0d2FyZQB3d3cuaW5rc2NhcGUub3Jnm+48GgAAIABJREFUeJzs3XeYnVW1+PHvOjNJCL0mEyJSFFBEUbGRhBJIQtGr/iwI0rwWmvWqeMWLF5Frv16v/doRUARUVARJIYmkAYK9ASoqJQUIEBJSZuas3x9n0DPvnJlMOTNnyvfzPPPIu/Z+914H+eM9511778hMJEmSJEmSJEkaziI4Hri4TsPdm8nL6zSWJEnSmBLBVOCVwJHAwcBuwK7Aw8Ba4A7gp8C1mfyxDvPtApwCHNcx3yRgAvAQ8BdgCfCdTG4f6FzSaBIWBEmSJEmSJEmShrsI3g78b52G+3MmT63TWJIkSWNCBFOADwOvBcb34pYy8CPgvZnc0Y/5moB3AxcA2/filuuBN2fy177OJY1GpUYnIEmSJEmSJElSL+ze6AQkSZLGqghmAb8EXkfvioGgUo/wcuDWiL7tzhjBROBa4KP0rhgI4ATgtgim92UuabRqbnQCkiRJkiRJkiT1ggVBkiRJDRDB0cCPqRzTVfR34BfAY8BOwCHAkwt9dgSujuAlmcztxXwBfAc4vkbzPcCvgfXAvsDz6LwRym7AdRFMz+R3W5tLGs0sCJIkSZIkSZIkjQTFgqDFwBX9HGvdwFKRJEkaGyLYB7iGrsVAtwLvzmRJjXteAHwCOKIq3AxcGcEzMrlvK9OeC7y0EFsLnA18L5Ny1Vz7A5+mc/HQTsC3Izg0k7atzCWNWpGZjc5BkiRJkiRJkqQeRbAYOLIq9F+ZvL9B6UiSJI0JEXwXeGUh/B3gjEy29HBfM3A58JpC01cyObOH+7YF7gYmVYUfBqZl8sdu7mnqmOukQtPrMvlmd3NJo11p610kSZIkSZIkSWq4PQrXDzUkC0mSpDEigmfQtRjoN2ylGAigY2ee10OX3YBeF8FOPdx6Fp2LgQD+rbtioI652qnsHnRPoel9HcVC0phkQZAkSZIkSZIkaSQoHhn2YEOykCRJGjtOrhH7wNaKgZ6QyePAFwvhccCsHm57W+H6TuDSXsz1KJVjyqodABy3tXul0cqCIEmSJEmSJEnSsBZBCdi1ELYgSJIkaXAVi2nWA9f3cYxFNWLPrtUxgoOAfQrhr2WSvZzrW8CmQuyEXt4rjToWBEmSJEmSJEmShrtdgOZCzIIgSZKkQRJBAAcWwr/L7FJwszX31ogVjwR7wvE1Yr0uQMpkLXBLL8aUxoTiFyhJkiRJkiRJ0ggSwW7AcmCPQtN1mZzWyzH+E3hHIbwFmJnJH6r67UelOGew/LybFeC71Yg9NIh5SJIkbVUEh1D7SKrvZvLnXo7xUuDphXA78NlMNg8wxYEYB7y+ELu/H+PU2qRkXDd9jy5cr4d/Pov20q3AkVXX+0awXyZ/6eM40ohnQZAkSZIkSZIkjWCZPBTBO4DrgKhqOjWCqzK5tqf7IzgAOB/YptD0nupioA4fAU4caM49aKbyAqyo1iryBwYxD0mSpN64C7iCrgU9x0cwc2tHXXU8h11J1+ewi4vFQBF8D9hxgPl259eZvKs6kMkW4Oo6jN1SI7a2m75PK1z/KrPms2FPft7NuBYEacyxIEiSJEmSJEmSRrhMfhLBV4AzC02fiWBhJhtq3ddxFMRX6PoSaiHwyfpn2m/FHYI2ZbIeIIJ9gBOA5wNTgO2ovGS6D1gEzMvk0aFLVZIkjRWZPB7BKcDNwPiqpiOBfwW+3t29Hc9hX6Drc9htwMU1bjmS2rsm1kN3O/bUw2E1Yn8sBiIYD+xdCP+9H/PdUyO2fz/GkUa8WttzSZIkSZIkSZJGnncCdxRi+wAf6OGe1wNHFGJrgTMyKdcts4HbvXD9YAT7RfAD4M/A54HXAccCM4CXAucAVwErI/h4BLsOYb6SJGmMyOQXwPtrNH0iouYuh084HTimEFsPnJxJa73yGwZeUSO2vEbsKUBTIdafI8ruqxGzIEhjkgVBkiRJkiRJkjQKdOwCdCp0eYH0jgieXezf8YLq4zWGOiuTe7uZZgPw8CD+dWePwvXOwK+Bl7H137knAucBv4tgxlb6SpIk9cd/U9mZsNqudLPjYgS7d9xT9LZM/lTn3BomgsOgy/PXLzL5fY3uT6oRW9mPaWvds1c/xpFGPI8MkyRJkiRJkqRRIpPbIrgQ+HBVuBn4cgSHZdJeFf8f6LJrztcz+W4P47+eyq5CQ624Q9D2/RijBbgxgtMyuaoOOUmSJAGQSTmCM4BfAbtUNZ0awaWZzC/c8t90fb75bibf6GGad9L1eLF66U/hTY86jgD7vxpNn+7mlu1qxNb3dd5MNkfQSudj0Prz7CiNeBYESZIkSZIkSdLo8nHgODofBfZ84FzgswARzAFOKdz3J+DtQ5FgPxR3CHrCw8B3geuBvwOPdfR9PnAS8KJC//HANyO4N7PmURWSJEn9ksk9EbwJuhRXfzmCgzt2cySCI6kcF1btPuDsrYx/ad2SHWQRBPAl4FmFptuAy7q5rVZB0KZ+prCZzgVB2/ZzHGlE88gwSZIkSZIkSRpFOnYBOh14tND0XxE8KYKJwBcKbW3AqZl9X4U9RIor6KHykumpmZyZyQ8y+Xkmd2WyPJNPZ3IY8CpgXeG+bYArIgZthb0kSRqjMvkedCnc2Qd4H0DH88eXgahqLwOnZ/LQUOQ4RD4MvK4QWwucnEm5m3tqFe1s6ef8xUKiWsVG0qhnQZAkSZIkSZIkjTKZ/I3KjkDVdgQ+A7wfeEqh7aJMbhmK3PqpuiCoDJybydmZrO3ppo6XckdBZUV+lSezlVX4kiRJ/fRW4O5C7LwIDqZSGHRAoe2TmSwcksyGQAQfAd5bCG8BXpPJn3q4dWKNWH8Lgor31RpbGvUiMxudgyRJkiRJkiRpEETwLeC1hXA70FR1vRQ4qmNnoWEpgh35Z87tmV12/dna/W+ishq/2p8y2b8e+UmSJFWLYDrwUzo/c/0GOJDKEaZP+AXwosx+F74MGxGMo7IL5RsLTW3AiZlcs5X7zwL+rxA+OZPv9COXNXQ+cvZ3mRzc13Gkkc4dgiRJkiRJkiRp9Hoz8LdCrPrF1KPAacO5GAggk3WZPNzx16dioA7fAP5aiD01gv0Gnp0kSVJnmSyjcmxWtWfSuRjoceCUUVIMtBNwHV2LgbZQ+Yw9FgN1KO7oCDChnykVj4atNbY06jU3OgFJkiRJkiRJ0uDI5JEITgcW0rkQ6AlvzuxSKNOtCJ4JTK5TerXcmEndt7XPpC2Ca4B/KzRNB/5S7/kkSZKADwKzgRd10/6uTP4whPkMigimAj8Gnl1oWg+8OpMbejnU4zVi9SoIWt/PcaQRzYIgSZIkSZIkSRrFMrkpgmuBlxea/pDJt/o43AXAifXJrKZmGLTdim6uEWsZpLkkSdIY11GQfBqVY8G2LzT/GPhSX8aL4HZg5zqlV3RrJif39aYIngdcS9dnqpXACZn8sg/D1drFZ7t+5DQOGFcI1yo2kkY9C4IkSZIkSZIkaRSL4EXAS2o0PT2CN2by1aHOqUFW1YjtMeRZSJKksWQCtd/J70mlaKUvx4XtDexWj6RquKevN0QwB/gusEOh6U/A8Zn8qY9D3lcj1p/i7T1rxO7txzjSiFdqdAKSJEmSJEmSpMERwQ7A5XS/OPRTEew/hCk10qYasc1DnoUkSRoTIpgAfJuux1cBPBf4wJAmVEcRvAG4jq7FQLcA0/pRDATwZ6BciE3txzi1CoLu6sc40ojnDkGSJEmSJEmSNHp9BnhKIdYONHX88/bA5RHMyKS1F+P9Bbi9jvkV5SCOXWtF/YODOJ8kSRrbPgE8q4f2f49gbiY/HaqEBiqCAD4MvLdG8/eBUzPZ2J+xM9kYwb3Ak6vCe/VjqFpFRBYEaUyyIEiSJEmSJEmSRqEIXg28rhD+PvBH4H1VsRcAFwIXbG3MTM4Hzq9TilsVwUTgtEL4L5ks6MdwT6sRq3U0hSRJ0oBEcDzwlkJ4MZWdgXbsuC4Bl0ZwSCaP9GLYV1I5ZmwwPLy1DhGMB74BvLZG8yeB92R22eGnr/5I54KgQyIo9XHc59SI3TGwtKSRKTIHc8GFJEmSJEmSJGmoRbAX8Ctgl6rwo8BBwNqOtgOq2tqBozJZOmRJ9kIEJWAdsF1V+PZMntePsX4AvKwqlMCUTFYPLEtJkqR/imAS8GtgclX4MeAZwEuBzxVu+U4mJw9Rev0SQRPwHeBVhaYy8NZMvlCned4LfKQQPiiTP/RhjAXAMVWhe4EnZw7qTpTSsFRqdAKSJEmSJEmSpPrpKKK5lM7FQAD/nsn9mWwCzqLz8VxNwGUR7DREafZKx2rw3xbCz4pg976ME8FU4IRC+LcWA0mSpHrqOFLra3QuBgJ4Xyb3AF8EVhTaTorg1KHIbwD+j67FQO3AGfUqBurwkxqx2b29OYIdgBcVx7QYSGOVBUGSJEmSJEmSNLqcBxxViC0BvvzERSaLqbysqrYP8PlBzKu/ritcj6PrUWhb80G6HrHx5VodJUmSBuAc4CWF2AqoFM10FDu/CdhS6PP5CPYZ9Oz6IYJzgDcWwmXglEwur/N0v6brka7FuXtyEp13lgS4fkAZSSOYR4ZJkiRJkiRJ0igRwaHAcmB8VXgz8OxM/ljouwvwe6ClMMxrM7liUBPtgwieDNxN5wWujwDPyeSvvbj/RODKQng1sG8mG+uVpyRJGtsiOAi4DZhYFd4CHJrZecfDCD4IvL8wxFIqR7i2D2qifRDBAVSKdCYUmt6TyScGac7zgQ8Xwq/K5HtbuW874BfA/lXhvwIHZNJa1ySlEcIdgiRJkiRJkiRpFOh4CfItOhcDAXyoWAwEkMnDwNtqDPWFjiKcYSGTv1M5pqLazsCCCJ7V070RvB5qrlx/m8VAkiSpXiKYQOU5bGKh6ePFYqAOH4Iuz2czgPMHIb2B+B+6FgMtG6xioA6fA9YWYl+MYL/ubug4MvezdC4GAvioxUAay9whSJIkSZIkSZJGgQi+BJxZCP8OeG5ml2Mpqu/7EfAvhfBNwNHDZYV6BDtSWfFdfBG0hUrBz5VUVq9vACYDhwFvAI6sMdwXMnnz4GUrSZLGmgj+G3hXIXwHcEgmm7u55whgMRBV4VZgRia3DkaefRHB06jsJhmFppXA/QMc/vZMzuph7ndDl6Kj1VSOD7suk6zq+2TgU8ArCv3vAJ7V03OwNNpZECRJkiRJkiRJI1wELwN+UAiXgSMyWbaVe/ek8rJnp0LT+zL5SP2yHJgI9gIWAk8dwDDfAM5ypbgkSaqXCGYBc+l8Ok9SOf7rpq3cW6ug+y4qBd3r65poH0VwMXDBIA2/OJOZPcxdAn4CzKnR/CfgV8B6YF9gGtBc6LOeynPwL+qTrjQyeWSYJEmSJEmSJI1gHQU9X63R9MWtFQMBZHI/tV/2XBTB8waaX71kcg8wncpuQH21ATgvk9dbDCRJkuolgt2AS+j63v0rWysG6vDvVHbcqbY/8L8Dz27AjmjUxJmUgVcCi2o0P7Wj7QwqORaLgR4FXmYxkGRBkCRJkiRJkiSNWBEElZdQuxea7gXe14ehvgCsKMTGAZdHsF2/E6yzTNZkchIwE7gGtnqk2YPAF4H9M/nvwc5PkiSNOV8GphZiK6kU+mxVJo8Ab63R9IaILkdgDbV9Gjl5xw5JxwIXAZt6edsi4PmZLBy0xKQRxCPDJEmSJEmSJEkjUgQ7UDkm4pnAbsD2wAMdfz8HftaxwlySJKmuItgVeFWNpl9k8rM+jvVaKs8x1R7K5Hv9zW+gIngdMH6Qhl+ZybV9yGUScBqVAqFnAi0dTY8DdwJLgSsyWV7vRKWRzIIgSZIkSZIkSZIkSZI0YkQQmVjsIPXAgiBJkiRJkiRJkiRJkiRpFCk1OgFJkiRJkiRJkiRJkiRJ9WNBkCRJkiRJkiRJkiRJkjSKNDc6AUmSJEmSJElSVxHxKmB2g6ZvBdY3aO5q64D2BuewBdgA3JKZv2pwLpIkSZLUKxYESZIkSZIkSdLw9CLgzEYnoX84D7AgSJKkMSwifgo8CdgEbOymW0+F1Qk80sMUjwLlbtrWd4xdS3/zKXfMWe98Nnbk1Od8MrOnfCT1gQVBkiRJkiRJkjQ8RaMTUCfZ6AQkSVLD7Qvs1egkRrOIHh+BH6H7Z7LeFiiVM/MF/ctOGlksCJIkSZIkSZIkSZIkaeuaGp3AGLdzD2279HKM7oqGpFHHgiBJkiRJkiRJGp4uBW4e4jknANsO8Zy17Ezjd0jaBphYdX1roxKRJEnDRqnRCWjAujsCTRp1ItNdTiVJkiRJkiRJkiRJ6klE7ESlKKin4uUd6H5jjm2pFGDXMh7Yrpu2JmDHHlLraXec/ubTU6H4QPLZke53WupvPn2xMTOHQwG8NOjcIUiSJEmSJEmSJEmSpK3IzEc7/vHhhiaiTiKiLwVK7piiMcMdgiRJkiRJkiRJkiRJkqRRxDMOJUmSJEmSJEmSJEmSpFHEgiBJkiRJkiRJkiRJkiRpFLEgSJIkSZIkSZIkSZIkSRpFLAiSJEmSJEmSJEmSJEmSRhELgiRJkiRJkiRJkiRJkqRRxIIgSZIkSZIkSZIkSZIkaRSxIEiSJEmSJEmSJEmSJEkaRSwIkiRJkiRJkiRJkiRJkkYRC4IkSZIkSZIkSZIkSZKkUcSCIEmSJEmSJEmSJEmSJGkUsSBIkiRJkiRJkiRJkiRJGkUsCJIkSZIkSZIkSZIkSZJGEQuCJEmSJEmSJEmSJEmSpFHEgiBJkiRJkiRJkiRJkiRpFLEgSJIkSZIkSZIkSZIkSRpFLAiSJEmSJEmSJEmSJEmSRhELgiRJkiRJkiRJkiRJkqRRxIIgSZIkSZIkSZIkSZIkaRSxIEiSJEmSJEmSJEmSJEkaRSwIkiRJkiRJkiRJkiRJkkYRC4IkSZIkSZIkSZIkSZKkUaS50QlIkiRJkiRJkiRJkqS+mbNsjz3LNB8I5QMiS1MItiNyR8qMo5QbIR5LYm0kf41ov3N9TLhj+WH3bGx03pKGRmRmo3OQJEmSJEmSJEmSJEk9OP7mKfu0tpePDeJo4ChgUh+HKBP5y6S0KJMbJ6zbfuH1x9+1uf6ZShoOLAiSJEmS6iQixgP7AU8DpgA7dvw1AZuADcBa4G/AncA96QO5JEmSRriXLN17l1Y2H5DkARC7ZontgR0AMnmUYAOZDxGlO8c3bbnj+hc+tK7BKUuSJI0YJ9yy245tbeNOTPJ0iBlA1HH4hwOuopyXzTt89bI6jitpGLAgSJIkSeqniNiBykqcozv+DqJvx/JuAG4BFgELgVsys73OaUqSJEl1ddyKSU9tK8cxHSvTjwBa+nJ/ZN6bET8lWUg0LZg//b6/D06mkiRJI9fMxVN3b24uv4XItwG7DMGUvyTzUzNmrLn8QrI8BPNJGmQWBEmSJEl9EBFNwBzgNODlwMQ6Dn8/8G3g0sz8TR3HlSRJkgbkhCVT9mhtypNITgeeV8ehE2IZmZdNYMLVP57xt4frOLYkSdKIM23FXhO3L7edn+S7gG17edsG4C/AOmADweMk2wM7J+we8GSg1JuBEn7VFKW3zZ12/039+gCShg0LgiRJkqRe6DgO7CTgAmD/IZhyGfCxzLx2COaSJEmSajpm+Z57N5XL78zgTdS3GL6WDZF8rXVc8ycWvfDeewd5LkmSpGFn9vIpLybzM8B+PXQrA7cTLCxn/LS5vfTbuUfcd09P485cvO82TU2PH1AqxQsSZgLHAJN7uCUhLitFnjd32qo1ff8kkoYDC4IkSZKkHkREAP8KXAzs2YdbVwHrgUeBdmA8sCOwe8f/9tYK4B2ZeWsf7pEkSZIG5IQlU/ZoK+VHEs6g98fibkm4P+BxKqvUg2Q7gu2oPEv3dpzNkXyptW3zhYuOeviRfqQvSZI0opzwk/0ntO607n/IOLfbTskfgvhme1Pr5Tce9uB9A5nvIqK0dOnkoynF6WS+ku53IlpVCk6ZO23VwoHMJ6kxLAiSJEmSuhERzwK+CEzbStf7gIXAYuDXwJ2Zua6HcacAB1I5auFo4HBg+x7GLwNfAc7PTI9QkCRJ0qC5iCgtWTbpTUF8GNi1h67twM8jcxERy2gv/6G1/MDdi47Ktlqdn3d7jNtx0577NWfbQRlxOJWV6c+i56MrVkXkefOnrflW4g/ZkiRpdJq9tGU/Ir4L+ZxuutxcSj48b8bqHw/GM9EJS6bs0Rr5doK3ADvV6NJO5MULpq35oM9k0shiQZAkSZJU0LEr0L8BHwXGddPtIeAK4NLM/NkA5xsPvJjK6uvjqewmVMu9wGszc8lA5pMkSZJqOXZ5y6RMLk+Y3UO32zO4dHx7XHH94SsfGMh8x6zYfWrkuFNKmacnPKP7nvH9ttZNb3C3IEmSNNrMWT7p2ZmlnwAtNZrvicy3z5ux+pqhyOW4FXvtWi63fjjhTdQq2o647OEJq95w26HZOhT5SBo4C4IkSZKkKhGxC3AJ8NJuuvwN+ATw9czcOAjzPwl4N5Uv3rW26m0D3g98LH2YlyRJUp3MWTLlyCzlFcCUGs0J/ATKH5k/fc3SwZh/1rLJsyPiP0iO7KbL3UHpxHnT779tMOaXJEkaah3PXz+k6648CXyutIHz585ZtWGo8zpmxZQXlMrlSyEOrNF8/cRtml79o0Pve3yo85LUdxYESZIkSR0iYipwA3BwjebHgA8An80c/FUwETEZ+DhwGhA1unwDODOz9pEMkiRJUm/NWt5yUiTfpOZOlfELyHPnT19181DkMmdJyzFZ4nPA02o0bwjixHnTV14/FLlIkiQNllnLpzw/MhcC2xea1kXGG+fNWHl1I/J6wszFk7ZvHlf6P+CUGs3XtbWufnl3R8VKGj4sCJIkSZKAiDgAmAfsXaP5x8DZmXnf0GYFEXEE8HXgKTWarwVeMxg7FUmSJGlsmL285a0k/0vXYyE2RfLenVeu/txVr872oczpxN8fPP7htQ++h+BCoLnQ3BqZb5g3Y/VlQ5mTJElSvRy9bOqBTbQvBXYvNN0d7eVj5x2x5q5G5FXLrOVT3hOZH6WwYDHJS26cvub1icUG0nBmQZAkSZLGvI5jupYBTy40tQEfAj6YmeUhT6xDROwIfAk4qUbzdcDL3SlIkiRJfTV7acuZBF/q2hJ3RrS/Zt60Nb8c+qz+qWPl/JXAvoWmMsTJ86evvKoReUmSJPXX7Nt33YlN42+n6+K/3zSV24+94fAHVjYir57MWT7ldZn5FboWap8/f/qqjzYiJ0m9U1z1IUmSJI0pEbE7sICuxUCPAMdk5gcaWQwEkJnrMvNk4D+onCFe7cXAlyOi1rFikiRJUk2zl01+BcEXujQkN26k7XmNLgYCWDBt5c/aWpteANxSaCpBXjpnScsxjchLkiSp3zaN/wJdi4H+nM05ezgWAwHMm7bykoj8V7r+Lnnx7GWTZjQiJ0m9Y0GQJEmSxqyIaAauAQ4sNK0EjszMm4Y+q+5l5oeBM4HikQ3/Cpw/9BlJkiRpJDpmydTnQnwLaOrUEFw97rEdXrx0+gOPNSazrhYddd+DpQ0cQ8bcQtOELPH9OTdN2r8hiUmSJPXR7KUtZwKvLYRXltqZveCFq1c3Iqfemjdt9eUBFxTCzVD69szFu+zckKQkbZUFQZIkSRrLLgaKq1geAmZl5q8bkM9WZeZXqRQAFVfkfDAijm5ASpIkSRpBZi6etH2p1PZtYJvqeMK1bVtWv/b64+/a3KDUujV3zqoNu+y620sD5headsym0vemrdhrYkMSkyRJ6qVZt0yeTPCxQri9FJw694hVdzckqT6aN33VhwmuKIT3aho3/r8akpCkrbIgSJIkSWNSRMwB3lMIPw68JDN/34CUei0zL6Pripwm4NKI2K0BKUmSJGmEGNdc+gpEpx0yk7ypvXXiiYuOyrZG5bU1Vx302y3Nza2vAopHmT1z2/KWTzQiJ0mSpN6Ktvgk0GknnYT3z522amGDUuqXjdl+FsSd1bEgzjlmxZQXNConSd2LzOLCYkmSJGl0i4iJwG+B/QpNp3cU24wIEXE5cEoh/OXMPKsR+UiSJGl4m7V00nERpZ8Uwve1tTY9e9FR9z3YkKT66Nibpu5Vbmr/BVBdCF/OyBkLpq1e0ai8JEmSunPs0pYXloMVQFSFfzZj+uoXXUiW6z3f7GVTvgf5bIBIbp03Y9XJ9Rx/zpIpR2YpF9Hp8+SS+dNXH1HPeSQNnDsESZIkaSz6D7oWA31tJBUDdTgbuKMQe2NEHNaIZCRJkjR8TVux18SI0ucL4fZScPpIKQYCmHvEffcQcQadj9AtRcaXZi6O5kblJUmS1J1y8D46FwOVy6V4y2AUA1WOUs3ZVH773K8cuWe955h3+MqfJnyrczQOP3b5nhYEScOMBUGSJEkaUyJib+DdhfDfgbcP0nz/FRHzO/6+Ws+xM3M98AYKL0OAT9VzHkmSJI1822XrOykUxUfmJwfjmIrjVuy16+xlLfP/8bd88ivrOf78aSuvC/h6IfzM5ubJr6/nPJIkSQM1e0XLM4F/qY4FfOPGw1beOhjzbVdufTuww2CMXa253P4eYGN1LLN8wWDPK6lvLAiSJEnSWHMeMKEQe3tmbqj3RBERwKnArI6/F9V7jsxcBlxSCL8wIubUey5JkiSNTMfOa9mO7FIAf09rW148GPO1lbccyj+fgWeR8eR6z1Ee1/zvQOedjYL/eN7tMa7ec0mSJPVbO2+l8+5A7aVS+aP1nubEq6Np1vIp7wE+VO+xa7nh8AdWAl+rjiXMnrVkykFDMb+k3nELVUmSJI0ZEdECFFcNz8/MHwzSlCcCew/S2NX+HXg1sH1V7AJg3hDMLUmSpGGuvB1nAntUxxLOW3TUmvX1nusiohTZ8i4it955ABa84N6HZi+bchHkZ6vCT955U8trgW8O6uSSJEm9MHPxvts0j+PVnYLBVTcctuZPAxn3uCV7TGmP5gOJ8q6ZpRYinxN7Tj4hsv7Hg/Wk1N708XJT+1nAPwoIlQi8AAAgAElEQVSyo5SnAecPZR6SuucOQZIkSRpLzgImFmKDsio6Il5JYZXMYMnMB4D/K4QPj4hDh2J+SZIkDV8XESW6Ho/7x8Onr7663nMdO69luyXLJn2NyGPrPXYtba3bfBVY2Tma/zYUc0uSJG1N07iNLwN27hQsx5cHOm57NL2ByEUQ34vIzwe8ERjSYiCAuUfcd0/CDYXwaSdeHU1DnYuk2twhSJIkSWNCx/FdpxXCSzNzyQDH3QF4ErAbMAl4NnACMNTFOJ8E3gJsUxU7Hbh9iPOQJEnSMLJkWcuRQXbatTIiPnYhWR7IuHOW7bEnEZOyXNo9g70jeAHb8cogdhtYxr236Ki7N81ZOvmTGfHfT8QCDjlu6eRDbpix+ldDlYckSVItpeTlGZ1Cf5sxY9VNDUpnUJQyLsvIf6kKTX3oSS2HArc2KidJ/2RBkCRJksaKGcBTCrHirjr9cSrwhTqMMyCZuSoifgi8pip8ckS8OzNbG5WXJEmSGq18OnR6E/Xo+mi+cqCjJk0/JHke0TH64J4Q1q3xbPP1zWz+EDDhiVh7lE4FLAiSJEkNE0TMiskzC9GrB1qU3TH2w0n+pZvmXSnuSjSIWtu2ubZ53MbHgW2fiJXKeTQWBEnDgkeGSZIkaax4ReH6MeAHjUhkEF1auN4DOLwRiUiSJKnxTrw6moJ4eadgctXyw+7Z2KCU6u7HM/72MMR11bEkX9WofCRJkgBmLms5CJhcHctsv7EeY8+bsfLz86evekqtP8iv1GOO3lp01N2bgKWdghlHDWUOkrpnQZAkSZLGisKKHH6UmRvqMO5m4OFu/ob6Rcs8YG0hdvQQ5yBJkqRh4pE9pzyHwgrxUonv1Gn4x+j+OXjAK9/7IoMrqq8D9pm9tGW/ocxBkiSpWlPmCwuhLU2Pl5Y0JJlBFhkLC4EXNSgVSQUeGSZJkqRRLyJ2A55ZCC+ox9iZ+XXg693M+17gI/WYp5e5tEXEYjrvhlQshJIkSdIYUY48Ojof5fV406M7LKvH2POnr+q28Hz28pY7Sfavxzy90RzNC9uztUzVAtgMZgLdHaUhSZI0uCKfVji29Y9z56yqx+LE4Sfzts4flZ1mLp7UsuioNasalJGkDu4QJEmSpLHgMLo++y6s1XEUKG49/PyIGNeQTCRJktRY2WV19vLrj79rc0NyGUQ3HHbPWiJ/WR2LYFqj8pEkSYI4sPMldzQokUEX2XRnMTauqenAWn0lDS0LgiRJkjQWFL+ArsrMvzckk8F3a+F6HPCURiQiSZKkxorkaZ0CyS0NSmXwZanzZ8su3wEkSZKG0r7VF5nc1ahEBtu8I+6/F3i8OpZNeHyrNAxYECRJkqSx4GmF61G7Iofan+2AIc9CkiRJDTVzcTQTxcLw7LJ6e/TI4ks2C4IkSVIj7Vh9EfBAoxIZbEkm8GB1LMq5YzfdJQ0hC4IkSZI0FhRXpIzaFTmZ+RiwshB2hyBJkqQxZpttWp4EjO8UjBi1BUFBFAvjd599+647NSQZSZIk2L76IuGxRiUyRNZVXyTs0KhEJP2TBUGSJEkaC4ovAlY3JIuhs6Zw7YsQSZKkMaa93L5zMVZqH83PwVF8Bqa0YaIr0yVJUqNs1+kq2NCgPIbK+k5Xpc4FUZIaw4IgSZIkjQXFL6BjakUOrsiRJEkaczK7voTZUm4atc/B5WwtPgPTHmWfgyVJUqNs7nSVMaFBeQyVbTpdlWNTg/KQVMWCIEmSJI0F2xWu19fsNXoUX/T4IkSSJGmsKUXxGZjNE0qjdmV6c3Yt+m+K9DlYkiQ1SqffH2P0/z7XaWfGoDxqC9GlkcSCIEmSJI0FrYXr8Q3JYugUVxxtrtlLkiRJo1Ypo/gMzM6lx8c1IpehEOOau6y6z1LZ52BJktQY2XkH76S8S6NSGSKdjqtNwoIgaRiwIEiSJEljQXFHoDG1IofRf0SaJEmSCtprvITZXI5R+xzcll13A6r170CSJGmI3F+43q8hWQyBlyzdexdg1+pYRNzboHQkVbEgSJIkSWNB8UXATg3JYugUP58vQiRJksaYpih1eQbM8rida/UdDbJc7vLZomnUHxUsSZKGq1LeUX0ZxIGNSmWwbY7NXT5be5TvqNVX0tCyIEiSJEljwcrC9ahdkRMRTcCTC+Hi55ckSdIoVx6/scszYClz30bkMjSais/4W9o3rnmoIalIkqQxL4liQcxBJ14dTQ1JZrAlzypEtpS3rPlbQ3KR1IkFQZIkSRoLil/AD2hIFkNjH2CbQswVOZIkSWPM/EPXPgqsro6VyFG7Mh2y8zN+8udFR2Vbg5KRJEljXZZ/UYjstHZqy3MbkssgC5hZCP3G5zBpeLAgSJIkSWNBsSDmqRExsSGZDL6Da8TuHPIsJEmS1HBJ56MqylHzWXFUiOJzcMmieEmS1Di77jLpFuDx6lipzNENSmfQBBEZxYKgXNiYbCQVWRAkSZKkseBXhevxwLRGJDIEjipc35uZHpUgSZI0BgVReA6OoxqSyCDrOH7jiE7BcvGzS5IkDZ2rDvrtloBl1bGM/H+NymewzF4yaRowuTqWaUGQNFxYECRJkqSx4DfAg4VYcSvb0eKYwrVfwCVJksasXFx9FbDPsTe17NugZAZNx/EbO1fHIlnUoHQkSZIASLi+EHrh0cumjqojXLNUOrUQWt/0eGlJQ5KR1IUFQZIkSRr1MrMM/LQQflkjchlMEbEfXY8M80WIJEnSGNVUGr8YKFfHyk2j8DmYfGkh9Hjz+u1vbkgykiRJHbI5rwDa7r9uI5sfqDySNdH+uoYmVUcvvX3qtpAndo7G9+fOWbWhMRlJKrIgSJIkSWPF3ML1wRHx3IZkMnhOAaLqugzMa1AukiRJarAbDrtnLXBr52ic3pBkBkkQkUlxZfqi64+/a3NDEpIkSepw44vWPP6Ldz2y5vcfWcdvL3qUrNQEnTNz8S47b+XWEWHjpvYzgV2rY0l7cVckSQ1kQZAkSZLGiquBTYXYGY1IZDBERAkovtxZmJn3NyIfSZIkDQ+RcXnnSD7nuKWTD2lMNvU3a2nLkQH7rJq/6R8r7yP5VoPTkiRJY1zHQsSfP3TL5j0BHv7lFu6+ZD3ATk3jJpzT0OTq4ISf7D8BeHcxHpS+OGfp5NMakJKkGiwIkiRJ0ljxGPCXQuwNEbF7I5IZBK8AnlqIfb8RiUiSJGn4KGfzEqLzsWFtEV1e3oxUEeX3PHZXG7/70KOsOO1B7rnm8U3xOD9qdF6SJGlsioq3Ayso/FZ39yUbWPeHVgLOO3Z5y6TGZFgfrTs+9m+QU2s07ZIRl85e1nLlzMVTR8vvrtKIFZnZ6BwkSZKkQRURTwK+DRxeo/mDmXnhIM37XuAjVaHfZebBgzBPALcDzyk0rQHOyswf1HtOSZIkDX+zlkx+eZTiaxSOcgDaypFPu3Ha6j8Pxryzl7fcSbJ/Veid86ev+lS95zl26Z6HtrW133brG9ey/s9t1U03AG/KzHvrPackSVJ3ImIn4CvAq7u0lWDvk7fjKWdtT5QgyUsWTF/9r/2ZZ9ayyacE8bpumvcH9q66fgS4rVbHzLhmwYyVX+jr/MfeNHWvclP774Htt9J1DZHnzp+2+nt9nUNSfbhDkCRJkka1iPgX4JfULgYCeEdETBnClAbDSXQtBgKYBFwTEZdExKg4m1ySJElbN3PxvtvMWjb5c1GKa+haDATQXMr40FDnVW/lKH/07m9uKBYDARwH/DoiikfqSpIkDYqIeCHwC2oUAwGrn3nxTnc99ZxKMRBAEGfMWT55Tr/mytgXmNXN396F7jt327eUB/R5biKyqe1LFIqBgvhrje6TyPju7OUtV7lbkNQY7hAkSZKkUSkimoELgPez9UL4KzLztf2cZw7wxm6anwY8s+p6HTC3m75LMvOz/Zh/B+APQK0tequtAs7OzB/2dQ5JkiSNHLOW7nFARNOVwLO31jezfPyCGWtu6M88s5e1fITgKbUH5niqXhIl/CqCO2t1bc+4aOH0lb/r6/yzlrW8JuA7G/7axu8+vI51v2/trutPgDPdLUiSJA2Gjp273wZ8AhhXo8sC4LTZS6c8KSnfDDRVta0J2p8zb/oD9/dlztlLWy4guLjfSXfI4NMLpq16R1/umbV8ynsi82OFkZas3GXNrD3XtvxbRl5M7X8PayDPmT999ff7n7GkvrIgSJIkSaNOROwNXAEcVqN5I7Aa2KcQf3FmXt+Puc4B+ry1bg2XZ+Zp/Zj/C8A5hfADwB7d3HI1lcKgtX2dS5IkScPb7KWTTyfi89Q4viGCP2SZA4iql1DBXW1bys9ddNSa9X2ea1nLz4DnDShhgIyZ82esXNyXW2Yunrp787j2XwF7AmQ7/O3bG1r/9OX1STK+xi2PAP+emV8ecL6SJEkdImIS8E0quxMWtQEfAj6YmWWA2csnf56Mc6s7JXnT+HU7zrn++Ls293be2csmv4KIkwaQOgBBXD9v2spLej3v0ilHETmPzgU/m7Mcz11w+MrfAxy3dPIh7RGX0F1xenB125amcxcddd+D/c9cUm9ZECRJkqRRJSJeAXyNyna4Rb+ncrwWwM+B5qq2tcBzMvPvfZyvYQVBEfEqKgU+1e4Cng+cD7ybzquOnrCSSlHQj/qTqCRJkoaXaSv2mrh9e+tHM3hbzQ4Rl22I5rO2zdaPRPL2QuuV86ev6vMLpUYVBAURs5ZN/gHw0kLDBQumr/4B8A0qz8O1XE9lt6D7+pmtJEkSABFxNHA5MKVG89+BkzNzeXVw5uJ9t2ket/EW4FmF/j/c5f7Vr7zq1dk+ONkO3LHLWw4uJzcBu3RuibfOn77yc9WR590e43bd2PLOHnYLWh2Z58ybsfqaQUtYEmBBkCRJkkaJiNgG+Bh08xIELqNSBPN4R///hS4vQ5YCszKz1ytyIuJfepizL27MzI/2Yd4DgVuAnarCCczJzAUdfQ6j8kLkwG6GuRo4KzMf7l/KkiRJarRZS6YcFKW8Eji4RvOjkfGmeTNWXg1wwi277djaNu4PdOys84Qkz14wffWX+jJvxwr3A/qdeIemzHffMGP1r3o/b8t/kPxX52jeMW7djodcf/xdmzuODn4XcBEwocYQ7hYkSZL6reNZ4wLg/UCpRpdrgDd093vb0cumPKOJvBXYttO48LWd71991nAsCpp9855Pp728gMIzJMT3509f+cru7jtu6eRD2iK+GXBIzQ7B1dncfM6CF9z7UD3zlfRPFgRJkiRpxIuIpwFX0nV1DcA6KoVAVxTu2QZYQdfta38IvDJz+H35fkJE7Akso+uxZ5/KzHcW+k4ELqTn3YLOysxrByFVSZIkDaKOI8K+SOGFEkAkt0aZk+Yeseru6vicJVOOzFLeSOdnw3bIE+dPX/39QU55QGYtm3xKEJcBURXeXMrS9Lkz7r+9um9EPAO4hO53MbqOym5B9w9KspIkadSJiL2AbwMzajRvAt6bmZ/e2jizl005EfIKuhQUxffGrdv+lL4cHzbYZi9reRHwY2C3QtOv2WbLEfMPXftoT/fPXLzvNs3jN36A7Pa3ydVZzrMXHL76B3VKWVIVC4IkSZI0okXE6VSO7NquRvNtwEmZ+edu7n068LMa936FShFRuZ651kNE7AEsoGvx063A4Zm5pZv7plHZLai7VdyXAW/OzMfqlaskSZIGxwm37LZjW+u4L2VQ66ivjOSzayeufvdth2ZrrftnL53yASIvLIQ3loKXzJ22amH9Mx642ctbXkZyNV2Oneh6TMU/Wv65W9AHgfE1urhbkCRJ6pWIeBnwdWDXGs13UPkN8pe9HW/2silvgfxsjZmWlkutJ9142IMNP+J0zvLJp2bGlygUnyf8tUT79HnTH+h1YfWxS1teWIZvEDy9Zofg6qYYd/YNh92zdmBZS6pmQZAkSZJGpIjYAfgicEqN5gQ+C5zXXYFM1TivBr5D1y1+rwJO29r9Qyki9gXmAvsXmlYCh2Xm37Zy/xO7BZ1H7S2N/wa88YkjxyRJkjT8zFm25/OS8neAp9RofqBMnHHj9JU/6WmME6+OpoenTv4ByUsKTZuJPGX+tNXfq1vCdTB7acvrCb4ENHduiUvnT195xtbuj4iDqewWdGg3XX5MZddMdwuSJEmdRMQE4OPAW+m8S+ETLgPOzcz1fR171rLJ7w/igzWaHgzijHnTV17f1zHr4dh5LduVt+czJK+v0XxfZvvRC2Y8cGdfx+3FbkGrCM6eP23VD/uctAYsgiZgErALsBZYk8mwWzCrvrEgSJIkSSNORDyXShFPsTAG4EHgdZl5XR/GewuVAqKixcDJmbmqP3nWU0QcTuVYtCmFpkeBIzLz130YazqV3YJq/ftLKjskvdvdgiRJkoaPIGL20slvy+Dj1N7tZlHQfmpvV2q/9Pap227a2D4/g2mFpnaI8xdMX/XfSWN/PD7x6mh6eMrkiwjeR5cXcHHDw9useml3uyAV9WK3oIeBt2fmZQPLWpIkjRYRsQ+V3yBfWKN5PXBOZl4+kDlmLZ1ybkR+llqL94Ifl9qazp17xH33DGSOvjh2acu/tAefCdinRvOfy5HH3jhtdc3d2Hur4xiybwBPq9nB3YJ6FMH7gSM6Lt+cSZ+Ls6rGagJOA14LHE3nQq1WKjvVfwv4diYWloxAFgRJkiRpRImIM4HPABNqNP8UOCUz+7ylbkT8J3BRjaZVwKmZeWNfx6yHiCgB76WSW2FFNOuBF2fmTf0Ytze7Bb2hUZ9b//hCvhOwLpO2RucjSZIaZ+biqbs3j2u/BHhxjeY2Mj60y8pVF1/16mzvy7jHrdhr17Zy68KAQ2o0X5fjms9Y8IJ7H+pPzgM1Z9kee2Y0fZvkyBrNy0obOHbunFUb+jpuRDyTym5Bz+2my9VUjtJ9oK9jqz4i2BYYl8mjjc5FkjR2RcSrqCya27lG8++A12Tm7+ox16zlU14VmZcA29VoXkfGp5qamj8zmAUys5dNmhGU/jNhdu0euaSttfkVi46678F6zNeL3YJWBpw9b/qqH9VjvtGi4/fCu4B9O0LPz+S2fo71FOBy4EW96L4IOD2Te/szlxrHgiBJkiSNCBGxE5Uv4a+u0fzEEWHvzuzdCuFu5ngL8Gm6FsgklS9H7xrKFwMR8WzgC8BhNZrXAi/JzBUDnGMGlRU5T63R/MRuQe/qz7bHY0EEb+KfP5T8Vya93qmpm/GOAU4F5gAtVP5bTGANsBC4IpNrBzKHJEkaWeYsmXJklvJbwNRiW2TeW4587YLpa5b0d/yZiydt3zyudA0wq0bz2kg+OH3G6s9eSA7JcQEXEaWlSyedSsT/ALt16RD8eOKEptf86ND7Hu/vHBExDngn3e8WtIbK0R/D6ui04SKCoPL9aBzwUCbnDHC87YHTqXzXOxTYoaNpM/AX4BrgG5n8aSDzSJK611FksOMAh3lkNOwg0rGI7qPA27rpchlwdmb2+1mkltk37/l02stXAQd30+Ux4KtZzksWHL56QL8/PWHair0mbputLws4u5sibKj8LvWxttbV7190VNZ9wdqs5ZMPi+QbEAfW7BBcPaE84awfz/jbw/WeeySK4ELgA1WhfhUERbA7cDNdjyFeTWUH/knAHoW23wLTM1nX1/nUOBYESZIkadiLiBdQ2Z533xrNa4DTMnNeneY6Cfg6MLFG80NUfhD4v8EskImI/YDzgX+l9gqZP1HZGajf28EW5tsW+E+63y3or1R2C1pYj/lGkwhu5p/bRs/JZH4/x9kV+CJwYi+6Xw+8IZOGH2UnSZIGz0VEadnSlvMy8kPUfib8UY5rfn09dvCZuXjfbcY1P35ZVlbCdxHJ8oQL589YtWCgc3UniJizdPJLyhEXQT6nVp+Er7a3rj6nXi+jIuJZVHYLqjkfld2Czs3MuqyEHy0ieAaVF0IA92Ty5AGMdQSV/w9qfdertgm4APif0fCyWZKGmwgOorLrzUDslsmIPuIpIp4OXAk8s0bzOuDMzLxysOZ/6e1Tt924qf2jwLnUfv4DIOFXED8slVnYvH77m68//q7NvZ3jmBW7T21qbzo6ozQL8mVUdqfubp6/RinPnn/Y6rl9+iB9NG3FXhO3y9YLe9otqJScNXfGqjG3SC6CnaksGnwO8Doqiwir9bcg6FrgJVWh7wEXZPLHqj7PovJb+PFV/S7P5LS+zqfGsSBIkiRJw1ZEBJXVOJ+gsvq06EYqx3nVtTCi4xiBq+juHOtKYdDngUsy8+46zRnAdOBM4GS6Hg/2hKuBN2Zm3VdiRMThVIqh3C2oFyI4hcrK6Cf0qyAogm2o/Lc8rdBUprIT1M50/e/hN1RW5DzW1/kkSdLwN+uWyZNLbXFZN0c2tEbG++fPWPXxpH4/7gYRs5dOflsGH6f2rjkAt0Ty6fVN436w/LB7NtZj3hnL9thh22h+ZTnzHd0cXQbweES8ed60lZfUY85qVbsFXUzt7xxrgHMy8/v1nnsk+v/s3Xl8VOXZ//HPlUXBBXcSwH3fRXEjBAUhoLZ1LbiW2rqg7aPYVqtPf1qxq9raR/Spe6stdcW9imwCQgKi4q51qVtdSEDFHZBkrt8f9+RhcnImJGFyZpJ8368Xr2bOfc+cK5aQmXOu+3ubUQo8BByaPtTuhiAzDiRsP9EjMrSM0AC0UczTLnHnV+05n4iIZKeGIDCzMYTFWuvEDD8FHO/ubyVRS9X83nuTKrqOVYvQWrIceN3cX3cresecj4AvHV9p+PpexHp4URnuOxq+k5tt3orXXIHzx549i3+3JqmMbTVsfllFUaroFvAdYyeYTVzm9T+uHrSkW1wPM+M9YHX/f7W5IciMgcC8jEN/B06Ja7pOp4fdCxyZPpQC9nDnlbacU/JHDUEiIiIiBcaMvsAHa/gy27vzZi7qyRcz24zwYeTQmOF64LfAr9w7ZusCM1sP+BNwGmBZpjlQTYiwnwm84G14g52OIK4AhgHHAdu2MP0z4EJ3v761r98e6bSg3wNnE/99v01IC5rVkXUUKjM2IKzIOZmQ4JSZqNTehqA/E1Z+NZpPSGx63J2V6Q/eFYQ44EMy5t3pzgltPZ+IiEihMuMiQlNGez3uzpAclZM3VdXlwzEmElYCN+HwjsEJ0wfVPtFR5x8+r89+Re63OOzWwrTPHb8PbEqxMWtqRe3itpxjRM1mffGiYW52KHAU8TfeGj3dgJ0yc9CiNb1J2SIz24uQVNM/y5RumxZkRhGwBTCY0DyVmajUroag9Pvq14Cy9KEUcBXwZ3feSs/pBRxP+Oy3aXqeA4e6k5OEWBERCbpzQ5CZ9QKuh9hrLA5cA5zv7t8kWtf/pSdyMbBfQqf9BrO7iq3hV1MGLs7LVp0ZaUHZkszfxTmtI5MrC4UZ7xOzbXBEexqC7iZs1QqwFNjOnaxbsqXvV/ybVYn6N7ozti3nlPxRQ5CIiIhIgVFDEJjZUOA2oE/M8H+AE929JqFaBgLXkv3GQKaPCcktrwNvAp+m/zhhlfX6hAveO6b/7E7z1bBRDtxOuPCwqB3fQruYWRVwM8Re3O92aUFmzAIGAmu3MK3NDUFmbAu8yqrV6DOBb7mzPGZuCeFG1FHpQw7s7c7zbTmniIhIoeruDUFDZ1tJSUn5RZhfTOzND7u3fuXy02YNWfppR9ey70Ir3Wh573FglwDrrWa6g72B+SuW8te9yN4H+9JSfBkG0yvTsS3NfWdCCud2rShjKeb/r7Ji8Q2X0DGLAKJakRZUR0gLuj+JevLNjL0ISZabtDCtvQ1BlxAa3hud5s5fsszdEVhASM4EeBrYX1uHiYjkTkxD0A+AB9v4Mp92tn+bzWwAcCfxadlLgFPcfXKyVTVlmB1SU36o4acbfIvsSY5r4l2cf5g1XDtt0JIPO+D122zE3LJBXmy34OwQM+wYNy3zhvO6clqQGb8AekUObwOMznjcpoagdNrjRxmve5M7Z7TieZOAxu2FPwQ272w/792VGoJERERECkx3bggysxLgIiDLTRAeIKTTJLraKF3XicB/k30bsVxzYDLwG3fvsBXgLUmvkPoDcDrxaUFvEf7/mJ1kXflgxouEBq6WtKch6GpCGhPAN8CuLf3smlEOvMGqG3Pat1tERLqM7twQVFXTb0vzhjvcmm0hCrDcnAunVdZOSLquETWb9XWKzyNsa7tuQqf9DOd/6+uLr5o15IO8pPGY2f6EtKBdskyZRGgM+jixovLAjP0JjTgtaXNDUPpGVB2rtgSb7s6I1TznbODqjEOHuNMtU0tFRDpCTEPQaHcm5auejmZmBpwDWbdKnQ2c5O4F0RzT6ND5W2ycSn0z2rHDgINY1SzbHq8AMy1l9wwaXDs3qQbstmhNWpClOHXa4NrHkq4tX8wYCUzJONTWhqCDCX+/Gx3jzmqb3c34AfDXjEP9tUixc1BDkIiIiEiBiWkI+i2s/k15xEvurMhdVR3PzLYgJOFUxgwvJ2yXlfhNkExmVgQcC4wFhhL/QXRNfUnYl3mCuz/bAa/fZmY2gpAWtEXMcGNa0E/d/atEC0tQegVz38jh3qxK64H2NQS9RVjZA/BPd45oxXP+Dv/XBPQJ0NudhracV0REpBDFNAQdAG36HfeFO6/ntqqON6K67Gg3+wurmiNWcf7l7sfPGFz3QvKVrXL43D6brTR+7ObfN9i6Y85irzt+a8PKFdclkYK02mrMehASbM4DimOm1AFnuvsDSdaVJDO2JiyKiBrMqmap9jQEDSUkYzY62p0W/zuasT7hv3njVhVXufOTtpxXRESy604NQWa2KXAL8O2Y4QbgN8Cv3b2gr7WMnmTFn/bts3eK1F5F7ju62U7A5uDrga1H2JJ1KeFa4xeOvwH2uuGv1a/0ebOGLK7N6zfQBlU1vSuxor+2lBZU/03qZ7OGLO7ySeY5aAj6L8I2eI12dOeNVjxvX+CpjENj3JnY2vNK/qghSAxMLQwAACAASURBVERERKTAxDQEjXXnxnzVkwQzO4KwwiAuiv414Hh3fy7ZqlpmZpsDJwGHE25WtbSV1Op8DDxOaPy6vxAba1qZFvRDd3880cLyKGbFdJsagszYGfhXxqEz3bmhFc8bDdyVcajSnUS20BMREelIMQ1Bpe7U56uejjZ09jY9SkuWXe7GObETzCYWfelnTR1RWzDvDQ2zEfP6DE65n4D5sCw3ZdriFTemm3Pn9EG1eUnFXB0zO4CQFpQtKXQSoTEo0RTTfDLjOuDM9MP2NARdAZyfflgP9HJnWSue9yhwaPrha+6JpbeKiHR53aUhyMwOIixI7Bcz/D4hFWhOslVJaxyxsN86y1Y0/DJbWpDDO8XGqVMramfGPL3LyEFD0FXAuIxDa7vzTSue15vQnN3oN+5c3NrzSv6U5LsAEREREem+zKyUcNPn58Q3mUwEfuTuBbe6w93fBy4HLjezdYBBQH9gR2AnwoWFDQlbO60FfEVYkfMZ8Dah0ek14AngOffCi+XN5O6fA2PN7D5CIlA0LWhbYKaZ3UwXTwvKof6Rxy+28nnRON7+oIYgERGRzuSQmn47FZc23OWwV8zwF8CZ0ysW3Z50XavjuFPBHGAOwMg5/bZoKK4/CGzX9Mr0Hc19Yzdbj1VbWCwlfE+fAK9jvO7OSw0rU493hpXp7r7AzPYme1rQKGCwmZ3p7g8mXV8nlfn3/s3WNAOlvcCqhqAdzVjXHX3uEBGR1crYIuwPQGnMlOnA99y9LmZMCsBDAz74GrhweE3vR4yivwLbZ44bbJ1yZlTNK+82aUHttF3G19+0phko7YsWXkcKmBqCpNsws/UJ2zH0Iux53gv4mnBz7gvgPXdfnL8KRUREuhcz2xq4AzgwZngZcK67d4pkJHf/mnDhoE3bRXVG7j7VzPYg7LF+RmS4KH1smJn9UCuqVmv7yOO3W/m86Lwdc1CLiIiIJKSqumxMsdmfCY3jTZk/U2x+3JSBi/+dfGVtN/WgD94Dbst3HR3N3ZcDF5rZA4QtRqLJNOXAA2bW7dKC2ikzWeqtNjwv832wEd5PR5vlRUREmjCz3sDfgZExw/XAb4FfFfpiPQlmDFo894iF/fZavqzh926cTdNFpoZzRklpUdXwmj6nzhi0aFa+6ixgvTK+bnXTlDvLzKhnVX9Jr5bmS+FoFqcl0hWY2TpmNsLMfm9mM83sA+BzwgfEuYQotbuBh4FZwNNAnZktNbMFZnadmY02s83y9k2IiIh0YWZ2LPAs8c1ArwD7d5ZmoO7I3T9z97HAYYQ45ajtgFlmdkM6PUniRVfSRFfaxEqv3FmRcSjaWCQiIiIFaOjs3usNrymfiNnfaN4M5OZcXfpZr4rO0gzUHbn7E8DehKTQhpgpo4CX0lsiSwwzSqHJFmNtWb0ffb+s98EiItIiMxtGuDcY1wz0LnCQu49XM1Dn8tCAD76eVlk7zvGRwH9ipmxj+GNV88pvGDq7d/Mm/O5t3Yyv25q0mDl/3ayzpKCoIUi6DDPrYWajzOwhQhTxVOBCYCjQt5UvsyGwP2EP7LsITUILzOxsM9u0I+oWERHpTtK/rycA97BqC4FME4H93P2lZCuT9nD3KcDuQFzzVmNa0PNmNjjRwjqPzJ8BJ6RXtlbmjZMNclOOiIiIdJRDavrsVlpa9ITByTHDn7nZ6GmVteMmH/bGiphxKSDuvtzdLwQGE7YAjuoDPGhmd5vZRslW1ymsT9Nt11rVFJ8WbR6K+0wpIiK5Md6M58x4M/3nRTPmmnGTGWeYUZbvAltiZiVmNh6YRkjyi7oP2Nvd5ydamOTUjEF100tLVu6BcSPh2lqmxrSgF6qq+wzJQ3mFKnPxZlsbgjLft6khqJNQQ5B0emZWZmaXAYsIqT/fAdbK1csTGoSuBj40szvMbM8cvbaIiEi3Yma7AE8S9uuO+hw4wd3HpLffkk4iIy3ocOCDmCnbAzPN7DIzWzvZ6gpekxU57rRlNVrmzRB9ABcRESlgVdVlY4rxJx12ixleUNTA3jMqFt2TeGGyRtI3EFeXFvSymX0n0cIKXzRBtC03oqLNQ0ojFRHpOLsCewHbpv/sDlQCpwE3AO+bca0Zm+SvxHhmtiUwG7iE5vfClwPnuvux7r406dok9yYf8PHn0ytqx5r5ocB7MVO2wXxm1bzyG0ZOK9c1NJpcf7Sss+KVZHwd9/5XCpAagqTTMrNNzOxqwt7RF9DxK0JKgeOB58zsITPbvYPPJyIi0ugMM6aascCMp82YYcYDZlxmxnfNmm03UHDMbAzwFLBHzPDTwD7ufmeyVUkuufujZE8LKiG8X3vGzPZLtLDCphU5IiIiLbvHjJnp98DzzZhuxt/N+G8z9jdr8wXsRB2+YJNeVTXld6a3CIs2Lrg5Vy/tUTd46kG1b+ejPllz7r4snRZ0EPB6zJQ+wENm9nczWz/Z6gpW9L3rmjQEFfxnYRGRLqwEOAuYb8a2+S6mkZkdBTwLDIoZfhU4wN0nJFuVJGFaRd200pKVu7eUFpRalxdGzO1zcD7qKyCZi3Hbek0x871XW7Z9lTwqWf0UkcJiZgb8kLD6ZnWdx0sIXcALCRG+rwOLga/cfZmZlRL+8dqE0OG8I9AfOJjse1AbIYXo0PSWJ5e6u/7RExGRjjQgy/Ej0/+7zIxrgN+581lCNbVK+qL39cCJMcMOXAOc7+7fJFqYdAh3/xQYa2YPAjfRfNvWXYF5ZnYlcIm7a0uM9stc3BG9yCEiItJVHLma8dfN+IU79yZSTRsMn9dnP/PSOyH2Btli99T3p1cunpJ0XdIx3H2emfUnJBGcT/OFuN8DDjKz09x9RuIFdh3R/65tSdgUEZGWLQMeBl4mNM58DHxCaB4oAjYnLAT7FjAw43k7AP80Yx938nadJ51KfQVwNvGpJxOBs9y9rQuypBOZfMDHnwNjq+aX3UfKbgK2iEzZ1ot8ZtW88puLvuSnU0fUdse/D+1qCDKjiDVb3Ch5ooQg6VTMrB8wC7iZ7M1A7wG/JzT2lLn7aHe/3N0fcPdX3P0jd18G4O4r3X2pu//b3ae5+/+6+2nuvgOwFXAu8EyW85QC5xGifyty+G2KiIi0VU/g54QVOVvlu5hGZjaA8Hs0rhnoI+Db7j5OzUBdj7tPJmyJ0VJa0EIz2zfRwgpP5gfwtm53oBU5IiIiYWHXPWZcnb5AnXeG2Yjq8nHmXk1MM5DDzOJUQ/8ZagbqciJpQW/ETNkKmGZmN3TztKDoFtFteR8c/e+mG1EiIjniztvufMedC9251Z1/ulPjzrPuLHTnQXd+604FcBihYajRrsBP8lM5mNmOwBPAOTRvBvoCONndx6gZqPuYPrBuKj2+2SOdFhRVlE4Len7kvL4HJV5c/mX+7LYlIWhdmvaWfJKbcqSjFcQHZZHWMLNDCTF/2aLcaoBvA1u7+y/c/Xl3b/dqaXf/j7tPcPcBhOaiO4jfD3FL4HEzOz+dXiQiIrKmGgjpdn8D/h9wOnAsUEVYhXMqcCXwSuR5uwCPmtEjuVKbs2AcMI/4xL3ZQP9004h0Ue7+qbuPJbw/+zBmym7AfDO7LL2KqztqsiKnjdueZN4M0QUtERHpKj4BZgATCIu0xhDeS1QBxwA/BW4HlkaedzbhfXNeHT63z2bDa8oeduMqYK3IcD1ulw4eVFc1ZfCSRfmoT5Lh7jXAXoR082iCjQFnAC+a2bCkaysQ0YagttyIim4RpsZ4EZE8cGcKcARNf8+dnI9azOx7hOuo/WOGnwEGuPttyVYlhWD6gE8+m15RO9Y9dZi5vx8zZbuUp2ZVzSu/4YiF/dq6UK8z+3fG12uZ0drrsr0ij+Ma4KUAqSFIOgUzOxt4BNgsZvgF4BB3r3T3R9w951Gx6eaiE4GdgftjppQQoghvM7PoBR8REZE2cafOnX3dOcWd37lzszv3uTPDncnu/NWd89zZjdAolHlDZBdCWlBemNkmwEMQexOkAbgUGO7uHyRdm+SHuz9CiJRuKS3o6XSiVHeT+bNbBG1q5su8GRK9KSoiItIpuXOtO1XunOvOBHcmuvNI+n3w/e78jzsnAVsDf448/SIztku+6qCqus+QlUX+HHB4zPB7kBo6vXLR+EvI/XUrKTwZaUEH0/SmS6OtgOnptKBok0tX9zlNF12uSUPQp2tejoiItIc784DHMg7tZsamSZ3fzHqa2QTg7zT//QBhi7BKd1fTQjc3o3LxFO+5cveW0oKWLW94fnhN78GJF5cf0Z+JHVr5vJ1W8zpSoNQQJAXPzH4NXE3zv69fEVaGDXD3WUnUkt5a7BhCOsM7MVNOAP7ZDT/Ii4hInrhzH2HVdOYF1e+3MWkkJ8zsAOCpdD1RdcBh7j7e3eMS96QLS2/ROhYYDSyJmbI78EQ6Lag7NVdHbw616j1kOgWsNOPQmzmrSEREpBNw53N3/oumDcdrEa7LJGr0JCuuqu4zHvMZQN+YKQ8WF5X2nz5ocXXStUn+edg6rjVpQYckXVu+uLOSptdV27J9WnRlelyzlYiIJGd+5HGfJE5qZrsCTxK2CIv6DDguvUXYsiTqkcLXmBaUwg4H4haqbm8UzaqaV37Z4Y/u0NWTzJ+OPG7tIs19Io8X5qAWSYAagqSgmdkVwEUxQy8D+7v7/7h7fcJlkd7iZG/gvpjhEcBkM+uZbFUiItJdpVfkPJJxaFtgm6TOn7FF2Nws551B2CJselI1SWFy90mErcLuiRnOTAuKfsDsqqIraeK22IsTXbnzeg5qERER6Yx+SdPG+OFJnnzogs03/6Rv75mYXwIUR4ZXmHPujEF1R08Z+N4nSdYlhcXdv06nBQ0hvoFla2BGN0sLyvzv0JZkr8z3wSnUGC8ikm+fRR63pcmzXcxsDGFB4u4xw08Ce7v73R1dh3ROjw1a9Gj9yhXZ0oKKcS5Y2euLZ4bP67Nf4sUl53ngw4zHx7byeUdlfP2KO2/nriTpSGoIkoJlZucB58cMTSI0A72ScElNuPun7n4soUaPDA8G7jCz6MUgERGRjvJ45HFSK3J6A48StggrjQzXE7YIG+nutUnUI4XP3Ze4+yhCWtBHMVP2ABZ0k7SgZyOPW9sI1T/y+Lkc1CIiItLpuFMHvJpxKJH3wADDa8qqSurrnzbsoGZ1wTtFzsHTKmsnOB69ZiTdlLvPJaQFXU3za4mNaUEvmNnQpGvLg2cyvt7erNU3kDPfB7/qjpIfRETya7PI48UddSIz62VmdwB/A9aJDDvh92ulu6tJQVo0a8jST6dX1I417FvEpwXtau7zumpakDsOPJhx6DAzdm3pOWbsDwzMOPRgtrlSeNQQJAXJzEYDV8QMXQcc7+5fJ1xSVu7+R2AMsDIydCQwIfmKRESkm1oaebxhR58wHWv/HDAyZvhd4OD0FmHRaHyRzLSge2OGG9OCnjKzvRMtLEHuvEHT1dFHZZsbcWTG10sIK+NERES6q8z3wRt09MmGzraSquo+4w2bApRFx839noaVK/aeWlm7oKNrkc4nnRY0jvAZ6j8xU7YBHusGaUFTMr4uAb6zuieYsRFQkXHokWxzRUQkMZn/Ln8FvNcRJzGzfQnNpMfHDC8BvuXu49w9ep9OJKtpgxZNbiEtqATngvpeXywcUdN338SL63h/ZNV97RLgFrP4+wlmlAF/YVVfydeEBjzpJNQQJAXHzHYAbiasjMk0wd1/VIg3Fd39H4Q3Ig2RoR+b2XF5KElERLqfjSOP45JXcsLMSsxsPDCd+FXY9xPieed1VA3SNbj7Ynf/LtnTgvak66cF/TPj66Fm7NHSZDO2Br6VcegR92bvQUVERLqTzPfBHfYeGGDYvL5blZSWzUlvERa9rrrMnHOnVdaNmjVk6acdWYd0funtlPcAbiR7WtDzZjYk4dKSMo+mP69nmzW7Fhx1JpD5meDhnFclIiKtZsaehN0yGs1wZ0Vuz2FmZuOAGuK3mJwF9Hf3R3N5Xuk+GtOCMPs2TbfRAsBhNyc1P19pQWacZMYZmX+AwyLTjo7OMWs2pwl33gKuzTi0P/CkGWeZsacZfczob8ZPaL5F3x/c0W4AnYi5UmulgJjZ2sB8ILoS/Hbge4XYDJTJzMYC10cOfw4McPe4PcJFRERywoy7gVHphymgtzsf5/48tgVwBzAoZng5cKG7KyFP2szMyggfRI/JMuUF4BR3j26zlTfpuNzM1f8j3JnextfYEniDVTc3FqRf5/OYuesQGogOSR9KAXu683JbaxcREekK0qtYPwIat2x/wJ2jO+JcVTVlx4DdDGzUbND5F8UcN31g7YsdcW7p2sxsBGFx5BYxww7cBPzU3b9KtLAWmHEdoUEH4D13tmzHa/wC+G3GoZ+784cscwcQtsleN31ovnuTVAoREVkDZnwHOBq4xH31KT9mbEz4dzmzSWCkO9NyV5NtCtxK00VRjRqA3wC/dnctkpKc+Hb1VhutKFpxGc4ZWaa8VORFp0yt/HBhUjWZ8T7Qrx1Pnewe+7OT+dqlwGRgeBtedxJwvDsFfb9emlJDkBSUdNrAJZHD8wlbjnSKqD8zuxL4aeTwLGCY6wdOREQ6gBl9gDeBnulDT7g32dM3R+exI4G/0jyNCOA14Dh3fz7X55XuxcxGEbaJ3SRmeCXwJ+DipN8bmjGC5tuQbA/8LuPxbwiNS5k+dmfmal77f4BzMw69TLg58jhQB/QmNOH9gqaN87e684PWfg8iIiJdjRk/Ba7MODTWPTbyv92Gzt6mR2nJssvdOCdLERN7rl105kMDPiiY7e2l8zGzXsAfgNNpnpoO8BbwQ3d/PNm62BgYFjN0OlCV/vpj4KyYOQvTq8+zvfb6wCvA5hmH/05YJPAqYcHJVsBxwM+Bxi3UUsAwd2a3+hsREZEWmXEscA/hustDhH+PZ0cXK5lRQtju/I+Ef6MbTXNnZO7qsYOB24hvhHgfONHd5+bqfCKZRlT3GeXmfwY2ixmux7hyow03/eXdu770TUfX0pENQenX7wGMB85j1SKLOI3XZH/pTod/35JbagiSgmFm2wMvAj0yDi8F9nH3d/JSVDuYWQnh5k10lcpJ7n57HkoSEZFOxIyBwAnAr91Z0or5axESQ0ZkHD7Vnb/mriZbG7gCOJv4i9MTgR+5+5e5Oqd0b+m0oOsg6wr/5wlpQc8lVxMv0nTlW2utdvVyekXOo8TfbMnmKWCoOwWzUlxERGRNmHEp8G/gttasOE1vU1ENrJ8+9CmwrTtLc1XTyPn9dk6lGu4ibGMa9bk5Z06rrL0jV+cTMbORhESguLSgFCFJKLG0oJhEzLY4w52bVvP6ewNzWNXs0xrnuqNUWhGRHMpoCMrUQGjQXETYCaM3sBer3ns1ehs4oDXXMVdfhxUB5xMWScU1JzxEaJDNeSq6SKbD5/bZrN5S17rZd7NMeTGVKj7lscEfPNORdZjxbVYtAm6LRe5Ut+E82wKjCankfQmpqB8TGvCmA/e0Jj1MCpMagqRgmNnDNI/+O87d7+6Acx1I6GJu9Dt3b7Ytwxq8/jbAS8A6GYcXATsUUryviIgUHjMOAR4DvgLuAv5GaCholoZixgHA1YQ9fhu9DPR3pz439diOwJ00384T4EvgLHf/Ry7OJRLVirSg35FQPHRHNgSlX389QuPdmcQ33mW6FfiJO5+2ox4REZGCZMZE4GRCU9DNwKS4dJH0KtZTCL83M29IXeDOFbmqp6q6bAxm17Jqi6JMC4uLUsdPGbhY28NLzpnZBoS/39m2q3iTcDN0TsfX0rENQelz7E14fxvXeJdpKTDOnYntrEdERLIw40jggXY8dTZh+6C6Na/BygjJRCNihlcCFwNXaCcOSVI6LehaYNOY4UTTgkTaSw1BUhDMbG9gIU1vfkxz95xFDEbOF93Wa3N3/yDH5/hvmm4hAfAzd/9TLs8jIiJdS0ZDUKavCL8n3yc04WxMaNDZLjLvU+BAd17LTS32XcLNmOg2SRAaj45z95dzcS6RbMysHLgeODLLlAXAD9z9Xx1bB6cS/+F/dT5sy00LM/YipIRVEVbkbAZ8RGgufwy4y52n2lGHiIhIQctoCMr0H0Ka9BJCOsrmwIFAr8i8h4EjW5MstDqVNZut35Pi64CTYobdnGs23HjT83XRXzqamR1KSAvaPGa4MS3oJ+7eYdvVpbenHtPOp09xp1VbSqeTb78DjCKkT/QD1gJqgTeABwnvg9c4fUJEROKlm0Abr0fs1sJUB54mbBt2Ty7ef5nZcEICeXnM8DvACe7+xJqeR6Q9Rs4r751yuxb82CxTXkilin/Q0WlBIu2lhiApCGZ2L3BMxqGVwK7unvOVVmbWk7DarG/G4Y5oCFqLcNFqx4zDi4Bt3X15Ls8lIiJdR5aGoNZ4HTjWnZfWvAbrCVwGnJNlykRgrLsvW9NzibRWOi3oekJDXNRywn7Xf0wiLUhERERyL0tDUGuk35uyxu9Nh83tt09RccOdODvEDH/kzg9mVNY+vKbnEWmtVqQF/ZuQFjQ3uapERKSrM2NDYFdge0Ii4zqE7YOWEJKQP8rNeawEuIiQ/lMUM+Ve4DR3V0Ky5N1q0oJWYvxJaUFSiNQQJHlnZjsQ9iHN/GV/i7v/sAPOtT5wG2HFSaacNwSlz/d9QuRtptPd/eZcn0tERLoGM4qAYcCJhIjcvi0/g0XAlcB17qzxylAz25WwRdgeMcOfERqB7lrT84i0Rzot6AbgiCxTniCkBb2aXFUiIiKSC2ZsRFiVfjRQCfRoYboDc4BfuTMzF+dPbxF2PdCz+cl8jhc1nPjYwI9yfu1IpDXM7DBCWlC/mOF6wmfCS9x9RaKFiYiItJOZbQncAbHbrC8HLnT3CclWJdKy4QvKyqy+6FrwY7JMeYGi1CnTBy5+NtHCRFqghiDJOzP7NaEDuFEDsJu7r/F2J2ZmhFXkOwNDgdOBLWOmdlRDUCnwGrBNxuFqdx+c63OJiEjXZMa2wO7ADoStEdYGviBEpz8JvOROTt7QmdkY4DrCqp+op4Dj3f2tXJxLZE0oLUhERKRrM6MHYauK3YA+wEaE60UfE7YRezxXWwdVLdx4A1asdRPOqJhhN+eaT3rWnff0AF+Zi/OJtJeZbQhcTva0oFeAU9xd28uKiEhBM7Ojgb8Q3uNFvQoc5+4vJFuVSOul04KuAzaJGV6J8aela9ddrM8QUgjUECR5ZWZFwJvA1hmHJ7v7t9bwdbcEFhL+IbZWPKVDGoLStZxPiPZt5MAO7v5mR5xPRESkrcysF6G54oSYYQeuAc53d8WdSsEwsz6EtKBo8mOj+YS0oDVuMhcREZGuadj8PvsXpfxOmi7karSYIh8zfWDd1KTrEmmJmR1OSAuKS5NVWpCIiBQsM+tBaG49J8uUicBZ7v5VclWJtM/wBWVl1Nt1FhJOm3F4vshSp0yrWPxc0rWJZIrbj1EkSQfStBkIwi/8NVVK2MOxNc1AHe12wiq2RgaMzlMtIiIiTZjZvsAzxDcDLQG+5e7j1AwkhcbdF7n7EYT3VUtjpgwEnjWzC8ysONnqREREpJAZZiOqy8cVpbyauGYg57H6lam91AwkhcjdJxPSs26MGS4BLgAWpj/riYiIFAQz24mweCuuGegL4CR3H6NmIOksZhxQVzdjUO0x5jaakGTahMFe7kVPVlX3GT96kq5NSv6oIUjy7ZDI4y+AB/NRSEdJJw/NjhwenodSRERE/o8F44AaYLuYKbOA/u7+aLKVibSNu08i3BB5OGa4J3AZMDd94UlERES6ucPn9tmsqqb3I25cRVhQlqket0srK+tGzBqyuDYf9Ym0hrt/6u5jgW8DH8ZM2Q2Yb2aXmdnayVYnIiLSlJmNAZ4G+scMPwPs4+63J1uVSG5Mq1w0qX5lanfi72+XYn7J0r5lNVVP9N0l6dpEQFuGSZ6Z2UxgaMahh90927YPbXndtYHdswzvDPwjcqzDtgxL1xPdNmw5sJG7L++oc4qIiGRjZpsCtwJxW3Q2AL8Bfu3uDTHjIgXJzAw4HfgjsH7MlGXApcAf3D2VZG0iIiJSGIbX9Blq+G1An5jh/1jKT5w2uK4m6bpE1oSZbURogj8jy5SXgFPcfWFyVYmIiICZrQdcB5wcM+zANcDPtc2ldBUjqvuMcvPrgY1jhpeb2/gNF9X+8e5Ruu4uyVFDkOSNmZUQEoF6ZBz+mbv/qYPPuw8Q/QDc0Q1Bcecc7O7VHXVOERGROGZ2MHAb0C9m+H1CPO+cZKsSyR0z2wq4meyJjPOAH7j768lVJSIiIvk0dLaVlJSUX4T5RUDzuH7jgWIrPXXKwPc+Sb46kdwws1HAn4HNYobrgSuBX2o7aBERSYKZ7QbcRUiti/oMOD2d+izSpQyd3bu8pLToBuCILFOeKCoq/sHUgR+8mmRd0n1pyzDJp21o2gwEYduSrug54MvIsV3zUYiIiHRPGVuETSe+GeifhC3C1AwknZq7vwuMAMYSms+jKoDnzOwCM9PnIRERkS5u6ILNNy8p7T0T80to3gy0wpxzZ1TUHaNmIOnsMrbSvSdmuAS4AHg6vXBRRESkw6S3CHuS+GagJ4G91QwkXdWsIYtrpw+qPdLcRgNxnzEOTKUanh1R3eeC0ZOs+WIFkRzTBXDJp51ijr2WeBUJSG9L8e/I4R3zUYuIiHQ/ZtYbmAJcBZRGhusJ2ygd5e4fJ12bSEfw4EZgT2BmzJSehG0V5pjZDokWJyIiIokZUVN+REl9/XNgg5uP2utmqQOnVdZOcBShLl2Duy9x91HAaOCjmCl7AAvM7DIzWyvZ6kREpKszs15mdifwN2CdyLADVwOV7v524sWJJGxa5aJJxamG3T0sxI3q4eaXLe1bNnfk/H47J16cdCtqCJJ8it58qXP3T/NSSTKizU5qCBIRkQ5nZsOA5wmJKVHvAge5+/h086pIl+Lu7xC2DhtL87RGgEEoLUhERKTL2XehOLPdEgAAIABJREFUlVbNK7/M4QFgk2YTzCbWr2wYMK1i8XPJVyfS8TLSgu6NGW5MC3rKzPZOtDAREemyzGw/4FnguJjhxcDh7j7O3VcmW5lI/kwZvGTRjEG1R6TTgpbGTBmYSjU8o7Qg6Ui66C35tHHk8Qd5qSI570ceR79/ERGRnDGzEjMbD0wDymOm3EfYImx+ooWJJCySFjQrZso6hLSgx81s+0SLExERkZw77Ik+W2+0vGwOzgWARYaXmXPu9IpFY2YNWRzXLCzSZbj7Ynf/LtnTgvZEaUEiIrKGLBgHVAPbxkyZSbgGOSXZykQKRzotaDeMh2OGezamBR1S0y9udx2RNaKGIMmn9SOPv8hLFcmJfn/R719ERCQnzGxLYDZwCc3f7y0HznX3Y7t4Mp9IE+k46mFkTwuqBJ5XWpCIiEjnVTWv7Nj6Bn8WODBm+JUiY/9plbUTkq5LJJ/SaUG7ExaFRJWitCAREWknM9sMeBi4Cog2l9YDlwJV7r4o6dpECs2UwUsWzaioOwJnLPH3xAcW0/DsiOo+F1yKrk1K7ugvk+TTepHHXb0h6PPIYzUEiYhIzpnZUYR43kExw68CB7i7boJItxRJC5odM6UxLWhKurFOREREOoGhs7fpMaK6fAJu9wAbNptgNrFnj+L9plbUvpR8dSL55+517n4sIS3o45gpmWlBpclWJyIinZGZDQGeAw6PGX4PGOru4909lWhhIgXMcZ9eWXtjyor2AGbETOnp5pfVVJfNHV692Y5J1yddkxqCJJ888jga49zVRH/eot+/iIhIu5lZDzObANxP/LaUE4F93f2FZCsTKTzptKBDCGlBX8VMqQJeNLMzzKyrv0cVERHp1Kqe6LtLSemyBW6cEzP8uRsnTK9YNOahAR98nXhxIgUmnRa0G+FzY1RmWlD/RAsTEZFOw8yKzWw8oZmhb8yUBwlbhFUnWphIJ/JYxYfvzhhUNyJbWpAbFWbFzyktSHJBf4Ekn7rbFlrdbYs0ERFJiJntBMyH2JsgXwAnu/sYd49rfBDpliJpQY/HTOkF3IDSgkRERApWVXXZGBpSTxF+n0c9nTLfZ0ZF7Z1J1yVSyNJpQceQPS1oL+BJMxtvZsXJViciIoXMzDYHZgKXANHfESuAc4Gj3f2TpGsT6Wwa04JKim1PDz9XUT3d/LLqmrI5I+b03iHxAqXLUEOQ5NOXkce98lJFcqLfnxqCRERkjZnZGOBpIG4F5zPAAHe/LdmqRDoPd38LGEr2tKARKC1IRESkoFTWbLZ+VU35bZj9DVg3MuzmXL3RRpsOeqyi7s181CfSGaTTgnYnJDlElRJu9taY2S6JFiYiIgXJzKoI1yAPihl+BzjY3Se4u3bHEGmDRw9c9M5jg+qGp9OCovfOAQZ5cZHSgqTd9JdG8umjyOOuvvI6+v0tyUsVIiLSJZhZTzO7AfgbsF7MlBuBCnd/I9nKRDqfjLSgvYA5MVMa04IeNbMtEi1OREREmhg2t98+PSl+BjgxZvgjzL4zrbJ23N27vvRN0rWJdDbuXuvuRxHSguLSHA4AnjGzC5QWJCLSPZlZSXqLsClAWcyUe4C93X1BooWJdCEZaUF7ALNipqwT0oLKHz90fu/tk65POjc1BEk+vR55vLGZbZKXSpKxU+Rx9PsXERFpFTPbFXgSOCNm+DNgtLuPdfcVyVYm0rm5+5usSgv6OmbKSJQWJCIikheG2Yjq8nFFRQ3zgOYXwY3HU0X1/adXLHok+epEOrd0WtBuwEMxwz2Ay4BqM9s50cJERCSvzGwrwsKpS2h+T3kZcK67j3L3TxMvTqQLevTARe/MGFQ3LHtakFc2pIqeV1qQtIX+okg+vRZzbNfEq0iAmZXS/GKVGoJERKTN0luEPUWIdo96krAiZ1KyVYl0He6eSqcF7QnMjZmyASEtaLKZbZ5ocSIiIt1U1cKNN6iq7n23G1cBa0eGUxiXb/RB3bDHBn70QT7qE+kK0mlBR5I9LehA4FmlBYmIdA9mdgzwLDAwZvhfwAHuPiHZqkS6vsa0oKIG9qTFtKDes4fNK9su6fqk81FDkOTTuzTvbhycj0ISsB9hNU2ml/NRiIiIdE5m1svM7iBsEbZOZNiBq4FKd3878eJEuqB0WtAQ4FwgLm3rUOAlM4tL6hIREZEcGVldfgDL13rWzb4bM1xn5odNr6i98O5R3pB4cSJdUHqBye7AP2OGG9OC5ppZNA1dRES6ADPrYWYTgHuBjWKmTAT2dfcXk61MpHuZelDt2xlpQV81n2GDi9yeqaouP8NQkrlkp4YgyRt3T9F81fXQfNSSgGGRx18Az+SjEBER6XzMbF/C743jY4aXAIe7+zh3X5lsZSJdWzotaAKwDyGBK2oD4AYzU1qQiIhIjjVuEZYy5gLbxEyZUb8y1X9aRd20pGsT6ercfZG7H0FIC1oaM2UgSgsSEely0ltDLgDOiRn+HDjR3ce4e9w26yKSY41pQTh7YjweM6UXxg3Da8qmVNX02zLxAqVTUEOQ5Fs06qzSzDbISyUd67DI47m6aSsiIqtjwTigBoiL/5wF7OXuU5KtTKR7cfdXgEHAhcSnBR0GvKi0IBERkdwYOa+89/Ca8snpLcJKI8P1uF1aOahu5Kwhi2vzUZ9Id5FOC9oNeDhmuCdKCxIR6TLMbAzwNGEL9aiFwAB3vyPZqkQEYHpl7VszKuqGZk8LYgQ0vKi0IImjhiDJt+mRxz2AuAjoTsvMtiPssZ0p+n2LiIg0YWabEi66XgWsFRmuBy4Fhrv7oqRrE+mO3L3e3S8HBgBPxUzZkJAW9IiZ9Uu2OhERka5j5LzyQ1LOc+CHxgz/J1XkB0+vXDT+EjyVeHEi3VD6M+cRwFhC6nlUZlqQ7jeIiHQyZra+mf0D+BuwbmTYgauBCnf/d+LFicj/aUwLSpnv5ficmCkhLai6/NGRc/ptkXiBUrD0Bl3yyt2fA/4VOTwmH7V0oO8Bmd2YDcDdeapFREQ6ATMbAjwHHB4z/B4w1N3Hp7ffFJEEufvLQAXZ04IOB15SWpCIiEjbDJ1tJVXVfcannOlAn+i4w/1r+9r9HxtYNy8P5Yl0ax7cCOwBzIiZkpkWtGOixYmISLuZ2T6E9J+TYoY/Ao5w93Hu/k2ylYlINo9V1L05eNDixrSg5tv3mY9MFSstSFYxd893DdLNmdkvgN9GDu/n7k930Pka3+Bk2tzdP+iAc/UA3qLphayp7rGr3EREpJszs2LgYuAioDhmykPAD93940QLE5FYZrYbcCuwb5YpjwBnuPuHiRUlIiLSCY2c02+LVHHqdvDKmOHl5lw4rbJ2QuKFiUgzZmbA6cAfgfVjpiwjJNr+QYtYREQKV3qLsOsJTZ1Rc4ATO+K+mYjkzrB5ZdsVObeADY6fYVPqS4pPn3XA++8nW5kUEiUESSH4O7AycuzCfBTSAU6n+aq2W/NQh4iIFDgzKwMeBS6heTPQSsLvxqPUDCRSONJpQQMJP59xq+W+BbystCAREZHsquaVH5kqbnguvhnIXyt2P1DNQCKFIyMtaE9gZsyUxrSgOWa2Q6LFiYjIapnZBmZ2F2GLsGgzUOMWYcPVDCRS+B6rqHuzctDiIeacCyxvPsMPLamvf6mqulzXJrsxJQRJQTCzW4HvZxxKEVKCnumAcyWSEGRm6wGvAX0zDr8J7Ozu9bk8l4iIdG5mNhyYCJTHDL8DnODuTyRalIi0iZntTmj8HpBlysPAWKUFiYiIBIc/usPa9et/cYUbZ9N0q/XAbGL9Nw0/mjVk8ZfJVycirZGRFnQlsF7MlK+BX6G0IBGRgmBm+wN3AtvEDC8Gxrj71GSrEpFcGD63z65F5re4sX/cuOGPriwpPUNpQd2PGoKkIJjZzsDLNE2teho4oD0fFs1sQ2BsluF+wNmRY78DPo+Z+7W7X9PW86dr+ANwXuTw6e5+c3teT0REuh4zKyFsD3Yx8cmN9wKnufuniRYmIu2S/pn+GeGmx1oxU5YC49x9YqKFiYiIFJjDnuizdX2D3wkcEDP8pZmfNa2i7h9J1yUi7WNm2wB/AYZmmVIN/MDd/51cVSIi0ijdwHkO8AegNGbKY8DJ7l6baGEiklNDZ1tJaUn5z9z8UmDtmCmf4lwwvbL2xqRrk/xRQ5AUDDObCJwcOfwjd7+uHa+1HZCLD5iL3b2sHeffk9DQlPnG6g1gd3eP205CRES6GTPbCrgdqIgZXg5c6O7aGkGkEzKzPQhpQftkmTIJ+LG7L0msKBERkQIxfF6f75r7TcCG0TGDl+ux42YOWvRyHkoTkTWgtCARkcJkZpsRtgc7LGa4Hvgt8Cv92yzSdRxS02e3YvwWYL8sUyaniurPeGzgR9oasBtQQ5AUDDMrA16l6QWh5cCB7v58G18rbw1BZrYu8BSwS2ToW+4+OQc1iYhIJ2dmRxNWT24UM/wv4Dh3fzHZqkQkl8ysFPgp2dOCFhOa3+9NtDAREZE8qZi/Rc/1GlZe5sY5sRPMJvZcu+jMhwZ88HXCpYlIDqXTgv4KDMkyZTohCfc/iRUlItJNmdlQ4B9A35jh/wAnuntNslWJSBKUFiSN1BAkBcXMzgaujhz+F2HrsC/a8DrbAAtzUNJH7r5jW56QJenoXnf/bg7qERGRTszMegCXQ5abIDAROMvdv0quKhHpSOnkyFuBvbNMmURoDPoosaJEREQSVvVE311oSN0F7BEz/LnDGTMG1d6VdF0i0jEy0oL+BKwbM+Vz4HzgJtcNChGRnDOzYuBi4CKgOGbKA8Cp7v5JooWJSOLSaUG3AvtmmfKI0XDGtEFLPkywLEmQGoKkoJhZETAFqIoMzQIOc/cVyVfVemZ2KfDLyOHFQH93X5SHkkREpECY2U7AXcBeMcNfAGe6++3JViUiSchIC/o1TbeUbbSY0Ax4X6KFiYiIJKCqumwMZtcB68QMP4Vz/PTK2reSrktEOp6ZbUtICzo4y5RpwOlKCxIRyR0z2xy4HRgcM7wCuAC4Wg2ZIt1HRlpQtiRzpQV1YWoIkoJjZr8ELo0Zugs4yd0bEi6pVczsLODayOEUMMLdH8tDSSIiUiDMbAzwZ2C9mOGFwPHunoutLkWkgJnZXoS0oP5ZpigtSEREuozDF2zSa2VD6fU4J8QMuznXbLjxpuffvetL3yRenIgkRmlBIiLJMbMjCI2Ym8QMvw4c5+7PJVuViBSKkfPKd085twIDYicYD5s3jFVaUNeihiApKGZ2LvA/LUx5ADjB3ZcnVFKrmNkFwO8Biwy9TEgHqk++KhERyTczWw+4juZbSQI4cA1wvrvrJohIN9GKtKA6QlrQ/YkWJiIikkMjq/sOSFnqTmD7mOElhp0ybdCiyUnXJSL5Y2bbEW5SH5RlylRCWtB7yVUlItI1pK81/Br4Oc3vUwFMJCxA+jLRwkSk4LQiLWipuY+bVlk3MenapGOoIUgKhpmNA65qxdQ5wCh3X9zBJa1W+k3WlcDZLUy7CzhZTUEiIt2Lme1G+B2wW8zwZ8Bp7n5PslWJSKEws/0JaUG7ZJkyidAY9HFiRYmIiKwhw6yquuwcN64g/uLybKPhJK04FemezKwIOI2wIDRuG8HPCDezlRYkItJKZrY1cAdwYMzwMuC/3X1CkjWJSOGrml++B+634rZP7ARjUmmD/Xjy4EVLEi5NckwNQVIQzOwM4Hqady4/C+wd85QPCduHze7g0rIys62AO4l/kxU1CThRTUEiIt1Deouw64GeMcMLCGl3bydblYgUGjPrAYwHzgOKY6bUAWe6+wNJ1iUiItIeQ2f327RkrYZbcL4dM9yA2282WlT767tHFeZW8CKSnHRa0C3A4CxTphDSgt5PrioRkc7HzI4FbgY2jBl+hbBF2EvJViUincW+C61042XlP20hLWgx5j+aXlF3b9K1Se6oIUjyzsxOB26geTPQ3cBJwKnAn2l+k6SBsNXKJe7+eUfX2Si9kuUM4HfARjFT5hOahGK/HzUFiYh0XWa2AeF32nExw41bhJ3n7isTLUxECpqZHUBIC9o5y5RJhMagTxIrSkREpA1Gzut7UMpTtwP9omPm/r4VFZ80teLDOXkoTUQKVPoa69nA5cDaMVM+A37u7jcmWpiISCeQXmB0OXBOlikTCdcRvk6uKhHprIbPLdvTiopuBY8L6QBjUv03xT+aNeSDj5KtTHKhKN8FSPdmZqcSnww0iXTzjLvfAIwGlkfmFAPnAv8ys++bWUkC9R4MPAFcR3wz0BXAIOAswo3fTKOB25KoU0REkmdm+wHPEN8MtBg4zN3HqRlIRKLcfQEhFfNyQtN71CjgZTM7MtHCREREVsMwG1FdPi7lqRnENQPB9FQp+6oZSESi3D2V3sJmH+DJmCkbADeY2WQz2zzZ6kRECpeZ7UxIII9rBvqckEw+Rs1AItJaMwbXvbC0R+0B5nYh0Pz+hTOqpLTh5aqasmOSr07WlBKCJG/M7IfATTRvTLuH8IalPjK/PyFlZ4csL/k24SbKbe7+ZQ7rLAYOAy4AKrNM+wI4w93vzHjeOOCqmLlKChIR6ULMzAgfwK8gPlZzJnCyuy9KtDAR6ZTM7EDC9glKCxIRkYI2cl5571TK/o75yJjhetx+W1lZ+6tL8FTixYlIp5JeQPkz4FLi04I+BS5QWpCIdHdmNga4Flg3Zvhp4Hh3fzPZqkSkKzm0umyvBrNbgf6xE5QW1OmoIUjywsx+QNjXNNoMdB/hDUtseoKZrU94s3NyCy//FXA/ofFmtrt/0Y76SoH9gWOAE4A+LUxfSGhgeiPmdc4F/ifmOXcRbg6rKUhEpBMzs82AvxEaR6Pqgd8Cv3LXTRARab109Pd44Dyab5sLsIjQFPRQknWJiIg0GjG3fJgX8Q+gPGb4XTc/YUZF3fyk6xKRzs3MdiM0x++XZcpkwqLMD5KrSkQk/9L3xq4HTowZduAa4Hx3/ybRwkSkS9p3oZVuvKz8p27+a6A0ZkqduZ81rbLu/qRrk7ZTQ5AkzsxOAf5C82ag+4HjWrOViplVAf8L7LiaqfXAU4TO6NeA14FPgKXAl8B6wPrpPzulX29PQhLQeqt57c+Ai4Fr3T1ua4fGWtUUJCLSBZnZUOAfQN+Y4fcIzaI1yVYlIl2JmQ0k3BDZKcuUScBYd1+aXFUiItKdDZ1tJSUl5RdhfjHNr+sAdt/avtZpD1e+q99NItIuSgsSEWnKzPYh3E/aPmb4I+AUd38k2apEpDs4tLpsr3qzvxnsFTvBmOQlJWfN2P/9jxMuTdpADUGSKDM7DriN5iudHwWOdvcVbXittYH/IqycjluR1lGWERqafuvuta15gpn9BPhTzNCdhKagrA1FIiJSWNJbSV4MXER8cseDwA+1nY+I5IKZ9QQuoeW0oLHu/s9ECxMRkW6nqqbfltBwOzAoZni5ORdOq6ydkHRdItI1pdOCbgX2zTLlEUJa0IeJFSUikiAzM+Ac4HLiGyQfB05SapqIdKShs7fpUbLWsvF41muTdZ7yM2cMrnsg6dqkddQQJIkxs9GEZqCSyFCbm4Eir9sTOJXwxmiHNSqyZR8TVmhf2dpGoEwtNAXdCpyq7WRERAqfmW1O+F12UMzwCuAC4GrXGywRyTEzqyC8F82WkDkR+HF7tssVERFZneFzy46yIvsLsHHM8Kue8uNmDK57Iem6RKRry0gL+hWwVswUpQWJSJdkZhsANwGjYoZTwB+A/6fF5iKSlJHV5Qek4BaMXWInGJOKrfTMKQPf+wSgsmaz9Tf0dUpSpV82TD7g488TLVaaUEOQJMLMRgG307wZaAqhGWh5js4zEPgecBTQJwcv+SUwlbAlzOQ13X/VzH4KXBkzdCtqChIRKWhm9h3CzfhNYoZfB45392eTrUpEupOMtKDzid2mhXeB09x9RqKFiYhIl3X4ozusXb/+F1e4cTZgzSaYTSz60s+aOqL2q+SrE5Huwsx2J1w/HZBlysOE1EylBYlIp5b+3L8HYXeJbWKm1AFj3H1aooWJiNCqtKB64BtgnZixz4D3wF4z/HXHny4uWmt2YwORdBw1BEmHM7PvAnfQvBloGnBkrpqBYs67C3AIcACwE2E19YYtPGUF8AbwGvAcMBN40t3rc1xXtqagWwg3cNQUJCJSQNIrEi8ibBMWdwP+HsK/358lWpiIdFtmNojw3jEuHdMJqwjPU1qQiIisieHVm+1oVnwX0D9m+AvHz5oxqO62pOsSke6pFWlBS4Fx7j4x0cJERNrAzNYCDiTct9ox/ef/s3fncVbV9R/HX+87A4iIiigzgGZmrqmpmCaDBsqAu6WJmktmWa793NKs3HK3MjW1tDJNTYWyxJVFIGHA3XLLNS0XZlBBcQEZ5n5+f5xLnvu9d5iZu987n+fjwePH/X7PnPOZ3+/n5Zzv+Xw/n88BA4BBXfz4P4ADzOzlogbpnHMrsevchg2FfiTTIWDZ2hn2RBLZP0gm7qqr67j5/h0X+PdbEXhCkCsqSfsTZTKHyUDTgH2KlQy0knjWIKrsMJCo52oH0cPih8C7pSqvKOkU4OdZpjwpyDnnKoik9YmSWnfMMr0EOMPMrihtVM45161qQUuJWt72JVpYXJUoAf5D/rcjhxdTf54A5pb63tw551zlap7TcDjS1cBqGZOyJ7TcDpq684KXSh+Zc663k7QlUbWgbTs5ZCHwEdH310CidenFqbH3gJeJNoS+AMwxs+eLHLJzrpeTtBZwEFFniyayV87oruXAY8A9wM1m9lreATrnXBcmTFLdomENBwLHAiPJVj02fyZjXlJ2zVpvLbht4gHeErFQPCHIFY2k/YiSgfoEU9OJkoGWlD6qyiHpVKI+r6HrgaM8Kcg554pP0oZEu3I2JdqR81lgLaKX5wNT/zPbze1rRC0v/1GSQJ1zLotUsvuZwDHkt6AIUQLRXKJFxVvNbH6e53POOVehJjy3Rd9FixZsb1a3lWSbYtoY2VCil+eDMFZFZN3pafDXjxN9Dpm74+u9ek3HOVdekrYGribavJPvC6n5wAPAJOA+M2vP83zOOQeApNHA94E9yV7ZLF8GzAF+A9xeqg3vzrneY8ws1ffp03CEwenA50t46VcEF7e3t90wc3RhO/n0Rp4Q5IpC0h7AHZCxgDQb2N3MvLc8nhTknHOlJqkPsBuwH1Fbyc/kcboPgQeB+4geut/OP0LnnOuapFHA8cC+wCpFuEQHUXvfa4HJ5g+NzjlX9cbMGtJY3ydxEKbdkI0iSnzP1auCGaA72ttbp/oCrXOuFFIVMo8Avg2MKNJl3iGqEnyFmb1SpGs452pc6v3Yj4mqaJTKK8DFwI2e2OicK4Rd5zWMTCT1a2Crbhz+OrKlMr1nxm8socVK2num5CeyRD9LaE0lbXVhm1hCG2NsS/fezTylpB07dae2lvx+m97NE4JcwUnaHfgrmclAc4iSgT4sfVSVS9IPgEuzTP0e+K4nBTnnXP4kfR44ATgYWKcIl2gH7geuA+7xl+fOuWKQ1Az8BNi5hJd9GriIKPHR70udc66KnIsSs2cP2UcJHQWMI7OdeyG0ArdiXDVtVOu/i3B+51wvJ2k1ooqYJwONJbrscuB24EIze65E13TOVbnU+uNVwPhuHL4YeJKojfcLRFV7zyZat2wHJgIPAxsBmwBbAkO7cd5ngOPM7MGexu+ccwD7PD581SVLOi5HfIfOKzF2YJou2Z/NmJHLs2DznMbPSexicACwK1DXyaGG8bvEx5w0ZVyrFxzJgScEuYKStBtRMlC4U7kF2M2TgbLzpKDikVgTGAQsMMP/oXCul5G0JXAGMIHObygL7SngQmCSf3875wpB0ueAK4nKjHflI+ADogXE64AFRBXN2om+B1cnujfakGhRcStgzW6c9xHgWDN7vKfxO+ecK60Jk1S3cNiQgxLoDIMvlOiyy5FuJaGLpn35rX+V6JrOuRon6QDgMmDdbhzeRtRGdzYwjei++L3UXH+iymjDiO6BNwE2p+tEyeVErcnOMrPFPY3fOdc7SEoQrT/+hJVX8f0HUbLhDODxsMWXpO2J3gkdZmb/yHKdzYAxRJXPxwCJTq5jwA3A/5nZBz36ZZxzvdrY2UM3V8ImEd0nZbMAcaWs4w9Tm95+q1DXHdeyzjBT3bcwvg8M6eSw5yypA6bvNN+TtXvIE4JcwUgaD/yNzBueuUTJQH7jsRKSTgMuyTL1O+B7tfxSWeJMogx3gBPMaMvjXHXAIcBBwGiiB/4V3iNq7XOTGffleg3nXOWTNAi4APgenT8cr5AkKqv7PNGOnI+IWvEMJnqAbgFm8unL803pXouFx4BjzOyxHH4F55xbsah4GnAW6fc0oWeBScADwMNm1i6p3qzrFi6pa2xN1EZxP2DHlRzeAVwDnGZmS7v3WzjnnCulsXMbdpTpGqLv9q58CPwLeFHYi8DnDH0TwOBDmSZZgoUy25ToPvhzdH1v3SHjauu/7KxpIxa+n8ev4pzrxSQNJ3opvrIqG+3AvcDdwEwze6W798Cpa6xOVHmzmWgT0cqqD71F9Hw/uTvnds71HpIagZuJqltkswS4HrjOzJ7qxvkS3XkXJGk9ojaKJ9B5NfQXgQlm9s+uzuecc2NnN3xVCd1ClGAdesfEeav2q/vd5BFvflysGPZ5fPiqS5d0HGXRe+PBWQ75yJJ26PSd2v5WrBhqkScEuYKQNA64k8xkoHnAeE8G6h5JpxP1eQ3VbFKQRF/gdT7N+Py8GTn16JbYCLgJ2KEbh08CvmfGolyu5ZyrXJIOAq6g80xyiHYO/hmYDjxoZguDc3yJ6N+1o8zsnmCuHtie6OX5vsB2K7lOEvg10cvzot0oO+dqj6QhRIuKzZ0c8gnRjr/fFrJqj6SNgW8RtWVYo5PD/km0qPhioa7rnHMuP2NmDVmtvj5xGeLbrDxp5yGDyYKZy9vbHps5Ov3FefPchqsxbSY6Dg2UuLgzAAAgAElEQVR3fI59ZN3BWt4+GkuMBfs6sPZKrjMf7PhpTW135P5bOed6o1QF+j/S+QvuV4HLgT+Z2TsFumY9UWvFY4E9yN4ew1LX/aGZLSvEdZ1z1U3SdsBdZE8oXEpU6fcXZragiDGsChwF/Jjs35tLgSPN7NZixeCcq37NcxoOR/o9mdUTDenmPh2ccu9O898uVTx7zVl/0DI+OcfE8WQ+33ZgHDttVOt1pYqn2nlCkMubpGail6bhruV5RJWBvJxqD0g6h6hXbOi3RElBNfUfrcRFwA9jQzklBEkMBR4CPhNMfQC8S3RTHiaszQbGmuEP8c7VAEn9iR60v9PJIUa0c/BaYEpXuwYlrdKdChiSNid6ef5dolY82TxD9PLc2yc457okaQTRouLQLNOfELUt+LmZzS9iDGsQVUv7AdkTgz4ADjGzu4oVg3POue4ZO7thKyWYCNqkk0MWAdd2UHfDjKY3X1jZuSY8t0XfL2z+7PKzWfmGpO0eV5+1ljbsbugYsN1WcuhVfRYPPPXe3V/6pItfwznnkHQWcA7ZE3JeBn4K3NrdKkA5xrA1cCZR9cxsHgL2MbOSvRRzzlUeSWOIOmZkWwucSdRy+/kSxrMmcC5wHFG78Dgj2qz481LF45yrHuPmNP6fiV+Sef+1gIQdPm3HtinliAtg3NyGcWa6iczN3wacMq2p9ZdlCKvqeEJQD0hcQudl/7rjVjN+Uah4KoGknYhaMIWtU54AxpqZV1/JQS0nBUmsAjQQVdf4DtHum7hcE4JmEPXNXWEi8FMzno0d8xXgItJbYfzCjFN7ej3nXGVJlcm9G9gqy7QRfSdcYGZPFzGGNYlenp8CrJnlkI+Ab5rZX4oVg3Ou+nWxqDgLOM7MStYrO1X+/FLgUDIXBjqIWif8tlTxOOecSze2peEQod+SvbXkQpkure+z7Nf37vBu0TZrNc8bso0lE2cKvtbJIY/VJTv2uX+nt4uWyOqcq26SBPwCOCnL9DLgl8A5pWxbm7ovvxrYLMv0v4mq4r9cqnicc5VD0j5EHQj6BlNLgP8r5zNy6rvrFrJvMDrLzM4rcUjOuQo2bm7DoWb6I8Gan4y5qOOAsGpsOYxrWWeYUTcRaAqmTLLDp45su7kccVUTTwjqAYlJwNfzOMXlZlkfaqpSKhnoXmC1YOpJomSghZk/5bpL0rnAWVmmrgOOrsakIIm3WXlJccghIUiiGZgaG7oWOMaMjP8dSfRPHTsqNbQU2NCMsv+j5pzLjaTNgPvJrBAGUa/s48xsegnj6erl+Qlm9utSxeOcqx6pRcWJQL9gailwkpn9pvRRRSTtDfyBzP7dRhTbFaWPyjnnerfmuY0nYFxOZgl1Q7o5gZ06ZWRr0VpUZMQzZ+hoZFcDm4dzBq9hHeOnj3rb200659JIqiNqlXtQlulngANLmRAfJ2kVokSlY7NMvwWM8Ta6zvUuknYGppDZjeBlYH8ze6r0UaWT1ADcSvoG6hWOM7NrShySc64Cparv3A30SZsQd3+kPhPm7vj6kvJElmnkvPX6r5psv12wdzDVLtleU0e2Tc36gw5YeU9x5zolaRTZk4H+gScDFYSZnQ1ky9b+LvCb1M6ZarNqkc57Suzv84EfZEsGAjBjCfA9YEX581WIymg656qQpG2J2v+FyUAG/AzYopTJQABm1mpmhwN7AmEJ8TrgGkk/KmVMzrnKl1pUvI3MZKBXgB3LmQwEkGoNtg3wcDAl4JeSDi19VM4513uNaxn6U4wryVzba1WS5mkj5x9eymQggGmj5s/qs3jgtiaugPRncsFnpbrZzfMatyxlTM65qnAV2ZOBbgR2KFcyEICZLTWz44AJwIfB9DDgfknZqnA452qQpC2AO8lMBnoCGFUJyUAAZtYG7Ea04Sj0K0mdtUR0zvUSYx5ed10z3UKYDAS3L1/W9rVKSgYCmLvj60s62tv2k3FbMNXHTLeMeXjddcsSWJXwCkE9EFQIepOoZ3FPPG3GvMJGVXqSmojahA0MplYkA71b+qhql6SfEvWtDqWq4FTPf8QS55H5j8tmwD6xzz2qECSxGvAOn74861YLMImZwOjUx6fNsrYZcs5VMEkbAXPI7B+7EDjMzO4tfVTpJA0nesE/Ksv0sV4pyDkHIGlL4EEy2w0+CeyeWsyrCJJWJSqNvkcw1Q7sbWZl6yvunHO9RXNL40nAZVmmZlq9HTx9h7ay/7sxdnbDV5XQjWS2wHwzqUTTAyPf+k854nLOVRZJ5wBnZ5k638yyrYeWjaTtgXvIrH7+T2BnMytaa0bnXPlJWg14HNg4mJpL9Nxecd8BkhJE75G+E0x9AGznFc6c653GzFJ9fZ8hM0A7xccNZvRdPHCPe3d/6ZNyxdaV7R5Xn0FLGyeD7RZMPbRolbadHxth7WUJrMJ5QlAPBAlBvTKBQNJIorYsYTLQP4FdPRmoOCSdB/wky9QVRC0aqvY/ZImDiMpXrtDThKC9gcmxoV3NmNGNn/sBUUufFdYz443uXtc5V16ptlxzgQ2CqTeB8Wb2bOmjyi5VYvwWINx90wFMMLM7Sh+Vc65SSBoIPEb2RcU9zOz90ke1cpL6ADcBBwZTC4FtzOy/pY/KOed6h7EtDYcI3UTYmlbcOmjNtY+YuPkzy8oTWaZxc4dsbZa4D2hMn7EXrE+fpunbv+FrSM71YpL2BO4is9X2yWb2yzKE1CVJmwIzyfhe43Yzy1blyDlXIyT9ETgsGH6WKCGwYjtmpJKCbufTd5srPE1Uha2iqoA454pvbEvjGYILg+Gnlrcnm2aOXhBWRKw4Y2YNWa2+T6IF0vM0DH40van1ojKFVdG8ZZjrNkk7kr0y0FN4ZaCiSu2IOT/L1P+RfVdgbxIm5j3TzZ8Ly3d+sQCxOOdKQFIdUSJhmAz0b6CpkpKBICoxTlRe/A/BVB1wY2pB0TnXe11DZjLQs0TVdiouGQjAzNqJFkLvD6bWAiZJ6lv6qJxzrvaNnd2wldBvyXh5rt+MGtl2aCUlAwFMHbngH0nZKCBIFNUmal/+R1GVrdCdcwUgaV3gBjKTgX5aqclAAGb2PDAOeC+YOlDS98oQknOuBCQdSGYy0HyiTYkVmwwEYGZJotjD7iVb0vMuKM65KtfcMvwzgh8Hwx9RlzioGpKBAGaOXvChOpJfB9IqswnOHP9gY/jOyOEJQa6bJI0gKokalnp+nuim553SR9W7pJKCLsgydaKkin1QLoGNYn//2IwF3fy514LP4Ys451zlOotPW/6t8DZRed6KbD1gZh3AUcCfg6nViF6er1r6qJxz5SbpYODQYLhaFhXbgQOI2gbHbQ+cUfqInHOuto2f2jhA0m1A//i4jNtGNbUedzaWLFNoK/XAyLZX1JEcCxnP6nvsOrfxB+WIyTlXEW4gs/XWH8wsW/uwimJmTxNV2lgeTF2eam3unKshqaq+vwiGk8DhZvZmGULqsdRmxQOB8D3eiZJ6XScU53q3jiuBAfERScdP+/Jb/yr2lcdPbRwwfs6wEfE/uZ5r6s4LXjL0/WC4f7K+1xfRyMoTglyXJG0LTAMGBVMvAGPMrLX0UfVOZvYTOk8K6q1fcp+L/b0n2asfBJ83LEAszrkiS1WrC1sofgzsVul9r1NJQYcRtQGK24LMEp3OuRonaXXg58FwtS0qfkiUFLQ4mDpDkidbO+dcASVX4zLEZsHwzDXXWvublZoMtMLUnRe8ZLKvAp/Ex2V2QfO8IduUKSznXJlI+gawazD8DHB8GcLJiZk9AJwTDK8CXFX6aJxzRXYeMDwYu8DMpudzUkn1kraU9A1JJ0g6U9JZkr6fGivoM7WZvQ58OxiuB35VyOs45yrX2LlDvwTsGx8z7MFpI1tvLPa1J0xSXccAbk0q+Vj8Tz7nnN40/0aDGWmDxldTv6eL8YQgt1KStsGTgSpKKiko24vjk3ppUtCasb/3JCEoPHaNAsTinCuiVKuwa8i8fznezJ4oQ0g9tpIdOcen/s11zvUe5wPDwrF8FxW7Q1KdpM8Ff3J6NjSzl4Fjg+F+QG+uYOmccwU1du7QL2F8Jxhuq0t2HFJpbcI6M31k2zxEWBGonmTi2nPJ7d8g51z16SQp/mPgADP7uATXHxTcAzfkcbqLgAeCsXGS9s/jnM65CpJqb3hMMPwSOW7sk7SFpDMk/Z3o/cRTwC3AlUTtu84FrkiNvSCpTdKlkgrSAsfMJgN3BMM7S9qtEOd3zlU2YT8KhtpVV3e0YVbsay8cNuQKwd6FPq/qEscD7WljZmFLtF5PVvz/G9cMiUlE5UABnjajpkvpSdoamA4MDqZeJEoGeqv0UbkVJF1I9nYMl5nZKaWOJ1cSBwG3xoY+b8YrPfj5V/i0StBTZnyxmz+XICrtu6JX+V/N2K+713XOlZ6kE8l8wXyLmYXtdnI592Ci3tlDiBIN64H3gHeBJ8zs7XyvEVxvT+DuYHge0GR+c+ZczZO0HvAy0Dc2/BKwpZl9kv2nCnr9X5G5A3twPm3KJN0D7BEM72xms3M9p3POuWgn5aJhDY8BW8eGTUmap+7UGr6I7pFzUaLlwXU2TCYSmyQStmYymVhdCWtXUu8lE7y21pqD/1nohKOxLY13CL4WHxMcNbWp9XeFvI5zrjJJOpPopXfcT8wsW0X0Ql+7EXgIWD82/Fczy3k9UNKGRNWNVokNPw98wayyq7c557om6XLg/4Lh5p5u5JH0BeB3wJdzDGUp8GPg8ny/W1LrEf8ivWXQHDPbKZ/zOucqW/NDwzajI/ksn74TRfD7qU2t4caTghs7t+FkmcLWiwBMa2pVtvGeGNfS+DtLr4BmHWjLGU3zn8333LWivtwBVLG1Jc4gqirSj6js8RLgdeBp4AkzOsoYX14kfZHsyUAv4clAFcHMfiQJMpOCTpZENSUF5al/7O8fdfeHzEhKfMynN74DVna8c668JA0gevCNWwiclOP51gF2T/1pAtbr4viXgJuA3xaiOp6Z3SPpNuCg2PCORCU7/5bv+Z1zFe800pOBAI4uUTLQSRSnHcOJRK0f+sXGfgKML8K1nHOu13hv+JCDsbRkIATX55oM1DxvyDZKJnZPYuNFw7bUsZoAMyEZGJgMGSxa9M4nzS2Ns026tmNZ699mjrbl+f4+He3JY+v7JHYhVqXX4Lwxsza4eeboV5fme37nXOVKPdd/Pxh+gcyKQcW4dn/gr6QnA+XNzF6RdAlwdmx4U6JNxRMLeS3nXGmlNg8eFQxPz7Gq72bkngwEUdLhL4AtJR2Zz2ZCM3td0tVE6xIrjJK0s5k9mEeMzrkKZkn7tmLJQEBH0jouLfZ1m+cO3VOmol6nQ3ZRwvRNPs17UUJ8Czi1mNetJl6SN3dDicoCnk60+H06Ud/g3wOPAPMlLpUyWm1VPElbkT0Z6GU8GaiimNmPgIuzTJ0sqegP0xWop5mkdbG/V20Cn3O9xNHA2sHY6T2t3CNpmKTbgTeAG4kSclaaDJSyEdEuxpclHaNURmaeTgLeD8bOKtC5nXMVStIQ0netAEwxsxnZji/wtfcEflaMc5vZS0Q7HuPGSdquGNdzzrneQEhmOj0YXlifVLZqwSvVPLdx3+aWxn+STDxhcIHQzsBqXfxYP2CszCbV92l8ZPzcxi16et3QzNELWonWz+Ia+/T5+Ih8z+2cq3jfIfO5/qxiJ8WnWuPeTH4v41fmZ2S2Be/x97RzruIcAqwajOXUKqwTRlSp53fAj4jWCb5D9P0xGchWpfEIyGjBmovLiAocxIXrFM65GjFhkupk9o34mMHk6aPefrGY19119vBtMbud9HexBffAyLZXQJPjYzI7ZMwseWGcFE8IKp51iP5hfl5ih3IH012SNgWmkvlw9h+iUohvlj4qtzJmdgbZk4JOkVSUFz4VJt5fvNtVfiTqSS/n2+3qQs650pLUFzg5GH4euD6H020CTCCzMkd3DQCuAX6db+JOqtLQ5cHwNsC4fM7rnKt4h5Je4RAKu6iYlaRtgWI/hF9C5qKlLyo651yOxs5t2AdIS8Ix6ZJ7d5rf43a2Znwd2Cr3aGybpPHIuNlDv5L7OSKLVmm72uC1+FgSne4Lts7VvPC+8GXgLyW47iVAzm3BumJmHwFXBMNbS/pSsa7pnCuJw4LPT5jZzAKc90Xgh8C6Zra5mR1lZheZ2fVm9nszu9jM9gU+C9yZ5efPlDQsnwDMrA34YzC8v6SuksWdc1XoveFDdiUqdPI/EjcW85rNLcM/k0h03E3ae1sV7b5PWPj7NNb3G7Jrsa5XbTwhqOfeBf4O/Am4CjiXqCToZUT/OIeLMkOAGRJbljLIXKSSgWYCDcHUf4HRZvZayYNy3ZJKCroky9SpvSApKJ7I05O2XwNXch7nXGXZGwgfdC/Ot2d2YBFwD9Ei3k+IHswvA2YD2a7zvdQx+boS+CAYC8sRO+dqS7io+Eixy3KnFgvvpMgtUs3sdTJbIxwoaZVsxzvnnOuC8d1g5H31++TaAl/kBaSbgItl+iHGmRh/AF7NcnB/S9hdu80b8vl8rvjYCGvH0tcqBJ9N9Glszue8zrnKJWkEZKyP/8zMilqxW9K3KU27iKtI37QIcHgJruucK4LUu7Kw2u0NeZ72DaL1gE3N7JKuOnGY2XyiZMbwBfpqZK4r5CJ8eT4A+GoBzuucqzBJEuEG5HcGrbn2fcW63qiWdQYaHZOJJyEZFyQsI2mnYBau0nYfQcVGdWT83r2W77zpmW+Z8eHKDpBIAHsR7fjfIDW8KnCDxHZm5Nzbs5gkbQLMABqDKU8GqhJm9sNUtYrTgqlTJZmZheO1YlHs7z15yRVmuy8sQCzOueIIH3LfJErMzdci4BaiB+AnOkswkvQ5osW93YOpMyX9ycz+k2sAZrZQ0u+I2oetsJektczMv5ecqzGStgS2DoZvKPI1BwL3AevGhqcDY4t0yRuIqiCtMAjYk9Ls/nbOuZoxZtaQxvo+6QuYgmumjlgYtpztMYN/Iq6nzm6fvkNbW7ZjzkWJOS1Dvgq6mvS1ooHLk4nLgH3yiaFj+SrX1/dZcg5RhW0A6swOJ/o3yzlXew4NPi8hql5ZNJLGA7+JDX0IPEMRWoeZ2XuS7gQOjg0fJOkkM1te6Os554pufPC5Hbgtj/M9CGxiZmHi4EqZWVLScUTvHPvFpvYk+wbxnniIqFJbPNF7PFGLRedcDZGxSzA0ZeLmz2RrS5i3CZNUt8qwhlsEX/w0ACaNamo7a+6chj2LcU2INp00tzROIWr3CICJMcW6XrXxCkE90FUyUOqYpBmTiR4s4i8It6V4fYrzImljomSgocHU68AYM8u2K8xVph8SVZsI/UDSpaUOpkReiv29JyUtVw8+v1yAWJxzBSZpMLBHMHyzmbXncdoPgTOJSvOeYGaPrazakJn9m+jBe1Iw1Z+ot3e+bgg+9yNqa+acqz3houIyivgiRFIdUeJjvEXMJOCcYl2TqOLoG8FY+Hs755zrQn2fxMEEG/mS1nFDnqd92rBx05tat54+svXKzpKBAM7GktOa2u5QR3Jnwp2WsPf4Bxs36ORHu2Xm6FeXErxYM7HvqJZ1wmq+zrnasFvwebKZ5Z3g2BlJmxN9x6z4Hu0gekH0bLGuSWb7nbXJrDDinKsO4cvzeWbW45atK5jZgp4mA8V+to2ognnchrnGEjuvAXcFw+Hv7ZyrcmNmDVoT7IvxMYvW7opi4bAhVyjq+LDCo/371R1xNgXt9pCdMSMY+OJu89Zbq+jXrQKeEFQkZiwAfhQM753t2HKStBHRf/hhK5YVyUD/Ln1ULlepm7gTgV9lmf6BpHyzxitRPCFogJSR2NaZjYPPLxYoHudcYY0F+gRj+exUeRbY2MzO78mDeCph6Fgy23vl/W+7mT0F/DMYDhdLnXO1IVxcm13kamBXEDyEA0dA8aqWpr4v7w6GfUeOc871kDKrUz40fdTbOT+31olLBr3Vts30prZpPfm5qTsveMlMZ4fjyXr2yjWWFSxqVRbXf4DVjc73vM65yiJpKLBpMDy5iNdrBO4F1owNn2hmRbtmygzI2FDs98HOVRlJCWDnYLhoL8+7KXxPN6RA530g+DwsVUDAOVcj+tT1/QJBPkh9Ivn3Ylxr3JyGU4SOiw29mhB7TR7xZk4JkTmYFXxOLE9+8oUSXbuieUJQcYUL4Z8pSxSdWEky0BtEyUCvlD4ql69UUtD/kT0p6DRJF5c4pGJ7PPg8ops/t03s70kyX8Y75ypDuHj2kpk9k+vJUjty5uf4s+8A4QuUQj0k/y34PDpV2cM5VyMk1QOjguGiLSpKOhlIewgH9s51V2IPhYuKn5dUUc9CzjlXySY8t0Vfg5HxMZnC+8UemTKy9ZmJB1hHLj9bX1d/G9Fz86cs//vg6SPnPyqztKpySS/r7lwtCv+7Nop0HyypP/BXYP3Y8OVmdlUxrhdnZsuAOcGwf6c5V30+Q3pCIWS+ZC61cI1wSYHOO5vwHi/e5sc5V/VM2iQYWrr6G28XvDNQ89yhe1p6UYr3E2KfKSNbFxT6Wp0ZNartNSBY90x4kiOeEFRUZiwGPooNrV2uWEKS1id6qTk8mGoDxnkyUHWLJQVle9g9Xcrc3VfFZpNeseNr3fy5r8b+/ogZOZf8dM4VVbh4NiPrUaXzUvC5v6SwBWEuwt9rDdITF51z1W8DIGyDMqsYF5K0JxBvF7sY2CdVarwUZmUZ2yrLmHPOuSwWLVqwPTAgPtZRV76d6ffv+PpC4N1guCA70y2RSPu9zFtVOFeLwvvAF3LdqLMyqaoetwBfjg3fC5xa6GutxKzgs79Yd676hC/PAXLenFgg4Xu8grzLMLPFRN1C4vzluXO1JJHx3/TLuW4U6cyus4dvi9ntfJq82K4k+08Z2VrS785UW7KX42PCsn2n9zqeEFREEnVA/9hQ0foi90QqGWgW6TslIEoG2sXM/lXyoFzBpZKCvk/2pKBzaiUpyIxlwJTY0IFSxg1yGonRwJaxoWKXDHbO5UDSAGCjYHhWGUKJy9Zm55MCnPchMnf3bF2A8zrnKkfYJgGiNoYFJWlbIO0hHNgvn+pqPZWqqBYmH/kDuHPOdVtdeB+4ePAbrWF13PKSCnEPDEGVEMHm2z2usGWwc666hffBxbovvZT0jYJPAgeaFfalVxfC+/shkgaV8PrOufyFL88XpZ5xyyJVQXz7YPiJAl7iheCzP7s7V0PMrCHtc1RBvGB2nbf28Dotv5P4hhbj+Kk7tYbVw0sl+P0SDdkP6108Iai4wr58/ylXICukSvXPBD4bTC0gSgZ6ruRBuaKJJQVdnWX6HElnlTikYrmUT1/SDwB+L7FKtgMlhgLXxobeA35T3PCccznaCFAw9nQ5AokZGnz+0MzyfhmSKi3+YjDsD+DO1ZZwUbHNzN4r5AUkDQfSH8LhBDMrx0O4Lyo651zOMnYxPlfoXZw9MWbWBqsA6S+0zcKKQTmxzMSAPqsvHfa5QpzbOVcxwvvg8Nk3b5K+DZwSG3qLqELmh4W+VhfCe2Dw+2Dnqk1j8PnfZYniU7sBawVjhXzGD5MDwrVP51wVE4mB6Z9ZXKhzj2pZZ2AiWX+vSet+en6dN21U63WFukaPSWm/n2FhtfZeqb7cAdS4g4PP08sSRUosGWiDYMqTgWqYmZmkE4heqh8bTJ8rCTP7aSlikdiPzH63OwSfd5cydpT/14yHOzuvGY9KTAImpIbGAy0SPwMeJSptPhRoBn4ArBv78QvNWNSz38Q5VyLholkSKHdLy/A768kCnvtF0suJ+6Khc7UlXFQr6KKipIHAPaTf55xvZtd28iPF9m9g59hnX1R0zrluEmySXpZSBX953hN96j4eYShtDdHQPwpx7r51y15oX55eEKiejk3I/lLdOVedin0fPJ70zX4fAHuY2RuFvE43vUq0aTG+ucnvg52rLuHL43J3/jgj+LwUmFjA84cblVYr4Lmdc+VmrJa+5VofFOK0Eyaprv/whj9hsdawYtK0ka1l7U5jllys2C+szO/0XskTgrpJ4jhgkhkLunn8lsAJsaE3KWObE0nrESUDhbus3gZ2NbOCtytwlSOVFHR86mO2pCAzs/NKEMpNwKpdHPOrLGO3QOcJQSnfIkp2+1Lq87bArV38zG3Az7s4xjlXPsOCz2+Y2dKyRAJI2prMUuezCniJMNkp/P2dc9WtaIuKqRLit5CeVDgJKGc1yPD38wdw55zrvvT7QCXLujPdEjowHOpTx98Lce57d3h3cXNL49vAOv87uWylbcCdc1UnfLlcyPvgzYnW91a85+gADjGzfxbqGj1hZsslfUT67+wv152rLuF/s6WuNPY/ko4CmoLhX5vZwgJeJkwO8Gd352qKBbkgtrwQZ100fMiVGHvFhlqWL+t/uGHW6Q+VgFB7MODtqPGWYT1xDPCyxC8lNl/ZgRJ7EpXsi5fqP9+MZcUMsPN4tC4rTwYqVt9mV0FS7cOOB67JMv1TST8pcUgFZcbHRJWBbuzG4cuAM4HDzCjrP07OuZVaPfhc7h05pwWfDbi5gOcPd+T4A7hztSVcVCzIjpyUK4C9Y58fBY5I3f+VS1iC2L/TnHOumyz4zlRSBW0x2RPj5zYOAY5IH7U59315/msFvEz6fb4l/OW5czVCUn8yNyUX5D5YUiNwL7BmbPhEM7urEOfPg98HO1fdwpfH5Xqvtz2Zm6ffAi4o8KXC369vgc/vnCsnpSc1Gpb3s1ZzS8OpmOLFJ15NiP1mjn61bJu5/0cZ75QKuf5atbxCUM8MBE4ETpR4GXiQqL3HAqAfsCFRS6IvBj83GShLv7zUg9E0otjiFgG7m9nTpY/KlUusUpCIktzizku1Dzu/iCGcQG7fOy9356BU668jJK4gah+2M9HOyjWIEuDeAO4HJprxnxzicM6V1oDgc9lu3iTtChwUDN9hZoVs3+A7cpyrbeGiWkEWFeIGpvoAACAASURBVCWdAhwXG3oV2MvMPi7E+fPgi4rOOZe7tEVaK+N9cNK4jDBBicTFBb2IbDHmZd2dq1HZdmW3ZxnrkVSi0d+A9WPDl5nZVfmeuwA+CT73K0sUzrlcfRR8LnmisqTBwO2kf390AIeb2bsFvlx431W2ikjOuaJI+29aJPJ61ho7p3EvSfHnwYUd1O0+beSb3eqwVALh7+cJQXhCUD4+n/rTlb8AR5iRLHI8GSQ1ADPIbG/yHtBsZo+XOiZXfqmkoOOIkoKODqbPS7UPK3SWeeraXF+M82a5zpPAk6W4lnOuqMJFs3BRrSQkfYaoBWG82+5HZPbwzteS4LMvGjpXW8JFtbwXFSXtCVwSG3of2NvMKuEhvGLKrDvnXBVKuw80WVnug5tbhh4PHBIfE3bf1KbWewt5HSW1NJYPhJFcpZDnd86VVfhiHTI3//SIpARRu9wdYsP3kFnVt1z8RZRz1S18di1porKk1Ym+0z4bTJ1lZg8U4ZLh7xdWOXPOVTHD3lPstYbMhuZ6rnEPDtlIdYnbgbrU0DIltd+Mnd58Ic8wC8c0lHhjGCtftd1K4i3Duu8MohKk3V2EeRU4EjjArPSL37FkoM2CKU8Gcivahx0L/CbL9PmSflzikJxzLptw4TCvRcNcSFoF+DOwTjB1nJm9VODLhQ/g2RZOnXPVq6CLipK2JdoxuOIhvB3Y38yezee8BeQlep1zLndp94Eylfw+eOzchh3BfhEMt7a325GFvpYprEDkSaTO1Qoz6yBz80u+L9d/Bnwt9vkJ4MDUtSqB3wc7V93Cl8cNpbqwpAFEyUA7BFM3AYWt0PipxuDz+1mPcs5VJaG0DiwmNs71XMk6fRZYdcWpMDtq6k7z/557dMVgmwSfC/0Opyp5haBuMuMu4C6JVYGRwDZEyTZDiB5ilgHvELUQmwm0mOVf/jQXkoYADwCbB1PvA+PM7LHSR+UqTapS0LFEFS++F0yfn6oUdGEZQnPOuRXKvSOnjuiB+0vB1PVmdmMRLumLhs7VtnBRbUiuJ5K0DnA3nyZKGnBUkXYL5ipcNPVFReec674Pif07Iayk98Hj5w3fVKa/kd7ucXlCiQNnjm5tLfT1DAYq7bP8Pti52vIe0D/2OeeX65IOB06ODf2XqF1uRWyokbQmma1y/T7YuerySvB5A0l9zawgbb87k2qFOBkYFUz9FTjSzIrVhSR4ec7LWY9yzlWlJHohEa+YA2uPfWTdwdO3fyPf9oOfIH2/uaXx+93+CbFGONTc0hjkLNjH05rads4loL3mrD8IBRu7pRdzOVet8YSgHjLjY2B66k/FSb0ceAD4QjC1Ihno0dJH5SpVKinomNTHMCnoglRS0EWljss551IK9vK8p1IlyG8Avh5MPQgcX6TLhlWIfNHQudry7+DzRpLqctzJvB4QL/F7fpESFfMR7jgKF1Wdc851Su+Tvmhbsvvg3eYN+XwymXgguKYJO2HKyLceLPT1hDSWhvT7YPP7YOdqzKuk37tulMe5to/9/QNgHzObn8f5Ci18sQ5+H+xctQlb39QBGwL/KtYFJfUD7gB2CabuBQ4ys+VFuq7I/E72l+fO1ZD6Dns+WZc+puUdXyaqRpaPVYAReZ6DzHPkvjlkmZbtGI4lST6f6/lqiScE1ZBYMtAWwdRiYLyZPVL6qFyli1UKWgX4ZjB9oSQ8Kcg5VyavBp8HS1rLzBYW86Kph+FrgEODqUeIdh6G5c4LJVw4DJMHnHPVLXwA7Qd8hszvup7qAEZKmtaDn8nYkQPcISmscLp7LguPqQprnw+GK6efuHPOVb5XiSpTA5CU8nl53m3jHxy+XkddYppgWHzcpB9OG9mareV43kY/PHw4LA9aosnvg52rLc8TVdxfIVvSTC7eB34ePcJ3W1hRvynLffQ0M7s0x5jCpPh28r/fd86V1otAEkjExnagSAlBklYH/gaMCabuJEoGKmZloi8AqwVj/uzuXA2ZsnPrq80tjW8Cw1eMWfR9k29CUMVJil2Utq+GthkjF/izJZ4QVDMkDQLuB7YMpj4C9jazh0sflasWZpaUdGTqY7akIDOzYvWodc65zmTL3t4EmFesC6aSga4is2raP4HdzKyY7QvCFz3+AO5cbcn23/T25P+CoA7YNc9zAHwly1iP3q7EbEWUbB7n32nOOddNhj0f/wJW4V6ed2rMw+uuW1/XMUvw2bQJ2TnTR7bm+mK8S307lm8c9r+QlvvOdOdqS/hsP0JSfQEqXqyb+pOPIcDYYOytPM63Q/D55WJV9nDOFYeZfSjpaeCLseFdiCqJF5SkBuA+YongKTcTtQkLN+0UWriWsAzwLiPO1RiDmYptfpbZeODUnp6nzrQ4KR7PI5Q1yNxAGJzPPs715DIbFww9YJhlPbiX8YSgGpDqTTwN2DaY+gjY08wKXtLZ1Z5YUpCAw4Ppi1KVgjwpyDlXSv8BlpL+UvlLFCkhSFI9cB3wrWDqcaIqGYuKcd3UtdcBNgiG/eW5czXEzN5V1Lc6vmt4F+D2MoVUTOGi4lLgyXIE4pxz1UhmL5Be8WLj5sfXWmPaiIVFaaU1ds46G9epbgpZkoGmjWw7txjXXCFpae1/ABZPbXo7n5fxzrnK81DweQ2idexarGYf3gfPLUsUzrl8zSA9IWhXSQkzC/OYcyZpA2AKmRsEfwWcWMhrrUSYEPmImX1Ugus650pI0gzM4t0Qthg7u2Gr6Tu1PdWT80wZ1fowsF2ucYyf07h3UkyOj01ras35fGnnntu4BUHRFIu+yx2eEFT1YslAYZ++j4namvy99FG5ahUkBR0WTF+UqhR0SRlCc871QmbWIelRYKfY8BjgykJfK9Wr+xZg/2Dq78A+Zra40NcM7EJmJQ6v7udc7ZlBekJQuPjWXZ+QX1vBVQjawQCvEZVFj8t1F034e80rYrtF55yrOUbyIVEXH6pPLOm7M3BXoa81fs6wEVLdvURVMj4NAU6ZNrLtl4W+XkiwS9o/NqaiVQN1zpXNw0QbV+PtAZvJLSHoXfK7D14HGBj7/BHQFhzzdi4nlrQusGkwPDOXcznnym4GcFLs8zBgNAV6uSxpG6LKQA2xYQN+bGYXFeIa3YhhMJBRTaMU13bOlVad6u/ssPZPgH4rxpTgUOC08kVVWJa0w4JNNcs62uvuLFc8lSbR9SGuUklaA5hKZjbeimSgWSUPylU9M+sgqo5xU5bpiyWdXuKQnHO9W7h4NlpSn0JeIJZcGyYD3UVUGajYyUCQuYvwZTP7Twmu65wrrfA77XOSvtzTk5jZs2a2Ya5/gAOynHZElmN73N5A0hCiJMc435HjnHM9MH3U2y/K7I34mOWeRNqpsS1DxySVnEF6MtBySUdOa2otejLQyHnr9Tdoio/JX547V3PMbBkwJxg+OMdznZ3nffDE4JRTsxzX4xYaKQeF4eLfac5Vq+nAe8HYodkO7ClJewIPkp4MtBw4ulTJQCkHAX2Dsb+U8PrOuRK5f8fXFxrcmz6qI8ZPbRyQ/Seqyz6PD1/VpCPSBsW9M0e/+U55Iqo8nhBUpWLJQF8Kpj4G9jYzf9hwOYslBd2cZfoiSd8vcUjOud4rfIm8JrBboU4uaTgwm/QqRBD1Bd+vFBUtJPUF9guG/eW5c7XpXuDDYKwgi4oV5GAgTNz8azkCcc65amaJRNq6jokDJkxSXWfH99TYuY0HCbsfWD02/LHQvlNHzr+hUNdZmQHJ5XsDq8bHkgm/D3auRt0RfP6CpG3LEknxhNXW55qZt0B0rgqZ2VJgUjA8QdLa+ZxX0neBvwGrxYY/BL5mZtflc+4exiHge8Hwk2b2dKlicM6VWNL+GIyskxzAUWWJpcCWLO34LumbXFDm79ureUJQFZK0OlFv0bDP+hKitia+eOLylkoKOoLMpCABl0s6oeRBOed6oxagNRgr1I6cLwLzgC2CqV8AR+ZSGSNHewCDg7FwsdQ5VwPM7EMgLFd7SOr+vupJSkDGYsKjZvZsOeJxzrlqpmQyTKYcumjdIQWpEjR27tDTZNxC+q7wRZAcP7Vp/r2d/VzBycKX5//daWTr4yW7vnOulCYCS4Oxo8sRSDFIGglsFQxnq77unKse4cvkAcD/5XIiSXWSLgauBepjU28CO5vZ3bmFmLN9gC2DMX957lwNW6t1wV2gF4PhU/d5fPiqWX+gSqTiT6/uKF5ac/6CyeWJqDJ5QlCVkTSAqIXJDsHUJ8DXzcx7fLqC6SIp6ApPCnLOFVsqKee2YHhfSUPzOa+kccDfgfViwx3A983sVDOzfM7fQ98NPs8nKk3snKtN4SLbmsCx5QikCL4KfCEY80VF55zLwZprrXMP8G58zJIKd3L3yJhZqm+e23C1zC4hfU3w39QlmqY1LQhb+hTNrnOHrY8xPj5mcPPZWLJUMTjnSsfM3gPCFzOHS1q3HPEUwY+Dz0vJbE/mnKsiZjYHeDQYPl7SoJ6cR9IqRFVzTw+mHgO+ZGZP5h5lz6U28pwZDL8H/KGUcTjnSmviAdZB9BwYN/zjpR3hPUxVWbK040xgePqoLpp4gHWUJaAK5QlBVSSVDHQvsHMwtQzY38xKt4vL9RqxpKBbgqkVSUHHlzwo51xvE+6q6wecnOvJJB0F3AOsERv+EPiqmf0q1/PmGMu2ZLZA+1Pqu9c5V5umAWHFnJMkrZbt4GqRWlT8STC8ELixDOE451zVm7j5M8sMS0uMF+w7dvbQzXM536iWdQbW92m4E1OYhDovIXac9uW3/pVzsDlI0HEaQYvJukSdV9NwrrZdHnzuB5xWjkAKSdJ2wO7B8I1mtqgc8TjnCurC4POawAU9PMdngb2DsVeB84jaJ47N408uSZVHAiOCsSvN7P0czuWcqyKL+rfdRPT98z+CU5sfGrZZmULKy/h5wzcl8z3Rvxf1aw2LXPR6nhBUJSStCtxN9mSgr5vZPaWPyvUWqRfT3wT+FEwJuNKTgpxzxWRmTwCzg+GjJa3Tk/NISki6DLiO9PK8rwNNZSjPC9GOHMU+twNXlyEO51yJpCqQXRQMDwHOKkM4hfQdYJtg7Eoz+6AcwTjnXC2oS9RfBcQr5iSUsB7v4Nx17rD1V6VuHlGr2rg/9Vk8cMyUka0L8omzx/HMW3s4piPTBk1Tpuz45vOljMM5V1pmNg+YGQwfk2rnXZVSSfFXkvlcH+7Ad85VpzuBfwZj35P0pTzPu0Hq3NPy/LNvTy4qaTCZ6xHvE32POedq3GMjrD2JjguG+9KRvG3kvPX6lyWoHO1x30b9krY8bINNwjjxsRHWXqawKlZ914e4coslA40OplYkA91V8qBcr2NmHZIOT338RmxqRVKQmZm/xHbOFcuFwH2xz6sRPcB+pwfnGAycFIwtIGrV00dSuDumJ94ys/k9+QFJY4na68TdYmavZjveOVdTbiNKANo4NnaipD+a2TNliilnktYmc+fke/iionPO5WXKjm8+3zy38S8YB8SGDx43e+h1U3ea//funidhyYMtaOlocFeCxC87Bn60xfg5w3KO8d3+85/q6YJrIln/C2CVtHjU0dPd9s656nQeMCb2uR74laSvlLh1d6EcCewYjN3sz/XO1QYzs9Rm6Af5NPEvAdwiaTszW1y+6HpGkoDfAmsHU2eZ2btZfsQ5V4MeaJp/X3NL42Rgn9jwVgNs2c+BMFmoYrWvsfgyTNsGw5OnjGr1nIksPCGowqWSge4i/UEJomSgAzwZyJVSLClIwMGxKRE9vJuZXVOe6JxztczM7pf0KBDfgXOkpOvNbG4epx5C9O9svs4GftrdgyX1Ba4KhpcDFxcgFudchUvdU50ATIkN9wH+JGkHM1tSptB6LLaoODiYOtPbJDjnXP5E8kIjsT+fVvmWJezKMbM0YuZoW577ednbSO5t6vrYlVlj2eB1gTe7e/y42Y27kuDAYHjm9KYFYUVQ51wNMrOZkv4MfD02vBNwCvDz8kSVG0kbkhnzYjLb6DrnqpiZzZF0E3B4bHgjogrkB5UnqpycCHwtGHsa8Pc5zvUyiY6645N1HaOAtf43aDp27Jyhz04fNb9o3wn9+tc9sGRJx4b5nqd5bsMxWVphL4S6E/I9d63yhKAKJqk/MBnYJZhqBw40s8mlj8r1dqkXWIelPoZJQVdJwpOCnHNFchzwELGXIcCNkkZU046clIuATYKxq8zshXIE45wrPTObKukvwP6x4S2BXxBVLqsWJ5FZ7exp4DdliMU552rO1JEL/tE8p/H3iKNiw1vV9204m6j9bNUYM2vQmvV9+v02GO6QkieXJSDnXLmcBOxGVPl3hYskzTOzljLF1COS+gETgTWCqTPN7K0yhOScK65TgWZgaGzsQElPmllXLQLfpXhtBJ/ozkGSdssSQzvwbbPcE8ydc9Vpys5vvj6upfFbBn8j1vZUsl+NmzP07amj5k8qxnUnj3jzY+Df+ZyjeW7D/ph+FQwb4shpI9/8bz7nrmWqzkqctS/1UHEHmf3dO4BDzey20kfl3Kck1QE3k5kFb8DxnhTknCsGSb8ls03YRDMLdxln+9l1iFqEFcPZZtatCkGS9iSqShTfj90KbGpm7xcjOOdcZZK0LvAPMqvrHGtmvy7iddcgveIawN/NetbyJbWoOJmoutEKy4AmM3ssvyidc86tsNu89dbqSLY/D6wTG05KtvvUkW1Tu/r55pbGHxIlpBdcMrF83Qd2fKfLCkFC2rWl4S8KdqabuGL6yNYTixGbc65ypVrwhC9z3iK6j3ytiNfdHIj3SVxgZk/18BwCbgIOCaYeAnbyl+vO1SZJXwEeAOpiwwYcZWa/L09UXZO0HTCT9CRMgFPM7LIyhOScqxDj5gz9hcnCzRnthn1relPbLWUJaiXGzWk82MQNQN/4uEyXTR01/5TyRFUdPCGoAqXaiNwB7BlMdQCHmdmtpY/KuUyS+gC3k1lq0oDjivkiyznXO0kaDDxF+gIewOlmdmkXPzuQ4pUgn2xm93R1kKQtgNnAmsHU183sL0WJzDlX0STtAdxNepJgEjjIzIqyI6cQVrKoeLKZ/bIMITnnXE0b29JwiNDNwfA7HdSNmtH05kqrTI6dM2Q3JRLhc3tBLF/2yekzRy96r6vjmucMPQfZ2fExg9f61rd/8d4d3q22ap/OuQJIVcvcLxh+GRhlZm1lCKlbJP2cqMVZ3HvAtmb2ahlCcs6ViKSzgXOC4Q7ge5WYFCSpiWhT4qBgajLwVfMXxM71ahMmqW7RsMbbwfYPppLAqdOaWitmfa+5pfEkonc7ifQZ3THordYJEw+wjnLEVS08IajCpJKB/gLsFUx1AIeb2Z9KH5VznUslBU0ks1WEJwU554pC0s7ADDJ35HzHzK4vT1RdS1UCmQusF0xdY2bHlSEk51yF6OSlwjKizQATyxDSSkkaSbSouFYwdSfwNV9UdM654hjb0vAHoSPiYzJ7w1TfNK2pcsujN89p/C7i2mC4PZmw0Q/s2Da3LEE558pO0iDgcWCDYOppYLdKa72Vqgx0CfCDYMqI7oHvLH1UzrlSSn0P3AgcFkwZ8BMzu7D0UWUnaR/gNqB/MPUosIuZfVj6qJxzlWbCc1v0fW/RO3db1BYxoDuWty/9dnc2gBTLqJZ1Bvan7jfANzImxd+XL+u/28zRry4tfWTVJdH1Ia5UUslAfyZ7MtA3PRnIVaJUa4kJRL0m4wRcLeno0kflnKtlZvYgcG4wLOBaSd8sQ0hdkrQhMIvMZKAnyUwCcM71PqcDfw3G+gK3ptopVAxJewPTyEwGepSotbEnAznnXJHUfaTjgefiYyatC8un7jp32PplCmulmuc2HoXIaClush96MpBzvZuZLQL2AN4JprYEWiRtUvqoskttiLyBzGQggNM8Gci53iH1vPstsr8LuUDSX1PJjmUjqU7SOURrDGEy0MvA3p4M5JxbYeLmzyxrb0/up2itL2D71fft90jznKGjSx4YMG720K/0V93jZEsGgulLrGNvTwbqHq8QVCFSyUCTgH2CqQ7gCDMLy0I7V1G6qBR0jJmFuwGdcy5nXezIOd3Mflb6qLKTtC1wL9AQTP0XaDKzN0oflXOu0qSeB+4BxmaZvonofuqj0kb1KUl1wJnAT0iv0AZV0NrBOedqxfgHGzdI1tECDA2m3kyI3aaMbH2mHHFlM7al4Uyhn2ZMiOumjWz9XhlCcs5VIElfIqoCHLai/QD4rpndVvqoPiVpPeBWoCnL9M/M7LQSh+ScKzNJqwK3k7m5H+DfRFXMZ5Y2KkglUv4OGJVl+jlgvK9DOueymfDcFn3fW/jOjSYOyjJtBrck6Dh9atPbRa/gOK5lnWFJ6i4RHEKUcBm6fdCgtQ+fuPkzy4odS63whKAKkEqkmATsG0wlgW+Z2R9LH5VzPZd6kTWRzP9f9qQg51zBpf79/BvRjsLQX4Bvm9n7pY0qnaTDgWuAAcHUu8BOZvav0kflnKtUklYn+l4bk2X6OeBIM3u4tFGBpI2A3wJfyTL9L6JFxddLG5VzzvVe4+c2bpE0HgTCHegfGnb09Ka2W8oR1wp7PDx49fblfa4DDswyPXl5e9v+M0fb8lLH5ZyrXJK+QtR+do0s09cRbfwpebsKSd8AfkVmdUyAy4GTvUKmc72TpHqi5+QjOjnkFqIKYkV/eS5pAPAj4FSiasOhuUSVgRYWOxbnXPU6FyVmtwz5sdDZZG4GBFiK7PokdZc+MPKt/xT6+rvOHbZ+go7TMB0JrJLlkA7Dzt2pacEFZ2PJQl+/lnlCUJmldtreQuYiiQFHm9l1pY/KudytpNpVkugl1o2lj8o5V6tSO3L+DOyeZfoFoip7D5U2KpA0GLiCKIs9tADY3cyeKG1UzrlqIKkfcDPw9SzTSaIFxx+b2bsliGVVonZmp5H9QXwe0aJi0WNxzjmXbvycxh2S4h5gcMakuL5fst+pd4/6z6JSxzW2ZchOInED8Lks03cub+9/kJd1d85lI+mLwH1kVkADaCNq13VzKRJwJG0GXAXskmXagDPM7JJix+Gcq2ypCuanAecD9VkOWQr8HrjUzP5bhOuvARwPnAis3clhfwCOM7Mlhb6+c642Nc8ZOhrZLcCwTg7pwDTdlLypo93unDl6Qc5tCMfMGrJaXR/tK0schmws2RORAOZj+sa0UfNn5Xqt3swTgsoolQx0M2SU3/JqKq6qeVKQc66UUpWCrgcOzTKdJHrwPqNEL88TwJHAxWR7OROVDR5vZi8XOxbnXPVKPSecC5wBJLIc8gHwa+CyYrTpkjQQOAY4mcx2hyv8keiZ5eNCX98551z3ND80bDM6klOA9bJML8DsB9NHLbjJKP7i3/i5jUPM7FJDh5OlrLvB79Z6q+3oiQdYR7Fjcc5VL0nrE1Uf376TQ54BLgQmmhX++0TSFkRVNiaQ/YXUYuAoM5tY6Gs756qXpCai1oLZ7skAlgNTiJ6j78onOSe1XjAGOAzYj8x2iyt8BBzrHUicc7nYa876gz5JLD0fdDSWdW1yhXbQwwYzEpb8R9ISL6w1ePDL2dp5TXhui74L33338wklN0kqsbVgF7AdgD5pBxp89NpyBmxQD5AEXdvP+v74/9k77zC5yvIN388moUiRGhKwUCSggFgAhQASIKEqShMrRQXBCtJRmvQiKiIqggiINOEnTSCUKAmgVOm9l1Ckl0BInt8f31n2zJnZMruzc2Z23/u69mLnnXPO9w5Jznzn+573ecsoeBkqhCCoJLIv7dOArxbeMkmte2LzswqCxtGLKCha4QVB0FCyipz9gZ9Re9HuNeAE4Djbzw3C+CNJAt99gY92c9g1wFcGY/M+CIKhiaRJwOnA6G4OmQFcmB1zmd3/9ivZfXQt4Jskd6Ja7RoA3gS+b/tP/R0rCIIgaBzrXb/IEh2zR54NjO/mkDssDlvoqWfPHQwxzobXLjr23REjfyL7u1S3yQV4V9ZPJ685/ahmCJOCIGh/sjXFI0iOF1UCw4zHSYW2p9u+d4DjzU+a/34TWLuHMW8Fvmz7gYGMFwTB0ETSAiSnoO/SvcMFwFukFl5XAzcB9wOP27Xb30gaAywPrERyLfsc1W1ji/wb+Krth+v5DEEQBHk2uGLMPLPn5THM3MD76jz9FeB14G1gTpJ4sbu1xvd4+Y6ZPPi713j1nnf57OkL3TDPEnP84IrxT99Ud/JBBSEIKoFMDPRnqtuImLS4/tvmZxUEjSd7gD8P+HzhrVkkUdDpzc8qCIKhjKQJpFactSzGIT10n09aOJw80IpCScuRKnK+AXyom8NmA4cCBw1GBWMQBEMbSaOBo0gbFN1tTkCqVv4naVHxFuDengSQkhYExgGfBNYhVRh2Jzzq5DLgB+FyFgRB0FpMmKKRo0aOPtTSHnT/XfGI0ekjO2adftnqzw3oPj5hikaOnGPMBtjfADaj0Fby7RdmM+ciHch+0vJXJo9/bupAxguCYHiSPd+fQPdFN508QJoD/xO4G7i/O/eNzNX3Q8BywOqkzfXPAHP0cP23SK5ER9t+u57PEATB8EPSp4BTSQKevjIDeJG0ef4aMDdp83xhaguue+MmYLVmtFgMgmDoMvG6MfthDsmFXqEPop7+MOtN89/9XubFGyuMhX7vVHgSDJAQBDWZTAx0KtVtTUxaXD+h6UkFwSASoqAgCJqNpEWBI4Ht6Hnz/AVgCmnh8D+kRcPXerjuKGAp4OOkzfN16X1h8lHg67an9Sn5IAiCGmQbF/cBS5AWBvvKK8D/sv/OIG10LJD91Gpr2B2PA7vZ/lsd5wRBEARNZtK1Yz/nDv8W+FgPhxm4S+Zq8JSOEb7j7beff/Sadbp3mZt480Lv99tzjpP5jPG6SpXpCxWPe+WumTz4u9d588l3WeOMRU+ZY75Re1y2+hMvDvyTBUEwXMna8PyL1G6nJ9FOHgPPkDbVXwfeIW2sz0sqHpqr+1OrsxhSvwAAIABJREFUOB/Y3fYjdZwTBMEwJnPfvZ4kNmwWLwCLFGJbxjN8EAT9ZcKUBRcYOWrOh8k7kokHRs4x6/Mz3x75VeFvkPZKGsXD133lhY43n5i1ZC72LrCi7fsaOM6wJARBTSRbyD+V5CKQx8CPbB/f9KSCoAlkoqC/AZsW3poFbGf7jOZnFQTBUCdbOPwDPW+IFHkGeJa0aDgD6CCp3hcgVRGO6v7UmtwJrNyd7W8QBEFfkPQNUrvhTl6id4vwRnKa7W2bOF4QBEHQT1a5WaMWeHvMrjIHg+fs42nvkMSfr2BeRhg0l/F8gjHAYj2e/OJs7j7iVV64rsI44ye2f9G/TxEEQZCQdA2pIAdgJqntxLxNTGFt29c2cbwgCNocSVsC5xbCNwCL0727eH94CTiH1EL8PuAhYP7c+/cDKwyktXgQBMOXSVMXO9LSnpVRfXny+GfOARDSpOsWW2EWrCuzruxPW/pAHUM8BdxkcfUIuPqKNZ69C7Eq6X6ZL/L+q+2vDvDjDHtCENQkMjHQKUCthfS9bB/V5JSCoKmEKCgIgjKQdAHwxSYO+SbV/XS/bvsvTcwhCIIhROZOdg+wTC78ErAFqU3LV+i91Vc9vEqqpl4iF5tFEjfe1cBxgiAIgkFi0rRFF5/tEQ9KdbnK9ZvZM820rV+Y8fbzs/OuGy8Ay9h+tRk5BEEw9JC0AallbZ4/AleSCm43AEY2cMiHgCWBEbnYNNtrNnCMIAiGMFmHkDuodBR/DfgIaW70KVK77s52hfUU+rwJ3ApcQ3I7vy7fxlDS/sBBhXN2sP2nOj9GEATDnA2vXXTsrI4RD1K5z3H7muOf/eQBdF/4PGHK6Hk7Rowa19Hx7pKmYz7BfDLzWLxheE3Mfq3DIx57QzPvnzr++ZqdGiRdSGXHGQOfsn1bQz7cMCUEQU0gswg8Edipxtt72z6yySkFQSlImpMkCtqk8FaIgoIgaDiSVgX+TaWi/EHSw3Y9rXJ6413gClJFzjXAXYXrPwosZ/ud6lODIAh6RtL3gN8UwnvYPiZ7fySwOmlBcV1gVeprK/YOcDtpQfFqUkuGccAtJJe0Ts63vUV/PkMQBEHQXCZeN+b3mB0L4ZuAT1K50T1QnpM5C3WcPnnNZ1YEihtOB9oubkwFQRD0SraefgOwWi48A1jW9pPZMYsA65E21yeQNtw76DsvAtOAq4Crbd8h6QRgl8Jxm9i+tF8fJAiCYYWk7UnGAHkOsH1wN8cvCiwHLA3MR3JAW5AkIupse/gEyQHoCfewoStpXpKwMV8w9BhpTfLt2mcFQRBUM3Ha2N+Cd87HZqONrxr/zD8Ge2xJKwL/pXJOd7Htz3dzStAHQhA0yGQPLycAO9d4e1/bhzc5pSAolV5EQduGi0YQBI1C0pWkxcFOZgErkR6OP0dXRc6nqb+q8FG6KnKusP1cbty9gCMKx+9s+3d1jhEEwTBH0tzAA1S69TwDfMT2m92cI5IN+Tjgw6TFxHmBOUkCxteAl4EnSRbij9SyEJd0DrBVIby67RsG8pmCIAiCwWXSv0Yv6xEdd1HR6tbXTh7/7NoTpoweM3KkJkmsazSB+ttWvAvciLm6o4Or/zfns9fe9GnPhPcq4m+nsl3v6ySXoOdqXCsIgqBbJG1FaoWT52jbe9Y6PjtnLtIceByp1WHnxjokZ43XSE6bDwH32n6+xjXGkubf8+TCdwCfiFbgQRD0RNYh4V5gqVy4qY6JknYFii1bf2T7180YPwiC9mejG8Yu+e4s3wfM0RXV1Mnjn1mrWTlI+gtQbBO2ju1/NiuHoUYIggaRbDH+N1RXFQDsZ/uwJqcUBC1BL6Kgb9o+s/lZBUEwlJD0OWBKIfxH29+pcewcpEqc5bP/vp+0cDgvyTnjddLm+dOkipz7bb/cw9hzkzbZ8z1ze9zAD4IgqIWkvYFiAcF3bf++CWOPIzme5QWTV9qeONhjB0EQBP1n0tQxf7XYJh+b3eHxV63+7HXFYzed+uEFZ/L2uFnS8h1mjOUFgHkRcxi9ptm8jvwK4uFZHnHvq3M9/XCnAKgWkrYAziuEj7W9e0M+XBAEw4IeWu4sU0vEMwjjHw7sXQhvY/vswR47CIL2RdKPgF8WwrvaLsYGM4e5SGuXedH386T7Z832PEEQBHkmThtzBvC1fEyztc4Vaz3TNDGOpKVIAsucKImptpsmShpqhCBokMjEQMcD36vx9s9sH9LklIKgpcg2zC8E1i+8FaKgIAgGjKTrgc/mQjNIFrmPN2n8nYHfFsJ72T6qGeMHQdD+SFqAVL28UC78CLB8s1oQSjoZ2KEQXt/2Vc0YPwiCIKiPidePWYnZ3EalvfqFk8dP36wZ42drYdcDn8mFZwDjbD/RjByCIGh/JO0AnFwI72/7500av9Y8/AFgBbt7UWQQBMOXrF3XgyR3sk6eIrU5fKvJuXwL+GMhHHuSQRD0ygbXjVlxtqvadV0yefz0TZudi6QTge8WwhvZvqzZuQwF6umpG/SRbAHk19QWA+0fX7xBANlE+AvAlYW3RgCnSfpK87MKgmAoIOlLVIqBAE5slhgo44+kBcQ8+0hasNbBQRAENdiTyk0ISC6jTREDZewPFBcvD8+ed4IgCIJWYzZHULnWN3uEvX+zhneqOvxZITxXjVgQBEFNMgffnxbCL1DtujFoZI7AxxbCywLbNSuHIAjajl2pFANB2gtsqhgo41TgnkJsd0kLl5BLEARtxCxzGJXPk6ZjdlnPcgeTWr7mOVJSaFv6QfxPazDZ4vgvge/XePuAZlUyBEE7kBMFFavMRwCnhygoCIJ6yazFi9+1rwNHNDOPrGrwgEJ4AeAnzcwjCIL2RNJoqp8n7gCa2qbA9lNAsT3ZqkBTnCaCIAiCvjNx2ug1gY3zMcOZl6357H+bmYftycDVhfAOkpZvZh5BELQtuwBLFWKHlNDq5lfA9ELsQEnva3IeQRC0OFnx366F8P3AaSWkg+1ZVK9Jvh/Yq4R0giBoE9a7fuxqgkonIHHW5NWfu7WMfGw/A/ymEP44sGUJ6bQ9IQhqPIcDP6wRP8r2wc1OJghanZwoqLhg2CkK2qb5WQVB0MZ8HVihEDvW9nMl5PJX4LZC7MeSxpSQSxAE7cX+wHyF2D62Z5eQy6HAq4XYEZJGlpBLEARB0C0dRVH8TMsHlpEJsDfg3OsRwIHlpBIEQbuQtdzZuxB+HPhds3Ox/QZpHpxncWDnZucSBEHLsw9QdATfz/a7ZSSTcR7wn0LsB5I+UEYyQRC0Ph2zfQSQdwR/d5ZHHFRWPhmHAy8VYofEmmT9hCCogUg6nNoq22Nsh/o2CLrB9pvA56ktCjojREFBEPSFzFq82BLhBeAXJaRDtnFfzGce0kJBEARBTSR9GPh2ITzN9iVl5GO7VouG5YCvlpBOEARBUINJ08ZuDKxTEZRPumqNZ4stbJuC7RuBCwvhrSV9sox8giBoG3ajuuXOgbbfLiMZklPmw4XYPpLmLyOZIAhaD0ljge8VwjcDfyshnffI2rgW1yTnAvYrIZ0+I7GgxFbZz2oNuubKEgdL/EViisTlEqdJ7CHx4UaMEQTtzqTrFpsETMjHBCdfPf6p+0pKCXivjWtxb2dZYNsS0mlrQhDUICQdSnUFAyRXgj2anU8QtBu9iIJOk/TF5mcVBEGbsROwdCF2uO2is0XTsH0RcF0h/F1JxTyDIAg6ORiYsxD7aRmJ5DgaKDqtHSSpmGcQBEHQZIRkzS66A701W7MOKyWhLvYDZuVeCzikpFyCIGhxJC1MdYvt+4HTS0gHeK8VeLEyfmGScCkIggBSa65iK8H9MkFOqdi+HLimEP6WpI+UkU8fWRc4J/spCq3qQuIjEv8kubf/jFTU9DlgEvAN4CjgEYkzpCqHpyAYNgjJVrHD0QzNGlF0SiyL44BnC7GDJM1dRjLtilrge6ntkXQItZW1v7BdfJAJgqAHsl7cF1NQowIzga1t/1/zswqCoNWRNA/wIJBvx/U08JGsNWFpSFoL+FchfKrt7cvIpy9IzA2Mz16+YFe1PuvPNRcDvgQsT6r6nE0SGNwFXGDzv4GOEQTtjqTlgDuBvPXtP2xvXFJK7yFpd5IwKM/3bZ9QRj5BEARBYv1pY74sOKsQPmLy+Omlu1JKOo204ZJngu0pJaTTJySWAZbKXt5uVwli+3PNVYGNgCWAhYDXgaeAKcA1doVwKgiGJZKOBnYvhLe0XarLhqQO4BZg5Vz4dWCZklqTB0HQIkhaCrgXmCMXvtb22iWlVIWk1YAbqGwDdKbtr5WUUrdIjAAm07UvdJrdPxeQzF3oapJTe194BFjDZnp/xguCdmb968ZuKfvcyqiOmTz+mZYxO5H0Q+BXhfButo8rI592JARBA0TSwSR1aZFf2t612fkEwVAgREFBENSLpH2Bomp9R9snlZFPEUmXkypQOpkFfNz23SWl1CMSawP/zF5eZPOFAVxrIVK7oa+SXN9q8S5wCrC7zWv9HSsI2h1JFwB5V0QDq9i+paSU3kPSXKQq7Q/mws+RhJfx7zYIgqAEtj5XI15afLE7SYLrTl4Z0TFq6ctWf+LFsvLqRNKSwH1UbpRNs71mKQn1AYk/AdtlLze3uWAA11oL+AOVfz5FpgO72lWiriAYNkhaHHiASpeNm4FVW8FlQ9KXgPML4eNsh1NQEAxjJJ0JfKUQHm+76BReKpIuAjbNhWYDn7Y94OK/RiGxNKkt0Ga5cL8EQRJjSULOfNHoVcCZpDaQc5DmZt8BVswdcwOwts3MescMgnZl63M14qWxi92B+Ggu/FqH+Mjla0xvGeGzpDmAe6jsDvECSaDd1O4QWavBNUli8WWBBUj3lVeAx4B/k/ZT+l38LDEP6b49ARgLzA+8CDwJXAZcWe+9KlqGDQBJB1FbDPSrEAMFQf/J2odtSqqWyzMKOFvSZlUnBUEwbJG0ANXW4g8ApzY/m27Zl7Sx38kIoNjaoZX4diMuIrEkcDupMrw7MRAkN5QdgVsyJ6EgGHZIWpXKxS+Ac1tBDARgewbVrV5GA98vIZ0gCIIAeGmJxXagIDYRHNUKYiAA248CfyyEx0sq3fmuFhKLUinMHci1diatafQkBoK0WfVXqariNQiGE7Va7uzbCmIgANsXkDaK8+ws6UNl5BMEQflIWgn4ciF8UauJgTL2JYmAOumg5DVJiUkSp0lcLHEfyfW9UXs++1MpBvqRzfo2p9hMsbnC5tfAJ6lcO/4s1c6WQTCkeWnsYtsWxEAYH91KYiAA2+9Qfd9aBGiKFkNiEYl9Je4CHgXOAPYgPTuuA6xBcoT9LvAn4EmJ4yXmrXMcSXwPeIbkArwT8IVsjM2BHwKXAo9JfL6ua7fIvLrtkHQAcGCNt/4AfLdVHliCoJ3JWgBdTLrZ5XmH5BT096YnFQRByyHpCGCvQngb22eXkU93SDoX2LIQXt12cWGxNCTeT5rf/DgX7pdDUDbhvQFYIRe+FzidVJHTQVLRf5NKdf8NwOds3ql3zCBoZyRdCayXC80CVrJ9T0kpVSFpBKmlWX5z82VSRU5LbD4HQRAMFyZMWWqukaPeKjq3Pf8Ws5aZOv75lnFukzSWJNbPt2y4A/iE7dm1z2o+EisDf6ayLVC/HIIkJgGX0NUCdBZwEakNxnRgQVJ73m2AuXOnft8mWnEGwwpJy5LaSI/KhVuq5Q6ApM9RXbh4su2GFNM0Aon5SZtj/eVtm6calU8QDGUkXQxskgu1nOtOHkl/ITl351nH9j9rHT/4+bAXcEQvh9XtECSxBF0uQABn22zTw/FzALfBe4KIh4FlbVpmjhoEg8XWd684x0svvXAvXe2SAV54i1lLt9LzZCfZmuTtwMdy4aa0cZXYCfhdP069H5hg83QfxhBp36Selo772L3eS4FwCOoXkvagthjoJEIMFAQNw/Yb1HYKmgM4R1K/W9gEQTA0yDYYflAI3w6cW+PwstmP1BorT9kVOZ+UOFriFIkpJPX5j3s5ra/8iEox0G+AFWwOsznL5kybg0jCgjNyx30W+FaDcgiCtkDS+lSKgQD+1EpiIADbs4CDCuEFSFUxQRAEQRMZNfLN71EpBgJ0cKst3tp+Bji+EF4J2LqEdN5D4jsSv5I4M6v0vI1KMVB/rzuS9Hk7xUCvAhNtvmTzW5vzbU622QH4NPB47vTDpQFt5gdBO3IwlWIggL3LSKQnsk3zqwrh7SR9tNbxJbEt8NAAfi5qfspB0H5IGk+lGAjgr60qBsr4KVQV3hUdgJvJDOClGj+zBnjdL1LZqrbHz5gVIx6VCy0NrDrAHIKgLXjppRd2oVIMhMwhrfY82Um2Jlns2jQvsGcJ6bwIXEhyJPs2aQ62N3AllV0ixgEXZ8+IvbEflWKgF4FjgC8BnyO50p1Mun92cqjUN3e1cAiqE0k/If0BFPkjsGOIgYKg8WROQZeQbnp53gG2sn1h87MKgqAVkPRbYOdCeGPb/ygjn96QdDKwQyG8vu3iwmKT8mFH4Pe9HFa3Q5DEfKSeuQtmoWnAWjY150kSo4Bb6RIQPQEsE327g+GCpOtJYrhOZgDjbD9RUkrdIknAzSR77U7eApa1HRXFQRAETWDClNHzjhzV8RCpdWMnj416db7lLt3ogbfLyqs7sha/DwEL5cIPACvYLmW+J1H87q1F3Q5BEt8ATsuFvmNXtU3LH78W8E9AWegwm/3qGTMI2pWs5c5tVBYtX2i7UW1jGoqkVYD/0PXvFVKL31IFjp1I/AD49QAucavNpxqVTzD8kNiC6jZa9XC3XbMQv6WQdDUwIReaCXzU9kMlpdQnJJ1IameTZyPbl5WRTy0k7gWWy172xyHoEqCzNe29Nr2KNiUWAF4ARmShg20OqGfcIGg3sufJB4HFcuHHR70637hWfJ7MI+kG4DO50KCvoeYcgq4mFT1f3N2+hcSawPnAorlwb8+ES5BaJ86Vhe4BNrCp+kwSqwL/ABbOQo8C43rbRwmHoDqQtBu1xUCnADuFGCgIBofMKWgT0iJZnjmAcyXV1SsxCIKhgaQlqXaSmdqqYqCM/Ukb53kOzzbYhxIb0CUGAjiwOzEQQDZhzVftfBBYa5ByC4KWQtLmVG9I/rYVxUAA2TPPTwvhuYF9SkgnCIJgWDJy5IjdqRQDgb1/qy7e2n6Z6vW0ZYHtS0hnsMm3pXiMtGbYLTbXklqJdVJs5xEEQ5kjqNyfmE16Zm5JbN8E/F8hvKWk1crIJwhakI8BWw3gp1gM3HJI2pBKMRCk9oEtLQbKOBh4sxA7UtJQ2idePff7LX05weZlklC9k/ENzSgIWpARo7QrlWIgMAe16vNkgaJL0Fw1Yo3mQWATm/VsLuhJfGMzFfhKIVx8XWRPusRA7wJfrSUGyq5/I6kzQydLAt/o5frhENRXJO0K/KLGW38Cvt1Kfc+DYKiSOQVdChT7iL8DbGk7rG2DAJCYAN33R+4DT9il2sb2CUmnA18vhEvrf91XJB1HdVuuL9r+exn51KJQMd0fh6BT6NrgeQEYY/ds+yvxvuzYubPQMXa0IQqGNln/6/9S2V6vKf2vB4qkKVQu2LZFVWQQBEMbif2ADw3gEmfbXN2ofAaDCVOWWGTkqFkPAfN3RX3fuzOfW/GadVxsT9syZM/zDwJjcuGnSQ5zxc2pUpD4GHBXLlSXQ5DE3MD/6JrPHmuzex/O+xZUVIyuYHN3X8cNgnYka7kztRA+w3avGxplImk54E6oaP1wme2NSkrpPWo4BC1s82JZ+QTDD4mfkUQn/WWKXSW2aRmyYr6boMJJawZpLvNkOVnVh6QjqW6vs7Xtc8vIp8hAHIKytqvP50L72/y8j+deQGo3BvC4zYf7Om4QtBubTv3wgm/r7YeoKObV/e/OnL5CKz9P5pF0FbBuLjQLWNH2vSWlVEXWlvpj2ctXbd7fzXECngQWz0IX2Gzey7VFerZeOgtdbrNhT+f0pWfZsEfSj6ktBjqVEAMFQdOw/UbmBnQ5lZX0cwDnSQpRUBAkVgB2HMD5t1FuH+lekbQi1dWzl7S6GCjjUJKz0Xz5mKSLs164Q4E1c7/f0psYCMDmTYk76erVXRR/BsFQ5OtUioEAjm11MVDGT4Frc69HAQcA3ywnnSAIAgA2hwG1O7kbWlsQNHLUrH2pEAOBzD6tvnibPc8fChyfCy9Oav97bDlZNZxP0yUGArixj+f9p/B6bQhBUDDkKa45zITWbxVk+z5Jf4GKTeoNJU2wfU1ZeQVBi3IUdO8WXYOHByuRBrEV1fPMX7eLGCjjCOA7VLp6HyLpAru155J9YNnC65frODd/7Acl3mdXuSkFQQUS85LWwvrLDLuqk8Cg87be2ZfKewAW+7X682SBvYF/09XGdQRpHjmQIvlGcw9dgqD5Jea0qeXA9Em6xEAAf+vtwjaWOI8ugec6EvPYvNHdOUPJCm5QkPRDaouBziLEQEHQdGy/SmpFc0PhrU5R0KbNzyoIghI4lMp5jBl8a8iGYPsF4JeF8AoMkfYAEqNIVpWd3FPH6fljxzUkoSBoUSTNQXVLhBeo/ezRctieSupZnedrklYuI58gCILhwHrXL7IE8N1C+KbJaz5XbGHTqvye6s2+fSTNX+vgNqS4EdXXCtX7SK2SOol5cDCkkbQRsE4hfFIbOU0eAFUbOkcMwVbgQTBQ9rXZu46fP5SdcHdk7r4HFsKvkERPbYPtl6hecxgHfXfiaWFGF16/Xse5+WMFLDLwdIJhwGnAiwP46ZODVSOZNG3RxcG7FMI3X7XG9F5FKK2E7RuBCwvhrSUNpDio0eTFYrNInW5qsXrh9c19vP5Nud/nBFbp6eBwCOoBSd8hbdgVJ/PnAN8YQlX8QdBW2H4169d7OfCZ3FtzAH+TtLntS8rJLghaktNIFrZ9pWZ/0lZB0mrA5wvhs23fWkY+/eRoYCcqH1YPlnSO7Xbo1dsTS1I54a3Hovyl3O8LSCxqV9j9BsFQYie6rF07OTwTP7cLe5OE2p0CzQ7gILqstpuCxAeBfJuGWcCfbfpU3SSxDZVuG2fadS0eBkHQmjxGemashzsGI5FGMWL2yINc6UCDZrO3cT3V96Vhe6akg4A/58ILAz8hbbC3O0Uhz//6cpLNOxJv0OUgWhQWBcGQIRPNFN2B3gIOLyGdfmH7MUknAd/PhVcDNgEuLierIAgGme2BjxZiR9vu03d9i3Ec6f61WC52kKQzbTfdraSBzFN4Xc8z/Wu9XCsIhgTWiAMw78vHJO/bLs+TBfYDNiW5A0HSchwCbFxaRpUsl/v9cbtbx7z8s9+7pFZgfaFYfDIO6LZ7RgiCukHSt0mVS0Ux0LnA14aAfV4QtDW2X5G0Ad2LgrYIUVAQvMdudt8Wo9uEw6n8fp5F2oBuG2y/JulokjCokyWBbwMnlJJU4xhTeN2tVWUNig/gYyEEQUHPSJwM7DCAS5xi861G5dMXJM0D7FsIPw2c2Mw8Bort2yWdC3w5F95M0uq2r29iKk+R2gRtkIstQ/X/4yokdgBOzoV+EWKgIBgy3GazU9lJNIr1py46ThpRWb0t/nnFWtOvKiml/nIGsBuQd5TbTdJvbT9bUk6NYqDz4E5B0NjGpBMMdaS6WvHUYi2bqQ1Jpu9sTfu33AE4mOSokW8FfpikS6OjQBAMLSTNRbW77/PAr0tIZ8BkbVwPA36VC3e6UB5XTlYNYSCCoOKxIQgKhhwbXj/6I7hj+8qor71ijWevKCejgWH7LklnAt/IhTeStI7tKSWlBYDEslQWi0zr4fC8IOj1vhY3Ut0WsceikmgZVgNJ36K2GOg84KshBgqC1sD2K6SNn38X3pqTJArapPlZBUEwmEiaBKxbCJ9su692/K3Eb6h2Y9pf0ny1Dm4j4gE8CHrnx1RvGh7QptV4PwNmFmJHNDMBm9mktouP5sJ7S1VuchVIrAAcnwtdA+zV8ASDIAgagDpGHEKxsM/sXU42/SfbKD+wEJ4X2u+z1KBR8+CYAwdDkqHScgfA9vNUziMBVgK2KSGdIAgGl52BDxZih9guFrW1E7+juo3rvm3exrVogFFcp+iJolv7qJpHBUH33EMqTKvnp6nuiLPccTCFv9uzO9r+GWx/qltxFZ0oy2A3KjUmZ/ZwbL6DxED2URareVRGCIIKSNoB+APV/2/+BnwlxEBB0FrkREH/Kbw1J3CupPWbn1UQBINBZi1+cCE8g9aY5NWN7Vq5j6bSdrwdCUFQEPSApAVIrVHyPACc2vxsBo7tWrmvLWlic/PgRdIGTOdCgICTJZaodbzEPKRW0J1WyY8DX66jEicIgqBprH/tYh/HbJGPGS6YPH76DWXlNBBs/x9QdJLbWdKHysingeTnru/YdW1E5TcVYw4cDFV2AJYvxI6yXU+b6VbiKKpbZB8iaY4ykgmCoPFIqiVafoxkKNC22H4H+HkhvAiwawnpNIoZhddz1zyqNsXizHpcHoMA4G2bh+v8aVpHh4nXj1kJV7h7Y7joqtWfva5ZOQwGth8F/lgIj5dUWtswiXVIXSA6uRm4rIdT8s9+g9bqMARBOSRtB5xE9f+X8wkxUBC0LJkoaBLVoqC5gQtDFBQEQ4YtqGwRCPAb20WXnXbiZOC+QmxPSQuVkUyDKC5+FlX6PVF8eJ9zgLkEw49ngFXq/CkKDQebvYEFC7GftfmzxoFA0d3osEzI2TRs/g3skQstCpwp1WyVfQLwsez3GcAWdrQoDIKgNVFHx5FUrlXNZrYPLCmdRlHcXJuT6nYc7UZ+HlysNO+N/PEhJgj6w++pfx58W7OSy1ru/KwQruWy0zZk65FFd6OlGFg740ZyrcQTEi9KvCDxkMS/Jf4ksa1U9UwSBEE1P6HSvQHgQNv1fs+3IqcDdxdiu0sqft524c3C63oE1iEICoY2szmcwvNkh2a3+7NXJ4dQ/W/2CElN18BIfAA4my7HsreBHe0e2/xPxEzPAAAgAElEQVTm71V9vvdkBY35vZQe73m1FkaHJZK2JW3KFf+CXEpqE1ZPVU8QBE3G9iuSNgCuAFbNvdUpCvq87avKyS4IgoGSWYsXN+1fA44uIZ2GYXuWpIOotI1cANgd2LecrAZMUdQzVx3nzlt4HQ/gQb28Y3Nz2Ul0h6SxwA8K4duBc0tIp2HYflrSiSRL3E5WAb5EKq5oYi78WmIVunqIrw0cQG4DSmI7YNvcabvY3NS0JIMgCOpg4rTRa0LHhpVRnXHlWtNvLyejxmD7X5KuAtbLhbeTdKzte8rKa4DkxbH1VKVD5QJucUMrCPrCM608Dwa+R3XLnYPbvOUOwK9JLr8fyMX2l3Sa7bL/LX+s8HphYGlgNWA74HWJY4DD7boKeYKgr2wp8X7SutAs0vfk08A9No+VmlkfkLQIlc+4kIr6zighnYaTrUnuD5yXC88L7Elal2w36nLLKFBcj6zHpSMIWppJ1y42ng5tUgj/9Yo1nmuaMHwwsf2MpOOpLDhZCdgaOKtZeUjMR1oDzYsqd7O5pZdT823c6hWbvkPX3kuPrQ7DIQiQ9GWSpVTx/8c/gM2HiNo3CIY8tl8mOQXdWHirUxS0bvOzCoKgQXwT+Gghdozt58pIpsGcBdxaiP1YUs02N23AQCpyQhAUDHV+RleLqk72tj27jGQazOHAq4XYYZLKKELZhcpKx30lJgFIjCNt3HTyK5s/NTO5IAiCulBHscXsTOyDSsml8ewNFdWSI4B2/mz5efBIqS6nn3xlesyBgyFF1nJnz0L4MZJTf1tj+y3SPDjPWJIAqtWZl+T0eanE/CXnEgxNziK5l/0K+A2pIP8fwKMSD0oc2OJ/9/aBqvz2bXN33yLnA/8uxL4nqSjgbAceLbzur0PQm8BQWG8OAgDcoarnydnyAaUkM3gcSXUb14Ml9SiSaRQS7wMuotKs4iSb3/bh9HxRSXHNuKcxRR3uQsNeECRpa5Kit7hQfRnwpRADBUF70YMo6H3ARSEKCoYpa0h8UWKr7GcTiVUz1XLLI2kOqq3FXwB+WUI6Dce2qf58c5MWHtqRYhVNVOQEASBpSeBbhfBU2/9ofjaNx/YLwC8K4eWArzc/F14HNqdLoNQBnC6xNHAOXYt906jenAqCYOiwoMTE3Bx4K4n1JJbtppVgy7H+1DGbYj5XCP9+8prTHy4loQZj+ybg/wrhLSWtVkY+DaA4dy3ObXsif2zMgYOhxu5Ut9w5YAitu58EPFSI7SOp2S25HgP+APwQ+DwwnlRYtQywIrAJyTnzjsJ560GfNqyCoJEsQ/r7+IDE2mUnU0TS4sDOhfBNwAUlpDNodLMmWavFYzvwEMmJqpN6Ci3zxz7QS3ufIGgb1ps2diNgncqo/njVGs8W5y1tTbYvfEwhvCyw/WCPnRWBnAcVz+3nUf0d0h35opJ69lHmJhXUdBKCoO6QtCXwF6rFQJcTYqAgaFtyoqBi64cQBQXDlQtJD6znZD8XA/8BXpG4UWI3qW5L+2ayM7BUIXao7aITRdti+xLgn4XwjpKWKSOfAfJ44XV/K3IMPDHwdIKgZTgEqpwCflpGIoPIsVRX0h0oac5mJ2JzH/DdXGg08F9g5ez1E8Dm0R4hCIY0a5NaSp+T+7kSuJ80Dz5PYv0S8+uRg1CHxM8L4TfenTn70FISGjz2AfKV9qK6VXC7UJy79rnCk8p5cMu3UQmCvpK13Nm1EL6PtCY/JLA9k+S0k2dBqlsNDXIeXGizk83xNhfbXGdzr83DNnfZXGpzMGk+vBMwM3f61yTWbGa+wZDmedK642XAmSRnoL+RCnjfKhw7GrhcqhJAl82BVLf/3CcT0AwpbE8Gri6Ed5C0fBn59Bebt4G8aH7FvpyXuWyslAu1a+vaIKhASB2aXXQHeuvdkSMOKyWhweeXwFOF2AGS6nkmq4tsT+0CYKNc+HzgK3aFQLEn8sUg/d1Hgeq2iRUMW0GQpC2Av1ItBroC+KLtGc3PKhgMss3uFwfw87WyP0NQP5koaCLdi4ImND+rIGg5BKxC2sC9X2KNkvOpIrMWLzrlPEWyHB5qFIUBo0jVUu3Gk1Qq28fUce7Y3O/PZC4fQdD2SFoR+EohfIntohCwrbH9OnBEIfxh0oZD07H5K8mavpNO94UZwJZ22IAHwTDmfcAWwGSJ86W6nFyawtRpi20DfCIfM/zqmnWem15SSoOC7VrCgA3a9Jn9vsLrPs2DJRagctPxgYZlFATlsy/VLXf2GWItdyCJHv5biO0qabEykukJG9v8Adir8FasgQcD5RRgtM1om8/YbGTzNZtv22xpsxqwMOnZOC/cmAv4k1TXRuigIWlZYLtC+F+2rywhnWZRq43rgeWkMiDyf0br9PHv1CokEWcnVzQ2pWCYsIzEFImbspaIt0lcL3GWxM8kVsnEZ01j/WljtsL6VEVQ/Pqazzz5ZDPzaBbdtHGt5fbWELJnuMuBjXPhM4BtbOqZ5z6a+70e8VJxDePRWgd1MiwFQZI2p7YYaDIhBhqKzE/6Qu/vT9MrmoPGkHMKurnw1vuAi9t0gTEI6uFd0kTgFtID0YWkio+HgdmFYz8AXNmCFTm7AsUFtP2zCd6QwvZUUi/1PF+TtHKt41uVzFb33lyoTxU5NY69t9ujgqD9OJTKZ69attxDhROpdgr7qaSy2lT+BLizEDvO5j9lJBMEQdN4hSTOuB64hLRQdz3wYo1jvwRc00qOmROmaCR4/0L45ZEdo44tJaHB5wCg6NJ9hKSmLpo3gOL8ta/z4OJxMQ8OhgSSlqDSsRFS4V6xVWDbY3s2ULxvz0MSRLUqJ5K+LzsJh6BgQNg8ZfN8L8e8ZXMWsCpwe+6tpUhtn1uBn5OK9PLsXUYizcL2jaR14zxbSwUxQetzae73zgKA3si3OTfVa7NB0BfmI7WM+jSpJeLKwGeBL5PcT28EbpVYrxnJbH2uRmAfWAi/MkKjjmrG+CXyByoFp5DauBbF6QNCYgngWmCtXPg44Jt2hQNjX8gXg7y/jmKlYlvEHotKhp0gSNKXgLOo/kL/F6lN2JDbYAyC4Yztl0hOQd2JgtZpelJBMPhcQqomnsdmKZtP20y02cxmPZtlSCKb71Jpozg38Gepym6wFCQtSLW1+P3AaSWk0yz2plKs1UF7VuTkrYZXk3h/bydIfIDU27eToVx5FQweC0ucIzFZ4ursv3+X+K3ELhJNb8MnaTXg84XwWbZvbXYuzSArrii2uFkU+GEJ6QB8ksp7C8BOUlUryiAIhga7AB+2WcBmeZs1bDa12TD7fWHS4uzvqGxTtQrV967SGDFq9LdAyxXCR162+hO1BE1tj+3HSIu3eVYDNikhnYFwO5WtMyf28bz8xoCBaxqWUTCc2CKb9+bnwX+VOExiy5Kc0A6iuuXO3kOx5Q6A7QuB6wrh70pauox8esNmBpWCjHrcfYNgQNi8SLVrwxfLyCWPpI8DWxXCf7d9fRn5NJn9oKLFjUitz9uJy6kUAxwiVbj/VCCxIpXC1b/bDCk3zqClWJnkUHvgYA/08uKLbY/4aEVQHD1Unyc7ydq4HlQIL0wqFmwIEssD06gs6tjPZresULpe7s5fnr4XlaxUeN1jUYmG6Py7JpI2IvVyKzq+XAtsnFncB0MMifuAcdnLq6m2DOuNu22ebmxWQbPJhAWTSQrdPG8Am9qe0vSkgqAFkFiUJLz4eC68U2YfXSqSjgZ2L4S3sn1eGfk0C0lnA1sXwms0c/FB4npSFQPARTZfqPP8dYGrcqEdbU7q5Zw9gSNzoU/YVZbrQVCFxMnADnWcMhXY06Yp/6YkXQWsmwvNAla0PWSr/yWNAO6AisWHV4BlbP+veXkwmiQK/0CNt28E1rKrHCmCIBgmSGxKcqkYkYVmkNpcvFZeVjBhylJzjRr55gOW8veuZzreYNnLJ01/o7TEBhlJiwIPQUVxwh3AJzLnjSbkwMeAu3KhzW0uqPMap9NVaf4a8CGbl3s4voPkZNf5nXmzzSr1jBkMX6S6Nh1mkFpvH5xtxA8qksaR/j3lHfr/aXudwR67TCStRSo8znOq7e3LyKc3JC4FNspevmXX1aoiCAaMxBN0Pa/dZvPJcvNR/t8EpKK9T9keFutTkk4DvlEIT2jW3onEvUCnKP40m237cY3tSe3rOrkN2MHm1twxHaQ2P6eQCpgg/Vl/0q4QSgZBt0gcSXJpuZNUdP0i8BJp3W9BYGmS+96mUFWAvaXN3wYjrwlTlppr5Ki37gc+mAs//xazlpk6/vlSn3WbgaQOUseMfNeF14GP2H52YNdmHeB8utoMvgvs0tu+Ry/XHA08Q5eJz0F276Ixif8DNstePgV8sCdBUlMEQZkK/hMkUcY40j+QebKfuUl/EC+THpQfJFX/3wfcZPvNBuWwIWmhpygGmgpsFGKgoUtBEPQXu8ICMBhGZAuMV1GtnGyYKEjSkqRK9OL9bl6SK9FrpPvdGyQLt/z9bsgu7gatjcSnSbbdnVxhs0FZ+QBIGkuaE+QXo24GVh2q1YSdZL3K76Zy4fRftpvWzq0BgqARpM/Q+f37FLCCXWFHnj9+THZ852T6xqy3fBD0Sj8EQZAezn9kc8IgpPQekiaRKtTy/MH2ToM5bisgaWvg7EL4KNt7NWd8RgJXAJ0tYh8i9fI+IHfYiTa7NCOfIAhaE4kToOI+sI1dde9qKhOnjd0DXGHlbut7V675zG/LyqlZSDqU6vY6X7N9ZnPGb4gg6HPAlFzoeLt7lzyJ75La9nSyi13xOgi6pU5BUCePAhvZg9uarptCl9Vt3zCY47YCki4HJuVCs4CP2767m1NKQ+ImuoonH7XDRTNoLhLXAatnL5+xWby8XLQmyTwgz+m2v1lGPmWQ7W3cB8yRC0+z3dCWghJ7AUf08/RlbR7s4doC/kpq1ZTnPuAR0mcbR3Xh0J42R/czpyDolkzwcSKVbRGfIxUONLxIbf3rFttNVmWrafHDyWtMP77RY7Uqkr4IVc9xv7Rd7EZRxzXZluRq23l/fAXYymZyf6+Zu/Z/SK00Ie2JfdSucDQuHj8aeAyYKwudZLNjj2MMxp6apLlJqqQNSQuwH+rnpd4BbiC5uvzN9p39zGcDkhhorsJb00hioCGviBvOhCAoyNOLKGgT2/+s83pzkdqAbES63y3Zz9RmAv+m634XSvSgqRTulY/YlGppLel3QHHDfEPbxY31IYmkk4BvF8ITbTeljdZABUHZNb4OnJ4L3QR81a7sZyvxcZJoYPlceGM7enYHfUPiKOBTpA28J0gVOS+SqjTmJ1XkrEFy6SkWB2xtc+7g5CUB1wOfyYVnAONsPzEYY7YS2ee/ifRn08kMYFnbTw7++BwF7JG9nAmsTZprXUBXBQ3A9janDnY+QRC0JhLjSYVinexvl9c6bOLNC72fGXM8RLI1B8Dw6EILLrLcOR+7852y8moWkt5PavOwUC78CLC87UH//I0QBGXXuZouQSrAocBhNm/mjhlJmu//GhiVhR8DxtkM+T/roDFkTgp3APcAz9M1D34f6d/RR0nClBUKpz4JrNSTe9XA8tLHgVvpqnQGuMD25t2cMqSQ9GmSG6Vy4b/Z3rKklGoiMT/wAl33oEtsNi0xpWAYInELvOcK9ID93tpkCbloCpAvxpsJfNT2Q+VkVA6SioJ5SPsmlzZujMETBGXXn5vk/rNNH643k+Se127t0YI2InOlugpYJxfezObCRo4zYcroeUeO6ngIGJ0LPzbq1fmWu3SjB4aVQ7akvOAUkuZkeduP1HcdBBwM/DQXfhTY1K54duw3EjsAJ+dCu9sc28PxeTc3A6vZFQX/1ec0UhAk6bPAd4AtSYvvjeZW4DTgT7ZrVpjXyGkS8HeqxUDXkTYWQww0xAlBUFCkEaIgSauS7ndbAQs0PMnUw/s04BTbLw3C9YOgAol/kIS8AG/azFNeLlqK1PM0X41yre21S0qp6UhanKQGnzsXvglYrZEOSZmy/bgab81Hl0PRTJKbY5H18na7Na4tktAn33t9Nkns/RBpcXg5qGqJ8Hu7on93EDQEiQ+QKnLyi9zPA0vZNNylT9KWUCU2Osb2HrWOH4pkLq1Fcd/vbO88uOOyGUn407kJ82ObX2XvLUiyDO8sWpkBrNHT/SwIgqGLxOIkJ8NOTrD5fln5TLxuzM9xxUIjkr9xxRrPnlFWTs1GUq0Nop1t/66x43AF1fPQEVSuZ75Omgvnudumxyp5iaVJc95Fc+GXSGuR07P4KlDhgvA2MMmuajUUBANGeq8tymK58KDd7yTl1xdgmLXcAZB0HrBFLmSSQ9K/S0qpCom9gcNzoXAoC5pKJo79H13fvVPsCkFtE3PRJsDFhfAJtkubF5ZF5tr+AFSsDTe0javEl6kuhOwr29o83cdxNiOJm9al0okdUieHi4GjYz0gaAYS65L2JTv5pU2/HWtqMXHq2AOR887YGG135fhn/tzIcdoBSWsDxb3eU2x/q77rsDBJQN3JG8DeQH/aj02uJcjPvg/vBZbJQrNJzrnHF4pKRgOHAfnP8HebL/Y2cEMEQZmV3l7QNAX5a8CfgMNtT+8hr4nAhVSLga4HNggx0PAgBEFBLTJR0NXAioW33gA2tl1zEa6E+93rpEWbI233aaIbBP1B4kpgvezli3ZXVXLzc9GZwFcK4fG2rysjn7KQdCywWyG8he3zGzcGOwK/7+fpq9nc2Mv15wbOgj47DJ0KfKcnS8wgGAhZO7srSItBnTS8PYykEaQFs4/mwq+R+lU/18ixWh1JRZeEmcDHbPdY0df/8RhHqsjuXFS+BPh8vo+2xFrANaSNX0gCzFW6a2sYBMHQReLDpOq+To6xKUW4ufG1Yxed2eGHSMLsTu5cc/yzKx9AYzZf2oHMdfx+Kts4PEP6Dn2z9ln9GafCEbMe7rD5eB+u/1ngPFIb8d54BdjO5v/6kU8Q9AmJFUhFJp3r5C8BYxrtSNVNy53TbG/byHFaHUnjSI5j+Q3oybYndXPKAMfjWNI8+0ibXgsLJdYmtTbu/PvwP2CZmA8HzURiIyDvOnOgzUHNz0MCbqbLqQjgLZK77VO1zxraSDqctOGd5yu2zyojn4EisQCpKGgJkgh7OvCwzYxSEwuGFRJzAW/SVbx2ll21B9JvJkxZYpGRo2Y9REWBg+97d+ZzK16zjoflWrukycD6udAsYCXb9/T9GlWCoIHwqe4EiBKrkARM78uFXwbuzMYfC3yCSvf7x4DVbZ7pbeCO3g7oCUnLSbqSNMnvy+b4k6QN+FOAY4CDSF8qRwK/Ac4hVWv29oA/H/BD4H5Ju0oqKjuRtD61nYFuJjmAhBgoCIYxtp8niR+KrQjnAS7N1KPvIekjWYVTX+93T5M2mk4BjiVZyuXvd2eTXM96cySYl6773Z6SRvVyfBD0l4/kfu91AjFYSFqJ6h7PFw03MVDG4cCrhdhhteY9A+BVUluG/vz0ajNq85bNZsDXgf8AtZTos0n31s1stg8xUDCY2Myi0uIVYOIgDLUtlWIggKOHmxgoY28q/+2PAg4cjIEk5iU5A3UufjxBqh6suPfYXEuam3XyEeC0zNksCILhxTKF16XNg98Z4f2oFAMh2G84iYEAbL9FqnrMMxYa7mTyNP2bA/ep7aXNDaQCpONIm061eJkkiF8xxEDBYJO1NMi3dF6QapesRlBsuTITmr/BXza276fy/zfAREnr1jq+AcxFKmB8SuLPEhtLld8pABJjJQ4BrqRy3+SgEAMFA0FiYrZp2tfj56bSoWo2SUhbBl+mUgwE8MvhKgbKOJLUgjLPwe26N2Hzss3tNv+wudrm7hADBc0m+zuXX09vaKelUSNn71PjmvsOVzFQxj5UrkmOoEXnpVnLr82B/NrxAsCawBeBz1ApBrob2LAvYiDop0OQpDmA/YE9qGznUeRRkkPPNcA/+9r2JlPkrkSq3F2ftEjf0zi3Azt2Wm5KWotkTV9sd3ILsH603xlehENQ0BOSRpNs+opOQa8CG5Cqp/YjbWYVBYZ5Hqfyfve/Po4vUi/3zvvdJCpv6kXuJt3vpvXl+kHQFyQ+ARXK5BPtql7RTcpFFwOb5EKzgU/bvq2MfMpG0oHAAYXwdrbb0uZT4oOk7+SxpMn4U8C9drebJEHQcDLRx5t0fa9falfcdwZ4fc1BsnldKhd+AVh6uBYlSLqISkF1w+/t2Z/rWcDWWehdYB2bmnOmrH/75VRWCu1pc3SjcgqCoPWR+BWpAKOTVbOFuKYycdoSH4JZ91P5LHjjleOf/YxpXLvYdiHbbLqHSsHWS8Ay7biml33nrExyPRpNmhdMB25ttDtLEPSExFeBv+RCW9mN24CXtClwUSH8G9s/aNQY7YSkD5Eczyru7cBnGtkKPI3FCVC1jjOLJGR8Lvt9cSqLwTo53eabjcwnGH5I/AXYmFQI+0ebx3o4dixwJrBOLny2zTaDmmTNXDSCVDC8fC78MmnOURTEDCsk7UO1SHsn238oI58gaHeyIrb8uuCfbbZrxLUnTVt0cTPiQWDuXPimK8c/u9pwfJ7MI+l84Eu5kIHP2v5P387n/VS2ehsIX7O5r5fxFiUJmbamttvsXaT5/C/s3gu237tuvXNPSUuRFlpX6+aQt4G/klp6XduIya2kRYBtgJ2o3rTvZCbpf9B/SDaD8xbev5UkBhrWX+LDkYIg6EFSy7h5SErJV0kbQg8B/wWutBmWGzXDGUmLkYQ8xUr+14D76L5i6h2S08+fSCKgAVduSlqIdL/bkbRgWIt3SaLMIxvVtzcYOkisCtxj83ofj+8giWjzttXr2w2b5PQZSeOBqYXwX2wPWyGnpHlJ31Gjc+HHgOVs93nCFwRBJRJPk4RpANfZjG/ctfUj4JeF8K62i7FhQ+b+dhuVDrUX2e5rO8E+jMHuUCHm2cvmqF7OWSzLa0wWepf0HVjsMR4EQRsgsa7N1XUcvxypcKzTkvtRUruUpj9jTZw65hTE9vlYh1jv8jWm9/nzDDUkfZ1qd41DbP+sjHyCYCggsSHp+b+THW1Oasy11UFy5v9ELvwGqd3fsC0AkfRL4EeF8Bdt/72x41Cr5XhvzAZ+DhxcxndfMLTIBEFfzV7OJu3TTSGJbZ7LYh8G1iJtcuZbojxFauHc9HuFpB2B3xfC+9o+vNbxw4msjesDVG5IP01qpdawNq5BMFyQmAhckQvtbXNkI669/rQxJwm+XRE0EyevOf3KRly/nZG0HOm7KN914XLbG5aUUp/I9u2WIa1ZLgQ8Dzxh80S/rlePXkfSxiTV0QI13n4L+B1w7GBZ6WVOGl8g2fx3t0H/LpV/qJAWedcLMdDwpCAI6o0ZwGnAAeFWMLzInIKuJrn1dPImlQ8nncwATgKOsf34IOUjkkvKfsBnuznsH8A2tosthYJhjMRvgC1JrTlPtbvvbyrxPtJ39zdy4Wk2aw5ult3lo2uorA6aCXzU9kNl5NMqSNqN1Howzw9tH19GPkHQ7mROMm/QVTVzkU1DhCmZiO9BYLFc+CnSgtlbjRijXZF0JlT1Rh/fiJaQEisCf6PrOfAmYJtiq7Buzt0QOCEXmk6y3I0igSBoMyTeJDkvHENyf5vVw7Erk1oM5t3cvm1z8uBmWc36UxcdJ424i9xalmDyFeOnT+rhtCFPJi64hcpCmTdIFfvPlpNVELQ3NRyCNre5oDHXVvHaAIfZ3q8R129XskLnh6lsCXkXsLLtbr+n6h8HkdZTNic5YC7fw+GvkFzOD7O5t1E5BMObgiCoHh4ltZC/vbEZ9Y6kuUguXh/MhZ8jCRnjeRCQ9D2S61OePWwfU0Y+QdDOSBSdalZuxL1v0r9GL+sRHXeTe540/teV45/93ECvPVSQdCqwbSG8ru1rSkinFPosCMoqc04BavWIvJi0MfVIA3PrKReRNi+PARbt5fBwBhrm1CkI6uR/wBdsBrxBEbQPmVPQ1cDHqC0uhOQktIvtpj0wS9oKOJ7KzcVO7gQ2HOY9jYMcmSDoe9nLt0l/p6eQ2mtOJ9lEL0HqPboDXQ4ZkFyxVre5q1n5diJpI5LDX54TbZfSuqyV6GaB4nnSZkgsUARBnUisBBUP3L+w+Uljrq2fAQcXwt+yfUojrt/OZE6z91LZCvpa22uXlFIQBEOMTBDUKfZ8itQW8F/AI6QWTfMAy5EKL7agcn3rCmDjnkREg8XEaWPPA2+RC7nDrH75mtP/3excWg1JXwCKLhq/tl102wiCoA9IHAf8OBdayebOgV9XI0nrU8vlwtFyJ0PSwUDR3eybtosuaA0ck/lJTugfokuM9ALwJPDfMr7vgqGNxCakDh5rAOrDKTNJhdl72fxvMHPrDklFl1mA79s+odbxw5Gsjeu9wNK58P9ILdGjSDkYtkicR2q52SfHP4lvQ4UrY8OKsidOG3M2yXntPSyvceUaz17fiOsPBSR9mNQNJt/G9T+k1mHDoqVanwRBme39cVR/kb9C6hl59iDk1iuSFgZOBjbr5pB7gLVtd+uOEAx9JKaRHF3uIW2Gv5j9dAALk8RCE6h0hoHUTuzjPfW7DYYekvYCDqf6fvca8L3BfFjvCUkLkuxLt6rx9kMkF7T4uxoUBUH18AqwtV1hW9kUMqHvTcCncuEZJEeNJ5udTysiqfjQAPBT24eWkU8QtDMSvwJ+mAtNspk88OtqQdJ38oK58P3ACrbfHej1hwKSfkdqA51nQ9uXl5FPEARDi4IgqB6mkgqCXmpwSr2ywdTFPz1bs2+k4vlTf5s8/pktm51LqyJpGmlzsZN3SC6iD5eUUhC0JZlD8CN0taN+wuZDjbm2diK5D+fZx/YRjbh+uyNpPtJzQr6w+VFSK/B3SkkqCAaJrC3zeqQ1vpVIrU7mJ+3FPE/6u/8v4O9l7rtk/y4fpOueCCm35W2/XUpSLYqkbwJ/LoQPtn1AGfkEQSsgcQ/JjZRUbGIAACAASURBVO9u4I/AhTZVXQ4kPkASS+5M1zPfLGAdm6kDzWP9axf7uDp0K+kemw3K/01eY/qXuj9reCLp18APCuEv2L6ojHyaTa+CIEnbk0Q3xc3xW4Cty27jkW0i/gg4imr3ontINvRNX9QJ2g+JCaQbd17tfLHN50tKKWgymb3x6eS/PBO3k+539zU/q0ok7QL8gkolKyR165ohgAwkvgAcCqxYx2mTge/ZPDA4WfWMpK2Borj4KNt7lZFPKyJpBHAHqcKvk1dIFZelVFIFQSsg8QvgEpv/Z++8w6yqrjf8fgOIiA2DArZYYi+xF8CCCrbYYtRobIkaozFqTOy9gvoztkSjiS2WWGMvFBWl2KPG3jVGASsiIAIz6/fHPqPn7nun3Xbu3Fnv88yTzDrnnr2Qyz7n7L3W9z3czvO3BB7iexXAd4BVzJhTei46H/hjFN7NzG4v9dr1gqQBhEXXtCXri8A6ZtaUTVaO49QLEpcS1KQXaudHpgMXA6eX4z5QDMMm9B9lMDQVarQmrTlmk0mvZpFPLSJpE8LGYZprzeyXWeTjOLWAxLLAMcAZZkxqx/kiKP/vnwqfZsbppeeieYG3gCVT4UmEBp8ZpV6/XpB0NGH/Is1vzeyyLPJxnK6OpNOBU6JwRZW7Oist2LhOJ1iruY2r0yVJFQSl+Yiw5vUpoV5heYIbSbzfeIxZnjpZUQyb0O8BQ9umQk3dzNZ5aPCUF8tx/XpC0qKEdeC0jevLBBvXul+TbLUgSNJPCJ7qsW3OQ8DPaumhXtI2wO0ECeg044FhZvZN9bNyOhsSixM2JfomoSZgyfa8XDudG0nDgHvJtbEAeBjYpZZseSRtSZibF4gOPU3wvayZudnJDomVCL7x6xMU0JYkfGcaCNKu/yUsrN9lRmZ2BF7o0n5aKJw618yOyyIfx6kFJCYCGwNPAlcSOnLy5g6J3sChwJnkFtXuacbNpedRsNDlOWD9riI9214knQccHYV3N7PbssjHcZz6QqInQU1mCLAmwb5mMcJz8AzC4uwrBFvdf5qRWUPFVhMW20Q05Ba6GNeMHjz5VxmlVLNIGgkMS4UagTXNzAunnC6JxCqEjvRvgFuBawjWE3mqlMnawAUEu8RmJgMrmVGy3YsXurQPL5xynNpBUl/CpvCCqfArhE1ht9MrgKSdCfsRaS4ys99nkY/jZI3EK4Rin44wCzjMjKvKkcPQCYsNhoZxUWb/GD1o0n7luH49Iuks4MQo/AszuymLfKpJiwVBklYgLGLHG843EyplM+meag1JGwEPAgtHh64yswMzSMnphEgcD5yTCu1nxj+yysepPJKWAZ4nf+64E9izFmVCJa0LjCTY3qW50cz2ziAlxykKt8JqPy1Yq30DrOjWak5XJVUQ1EwTYSHvdeATQmPDcsBG5L/XXGHGb8qTR0ErrK3NrOo2jLWOW6s5juMEho3vP8GUa4XV0MjKIzed/F5mSdUoyftvZK3GHWbm1mpOlyRVEJRmBvAUoTt9KmGj+8eE4sh0Z/psYMty2FRIWojwXJdem3oft8IqiFurOU5tIOlC4MgovIuZ3ZVFPp0FSfH6y2yCxZo/uzpdDom+wC+AnwCDaN26ejrwT+AcM94vVw5DJ/Yfi7FZKjSnSbbKwwOnZOrsVMskz67vAoukwu8R5rK6fnYtWBAkqScwkdwNJ4D7CTfGmisGaiYpCnqY3O5ccLk/p51IbAA5ahknmDE8q3ycyiKpB/AYuQ+zAI8C29ZiMVAzktYndLbOHx060MzKUmXsOJUk6ZB7E1gqFf6UoA5UM6pctYSkbYEHovDlZnZoFvk4TtYUKAhqD0boYj7RjJK7/yQtSyhASqsMjjOzTUu9dr0i6WTgjCh8gJldnUU+juM41WbYhP47Gtydjpm4eMzAyfHmlJMg6TYgXQBkwMZmlpnaqeNkRQsFQe3hU4JCZrvsdtvOQ2cCJ0XhfczshnJcv96Q1J1gTbFSKjyVsAbyRTZZOU7XQtISBLWu9Ob9M8CGru7bOpI2JeyjpLnazA7IIh/HqRUk5iG4H6xCcJ/pDcwFPiPMN08XUnEshaETB2yP2X3pmGF/GTNoymHlHKcekXQsEBdjH2JmcdF2XRH71jUzgvxioKcJUu41WwwEYGZPAnsTuoPTXJaogDhOW8SS4X0KnuXUC2eQv5H4PLBTLRcDAZjZM8AekLeZeUmi8uY4tc6h5BYDAZzpxUAtY2YPAmOj8IGSls8gHcepBfYETiMom7bl99xEsD4eZMZx5SgGSjibfMtRt/JrnQuBKVHsDEmtdVQ5juPUBaejhqb8osgZdDNvRGqdEyFnIV0EK1DH6Yq8AWxJsAr7uB3nTyOs969axmKgRYEjovDLQN1bLhRLooZ5ehReGPhjBuk4TlflDPKVPI73YqC2MbPHgTFReD9Jq2SRj+PUCmbMNuNFM242489mnGvGBWZcZ8bEchcDCQnLew/6xhoa/X2yfVwCxG4Lp0iKhWbqijyFIElrAP8myOs38yWwjpm9X73USkPSCODYKHy3me2cRT5O50FiHcKmUjPHm+VVCzp1gKRVgReAHqnw18B6ZvZmNll1HEmnAadG4dFmNiyDdBynXUianyAtvlgq/AFBWrymi/GyRtIgyJN3d7tAp8sj0QdYi9CR049gk5DuyHncLK/wu8QxtQbhWSLdaHGvme1YznHqEUlHABdF4d+bWRxzHMepK4ZN7Le3mXIVrMVZowdOPjmjlDoNkq4GfhmFtzSzR7LIx3FqBYkfAWsAyxM60+cjKM98TrCdftqMsjb5SroYODwK72Rm95RznHojsQJ/Dlg7Ff4GWMHMPsomK8fpGkhakWAxnt77HGNmQzNKqdMhaT2CeETaxvU2M9s9o5Qcp8sxbHz/PU25BdiC4aMGTT4hq5w6G5IOAS6Lwsea2XlZ5FMNcgqCJDUAE4CNovPK8jAvaUHCi0mf5Gcm4eXkAzNrTzdDR8bqTuigHxQd2sEiGS3HSSPxa+CKVGh3M27LKh+nMiQv4I9CjscmwB5mdmsGKRWNpG7AaGBIdGg3M7s9g5Qcp01aKGTb38yuyyCdToek+4DtU6EmYF0zeyGjlBynS+L/FotH0jwEq7VlU+HPCJYJ07LJynEcp7Ks95x69JnV7zXC2lgzX/a0nsvfN/iDL7PKq7MgaWmC5XDPVNhtPhynyrTwb/FpYCP/t9g2krYH4v2JP5vZ77LIx3G6CgXsRyHYjz6ZRT6dFUl3AD9NhYww/z+dUUqO02UYMlbdu/dY7GVQjv1ot4Yeyz+08YduP9pOJPUA4vfyqcByZlaX7+WxZdjPyC8G+mexxUCSFpf0K0k3S3qb8B/z38DDwO3AA8BE4CNJ/5V0laQNihkrJpHg/BUQqwycnxQ+OU5L7Jv6/41QHildp+bYgfxioDurUQykwFWSvkj9/LvY65lZI3AQMCs6dG5SHOk4NYWkvsDvo/AbwI0ZpNNZOZ5ce6QG8q0nHMepIIla1/ZR+J9eDNQ+zGw2+VYvfYEjM0jHcRynKiz8Tf+DyF10BDTci4Hah5n9F/hrFF4fcGU+x6kup5FbDARuudNuzOx+4LEofLCk5bLIx3G6ApLWBXaNwv/yYqCiOIF8G1dfk3ScKtCtx2IHRMVAAOd6MVDHMLM55DerLwwclUE6VSEujDkm+v1r4OiOXlTSFpJGETzYrgL2ICx4qJWPLUUo4HlK0r2SBnR03JjE8ufCKLwyudWrTp0i0SBxtcTSHfjMkeSqSt1phk+k9UlsKTiT6k32JxPmuz6pn4VKuaCZvQN51nbLAT8v5bqOUyGOJ1j5pDkhKeZ12oGZvQTcEoV3kDQwi3wcp4tyVvR7oZdJp3X+AbwaxY6WtFihkx3HcTozA59YqpdksYz7pF7zNvwlk4Q6L2cR1ivTnJ0o5zqOU2ESy519ovBot+7rMCdFv/fA3yUcp5KcTe7+ZCNhjd7pIGZWqKlza0mxe4HjOGVkyNhl5xU6MQpPbpjBpZkk1Pn5J/BiFPu9pH5ZJFNpvisIkrQdsG50/LwivWsPAYbSegFQa/wEeEHSqkV+Ps3ZBL/kNPE/GKc+EcFb/k2J6yU2kyioliLxA4kLgT+lwrPxF7G6RNIWQLxpfqGZvV+FsXcndFJVgvOAyVHseFdFc2oJSYsTnhPSPAvcmUE6nZ0TCfeqNHFhoOM4FUDStsDmUfjvSYGu004SlcNTovD8FNGU4jiOU+v0bppzBLBEOmbY6fes+9HMjFLqlJjZZ8BFUXg1YK8M0nGcrsg5kLO+avimeocxs/HAQ1F4b0k/ziIfx6lnJG0CbB2FbzCzuDnFaT+nku/OMkJSsXvCjuO0QfceMw8jiKt8h0xnjRw2eUZGKXVqzKyJ/DXJ3gQVtLpDzUqeku4hWOg0Mw1YphivtBa8OAG+Inh7TwI+JSz2LkuwKVugwPkfA2ub2ScdzSHK5xTg9Cjs3qB1jkQ3cqULIXSRPQG8D3wJ9AJWAQYn/z/NwWZcWeE0nQyQdCuwWyo0kzDffVrhcQcDo4F5Cxx+18yWLxDv6BjHAOdG4SFmNrbUaztOOZD0N+DAKDzUzMZkkU9nR9JfgYOj8NZmNiqLfBynK5AscD0LrJMKzwJWMLP/ZZNV5yX57/kEsGEqPAtY0cw+zCYrx3Gc8jL0uUUWYtY87wKLpMLv9enTd+VbV305LvB22kDSQsA7wA9S4feBlRJLSsdxKkBiufMMuU3Ad5hZoX0Apw0krQk8T66Lw11mtktGKTlOXSJpArnNwbOBVczs3YxSqgskXQL8LgrvaGb3ZpGP49QzgycsukAvur0NfKeobfD+PNMWWPmBbd+Ki/OcDtBV7hENAIkk+zbRsSuKKQYqwMeEzoG1gUXMbKiZ7WtmfzCzg81sGDAA+D1hUz7N4slnS+VSIK6Q27cM13U6HwsAw4BfEyyjDieoWaWLgb4Ffu3FQPWJpD7kFj8CXFWFYqDlgDsoXAxUTi4nFF+m8fnOqQkkrQDsH4Uf92KgkjiD/Oenc7wjx3Eqym7kFgMBXOLFQMVhoUMl7siZl3wbBcdxnE6LzZrnGHKLgQBO8mKg4jCzr8hvhFmG/MYDx3HKy3DyLXfi5zinnZjZf4Dbo/DOkjbOIh/HqUck7UC+U8AV9bbRmxFnkm/jeo67FThO+ZmP7keTKgYCaDA7xYuBysJx0e/zUIfql80T854En9o015R47Q8JfsJLm9mJZvZCIr+Uh5nNMLOLgK3I39TaX9KipSSSFDbFViR7SJqnlOs6tY0ZjcAQ4FrybZQK0UjwDFzLjL9VMDUnW3Ynvyin1PmuVSQtAjxI7g37tUqMZWZfA7dF4Z9Jmq8S4zlOBzkL8qwb4wcupwOY2cfAZVF4XWDXDNJxnLpHUjfyrT+/Ith2OkWSqJo9EoUPkLRyFvk4juOUk+3GDVhU+d3TLw0eNOXmTBKqHy4F4mLckyT1ziIZx6l3JG1KaKpM8w+33CmZk8hXuHcrcMcpA0lhyhlReAblESHo8iQN1pdE4dUJ+82O45SJIWOX6GvYkemY4JWFJ31yU1Y51RNmNg6I3Rb2kbRqFvlUiuaCoO2j+NNmVspm9WUEmd4bzKyxvR8ysyfIX0zvBmxXQi7NXB/9vgjg1fZ1jhljzfilGQOAVYE9CJs4FwNXEhaQTgV2ARY1Yy8zXs8qX6cqxPPdK2b2fKUGk9SDUKCzYip8DXBFpcYkf75bANikguM5TpskUtixjPhdyb3fKY1zCDaYac6WFBdfOY5TOr8k2M2mOd/MPs8imTrjeMBSv3cjPKc7juN0auY02CmEd7LvMOOEUyncNOe0DzObRWg4SDOA/OIrx3HKQ1ykMpugDuGUgJm9RWhmTbOppK0ySMdx6o09gbWi2EVm1p7mcad9nA/E6yFnuhiD45SPbvM0nkT8PilOvHW39tdfOG1yAvlrknX1nNuQTMyDonisptMhzOxRM/umyI9fWyC2WgnpNPMwMDWKbVGG6zqdBDNeM+NWM04340gzDjbjcDPOMOMus7zNVKfOSLr6N43CsTRvOccT8Hdy55rHgN9UasyEccAnUcznOydrRvB9ITJAE/kqG04RJEqIF0bhFXG7QMcpK5LmJd8SoVBHnFMEZvY0cG8U3kPS2lnk4ziOUw62nLj4D4GD0jEZTz88eMr9GaVUb1wFvBHFjk1Ueh3HKROSdiK/sfZyM3svi3zqkFOBeC9luFuBO07xJE26p0fhqcAFGaRTtyQ2rudH4WWBX2WQjuPUHUMnLLG0LG8/8ZkxA6fck0lCdYqZPQfcEYV/KmnDLPKpBA3AhkBsJRPLtVcNM/uAfNuwfmW4biNhIz7NkFKv6zhOp2IdYKEoVsn57hRyN+RfA3Yxs9kVHBMzM+DRKOzznZMZkgYD20bhG8zsxSzyqVMuBKZEsTMk9coiGcepUw4FlopiZyZ2nU55OJFQMNqMyFd/cBzH6TQ0mJ0B9EzHmqTjDLMWPuJ0ADObS/5m38LAHzNIx3HqksRyJ/53NgMYnkE6dUliBX55FF4P2DmDdBynXjgAWD6KjUia6pzycgn5Nq6nSIr3nR3H6ShqPJXofbJB+PtkZTiRfBvXulEJaiBskKf5Cngug1zSxJvl5ZK9ijf+1/ZKe8fpUsTz3UzgyUoMJGkPcm0uPgN2rOJLRzzf/djtg5wMiTdz55Dv4e2UgJlNJ39Bdgng4AzScZy6Q9L8wLFR+AOCBa1TJszsZSD2QN9O0mZZ5OM4jlMKW0xYYiWwvXKjemjMoElx84ZTGjcDsQ344ZL6Z5GM49QhewE/jmIXmlnckOKUxnBgWhzztTzH6TiJuu+JUXgScGkG6dQ9iVvMOVF4AHBYBuk4Tt2w1fhFV8TyHADGjBw4OTNRl3rGzN4Ero/CQyXVhftKA7BSFHs5UdPJhKSTPVbwiD0oi+U/0e/zEzbLHMfpGsTz3WuVUOtJ1FCuI3S1A8wiFAO9Xe6xWiGe7+YBlqni+I4DgKTtgXgj90ozeyeLfOqcy4FYsv1ESQsUOtlxnA7xB2CxKHaamX2bRTJ1zsnkN4i4SpDjOJ2OBhqHA+mNXGtqyGkaccpAopAbW3r2Jn8j0HGcDpJY7pwWhb8E/lT9bOobM/uMfCvwlYBfZJCO43R2DgeWjGJnmlnsTOKUj78D8Vrv8ZL6ZJGM49QDDTScTe77JIQ1M6dynAbEa70j6kFcplBB0JtZJJJiXb7fRG/mpTJdO/YVh/w/v+M49UvF5ztJywH/4nsZPwN+ZWZPlHusNvD5zsmc5EEpllX8BpcWrwhJgWO8ad4XODKDdBynbpDUFzgqCr8B3JBBOnWPmb0PXBWFB0uKrScdx3FqlmETFl9PsdWLuP3hjSc9nVFKdY2Z3Qc8FoUPTt7PHccpnoPIt9wZ7pY7FeP/gE+i2OmSehY62XGcfCQtBBwThd8n/x3TKSNmNgfyCt8XJjRXOY7TQbYev/i6Ju2aG9W/Rg+aXBHHEydgZv8F/hqF1wd2zCCdstJAfqVsNRUsCvGz6HcDxpXjwmY2ieBxnGapclzbcZxOQfzvvazznaRFgAeBRVPh483sn+Ucpz0kizOxuprPd061+TmwdhS7yMw+yiKZLsJ1wGtR7GhJsbKJ4zjt53hgwSh2gpnFvtJO+TiTYO2aZoSkhiyScRzH6ShmTSPIbXZrpKHB1YEqy0nR7z3I35hyHKedJCr+J0ThScBfMkinS5BYgZ8bhX8I/DqDdByns3I08IModlIlXAKcPP4JvBDFjnQbV8fpOE1qOofofdKaXB2oSpwFfB3FzpbULYtkykV38he3M6vwl/QDYL8o/ISZxfYXpfAlQTq4mR1dts5xugyxRWDZ5rtERvl2YMVU+Gozi1/kq8mX5L4AuW2QUzUSn/t4AX4qoePNqRBm1ijpFOC2VHgBwoLI0dlk5TidF0mLA4dE4WeBOzNIp8tgZpMkXQocmwqvCewG3JJNVo7jOO1j2LgBm9HAlumY4NpRG30cF207ZcTMxkt6CNgmFd5b0p/M7MWs8nKcTswR5K+jne6WOxXnMoLKb7qp72RJ15pZvDnlOE4KSYsS7MLSvEwoVHEqjJk1JWuS96TCvQlNVkdkk5XjdD62mrDYJqJhWDpm2PVjNpn8alY5dSXM7DNJF5Frz7YasBdwfTZZlU53YP4oluWD5TkEGbk05d44nBb9vkvy4zhO16Ms811ii3QVMCQVHkv+BmK1iec7LwhyqskB5NvUnWtmX2SRTBfjDuApYMNU7DBJl5jZhxnl5DidldOBXlHseDOzLJLpYowg2FQskoqdKelfiRy54zhOTWINNiIKzTK6nZFJMl2PY4FhBEV0kv89DV/3c5wOIWlh8htK3gOuySCdLoWZzZJ0BvC3VLi5yOHsbLJynE7DSeSvf59gZk1ZJNMVMbN7JU0EBqbCv5F0sZm9m1VejtOZaLCGEaac0GyZzswona7K+cDBQNp14QxJt3RWxbkGYN4oNiuLRCTtR7785WPAXWUe6psyX89xnM5Luea7U4F9Ur+/BuxSAzeGeL6LNzQdpyJImpd8yf5JwKUZpNPlSAoVTonChf5OHMdpBUkrAPtH4cfNbEwG6XQ5zGwqcEEULvR34jiOUzMMG99vF2CjKHz56EEf/TeLfLoaZvYfgnJvmp0lbZxFPo7TiTma3KJsgBNrYJ2rq3ANha3A478Tx3ESJP2QsHmb5mngvgzS6eocF/0+D7jVkeO0h63H99/BlFNQh4y/jh482Qvqqkiiynh+FF4GOLD62ZSHBiCW+Zyv2klIWosgh5nmC2C/CnTf9m77FMdxugglz3eS9iB34/0zYIdkEytr4vluRiZZOF2Rw4Alo9jZZubfwSphZqOAR6LwAZJi1SbHcVrmTIKiapp4YcupLBcDk6PYaZK8yNlxnJrjdNRg0mlReHqDiBWDnMpyEjA3ivnfgeO0k8Ry53dR+CXctrVqmFkjQak0zULAMRmk4zidhdOAnlHsOFf3rT5mNg4YFYX3kbRqFvk4TmfhdNTQJGJl2RlNPeycTBJy/gz8L4qdJKlT1pl0B6YDC6ZiVbWUkbQ0cDe5G/NNwC/M7IMKDLlg9PuXZGuT5jhO9Vic3I29kuY7SZsA1wHNAn7fEIqB3inlumUknu98rnMqjqQFyJcWfx/4e/Wz6fIcDzzJ93NUN4Ki2V6ZZeQ4nQRJawK7ReG7zOyJLPLpqpjZDEnnAJekwosTbFn/lE1WjuM4hRk/frG9EWvmBE0XjBw06ZOMUuqSmNlbkq4lt3tzU0lbmtnDGaXlOJ2JU3DLnVrgVkIB0Dqp2OGS/mxm8eaU43Rpkua3vaPwKDN7NIt8HABOAIaSuyZ5JrBrZhk5To0zbsJiewrWygkaF43ZcMqUjFLq0iQ2rmcBf02FBxAK5ztdw4kI8pMrp2KnmVlcgV6ZwaXFCbZgP4oOHWdm51ZgvAZCAVS6o3Q/M/tHucdyHKf2kPQ8uTfUEWZ2fJHX+hFho/0HSagJ2N3M7mjn548ALkqF3jWz5YvJpZUxphI6iJo52MyuLOcYjhOTeN3HMrD7mtn1WeTT1ZF0D7BDKmTAumb2fEYpOU6nQNIDwLapUBOwjpm9mFFKXRZJ8xDeWZdLhT8Dljezadlk5TiOk8t6z6lHn1n9Xid3rvq8R/c5yz2w4ec+V1UZSUsAb5G7/vcssIErBThOyySWO2+Qq7LxNLCR/9upPpK2BR6Iwpeb2aFZ5OM4tYqkO4CfpkIGbGxmT2WUkgNIug34WRTe2MyezCIfx6llkvfJ14D0HuHUntZzufsGf/BlVnl1dSR1B14G0q4LUwlrkl9kk1VxNACxCk9cnFMREvnR0QXGO7sSxUAJS5G7GADwXoXGchyn9ijnfLcl3xcDQShkbFcxUDWQ1I/cYiDw+c6pMJL6AkdG4VeAmzJIxwmcQChkaEaEjhzHcVpA0mByi4EAbvRioGwws9mQJ5ncFzgqg3Qcx3EK0mdW/4PJLQZCZsO9GCgbzOwjcjs5AdYDds4gHcfpTJyBW+7UDGb2IDA2Ch8oqawNhY7TmZG0HrBLFL7Di4FqghPJt3H1NUnHKUCfbxc7kNxiIEwa7sVA2WJmc8m3cV0Y+GMG6ZSEgIuBw1OxZ8xsg4oOKi0MPAKsHR36s5nFHsXlHHco+d6V/czM5Zsdpwsg6Vxy/bZfMrM1Wzq/jWsdzPcLjJ8BV3XwEusRioqamQpcEZ0zycwuLjK/TYDHo/APzey/xVzPcdqDpIuAI6LwzmZ2dxb5OAFJNwC/iMKbm9ljWeTjOLWOpLHAZqnQHGCVGrIE7XJI6ga8CKyWCk8ndOT4u5zjOJmy9aj+vZt68zbQPxX+uNe83Va4Z92PZmaVV1cnaVZ4h1wr7TeA1ZOFXcdxUiSWOy8D3VPhh8wsLpR3qoikQcD4KHyjmcX2SI7TJZE0GtgqFWoE1jCz1zJKyUkh6SrgV1F4K7dxdZzvGfjEUr3mb5z9pklLpsKTes3b7Uf+Ppk9kgQ8R25NyzfACkkjSqegO/B6FFtdUk8z+7YSAyayvQ8Bq0eHLiV/E7HcrBv9PtUXkB2nSxHPdytJ6m1mM0q8bl/g2BKvsXCBa7xIKNoshni+mwm4x7hTMSQtDfwmCj8D3JNBOk4uJwG7AfOkYmcBm2STjuPULpK2J7cYCOBKLwbKFjNrlHQy8K9UeH7gOFwpyHGcjLHeHEFuMRCI03zxNlvM7DNJFwKnpsIrEQrlr8smK8epaUaQWwxkBHUHJ0PMbIKk+4HtU+E9Jf2fmb2QVV6OUw4kzUd4huoD9CasW00HZhCaZz82s8ZWPr8pucVAANd5MVBNcQqwJ7nOLcMlbVhIfU7SAMI+Se/kfxuBacnPZ2bmailOTTJkbJ+Fe/bs0dcauy/UhC0A1t0a9BWNzLDuc756eOPPWiwcmb9x7uFRMRDCzvD3ydrAzCxZ8HVBZAAAIABJREFUk7wvFe4FHA8cVugzkhqAxfl+PluA0HA6nXB/m2Jm0yuZd15OBJWKZ6J4RbrGEznLkUSyV8C5ZnZcuccrMP4oYGgqNNLMtqn0uI7j1AaSVgdeisLbmNnIIq6VVgiqFC+a2VrFfFDSPcAOqdBjZrZ5WbJynAJIuhr4ZRTe0sweySIfJxdJlwGHROHtEglyx3Gon46PekbSE8BGqdAsYCVXQHQcJyuGjO2zcPcePd8BFvkuKN76sueU1Z5d1+Zkl5kDIGl+gkrQYqnwB4R7R0UaIR2nMyJpfeApwl5BM7ea2R4ZpeSkkLQG8ALQkArfa2Y7ZpSS43QYSQsAmwJDgB8DKwJLkTvvxHwLvE1Q+HuS4DryvJk1JdecCGycOn82sLKZvVf2P4BTNEmB9pFReGfgNcL3YRNgZcJ3YoE2Lvcp4fvwMvAY8KiZTSlrwo7TBkPGLtG3R/emIdbQtLkZqwutTO77RiFmgN6U2Rug8dZdj4ze6OPXhj63yELMmudd0u+T8F6fPn1XvnXVl2dX7k/hdJQWFOVXBt4H1gC2AAYS5rIVgXnbuORHhPnsJeBh4HEz+6qsSacQ0I0wifZJxc80s1PKOlB4sbgfWDQVNuCPZvanco7VwvjzAp8D86XCx5nZuZUe23Gc2iDZ6JsE9EuFzzezY1r4SGvXqtmCIEk9CPP6QqnwaWYWe106zndIWoigttBcsTyV0JEzva1qZUkrAq+Q20042syGVShdp4MkHTZvk/sc9B9g7eaFlOj8eQjfh4WT/23i+w6tr91mwalVknv9woR5rDfh5esr4GvCfPZNK5/dE7gpCg83sxMqlK7TQSRtBoyNwn83s4Na+UwvwndhweRnNmE+mwZ8VWgOdByn67Dec+rR/5ul5/+Wb/vQjd4ANDKjJz2/nNzrv9PbKuoZOqH/cIJa2XcY/HzMoMm3VC5rpyNIOgq4IAofbmaXtnB+8zNEc2f613z/XlSxBVrHKZVk7bs3YS1oAWAuoQt5GjCtDZWNMeTa2rvlTo0h6SaCykaaQWY2sZXPFL3O4zjlQNKCwM+AfYDB5K4bFsuXwN2Egt8zo2MXmdnvyzCGU0YSG9d3yS32mQP0KMPljeCycBNwkzdzOZViq6f69dNc7QnsDaxD68WM7eVjE/+TsUE6aNjeYwZNubEM13fKiKTBwLgo/BahvqZvGYZoBJ4AbiAU5pdVEU1mhqS7gJ1S8bfMbMWyDSJtCdxJ7oQ/F/i1mV1TrnHayOFnwG1ReAMzi9WRHMepYyTdDKQ7nD4Ali0kUdnGdXqSu7HeUQ4Ghqd+f5/wIJGm0cymdfTCkn4C3BuFNzWz+GbldEESucIfA5sTrOWaK5YXauVjnxCqld8AngYeSdvnSLqN8IKfZiMze6p8mTulImkE+daEexDUGzdNflYlfB+WoeWFmjmEF/k3CIVgjwPjymC/6DgdIimA3YDQUbYm389nvVr52IfAm4Tv70TCfDZJUjdCh9nKqXOnAsub2RcVSN8pktY2rCT1I3wfBhFsYVai9a7TWYTvw5uEv/9HgKfMzLuwHKcOGTxh0QXmo/smJtsUWA1YCWNZWn7mmYt4D+NNmb1iDQ2Pf2NzHx8/6NOvAbYZt+iAxoZub0FSSBR4afCgKWudihcb1gpJkcSbhPtBM58S1MsHEO4bG/D9faO1xdypfP8c8W/CfeOljq4nOE6pJJurmxM22FchPAMvTa6CTJq0ysbLhALrJ8xsVjEF1071kfQj4FVyN9DHmdmmyTrPGoT5bF3CXNbWOk+zykZ6neftSuTudD0krURYf/o5rb+fl5PpwI9cLab2SNZbbgN2qfBQjYQ1zhG+D+KUi63H99+wqYHjMH5CeYoaW8XglU0GTVnT3ydrkwJOVJXiW+B2wnz2cjku2FwQ9CvgqujYhmb2dMkDhGv/ldyH1ZnAbmb2QKnX70AedwNpGc2PgB+21h3hOE79IWkvIK6u3czMHq9yHkcAF6VC75pZbKdY7LVvAXZPhT4BljRzyfquSvLitRWhI2cb4AdluOwHwF3As8A/yN1s/ZeZ7VqGMZwyImlhQiFPWhVyFuEZrVuJl59DKK74JxWoYHecZpJNvR0IHTlbEDpeS+VV4D1g+yh+gpkNL3C+kyEtWFq8TOgMXJ3Su7RmAo8Snhfvak1VynGc2merp5f8QcPsxp+b+DnYRpS+iDsXeAp0M7K1MX6VPii0/ahBk6q21uW0D0kHAVdG4a9ofbO8vXwKPABcT7Ct8MV7pyJIWorwDLw7oRi+peKf9jKL0NyxfPKTjrslaw0i6Qrg11H4YULTVzk60z8krPNc703UTjEkhUBnEJoGS52jOspYYHszm1nlcZ0WSIoV9wVOBH5U5eHHASeb2WNVHtepE4ZO6L8RxlkopyGt4gg+ATt14Y8/+dutu3n9Qq2QCEQcTih2LcfeWnsxgireyaUWBjUXBC1IsNFJq12U1AmQyPWfmvykmQzsWM2HSklLEDbA5kmFzzWz41r4iOM4dYqk+Qjz3YKp8A1mtk+V86hIQZCkxQhqQ+nui4vNLPbpdboAkhYhPKgcBCxepWEbgTXN7NUqjed0AElXEr4PleRbwoPquWb27wqP5XQRJC0N/JFQ2LhwFYb8hNBd+HUVxnI6iKQ7gZ2rMNQ0QqHjeWb2bhXGcxynTGz5xIANGpo4BmwHcteCKsmE0YMmD67SWE4HkDQ/QR2lX1vnlsj/gCuAP5vZ1AqP5XQRJG0D/IFQDF+NDfYLzeyoKozjdBBJixPmsmoorrwOXApcbWazqjCe04lJ1ttPILyz92zj9EnAYwQb+zcJ1l/TCCp8lny+N9CfoHS1ErA+sDFtf/ffA44ws1g536kyktYCLiP8vbVGI0F18QngNcJ34iOCvWGzEvlChO/EMoTvw6rAJoTvR2sYodHnaDOb3OE/hNMlGTJ2ib49ejSOMPgVbTecvYvxGLJXG0xv0MB7zGVGj4aeUwG+6TZjPjWqt+i+uKlpJaGVgI0Ic1rrjSqyfzc06dCRgye7A0PGSNoK+AttzznfAk8Smhib1cgnEeay5mepPoTm1uUJ89nqBNXPJdq49hzgEuC0Ym1f1axqK+lGYK/o4j8qphsgqZS6OroehM7Nn5jZB8UkWyySLgTizfA1yiWz5DhO50LSVZDTydkIrFxNadwKFgQNB+Jix3V9U75rIekHhGrlQyiPekZHeBrYxO1WagtJQwhF2ptVcVgDHiQ8qHp3oVMUkpYBTiZ0Q1drQxdgCmEx80a3AaktJO0GnEXbL+LlZC5wM3CGmb1VxXEdx+kgWz7Rb2BDk04FhlV7bLOmw8YM/uQv1R7XaZlEWfAwQjFF/yoOPY2waHyeFwY5xSJpR+AUggVUNbmboJTpTT41hKQ+hHWe31Pd96JJwP8BfzGzb6s4rtNJkLQBoYliuVZOe42gpHeXmb1W5DjzAgOBPYHdaF3l7zbgIDP7qpixnOKR1B04jbA/0ZIa+WzgfuAG4OFi/54kLUlQet6H8N1oqXjjK+A3ZnZzMeM4XYehE/vvhHEVrSvAPCXT9Y0Nuu/hgR8XVesweMKiC/RSty0w9iI4G83bwqlNwMV9+vQ97tZVX/a9liojqTfhnW6/Vk77GriDcB8cV6zKuKQVCd+F/QhFQi3xIbB3MY436YKgjQlWD2k6rCqRbELeSajQTDOaYBNW1ZuwpH4EdaC0+tGjZrZFNfNwHKd2kLQOweYo/ZB4hZn9poo5lL0gKFGDeY9c9aMnzGxgKdd1Og+JOt8vgXNpWy66uWL5P4TOr/eAz/i+Yrl38rMo33fkrAusRdtdia8DvzWzR4r6gzhlI+kgvIDg294WHwHjgTcIf4fNHTlTCfPlQsACwFKE78MqwGBgsTau2wT8HTjezL7o+J/C6YpImodQkHMiuc/xhfgamEBoPniToJT3BTCd0OSwIGE+60eYz1YGNiB8h9tiInComb3Y4T+EU1YkrUJ4ER/SjtPfItzjXid8JyYT5rOvCDaJ8xO6cn5ImM9WI8xnCxa6WIpvCffYEW4l5ji1xXbjBiw6u6HpPKH9aLuTc7LMxluDXjez1xuaGv4nafrchsapAN2bui1sZvNbgy0htLLJVsYYDAxo47qGdIN1azp6zIZTppTjz+UUT6KqciltW1Q0d6b/m+87OZvfi2YQ1AjmI7xfLUd4flgT2JC2N+WnAEcTVIm9wNhpF5KWJ3x3t23H6e8SnnmaVRWau5CnEjrPFyC8xzU/86xKeObpU+hiKeYQ1qxON7MZbZzrVJBknWdf4Dzafvf+ltCV3rzO8y6F13n6Er4PKwLrAGvTto34W4R1ntFF/UGcuiP5bh4JjKDw/bCJUGB4npk9WeaxexHWuY4lfJcL8Q6wh5k9V86xnZZJnFpuAjZt4ZRPCPeWK8q9PihpBULB5C9pubjir8DvXfXMidn91dXn+fLLz0YQ5rRC75KzBddbt4YLRm/0cVFFjS0xZGyfhXt0n+cAk46iBYcHGU936649Htxo0vvlHNtpGUmrA7fS8trxu4T1wRvL/awsaV3CO+RuFN6Hm0to/B7REbtqpd9HJT1C7gLrbGCtjlTtSjqVUAGa5n7gqCTJUvjArGOeeZKuJtwE0mzpm5SO07WR9AC5iytzgfXN7IUqjV+JgqDLCIowabY3swdKua7TOZD0Q0JnRWs2BV8QqpXvBCYWs5mZFJ5tDuxB6xXsAP8gLBgVJWPolIakXxLmmdY2uJ8mfG9GmtmbRYwhwkb6toSOnDVaOf0zQofWXR0dx+laSFqbsIi0ciunfUj47t4LPGNmHX7PkDQAGEroMBxKy4vgc4HzgVOKGccpDUkNBPn5k2l547UJeITwvRltZv8rYpxuhMLXnxDms2VaOf0dQkdOWRe2Hccpjq0m9N9DwZJgkZbP0vOmphtobHhozCaTilK9GPrk4qvQ2LQNsr0xrdPKqVOB344eNPmmYsZxSkPSQoQNn9YK4mcS3oluAx4rRsUnsUcZDOwK7E7rlqaPAvuY2UcdHcfpOiTvVkcRlBBbes824HGCBcpoM3u/iHEaCAUgzaoKrRXNfQjsa2ZjOzqOUzqSliKoqrSm9PslQcnyX4R1nplFjNOHsM6zO7ATrdsy3UhomJjW0XGc+kFSD4JDyN4tnHI/cKyZvVLhPBoI39tzgaULnPIt4b3t9krm4Xy3jvMAhRUZpwFnAJcXM0d1MI8BhLWDgym8kf4UwcXms0rm4XQehj63yEJ8O8/dWMF7rQmuVmO300du+tGHlcxjuwdX6Dlnoa9/jXE6hQu3PzfZDmMGTnmiknk4IGk7wntioQbVj4HjgZsqvUacqAYNB37awin/An7R3iLHuCBoS2BMdM4jZrZlBxI8jVCZVAn6mtnnHchlIKHTPV3RN9HMBpU9M8dxOhWSBhHmhzQTCFZHFe/cK3dBkKT1CF1h6c3M5whFTt6JWOckUuLX0PImyHOEl+O7y2nlJWlhwgLiHyn84g1BbWZ3M/tPucZ1WieRs7yM0EVYiG8JCzeXmNnrZR57bUJHzp4U9kI2gt/tMW4r5xRC0qHAn4CeLZwymlCc83BHuiDaMe4A4NfA4bQ8l44H9iym2MQpjkTt9QZgqxZO+Qr4M/DXcv69JBtymxPub9tSuENsDkEG/UJ/1nKcbBgydtl5u/eYdSG0qPQ6B3E94qLRG09+qZxjbz2x/+pmHGnhWbhwsaLxtxndehwxceMPXVGsSiTdlLcALb1bv0dQ2bipnJvZiY3JTwlKBWu2cNqnhKKgkeUa16kfEsX9awmFyYWYTih0+0sxRUCtjCuCzcofCIUghTZPG4HTgbPL+fzttI6k7YHraNm25HnCOs9d5bTySooq9yY8By/TwmlvEdZ5qtJU6dQWyZrTbRRWMfsfcLiZ3ZlBTicT5rJ4LaoR+J2ZXV7NnLoSkjYH7qKwjdutBFWej6uc03qE+2Yh283XgW3MrCi7J6d+GDJ2sf7dezQ8SHBEiHmpqcF+8/DGU2JnpYqy9cT+i5nZeRaUb2NmCu02atAkFwCoEJL2Aa4iqIunaSKsP55c7aJoSdsmYxey5nwM2Kk97lyK1y4l3U3o+E9zaHtvmLVSECRpfoIlUFoysAkYaGZPVSI5x3E6F5JuIXQRpDnKzC6swthlKwhKZFKfIleZw4DNi/GSdDoXkk4hKPMV2qz8D6Ej56EK5zAPYTPkLAp3gnwD7OXKMJUnked9kMJKPY3A5cA5ZjapwnksR3ge3IfC380JwI5uIeY0k/jM/w3Yv4VTHiXMZ89UOI/5gcMIVmXzFzjlU0I32dOVzMMBSWsS5rNCkskzCRsgF1fakjopdBwObN3CKbcA+5VzI8ZxnLbZbtyARec02P3A+gUONxlcLbqdOXrQR/+tZB5bP77EUk3dG0/COJDCG+nPWXfb3i3EKo+knxMKKgoVFX9EUJuraCdnUlzxE8I9qpC8fBNwnJmdX6kcnM6HpJWAhyhcfPEtwQL6gkq/O0lajfBOv3MLp9xHsN+pqLqDA5KOB86m8Lv0K8AxwIOVLEpPFGD2JnwnCj2PzyIUObryShciWYN+kMKqVfcC+2e5ziNpMEEZfckCh480s4urnFLdI2kLgiJUrGw3g6Aaf131swok89hwgvpePJ9+CAwys4qqvji1y9YT+y/WBOMxVsg7KLts7uz5/vDo5u9lZi83bPyA3Uz2N/IL7eY0GLuOHDz53izyqmck/Qr4O/nzxRSC2lwsqFM1JC1IWDeP97Mh1MJsYWZft3qNAgVBSwOvEvxkm/mWUEjz73YkdRq1URD0D8ImVJorzezg8qflOE5nRFJ/QkV4+qY6B9jMzCoqvVfmgqC/AwdE4X+YWaEqYqdOSGRxLwF+W+DwdMK9+JJq2tsknWRnAoeSb73TCBxiZn+rVj5djWQheSTwwwKHnyL893++yjltQlArWr3A4VcIHTmuttLFSSw3bqFwR/Rk4I9mdmOVc1oCuJDg1xwzHdjVzEZVM6euRDJ33ENh+5V7CV2n71c5p10Jz26FFpcfBnZp6+XbcZzysO2TA5aZ28hIsBULHH4BOGT0oMlVtfTbauKA9RUa6Qp1Ib+NsfXowZPfrWZOXQlJhwEXk1+UNZfwznRaNefopGHiKIJaQSGp+QuAo11hzpG0PmEjddECh0cTNlPfqnJO2wOXAssWODwR2MEbOypDUlT4J+DIAodnEJSaLjKzOVXMacFk3N9ReJ3HlVe6CInF8u3kFw0aoej23Fq4r0nqS1Aw2jw61ETY0P1n1ZOqUyStQ2jeWjA69B6hkaoom95yI2kngr14/Ez2KsEtwu9pXYzBExZdoBfdHiX/3e1bE/uPGTj55izyitlyYr/lG0z3AStHh2aqyYaN2mTKhCzyqkeSeeJ28lXmniKs91W0ubq9SDqc8KwYP5ONJsy7LToy5BUEJRc8miChm+YdQsVkq11NkvYlvxCnXOzaHimmAhvtAJOANTpiOeY4Tv0j6XeEBcI0/yUUQX5UwXFXJ8gyNzPNzDr8oCHpYIL8ZZpPCfOdd6HWKcki0TVAoaKvFwjSzVVdNEyTdIfcSL5akBE6cuJ/c06JSFoZeJz8heQm4BzCJkhj1RMDJPUkbHoUKl77ABjsRUFdlzY6DEcSuk4/rW5W35NIxV5GvlrQbMK7yX3Vz6q+Se4h9wG9okPfEO4hV1Y/q4CkPoT7704FDj8NbGlm06ubleN0LbZ+vP+yTd0YBywRHTKZLvyi1+Tjnl23ehulaYaMVfce3Rc728KaWtxVOKlJtsnDA6e8k0Vu9UwLa5gQbEv2MrNxVU7pOyStSrDKWK3AYW9a7OJI2oiweF/oOfNYghJiJpvrkhYAriBYQce8RGik+7K6WdU3yTrP38hv+IOg/rxHuS2/O4KkzQgb6oXUgv5gZn+qckpOlZH0F0IDYJq5wIFZqsAUIrHyvAnYJTo0G9jazMZWPak6IxGWeAZYLDr0H0LzX01snjcjaWPCOkNsET+BoKzR4ia6U1/sfpu6fbl4vweAYdGhaQ1il5EDJz+SRV4tMWTsEn17dG+838QG0aEv1Ni00ahNP8lsD6hekLQhobgxXoccSVj7nVH9rFpG0s+AG8hXxr3BzFqsz2mpIKgBeIB8WfSXgE3NbGpp6VYOSXsQbvbprqAmwo0+Mzknx3Fqk+SF+1/kdze8QpjvarZCXNIOhNzTVatG8Ix0ycA6RtIFhI7TmGsINp+ZyVk2I6kfoap6cHTIO3LKjKQlCS+wS0eHphKKw0ZXP6t8JO0GXEf+w/UrhI4cX1DuYiQ2YbeTX1xhBCvEs8ysqdp5xSQFd3cDsRLFTGComVXVT7yeaaXD8AOCzeB/qp9VLsmz4x8IdjCxEsUoQte8LyY6TgVoRdZ9uuAXowZNvieTxCKGThywPeFZd4Ho0DvW3Qa5fVj5kPRL4CryC7AeIWyef1b9rHJJlBD/BuxV4PBZZnZylVNyaoCkWOxx4AfRoUmENZ2K2uS2F0mHEJro4m7p8cAwM/um+lnVJ5KGA8cVOHQ9cHAt/LeWtBihyDFu5jCChe711c/KqQaS9iTsuaVpBH5eq7ZxiaLRjcAe0aFJwNreSFs8iRXXWHKbnQFeBDav1f1jSWsAjwF9okN/MrM/ZJCSkwFDxw84DVnscjS9qUFbPrzxpKczSaoNth7Vv3dTb0YDG+ce0fNz58w7MEtrs85O0vj3PPmOC/cDP63V9T1J2xCU1XtEhw5uqZGykL85ycL7vsDH0aE1gHslFZJuz5xExv0f5P+5zvRiIMdxCpF0Wx1AUAVKsxrwgKR4caYmSIqBbiV/UeY8LwaqbyQdReFioHOAA2qhGAggebEeRngwSdMAXCtpSPWzqj+Szs2HyC8GmkTo2qyJYiAAM7uN8J2IFwZWA+5JrBWcrsVfyC8GaiR0GJ5RC8VAAEkn7ibAc9Gh+QjvRoUsa5wOImkZQlNKXAz0MkGpNvNiIAjPjmb2f8DehA7TNMMIfuOO45SZgU8s1avJuL9AMdDnDcZWtVIMBDB64KT7RcMWwCfRoeXVyAM7PrdEIQspp4NI2ha4kvxioNuB7WqhGAjAzGYS7hmF1DNOSlR/nS6EpAGEd7h4vektwjNPTRQDASRWULsSlBrTDAZuSgqlnRKR9FsKFwOdTyi0ybwYCMDMPgG2Ae6MDgm4StLQ6mflVBpJKxAUw2J+W6vFQACJSva+QLwvOAC4PhFFcIrjLPKLgd4Ftq3VYiAAM3sJ2IH8e9rvJe2YQUpOldl6Yv8tkJ0UhWdLtmutFgMBjBw2eYb16L4Dxmu5R2zt7j1muUJfkSTPsVeTXww0kdBkXZPFQABm9hCwP6H5Ps3FktYs9JkWb3rJA962wFfRocHA+KQbvWZIuoJuBuLNpFuAM6qfkeM4nYVEBWh7IFan2BAYl0hg1gyJNeMdwLzRoXuB+IHGqSMkDSIoEsScYGYn1oJXd5pk0WpXQvFamnmAf0qKLcWcjnMF+RYEHxNsuGpi8zyNmY0n+LjHCwSDKfzdduqU5F726yjcCOxpZldnkFKrJO9GQ4Ano0OLALcmkuROkSQdhjcD/aJDLxIUGytm41osidLdT4HYmmgfSb/JICXHqWt6N865GFgvCn9mTdp05ODJT2WRU2uMGvTxs41025S4KMi0zjffNl6aTVb1g6SlCKoZcYPM9QS1gm+rn1XLJMWkf6Dw+uTFktatdk5ONqQUK5aKDr1BUE19r/pZtY6Z3QNsB8TNRzsDR1c/o/pC0gYULhg81cyOqcF1nlnAbuSrxfQAbpQUW3o6nZhks/Qq8lUPzzezQkVCNUWymftTwhybZij56xFOO0isdf4Yhb8mFGPXlE1YIcxsAvDLKCzgyloVwnDKw47PLTFfk3E10C0dNzh01MApozJKq92M2eB/nzc1NGwLRI4mdsjWE/tvkUlSnZ9fkO8c8wFB+XtmBvl0CDO7iaCwn2Ze4JrknSOHVqtgk42kXYD4RXo14FlJWxWfanmQ1FPSxYQqrngh4DVCFX1NdBc7jlO7mNnLhMk/XuBYBXhGUmyhWHUkdZc0AriWfCm4JwkLn3OrnphTFRL5whvJv9f92cyGZ5BSu0i+k3sTPFfT9CMUBeU9nDjtQ9KvgT2j8FfA9mb2bgYptQsze5FQdB777x4hKfZ3d+qQpMPwzwUO/T5RkqpJzOxr4CcQd+TwY+Ci6mdUV4wgFGKnae4wrFk7QTO7H9iP/I6ciyStnUFKjlOXDJ0wYHfEQVF4ZlOD7TRmk0mvZpJUO3hk0EdvWJMNJS6ENn41dHy/fbPJqvOTWI7eRL66yv0ExdTG6mfVPszsVIL9UpqewC2SFsogJaf6nEwoMk/zMbBNLdvXmNlYYHcgXnM6O2lccoog2Xwu1OB8mZnVbINzMs/uDzwYHVqUoBwVr1s5nZf9CWq5aZ6mEzWkJu/xu5GvCnNOYoPntJNEVekS8veVDzWzuOiq1LHmkdQnsV4tK2Z2C3B5FO6HC0vUNd/MajyZfCWYW8YMmnxVucca+twiC4nyqyg+PPDjDwgNljnFwk2my7d7cIWe5R6vnpG0IHBeFJ4L7JUISHQWzgbigrZ1gEPiE9WeInNJOwP/JF+NYi5hkhxhZnFnZMWRtBpwA7BWC6c0EgqCbqxeVo7jdGYkbU9QM4kfNhuB4QQLwqpLxUlaidDtuH6BwxMJBQA1K8nplI6kGwhVy2n+Bfys1jrGCpFYWz0NrBwdOsLM4kVxpw0k/RB4ldy5qhEYamaPZpNVx5C0O0HJMc2nwMqd7MHb6QDJAtITwAbRoRFmdnwGKXWY5N/fc+RvRG5jZnHxo9MGkgYDj5Nr+TINWN/M3swmq44h6WTyFw//A6zrxdqOUxpbPdWvn+bqdSDdsWsNxk4jB0/uFFbJwyYM2M6we8ndPJnWralx5Yc2+bTmO6lrDUnHEgqhdKHeAAAgAElEQVRJ07wIDOwMnZxJQ8S9hAL5NFeamduH1TGS1iG8E6ebYmYCG9eiumshJB1BfiH828AatWJf3pmQdDX5ShX3ALt0hgZnSfMTGhRj1eI/mtkFGaTklJGkUPUtQqFXM9OB1c3sgyqMvwK5BZQzzeyGEq53OHBxFL7KzA4s9ppdDUmHEqzf0/zDzPYr8bprAlsC6wJrE4o2eqdOaSQ0DL1EaDi908w+LXHMeQnrOqtG46ybNDI6dcRW4xddUer2EqkCXIP3G+c0rfHo5p9ML+W6DXQfag22DthamJYF+qRO+Qp427AnG2h4YNCgyQ+dSun3960m9Puz0G9zozpm9KBJ55d67a5CIjRzeBQ+0czOKfG6P+T7uWxpwvehF6Ge5iu+n8vGlDqPpcbsR9gnWiQVngqsmB6jXQVByQU3A+4GCnWsvAkcZmaji864AyRVoccQvHXbqnprBPYv5WHBcZyuRSJ9OZLC893bhPmuKht+knoBx9LyfHcfsEdnWPh0ikfSpsBYcjdLPwDW6UyFE5JWB54it4hlGrCKmX2cTVadE0l3ATtF4ZPN7Kws8ikWSX8BDo3CfzWzvCp2pz5IrJTiTqxxwBadqXBC0naEe3B6XvbNkA6SdA8/S1BZSrN3Z2rqSArdHgSGRYd+b2auHuU4JbDVhP7XK6hNfofMzhs1eMqxWeVUDEMn9B9OeKdLc9PoQZPjgn+nFRKrsFeB+VPh6YQi0tezyarjSFoE+De5XcpNwCAzi+1JnTogeVYYD2wcHTrQzMremV5JJN1BsOBJc2otK9rUIomy0jhy3yc+BNY2s8+zyarjSFqR8DyftpT6mrDOU3O2v077kXQCQXkgzdFm9n9VGLsvodhs+VT4YzMr2pKuheakRkJT2tvFXrerkNh8v03Y4G7mS8J/v08Kf6rV661EsG3bHViygx+fBVwKnGVm0zo6diqHQuvtd5jZz4q9plObDJvQ71pDOYVrDcaOxTSYDJ2wxNKo8SCMvYDlOvjx92Q6dtTgSSWpo2/31A8WnDO3x2vA4qnw53PnNC1TSoFTV0FSf0JhTq9U+E1gzWKspyVtQpjLtiX3vtUajQRln9PM7OmOjlkgh0Lr7eeY2YnfndMRUYGkUvMO4EcFDhvwAHC2mT3R8XTbNf78wG+APwD9W8jhPfL/EbpSkOM47UbSMEIBZKyKlmYkYb4bV6Ec5gMOJnjyLt7CaZcCR3WmDVSn4ySbpf8h2Nc100jogC35YaEd4/+AUNHcTJOZPVLC9Q4BLovC15uZ2ya0k0TJ7L4o/DgwpJQuQkmLAlsQqtjXAZq7GhYmbLTMBN4HXgZGA/ebWUkvGZJ6EhYPV0+Fm4ANzezZUq7t1B7Jot4b5HYsfEXoMPxfCdddmNA5uC5BOfRHhO/tAoSFoqnAO4SCxFHlundLugg4IgqfZGbxoqnTApKOAuLu4ZK7NJPnqB8T7l/LEr4PCxHmsZl835Ez3sxi+8Jix1wMeAXomwpPA1Yys8nlGMNxuhrDxg3YzBrsUXIX6Z/9ct4pA59dt/Iq1UOf6L8GjfRr/r2hW7f/jdz4o6KKToaMVffuPfqNJ7ZHNA0ZPXjS2JIS7UJI+hcQW8z+0syuLfG6PyZYoqyd/CxGuHf0IjyrTCU8w/ybsFbwTKkqrUnjZfz9fg7YoDMogzgdQ9JBwJVR+FYz26PE664EbEb43q4BDCC8w/UkfHe/BF4gbKzfbmYlq5Ilz94vkbuBOwtY1czeK/X6XYFEKex5wt9ZM03ApmY2ocRrL054n/8xYS7rQ1jf/JJQqPMa8JyZvVDKONGYBwJ/i8I3m1lsce50EpL3qfcI36FmXgXWqrRTSNIc+wiwUXSopIKg5NobEoqC0vdeV+hrBy3cxw41s3gDur3XmwzfP2cXyVvADqXYlUm6CUjPVU2EooBXSszNqRG2fXLAMnMb7U2gx3dBcd/ogZN3KOZ6Qyf0f56WXYvah3FNn0lTDrp1t+KtjoeO77cv0nU5l5X9YczAKX8qKbcugKTzCfuuabYsZs9L0pPE7/gdw4ALgWNKsb5Oil6fAtZLhacBP2x2lulQQVBy0QUJD3i7t3LaeOBa4LZSKjRTY64L7EPoCoul+Zv5giCx+RDBQmX76HgjsK+Z3VRqPo7j1C+StiXMIa0VA6V5gjDf3VoOyy5JawH7Eua7RVs47SvgADO7o9TxnNpHwRf2uij8ZzP7XRXG7gU8TG4X4ywz69XCR9pzzQZgArkv9v6y1QEkPUPuw91sQhfhq0Vcqw+wH+Hldz3yfcBb42vCRv7/lbKh3oJd0P1m9pNir+nUJpLOAk6Mwoeb2aVFXGt+YC+CleJAoHsHPv4SQQa2JKuZxArxNSC9KPkVsIzbeLZNC4vMnxM6DD8r4nrLEd5RtwEG0b7vxDcE25Yz7f/ZO+8wO6ryj3/eu0kgEDokG3pvIoIgJRsggWwCoYsUKUpRUUEEFQsq2AVUmiKKPwQpIk16AinUFCmhN+lISUILEAiE7N7v748zS2bOnS33ztx79+6ez/PkgTkz98y5u7NnTvm+31d6rNx7prThKOD/vOIzJH03a92BQH+kdUbzHYidYkXFghhx68g591T93tOHjoTCFGIurULnTmmZe2zFdc5s/jRFHiDZP82c3DJnRIam9hsi0c6DJMeMdwM7VSLOiebeXwP2Ivku7wmPAD+UNLHc+3ptuBA43Cv+vKRrs9Qb6F1ErgrPkHSEqtgpN+aqsC9O+NxTFuECfb+b1aHXzPYHrvSK/0/SV7PU218ws4OAy73iikQJ0RrLLjgH4V3peWT6i8AFwJlZBfJmZjiBY/ydLeAzkh7NUnegPnQSzPdFSf+q8n0NuIykQKODzIKg6B43kdw7XIjbMJ2bte6+SvR7eQrYMFb8P2D9SgVi3QiCPgDm4t6VQ3F7JAM7ufZ53JpoRfvQ0Tv1cZLpPC+S5KdzDDQoY2Y0n2VKBPOpWGzaeuoOrz5QSX3dCII+Bt4A5gmGmBNPp69NGX+fPGLOUZW0AeCAq6xp3qpDHwfbKFb8atuiuWvfPioYCHRGpHF5laTj7J2SRlVY31skA18r5TJJh3Z/WZdtSQsiP0nSb6ECQVCs4i8BvyO5gOvzIc5y7bbov49L+rAHda+Os+7bGWgl+aJJ4zrcZsLL0eeXwE1w0kRBh0nyB9yBQCDQlRjopaisK9X6R8CdLO7vHutJGq8ocife323czUduBr4Voq76B9HCzqMk8xnPxW2WVnWzuYtJeCZBUFT3Z4H7SIpPMuec7g+Y2a64tDRxTpdUUdoMM3uEZFRiJTyKi8ipOIe8uYiGuEuUcHm7H8zYtkAvwcyWwy06Lx8rfhCX4qPsCAgzu5XS9Ezlcj4uoi1LBMaBgL8omjnndH/AzI4DzvaKj5L09wrquhT3vipH1BinHTgd5/CUxWnNcKLXuJD2A2CdvHKDBwL9hbF3D2tRwaYlS+28yS2z/VSjudM6rXldjP/gBWhkFQQBtE5v/iOQqMOKNmrSDrPvzFJvf8DMrgT2jxW14TabKxHFb4OLoMzKH4AfVDqWiBw6/4tz8OjgAWDrrA5Egd6DmR0B+OOb4yX546Ce1LUmbkxt3VzaFfNw6VknZKgDM5uEW8fq4GNgA0n/y1JvXycaLz5IMmXuWzhXybJShUUb2RMoP2VJnNnA/jk4E22O67/im+qXSzo4S72B+pASiPYcbi2yqpvMZnY6cGInp/MSBG2Lc02LE1I9d0EUyOc7LX9L0p8y1BkXBLXh9jxuBO6S9Ix3bQHnfPZNXFCjP+//s6RjMrTlCpIGGB8AzVld0QP154AnNhs0b96brxJzcjY0cVLL3PGV1ukJgiS43YzrjOLdy7/6xqNx159xk5qXbh+s1oLZj2SJdIVRW9h7UsucGypty9gZww+XdGG8rIiNn9oyO1PQQl+mk0C+sZImV1ifLwj6ALdPfCfwMDAnKlsF1+dtjwsISdPW5OF8ez/OQb+DZ3BjTFW6YIqki3Eb13/GddhpDMblTPsdbuPvAzN70cxuN7NrzewSMzvfzK40s4lmNsvM5uPy5V4DHEPXYqBngT0k7dshBorathC3SDDFu74JuCRS4QcCgcAnROrJaykVAz2I60A3As7BRVSlsSQwDjgNt7D4vpm9ZGZ3xPq7v8b6u/vN7D2cGvVa4Ft0LQZ6AdhX0h5BDNSv2JOkGAicG0stnCdOJT0iJzOSHsCJ7+IcHC1uBrrm+97xfFy/UylN3Zz/ANdPfdTFNZ8G7ois4yvlZyTHkwZUJHIK9FqOJikGApcnuVIxTnfP7iKcg2hXCzhfo9TavlyuxLkExDnezHrqNNgvidIk+Pa8z1DqiNdTtqVyMRC45+lHwMUZ6iDavD3ZK14aN84LBAJloIL5Y56PjLZfVfu+u85cY0XMJtK5W2sm2hYVf40LnltMoRjGPN1gZusD+3nF/6xEDBTR3TgCXHTv6zihemd8lwxj8Ugs6otCPktSZBFoYCLxh9+fvQL8pcIqC3QvBnofNw7ubP1qBeAaM9ulwjZ08BPveBDwnYx19gd2JSkGAucoWZYYKKKZbGIgcGnmpkbBRxUj6RFKXaMOiFw8Aw2EmW1CUgwEcE4NxEBfo3MxUG5IuodSUfCX0q4NfIL/85kPXJh2YZm8B5wCrClpH0kX+GIgAElFSfdLOhI4COc0H+fQyIG4Unwx2NLA5zPUF+glvP3WG+NJpnWnKJ2TQ9UfA2ci1p/SMmeXySPm/HHSiNcf8lOA3Tp2zgdTdph73fKz547A5LuuIfh1lka8vcScy3Bzlk9okkJ/1jWHecdPVioG8ngQt848XNLukk6XdKukhyU9K2mmpOuioO51KQ0uhXz2Qnyh5gY4Q4pMi6ZImhcpLzfAbZR3tVkEbsKyFjAK2AeXEuerOPHOrrhJ75DOPhzjedymwiaSbu6kbR/ibH+neqeagEuDKCgQCHRgZnvgRIhLeKceAMZIekvSu5K+DayP6++6czszYE2cXW5Hf/c1Fvd3WwHL9KB5LwDH4/q763r2jQJ9iCO947eBv1b7pmZ2JKWLlnnza5KL6wMIE/AuMbO1cWOoOOdJejvH28zCTcZ3AoZIGiJp9cgVagWcI8tVlG6MrI2LkK6ISOjop3Xd18w6SxUbaDx8u+XHKbUxzcLTOCHj7sBQSYMkrSRpGWBVXPSFL9wBOCJKeVARkQDkt17xKjhBZ6BzWoE1vLJTs7g1eRRxkThn494tu+FSVe4JfAXnDvVuyucOMbNMqS4kTQFmeMVHRiKoQCDQA8bcM2wY4EVt2oWTWt7IlOKmO7aeZQPbi4uuBnXnUl0xt496fQ4uRcsnCBs37q7V/D4xkORwkmuYRZyzW158hNvI/houUGeApKGShuFEDmvi1iGfTvnsd8ysJcO9/4jbWIsT0lT0HUZQGvz1+yiYNQ/acQ4xx+PWmZaStIyklXCBulvixqq+SH5J4OIoDW9FSLoX8DdQDouc+wOd46/zvEdpaqYszMe5Cp+EW4PcCdgR537xXVwAtT+fXwL3PDRnvPevSG7UNxHWeRoRPzhwEekbl7lhZqNw78MO3qdy4WRPuMQ73jJy3Ap4mNkAkg6NANdkTTWIC87aUNIvJM3u6YckXUWp696yJB0xyuU/uAClOFUJkg3UFiuY/3ucveLsNzKJPwxdWzRtOrllzncmj5zzfE8+c+X+ah854vVvUepOttmYaatUPPe8fyuV9M8y9t5r1mpZBHJ9FjNbDTcmipMpMBCXPvFgXKaDv0ny53UlRP3nYTgjnTgbm9mnMrbnGsDPXPNFyCgI6kDSi7GN8pOAJ/Oo16Njcr4nzn70/O5UyTFR0G3eqSbcIHefKrQzEAg0EGb2BZxTib9gMQto9TfaJf0v6u/Wwyk2H69CsxbiOu59cP3d2TkuFgUahMg+fjevuEeDioz3HQWcV817AEh6CJdeL46v0A4k+TLJaNB2kgsmldKOm0x/VtLW0WT8Ln9yL+kdSZMlHYAb6PoROQdndAk6wzseRNKyN9CgRGk5/I2QM7KkZorxb9xkbmNJP5I0wU/NJGm2pH/gohzPT6njt1H0dqVchXM4jRP6s67xNwbeBC7Nod7XgF8C60naQtLxki6RdIukeyTdFEUdHo0TMl6dUsePI0vyLPhuD6vhNmMCgUBPaOcQnFj8E6S2qqZxMMxWWNh8ATC6mvcBQJxJcjO20D6gGDYdOiHqkw/1im+RlMdc/DXgBGA1SQdGi7j/jQtUJbVJelnS+bj0ANf7TQS+XmkDojWHi7zivaN0q4HGxx/zvE9pmoJKeBfnSrhWFIV8tqQHorVwACS1S3pI0km4Z9fftFoVOC5jO/w53IqUrmMEIsxsBWAPr/iCnFyg78T1lUMljZf0W0lXR3P7uyVdJekMSa3ASJwTcJxVcMLHiolc2/yMDYdlnGsFao/vHjZJ0uvVupmZbYpzzx8UFbUDhwAPVeuewBWUZj0ZU8X7NTJbUer2nHnuLumnkuZW+PE0gVrF4voo0Osyr3gHMxuUdn2gMTDMgJ0TZbLLfRefcpnUMvcXU0fMfa7cz52CirKStSKMwnZZ2lMsmP/3OPjDD9tHZKmzD7MLyb2VtL/9spC0paTLo36knM+14YwnfNbO2J75lM5Xx0BOgqDYjV6NBpub4hbcf4IT43TnpNEZL+I2qA7F2SwdGC3i9njzQNICnIjodu/UQOBKM9u7wrYFAoEGx8wOAC7H9QdxZgA7d+W6EW0uni5pM5y72Um4Sa+vvuwp/8MtAn4J1999QdL1OUbKBxqP/Sl9NrMqlrskUiBfR3ISflEVb+l/nw3NzLclDizmYO/4NkmvZKzzVmALSUdJerCnH5L0L0qFY0sCO1TaEEkP4xw94oTNsb6B/+wuwIlosnAPsKOk/aIF7m4nXpIWAd8A7vZOrYeLnq6I6F3tTyB3NbMV067v70RW3n5gxr8kfZyh2vm4sdj6kk6W9GJ3H4g2Xr4IzPROrYVLQZaFGwB/Yyf0Z4FADzGZ/974z5SRb6Q5s+TGmBlDT0aKizmfoLR/yAUXSappiULJ/86BxbTg+uY4WedF7wO/wEWmn9VTx81IbHEYLpVYnHEZ2+N/n8HAvhnrDNSZyFXBD3DI6qrwMXAubszzS0m+qCMVSc8Be1O6Af6FDG0B5xDkOzuEMU/n7IebN8fJ2p89BOwiaZSkyyR1l8EBSTNwQdT+81Cxc2oM//usi3PqDDQAkWvY57ziiVW8XzPO5SwuODlB0g3VuieApDcpdWaovii8MdnZO15A6ZpKralUSNQVt3jHS5N9XSBQR8ZNG7o5Xrowoar1Zz1hYMF8hyCMwvAsdd62/Zz7cEF2nyAL/Vkn+D+XxyT5AZ61JM1cJ4+gEL8/29TMmgekXpoDkmbhHDZ+HSkpNwY2jP6tikuVMwQ3yX0fmIezyHwOZ8H7lKRc7KAlLYhSAt1E8hfeIQrav9qDjEAg0LswswNxana/H5wO7FaOC0u0if4gzmFgEK6f2yj672q4vm4IsBSL+7v5JPu7Hi3iBPoVfmTKA1G0VVUws5Vx6uH4oOME3OLe4VW67TW4xcy4jWUrcH+V7tewmNlauD4ljm9xXDaSvpPh4/8AjvHKsqa7uBT4TOx4OzNbptrOWIGq0+odX5/1dyrpxxV+rmhmp1EqXhuJSxVaKZcAP4wdD8Sl+Pt3hjr7Ki24OWCcrP3ZyCgQpCwktZnZ6biI1DjrkUEIIOkjM7sal56sA//vIBAIpDDm3tVXMk+kKVnmMU+X95zefKBhp8SK3mwqFPcuFu0cUSVTA9ml2OJ3kcHmY+4ZNmzKtnOrscHR6PjzovdwwsuKkfQo8GiFn51vZv8m6Qq0spkt2ZON+E7qvN/MngQ2iRWPobrBGYHq8zlKXRUy9WfRWvmxFX72MTO7kaTYbAszGyLJTynW0zrbzexyID6v3MXMCjm5gfY1/P7sscg9uVLuwaWoKPtnLekBM7uFpGPRemZm5Ua5e1yLW/uMp6NrpUoi20DubE9pcKIfaJ8LZjYY97zERb9nScrDCbsn3Ib7vh0ER9d0/LWTuzMG8+TBsJSyZzPWeT/OfS++Lr4j9Rc/BSqk3Qo7eBkyFw4e3OSnd68pTW2D3m2zZCIQFYq+ULgshNRqzbejxaJeC/1ZZ/jpwqryfiuDtNRuPU6h2AVTvWMDRlZNEBQnekE8Ev2rCzFR0M24xfkOBgFXBVFQINB/MLODcIswfh94N7B7lk3KqL97LPoXCFREZIvvD1BuruL9BgM34jZAOzhH0h+jtHpVIVpMnwaMjRWPAn5brXs2ML6CXZSqvWtNmjuRv3BULhOA33n1jaSKEWmB6mJmQ0luboH7PdeT6SllmSJyJD1hZi+StHYdRRAEpeFHGL5FRiFoJWKgGGlz1BUy1NfBBJKCoLXMbF1JPcoxHwj0V6xt0ShIpu0bOKB6743W6UNHGoV/sNg6/COZ9rpl+9efHTs9ba8hH4pNbTcXionpqNFmo3ApLAJJ/PfGbfG0SHXCHwcbpesL5TKR5JjJ/96BxsOfw70P3FWPhsSYTlIQZEAz2TZSJ5AUBK0EbE510/00HFHarFFecaZ1nkpFiDEeISkIWhIn3K94bB3twdwJ7B4rHoVzZQv0fj7lHb9FuoNBJqJ1z0tJukdNAL6X9726wBd6rGxmQ6uZHq1B2dQ7npZ6VW3Z1Tt+lexrCu1mNtOr2//ugcbC//09cMNWr2ZZO8rMh4WPViwoGXAibF7WegXTLOnyF55dj8itfG2vuN792Tbe8QKgxEWqXCS9amYvAOvEij+Va8qw3k60ULwHLqdunA5R0J61b1UgEKglZnYkLq2Hv1h3FzA+uFAEegmfxi2ixalWRI7h0nPGJ+ETge9W434p+IrlkZG1eiCJr+x/RNIbdWnJYvxnFCDrRveTlCrhR2WsM1BfRkGJvcJtdWhHnHcBP4o2LSqjXPzvNSqHOvsifn92W50jyAellOWxCHwHLvVmnFE51BsI9G1kfh/x/MTtZr9YjVu1TmteFwr/BpbouDtw1JQRc6vuYjB1+zdfBUukQTNsVLXv22iY2ZKULpTWO5ITvPQDwOuVOqzE8OdFw83MdwgNNBZ+f3Z3lMK2nqSlx1s6Y50zAF+YMipjnX2RjSl1tah3f+aPg9/PKLTvwO/PRpjZEqlXBnobG3nHT2V0jOqM04DPx44fBA6M0nHXiqdSysJ7N0YUQOo7gecuECsHM9sAlwo+zi9zWlPwnwn/7yHQUGjjxKHV99kFaCqyuV9mpv9mrbeA/Gd3hfF3D18la719jA0AXxNTt2ciEij5fdn5OQa++M/Ehv1KEAQQ5WnendKIjEHA1ZGLUCAQ6IOY2VHA3yjt+O/EOQNlXcALBPLCj8hpo3r2yqcBB8WOHwQOkOTnkq8W/vt4KVyO+UAS/5noDZa1vt35AtwGeMVEC03+d/O/e6Cx8H9/z+WVFjgDQygdC7yTQ71+f7ZxEDim4j8T9Y6U39I7TuuHykbSPEodI0N/Fgh0g7y/E0NVGfPsOnONFTGbCHyyUGqyH01umfPPatwvDSGv/yuGPqKUDSndsK73ewNKx8F5uFhNw8trQHhvNDq9cQ63XEpZpsj0aOPiPq84PLul+D+TIvWPTP+sd5xX/+rXswSwfk51B6rLBt7x06lXZSBan487Ab0G7FWHdfmXAX/jNQhAkqRtoOf+TPQUM2vBrTvGhaz/Bs7P6Ra+MCMIxBoYkxL9mRWtbs9uB8J284ramxjkj6HKpqlQKPluiwrtoT9L4v89F4Hn6tGQSAz0L5LZOp4Ffp7jbUr6s34nCIJPREHjSRcFXWNmu5d+KhAINDJm9lXc4NDv924FdgtioEAvY2Pv+PkcrKBLiCbhJ8aKXgP2rvHfQ5oSO0y4SvEH8U/UpRURZrYiyWcH4OycXNb8ZyJMYBobvz+r67MbsVlKWR5pnPzoi4Ek7Vn7PWY2HFjWK67bMxFZ1R/rFV+Xo2gt9GeBQJmY994oWiH3PuKAJzYb1F5cdDVo8ZjT+PukkbNPy/teXVGQH8lpoY8oxf+ZFCld3KwpZnYIybHEIlyQRSYkvYdLeREnPBMNipktA6zqFfeGcbAvSvmQUofWSghjnu7x50X/i/Yo6oKZbU6pi9V5OVX/FKUCx7DO0xj4TtAv51m5mY0D/hIrmo9z7E9LSV9VIkcZ/72b5oTdn0n7eeT6THSFmS1rZpuZ2RFmdgtOWBt/t14OHJyji5X/3ZYxszRH4UADILOVkseq2bObhgtI4UCveOot27+c5t5YFsu8POdl/PeuFUJ/lsT/ebxZ6zTUZraCmX0NNyeIZ6x6EfcuzCNYtQP/eV+5XwqC4BNR0J7APd6pIAoKBPoYUSf7F0rFQLcA+9S64w8EeoC/UFKNiJxRwJ9jRe/jnLJqOjiW9C4w1ysOi4cxzKyZ0g30ekbkrIOzAI9Pwu8DfpHTLfzvtk6YgDc0VY8wrICxKWX+nKAS0jYoQ3+WJG0j4Jmat4JPxEBnAiNixW+Tb8pM/5kIz0Mg0AWj7xg6BBieKGwv5vreMMzmvfPW/wGjY8V3rLD8yr5dd9UpYn4fMXT0HSssX+t29HL898bL9Zy/R2Kg//OKT1SJuKtiwnuj77ABpWlz6zLm6SAa+7R6xQ/klMYsuCp0T9XXeXqKma0JXAk0xYqvkXRTHvVH+y5B4NiYLOMdv5dXxWa2Kc4RocNFtx04VNLDed2jAvzvN6Qurei9+M8DuPXjqmFmnzIzmZlw6d4fBf4OjGPxe/VZ3LNzsKSFOd4+LcgxPBMNyOg7bAAwOF4m5defVUKbFp2Mt76vonIR4l65v9pxzv2L65bCs5ukau+3NMxsHTO7Mvo32cyeAt4E/gqsFbv0amBbSXnPE/z+bEi/FQTBJ9E34yjdAFgCuMrMfAvgQCDQYJjZ10kXAzjjuJIAACAASURBVE0E9q2G60ogkAMre8cv5Vl5NAm/lsX2++3AIZIeyvM+ZeB/v5DjNknaz+N/tWyAma1oZuPM7Hxc9OcWsdMzcU5refWn/vPQBKyQU92B2uM/vzV9dn0icdkRXvHjeWzkRZEc73rFoT9L4v882oGaRoOa2QAzGw9MB46LnXoXNzZ8Icfb+f2Z/34PBAIxllyyaWW8DXQxINf3xphpzacgHRa7wZNtixbue+Wmj32c5316gjWVjvEHFgaG90aSqs6LusPMCma2vpkdZWbTgUuBJaPTReCHks7O8ZZhXtR3SPvd1fT5TWEcyQ0IcKlW8sDvq1c2M18Q1d+pa38GYGZDzexEXKr4uEDnduDwnG8X+rPGxN9AzkX8EQW6TQDiwufjJd2QR/0Z8DdM0wQw/Rn/eVggqa0uLXHMA/YDNpJ0WRXqTxMIhGeiIVm+RAxjWN0yhIyd3ryXKbH+BDBz6g6vX5/jbRL9WSE8uz5Le8d5ZDnoiuWB/aN/Y3Djro496neB3wNbStpf0utVuL/fny0zIPWyfoSkdyOrwknANrFTg4EbzGxPSVPr07pAIJAFMzsBOCPl1M3AfjkryAOBPKlmRE5vnISHiJyuSRvAV1vFPpTF6Y+WxIuqiHgH+ANwWk5RpR2kfbchlDpJBRqDmkZg9IBvULoR8tcc638PWC52HPqzJP7zMD9He+8SovSGv40OlwLWwAkal/MuvQ/4sqS0NJZZCAvMgUAZtEklfyMDByzK7b0xZnrzgWacHCt6s1jQnrePmpenNXePKarwXoFiokwDw3vDo+bjCDP7LvDj6HBZkg4aHTwInCDpzpxvH+ZFfQf/2W2vc3qoAcCvveIPcCK3PPCf3SbcHHJByrX9lVpHpu8J7BEdroxzrdqUZJ/WDpwF/LgKa6ShP2tMfCFf5rmamQ3GBSXG5+FnSvpT1rpzwP9+QcjYu1kBuAa4NwpYvERStUX94ZnoI5iy92eVMPauoRuoqXAxyWfp/UKh6UiR63pYoi5ZeHY9etPPYyng08B2ZvZalQRBPtbvBUHwiShoLDAZ+FzsVFwUdFt9WhcIBCohWsT7fcqpa4Av5rx5HQjkTbUictIm4Wf1gkl42DDtmrSFs2qr2At07sqzAPg6cK2kakRXhIicvkWtIzA6xcy2ZLE4pIMXgPNzvE3oz7qmKu+3bu73tU7OLcRFxf8TuLlKwqSSzTEzGxzS1QYC6Uga4q9bthUsl/fGmOlDdzAK/2DxQuCHMu01dcTc5/KovxIGFwe+t9CS+68FDQjvjSS1fm+AWwvsbBw8A/iOpDxSjaYRxhF9h3o8u13xW2BLr+zMHDcgOpvDBUHQYmr9TGxF5+PgF4ErgL9JqtZ7MPRnjcl8YGjsONPvLUpVeBmwXaz4ZuDELPXmyLLecb0DmHobfj+1lJkNqLJL0PvAlOj/lwGacc9kPFBxm+jfD8zsEEn35XRv/3mAOq5hBbLwzvswLFFStNLgk2qzx7S1VlBT4Tq8oDTBV27d/tW8Ug53kHh+LTy7Pn5/Vs9xyUCcc+c44Awz+xNwcs7ZbEreb/06ZVgcSe8CY3HRoXGWAm40s9GlnwoEAr2RyP42TQx0NUEMFGgM/PdzMfWqMogm4ZeSnIRPAL6Xte4caPeO06Jw+zNp47XMz0QGlgLOAy42swOiZytP0r5beCYakChNQO79WYVtWRE3DogvIrUDX805Gjb0Z13jR+TUsy8r4H4/y5C+8JcH/vMA4ZkIBDql0F465hn0cSFzP9E6rXldo3ANLj08gEwcNWXE3JlZ687CwsHzS75buxT6iCS9YhwRYwRwuZmdGaVhzpswjug7+GOetDFBTTCzfYHvesWPAr/J8TZhzNM9vak/a8K1p7mKqd1Cf9aY+BvIWedJvwP2jR0/ABwoqW59ooe/IVxv8WZvI01QUFW3L0kvSWqN/m0naW1JS+HS7ZyMcyvvYAPgNjP7XGpl5ZMmEAiiigbk9lFqAxKBWGZVW/dJZfw9Ky37MQtvwbnzLW6HOGdKy5wr8rzXAVdZE269/hNEPoE1fYi832/d8QiwYvRvDWBrYHfgJ9G5DgbjRLJ3mlmeIqWS91sQBMWQ9A5OFHS/d2op4KYgCgoEej9m9gPg9JRTVxLEQIHGwZ+A5jHZOg34fOz4QXrPJNwfgIUBa5K0BYlq220vAmZF/57H2cnHWRq3qHMF8LCZfSbHe4eInD5C5LjiPzs1t4o3s4HAv4B1vVMnVyE1cOjPuqbuz0OMgcABOIeg/5nZKdGzkid+arIiIVI+EOiUgpWOedqlTP3EmHtXXwmzicAqi0vtB5NGzrk8S715UPhgcMmYpxAWbn2qMS/qjtm4MfAj0f/7UfDrAMcDj5rZeWa2FPkRxhF9B3/MU5co5Gie5qepeA/YL2fHQn/MA+H59alHf9YZa+A2n6YBD5rZzlW4R+jPGpO3vOM1Kq3IzHYFvhMrehnYs57pE+NEwW2re8X+9+/vpP08Kn4msiDpaUm/xG2qvxg7NQS4InLFz4r/3ebXICVZoEqY9Fby2Gr27O41a7WlFrUPvEHGNvFywaUtI+eekPf93lpt+Or4YnQVQ3+WxP95rJxTv5GKpHZJ86J/r0iaJWmCpF8DWwDHkJxnbgNclGMT/Of9zSAI8ohEQa24yX+cDlHQqJo3KhAI9IhIDHRqyql/AYdU2c4yEMiTXBXLZnYUSSeg14C9qpTuqRL8xdGwUJQk7edRVRW7pLckbR39W09uM25pnMPU70gucG8GTAsROYFOqHUERgIzG4ATfLR6p24ifcyQldCfdU2tUwe8BqwX/dsSGA98GfgD8GzsumWBnwF3mFmemzN+XR9Iqre7RSDQa2lPEcNYQRW/Nw54YrNBtqjtKtCGn9QHF0xumf27SuvMk3YrlvSBbUEQ5FPzlDOSLojGwJ+RtKqkgcBwYD8Wp7AA567xddxa4RJpdVVAGEf0Hfzf3UAzW7KWDTCzTYBJJMcjReBISc/kfDt/zJMWGNDfqfW86GzcGHhDoAXYBzgWuJyka8JngMlmlvcGZejPGhO/b9gw9aqeEc/XMx8nBnotQ315swZJB2GA/9ajIb2YZyh1M8vyTGQmSnN4hFe8DnB0DtVv5B0/nUOdgTohs0R/poJq8uyOmLnG4AUftd+I2Clxf7i2fdHcI04h/zWhJtr9Z5eBxabQnyXx/54LuHFSzZHjz8BPvVOfN7OxOd2mpD8LgqAUeiAK2qn0U4FAoJ6Y2c9J39i7HDgsiIECDcY873jVSisysy2Av8SK5gPjJb1SaZ1VYDXv+O26tKL3kvbz8H9mVUfSAkn3SPo+8FngpdjpIcA1ZrZ0Drfyv5tIWgIHGgu/P6vZsxtF/F0IfME7NQM4KG9hRuQQsIJXHPqzJP7PY6CZDa3WzSS1SXo++veQpImSLpb0PWATXPqMuFPeCOCyHJvgR5yG5yEQ6IK2toUlfyNFK1T83pg3781TgbjT86RFi+Z+vdL6cqdQLPluSxaLoZ9IUrdxRBxJcyT9W1IrbkNdsdOjgV/ldKswL+o71HUOZ2br4wRs8XGWgGMlXVOFW/pjnneCCLqE3NZ5ekIUkf68pGckzZB0vaRzJR0MrA/EnVILwB/MbO8cmxD6s8bE30DeOKe0cssAD5mZevqP5FomwKop1z2VoU0bp5QFAUiMyEnuZa94k3q0JY6kO3CpL+Psl0PV/jMRnoeGxhL9mRVT/+ZzZfQdQ4csXVx0g4HvvHfDiiusfFCUyix3ipj/3eZN2GH2G9W4VwOTJnCsd392BqXjoy/lVHdJfxYEQZ0gaR6wG6UvlqWBm81sx9q3KhAIpGFmv8TlkPX5O3BoEAMFGpA8I3JWBwZE/9+Oc8t6OEN9uRJtoPuLh3lHKzY6r1KaYqbeETlPA4eQ3AxZA/h2DtX7CvZXcrazD9QW/+95g1rcNFq0PA841Dt1L7BrlWzKN8S36A39mU/az6Mu/VkkFjoD+JF3ai8z2zOn2/j9WXgeAoEuuH3UvHeAN+NlovJITsHascMn2hYtPLBai7CVYBT8PuLdsHBbgt9vrluF9I5lIelcnOA4zrfNcklD4C/chvdG41K3MY+ZrQlMplRw8kNJ51XptmHM0z15rvNkInJpGY9LjdiBAefk4WRlZoNIvoMhPBONwhPe8UrUf8O0WuzgHb8p6fW6tKR34z8TI+vSilKmecdbZanMzJqA7b1i/7sHGglT4vcnY6u9Zq2WZ6rfBLvOXGPFAQMLk4Ax3qnL5i059wtXbvpY1dLPFYry+7Pw7HpIWkAy3SDUuT+LUhJO9oozp3E1s9VwzmlxnhiQdnHAIekNM9sFp5j/dOzU0sAEMxsv6a76tC4QCACY2a+AH6ec+j/g6BCRFGhQ/IicDcysSVJ76tU9pw04y8zOKuMzvuPLEmb2nFf2tqRK00VtiItGixMsLWNIKprZs8DmseKqRzV0h6TpZvYfkhPm/YHfZKzaX0wOz0NjUxJhWO0bRgs5fwG+4p16ENhNUrXs6v1nt0gyLVXARRd+SNKafWNKF/NqyZnACbh0MB0cBdyYQ92hPwsEyue/wModB5bfe2PogIFLzGqd3lzGRyxxsWGHtU5v3s275i+VpyBToo8whT4iBf9nMgBn7Z7FESAPTgeOjB0PxKXj+WOlFUab8Gt5xeGZaFAkvW1mbwCrxIo3BiZW875mth5uY2Ft79RPJZ1exVuHMU/3+D+Tdc1sULQZVHMkfWxmPwFuiBWvicuakHUcvAHQ5JWFZ6IxmAEswr3XOhhN39xc9jdd76xLK3o/d+OMEzrYwcyWkLSwXg2K8MVbg81siKT3K6xva2A5ryw8Ew1MU1F3tScNzpb48MP2ESRTAOfCLjNWXaug9lvBEuMhoXN3aHn9uGqkCevAMBtjw0Yl7xue3U64C1g3dpxZfJMDvgvb0Bz2AXfxjgXcHQRB3RATBd0GbBY7tTRwo5mNlXRPfVoXCPRvzOw3lEZ1A/wN+HoQAwUamCe94yVxkQ73Zqx3CZKDnkqwlDr83PDl0OIdLyJsoKfxJElB0Ih6NcTjDpKCoM/ksDDgPxP+30OgsfB/f5uY2QqRG2fumNkSwCU4cVqcu4C9JL1bjftG+M/uC5I+quL9Go5I4PgUsGWseAROyF0XJLWZ2U3AV2PFrWZmktTZ57ojcsDbwisO/Vkg0A2CJy3Wnyq/Mc/KxIRGFbJs9C+GVqy8OmtJmC2aQh9Ryn9xAtt4AEELdRYESfqvmb1OMh3TNhmr3ZbSDfTwTDQ2T5EUBI3ACZGrgpltBtxCMlWTgBMl/aGK9x2Ae37jhGe3FP9nMhDXb9RTGD8J+Ai35tTBWLILgvx5UTsh9U5DIOl9M7uP5PhrN+DcCqp7Gjg/Q3M2IeniswC41LtmbiUVm9nKgB/YeHsldfUDbvOOl8K5akxNubaWLJFS5o+jymFX73gBEPZ9G5hbR77+yJjpw94kEWxiu5GzIGjn6cM/NUDFW2SWzIBgnDZlxNwf5nmv1PvPbP4cKDHPNYX+rBNuBw6PHX/KzNaQ5Ityaski77gJ189mCWb1+7MnJM0JgqAe4ImCPhU7tSxwq5mNC6KgQKB2RGlAziQ9Nc1fgW9k2cAJBHoBDwAfkHTn2ZnsgqDeiK9Yvi9soKcyDTgwdryNmS0r6b16NShijndsuEXvVyqpLLK3X88rvruSugK9Bn+BuwkYBVyb943MbAjwb1xUa5ybgANqkHrO78+Ck2g600gKgvyfWz140TteChcd+E6GOkdSukgZ+rNAoFtsGiju8LbZmHuGDZuy7dyKNnx6K2PuXX0lQ5+JlxWx0Ed4SJpvZg+TfG+MBi6oU5PizCEpCBra2YU9xH8fvgM8lrHOQH25m+Rm9mgzK1QjeM3MRgHXkXQ3aAe+Junved/PY2tKxJJhzJPCI8B7JH9WO1NHQZCkhWY2m2RaCT/VXCX4/dkDVUrZHKgOU0kKgsaa2dBy02lJmgnMrLQRZnY0yT70HUlHV1qfx4E418E4ubuG9BFmAfOAFWJlh1J/QZCfqnVBxgCwQ7zjO+vl4BbIByG10jyV2Hq6TF884Cr7/pX7Z87CAMCY6cNHN6F/y2z5WHER07GTR8ytVprWBIWiDvWKPvygaeD0Wty7AZmKE8t3WEcZ7m//1Lq1KBk8AE6oXanTGWa2DLC3VzwFSl96gU6Q9LqZ7UypKGg5nChorKS+uFEbCPQqIjHQ2cC3Uk7/BfhmEAMFGp3Iunk6LjKrg3FUNjh5DbgqQ3NWJ+kA047bcI9TkSglyis/yisOCvZ0/IicAbjNkOvr0JY4A1PKBmWoz1ewC+dCFGhQJD1nZi+RTIExjpwFQWbWDEwguWEIcBlwhCQ/4iJXzGwNXARjnNCfpXMbyXHcmma2saR6uj2kCVGXJ5sgaJx3/AbwaIb6AoF+QVN74bZiU2J91grttFIaEd4thmZg1lZxY8QOQDxt2LMYD3rXVPZ33dbWipc2t6m9ZLwXcNxG8v0+Jqd0ylnx11SzjIEhOfcDtxFV7+8YyMZtwEmx45Vwzr/35XkTM9sHuJyky8tC4GBJ/ty9Gvhjng/om8FMmYhcKe8C9ogVjwN+UacmdeAHTSyfelUPiRyj/BQcYV7UWFwO/DR2PBA4CDinPs2pCod5xw9KCmntUoj6rqtJOuruZ2bH1kvoF6WJ94WHFbuQmdl2uFSHcf5VaX2B3oOK+pcVLB5gO/zt4au04hwVMzF2xvDDDf2V5BxgAeiwySPm1mL8xdazbOAKDDsoXmbi+hnbv1ztgMiGRNKrZnY3sGOs+EvUVxDkuyq+mnF/+/O4IMc4l0MQBJVFJArqcAraNHZqOWCSmbVKynVSFwgEFhOJgf4IHJNy+gxJ361xkwKBajKV5KLwjpVYGEp6ADig0kaY2RdICooWSaq4Po/xJCNMIETkdMaTOHFXPFrvEOovCEqLHswSwe9H5Dws6Y0M9QV6B1OBI2PH+5vZt/PKOW9mG+HEQH46w7OBE2okFD6YxREm4MRsYWM3nTuBNpJz0UOBn9SnOUB6GqG3Kq0sWqA8yCu+LYjWA4HuuXXHV19unT78adCGHWVS4RAqEARNbpn7+yxtGTt92AQ5W3nXDnTrlBFzj81SZwdWOuZ5/tYd57yQR919kKlAfK4/DOcGmHkhv1KitYnhXrHvnFlOfRtQmnIszIsanxk4scXgWNmh5CgIMrNjgbNIpkl5F9hTUq1ceg72ju8KrgqdMpWkIGh7M1tX0vP1ahClkekVj4EjxlE6tg79WQMh6Ukzux/n/tXBcWb2Z0mVC617CWa2LaVpDi+uR1saiEtICoKWAY4A/lRJZWa2XEY3nyNJivYhW6rD473jDygNhg00ICuutMqEefPeTKQNK5gdR4Z5hGE2ZlrzKZhO8U7NkdleU0bMqZlGYMWFzYcIJd7j7WahP+uaS0gKgjaJtB2Ta90QMxtJaXBp1nb4RhrPEAn1C6XXBrpC0lycyv0J71SHKMjPPRoIBHIgWnD7E+lioN8HMVCgD3IlbkO5gwJu8bAv4UfkvEawFk8l2kS+0ive08x8QVWt8SNy5lQaIWRma5O0gwa4opK6Ar0O//e4IrB7HhVH6RFmkhQDFYEfSjq+hgIMvz+bJunVGt27oZA0j9IJ7qFmVs+5qb8g/J6kLPm6d6ZUMBn6s0Cgh1jJ34tad717FV980bCMv3v4KijpqFH6nQMxplK6Qe2/d2vNVpQGNjyXob5DSQqL24FrMtQX6AVE6Wr9DcqDzCzNZbUszKzJzM7CBc3FxUAvAzvWSgwUbaxv6BWH/qxzrsbNVTow6tifmdk6lAqCss5h/O/zOsH1txG5yDteD9i/Du2oBj/1jhcSuScEOmUablM5zomR83sl/MfMTrdkmqUeYWZbAH/wittw7tBlEwWYfcErvlpSxSl7Ar2HKzd97GO8v29hu+1y92qfraS+8RM3WGLM9GGXpIiBHitaYbspI2bXTAx0wFXWJBV/6BW/Vlw0p+bClgbjKpzoL86PK6nIzC40Mz+oo6efXRZISyt3dSX1RXXujpunxrmwY208CIIqICYKetI7tTxOFLR16acCgUClRBtEFwDfTDl9uqQTa9ykQKDqSHqRUnHMNzJMtnoVZrYmycg4gMuCLX6XXOIdLwl8pR4NATCzXYHPeMVZInKOJbkRUqTCCX2g1zEFeMUry+ywYGaHA7eS3JD7CDhU0mlZ6y+jHbuQTCkMIcKwO/z+bC1K3wk1wczWp1SMmDWtwXHe8ds4F6tAINADCoX2i0kK45uKhQHfqFd78mZRU/GbeGlX27Aw5umEyGnET9uwn5mtVo/2RHw/peymSioys7Qx/SRJsyupL9Dr8Mc8Q8ng4AtgZkvjBGPf9k49DLRIeiRL/WXij3mCq0IXSHqFUhfRo6N+oB4cnlJWscupma0O7OsV/7Pa6ZsDVeFCXMrjOD/JQ9BYT6LUUOO94n9E+32BTog2k33nzTWpfE1yCeBE4EUzO68n+6lmNsDMjsA5Di/jnT4/Q8q3n5EU1haB31VYV6AXUmjnTCDxHio0tf+8kro+Xva9P+A7vcpuHThgUcvUEa+9VHEjK2De8KGHgG2UbIr+cPuoxndyqyaRO9lfveKdorXdcmnFCRyvMrOdI1OLbon2xSYAm3mnbpc0tYJ2dOyh/8wrfg/4yyfXBNfyyjGzZtxi8cbeqXeAMZJm1b5VgUDfIkq5cAHw5ZTTp0nyVbCBQJ8hmuj83Ss+UtKFNWyDnzLsI0mDO7u+jHrPA77uFW8u6dGsdfdlzOxhYPNY0Rxg3Sj6tNy67sQt9v2+XFcfM1sV+A+whndqtKQ7KmjLysALwJBY8RRJreXWFeidmNmpwA+84hZJMyqoy4BTgJNJisjeBPaRNL3ihlaAmd0GjI4VLQBWzWiB3acxs8E4V7h4ROC9knynnp7U9RvcRsNjFXx2AG4S7vc1X5ZUkagrilh8gOSzea6kXNIMBQL9hdbpzdOAlljROwMHLFprwrZvvVerNqSkDDt3Sku2lGEjp6+yzGCaXsS55QFg4t5JI+eU3f/1JyI37nu94orShkf99CXAiZLKThcQCZL9+dgzwMaSiqWf6La+YyhNufFFSb4IKtCARGONl0mmNnkC+HSFz8twXBCGH/07ETgwo8NhuW1ZH3iK5EbqJZK+VKs2NCJmdiilQrGvS/I3p7qrZyPgi8DvKnHpNbNP45xWl44Vvwc0V7K+ENV5DqWpKj4r6cFK6gvUFzM7Cfi1V3yipEwpWcu4/9HENjKB1yRVLAaONktnkkzR2Y57fz9bab39hUgM9ixOCNTBPNzP7/Uy63oeWMcrfg0n9rkH9958A2dosSbud7YvkPb7fxy3tlT2+ouZ7RDdMz53v0aS7xgUaHBapw//ByTHJwWx160j55QV2DpmevMl5mVwEDxszqUqC+9Nbpmzc08vHn/PSssuahv4JEln6rfaFhXXvn3U68HdqhsibcfzJNP6Po3bm1pYRj2vkOyXnseN0+/C7ZvM6Rjvm9kQXF92AE5UNiRZG+8D21eythnV778zAX4j6RP3o+AQlAFJc3CLx74t8PLAZDPzJ2eBQKAMIjHQhQQxUKD/8k/chCjOjxrdJShKDXWEVzwxiIF6hL/w0kypsKqnLI1Tjj9vZqdFC4rdYmajgRmUioFurkQMFHEipQPhEJHTt/gjzoo7jm+x21N+EH02vmjzGLB1HcRAO5EUA4GLTgtioC6INhnO9Yq3MTM/WrMn7A48ZGZ/L8ep1cyWwW3G+GKg/5LNMv5nJJ/NNuDMDPUFAv0SFUs2m5ZvaxtwfF0akyODrek4YmIgABV0ep2a0zBIuo/SlDNHR+KIStgMmGhmM83sqGiBtkvMbEkz+xnwt5TTP6hQ3LEUpYLpF8hgFR/oXUhqA87yijel8tQ7d1MqBjoD2KOWYqCIk0mKgdIcJAKlXAH8zyv7QQUuQcvi5kTPmNkJUZBNj4hEljeTFAOBc2GvVAy0OqVuIVOCGKihOReX8i3OKWa2Vj0akwPHkBQDgUulEsRAPSBy+jrVK16B/NbuVsWJHM/CueDdhRv7XYxzmE4TAz0P7F6hGGhJ3Oa5n7L1l+XWFej9SG2/Bj6Ol7Ub54y+Y2i3c4DuMOeev1XGf1uUc8+P2wb8hpI09To1iIF6RqTtON8r3hAoO9jEY12cg+c1uBSsi8xsjpm9CczHpcI+mtI9kHbg4AxioGHAb7zid/DmIMEhKAfMbA2cU9B63qk3gF3CBmcgUD6RGOgiPMVtxCmSflHbFgUC9cHMvkNpbuSTJP22RvfP3SHIzK4H9vKKd5A0LUu9/YGob3wKWD9W/B6wiSRfPNZdXfdTupj8OC46ZgaLI3IAhgPb4yJy0gTPc4HtolR3ZWFmGwCP4iyDO6jIKSTQuzGzvwJf84r3k1RWWgEzO4vSFAn34v4WsjJWPZwgRRHf95NMnbcQWE/Sqzm0pU9jZisBL5KcCD+Li5j/qIx6fOe0h4FriaIL45sakbvUxsDncWLK1b3q2oHxkib1/Jsk2jIWl8YuzsWS0sTtgUCgCwyzMdOHPQx8Olb8YaGdT92645wXatGGvB2Cxt212hrFpvYniW/AiidHjpy72SmULybpb5hZK+D3z5dLOrjMerYA/A3qBTjXgDujc29E/5YFNsKlljwIWCmlyn9KOiSlvCdt+TVwkld8tCR/gTrQwEQi5JdIprl9BTeHK2vjxszeJynieB8XgZyVWyT56w5dtaMFJ06Kb6ReJ8lPFxVIwcyOxQVMxPmZpB6nMElxTluIS104GbhL0pPe9Uvh5vRH4KLT/dRPT+HcfCoVBF0N7OcVj5J0ZyX1BXoHnbji3Ytbw/u49BO53js3h6DIEesekm4Q84CNJPmp0QKd0InLEsBhki4to55LcOKfpu6u7YKrga9UGoxlZn8GE4NaGwAAIABJREFU/JTEf5Tkp8IM9BHGTm/+jeBHXvEVk1vmHNTTOtIcgnJi3uSWOSt2fxm0zhi+O9KNJMZg9vTA94ZsPmG3Z3rsbtPfMbNlAd9lqQ3Yqadu9mb2EknXtEp4DTik0iDrqF+eCIz1Th0rKRGIGQRBORGJgu7AKcDiBFFQIFAm0Yb3xUDawt5PJf2qxk0KBOqGmS2Ns6CPR78uADaTVPXNkLwFQWa2J3CDVzxZkj9oCXSCmR2JS6UYp5LNkDRBUCW8A4yT5Kdx6EkbDLdg6efpHS9pYg5tC/QizGwdXIqEePTry8Cnyolo7kQQlBdNPY3wN7PvURoN9ydJvk1+oBPM7DTg+17xzyX9rIw6fEFQHLF4U9dwUYXLdVHd8ZLO7um9vXYMBh4hKdhchBM4/beSOgOB/s7YacP3l+nKRKFx0+QRc/asyf1zFgS1zmi+FrFPvExw0JSWOVdkaWd/wsz8VHIArZKmlFFHmiCoUqbiItPLXnw3s42Bh0iK4l/Epd4Ii/l9DDP7CaWuA3+Q9L0y6/EFQXnxd0lH9bANA3Gi+Pj4qwh8TtIDVWhbnyMaNz5NUpz+ES5VxTM9rCMtlWKchSweBy+Pc/gd0Mm1r+PSVDzfk3untGVX3GZUnDsk+U6qgQYjWrO5EyeMjfM7Sf48Lu975yIIikSZ9+EEvnG+IclPrxLoBjPbBicKimefmY97B/R43mtmqwJfAMYBo4ClevCxdpy72e8l3d3Te6Xc+0DAT806FycQC27PfZS9Zq221IKP2h83WDteLvjKlJY5/jp7KvUWBO0yY9W1Cio+gO84i+08pWX27VVoV5/GzA4BfDHjSziB9Ns9+PyKuPRf++NE152Ns9KYD/wfcGq5aRe9NvwU8M0zHgC2kdSeuDYIgvLDzNbEOQWliYJ2rtTuKRDoT0QLC//CRW77/FiSb30WCPR5Ohmc1CoiJzdBUGRf+BAuzVUHHwNb+NFrgc6JlN/TcAPNOF+WdHEZ9VyKG7Rm4T7gwErFaWZ2IuCnybhB0t4Z2xXopZjZz3HpBeJcKenAMuqouyDIzDbHRWPH+8O3cAtIb1WpbX2OaHH2SZL23224aOIepX/rRhDUUz4EflSpGChqx98oTZNQ9YXyQKCv0zqteQrmCYdN35w8Yu551b53noKgMdOHHW2Yt+mku6e0vL6TCAtzPSWK8H+A5GLrHGDLyPq9J3WsA0wnGXBRLkXgNODkKCVUWZjZEjhHzs96p/aW5AdPBPoA0e/8EVw6gg6KwG7lOBP2EkHQH4DveMV/lVRpKut+iZntD1zpFc8CWnoiCuyBIKinPIib0/dIiJTSjqFRHX6E/daSHs6hfYE6E7k6zwKW8U71ekc7MxuEE5CM8U5NBnatJN1noNPAnudx/VePxmNefQOBTXDuyxvhHPWWwwX4vI3bX70PmCkpkzO0mY0AppBcyxFuDHZjlroDvZ8x04ePNjSZpDvVx0J7TGmZO7le7eoJu85cY8X24qK7calnF2P68+QRc4+pT6sam0j0+m9IBu3g5opjJS0oo67lcOLGrVjcly3P4r7sLZwA+76o/hslvZOx/V/E7RnGBZof4rI4POJfX/ALApUj6X/AaFy+7zirAFPN7FO1b1Ug0DhEg/QrKRUDCTghiIEC/RVJlwG3ecXbUJobtNcSOX/9i6QYCOCMIAYqj2jB4hhcZEycc6NI457Wcygudc4puOgev76ueAg4DDfZr1QMtD3wa694AdUTegR6B78FnvPKDjCzr9ajMZUQ2cpeQ3IBCeB7QQxUHpEz1Ale8QDg8iilWE/YHfgJLvVguRRxv8utMoqBDqFUDPQKpVE6gUCgTNqt6RicgHwxsjNaZw7dsj4tKp9dpw37jGFnesWLVCx8PYiByiNy3/6zV9wMXBiJ5ntSxws4a/c9gb8B/yujCYtwi66flXRSJWKgiLMoFQPdFMRAfZdI4OHPcwrAxWaWRZxWU8xsL0rHbm9Smvou0A2SrgJu8Yq3otSBtDPux208/QO3yVQub+DWArbPIAZqAi4jKQYCODuIgfoO0fNxdMqpP5tZWkBvryB6Pi+iVAw0G5fiKoiBKucnOGFznHWBiWa2fLmVSVok6RFJl0j6iaRjJB0q6TBJ35b0K0m35iAG+hRwI6VrOWcGMVD/YErL7NuR+dlHBhl2zZgZwz9Xl0b1gHGTmpcuti+6EV8MhD3Y9vFS361Lo/oAco45R+JcWuO0AFdEYsWe1vWupOslnSxpb0kbS2qWNFjSUpLWkLSVpK9HfV1WMdBY3DvOnwMfnyYGguAQVBUip6A7gHW8U6/jnIIer3mjAoFeTkwM5LtCCNeJnVP7VgUCvQczWw8XDbusd6qqETnR32Y8AlGVDFjM7HzA3/B/HGdf2GO1dWAxZvZrShdenwNGVhiRsxywJU7FviGwMk7FbriInDdxUWEzJD2doekdz/N0YJh36tuhv+/7mNlOuBQbiYgcXMqNblN+mNlSJNNr5Iaked3cu7MIw4m49ofJVQWY2dXAfl5xJRE5qwGtwNY416CNcVbKHc/axyzuy6YDV0vyBWrltn0kMInkomIR2COkPgwE8qF1evMPcYLSTzDpFdmAlsktr5Yj5iiL0XcMHbL0gMGfLAIWBrctvGGrV8sat46+Z/XVB7S1TccJUBYjfjp55JyQCrsCIne5WcAG3qk/SjquwjrXBbbAjYPXwEVzLoOLsHwbJ/KcgRsHZ128/TZOEBTnbZzLUdWe50DvwMwuBA73ih8ARvdkozPaaLUqNG1hd2MuM/ssbr3bdwk5IBK3BMrEzNbG/f5X8E4dK+ncMuppwomJRrG4L1ud5PrR+zgB5AxcCqhrJH1YYdM77vtn4Bte8X9x7kDvZ6k70Pvo5PfdBhxVjlt1LYhc2S6jdI75MS7l/R01b1QfI9oDvZfSdb2Hce53s2vfqs4xs+2AmwA/8Gg6bs+2qg78gd7DAVdZ0zurDpsot3YU5z1h+/S21Ftj7l19JVvUdhOwnXfqbWsvbjdpx9crEvUGFmNm2+KyP/liwVuAL0j6oPat6hwz2w8XpLKkd+pSSYd1+rmwZl0dzGwt3CRpbe/UXNwL5olatykQ6K1Eg/SrcBF6cQQcJ+lPtW9VIND76CTHcTuwv6Rr69CkHmFmvwB+6hUvwImBgki2QsxsAM45ys/l/hAu3U6vzHsdpY6bDqznnboW2C8IKvoHZnYy8HOveD5unHx/HZrULZHzwGXAQd6pV3GbeG/UvlV9g2hzaxalqZdvAj4vaVHG+ocA5L0xYWabAXdRuolzmqQf5nmvQKA/83OsMG1a8wRM47xTT7Utatrh9lGvvlmXhnXDHtPWWmGhLbwL2Mw7NWVky9xxpxAi0yvFzLbEOVz6AuGfSPIdKHsNZnYQbiwRj+QMaSr6EWa2NG4D1Yvw5jZgfE9SRdWDLgI6zpP0zTo0qc9gZvviHCvjQq8i8EVJfkqxcusu4IJ8Psh7s9vMfkqpG2anaSoCjU8kPLuG9GDek3BzoLqv55jZyrh9hlHeqSLOGeifNW9UHyUSit5OafDq88CevWUP1Mz2xo2//JSbTwA7SHq79q0K1JOR01dZZrAV7kDmO3YulHH4lBFz/P2XurDLjGHrFWQ34YLd4nxoRbVO2mHu9Hq0qy8S9RPXkAxeBbgH2Le3iBzN7DjgDErbOQUXqNrpeC+kDKsSkl7CDTpe9E4NA24zM3/iFwj0SyIx0NWki4G+FcRAgcBiJF1BqUV+E87C8JA6NKlLzHEapWIggG8EMVA2ohQFB+PExnG2wI01/MXaumNm6+A2z30x0HO4qLK6Lx4FasavcK4qcZYBppjZjnVoT5dE45V/USoG+hi3WB/EQBmI3BYOwm0ixNkDuDZyhcpS//tVEANtg1v89MVAd+Es1AOBQE6cgooDxWHAy96pjQcMbL9z3F2rrVGPdnXF2OmrrLrQFt6JJwYy6RUN0KFBDJQNSQ8Cx6ec+pWZ+YLjXoGZHQFcQula7O+DGKj/EEUYH4gTwsfZGZgQpabtVZjZ5rjxjT+/nAV8p/Yt6ltEwV1+6toCcJmZfTlj3UVJ8/IUA0XrPL8iPTXut4IYqO8iqR34InC3d8pwTo7Xm9mKNW9YvCHOvfVBSsVAAN8NYqB8kfQA8HnAF7OuC9ybtQ/LipkNNLPf4wIQfTHQy8CuQQzUP5nW8sZ8NTEeeNY7tYSJy1tnDDt39B3r+O4rNWXstOH7F2QPUCoGaiuIA4MYKF8kXY9Lj+nvTWwLPGhmvlN8TTGzZc3sCtyY0RcD3Y8LpuxyvBcEQVUkEgW14qKG43SIgjapfasCgd5DtLlzE26zJ46AY8qxxw0E+hHfBm7wygYCl5hZr8kZG22eXwh8P+X0Kb3NTrhRkfQKMJ7SBeXPAtPMzE+lUDeiyKHpuHRkcV7HTcK7TNUU6FtIKgL74yzy4ywH3BrZn/YKzGwFYAKuvXGKwOGS/AXRQAVIug+3wNzundodmGxmq9S+VemY2e64SP6VvVOP4yKH2mrfqkCgbzNhh9lvqGi74lIrxdm02NQ+vXVm86fr0a40xtw9fFPRNAPw2zTPCrbblG3n+mLuQAVI+gtwWsqpk83sr2Y2MOVczYk2z38MXAAM8E5fAQRHuX6GpMdwaWz8RfudgdvNbNXatyodMxuNSy/lt+k5XBTyR7VvVZ/ke7io9DgDgAvN7AdmVo00cWUTpU/+G/DjlNO/knRBjZsUqDFRmrndcGlUfPYEHo5cr2qKmS1tZqfiAjZW904XcfsMfrrOQA5Imop7Jvy0l0sDF5nZFfV4r5nZ1jg3ye9SmmrzKZwzkB9sEOhHTNl27tymYvuOcmnuksi+OWDgh/fuMnPYiFq3a9yM5qFjpw+7SKYrKXXfWoDZPreOnBOCCapANI45HPBdyofh1qrProd438x2w4ldD0g5fSfQKsnfGyqtJwRiV59oM+52YDXv1Bxcjuinat+qQKC+RGKgG4BdvFNFnEvERTVvVCDQIJjZYOBWSlNFgXPc+ko900VFduJX4kQpPsFSvAqY2S7AzZSmTXgPOFpSXa1OzewbODtLP7piPm4sNKv2rQr0BiInq2nA+t4p4aIeflDPXO5RHukrgLVSTh8vyY/mDWTEzI7CbTT4i3avAQdLurP2rXJEqRp/AfyA0uCa/wEtkVAzEAhUiTEzhm1vsimA7xy2APGtySPn/L0e7epgzPThXzZ0LqVRyB9Ccezklten1aNdfZVok/wC4IiU0/8BDoqC9epC5JRwEaWOyABTcSmi6jbOCdSXTlLIgQuY+JKkW2vfKkeUauok4GeURiHPBUZK8qPqAxmIgqpuId3Z5DrgyHoG0URuv1cAn0s5/TfcukPYaOonRKLbvwOHdnLJBOD71XYGj/qqA3AC4TVTLlkIHCrp6mq2I/BJOtcJQHPK6feAXwJ/lrSgyu0YjnOqP5p0Q4x7gD0k9cqUw4Ha0zprxeVYOOh6xE4pp4VxYaGt6We37vhqVQVk4ydusMSi5eZ/DfFzSp2oAd6Sac8pI+bOrGY7Ap8EAV5J6ZoDwGzgR8Bl1Q4GNLMNcQ58n+/kkn8Dh/RUoB8EQTUiEgXdQWlExSvAKEnP1bxRgUCdiHKm3wiM9k6148RA/6h9qwKBxsLMhuBe+q0pp18AvikpLWKnmm0qAF/DTcTT1NJnA9+JnEECORNZV14LDEk5/Q/gxFqnNTKzNYBzgH1STr+Biyq9r5ZtCvQ+zGw13OL3ZimnZ+EWl2sqGjOzJXER+yfhXNjiFHFioD/Wsk39iSityvmUOim0A78Hfhml3Khlmz4N/BXYPuX008A4SS/Wsk2BQH9l7N3DWlSwG0lfKL3SaD9hUssbr9WyTaPvGNo8YFDhDMQXU06/U7DC3reOeO2uWrapv2BmTcC5uI0fn3k4540La71RbWZ7Ru1KS2l3E3BgtTfFAr0fMzsQuBgY5J0qAn8ETpbkuy5Uu00bAedRumYH8BJuzPPfWrapvxCtl16Fc9vweQnncnJzjdtUAI4CTgeWT7nkXOC4sM7T/4hEuccDp1Lah4Hrx64DTpN0b873XhKXfvGHlKbT6eB54IAQgFY7orWdfwKdpYF/HRcseH7eAscoOPUEXH/VWaqnvwAnBHe7gM8BT2w2aN68N0/F9WlprnwfCy4u0vT721pezXUM1DprxeX4aNCRuDlLqpuWiXubBtiBE7eb/WKe9w50jplthhMFdZbp6TncHthlec/pIoHl93FO9b4wH6ANOAU4tZzxVxAE1ZBIzXU7pX/UL+Oi44MoKNDniSa3N1Ea8dIOHCHpkpo3KhBoUCK75n8AB3VyydU4d43na9CW7XGCn7RoMQEnSTq12u3o70SWuBOAtNQ6bwM/AS6odiRy5GL1LeBkSiPkAV7EpQkLC8kB4JO0XDcAI1NOt+MWbn5ebVFbtKi5B3AmsF7KJR/jIravqGY7Ap9spF4BDE45/RJRaoVqb/BG7g4/Bo6jVKAEcB9O3FhTwWUg0N8ZN6N5s6K4hVInZnBRyD9rWzT4vNtHvVDVBf/xEzdYom2Z+V+X8XNc2kuf2Spq1yk7zH2kmu0IgJn9HDf2TGMG8G1J99egHRsCvwP26uSSi4CvhvSSgQ6iwI5/A8uknH4NtyFwebUFF2a2XHSv75G+uf8osJukV6vZjv5OD5xXrsU5r1TdoSlySz0L2K6TS06W9MtqtyPQuzGzbYDLgXW7uOwJ4BL4f/buO1yuqurj+HfdNHonEDrSOwgWIJREQleaCSBVEBABQX2pIk0QqYICoohKhwTpTQi9IyBNutJ7SQKEkHLvev9YZ3LPnDszd/rc8vs8z7zvzKk73OPMOXuvvRbXVVstI8mitT7RBzqawgFqOeOI39qWZU/vr5KsuscRwVqFBrIhMjfdTGTJG19t4GsSgLQVsBtxbRQrrzgR2L/V2dOl5xv10MLb4FwIzF9is0fc7RKztpvuWP+dN6s5z4h7hs4xaFDbSIcfEM8Mhfq9IAIrz5533gWOGLvyc8oq2mTJWPa5wB4lNvucGIO7AnggKa1ZzbmWI66F3YHVS2z6FpH5ruLJRgoIarJklsXdwLDMqreITEENH7QVaZWkc+FWus6sbgf2cPfLmt8qkd4tGbw+nEi9WmigcgZxQ/Jbd3++AecfQWTQ2KTIJhOI1NbX1fvcUpiZLQlcSfFOuzeJ2X1/a0AE+9zE7OyfE/V1C7kd2M3dP6znuaX3Szr4zgSKlRX8ksgac0a9yzIl2QW2JQI/1iqy2RtE6ZFH6nluKS6ZFXMVsFyRTZ4DfgOMq/fAapJq/BBgfwoP0EEM1hykDA8irbH5/QsOa28bcDmFy6sAvOvmZ3zlHRc8sP5Hn9fz3CPuGTrHoIFte7txKIWDknD8Pm9r/8Gd636swfMmSbKt/JnC2UohMhL+xt3vb8C5VycGv8ZQeABsGvHcdrbK6kiWma1MzEJepcgmLxElA66o9+QOM1uQmMxxEMUH2K8C9m12tqL+Kunn+QVxn5vNVgrRj3ol0c/zXAPOvxHRz7NpkU0mEaXqVYZJgJmTwo4CDqVrKfusd4nxsWeJTKuvEAOqnxGBIrMRv+MLAcsDKxCTD9en+KB5zmtExqqbqvqHSN2Y2ZrAeRTOsJvWDjxOBG+/SFwTbwNfJK+BRCb0OYCliethZSIL0QrdHNuJoKND3f39qv4h0u9s8thi8zN9xm8N9qJw2bm0Vw3u7TB/vs3bXvQB9lrbNPtiUNvAL6Z/OXVa+9w+h7czx4D2tsV8gC/v2AptHb6uG9+k8DhOJ/Mn2zrsJ/8c/v6j9fq3SXWS4P1z6P475yvgYaI04cvJ6z3iN24y8fs4Z/JajviNW5XozyiUVTZtOjEZ/3h3/6Kqf4eeQZuvRFDQm0SmIAUFSZ+TDBLfRtcB6nZipv3lzW+VSN9hZsOJtKylbh4eIWbkXFPLg1DyO7YjMWOt2CAtxM3PTiqh0nzJrMKTiXS5xR5echHslxIR7FV1LCcdPyOJ62EbinfQzCBmCZ2sdOJSipmNBi6gcKYFiHuHO4nvs5urTTWdpL9fC9iZmJWTvTdPu54Ibvy0mnNJ9cxsLqJUV7FseBCpx68gfgcfr/Y7Jrlf3YKYYbgpxTtoviBKcyqzpUiLjRlnAz5dZOFjDP8lxWchT3a41tr80kET57rnli1emVrNuba8dbkhM+b+bCOnbVfct6dwFkSAdodT2qd/cOzdGysLTLMlsyuvBL5eYrMXifuIsbVk2Uhmpu9A/G6sU2LT14jnorqWTJG+xcxmIwYbflhis0+Je54rgEfcvb3Kc80BbEZcu1tQOCMQwBSi7Pf51ZxHapNkYr4CWLLEZo/R2c9TdbnMJLvZGOKaWL7Epo8T32eqdCBdJNfRCUQGn+4G0uvpEyLL75nVZmeQ+kuCG3cnspUv2+TT3wf8qposGiIAox5c+NvEBOxik6Ab5Q2c38z73gcXjh1d3X2e1F8yifUgIpNmsUnQjeBEn/TR7v6fWg6kgKAWMbMViaCghTOr3iQyBb3W/FaJNIaZzUMEA30rs2oa8RB5bfNbJdL3mNmcRMBFsbImac8DdwHP0Bmx/Jm7T04dby4iRWZuRs7aRODHYt0cexLwK+C8ajsopT7M7NvEjJxiGU9yJgMPJK/cjJy3iGuiPTnWIGKW1pLENbESsAEx26dYfe6c+4ED3P3Z6v4l0t8k2VlOIwJ1iqV9hggO+jdwD/Af4vr9H3HtziwTk5QkW5D4LluBuCfZGFigm6a8Q9SYH1fNv0PqJykh9ntgqW42nUBcDw8T32UvEgFDE3MZGZIH+bnpnGG4CrARMZhbLKAg5x/AIfXOUiUitRn18NC16Gg7j+IZEnOm4DxEm9+Pt71g1v5ymw15c+rUtz/LBe+MuMcGDhmy2FwdPnUJ9wHLGx0rOrYB5c1M/1ebt+3/z+HvPlGHf5ZUKSlX8VPi2ahYlrecN4j+ucfpfC6akM6EkqSLn4e4B14eWIN4Lupulug0IvvhiennLJFSzGxT4A+UDsqAeO6+D3iQuG5fImYhp+95BhP3PEslx8vd83Q/Mz3KufxUE1dbKwneOobIXFkoW1DaC8T32dN0fp9NKtDPMx9d+3m6m5n+GXAscI5KHkp3komERxCTOrrrL6rFW8Qz4vnVZkyQxksyMu9EZJBao4Gn6iCykp+sQCCplyQw6EiiPF13/UW1eB6z0ycMef/Sx9f26Q08j9QgmRi9D3FftnQDTzWVKCn8m3plg1RAUAspKEj6gyQY6HYitWfaNGBHlRESqT8zW43IDrMlpQfSC3Gio6dYZo5SpgF/B45VKtaeI3nw3o9I31ywpEU3phDXUTWdOP8FjgcuVWkEqUZSlvA3dD/AW8gMIl3rHFXs+zkxEHOyOhZ7jmTm/KHEg3exkhalfEGk6O1uMKWQJ4Bfuvs/q9hXRJrgeKzt/gcX+iFwtHUfPFhILpC0mnueNzFOHL7eBxceizIh9hRJBp8TgV2o7rt/IvFcVM0z1Q3Ake7+QhXnlX4uCV7+GVE2qrsA9kImE9d8scw/pTxLZFW4vop9pUHMbBWin2drmtvPMx24mLgm3qtif+nHkgyso4mM0uvTfSBiOSYS2RIuBu5RBurexczWILIGjaH7CafleprIpnaZJu5Io4y4Z+jCAwbbDwx2wW0tKv8tLuQ9c8Z1tNml49d77191OJ40SZIBbTjxfbYdMam+Vu1EhY/LgKvqnaVeAUEtZmYrEUFB2RRTbxBBQa83vVEidZLMxr+drqmzpwGj3f2G5rdKpP8ws7WAXwLb0tgI9snAX4HT3P2tBp5HapB0Ku9JDKYv0+DTPQecAlyp2YNSD2b2HeL7bGPq89BdzCdEqYbfqzxYz5XMbD6QyP7Q6FS9DxAzcm5t8HlEpE7WecIGzTd14V3c/XBgxcaezV7G/ZR551vg0rErP1dV+VVpPDNbCjgc2IPuszzVYgaRSe4kZcaUekiyw+xHBAdVM7mjEo8RASfXazJHz5UMph8FbE99giuK+ZKY8HWqu7/RwPNIP5E8w21IZKRag8hS1V1AyDQiA/CLRAbYu4EnlY28b0gySY0kBtVXIq6JYiV5cz4hsp89C9wL3KVJqdJsW94/bMHpbYwg+ihXA1+ByEpeyhSHlw1ewnig3e2uu9Z/r6YSUNIzmFkb8bs2AliP6INYlpiQWMp7RIbPZ4hKHve6+8SGtVP3961nZqsDd9J1xoeCgqTXMrMFgfHA6plVU4lgoBub3yqR/snMFibK7uwGrFmnw7YTD+K5WvXKoNFLJBHsGxDXw/epLstGIR8BVxLZgB6r0zFF8pjZMsS1uyv1C2z7CriVmGF4i7trQLeXSErCbE5cE9+lfoO8rxMzci5x95fqdEwRaYFNHlpoXfO23cDHUJ9ZewCfgo21jo5L79jgw4ccdaz1Fslg5A5EYNAGQFudDv048Vx0pbt/WKdjisyUZH3dhLjn2ZbuB0zL9TZwOXHPU5dyBNIcZrYQsDNxTXy9TodtJwbYLwH+4e6f1+m4IgUlAW5PZRbvTgR7fAq8q0lm/UuS3XFeouTrOPKDYY939+Na0S6R7mz9wJLzTh8wYyFgvo6O9gfT69x8tzvX+/AyPTf2H8m9+yJEmdb9iQD/nP8Ba6VLVDelTQoI6hmSm5876dpB9SoRFPRO81slUh0zG0oEA62WWTUF2Mbd72h+q0QEwMwWIWZfjATWImZfzFbGrhOIGRiP0BmxPKlR7ZTmSAbT1yauhw2JGTlL0H0GlnYicPl54B7imnhaqZqlmcxsWeLa3ZiYibEs5ZVF+BB4AXiIuHYfdPcpDWqmNImZzQKsS8zIGU7MyBlWxq7TiYfxp0m+zxQEJNL3jBlnAyYuMmwtx0eAbwSsDCxJ9wEhHQ5vGjxvbvd1tHHXfO+8/+TY0ZqZ3tslGY03Iu4lvkWjEmm9AAAgAElEQVQ8F5UTKD+ZeC56kriP0Mx0aSozG0xcsyOJwLYVKK/sygzgNWKg/R7i2tXM9D7AzIYR18MIIjionCwbEKWXsv08DZuZLpJlZssR12DaqvpuEgAzexlYLrXocHc/tVXtESnHiHuWnmXgoCl5fYzuHVuMH/7hba1qk7SWmR0J/Ca16EV3X6np7VBAUM9hZmsSQRTZoKBXgBEKCpLeIJmhMh5YNbPqSyIYaHzzWyUixSTZYlYjBkLTjiUGyz8DXnP3j5rdNmkNM5uVyLyyIDAHcCYRaJFzIXCAu09tQfNEikpmXyxFBIHMCVxLfnrWo4Fz1cndfySZIJYmvs+2J2bl5EwEvkn8xmnWqUg/tOWtyw2ZNvcXJ5n7L3LLHD4Y4OzTbvbFAPOPpk2b9dW7N37tq1a2U5onmdy0NHEfsSrwu8wmG7v7vU1vmEg3ktJiXyPuebYAfpFaPY3I3v0/d5/eguZJC5jZ4kSg2JzAueQ/018EHKaMZtJqCgiSUhQQJL2RAoIkq6cEBDWyzqxUyN2fMrNN6BoUtBxwt5lt7O7vtqZ1It1LgoHuBFbJrPoS+K6739X8VolIKe7uZvZ2gVX3uPt9TW+QtFySKWVmungzO4r8zsNPFAwkPZG7twP/TV6YWTZ7w+sKBupfkvS7TwOY2dcyq6e7+yvNb5WI9BS3bPHK1FEPDvsgvczg838Of1/lrfupZHD8QwAzK9T/9l5zWyRSnqSE9zMwM7AtrUPZD/sfd38LeAvAzD7NrH5PwUAiIiIi/Ue9amVLnbj7U8AookZqWi4oaJHmt0qke2a2MJFeNhsMNBnYWsFAIiIiIiIiIiIiIiIiIiIizaGAoB7I3f8NbELXoKDlgbuSusAiPUaShvZ+YOXMqlww0N3Nb5WIiIiIiIiIiIiIiIiIiEj/pICgHioJChoFTMisWoHIFKSgIOkRzGwJ4G7yy8kATAJGufs9TW+UiIiIiIiIiIiIiIiIiIhIP6aAoB7M3Z+keFDQXUmJJpGWMbMliWCgZTKrJgGbufvDzW+ViIiIiIiIiIiIiIiIiIhI/6aAoB7O3Z8AtgI+y6xakcgUpKAgaYlUMNDXMqsmApu6+6PNb5WIiIiIiIiIiIiIiIiIiIgoIKgXSLKsbA58nlm1IpEpaKHmt0r6MzNbDngAWDqzagIRDPRY81slIiIiIiIiIiIiIiIiIiIioICgXqNEUNBKwO1mtkDzWyX9kZktT2QGWiyzKhcM9K/mt0pERERERERERERERERERERyFBDUi7j7Q8AWdA0KWh0Yb2bzN79V0p+Y2QpEMNCimVUfARu5++PNb5WIiIiIiIiIiIiIiIiIiIikKSCol3H3B4mgoC8yq9ZAQUHSQGa2IhEMtEhm1YfAd9z92ea3SkRERERERERERERERERERLIUENQLlQgKWhMFBUkDmNlKwF3AsMyqD4CRCgYSERERERERERERERERERHpOQa2ugFSHXd/wMy2BG4B5kitWhO4w8w2cfdPW9M66UvMbA1gPLBAZtX7RGag55vfKhERERERERERERERERHpTcz4BrBU8nG8OxNqPN4QYDPgO0SVk3mAT4F3gTuAO9yZXss5pHHMWAP4VvLxXndeqvF4cwBbA1sBSwBDgQlExZv7gXHuvFnLOXobBQT1Yu5+f5GgoLWITEEKCpKamNmaxI9lNhjobSIz0CvNb5WIiIiIiIiIiIiIiIiI9EKnARsl778BPF7tgczYDfgdUKx6ziHAB2Yc4M4/qj2PNNT+wH7J+72h+oAgM3YCzqH49bANcKoZvwOOdueras/VmyggqJdLgoK2IoKCZk+tWovOTEE1RVZK/2RmaxHBQNkvzbeIYKBXm98qERERqSczFidmSQC84s5ndTjmOsCmRKnRocDHRGbBO4GH3fFazyGNYcbSwDrJx6fdebnG47UBw4Hv0Tkj5wui7OxDwLXuaAKDiIiINJ0ZawIDgGnuPFuH481KzEJei5iZPoiYhfwKcIM779R6DmkcM0bQOSHyenem1Xi8uYkBpw2BhYA5ieeit4CbgHvcaa/lHCIilTJjELA6UWlkGSKLygDgM+AN4BHgiVr7bZJsHxsR33/zEr+HbwO3ufN2LceW3s+M1Ym+onoc6w/AgWVsuhBwtRm/dueYepxb6sOMJYCd6nSsXwEnlLFpG/AL4JtmjHJnaj3O35P1+4AgMxYAlkw+vuXOh3U45qLEA+BiRKf3l0RasoeBh+o9COLu95nZdsD1wKypVV8ngoJGKShIKmFmawO3A/NlVr1JBAP9t/mtEhERkQY4AxidvB9FlAmtihkbAecDKxbZ5ATgNTMOdOeWas8jDfVD4FfJ+18AZ1Z7IDPWBy4EViiyyV7AeWacAvxaqZtFRESkWcyYC3gSMCJAY4kajjUIOBI4jPzJmmnnmHEjsL8771V7Lmmoi4m+fIj+0KoCgswYCBwKHAPMUmSzQ4DXzdjbnbuqOY9IKWbMTgR9rEFnQNp0IijtOWKiTk2TgZJrfWPi+X8o4MTEj2eBB93pqOX4Uj/J32obYGei32eubnZ5xYzTgL9UOpZpxmZEppaVimzSYcZdwAG1TkCS3ieZNLY10Xc4oA7HO4D8YKDPid/z+4nvu6HACGBXOsfOjzbjBXeuqPX8UpvkHnpr4jtj7jocb1vg+NSiL4A/AzcTMRrzEZMgf0oERAJsAPwB2LfW8/d0/T4giPiyODZ5fxCRRqoqyYzac4k6hW1FNnvLjMPcubLa8xTi7neY2TbADeQ/bKwN3Gxmm7t7zTO+pe9LgoHuICK3094ggoH+V91xGQIsmj1mubNhzJif/B+FT9yZVE1bREREBMwYBmxZp2MdTASPFLsHzlkauMmM49zLmrEhTZLMYt6jTsfaheiE6e56GEwEIG1gxma1zsQWERERKdMPiWCgmpgxG9GHtl43m7YRg7EbmDHSnadrPbfUjxnb0RkMVMtxBhJ981uUsflSwHgzfuzOn2s9t4gZ8wG7E9lZhxNZyor5yoyxwDHuvFHheQYDRxHjasXKsbxrxhnAWQoM6hEOAM6qYPvliEH075kxutxyOmacSFwbpX5f24BNgH+bsZM7N1bQLumFzDiB6AtciMhMtWCdjjsfcFJq0evAZgUCza4w41zgNmBh4vo804zr3JlSj7ZI+cw4isgeNpSYQDhr6T3KPu4g4HQ6v38+AkYVuOd+yIy/AzcSWRwBfmTGOe48U4+29FTdddD2acnNy451OtYmwDPEDX+p/66LE19Af6rHedPc/Q7i4TL7A70ucJuZdRf5K/2cma0H3EXXYKDXgRHVBgMlZhCRv/9NvY4rr10sCDyd2u8BYLYa2iIiItKvJSUSbqf4LOZKjvVd8oOB2onMlQcT99oHAVfBzAwwBhxnxg9qPbfUhxlrE9mhqp4dnzrWt4jMQLnrYQYwDtiFeNj+LjEh493UbhsTEytERKSfMuMwM7yG14Ot/jdIz2fGQDP2A06t0yEvJj8Y6CNilvPexGz0oyBvcGE+4AazmSV7pYXMGGLGPsTfsR5OJz8Y6APgRCJAY0OiHMZl5D8XnZNkWhWp1cPE988ISgcDQUwo3x14JnmeL0syYfdR4nmuWDAQRNnEM4igN/Xht16hAJ2XgcuJa+aU5H22tOXWlPn9aMaPgF+mztVOBEj+CvgJkTH68dQuswGXJ6XFpG/bi7gnGkWdgoESh9CZQMCBPYplnUqCQvZLLVqYfpARpocaDmxKBIfVJRgosTOdWX8Afl4sAD/JkLcrkUEI4nvrqDq2pUfqtxmCkgevv1C8pEElx1qR6OSeI7X438QP3rtESsZ1gO2JWbAA+5rxP3dOqfX8ae5+u5ltC1xHfqagdYFbk0xBn9fznNI3mNlw4Bbiek17hcgMVFNtV3fazdgNeILOTEFHmXGfO3cUbxdtwCWpfb4CtlWKZRERkfKZsS8x82IBoqzsqnU67mAitWou+GMisI0792U2PceMdYg0rUOJh62zzLjBfeYDmDSJGXsC3yE6cVclJi3Uy5nAkOT9FGAHd27NbHNTUuf9RmD9ZNneZpzvzhN1bIuI9DBmPEvXzLGV2Medf9SrPSLStyUZMX9MBOIsTgTv1Gtm+hbADqlFdwLbFyjDc7IZx9BZwmAJYjD9gHq0Q8qXZPD5A3EPvAhRTmmOkjuVf+yVyS9b8i9gS3c+zmx6lRl/JSZQzEEEbpxlxtcrLc0jkpEtv9NOTLB9CZhEXGurAt+g8/l9LmBckrnsoVIHT579ryEGcXMmJcteS465HLAdnRN5RwAXmTFG13eP8BpwAXCJO13GeswYQARNnEVnUNnoJJvvP4sdNAkUS5cbfw/Y2p0nM5sea8YeSRsGEd+B59HZJyB90yS6Tu7P/f1rMTr1/t4C/ZB53LnBjGeIcooQExjPrrENUrlXoUu/3yA6/y7V2j71/i0iALsod94y43I6A8O2NmOWcjOi9Ub9JiAoeUhbh7jhX434kRlScqfynQXMk7xvJ+pfdskAZMbywK3A15JFJ5hxZaVpGbvj7v80s+2Aa8kPClqPyBSkoCDJY2YbEAN02WCgl4lgoGx0eFXc+cCM0cA9RHBcG3CpGWu5580STzuCKMOXc6A7j9WjPSIiIv3IQdQpCChjL2DJ1OcDiz2Eu/O4GXvDzJTQCxIzxeo1Q1vKNwrqn6EpyZqaniX/6wLBQAC4M8GMHYEXiHtQI2YUbl9oexHpM+ama0baSgzufhMRkZkWB45p0LGPS73/APh+gWAgANw5IcmCkLvP2duMkwsNyEpDDSQCxBrhl3QGZEwBdiwQDASAO3eZcTSdJXzWJLJo3tCgtkn/cg+RsfV6d7qMASVjVBcSWRogxsj+mPTPlyrvtS+d5VUggtp2zU7wSTL9X5M6/veJIKFrKv+nSJ18DPwMOK9UmW532oHzzGgnKj3k7AnFA4KA/6NzXMmBnQsEA+XOcZEZS9IZJLueGZu6c3tZ/xLpddxZJbvMjM2IEl5VMeNr5Cf7uLrMXcfRGXjyTTMWKPZbLY3hzk+zy5IA/mLjw90yYwgx6THnujKDUP9BZ0DQ7EQps1Lfdb1afyoZtheRlu5gYCR1CgYyYz3ygxV+VygYCCBJV7Y9kTYfoiPryHq0o+u5/DbiRmtqZtV6RKagbOCH9FNmtiGFMwO9RJQJq0swUI47D5Offm0ocFkSgZ5pGxvQeXMIcK47F9azPSIiIlKTnVLvXyTSTBflzk1EivEclQ1rjcnAhMxrYh2Om56h9QWdgxwFufMO8LfUoi3NutyTiohI/7Q+MbGv3NderWmm9EdmLAN8M7XoTPdu76V+lXo/hBgkl+Zyut4DTwC+rOWgyUDU91KLLnXntW52Ow/4JPV5TC1tECEyLoxwZ4Q7lxYKBoKZY1SbAc+lFq9OZA4qyIxZyB/Heg4YXSjbrzsfAVuRP7h7rFnBslXSBMn1cFapYKCMC4hA15zhxTZM/q67phbd5s693Rz/VPL7H3Yrs10iOetmPpebaTpdtm5AgeNI77QKXSs4lSMbuPjt+jSnZ+pPAUGNkh7EmAL8utTGSc26salFO5l1W9O1KiWCgtYHbjGzuqREld7LzDYigoGy18KLRDBQ1VGZ3TiT/KjdjYmZNKm2MR9wKZ2ZzB4Cft6g9oiIiPRp7qzmjqVfwLdqOaYZ85CfDWZcmTMw0vfCq5uxWC3tkMq5s68786VfwLBajpl0BG6ZWnSLO1PK2HVc6v0QYJNa2iEivcqtRMaySl53t6Sl0gr/dueJCl4vtbrB0vO481j2Hji5Dz6/251L2zLzeWzBrfLb8jz5A/DZY0iDuTM1ew+c3AcfWuOhNyK/b7Xb0pbuTCcyrORsXmiypEi53NnRnXvK3PZL4JTM4g0LbZsYRZTZy/llcg0XO/5nwEmpRasTpculF0gyRT2dWrRQiYCu1SCvT+fKMo7/FXBdapG+/6RSy2c+v1jmfs93cxzpnZbNfH65nJ2S7FCfphb16euhPwUE7UnUi06/liy1Q5nSD2+3FUsNm5H+UZybEhG2tXL3W4msRNmgoOFEpiAFBfVTZrYZ0QE7e2bVC0Qw0HuNOncyWLhXcq6cY5MyE7kBpb8TddUh6s6OriCKXURERBrvW5AX2P6vMvdLZwgySnc8Su+xOPkdgeXO0HoS8lLTr1+3FolIT/eOO+MrfL3f6kaLiJDfl/uRO6+XuV/6Pni4Wb/qm+/L6pGpYH7yy5+INFr2+X3hEtumx8AmUl6pn7F0VsrIHkN6vvQzenuJyV8bZT4/WnCrrh5OvV+AxpS4l75rudT7DmBSmftlszn26QCQfmS5zOdyr4fsttnj9Cn95qHDncnuTEi/qDEtvhmLA0unFpX7Y/dI5nP2R7Ou3P0WYGfoErU9HGUK6pfMbHMiCnvWzKqngA3dveGdrEna0jF0puVtAy41Y2HgCKJ2NsR1O8a9+hqSIiI9mRmLmrFJ6rVBhft/K7N/NtBTpFGyD84vFNyqK83I6ZuyD85lzdBKZqe+mVqk60FERER6uvR9T7n3wJB/HzwrEVAtvV/6evgkmXFejuz9su6DpZlmZD53FNwqbJx6/3g5k3aT/x2ks/eNLL9p0gOkxz3fKbFd+ntrGvBqmcf/T4njiHRnodT7yWVmKweYDHnbLlRsQ+lVFsx87lLOsoT0ttnj9CkDu99ESsj+SGUHNwpy5yMzPgSGJotWqGurCp7TrzWznYjsROmZ3BsAN5vZlu4+udHtkNYzsy2J1LWzZFY9BWzi7p903asx3HnOjP2Bi5JFCwE3E2lEcw5w54FmtUmkUcxYmfwgvHfKneFsxhzk/1Z8ntT8lr5hEvB7YKXcAjP2dJ/53ViUGVsQ35u51L3XAHc2opEiBWTvhcvt+J5IdDbmJif06RkY/Uj271jJ5Iv0troeREREpKdLlyaopB9tQubz8sAbtTdHWix9/5r9G5eSvV/WfbA001KZzwWrBZgxEFgmtaisMbDEf4BVkvcNHwOT+jBjSfL7ex4rsXne95877WWeJvvbqYAgqUR6MmzZwR/utJsxBZitwHGk98r+HasNCOrT10O/yRDUINUOgkB+Xbqm3Oy7+zUUzhS0IXCtmWWzxUgfY2ZbEYPF2WCgJ2lyMFCOOxcDf0ot+jqdwYrnu3NBs9sk0iBrEumgc68HzJirzH3/nNrvMbrWRZVezJ0viIxp6cDcc5MgsqLMWAy4mM5goGeA3SuYFSFSq2xK8bKCy5NrNP3AtUjdWiStlJ1Z9XkF+6avB83QEhERkR7LjDmBOVOLKplg+Vnm87DaWyQ9QPr+tdpBqOxxRBrtO5nPxUqAL0X+BPOPKjhHerxsWPL9KT3fAXT2NUKUfysm3Z9Tye9h9vtv0Qr2FZkt9b6S313I76vq0wEg/chsmc+VfBf1m+tBAUG1yT60VXuRNe3Hzt3/AfyArikhRwHXKyio7zKzHYBrgSGZVU8Ao1oRDJRyMPl1syEeQg5uQVtEGsKdy8kPflsGug94M+MgIpgz52h3bqlz86TF3HkO2Ce1aHZgrFmXG1pg5gytK4g62xCzELd3r+heRKRW6bKzU927BJ2Xkr5W+/QDVz+S/TvqAVxERET6ouy9SrVB0IWOJb1T+u9Y7T1w9jgiDZP0Ne2ZWvQu8FCRzbNjV7UEfSxWwb7SAmasDhyUWvQicFOJXarK1IK+/6Q26SDFbksYZqS3H1R0K+lNstWwsvEPpaS3HVCHtvRYCgiqTb0eAJv6Y+fuVxODy4WCgq4zs2z2GOnlzGw0MXCc/YF7nAgG+rTrXk3VAUzJLFuCPl6zUfqlbPDbGDP2LbZx8hB2amrRdcBvG9Q2aTF3rgD+mFq0ClFKrJATgeHJ+w5gF3f+28DmiRSiGTmSlg1grHZ29GAzdcqIiAiXmPFPM+5KXjeb8RczfmHG11vdOOnX6lWWoNCxpHeq9rlI14O0yjHkT3Y/q0Spp1q+8xT00YuYMS/51SU6gAPdSw6uVxsQ9AXkZTjXtSGVSI8lFpxMW0J6cqMm1vYNX2Y+V5L4pN9cD9moKalMvWbBVvqFVTN3v9rMDLic/OtgUyIoaFt3/6rZ7ZL6M7MxwGV0/d/7g8CW7p5NV9wKpwIbZJYtBFxtxkbuFUf5ivRI7kw1YwciM1cus8vZZvzLnX+nt03S6I6l8yHsRWAPlYPq8w4G1gDWSz7vbca97lyS28CMLYBDU/sc5c6tTWyjSE466+DUCvdN32cOrkNbpPWyQTyV3L9lr59BdC1zLCJ9z3AzLib6ROYmMh5OAV4lSqGOV/bDfm2HUivNeIG4D76uSe0Rycneu1ZyH5zta9V9cN+Qvg+u5B42e7+soHhpODO2Aw5LLfoPcE6JXRQE2Q8kmcgvIzLa55zozp3d7JpOLlD2eKI77WZMp/N3MFvVQqSUdACIAoIkGxA0O13L9BZTbRngXkcZgmqT/ZGqJIAmve2AVsyCdfdxwC50zRS0GXCtMgX1fma2E4WDgR4AtugJwUBm7AQcklp0Q+r9t4FTmtsikcZy502idGNu5s0swFVmzJXZ9HxgheT950Q5qJb/b1YaKym5tBP5ddb/aMZKAGYsBlxM5z3cteRnkRJppvSMnErLzqY7ArMPbtI7ZbM9VnJNpB/AC2WOFJG+aUVgNyLwYxNgNLA7cAKRGfMjM/5gNjOQXiRtJeBaM842U/+mNFW2/7faWcig++C+otrnouz10KcHoqT1zFgF+DtgyaLJwGj3ks9f2TGiSsbAssfVeFMPZMYA4BJgi9Tim4l78u6k/8Zl/32T8dB0UKz6AKQSVVXgMWMI+cG3lWY7l56plmx06XuxPj32pgfm2mRvfiqJYk1HLc5IBgCbzt3HArvSNShocyIoSJG5vZSZ7UzcyGWDge4ngoEqKXHXEGasCPw5tehcYFvgxtSyQ8zYtakNE2kwd+4ATk4tWo7U/xbMOIAIGoIYGP2BOy80r4XSSu68RQQF5YLGZgfGJlmjLqczu9SLwJ7KGiUtlB7AqHSmX7+ZgdGPFJqRU670A/iX+l4TkcSswIHAM2as1erGSMN9RvRXnA8cDvwI2J4YnNopWTaOrh21PwWObl4zRep2zwO6D+4rqn0u0vUgTWPGcsDtMHNCYgfwozL6G7NZ0CoZL8oGyCnoo4cxw4A/EvdaOQ8CO5YoI5eW/pvq+0+a5Y3U+9mS67gcc2Y+v1an9khrZf+O1X4X9enrQSXDalPoAfCjMvdNf/G0NArR3a9KyoddCgxIrcoFBW3n7pWWgZAWMrO9gAvoGvR3H7CVu7c88jUZ2L6Gzv8tPAsc6o6bsTfwFLBIsu6PZjzpzvMtaKpIoxwLfIPIygawoxm3A48Dp6W3c+emZjdOWsudO804iajrDrAq8DSwdPJ5IvBdZY2SFkt32Aw2Y1AFQe7pB66W35dIXdSSDj59PbQ8aF1EGuoj4BXgeeAD4NPkNRCYj8gaNJLOTJkAw4DxZqzmzrvNba40izvnE8FAJZkxD/BbYL/U4qPNuMKdVxrVPpGUet3zgAZA+4qqMhXQdWBSz0XSEGYsQQQD5fraHTjQnSvL2L2WIMhsNnRd4z1IkmHxfGCf1OKHgc0rKNub3k6/h9IsL6fetwELA++Vsd+imc+v1q1F0krZZ8DFiXGUksyYBRiaWvRysW37AgUE1Sb7I5X9ESulR9UpdPcrkxJhF5IfRLIFcI2Zba+goN7BzH4E/ImuwUC3A9u6e8sj8ZOI3b8RKb4hHgbG5NKTuvORGT8A7iSC1OYArjHjmxr8lr7CnQ4zdgOeBBZLFv8B+JDOGTTXASe1oHnSMxwPfJMI0IXOYKAOYFd3PbRIy72Z+TwrdB8QlKSjTmfLzB5Heqc3Mp8rqeOe7ih+vfamiEhP5c7a5WxnxqbAX4jOPIhgobOJsmLSj7kzEfixxTzgXFDQIGAX4LjWtEr6E3cmm/Ep8b0Eld3zZANAsvdP0ju9DiybvK/kesiOJfTpmenSGkkw0N3AUqnFh7rzxzIPkR27qiToI7utyiT2EGYMBi4iPzPQPcA27hUFbr1NTGKE2n4P36pgX5FsZrNVKS8gaLVujiO903+IQNdcpqjVoKwJ9quQnySlT18PKhlWm+yPVLU/eD1iEMTd/06kZO7IrNoSuMLMBnXZSXoUM9uHwsFAt9FDgoESRwI7pD7v786L6Q3cuRf4TWrRCuSXFxPp9dz5CPg+MC1ZNBudD+gvoXJQ/Zo7HcBuxMN12unu3NyCJolkZWdODCtzv4UznxXc1jdkr4fszKuCkkDxRVKLdD2ICO7cDmwATEot3saM+VvUJOl5fgXMSH0e1aqGSL+Uvu/J3tuWkt1WWa36hvT1MCzJulGO7P2yrgepKzNWIspxfi1Z5MAv3DmjgsO8k/lcS9BH9ljSAknlhpvJDwa6hsgMVOlk7PT33/zJBLByDM187tOZOaTu7iW/nOFmxTbM2CT1/jPgsbq1SFrGnQ+AZ1KLtipz180zn++oT4t6JgUE1Sb7I5X9ESslvW2P6fR2978RKQKzQUHbAVcqKKjnMrP9KBwMdCuwXU8JBjJjJHBCatFf3Lm0yObHAXelPu9oxsGNaptIK7jzKHBoZvE0YkbGpAK7SP8yH107ULYx65J2WaQVXsx8XqXM/bIzcrLHkd7pJaA99Tn7dy5mcWDu1Oc+PSNHRMrnzhvA71OLBgHfaVFzpIdJJlf8J7Wo3MBkkXpI37+ukgQ4l2PV1PsJ7nxYxzZJ66TvX2ejM/iiO3oukoYxY13gAWCJZNF0YDd3zqzwUK+Rnwl4wQr2TW/7nrvKQ7eaGUOJjFHpwIgLieoN1VQIeSn1fgid2dK6k/3+U0CQlC0pafdAatFOSfmnopK+9O+lFv3Tvfss59Jr3JJ6v24SEFuUGQOJDLM5Tyf9D32WAoJq81Lm86oFt8owY3FgnhLHaSl3/yuFg3HPs7YAACAASURBVIK2R5mCeiQz+zHwR+jSAXELsL27f9X8VnWVXPtX0pmG7T9QPMAnyY6xO/BxavFpZmzQsEaKtEY24GMw+Q9m0g+ZRblE8gfKQRnTpOd4FPJSSZf7vTUi9b4duK9uLZKWSWYSpmdXlTtDa9PM59vr0yIR6SPuzHxepOBW0l99mno/T9GtROovPXltHui+HGKSNWbD1KLx9W6UtEz2b5mdcV5M+j74aXfer1N7pJ8zY0viusyVNvwS2Nadyyo9VjJgni5nt3IFu6cnDSngo8XMWBF4mPzfrN8C+7jnTe6pxN2ZzyMKbtVVenznfTQxSCp3fur9osDh3Wz/a2De1Gf1rfctf6KzCkcbcI4ZpWIZfgZ5QUPnNqphPYUCgmqQ3KSnf6jK/bHbMPM5+6PZcklQ0L50DQraAbjczAY2v1VSiJn9nMLBQDfRs4KBhgD/oHNmwFfAD9xL1w525x0iKChXNmkQMNZMs/+kbzDjO8DxBVb9zoz1m90e6VH+QmfnyYfAVal1O5rx0+Y3SaRTMnssPRiygxmzltonmYExOrXoIfe8wTzp3dIzctY2Y/Uy9tk19f594Mn6NklEermPM5/nK7iV9FfpTv3stSLSSP8kv890tzL2GUl+Jqtbim0ovYs7LwL/Sy3ao7usUWYsA3w7tUjXg9SFGfsB19NZ2utTYDP3mq6xe1Lvv53083fXjoWA5YscQ5osqdrwEJ0ZzKYTgUBHus8cd6mYOy8Ar6cW7VJk03Rb5gK2TC26NZkYLlKJa8gvE3WsGcckE2xnMmMeM86EvH70e90VmN0KZsxhxrzpF10nQ8+W3casyzZ5kuw+F6YWjQRuMMsPYjVjATN+A5ySWvxf4O9V/6N6CQUE1e7W1PuRZmXNVts59f5jYnZ1j+PuFwL7QZcbgu8TmYIUFNRiZvZ/ULDm79VEMFA1aR4bpY2oS7tM8lraPe8Huyh3bgWWSu27PjC5Mc0UaR4zliQ/a9YNwMTk/SDgcjMWaEXbpLXM+DmwY/LRgb2BPYGnU5udbsbwJjdNJCv9sDUUOKKb7Q8Clk59/mvdWySt9Dci6DvnrCQIrCAzRgMbpRb9qZbOSBHpk7JZXz5pSSukx0k6+9MdvK+0qi3S/ySlvm5MLdrPLG/gO09yP5QeeJgAXNug5klrpDMVrAPsUWzDJFvU2XSOzcxAz0VSIzPazDiNuBZzz2CvAuu655XWqUZ6DGwe8oM5ivk+nf2dADfX2Aapkhk/JP6GuUDqicCW7vylTqf4e+r9cDO+2832xwGzpz5fVKd2SA9kxttmePoF3JbZ7F/ZbcxKf2ckQWS7AJ/lTkVMun7LjPvNuNqMB4B3iGwwOR8Ce9XlHyfVGEsEqqZf2QxhfyiwzXNlHPtQ8icZbg48Z8brZjxkxgvAu8CRdCbY+Bz4fn8oH6eAoNpdRGfAzEDgN6U2NmNj8m+YLqkhHV/DuftfKB4UpExBLWRmhwGnFVg1DviBu/eoLzB3prjzv9SrojS47ryZ2f+z7vcS6bmS2TTjYGbAzytEloQfpTZbArjKLO8BWvo4M9YDTk4t+q07N7lHZjWYmVltEDBOGdOkxW4k/2HrV2Ycasbg9EZmDDTjAODU1OKXgUub0EZpkiSz4wWpRSOAq81YIr2dGYPN2Be4JLV4AvC7xrdSRHqZdTKf/9uSVkhPtDvk3W9kBxZEGu14OvtLhwDjzfhGdqMkS8YNwNdTi89wZ1LjmyhNdB7wQerzn804IJtJxYzFiIlhW6UWX+TOq01oo/RRZsxGTBD+v9TiB4hgoHqU6rqd/Ov7hG4mfswJHJVa9CLwRB3aIRVK+gz/Suc90wQiq93/zPhaha9i5XfOpnOCK8ClZl1LiCf9QkcCh6QW3+nOvbX/S6U/cuc54HvAe6nF8wDDiWo369OZLQ2i/OEW7nlZ/aSPcGcysDX52ewNWBJYF1gR8r7H3gS2cueppjWyhRTMUSN3njHjGuLLBSIl6PvAsUkZhZmSsjBj6Yw8m0z+7JAeyd0vMDMjosvT6U5HA25mu7j7jNa0rn8ys8OJ+q5ZVwG76u8h0iucAzM7C78CxrjzOfAPM84HfpysGwkcCxzT/CZKs5mxMBEolntQf5T4+wPgzvNJqbDcLJ6FgcvMGNWTA4yl9cy4FbrMWs6m+b7YjCmZZf925/vFjuuOm7En0dk4F3GveCrwMzMeIWbeLECkw180tesUYA93dM/SAmZcRgQYlnKGWZdMlJPd89MvF3AUsAGwZvJ5G2ArM54B3iY6Z1aGvAx4M4BdNTAmImlJuZV0GZ6pqNxEn2TG4USH7JXlZIozY0XgpNSiL4gBdpE8ZqxBlJTISt+HDDMrGGx4lHte2eY87vzbjF/T+ay+OPCYGY8TM52nEZN8NiI/eO0hCmf7lgYzYxbo8rxTyKfWteDXH9yLl+12Z7IZPyCCEwclr3OA45MZ6Z8Qz0Nrkj8m8zz5QRwi1TgC2C71+T6iX3GupDxTuaa45w2sA+DOl2acSud316rEBMY93PkivW2S6fwayKukcbxKQrVMdpLpvORnuKvESkRwVx53JpqxP3A50Sc0F3CbGU8AjxNBSMOATcjvF/oUOKDKtkjv8QxUlhwgUVagrDv3mrEK0Re1I3E/lvVf4vo8NfudJU33AFT1NygrU7A775mxCTHxfndiomL2e/A5Ilbj7P6UeKLfBASZcQ6wRWZxNkPSsWZ5qcMAJrnnzeAo5BAiuix3k3M48EMzxhORiXMRs0DWzux3sHteZHWP5e5/NrNZiVm76UeiMURQkIJQmsTMjiM1OJxyJbCb/g4iPZ8Zu5GfCejgTCTyz4jB89xg6tFmPOHO9c1qozRfMtNmLJ33ExOAnbIpK925MMk4uGuyaARwAvDLJjVVeqfF6KwVX0yhbFPd3qu686wZOwBX0Dm4Moz8Dsm0iUTwxyPdHVt6H3e+MGNrYobqt5PFA4nnoULPVZ8B+7lzS5OaKCItkMxcP4sYEHqnzN0OJ78fZaw6cPusFYhJT8eY8Rfib/1WdqPkfnln4lpKl5M7w52PmtJS6W2G0P098MAi25QziH4ccS0eRGd/6Tp0zW6W8zDwvST7q/Qx7tyVBAVdQOd31PxQtNT3v4gyFROLrBcp1+DM5w2JYLNK3QFsWmTdeUTViHWTz9sDI824FniD+A5cgZgQMmtqvxuJvi7pw9y5MpnkeBqd485r03VMNOcjYHt3XmpG+6R13MsqMVjrOSYAh5pxGLAcMYF2QWKS4rvuyjLbU7iXrrJUp3M4kZH8EjNmJcZaFiDKg73bX++7+k1AELAQ3T8ALkD+DBGIwbiS3Hk7qYt5A50RrkMpPuu2HfilOxd2d+yexN3PTjIFZVP570hnUJCyEzSQmZ0A/KrAqsuB3fXfX6TnM2NN4E+pRePc+XN6G3e+MmMMkU53TuKh+m9mrKOUln3aGURWDYjU83u583qRbfcnMkytkHw+0ozH3bm2sU2UXuxt8tPkluvdcjZyZ7wZqwK/JjoJ5y2w2STgOuI+uNzBYGmM54DxVexX1uCVO++YMZwoPbwndC2fQXQAXgOcVGjQV0T6nDZgH2BXM64CLgQeLpTh0IwFiUkw6RnDXxHleaRvWxE4HTg9ydjyLNGR305kWvkWXfvtxgMnNrOR0qtMhaqfobudMZwMOBxsxo3EBI0N6DoLGeAlIvP6H5TZtaU6qO4eGChv0Nqdq814mMhUsAMxJpH1JHARcJ4ypkpvkfRVbkv8b2i1ZPE8wA9L7HYPsLOyA7VUB2WMcZap5O+XO2eZcT9RFWVjCv8efkFkRj/CnQ/r1C4RYOZ92cvJSwR3phAZovp9UFh/CgiaTHU/fGVFirnzZDIIciIRCFRoEKQduBc40p3HqmhLy7n7WRET1CUoaCfgKzPb2911g9cAZvZr4OgCqy4E9tV/d5Gez4z5iMHP3EyZ/xIDI12480pSGupvyaJ5gWvMWDe5kZE+xIydiVmlOWe5c12x7ZMMHGOIkmKzEEFjfzXjGc16kELcu2TKbMQ5PgD2NeNAYhbYosB8xP30O8Dj2ZK60hrunAyc3OBztBOzSM8zYyFgKWJAZBKReeoVDYiJ9EuzEoGCewKfmfEQMat8YrJuFWB94v4mbV/d4/Q7yySvUi4nrg0NqEtB7jxN99dRPc4zHhif3POsTsxMH0zc87zq3rXEijSfO9OAUU04zzvAAUmfzrLEPfA8RIDj6+5VlU4RaTl3PjTjG0QA5P50DdLNeYcI8P29goFay513iX6ZZp3vCWATM4YS2aQWJSa7fkhMVHtA/doiIs3XbwKC3NmzCeeYCByYlB1bj5i9NJSIen0XeLQvRL0mQUEGnJlZtSeRKehHCk6pLzM7iZhZkvUXYD/99xbp+cxoAy4Dlk4WTQV2dGdSsX3c+bsZI4HdkkVrEOnx92tkW6W5zFiNSCme8zhR/70kd54x43Dg7GTRPHQGjX1Z/5aKlCfpaH+41e2QniMJFusVpZJFpKnmAjbvZpuvgAPcuaQJ7ZHWORR4mig3ui5dS59kPQqc6M5NjW6YSCWSe547Wt0O6RmS4PeXKDO7kEi13DmCMvqR6nSuqUSJzxOIrGgrEUFvHcB7RHa/RxUI1L8l46DXt7odIiIS+k1AUDO5M53IBNRnufvvkqCgMzKrfkgEBe2jIJXapQKvDimw+s/A/vrvLNJrnED+gMdhyayJ7uRKQ62YfN7XjEfcZ2YOkl7OnWeBOarc9/fA7+vbIhEREZG6m0xkZdgd2IyYPFVKO5H95dfuvNLgtkmLufMJEeR+thmzE6VIVgWGEYFjbcAnwOvAvSo9KiIi0lpJdr67k5eIiIj0YAoIkqq5+5lJwMrpmVV7ASgoqDbJf9uzgJ8WWH0+8BN39+a2SkRqcDr5QZTllqScbMbXyS+boJT4IiIiItJruOMws6SOEaXBViVmlc9LlAubQgR9PEUEfZR1vyx9izuTgUeSl4iIiIiIiIjUQAFBUhN3PyMJXDkts2ovIlPQvgoKqlzy3/T3wIEFVv8O+IWCgUR6l1oGNJLayqqvLCIiIiK9XhIc9FzyEhERERERERGRBmlrdQOk93P304HDCqzaG/hTEtwiZUr+e51D4WCgM9z95woGEhERERERERERERERERERkWIUECR14e6nAYcXWPUjFBRUtuS/07nATwqsPs3d/6/JTRIREREREREREREREREREZFeRgFBUjfufipwfIFV+wDnKyioNDMbAPwV2L/A6lPdvVAWJhEREREREREREREREREREZE8CgiSunL344ATCqzaF/idgoIKSwUD7Vlg9SnuXij7koiIiIiIiIiIiIiIiIiIiEgXCgiSunP3Y4FfF1h1MHBmk5uTx8zmNrM5W9mGrCQY6G/A7gVWH+fuRzS5SSIiIiIiIiIiIiIiIiIiItKLDWx1A6RvcvdjkmxAR2dWHWJmuPvPGnFeM2sDVgc2AFYClk9e8wBzprYDmAh8CrwMvAT8B7jX3V9uRNuKtHcAcBGwS4HVx7h7ocAqERERERERERERERERERERkaIUECQN4+6/SoKCfplZdYiZubv/vB7nMbMhwNbAjsBIYP4yd50neX0N2Dx1vLeBO4DLgbvcvaMe7cwys0HAlcD2BVYf7e4nNeK8IiIiIiIiIiIiIiIiIiIi0repZJg0lLsfDfymwKqfmdkZtRzbzJYxs3OB94CrgdGUHwxUymLAD4mgoDfN7CQzW6gOx53JzAYDV1E4GOgoBQOJiIiIiIiIiIiIiIiIiIhItRQQJA3n7r8ETi6w6udmdnqlxzOzlc3sMqLM10+AeWtsYimLAkcBr5nZ781ssVoPmAoG2i6zyoFD3L3QfysRERERERERERERERERERGRsqhkmDSFux+VlA87IrPqF0n5sEO7O4aZzQkcB/yU7q/dqcBTwPPAy8A7wGTgs2T9vMBswJLAislrdWBAkePNChwE7GVmxwNnufv07tpc4N8wGBgHfC+zyoGD3f0PlR5TREREREREREREREREREREJE0BQdI07n5kEhR0eGbV/yVBQYcV29fMtgAuIDL2FPMOcDlwO/Cgu0+ppH1mNjewEbAlMIbCmYdmB04F9jCz3d39yQqOP4QobbZ1ZpUDP3X3cyppr4iIiIiIiIiIiIiIiIiIiEghKhkmzXYk8PsCyw81s1OyC81soJn9FriZwsFADtwIbAos4e6Hufv4SoOBANx9krvf4O4/BoYRQUEPFdl8FeAhMzugnGOb2axJOwsFAx2oYCARERERERERERERERERERGpFwUESVO5uwOHAIVKYx1mZsfmPpjZvMCdREYhK7D9NcCa7v49d7/D3Tvq2M6p7j7O3dcHRgIPFthsCHCOmV2alAIryMxmA24ARmVWdQB7u/t59Wq3iIiIiIiIiIiIiIiIiIiIiEqGSdO5u5vZwUSQz4GZ1ceZmQN/Bm4D1ihwiP8CB7n7rY1taXD3u81sA2A34DRgaGaTXYBhZradu3+WXpEEA91IBBWltRPBQBc1qNkiIiIiIiIiIiIiIiItZ2YDgK8DawLLJ++zbjezCcDnwP+AF4GXgYfd/c1mtVWaw8zmB9YDViKuieWBuYE5gCUzm//IzJYgron/AI9UUylEpB62vHW5Ie1zT/5We4ev2oav4NgKmC8wcBDzdd267YxRDyw8BuNl7/AXB9P24C0bvPdR81stjWRmiwDrE99jKwDLAnPStfrRUmZ2E/AS8fv2DPAvd5/RyPYpIEhaIgkK+ikRFJQtu3U88DNgngK7XkgEAzX1hz7JbHSxmd0KXAxsntlkJHCHmW3i7p8DmNnsRDDQiMy27cBe7n5xg5stIiIiIiIiIiIiIiLSdGY2HzAG2BLYkAj2KGWR5AXw7cyxXgXuJipH3OHu7fVtrTSDmX2DuCa+QyQEKLeSzXLJK+crM3sYuAO43N3fqGtDRTJGPLrYYgNntO8MvilzsT7OrGbgQO7/FmLGysDKANZmTMd91IMLPwvc1dHm4+5c94OHmtF+qS8zayPG/3cgYgRWKHPXWYCtklfO52Z2H5Eo5Sp3r3vAmEWcg0hrmJkB5wA/6WbTr4AfuftljW9VaUmbjwROpGsps/HE/4gHATcBG2fWtwN7uvulDW6miEhJScTy14kbldWAPTKbvAS8C0wmZuTkIpYfd/eJTWyqNIGZDSQewlemM4J9fmAu4vqYNbX588A44pp4Hni2nmU7RSplZssCq9M5m2xRYHZgXfI7lp4gOg9fJmaUPeHuXza3tdJoZjYLsDawInE9LEt8ly1H/gzDacAVxPXwMvFd9lJzWysizTZmnA2YsNiCq9PRtpJhKzr+XWKWesKmmftTbnxmzsfexqvu/qJ3DHxh/vfffXrsaA089TXJQOXaxG/GisBSxKz0BYFVMptfCfyLuI/4t7u/17yWiuQzs8HEM30uq8KyxOTKryWvnA7gMjrveZ5z9+eb21ppBjMbRmc/z/LAEsRz0drJ/895FbiV/H6eCc1trfR1ZrYZsC8xVjKkAad4D7gcONfdX2vA8aWOzGxe4nrYg/jdqjcH7icSClzh7tMbcA7ph8aMswGfLrrQaHP2JoI+yg1gq8Srjl88uKPtfGUO6vnMbDEipmFXYPEGnGI6ERh0AXCT1ymQRwFB0nJJgM2fgH2KbDIJ+J6739e8VnXPzHYB/kYE/6T9gxiI+nZmeTuwR08IahKR/sfMBgGbETNyKolYzmoHngTuAq5394fr00JpNjNbFBhNzMjZiEhhWY1PgXuIoNhx7v5xXRooUkRSknUbImPjCKp/+JoKPEJ8n12tgZHey8yWJ77PRhLpxmep8lDvEtfDP4Hr3P2L+rRQRFppk0cXWshmtI0G34S45ymUjbgck4B7we6YMb396rs3/vD9+rVSmiXpg1qfuJcYSQSEVdux/zwRbHwTylQgTWBmX6PzGW59YLYqD/UBce3eDlzj7pPq00JppmRiz6ZEwMVIIqixGu3Av4lr4jqiNJMGjaRiSbaEbYGjiEC0ZphBBAb91t1faNI5pUxmNhT4ObA/MVGnGd4ETgUudPevmnRO6WPGPL/q4AkTP94D53BgmSaddjJwQUfbjNPvXPfjd5p0TimTmS0DHAHsDgxu0mmfBU4Gxtb6rKmAIOkRkg6Z50jSpqVMAjZ296ea36rumdlWRIrK7v7HPx3Yyd2vaXyrREQ6mdnKxAyMnYGhDTjFK8AlwAXurkGRHi4JDBtNzMj5DjCgzqeYTsw0/DsRMKbMQVI3ZrYeEUC+A9UHsJXyBPF99jd3/6wBx5c6Ssrz7p68soH49TAZuJboRLynAccXkQaKmZwLb2fuexJB8QPrfIp2w2/vwC5qn/7BP+7e2GfU+fhSZ0kw/D7AbuRnT6mX94nMc39SxjmpJ/t/9s47vI7i6sPvuZJtjCFgii3s0HsvdgBbNtjBNr2F0D56QkkgBEInQCgJBELvgRB679Xggm3ABUIvoXdiLJliY8BN0j3fH7PCu7N7pXt3996VruZ9Hj+Pd3Y1M1eaOztz5pzfEekJ7IfZw9UTVitPynzgEeBGVR2bct2OMiAi6wBHYOw8fcvQxEcssvN8WYb6HVWIiGwKXENxe7P5LFKo+hiYBXyPce5ZHKNo1ZdFKsCr0P7c1wJcDfzFOTlmj+eweDRwNsXZbxqBdzBjYjpmP/69d683ZkysgglwXZv2U88BfAIco6qPldJ3h2PElL4jhdxVoGsV8fj3mPnsPYRPJC8/5CU/W1RUc7oESi8h10/RtcQ47vZrpz6AuQLnLt17uYvuXe+thYk+jCMxnv3xL8CfCAuERPEZZi57DzO3/ej9q8E4Ri6F2Y+2KtT2jK4mwCvAkar6Qqn9b8U5BDk6BCKyJ3CvVTwfGKmqkzPoUtGIyD4Y6d1CEWULgb1V9eHK9crhcHR1RGRj4Hjg/0jf6SOKhcA9wDmq+mEF2nOUgCcnvw9wOsF82+XkY+ACjHOFk+p1xEZEhgAnAztVqMnvMSqQf3eOjh0PEVkS+A0mKqeuQs2+ionIud9FSzscHZuBL0u33vP67IvwZ5C4ipglofBpTrmsqbnndROHfeKikDsYIrIKxnh7OPEV5EohD4zG7IterEB7jipFRJYAfgucRHGHR2nwBnAxcIdTvOp4iMhGwAlU3s7zV1X9oALtOTohntPi34E/0Pa4fB2jQDUBeEFVF5TQRh9gGCawbQ9MivtCzACOVtUHiq3fkS4iMhCTumujNh6bBzyGUaqbqKofl1B/DtgYo4y2I0YBtC21x0eBI5x9x9Eewyf1X662W8tVwN5tPKaKPofkngAmLjO94ZVS0kqPnNJ/JZH8L1V1JEaxtFcbj78reT107NDGKcXW70gXEdkB+Cdtq9PPwgQUjsfMZ0XPNV7w9uaY+WwXYGAbj+cxacROiKNo7hyCHJkjInWY/Ot+r14FftVZnGhE5CTMoafNQmAvVX2kwl1yOBxdFBHphzHg7VPkj3yFmYM/wixefgR+wMzJvTCb7Nb888VIuy4ELsEYjOaW1HlHWRCR3YDLgZWKeLwJE0HzLiZ1zncY54gcZjwsjVkAr42JzCnGCPkucJSqTii1746ujYisi4nwG17kj/wPE33xKYvms/mYcbsERiWtNcKwmOiLOZgIkKtVnfJD1nhGv8OA84BliviRBQQjcn7AzGndMfPZMsDKmPGwIsVF20/FROS8Xmr/HQ5H+Rkxuc92IrkrgTWKeLwZ8754T+B/KswmjzGq5VhClKVV6A+sjbIqxSkMfYzIH8cNnvFEzI/gSBHPgfRM4BiK+/t9xyK1gm+AuV7ZEix6b6yBWQcvV0R9CtwOnKiqjaX239F18VTUD8SkOylG5XcB8CFm/DZg9m/fYSKYW8fuSpg1z0oUlyLvZeD3zqmtY+DZzi/COAIVs2b9CjMePqSwnad1X1SMykYTcBlwtqr+WGr/HdWLiKyNCfIu5PjxA3ADJlDsjZTa7A7sgFHJ2q6NR68BjivF8ciRDO/9dTRwIYUzarwGXAXcl5Yys4ishFGAPJLCDrSNwH6q+nQabTqqj5FT+gwRlbtU5OcFHpmJ6DW5Zrl1zFYNn6TR5vBJfZao6VazR071SBU2L/BYM3DG+PrGCxTn0FEpPEed8zAB94XWXhMwzkKPpZWe0Mv2cTAmmKXQGu1djN/BmyXV7RyCHFkjIndgNjR+LlLVE7PoTxy8xc5DGI9OP3eo6v4ZdMnhcHQxfJuuv9K2404jJgJjAqV7LK+FOZhvjcBoy4P9M4wTiDsQyQgRWRG4FvO3KoQC04AxmDHxH1UtSorUiwIbhBkP2wObtfMjd2Gker8qpn5H10VEemAO8E6gbSnWj4HHMWP3GVWdXWT9OWBDzNgdCYxop53XgcPcgUh2eNHQ/4KCBhIwRpKn8SJygFeLTVsoIj8DtsKMiZ1oW0mtGbgSOE1V5xVTv8PhKC/DJ/Wpq+1WcxXoHm09J8p/8iJPiTKx2/dLTBu9/QdFHRDt8OSaPZqX+GFLFYYjuh2wRZs/IDws2nLU2PqvXJqVjPAc4q8C+rfx2PfAE5h3x0RV/aiE+vth3hnDMZGcbTkIzQZOxaQSc0ZYR5t4qaCuB4a28VgLMAkYh1nzvFysmo+nOjQUM3Z3BNZr4/G815eTVPX7Np5zlAnPzvN7zIFUW447MzF2nonABFWdUUIba2Dms1Y7zxJtPP4F8AdVfbTY+h3Vi4jsDtxK9JiZA1wKXKGq35axD5thlLB3L/DIK8DOLvVd+fFshLcCvy7wyAsYm/Xocq2HPFvSIcCfiVbzyANnqOp55Wjf0XkZNbnuGBUuIjqI4EuE83+UbjdMHfRF2WxAXpqyv4AOKfDIE81N+X0mDptZsjKMozREZHmMot3gAo+MxgTDP1/GPiyFUd47HpM20WYecKiq3ll0nW4v6sgSERmOOcTxRtYD7wAAIABJREFU8xIwOEl6ES9H6ebAAGBTYFVMdPjPMF+UHzGHSG8CY1X1pbht+dpcBiOt6zc4zQPWV9VUPEYdDocjChFZFriFwo4fecwi5kZgTBpKF54hcQ+Mt3KhxZFiDACnuJRRlUVEdgJuprCM8gyMcfe2Ug4/2mlzfUwk66EUVu+YDuyrqs+l0aaj+hCR1TGy9AMKPLIAk6r1ZmByGoYkb6O3LybCsNChyEJM2rLL3WFeZRGRIzARyYXSvLyPici5Ky0JcBEZhInIOYDCalJvYiJy3k2jTYfDEY9Rz9Vtozlup3AKwa8U/pWn5tYJ9dPfS6PNEZOXX0uoORDhMAqrd8xUdP/x9Y3j0mjTURzeQdDFwFFtPPYMRq3gwTQUTT2lgu0xqZ12pLD6ykPAb4p1YHZ0PUTkAIyiRSGHjE8wa547VHV6Sm0OBA7CrHsKtfs+Zs3jFBIriGdnvgnjdBhFHpMG50bgqTRsLiLSC2PnOQwodCCpGOf4E4sNJnJUHyJyEOZdGnV4/jhGVfWLCvZnGEZdOGo//xmwraqmsg50hBGRpTHzUZQz6yzgbODKYgN2UujP4ph0m6cAPSIeuRr4Y6X64+i4CCIjJtedieiZEbfzCDd0q2k6cfQW36SiZlUM206u21nRawooFb2UE3YcM7hhZqX609UQkZUxgdNR6cc/waSkrFgAvLcePBPjHGTvMxU4WVUvLKouZ892ZImITAbqfUV5YJCq/idGXd0wCj37YCK9i5E8beVD4CzMQULshYCI7A3cbRXfqKq/jVunw+FwtIVnwHuQ6MiHFuA24PxybnxFZGvgNIzSRhTPA7u7XM3lx4sgPA/juBAlZ/kZJsXlTWlJWUb0YUngdxgP9r4RjzRjnMQuLkf7js6LiOyMmbOi1nBzMYpXl5Qrus9TDtoVE2FYSPHqIeAAJ5VffkRkMcwBx74FHnkTOBcjNV4WQ56I9AH+hNl4Rx2S/QAcoqr3l6N9h8PRNiMn152OcBbRKUy/BC7suVjN9Y8OmF6WNLa7vNx/8bkLWg4V5SSilWjyiJ4zfvDMc5y8e/nx1DEfpvA7fDRwrqpOLWMf1seoAe1LtGPQJ8BuaaVNcVQHnj3zGkxgRRTvYvZ4d5Urja0XZPRH79/SEY/Mw6QQu6Uc7TuCiMimmH3HyhG3WzABEuer6jtl7MMQzL5o2wKPvIiZz5zyShdDRE7E2JVsm9M3mL3RY5Xv1U9OwedjUoXaffsKGOkcG9NHRJbDqC1GpY0bDRyclVK4pzR8D7BOxO27gf2LVdhzVB/GGajvdV6Qh83HKrLP+MEzMlEKHz6p99Ldarv/S0UiFLfkfaF5uFOjTR8vDebTRO/trweOzUopXERGYNJRR521/E1Vz2i3DucQ5MgKz3N7olV8laoeHbO+l2k/XUl7PAnskyR/qYiMwzgktdIErKmqnyXsm8PhcATwVNYeJjpF2MsYg13FFq7eYf7lGFU2m08xETnvV6o/XQ1PHe864DcRt5swzhSnqWpFpEU9actzMBHaUQd1V2IW0i4ix4GIHIiJMIxK3fU4JgLj0wr1RTDKMBcBy0c88iKwo0t/Vz48FboHiXY0/Q4THXNVpYx3IrICxuh9QMRtBU5Q1Usq0ReHwwF73Sc1s/rVXQX6u4jbzaJcU9ut6YxKRXLu8nL/xefNy5+E6KlAd/u+oLc0Nc08dOKw8hzkO35KszQGWCni9keYdcSTFezPZhgHj6j0crOBXVX12Ur1x9Fx8VQM7gN2iLg9F7gQOK9SSixeFPLfMQox9oG6Aueo6lmV6EtXxQu4eoToIIlXMMorL1SwP9tg1DSiIuWd8koXQ0QOxRyK2vPDNGDvSqoCFUJEdsUoCtvOjTOAIar6ccU7VaV4+/anCaf2bsGk7bowa4Vlr4//BPaLuH2dauR+wtEFGDllhQtBTwjfkQdZbMFvxg349rvK9yrIqMkrHKWilxK2lb7R3LRg64nDZjnl0ZQQkf7AFMLO2D9iUnPZQiAVR0TqgLuAYRG3j2/PLukcghyZISJPEYwymAusqqqx5M5E5CNgtRS69gKwVdzNtqfWYR/Ax3Z0cjgcjihE5FfAnYSlT1vT2lyRhaOFZ9C8CJPn3qYRGOUiYtPHi4R6kGhD8hsYZ9eyRQ+2hYj8ArNYXT3i9u2YaCEXkdOFEZHjMYcdtlFxNnBYVuorXiqxfwM7R9x+BxjhImLTx4swHItJ+2szHjhQVWdUtlcGLx3jTcByEbfPUtWzK9wlh6PLMXyS1NZ273snyp7hu/qeiO4zdvDM1yrfMxg5rW5D8txNVLoK4eFZPRr3emmAS6ObNiIyAOMMZKfKVeAKjDJlWZQx2+lXDUYx81zCKVXmA3uq6uOV7pej4+AFUDwJDIq4PRnYT1U/r2yvDJ4TyG3AChG3L1HV4yvcpS6BiOyCUbOwU+U2YdTHLs3IztMT+AdGNdPmK4xT0KuV7ZWj0niONg8QDvh6FGNzykQ1IQpPGeYpwnPYB0C9C+5Jjqdu9xhhFbH5mPfXg5XvVTRe0NffME5KNmc7R9eux6jJfY9XkYvsclGuqB/S+Kcz6TjBqyOn9d2WvDwA9PKXK/psS9Pi204c9knF9znVhpf28DlgA+vWN5iA0Io5YreHl676FkymJD+KUT27s9DPFspr7XCUFS8Pnx3x+6+4zkAF+BITaX4gsD7QB+NJ2Q9zwHAERkHDZgugXXmtQqjqSxhjlJ8DvM2Tw+FwJMaTCLyLsDPQJ5hol8uyUl1R1bmqeiSwN/C9dbsv8JSIRCkIOWLiHTbcTrQz0PXAllk5AwF4KlWbAVFOHftjlIIcXRQROYxoZ6CXgM2yTMXkGQl3BU7ApLrzsy7wpLdpdKSEF733OGFnoBbM+nzbrJyBALyD200xUUM2Z4nIsRXuksPRpRBEarr1+Ve0MxB3NDfpwKycgQDGDWp4M/cjmwsRKXWU3Zae3/dGQaJSujpiIiJrYRwqbGeg2cCvVPXYLJyBAFS1RVX/AWwN2IoJiwH3isjQyvfM0RHwUqM+TNgZSDEKPcOzcgYCUNWnMWue8RG3jxORv1S4S1WPp6Qf5Qz0GTBUVS/O0M4zzwt03QOj1ulnecy+aI3K98xRKURkTYyToO0MdBuwR0dyBgLwAhHrMWrlftYE7vDShTuS8TfCzkBzgR06kjMQgBpOA46LuP0XT/He0UXYdmrdL1XkgtAN0bPGDmk4piM5AwGMG9Q4Jqdsg/X+FWSr2u5zL86oW1WD5zB4M2FnoBmY9VeHcQYC8IRM9sNkgvAjwA2eQ2wkTiHIkQkichpm0dBKHlgtSVotn0LQGIyU6ej2FAe8L/sZgB3N+w3QX1UXxOzLCGCcVbyXqt4Xpz6Hw+FoxVMhmwAsad16FdheVRsr36tovLz3TxLObeoiclJERK4hrMikwMmqemEGXYrEe+deAJwYcdspa3RBRGR3TIoE26j4BGbdNLfyvYpGRHYE7gUWt249A2yX1WFjNdFGhOEC4ICOtI72VNluB+x87nlMRM5dle+Vw1H9jJzS9x8goXWEIueMr59xZhZ9KsSIKX3PEOQcu1xULhk7ZIZT1kgBEemHcdBcxbo1HfNufqvinSqAJ0H/FGFD82yMobnD9NVRfryAjvuA3a1bzZiUBGGnwozw0lLfABwUcfsIVb2+wl2qSkRkY8y+wk4T9gZmPsvMId6mDeWVjzF2nobK98pRTry9z1RMoJefx4HdVTtuSlQRWR2zVrDtkqer6rkZdKkqEJHtMXYbv6N7E7Cbqo7OplfFISJnYVKQ+5mFCUj7tOIdclSUbafW9ckrr2JEI35C0avH1zdGqeB1GEY9t8LWmtOnCDsO7zeuvqGgKoyjbbzAvkut4jnAsI6sfuids9xEeI3+ATBQVUPp051DkCMTROQdYB1f0QRV3SZhnQ8A16pqVPRKMT/7K6t4uKpOitmXHMYDfUVf8SOquluc+hwOhwNARJbFOP6saN16Ftg56kWfNV6U2HjC+VefxqQP61Be950NETkcuM4qzmMMyTdl0KV2EZETMXLjfhRjSHokgy45MkBE1sWkWO1l3boDk0auwxkVRWQwMJqwod7lnU8BEbmYcMTeXGAXL0q9Q+Ed5l0DHG7dmo9RZnu98r1yOKqXUZPr9lXBNnSqCseOH9xwRSadaodRU/r+TpFrsFTwRPSAsYMbb8+oW1WB56QwCRP97+cjTErPTyvdp/YQkd6YdcSW1q2PgAGqaqtuOKqUAoeRCzBp5B6rfI/axjtwuIjwOq0Jc1gytfK9qh48xdFXCTs3TsWkqZhd8U61g6f6PB4TmOvnGWAblxK8uiiwT3se+GVHUwaKwktj/yzBQ/QWYJCnaO0oAc82/Q5GHczPIap6c+V7VDoicgPwW6v4Wcw7zR2YVzEjp9Q9DuxoFd8zvr5xX6Xj/+1HTF3h16J6L8H95XdCy3pj67/6Mqt+dVZEZANMFqHuvuImYKSqPpNNr4rHSx/2FDDcunWDqh5mP++k8RwVR0RWIugMBEZeMhGqukccZyAPW14LwofXpfQljznQ8vNLL/LZ4XA4SsYzwv2bsDPQG8CuHdEZCEBVPwRGALZy0TbA6ZXvUfXgLVptD3aA4zuqMxCAp1r0V6tYgJtdOrmugZci4U7CzkCP00GdgQC8w45dMQ4ffo4Qkf0y6FLVICI7AH+yipswB2MdzhkITCoY4HfArdatxYD7ReRnle+Vw1GdbDetzxoq/NMuVzitozoDAYytb/wnyMl2uar8c+Tz/dbNok9VxN8IOwPNxCimflr57rSPqs4CtgNsh9HVMQosji6AiGxNeB+cBw7siM5AYFKtYFLo2uO0G3CPiCxX+V5VFf8m7Az0FrBTR3QGAlDVT4CRgK0GtDVwVsU75CgbIrIhcLRVPAvYtzM4A8FPaeztvWYNcK0X5OEojQsIOwP9q7M4A3kcBbxilW0FHJBBXxwVYuSUvr/CdgYSPuhW23R4Z3AGAhg/eMb9wGVW8VJojUsdViLeWdsVBJ2BAE7tDM5A8FP6sH0A2xnstyJipyV2CkGOyiMiB2OkrFpRoG+WqWNEZDVMVJafI1U1ylGo2DrrgclW8WBVnRa3TofD0XURkaMxixQ/n2AiWjpMmrBCeBE5zwA9fcUtwFYuorB0PMnmVwH7MOk8Ly92h6dARM4UzJhwylFVjIhchTHA+JmKiejv8EZFEfk1Jn2YPyJnDrCBqn6RTa86LyLSF/gvsKx16+COlDKjEG1E5Nykqr/JoEsOR1Wx131SM6tf3xeAAdatq8bVN9gHVB2SkVPqLgWOtYpfa25q/MXEYR3TCbYjIyLDMcoU/iDHH4AhnUGdTUR+jlFW6G/d+q2q3phBlxwVwlOCeZtwqqWjVfWqDLpUEt7B+cPATtatB1TVTqPqKAIROQJCDq+fY+w8HT7SX0Q2w6hq+AM98hjV/Wez6ZUjLbzD0snAYOvWrqr6aMK6FwM2wqQhWx+zF+yN2WPPAb7COMb9R1VfTtKWr817gL2s4qNU9Zo06u8KeAfMkwmuwd4CNu8Mthw/IrImxiloCV/xTGDtjuqM6YjPtmPreuV78Q7BQOsFmtfNxw9tfCNx/VPr+uTzsp7mWC6nurQKInmZLTn9BnhrzOCGmUnbaGWvtzfoPmvW15OBX/jLJc+IsUMbOmRAXUdERA4CbraKR2McsmM7znjr5XWATTDvueWBpYFaTLrobzGqRFNV1fZJiNvmL4FxBOfm1zCpw35SbXQOQY6KIyI3E8xr94aqbpxRdwAQkU0wB6t+dlLVJxLU2Q34BljSV3yaqp4Xt06Hw9E1EZE64F2CaWqagK07k5OhiBwGXG8Vv4mRyG/KoEudFhE5nbDKzkSMpGWnkOduIw/9oar67wy65KgAIjIAeAETkdfKt5h87Z9l06vSEZGLgOOtYncYEgMRuZVwJN61qnpkFv2Jg4j0gVAeesXI6E/KpFMOR5UwanLdMSrBKEhR/rP0MssNvXe9txZm1a9SGD5Jamu71U0EHWLdOm5cfUOU2qOjAJ4T5muEneIPVNXEytOVQkS2xByi+1WkvwXWyTJYzlFeRORqwF7f3KOq+2TRnzh4Tk2vALay686q+ngGXeq0eOvHdzFOEK00Y1LWTMmmV6UTEfgLxtl/U2fn6dyIyO7Ag1Zx7DnLS525L8apcGtg8SJ/9BNMgOS1qrogTtte+1HfuZnAqqo6N269XQkReQajpNOKYhyyyx7oKSLrYYIIl/YVn+SpkMet80TgH1bxX1X1L3HrdHRMRk6pOwX4u79MkXPG18+wU7gWxTbTlutfk6/dXpHtQLck7Ohv8wno/bU1uWue3HLGp3Ha9DNyWt2G5HkF42TiIa+Or28Y0FnUjrLEO7v/gGCWoLnA+nHUZr0zjt0wqvIjgWLVM6cCl6rq/aW2GdGHqMDrA1T1p1TlziHIUXFE5GWCh39XqOoxWfUHIpU35gN9VPX7hPU+iZGEbuVuVd03SZ0Oh6PrISJ3YeT//PxJVW2JyDh1rwRsCmzIooicHGYR1IDJC/2iqn6ctC2vvTuA/7OKj1XVy9OovyvgpdX6L0G1pUZg486gFuVHRNbAGJT9zrNfYw5DvsmmV45y4UVJPA8M9BUrxgl7dAr1dwPWJDiX/YAx8r2XxHhYoK1ngS2tW9ur6lNptVPteGkzJhJUW3od2FJV7dRspda9DOb9tgEmEn9pjCPaHMyh62vAC6r6dZJ2fO0NA54mGJHzJsbZzSmAOBwx2O655VdoydW8C/hT8M2Cmk3G1U//PEndA1+Wbr0XLr8BLblNVVhdkN6i2hvhR5QfQT8nx5tNC3XqxGEzf0j2SWD4Cz//eW1z82sE1dC+F1rWGVv/VYdXgegoiMifgXOt4n+r6qFZ9CcJBT7LDap6WBb9cZQXERmIWQf7neLfxwTHJJ5jPEed1TBr4N6Y/fyPwKdpO9176r9TCDq0fYRRy0y0futKiMgtwIFWcaLDba/eHCYV4SaYCPWlMe/RFkxk+ufAS8CraTnsFPgsJ6rqRWnU78gGEZkK+FOOfA+sq6rTY9S1D3AjQTtWqbyHUSd6L24FInIkcLVVfIyqdtgUtB0Fz5nZDkqtyLrFC5R9nuDhPSR3CKrFKHVs5Cv+DljFqQRVD8MnrbpYbbd5HxNUaPys52I16z06YHpJzoCjpvQbqOhfQUcRtP0UywKEy5oXNp6eVCl21OS6y1X4Y6Awp9uNG9Q4Jkm9XQER+S3hVLix5hMvtebThFMplsIjGLXY2Gchng30PYLOSO9g1ud5cA5BjgrjSU3OISjFd4Sq2ooRFUNEemGM9f7olstV1Zb0jlP3xcBxvqJXVdVWQnA4HI6CiMimmM2J/7D0RcxhaclplbxD7B0wETnbAT8v8kdfw2yab05ysOktTt4luEj6DlhZVb+LW29XQkRuA/a3iv9PVe+qQNt1wASgzld8maqek6DOPwGXWMUXqupJcet0dExEZD/gdqv4VlU9KOr5IurrCQwDtscYKjcEehR4vBl4A3gAk8ppRpw2rfbXx6jC+A9D3gY2dGnviiPCyJzHpNh9IWZ9QzAROdtjpOfbIw+MxQQoPBmnTav9a4HfWcVO9czhiMnIKStcA/r7QKFyxLghDbHsB9s9t/wKzTU1e4rK9qBbU9yh1DyQ0eRazh03aKatKlwSI6bU/VYsw6PAdWPrG+x5wxGBt4/4lKAjeSPGkbzshzbeOuZKq3hg3MAJz1H6RYzzaisKbKSqb8XrpaOjIiJPA7+0irdR1Qkx61sJs58fgXG2txV7/HyPSbN3D3B/GoqyInIBYO/XjlNVp3pWBCKyEcbG4rfzvAxsEefvIyJLALtjbD2jgGWK+LFZGGWfy1U1kZOtiCyFOXTyH7bOwdh53KF6J0RERmDSj/iJrZwiIiF1jpjMwuwX343ZjxrMWF3TV/w/YHVV7RTKk1khIo8DO/qK5gOrpWFbaafdnhg7pB2MBek4Ue6COYz347J8VBGjJq9wlEowNaui+4+vb7yj5Lqm9P2LImen0K2xzU09d5047JPYjtTbTVtxmZZ806cE9kb63Lj6xq0K/YzjJ8fpd4C1fMWx3wNeOutY63mL1zEpV2fFraCA6tmvVfUBiOfB5nAkoT9BZyAwETGZ4BmUHiW4cX4HOCOlJmyP9bU8pyiHw+EoljMIGolaMI6UcZyBhgOfAQ8Dh1K8MxCY6LJ/Aa+IyOqltt2Kqn4L/NkqXorwAaojAhFZjbBa1DPA3RVouyfwECZFQ2/fvyQRXmAU+l6zyo4UkWLlNR2dAG/9c7JVPAc4JUZdq4rI9Rjln9HA0ZiDkELOQGBkdDfDROJ/ICJnesbA2KjqfwFb3Ww9YJck9XYVRGQkQWcggH/GcQYSkf4i8hbwHHACxTkDgdkPbweMFpG7PRn7JPwZMy79nOpFHjocjhIYPqlPHejBVvGLQ4Y02pF8RTFySt2lLbmaz0S5HHQ7il+/9ATdg3zupRFT6y4bPin+9/np+sYbRQmkVFA4eJtpy7UnMe8wHEPQGQiMA0IlnIGGAP8muAbuTVDtpSS8Q/8jMM6pPzVF2MnC0ckRkS0IOwPdFscZSER2E5FnMfv664A9adsZCMz3ZnfMnvENT6ExKWdjHPT8nOTtGR3t82eCdp488IeYzkCHANOBWzG2gmKcgcDMYccBb3mR8rHxgrtOtYp/BvwhSb2OTDncuv6RYHaFNHgP+CcmffTWmL30Zhink6Mxirw2vYG74u6vvO/YBVbxzzHOdI4CiEh/glkwAG6sgDNQDhNUFuUMlBaPYYLH/BzuzvCqBxW157OPW5pm3pNyM40gD6pwOcoZKOei3KTos5gARZtRtd3nXpykwacGffEt6D+DpTJ026l1GySptwswnKAzEMBFKTuFNmIc8f+Ieb8MxASBjABOwwST2mwMJBVOuQaTecHPTypuziHIUWn6RpR9UskOiGE9ETkTkyfQvyl/F9guaaowH/Zn60XYgOVwOByRePmRd7WKb1XVuNHJaxKM2IrDhsDzIrJugjpuxKS88vMnZzwsihMJ5AdGMSnXyir56G2Eb6QMm3DPIGM7hfTCGIAc1cMumPnDz3kxDUg7YDY0tpN5sfQCzgIeSWHe+SsmStHPaQnr7CrYhwY/ALEiTjEpeIp1AirE3sDEJE5BXiSPnf5ldWCvJB1zOLoitd3kOEJOO/njziS2AtsggopupZIT5Zjabn3vPxuJZUtTVPM5PcEq7pHL19plDgsRWZLwwfJLqnpnBdpeDXiQth2PY6GqLwL3W8X7em06qgc7IGYB4XVQsZwBDE3Ql/WAcSJycII6UNW5GKcgP3VALOXProSIrAn82iq+S1Wfj1nlxgRTa5bKksANnoJLEm4lHOhzjKfM7+hEePuhna3if6eUavlHjDPjQFVdR1V/r6q3q+qzqvqOqr6qqqNV9SpV3RpjE7XPaTYh7JxSCrcBth3CTnnnCHIQQSfoPJDImaFI/gH8qpwNePZUW2VoZZK9ax0dhFFT+2xCMCUcqnJx0nRdHl+inKt5WX9cfUPduPoZe4wf3HDsuCENfxs3pOH0cUMafjO+vnHrfK55FSC8Z1E5cttp/ddJ0oHmJr0ECKT/zCv7JamzC2DP97MwQfBJUYza2M5Af1XdR1WvVNUnVfVlVX1NVZ/21Mc2AP5EMDAE4NciEnvuUdUfMY62fkaISD9wDkGOyhPlDFPWFDEi0k9EXvL+veO191/MQVBr1EQTcC2weVKZVIs5EWVxD68cDkfX43CC7+o84UiWpMzGREOchDkMHYbZWB+IOZiNcj5aDrhbRGIZxT11I1squC9l3uR1djxDmp0q7AlVtY1u5eACwspEqaGqYzApE/wc4VQ1qgpbBew7wpuUpCwEXsBEP1+Jiax4lHC0Vys7AonSGqjqHCLSh4jIwCT1VjsishYmKsfPdUnyZUewAJiMed8cjPl7j8TMZRdiIuttNsY4PybhesIGZqeC53CUwF5vb9Ad5JBAofDMuPqZk9NtSd9DuB7h8JyyS05yWwvsinKEmMOqbyN+aNfJU+qOj9vi+MGN0zQsKX7I4GkrOsf4ttmbsOpF2VM5eKrSTxJMd5w252EMyK3UYtRcHVWAp6qwo1V8i6pOT7mpr4CngFswCpa3AWO8cptuwL9ExFZqLJU7CAdCHpWwzq7AYQQP1hU4P+U2GjGpkk8A9sWsgbfHrEnvxqyTbf4uIrYTSNF4h+q2nWc5jIqVo3OxJ7CYVXZTwjrzmPlpbVX9naq+XMwPqeqjwJERt/aI2xFPBcJOFbSj9853RHOAdf1s3JSpxSIiRwD+Nff/gIYyNfcA4XM8+zM7OiP5GvvvuGAxut+VsNYvReSQ5qbGlccNaTh9/NAZUWovP/H0oK+nj6tv2E+M2miwey0ttp2/JCYOm9mgZv3nZz/BKVxFISKLEz5/utdzdE/CFGBLVd1NVR9vT/FRDZcRVtKH5HPPzQT3ljXA/0EwwtzhqARRzjA/lLnNHsCAAve+xzgG3auq/ytD21EOQU4hyOFwtIuIdMMYbvw8pKp2KsI45DGG7RuAx1Xb9Ir/q4js7T3rn8M3AnbDyB/G4W6MsoZf3vxAwptyxyJ+Tfg9aueFTR1PPvzEcreDcTryR0j3xUhp2hsbRydDRFbAGKH9XO1JyydlHnAf5tBjaqFNnBeJez7hjd8RInK9qr6SoA9XYL4j/sPcA4GXEtRZ7RxsXTcBl6RU9yuYd9ZdbaSRuUdETsX83c4l6Hy7m4iMUNXxcRpX1fkichVBpaAhIrJauY2mDke1MGvWVztBMHWoqKS15vkGuFXzcsP4oQ1tGm93eGHZk5qau18JakUR6sl7vb3B5feu91ZMWXE9H8SvVLxUr3zzzsC98errEtiG0XcxEZhlQ0S6Y9amtqR8qqjq6yLyFOawvpUDROT0OGmiHR0N3/QKAAAgAElEQVSOAwk7f9hKBHH5GHO49AjwdpRqrJduZVfgMmAl361a4GpMep5YqGqTiFxC0Dl+AxHZWFVfj1tvNeOlLLYj9x9X1bdSqH4hZs66EZjYxvxxnYisiFH0GWbdu0REnlLVpvCPFcX9GDX+NX1lB2IOpxydBzt91n9TCES7pB3bY1vcidnL+1OsJlXSuxnjMNdKd0wWCVu1r8sjIqsCtorJrWVuc1vgKl/R9xjVjbswanSpoqrzROR+4De+YpdGrgpQ0eDfUXj08frPbJXvomkm90C3H/XiMaNm/Fjqz+Zy3U5qyTfth8/hUiWoXhSHnMptKup36F1xxLS+GzCIN5PWXYVsRfhsJel89hwwNGb2hsswacVW9JWNStIZVf1IRKYC9b7i7YGLnEKQo9LYEt15oOT8yCmyJGbxd4aIFHIaSkKUgbB7GdpxOBzVx3ZAH6ssaUQOwDPAL1R1J1V9uJgNuareQ3SUauwUKJ6ntL3g2qZVwtARiX0Q8r6qPlfOBkVkFEEVl+8xUTnl4DHCeW6dbHN1sB/hg5Ck81lrmoJ+qnqQqo5vK6JDVT/AONVFycAmGmeeqo19KLmP59jpsPAOpuwoqDGq+mXCqj/GvJcGquq1bTgDAeY9pKrnEzQEt/KbiLJSuIXgHkdwEYYOR/GI2N+X6Ut/2TAmSZWKLkC4oFtt02rj6huOay+SE2D0Ft/MGV/fcDAqdtvLzp71zYi4fRlaP/NpIKhMLOrmiAJ4B1G2dPrN5XSW8aXL9avZvVOu9gir0/2csJKeo3MSparwYcI638YcjK6pquep6n8LHUKoal5VH8KkfrbXWpuKSNKDqDsIq824PVxhRgC2zSOpOiWYtIbrqep+XjqKNudHVf0Cc9htBzCsgTksi4XX7i1W8dYislLU846Oh+e0Zo+BB5LWm8AZqHVc2cGRSyXsz38x+0c/7r0bzS+t6zzGflcWRGQ9TBBpq5hFC7B/BdTRH7au+3nKxo5OynbPLb8CsLa/TFUTBRRMqJ/x3zGjGkp2BgJ4atAX3wIBB2BJwcFtsZ65J7DWYtIS+t46DPY8PxOYlqRCVW2O6QzU+m60gxH7e3bTJNjz2WAR6ekcghyVxlYDygGLl7nNPCYP4CwgavG5AiYtz0si8ogXxZ4WUTmco1SDHA6Hw8aWFZ+JkfxOwp2qOiymEsa9mEgvP2sk7M9thCUMk+QBr1pEZAnCRpnbytzmehgFqMAmnOg0O4nxZJvvtoq39wxSjs6NPZ9NTXgQMhlYS1XPas/pw4+3QTse49jmJ3ZktA/7+7g8sHkK9VYjGxKMfoHkETnvYg5B7ouxEb+C8Pst0bvISwNipwRyEYYORxHs9fYG3VFLVU64/d4925bdbo+WJt1x3OCGU0Zv8U1J+3FFVTSUAoW8aOx18JloXuF2q6ERLm1YQXbAOFa2kseoBZSTMwmqeLxDcmfRtngcY7Py494bnRwRWQ1Y1ypOuuY5FdjYS0dQtFOcqs7ApAS32TRJZ1R1Fmb8+nFjtzD2vuhbjHpzEs5Q1T1U9aNSfkhV5xGtBLx9RFkp3I6Zp1vJpVCno3JsDPS2yiZm0RELe41kp2iOw9PWtTtAj2aYdf26qtrBfKkgInXAaGBpX/GxXuq4cvMM4bNDNyY6MXmpGUZwD0GOfNbzWdCJWpOfFT86YPpcRV8IVCtu7BbAdgiaGNeZJ0XsNMK1RPsVlIJtj1wM2NI5BDkqTVR6sLKm0FLVz1R1Ge9fN4zixvqYvHkPEjyM3gV4UURWTqn5qM9mH0I5HA5HFPYC5ZEkETUAqho7RaO3OLJlvxPl1/YMVnadbsEazVDCKnsPlquxDDfh9mdaGtikzG06yoiILIaJSPbzUJI6VfV1z+Eizs9+DzxvFaehTDaO8BrPzWfR2O+3BcATSSpU1YWqakenF/uzLZj5zk9vEUkUdUp4PhuQQp0OR9Uza9bMzYFe/rJcPtl7A2DisJmx18FNLfNDqW8kL4nWwTWas+eIxRbPN9vvS4fBfm+84KlblAUR2Yeg48TXGDWWop2QS0VV5xN+F7p1ROfHHrt5whG7JaGqYxPYBcZFlKWxDrbns3Wc8m9B7DHxWNw1bCve/iYuzwF2GudENnFV/Qx42Sp281nnwba/zCehekJSRKQnsIFVnMahvl3H2iJS7sD1zog9JiaVoxHv7/wwwTnoUlW9qsCPpIqqzsGkH/fj7JGdGrX+fvre2PqvkipTx+ZsJAes7i8T1H5fxkI0Z89nbuxaeAHHG1rFWTuIQdjhVYn2oyiF1wgHm2ziHIIclSbKgJJ63s+2UNWvVPVtVb1LVffAyLX6+9UfeCglRQL7s+VxDkEOh6MdRKQ/YMuS2p69WWCnPJyZQp3253ISvdHYBrQZlCltgbcJf4jgJvyyCm3CpwHzrDI3Jjo3g/Hlx/bIej6z5X1jyf36UdUm4Fmr2I3daOzfy/NtpXurEFHKZ8slrNOOOK0Btk5Yp8NR9Qhir3m+W9jcmIqhNC7du/cIpf3WhOvgwUNmvIpRhviJnHtvhPDk0odZxWVbR4jIUOBmFkUTzwN2LlV5Iyb259pIRJK+ixzZYn+nX1PVbyOfrAxRa9401mATCAZbgnMACSEirQGqfjLdF3mO8XZK8DTmHftzDfNSMTo6PutY1+8ndVpLgcMIBl1/T/IU5GCl7sG8+9dMod6qwVuH2aqYb5SpnTuALXzFTxCtYlZO3rSu1458ytEpUJHgfCaS+tgthcnT+owkeF6cz6Wkeqq50Hy24i4v93cOjkFWJmyfznRMeKxmXc9MQRQgD/zXKl7bOQQ5Ks3HmJQjfjLNxamqEzApw/xsChySQvX2ouEz78DI4XA42iIqfU2mHsue8WZjq/i5FKq2DUX9PHUaRxB7TEwqh6Sltwm/naCiy2jghLTbisKLjp5qFQ+oRNuOsmGP3W8JK4NVGnuzldYG0J7P0khFVo3Y3+mOEJHTI6IskRO/qn5A+IDFjQmHox0UCX5PhOcmDktmEEuKhqJLQWo00TrYSxv2jNWOW/OEWQlY1iory3tDRFYHHmDRO0GB36qqrSxYLuzPlcNF93Z2OtqaZ9WIssTrclVtIBys4tY8YTbFSl1C9oESEF4HJ41Kh/Dn6gP8PIV6HeXHPst4L5NeeIjIjhBK3Xq8qn6VQvUfED6ncg4gQVYhfID+fhnauRDY3Xf9CrC357RYSezP5sZDp0Y7zHy23XPLr0BervaXKdz41JDGVOyjImp/Nlk4r9k5OAaJ+j6XYz4rGhGpBeqt4hdTqj40nzmHIEdF8TzK7QjczF+sqnof8K5VvG8KVdvOTplOMA6Ho9Ngz4szVLUxk54sYmeCijEtwPUp1Bt1EJ/5e6EDYv9OyuVQ8Q/gV77rV6n8Jtz+bJk6DjsSY4/dN7xIhUwQkXWBjaziu1Kq3p7PlnIOjkFEpBfh1BRZO4iBOXD2s5CwvG4c3HzmcJSO/d54LZNe+Mir/CFYIpPHDWqwI4hLRjQUpermiDBR+4LU3xsisizGCX55X/HJqprWGqFdVPVTwqrabl/USfEM/LYTetZrnn2s68+BKSnV7dY87WN/n79VVdt5vKJ449Rem6dhe3J2ns6LPR4+zqITIrKFiNwGPAr4VS7OUtV/pdGGF5Bmpw9yjmtBotI/pjomRORQ4Dhf0ZfArqqaWMk5Bh9a13UpZRFxZIKdvlQqPp+djeRGTu27R0uu5nmC6cKmzM11+2Na7fTsXhNSM23J5dx8FsSez75T1W8y6ckitsc4Tft5MqW67fmsf21KFTscpfAuwU3xloUerDDjCcpiDhERSajAMMi6tp2OHA6HIwrbUJK1t/LGhJ1/LlLVt1Oo/n+YCLQlfGVrY0VMd2UKHKCnHtUgIr8FjvcVfQnsoqppRAiWQsiDPYX3sSM7Osx8JiKLAzdYxU+r6uiUmoj6Xq4NNKRUfzWwNuHI6EyjTj2GWtdvpKTq+T6wo+/aluB3OBw+hk+S2tpufQMH6JLXTNfBI6fWnSbGMb6VuTWa/0PBHygBQd+zFjer7vDkmj1Gb/9B1qk5OhJRB+hfp9mAiHQH7iPowPBvVb0wzXaK5APgF75rd4DeeVmVcMrtzNY8IjIIONoqPjVFFXN7rnZrnjAdRqnAx2YEnS0ghch0VW0QkdnA0r7itTG2d0fHZknr2nZUTR0ROR0TtFOLSVm3AdDbeqwR+IOq3p9y87OBFX3XSxR6sItijwdIJ3AGABHZFrjWV/Q9sEOGzpL2eBegFzAng744EiCIjKBvr0BZPl/W+Wzk5BWGCSxPLt9DVZYT2ADtsy0iQccckdt69sj9btyAL+al1fajA6bPHTmlbiG+taequvksSMXfb23hZeP4i1U8F7g7pSbsz7ekcwhyZME0YAff9VYi0q0DpNKabl13xyw+Y+X3FpGVCHp9QnqRNw6Ho7pZ0bq2PXorgoisCBwB/ImgkehO4LQ02lBVFZGPCSp22J+/q7Mi4QP0kOd/ErxN+D99RVluwu3x3gtYBsjaa98RDzsiJav5bCDG0DTQV/wRsF+KzfwPmE9QUtvNZ0Hs34eSUdRpKyKyKcbo7GdMStXb492NB4ejDXI9lu1LPniA3lKT7pqnGM5GclOnrjBENX86MNJ3a77AvmlJu+dz8qEE/Z1rtPcPKwCfplF/lVDWfZFniL0BGO4rngQcmWY7JWA7BLn3Rucl6m9X8fnMU4A5DJOOxT+/Xq6qd6bYlFvztE+HsPNYHGBdKzAupbo/Ipg2z42JzoF9gJwojXKRbEVwveVnInAHcKeqpnZ47sN29IhygOnK2L+PJi8DSGJEZD3MwXfrGXULsJ+qZqmmFzXel8Q5BHU6hk1avhfdCGRIUqS885nomQrDUPHaA+Qnc/584OmccMmYwTPKlS50DsapEoCcm89s7N9HJd5vbXEKQRs1wGWqGssfIQL78zmHIEcmPA381Xe9BEYl6LlsutMmixPTIQgYZV0rxrDkcDgc7WEvUFKLviiEiOwLbIxxhFwWWBcT1edfPM8HzsSoA6WZ8sf+fG7BGiTq95HW4rAjbsKjxvsSOIegzsrPrOuyzmcishGL5Fb7YOaykcAW1qOTgT3TTMfoOTjOBvxpwtx8FsT+fcxNy6CYgDOs6zxwa0p1u/ebw1ECtfRYMk+LVVab2ponir3e3qD7rNlfn4PSA+FnKD+HvptA3pbufjefk4OeHjTjP2m1XSsts1o0YKemWdXNE0HKvS86m+CB+NvA7qq6MOV2isW9N6oH+2+nlDES2XP8GeZd9gD6Y5wxdgX6+h5txoz7c1Pugj12u4tI9wy/Sx2Ritt52kJE+gO/sYqfVdW0nPXdfNY56WFdZ71XWxGj4LcJJsg8beZb14tFPtV1sZXu0nIGqsOkxfGriB2jqo+lUX8C7PEAbkx0SmoW796DpuZAmUo+u/lMuUtzcu3YwQ0vlasJUZ2vixyQUMSN3SBlmc/iICIjCfpIgAkMOT/FZmwn2sWcQ5AjC17CeKf5NwL/R/YOQXXWtQJfJahvX+v6DVVNUp/D4eg6ZBGRswuwT4F7b2Nk9K9T1RllaNtF5LRN1O8jlTHhbcJHE9yEH5vxJjwq8saNic5LpeezvwB7tHH/deAK4OaUHRtbmYNzCGqLDhWRIyJ7ArtbxXepppaiyJ7PerjDMYejMC2aX9KWRGxmQVnnie/+93U3enEy4IVxBsgjPIpyX3NT470Th2lz6IkEqOZCa548ziHIomzrCBHZBzjdV/QVJl1ulvLxbl9UPUQ5QbdEPpkOS9C2sst84DHgPFV9rQztF9rDuaCORWRh54lERHKYtPB2urCzU2zGzWedkx/xKUxgFJuzZA3gJOAkEZmKSRv2aor129/LH1KsuxqYa10vLiKiquFVc5GISE/gYWAlX/HFqnp13DpTJCrFkhsTnZCWud1+rO1mbd00w/lMOERUDxkxpe8XI6m7pHfv5a65d723UrULqUhg/Iq4sWthz2eZjAcRWQW4C6jxFc8H9lLVNNeG9rrrh1zkYw5HGfFSgz1sFe8tIrYHeqXZ2rpuiBux7EVZ2PXdF6tXDoejK2J7cEdFKFSSZozX9NLtPRgT22O5Z5na6axEefQnHhO+TfjKvuJLVPWqpHUnxF6gQ9hQ6egEeGk47PVdlvPZ3cBhqnpjmZyBwM1n7WGPh3LIvheFiKwP3GgVfwucmmIzUfOZGxMORyG0JbTmkZrFsnxvKIpnqF066oAgEQsX5kNzRE2zuDkiSFn2RSIyFLiZRWl552GcgSqe0snCrSOqhw6z5sHs5Y8D/lgmZyBwe7hi6Eh2nrOAHayyu1V1YoptuPmsc2IfIFfCketXmDTxKwAbYRR+DwPuAZp8zw0GponILim2bSsaZ51CpqNh/z5yJJjbPWfEOwgqOD8BnnN+9tjjAdyY6JRMHPbJfILzBzlqyjqf5ZRLUI4AOVqRc0CuRWUMwXl1ReDSWbO+njpqyvL90mpbTG6ywOdT8m7sBgml0Kp0B0RkBWAsJjuHn2PKsEYPvd+cQpAjK24jKMvcG6NMcUsWnRGRrTDSk35GJ6jy9wQ9/BSz2HE4HI5iCEVgZNKLRWzk/TtPRMYCx6nqf1Os3/bI/jHFuquBQsbV2JEEbWzCT4pbZ4q4iJwqwUuhNY+g8TfL+WwfYB8ReQ+4ELhFNV21B9x81h72wUBWETlLAQ8SnG8UOEhVv0ixqaj5zI0Jh6MANVo7Ny9Bf82a+bo42SlM1AB7AXvVduvxw6gpdVc2NfU8xzMwp0FojtCcmyMsUt8XicjqwAMsctjIA/ur6vNJ604Bt46oHjrEmsejB3ANcIWIPA78VVVfSbkNt4drnw5h5/GcKU63ij8Ajki5KTefdU6+s66XL3eDquqfKxqAN73/3yAiawAPARt4ZT2Au0VkoKq+nULz9ueLUjvrykT9PvoAn8Ss7+8EFXpfwqhilFNBrxSWs66bydah15GMOfgcL/Jlns/GDGmIVNsfPG3Fnotr89Gi+lcWpa0aoNQ8ue3YusFjRjUkfj9u85/+y0Cz/zwaVTefWdi/j2VFJFfGgNEAIrI8Rs1zTevWpap6fRmatOez75xCkCMrJgD/s8pO8Q4oS0ZEHhWR/bxI9FJ/dhmMTKrNvTH7sjTwB6v4GVX9NE59DoejS5JFRM4xwOqYTfZwTCrHEzE5nf0Lo1HAiyKyc4ptu4ictokypCYdExcS3IS/AuzdQTbhZUuR5siESs9ntwOnYKJerwbuB17AGHJaWRu4AXjWi85IEzeftU0W77cAIrI48CiwlnXrIlV9POXm7M83rwxOaA5H1dAkElrztEi+rPPE2FGNc1FWR1ldyP1CkB0VORjkIhB/+sAlFE6t7TZ/6nbTVlwmjba75cJzYAvi3htBUn1viMiymP2N/0DgZFV9MEm9KeLWEdWDPXZ7ikg5A3PnYdbAp2AOXG8CHgc+9T1TC+wG/EdEzky5/ajvpnMICtIR1sH1mMAgv/28NU1F2geHbj7rnNiOHvbBZUVR1Q+BERgl11Z6Apcmrds7E7IPTD9OWm+VEeX4k2RMjPT9fzqwu6pGBUFmxdrW9SdJ0qM5MicwfkU0k/ls6qAv5o0fPOMfiPyKYJLqjbQXp6XSSHOTbd9Cxc1nFvZ8thhGsanseD4DTwHrW7euUtXjytRsaD5zCkGOTFDVFhG5HHMg2co6wJ4YOchSWQ1zAHSCiFyLkTltdyMjIusBdxL+ckxQ1bEx+gHmUH0pq+ySmHU5HI6uSchjudwNqupMYGbErYtEZAOMk+S6XllP4B4R2UJV34z4mVKxP5/zYA8S9ftYDoilYiEiR2Ak41v5AthJVTtKxJ5tkAFnPOzMzCF46FbW+UxV7bS0wE+br2OBPwPdvOJBwFMiMiSNPM0iUkM4taIbu0Hs+ayniCxeKSOgiHTHOIltZd16CDM20sa93xyOEuieXzinJRcIbKSmRqLWBamhqDLkJ2NpwGh6NnLy5Kl9jkDlcn56d+imLfmmBwT5pZLsgCBfK8uJVUMNOffeCJLavsh7BzxC8CDrOlW9KG6dZcC9N6qHqL/dskBjORpT1QXABVH3RGRTjP11G6+oBjhLRJpV9dyUumCP3Xmq2hT5ZNel4nYeP944eIygmlMLcGCZUsm5+axz8r51bZ+ZVBxVbRSRKzBBP62MFJH+qjo9QdVRn+29BPVVHao6U0S+xaR0a2UtTMqbpHwInFFifH+ddb2HpyLl5w5VfTZmn2ynCjceOjfvAwNbLwTNdD4bN3jGEyOn1N0L7N1apvCHHZ5c8+zR23+wIEndOXJra8DXiIX5hTM/S1JnFRL1fV4LKOvvyXM+HQNsZt36N/DHMjYdms+cQpAjS64FvrbKLhSRKJnZYtkEuA740lMNOkFEhojISiLSU0QWF5E1RWR/EXkIeB3Y2KrjO8IKP0UhIithFDX8vI6JynE4HI5isRciWUfkvAUMIzhn9wSuTFq3pwy3mlX8adJ6q4zPMYY6P0nGxJ6+/38P7KyqMxLUlzb2gnW2qs7OpCeONOgQ85mqzlbVszBR0X7Vs42AtCKkV2GR/G8rcaW0q5VPI8oqMia8g+AHgO2tW2OBfcuk3GPPZ5+WoQ2Ho2oYNPTrRixZ/hbNZ7YOPhPNjxvceC3CUdatYSMn99k/cQOas+eIhc1NX36ZuN7qIrSOiKMM7dEPqPddjyGm7aeMuPdG9fBpRFlW6+BXgW0JK6GfJSIbptSMG7vtk9m+SEQ2AsYDvX3FeYwz0H1laE8A+5D+07TbcZSFd63rVUTK65xdJE9Y14JRN0/CQOt6AW6cRmE7if0ipXq3Bg4v8Z8dgLVFxDPrJeiT/dmcQ1AnRtF3g9cyUIi9j0iFnHKHVbRk81Jztk5ab17z9nz24cRhTp3ajxcM/61VnNZ8FomnSj+B8PvmGuDwcimQiUgvwnPhe04hyJEZqvqjiFwG/M1XvCLwF+CkhNX3Anb2/pXCAmBPVX0nZrtXEs6RfI6TFnQ4HCVibzjWyaQXPryokH8A//AVby0ia6rqBwmqXgUj0ejHbbh8qOp8EfkC87tqJSQFGpPXgX1FZN8SfmYV63qYiJxvlY1R1Ykx++QicqqL94Bf+q4zjchR1dEichtwkK/4DyJydgoqQVHfS9t41tX5AOPg6JcAWQszF5UNzxnoHmAn69YEYFcvqr4c2OPdzWcORxucieZHUvch8NMBdU41rTVPbMYPbrxhxJS+x+Fbk+eFQ4HbktVsfTblI2e4DWHPm0tiosOTOrMrRhHqbyX4F0WpeZwgIrOssnPjrCkKHKC790bn5XOMg2NPX9lawOQsOuMptf8e4xjUqmpeiwlqPDCFJtyap33s38naIiLlthl7Tl/jCSp8KOYg6s4yNftzwvZxNyY6B89b1zmM403qjmMl8nlEWdL039tY1y+qqh2M5zBjYkvf9YisOlJORGRlwgGr9vfB0YnICS9Yb9jlt3muz4YM5Y2MukRzTt/OaXDvobB60noF2SZ4zbSkdVYpLxAMEvwlcF45GhKRdTABKCtZty5Q1VPK0aaPIYQDVp93DkGOrLkIs/H0G8KOF5Exqvp0CfXYBpg4fAjsraqvxPlhETkM2MUqfgaTgsDhcDhKwTaULCMiK6tq1lKPDxN0CAIYhTngjcuAiDJ3gB7mXYKOOFG/tzgM8f4lYUuCxgEwykNxHYJsCU03Hjo3doThRiLSLeMUArcQdAjqgTkcuT9hvfbY/VpVv0lYZ1XhOTh+DqzqKx5AGQ3MXmTM/cB21q0ngL1UdX6Z2hVgU6vYzWcOR3sI76KLHIIUSWvNExtFdZT2fVSNUQ8AQeq3HVvXa8yohtgpVwXZDL+0e84dlkYQ9TsZQHIVZgF+n7AOMJHoNpcRL2XoOgRT+YB7b3RaVDUvIh9g1ChbGQDcmFGXUNVvReQxwK9wtpOI1KRwCO72cO0T5eC4BsnsKW0iIltg5ku/wksLcISq/rtc7eLsPJ0WVf1cRD4ieEC9Ddk7BC2MKPtZ3MpEpBajUOMnrg2r2pmASb/eSj8RWUdVbVtPMcwh2TnezwgGF80D7P183GCfkdZ1HpgUsy5HB2CxHrWT581vWYCx+RlqGAHZOQRJbbfZNAXjP1RJpMK2zbTl+ueoDQST54kdpFvtTCDoEDRYRBZX1blpNiIiv8DYHJf3FStwgqpekmZbBbAdXmcCb7mUYY5M8aJx7Tx5OeAOEbFzgrbFMMwX+WZKjxT7EjgF2CyBM9AGGKOPn4XA7506kMPhiMGLBFPaQFBhIys+A+w5rV/COu3P9ZE7QI/kRet6mIjURD7ZiRGRJQnLdf4ni744UsMeu0tQZknWIohSo0lDgcLecLmxG409JpJKvRfEy9U9jrAz0J3A7mlv+i02hpBhx40Jh6M9VIJzhFA/fNKqtppkxdFcKIVETfMSWorNIsBeb2/QHXSov0w0ND92eVR1OjDdKi7beyNj7HVEM/BqFh1xpEbF1jwlYB+C9Sa8XikJEVmNoLM3uDVPFC8TTgVeNjuPiOyEOfjy/30XYIJhy+kMBOHP9YWqNpS5TUd6TLCu9xCRbpn0ZBHLR5R9naC+bQmnn7I/t8PwLOG5a+84FanqMFVdJu4/wg6UZ0Y8d1OcvkV8pjdUNckYc2TMowOmz1X0BX9ZLi+xxm5a1LYs7G2XCZJIrVy0JvSZcuSdQ1A09u+lJ7Brmg2IyA5eO/73VhOwfyWcgUQkB+xlFU9SVXUOQY7MUdUxEMqd2Bd4QEQWL7KOFlV9SlUPAfpjInB+A1wOPIXZiL6PicaYBjwGnIkxuKyqqhfETRPh5QF8FLD7+rcEqcccDkcXxnOIsQ11toE4C5owhmk/oYVsidify23Ao7F/L0sTVp6oBrYCbEOTGxOdmxcJR8lnPZ/NJuzcGGVgLBoR6QkMsordBjwa+zs9QESSvktCeF4h4z8AACAASURBVJLfUwn/Xa4BDqiASpV9ELIAmFLmNh2OTk9OxZ4jFqvpNt/+HlccITfPLqvN19gHSUXz7ayZW2ClU1G35imE/T6tylQVhN8bL6rqnEx64kgL+zu9roj0z6Qni/g2oizROpjw2HWqChGo6ncYpyA/ZdkXicgBwIMEbdU/ADur6gPlaNPC/lylZAFwZM/D1vVyBBUVsmBwRNn/EtR3gHU9E7dXi8Sbu+z32UFSQs7Vjo6I9CPstOuyflQBggTmMxU233Za/3UKPV9utCW3rl0mSmOSOkXFns+mja3/6sskdVYxrwCfWGX7Rz0YBy897yME9/k/ALuWMU2rzVbAylbZg2CUWByOjsDvCKeUGAzc60k4Fo0a3lTVm1T1WFXdXlW3UNW1VXUdVR2sqruo6jmqOkFVoyQni0JEfoaR/rIjYSZRptyDDoejy2Abvncu1kmyjCxF2FkjtpqPiGwCrGkVu4OQaKZhpHD97Bmzrt2BZRL8e8Gq77KIZy6O2Tfbg70RcM61nRhVbQaes4ozjcjByEzbxqukSjG7ALaChTN8R2O/32qAX6XZgIhsiHEGWtu6dZaqHqWqtgpfObDns2llViRyOKqCpWbMeA0rlYDEX/OkRz6/bERZ1MF6UQg5e474vrmp8aW49VU59ntjI/GlbyuBz0m2Bt4ios6BEc/NLLVjnm1pW6vYrSM6PxMJO6FnPZ9FOTKGHB5LxJ7PXnOqvwWx57MdRMROFZgIETkZkyLZb7uZCWytquPSbKtA++sB61nFzs7TuRgL2IpOR2TRER+HWtfNxAzAEZG+hBUh7so4rXlH51brelWyD/RKk8MIpiJT4PaM+uJIEa3VO7GCm/P5lqiUvxUhn5PQOrAlp7FVFbeZtsLmwCaBQtHb4tZX7XjZfGxxklEiYp/vl4QYzsIEIPr9Gb7ErL+eTFJ/iRxmXX+HETRxDkGOjoGq/gDsS3gTuiNwvxd13aEQkeWB8YQVGmYA+6aQf9vhcHRtHrWuf4Y5cM6SzSPKknic2x7sCzGpXRwWXorNMVbx/nHShqnq96o6K+4/wipR8yOes3N4t4uI9MI4K/l5yKXerArs+Wx9EclS4cp2RASSReQQns8+Izo1WZdHVd8H3rKK7d9fbERkW2AywZSWLcBRqnp2Wu2004c1Cb8z7e+Bw+GI4N49tQWRx4Olus8OT67ZI5seeT3Iie0Mkl+Y71lqunIABr4s3Qg7xz42cZjaayyH4XGMUqmfkiM5VTWfcA0cpdYzJ+LZOE6nvyasOu3eG50cVZ1BOG1YamuemEStg2OncvJUFWyFIDd2C2P/bnqRkmO8iNSKyD+B8wkGP3wCDFXVV9JopwgOtK6bgEoehDkS4gX12EoG23tBfSUjInuLyJ9EpHvMn/8dMMQqnqiqcR2zjycczOMO0NvmIYzKhZ9Ts+hI2ojIksAfreLJqvpxFv1xpMv4LRobCdvTDx8+qX/J6VJHTek3cOTkutXi9mXUlH4DUf0/q/itpwc3fhS3zlxeT7OKFtZI93vi1tdFsOf7WuCkuJV55xkPYTIS+XkD2LKC6y9EZA3Cdob7VHUeOIcgRwdCVV8D/r+9Ow+Pqyz7OP69Z5IuUKCFtpm24AICiqBo8YU2KXRJWqjiBhQRVHDBhUXcwB1RUXEBQVxBRUCRgqiIhTbdgCSlCrgBsshO26TQFmgpbZPM/f7xnLSTM5N0ZjKZbL/PdeWic9anzTBzznPu5T1kP2h8B7CwN1oJFCvqj90AvCW26kXgreqLLCIlcDvwRGxZPMK33E7NsazYjJyRwMmxxTcrk7Bb8YycicDcvhhIL3kPsFtsmTJyBof5QDxIrC8/z96ZY1nRN2hmtg/ZWf3XlqkKzUAVz8g5sshqD52Y2YcJrYF3z1i8CXiXu/+kp8cvwEfo/CCmDbiujOcXGdDc0/FJujGtu288rk8GA8xpSo3Hs1plrFg2/fGCA6AB9nw59U5iLXrSmK55uuDuawnVCjKdWuyDxX7qQ7HXD7p7PJBEBqb4PdybzWxyXwzEzCoJiZeZHnL3l3pw2A+iqgqFWAE8ElvW4/uiqMrQn8iu4nIXMCUKyO91Zjac7KC3Be7+XDnOLyX1Ezo/ozEg/uA5XyngYuC/ZnZmvs94oooLZwA/iq1y4KvFDMTMxgIfjy1ucPd4Oz/JEH1PXBlbPNPMcrVyG2g+QajwmOnSvhiI9A4zvyy2aNeKivZzCj2O0z4d47+zGyb8YNaKsQW1gK1tGHeAk/4Tna+ZwOziQsfRYXbT+EOBYzsdDq65bcrTRVexHQqia6J4oPKpxbT1NbMRhG5B8apzNwNT3f3pogZZvC+SfV2+/TtUAUHSr7j7zcBpZJfUnQb8qz9cZJjZ2wkZPgfEVm0Djnf3f5R/VCIy2ERVUeITaUXfbJnZNDM7vdA2jBn7zyYEbGR6wN3j7R7z9WGgKrZMGTnd+ysQn0grdkKmX4kqHcWj8R8ltPyRAS7Kqv9LbPFpUUZxQczsVcXcpGXsvzdwVmzxs4TJ+WKdS+eSsKAHITtzDaFqTwcDziv2YBnlea+gc3uE1cB0d4+//3qNme1JaIecaZESBkTyN6167RIgPnn2pQuwouaw6honfK5uxfiiKtMZZp7mUqBTSxdz/2MxxwNw8/jnXUu6tVlVMrsXv0+YRN9XWikJM5sBxO/xdF80eFwHbI0tK6qqQnRPX9T9fOQsYO/Ysj8Xe7AoIzpeVaHR3YvOdB/supjnqTGzacUeM7o3upPsYK8bgZnu3tNKqIU4jc5VOkGfZwNS9P9xvMrE8WYWrwhWiH0JDyZXm9kNZnaGmb0+HuBrZvuZ2UcJz18uJ/te+wp3v6vIMXyH2DUd8M0ijzXU/IDs77PLiqlc3l+YWYrs7+T/Eqp9yCCxaGrLIuIVG41PF1ntZ5ibfzqRrniyrin1l9rG1Im1K6vizze2m7F8fKq2seorZsl7Cfcvme6umdr8myLGEO5RPXEJnRPR2mlPX1TM8Yagb8RejwC+X8RxdiO0kM7UDKwEzjSz83rwU13IQKKEg3iVxj+7+787XvTkJkKkV7j7tWa2CyESPfOCYh9guZldAHzP3beVc1xmtgfwLUIUucVWvwQcV45ezCIypPyC8KA58+b48xTXOuyVwM+BT5rZRWSUC9wZMzsa+D3Zn31fL2IcHVljn4stfgxYUMzxhgp332ZmVxLeAx0ON7OZ7r60r8ZVIieSHWh7udqFDSqXA5m9skcAnyL7s2BnZgA/spBFc0kUbJQXM9uLEJgUr0T1k2JbvZrZBLKz+ut7ECw5JLj7KjO7mc5tAk82swvc/YlCjmVmBvyB7JaD/wCOdfdVPRps4T5J9nvs8jKPQWRAOx9Pzyb1M4cLMxYf1NBUdSxTi3l47ceQTnyntjH1u6Rz+cKa5pX57DX31v2H1+4x/mK3rKD45tY2/3nh44DahtTbzOhUHcTwn6hd2E79EXiGzsEM55nZb6LWJgPZl2OvXwZ+2RcDkdJz9/Vmdj2dJ+jfZWYHufsDBR7u28AYM/sCcEsh1SjNbC7hQXimbYQ5h2J9jFi1M3TNk48rCA+gM1sWfQk4utADmdnrgcWECiyZvgV8uZz301EFqniSz5OohdxA9i1CYmDm85kfmdmh7h5v5VmIEYRWmcd3LDCzjtacYwmt9LqylOwEn7yY2RGEoLVMf3P3eDshycHdnzGzq+hciWxy9Lqc1XhL6WJgj9iyb6ra8+Bj8E3vHAQ9EuMy4G1FHjKJ8zaDt9Fm1DWk/ovxiMGzuL3gCcbh/saKysTriVcFCtakLXH8+RT3XqtrGH+KG9MzlzlcV3/k2ngVQsnB3VeY2XLo9G/4HjP7pbsv7uHhU3SexyjW+UBjPhuaWQL4GdnVgTqNw/ScRforM3sXoV9tvKcrwIPA2eUIwIn+ZzoJ+B4wIccmzxHahP2tt8ciIkNPFAASf9g8190L6sFuZqfQOTPrBULG2FLg9vgD06jk9JGE8tXvIDsYaAlQV8wEk5l9iewMnNPd/YpCjzXUmNl44HFgl4zF/wEm93BCppAxNACZUerfcfeie4dHQcD3A6/KWPwc8Gp3j/colwHMzO4gVH3ssBV4o7s/VMAxTgN+Fb3cQggEuQa40903d7HPCELQ2bfIzlh9Bnhtsa0SzOxqsisUHOXudxRzvKHEzN4E3EPn75c/uPvxXezS1XESdK42BOE77uuEdmE9cZ+7512pLGof9wCds07/QfiM1o23SAHmrtxr99a2yieB0RmL/9fWOvKQQlt11TWmlhICSjvch9sf3Lh9c6LirqYpT3cKkp/VNPGVyXT6nZ7gDJz9cxzy5Prq5t8VMgaAeQ8cPGzD+uf+ifG6jMUvDvfhr7ql5sm8A1yHKjP7JPDD2OJPu/slZTr/awlZ45kOcPeiJ97N7B2ENj+ZLnX3gtsYSP8VvXfup3Ol/np3n13gcTLvw54Afk24Fn6gq+sMM3sVIQj/TLI7BXzf3QsNzu847njC3Gxm65//Ea6riwq0H0rM7Cdkty061t1vKfA4HyE7qOt2wnx6T93o7nm3HTGzc4F4ZYIzyty2V0rMzC4Hzogt/q57VrXD7o5xJtltv4rxC+CcfJMbY2PYlVAhJPMazIFqd+9JteAhpYvP/k3AW8qRFGVm/wUyW42f6+7fK/JYxwM3xBb/HThCAUGD0+zGqgWOdW4D7Xyovqb5V13s0kldY9VnwYp6v3ViPIJxXP2U5v8Us/ucOybtk062/wPYK2Px5rQlDloydfWTPR7fEGFmhwD30rlwztPAm9x9XZ7HGAes7YXhAZzv7nkl45vZl8muevQbdz+103aal5T+LIrc/j2hskUuDcCF7n5bL5w7SXh49EXg9V1sdi8wT+VwRaS3mNlrCBPPmRcnDxEeosdLtXZ3nHhAUNxGYE303zGEz92uyr4+SOiDWvCDi2hC8n46B7Q8Dbym3JXfBioz+yGhAkWmT7l7/AFJb52/1AFB36Zz1SOAz7u7ypwOMlG1sXgw40J3zzsbNhYQlKmVMHnzENACPE/ILnw94f26e459NhPaSf09x7p8xnIkoVd0ZkDLHe5+VDHHG4rM7Fays6ELCnrtIiCoVAp6KGtmN5Fdqehd7h5/2CsieahrSn0D71w9xfGvLq5uiU92dX+c7ICgTO2EQORngTShpW2XZd8Nvr2ouvmLhZy/Q21j6gsWglO3c/jW4urmQdECtrdFQeSPA+MzFm8kBCCsLsP5SxoQ1EVQ/FbCfdEzRQ1S+i0zm0/napkAJ7r7/AKOEb8P6/Acof3tU4TPMidkJx8OHEp2IBDAHcDsQuYUYmO5CvhAbPEH3P3qYo431ETzIg/TudXtY8DBhQQ7dBEQVCpvzGwzsZNx5AqKXw3s5+4FBfFK/2JmuxPmADOTpB14p7vnVf0pul+bSfjMOJpwn16IlYTnP0W3ge4ikeeX7v7hYo85VJnZJ4Afxxb/Bzi8mGCtAs9dkoAgM9uPkJyUWR2onRDY9I+ejVL6q9l3jN/fk4l/07kAxZak+xG31bT8K6/9KxKfxTmR7MpS+WjFuOZlbz+nofrZjUXsz4zlVlFRWbWcrOtBO7e+ek3Pg5WGmC6esdwCvD2fpL7+EBAUzU0vofOzwxcJ98hrOm2rgCDp78xsT0LWS3ctch4i9GC+ttA2AznOdwjhAvG9ZPd1zPRj4DPF3jyLiOTLzC4B4g8kC8rmyyMgKF/LgJPjFxR5jiEJ1JP9QOYkd/99CcY2JERtjx6icybAJuCwQiqt9OD8JQsIigJ/76CHE6EycJjZAuCY2OKPuPuVee7fVUBQodYTPnsWFbNzNDF6N3SqHNFOmAS7pwTjGxLM7GBCgH3mZ8BThIycvDKS+0tAkJmdRHY29nJgpqoDiRSnpnHcbiNJ/pfO9+VbzNJTFk1d+898j7OTgKB8teF2YU1N89eLKe1etyJ1CGlWAiMzFq+prGh97YLD173Yw7ENGWb2QbLbad0KvK23s7l7ISDox8AnYou/6e5fKeZ40r+Z2b7AfXT+DGgBDnX35jyP0VVAUKGWA8cVUv0lNo63EdpAZQbF3024DlZVhTxFrdzjLbYuc/f4g6nujtHnAUHRtfhtQF1s1fvdvRRzUNLHzGwecH1s8XpgWqGtD6P3y2TCZ9kbo5/xhIqQuxIqva4jBMw1Eaqp3dXD8X8G+H5s8RrgDe7+XE+OPRRFv8M7yP4++h3wvt78HoiSzDLbc/+70HlQMxtNGP8hsVVFV82TgaO2seorhnUOsjAeSUDNwqnNeQV2zL11/+FtozbWeMLngE0F3kB22/gO7cB/MBbiyZ/UV696qifjr2tK/Rzn9M5L7R8bRjQffvfk8nQOGEyiud1/0TlBA+Br7n5BHvsPp/u4hZ64f2ffsdH9RSPZrWNzzrMrIEgGBDMzQoDO98l+c8c9RGiB00iIYH/Y3XNGXEYPVQ8ADiK0xplJ5570XR3/zBL0EhQRyYuZ7UaYfM58GOKEqgN/zr1X1jGGEfrifgCopXOFnnw8RWid+JNib+7M7ALgq7HFtwMz9LC0MGb2YSDeYu0+wiRszrZJJTx3SQKCzGwMISPn1bFVBZdKl4EjysS6j1hGDjDF3Xf6cNfMDgAuAN5J7ray+VgKnObuRd+Im9m1wMmxxT9x93g5ddkJM/suEJ94+yvhsyCfjJw+DwiKqvndQ+dKVG3Am929qDLQIhLUNqZOtFA1ONP/KitaJ+cbSDO7cdxEJ/l+QivwNxQ4BAfqjcSXFlWvvrvAfQGYsyi1a3oX/h5rFYY5711U03xdMcccqqK5oQZgamxVr1eXLGVAkJmdAMQrwzwFHFRsG1Pp/8zsq4Tr2EzLgdp82mxFST6fAt5c5BA2A98lBJ4Vde0UVYK5l84VPtKECsIrixzXkNRFlTAHjnf3m/I8Rn8ICPoKoVVvpgbgSM3zDB5m9gvgI7HFqwgtt/pti5ooaeNaOldKSwNz9GyneGa2N6E1drzaU7+eE4nmxhcAs2Kr/g7UqHL94HcBlmhorFpIeDaS6Z6XaZ9RTOUew2xm0/h9E27j3NOjEyR3s4Svc9LrN7s/Wmw1oLjaxgkXGB5/rrIpkUi+ZeGUVb3esm+wMrO3EK5bhsVWfdLdL+uDIeXFzMYSxn1gbNV8dz8x5z66LpOBxMz2AM4HPkbnrJqdeZ5QSnoToQXOKELUZleRm7lsINw4X6yLAxEpNzM7Drgxtng94YYlPjG9s2ONIARBTiNk47yBUP4388JnM/Ao4cJiKfBn9+Ijzc3sHcBNdL4J30x4WNrrVW0Gm+gB+DLC7zHTbwkZOb12gWdmb6dzcO4/3f1vBR6jEvgLMCe26kZ3j5fSl0HGzL4IXBhb/AhhMvHZPI+xB+EGfg5QQwjw7qrNIYQM7KWErNveyDBcBRxSTCvFoc7MRhEycvaNrco3I8fInpwulfvcvWkn5x9N+K6Mtxj+lrurDZBICdQ1pv4KzI0t/vOY1S3HzT+hsIfas1aMnZT0yjon/Rbc3kiYQIs/zHgW+Bduje7pmxZPa8mrZUou826w5IaJqfng746tWlRf3Ry/DpI8RFWd/w4Mz1jcRqgStLAXzzsamBdbfL27v1Dgcd5IyEzPDCJ1wvgX9GyU0p9FWcT3EpISM/3A3T9bwHEOILTdmQ28hc5t9OLShKCTGwkPaouuhhFdsy2Nzpnpcnc/q9jjDmVmdizwZzpXW3qeUHnlvjz2fy3ZcwKlcuPOqkiZ2VsJ48+8D9sCTC60coz0b2Y2EriL7MDqRwjtB58o+6B2wszeC1xF52q0kOd9pnSvi88vCM/PPt/fAgKj77AbyZ6H3ECYm36i7IOSPnH0neMmtCeS/yCrTbQ1tLVuOXbZ9A3P98nAulHXlPoSzjfjy904afHUZnVd6KEu5nnbgU+4e28FXhfNzCYSquTm+k4+zN1zJk4pIEgGJDNLAZ8hBAaN2snmPbUWuAT4cVeVhkREysHMfgZ8NLa4ZBk5UYbaCGBzKfu8m9nhhF6mu8ZWfdDdf12q8ww13WTk/Njdz+yDIeUlenj/K+DU2KqnCW2C1pV9UFJW3ZSVv5vQXqnwjJwwQXkwIVhtNCFwfBMhcPLRYtt55DhPVxmGde6+tBTnGIrM7DBCdc+BlpEzAlhECLDNtJLwIEclm0VKYO6dE8a1JvyfwMTOa+zqxdXNpzo9n9iasXzM6OHDRyUWTnlmQymO12F2Q+pSN86OLW5JptvfdNu0ZwtuwSuBmZ0J/Ci2eDPh+7jbQM6+FFVXaQT2ia262N0/0wdDkjIzs9cDfyO7Yu/n3D3+ICLfY04gBDfuRbgOThBa7qwjJG8UFLTWxTkqCQ9+461//0OoUqt2z0Uys8uAeEDVasI8zxPlH1F+zOz/CAFi8Xmej/bHh2fSc2b2CkIbr0mxVauBo/tTZVQzOwf4AZ3v26EMba2Gki4eokMIxPqIu7eVd0S5mdk4QhXieEDrFsJ79/byj0r6Um3ThLdYmMOLP1v+j9F+9KLqZ1f3xbjioopGlwLZ8/xuF9TXrPla2Qc1SHVRCQ/gK+6eFYzVV8zsQMKc+qtiq54lXDt2Of+tgCAZ0KI2OscB7weOIvsir1jbCBF2VwN/dfetJTquiEjRogePK8mO/n2IkJHToz60vcHMpgK3AGNiq65x9/f3wZAGlSgj7y9kZ+Rc6O5f7oMhdcvMksCPyQ5sayU8PFeZ+SEiCu7+J1kZOdwOvKMUDy5KzczmAdeQHbTSr24OB6po0vaS2OJ24HR3/1UfDKlbZrYrcAPZD8bWETIM+913sshAVtcwYTrmi4lVgzPnsuqalk+dT/96sGOY1TamvgtZVT/SCaNu4dRmBZH2kJndSJgPyrQOOMbd/94HQ+qWme0LLAReE1v1N8J1sCpRDxFm9iHgythiJwRCxwPd+lxU2ei3ZP//tpGQhfxw+Uc1eET/vo3A5Niq/lx55XBC2509Y6t+7+4n9cGQpEyioMY7yP7dbwI+7u7Xln9UO0SJQj8ETs+xeikwV895SquLFuAQrm9O7OvPsKgd0PXAq2Or0oTxxavxyxAxpyk1M+0soHPVUYC1Zv6+RVNbFvXFuDqEpBiuBj86a6Xxi/qpzfG5demB6JnF74Hjc6z+I/Chvq4KH3Xg+DXZz9k2E1oQr+h2fwUEyWARPViaAcwkZOnuB1Tkufs24EFC7+6lwO3u3u9Kw4mIRFVhGoFXxFatIWQ1FN3SoNTM7G2Em6549uNKYJa7v1T+UQ0+ZvY5QkneuKvoXxk5wwmBtvFWC064qFa1qCEmmpjJlZFzH+HzbFX5R5WbmZ0BXEZ28Pl1wCnKMCwNM/sR2ZlPDnzd3b9W/hHlZmZjCMGY1bFVW4A57n5H+UclMvjVNaROx/h5jlW/2zCi5dS7J/ePqlzzbrDk8xOrfu7wofg6c85ZVNN8aV+Ma7CJqpsuBqbEVr0EHO/ut5V/VLmZ2cGETM54VYWnCZmcT5d/VNKXzOz7hMrncRcBX+gvrVaiFit/ILQny9RKCOK/tfyjGnzMbBJhnueVsVXNhCDHf5Z/VLmZWS2hHfxusVV/I8zzbCr/qKScoupQfyW7WjWEB5Wf7ovnKlHV2d+Q3ZYRoB54t96fpRdVAb8E+GSO1c8BH3P3P5R3VNsr230OuIDsZ4StwGnu/ttyj0v6l9o7q95pCbuO0DEhUzvGtytf2O2bC455pOxBhLMbJ8x1/EpgQnydwS9Hr275aKGts2XnomT83wPvyLH6UeAD7t5Y3lFtL4zyHeATOVa/QLgm32mlMwUEyaBlZsOAfYEDCGVzR0U/aULU+iZCO7CHgSfc9QEqIgNDNxk5LxLKM/dp79joZvBs4Htk9+p+gJAB220veilMNxPKy4CT3b1PW1JEpaV/T/YDG+hBeXwZ+MxsFmEyMZ6R8wxwkrs3lH9UO0Q3gxdBVrsXUIZhyUUZOdeTnYEOoTrTJ/p6EtfMJhPGuF9sVTshw7Dsk50iQ0ldU9X5uH0tvtycv1ma9yw8svnxPhjWdrNWjJ2USCevA4u3EsSwbyyqXvPVvhjXYGVmY4EGQrukTG3AhYSA0j4N2jWz44BfAnvEVj1HuC96sPyjkr7WTRtlgD8R2mv3dRby64D5hLa8mZwwvqvKPqhBzMz2J3yejY+t2kiY57mu/KPaYSfzPP8jBDeuLfvApE+Y2WsJga7xIDYIz1s+R6gM3usPH6NkjQsJlahzdY/4PeEhrirx9SIz+wLh9xCvYA6hotjZ7v5omcYynVCdPFdwWL8LHJe+NfvOCUd5wv9M9rU6GI9gflb9lJaF5RhLXeOkV0D6EvB351rv8K0l1S1fLmWLa+nMzCqAn5EjuYdwDXwVcJ67P1um8ZxIaIEZTyyBUCDgGHf/V17HUkCQiIjIwGNmRxAeoseDggB+CpzbFw9NowpGvwLqcqx+gFDyut9U/Rgsosm5y8kdKd5MyHzpk5tdM3sP4T05OsfqC/pT1Q/pG2Z2PHAt2UFBbcD5wPfcy1/1wcwOicYVb9MIIRjoHX0dnDIYRWXebwDemmP1g4SKTPeUd1Tbg5U+CXyb7LZxbYQHY9eUe1wiQ9HshqqL3OzcHKvWgZ9eX91yU9kHBcxuTL3dQ+BHVsa8uV1cX9P8WU3elp6ZvZKQ+b9/jtV/JVTMLHtwvJntDlxM7snkZwnVEO8t76ikP4mqF/wWOCHH6seA97l7U3lHBWaWILTbuRgYGVudBs5095+We1xDQVRBdQG5K6/8Avisu28s76jAzCYSvt+y25aEFvZ1qnQ29ETvi/lkV03t8G/gW8ANvRGca2Z7AecQKszmmm9KR+c/v6+Dg4cKM3sv8HOyq0BD6NBxDfAdd/9fL53/SOBLZFe16/A4cEJfzCdI/1a3InUIab8BLJ5k0GE5zoX1Nc2Le+P8s5omvjJB+7m4fZDsakUAWwzOYLyv3wAAIABJREFUWlTdHG85K70ges7yeeDr5O5CtJHwrONid2/ppfO/A/gy2S1lO9xN+Dx7Iu/jKiBIRERkYIoy9hYC++RYvZpQavzqMo2lAjgD+AbZpaMhlI9+q7s/V47xDFVmdh6hhGQutwBnuPtTZRrLfsCPgGNyrHbgM+5+STnGIv2fmc0gZEPvnmP1Q4QHD71y451jLLsA5wJfIDvwA8I4T3L3LeUYz1AUBd/8DPhwjtVpwsOzT7n7ujKN582Em/3/y7F6MzDP3f9ajrGISFDblDrbnEvIlQlu3JJo4+xyVQuatWLspIRXfhv39+VY7bh9vb5mzdfKMZahKnooeAtwRI7VLxHuUX5Qrla6ZnYsITM9133aE4RgoIfKMRbp36IJ/x8An8qx2gnB6Z8pYxbyG4GfAFNzrN4GvN/dry/HWIaqqPLKQrLbxEPIBP98H8zzfJ3c92l/J8zzlOX9Kf1P9B75JuH+OVdlGAgBjlcTKgY91sPzJYAZwPuA44Fdu9h0LSGRpL4n55PCRZ9h84FDutikHbiVEBx0c0/nVaJqke8B3g+8pZtN/0hI4il7OzsZGGoax+02kuTPgPd2s9k/gd94hV+3+PCWHgWCzHvg4GHPr3/2rZ6w9+O8lezqexF7OOnpebfVtORVBUZKx8ymAdeRuzoPwMuEz5ZrgPqediGKOiy8L/rpKjjNCc9bPldo5TsFBImIiAxgZrYP8Ae6vulpIpRsvbU3SvVG7RnfR3hwHm+f0uH3wIfcfXOpzy/ZzOw0wgOIeDYnhAfXvwC+31uVmsxsX0IU/QfIHUzxAnCqu/+pN84vA5eZvQm4kdDyNc4JD/oudPeVvXT+3YCPA58GqroYw/cIwZbKMOxl0QOy84GvkLv0+zrgUuBHvTWpFwUCfQl4ZxdjeJqQkdMr70kR6V5tY+pEgyvIHYy+BfNfpUl+d8nU1U/2xvlDSff2zxGCF3Nlcr4EnF5f3fy73ji/dBZ9j/8GeFcXmzxEqPL2u96oPBh9bx1LyOTs6t6skfC90aftfKX/MbPPESpZ5MpCfp5QDfaHvRUMbWYHA18E5gHJHJs0A+9x99t74/zSmZlNItwX5QpyBLiLMM/z116a56kETiHM8+SqvkY0vlPd/aVSn18GHjM7ihBMmKtFUwcH/kOotrsUuA94srt766h67AGE79WZ0U+ue/XMc/yWUE2r5FUbJD/R7+2LhNZx8UrQmTYCtxPeD03AQzu7tzezCYT32ZHALELSTheBFEAIDjsXuLocLexk4IvuMS8GJnazWRvwd5ylbn67J9ofWDLluW7n2eeu3Gv3be3DDgSfYs4s4ChytSnboRXs0rbW9guWTV+r6uR9JEo8+Q7wQXLPC3Z4FlgW/awEHu7uGim6d3wl8HpCoOtM4I07OccjwFnuXlQLOwUEiYiIDHBRUM5FhFYmXWXk/JvQyuu6UvR1N7MDCRNEpwJ7d7HZFkIFh5/19HxSGDN7A3A98NouNtlKmMC7Blhcggj2YYRKQO8H3k7uiWwI5SxP7GlWmAxeZrYHoRz9cd1sdgehZ/Mf3P3FEpzzMEJg4ynkbsMIIfjkVHe/pafnk8KY2SzCpG5XE78vRuuvcfcVJTjfKODdhM+zmXT9vfpX4APlqlIkIrnNbJx0YIL26y1MnuXSCvzRnWva21puWza9ZxViZiy3isrK1GzH308IPMkV/AxwH8nEvPojVv+3J+eTwkQTq2cD36Xr382ThOuIa9z90RKccwIhk/g0woRuLh6N6cvlqlIkA4+Z1RCykLu6v95ESLa5Gmjo6YPN6IHtOwnXPHPo+ppnKXCyuzf35HxSmCgo59uEZIWufjf3sWOep8e/HzPbnx3zPLkqFEGYS/iMu/+4p+eTwSV6z36KEAjS3UPuTFuB/xECQzYRgqlHEVqAjSW8D7t6/8f9C/ikAhf7DzM7APghuSuHd2UtIfFmU/RTQXhPjAJeTe5qZblsIyQOfMXdNxRwfhFqGsfttotXfM3Nz6D7oLZMm4DHzNnkxiaMbTijCMkrk4BUvud3WJo0PrlwavN9hY9eeoOZHQFcRveVyOKeJnymvUB4f4yE7e+J/cidzJ3LJsK95HfdfWsB5+9EAUEiIiKDhJkdTcgc7KpSD4QI9kbCpN4S4D/5PFA3s/HAYezIyHnTTnZpAD7u7rpw7SPRQ+2vA2fRdYAOhGzPesJ7ogF4fGcBQtFEz2sIGTkzCVk5e3WzyxZC0Nq3e3LhKkNHVOnqImBcN5u9TMi8WErIKrvf3V/O49j7ELLIZgG1dJ312uEmwsTiM3kMXXqBmVURMrS6K90MoRx9x+fZXcDTO3tYZmYj6JxhOIOuS88DbCBMcv9cGYYi/cPUFfuMHJVu/YrDZ+g6CATgWYzF5ixtI3mnt65+dGcBQjOWW0WyYuy+WHKahWueOrr/bmo190tGjKy44ObJq1Qds4+Y2aGE1pOHd7OZA/ewo1LBPfm0Nzaz0cAb2HENPIXcFVU6PERo27skv9HLUBZlIX+XEGDW3UPwp9hxzdMEPLWzCpZmNpzQfuAodtzXd/dg9UXga8BlPU0gkeKZWR2hAnB39yxthPdB5jzPC3kcexwwmR2fZ2/eyS4rCPM8alsiXYoq9n2QUDk67wfgPfAvwr3itark2z9F12VfJLR5yzfAq1jbCAmSX3f3//XyuWSQm9OUGp9O2ycw/xT5B6P1RKOlOX/RtGbdN/RTUQD/BYRrp962kVB973ulSEZUQJCIiMggEj3Y/DyhLOsuee62hpCRs4EdGRijCRHLexHK847J81gt0fl/owel/UNULehyYFqeu2wjvB9Ws+M9YYT3wxhgH0JWTncleTMtIART6EZcCmJmexJaJ3yI7oPaOjjh4cjjhNYKGwnBaKMJ2RfjCQ9Bugv2yPQwcI6731rYyKW3mNkMQq/sriowxG0m/B5bCA+1XiBkd3Vknb6akHXaXUneDmlCK5rz3P3ZwkYuIuUwZ8Wk13q6/TIPQTv5aAV/DOxpc38+bWwyNyfBKJwxhCod+5HnNY/DUtJ21uJpax4o9u8gpWNmCUI7twsJVQbysZ7wvbGOcA38AuEaouN740DC9UQ+NhHKy39fAfFSKDObSriH21kiTocthPduM+F9+yLhs6vjHu6V0U93wWsdnFCJ6LPuvrqwkUtviIK5zgXOI/97mWZCa4mO+6JNhKotowifiYXM86wlPMz/leZ5JF9mtiudK6/mc8+Vr+eB+YRqfw0lPK70IjN7LeH9cAphbrGU7iVUQf9dKSrji2Sq/dvee1lr+0nm/j43/q/Eh18N9jsSfnX9lOb/lPjY0kvM7HBCtfn30H2SdKHShMr41wA3uPvGUh1YAUEiIiKDUJTpdQahjdjoMpyyBbgE+JG7Kxu6H4oi2M8D3lamUy4mlOa9q0znk0HKzF5FKD1+OjCiDKd8lJCZ/Su19eh/oge8bwW+Sqhc19vSwB+A891drX9EBoDZd1ZVe9I+j/NWej8LGaAx4Vy0sKb5L2U4lxQoeiD5YULCxKQynHIj8GtCZUy1WJKiRS3w3gZ8ie6rXZVKmpDM8TV3v6cM55MCmdlY4EzKN8+zllB5RfM80iNmNpHQmnAGoRrVxAIPkQb+yY6qfsvcfUtJByllE93TH0Go2DyDUG0x37ZMHZ4nVIpeCixy9wdLOkiRLsy+Y/z+JJKz3ZgJfhSFB4O0gq0MbcFsyR6r1jTOP0GVGAcqMxsGTCcEvs4gVF7MJwA/UzM7KuAvdPenSznGDgoIEhERGcTMbAxwMiFiudQR7O3AIkLE8k3KfB0YzOz/gA8QItj3LPHh1wDXAVe5u7IapKTMbG/Ce/d9hAz9UnoZuBm4GrhNpcb7v+ghWS0hw/Bd5J8tna//AdcSKt49UeJji0gZzG4af2iaxKnmnET+VV3y9Szw+3Q6edWSaavuLfGxpRdElVSPJ1xHzKLwidqdWcGOzPSdtuoRKYSZTSdcBx9HqFpVSk8SrnmuUlXXgSFqXXgyocrGESU+fDshueca4EbN80hviILbDgReC0xgRzWzBKHi2SZCtb4nCdXPHs6nPbgMTGZWQajeeyDwGkKAxW6Ee/w0O6qcrSV6P5BHe3CRcpi1YuykCq840N0PcKMKT4zCfHd3Eglnc9rYhPk62nksnaj474sjVj9292Rv7etxS++IqjruT/g8exXh82wUMJLwefY84fOsmdBa+sFyVTVTQJCIiMgQEZVmnUuIVj6K4iYSMyOWb1HW68AVRbDXER6ozwQOofAs+nbgH4T3Qz0hS0tZDdLrzOwthAzDmYRssmIqBz1OeO8uARbo4d3AZWajCN9vswjfcfsXcZhtwF2E98RtwN80wSgyOBx2j1WO2TZ+JulELZaeiduhFN62Ig3829yWpmmvf37ks0s0kTtwmdkkQuWVGdFPMQFjL7AjM/2vCqSQcjCzXYBjCNfAMwkP0wvVBqwkqqoANOqaZ+AyswMI18EzCfM8uxdxmBY6z/OsKd0IRURERKSvKSBIRERkCIqyL/YjTCAeQOjdPIoQJLQb8CJhknsT8Bgh++IhVUkYvKIsw9dGP/sRHozsRnhfODsyclqARwhR7A+5+4t9MmCRSJR9cSDhs+xAQvnxUezIwNhIyMB4gdAO7GFCBoYmugcpMxsPvI7wntiPkG26B+EzbSvhs2wTsJodGYYPKetUZGiou2fPPdLbhh+YbE8fmLbEa8w8hYfvDQcz2Iixydxa0vBo0v3BbW1bH1o2fcPzfT12Kb2o4tyr2HEd8WrCNcQe0U/HPdEm4Cmi6wjgUQXCS1+Lqmy8jvDe3ZeQhbw74ZqnlR3v3TXsuOZ5UO2fBiczS7JjnudAdszzdHymvcCOz7THCff0DwNPKChMREREZPBSQJCIiIiIiIiIiIiIiIiIiIiIyCBSaIlkERERERERERERERERERERERHpxxQQJCIiIiIiIiIiIiIiIiIiIiIyiCggSERERERERERERERERERERERkEFFAkIiIiIiIiIiIiIiIiIiIiIjIIKKAIBERERERERERERERERERERGRQUQBQSIiIiIiIiIiIiIiIiIiIiIig4gCgkREREREREREREREREREREREBhEFBImIiIiIiIiIiIiIiIiIiIiIDCIKCBIRERERERERERERERERERERGUQUECQiIiIiIiIiIiIiIiIiIiIiMogoIEhEREREREREREREREREREREZBBRQJCIiIiIiIiIiIiIiIiIiIiIyCCigCARERERERERERERERERERERkUFEAUEiIiIiIiIiIiIiIiIiIiIiIoOIAoJERERERERERERERERERERERAYRBQSJiIiIiIiIiIiIiIiIiIiIiAwiFX09ABEREREREREREREREREREZEOc5omHplOp18LYEZ6UXXzlX09poHg6BXjX9OWTpxgUAPsDYwCNuG2xizdZGY3LZzafF8+x6ptTH3InGShY3CjfXF18y8L3U9Kz9y9r8cgIiIiIiIiIiIiIiIiIiIiAkBtY+oKgw9HL7fVVzcP79MB9XMzlo8Znawc/iOD99J9pygH+2Nba+Kjy6aveq6rjebeuv/w1t03bilyOFvqq5tHFrmvlJBahomIiIiIiIiIiIiIiIiIiIgMQHPumLRPReXwew1OoXMMSBrYENvcwN9dUdl+95w7Ju3T1TG3jt4wtjfGKuWllmEiIiIiIiIiItLvzL5j/P4kkod2vN5sbbc1VD+7sS/HNFDVNaROxzgdwLCvLqpesyCf/WbfmZqF2Z7FnFO/LxERERERkd43dcU+I3dNtt8GvHrHUr/T4Rt7jhl3+/yD7ts299b9h7futnEaCb6Mc1S00SvTFW1/mrHcDl823dvix016Ylys19STQHteg3K2Fve3kVJTQJCIiIiIiIiIiPQ76YrEMeZ+acfrXRPDXgc82IdDGriMjwCTAfD0Xvnu5saPMH9dMacc4RwIKCBIRERERESK4thNCed/AG7p/AJRhqBR6W2fc+yg7QuMX41Ztfb0+Sf49n+zBcc8shVYPO8GW7ZhYtVvgRMBcHtzxbCq04Ar4sf1dGIstuN1ZUXrGxYcvu7FXvuLSK9QQJCIiIiIiIiIiMggVddUdRzYYUXtbIwr8XBERERERETysqR6za3ArX09jv5sxnKrqKisOjNj0eNjRo/9+PypzTkDqOaf4O1Hr9jnE+3p1rnAbgCW5lRyBAQZZFYI2qpgoIEpsfNNREREREREREREZKCpa5gwHbdfFrPvvBssCYwp8ZBERERERESkRCoqUjWQkchh/HL+Qfdt626f26Y8vR5jScdrNw6fe+v+w+PbeYKxGS+fK8FwpQ+oQpCIiIiIiIiIiPQ7bn63YRd1vE62pdf15XgGink3WHLd3uMPT7TbhzHeDySLOc6mVGpP8O37OukjF1evvbNkAxURERERkQFtTlNqfBu+W3rbLquWTX98S3fbzrvBks++YtKEyq3bRtqWxOqFs5tfKscY5z1w8LAN65/bO5HGh++abLl58qrN5Thv2ST8EDLK+CRgRV77OY9nvEq27r65Cniq0yZuY23HwXU/PkApIEhERERERERERPqdJVNamoCmvh7HQFHXmLoFeAUTq/ZPpBmB9ex4rZU2lvYdM8uWrFBGqIiIiIjIEFLXmKrv+LMbf1k8tfmyt98zaZeXX06fi/mHgUkJjETly9Q1pu4z/MejV6+9Yv4Jvr1d1dw7J4xrTXABE6veU9HWNsaTCXxX2mc3pFam4duLa5pv6er8tU1Vnza3Y8Ira6uvXnNM9jYTvm/ubwyD5On6muYPAsxunDDX4SzwOoxkOgkvb2lvr2tM/dPgZ6NXt/w6c5zFCP8W7ameHKNDW1vLU8ume1uh+6Wt7aaK9LDt980bE8kH8ty1svNxPOsO0jIrDznPFjo26R8UECQiIiIiIiIiIjLwTQayJ6ONR3D2L/Rg3t421khsf13Z6goIEhEREREZWmo7/mBuj8xsnPD6pPkfsZz3Fwc79tMNE6uOmXeDvXv+Cd5e2zhhhiX8OqAqtm3SjakGf6ltmnDe4qlrvpvz7G6v2zEGz9kGy9zfDMwIL3hw6op9Ru7qrb8ETsqxeRKY7HDFholV75p76/7vXnDMI1u7+wfozktb0kcljAXF7p9pWKJqX+hUtScvS6Y8twpYVfAJ3fbHtieAtL9sybVZ25iP3V4gyLJbhs174OBhO2tPJn1PAUEiIiIiIiIiIlIww2z68tF7LJu+4fl8tj/sHqvcbePoXfPdvlRmLH/1iIrdXhheP3n9C+U8bx9aBzwC3JWwxB/d2eyk/17oQQwbl/EyPaq5eX3JRigiIiIiIgOL+wFJYwm+Pbhno8NjBqOA/TK2fPuGCeNPrm0c/7iRuAXYJVq+Duwp8CpgYsfG5v6t2Y0Tly6qXn13CUY5ctd06wJgeseogWeAtdE5J2RsO7d19xe/AZxbgvMOKHX37LkHNqxm+wLzfzVNefrlrA19R4Ugx5+rXVlVZe18DLe3Am8Ahtc1prbgPO4JW+Ckf7pkasuj5fg7SP4UECQiIiIiIiIiIllmN1Z91c0mATj2aEfWZm3ThOPN/YxaqqZQGU0Awv2OXzHsxd2vysywnHeDJZ+fkPqYGx8aQ9UbqSRR15jaBjR62i9bPK3lT12df05TamYaTux43bYtff6y6WubM7epa5wwD/NZO7ZpOWPZdG+b1VS1XzJtZ4O/u6LS9mbLMMJ5faVhV68f0fKbuyd7a0/+fS7AEn9veMUePTlGh+aRT23q6XgSL/GahbObX4ovn9048bCiDug2NqPt2IaeltMXEREREZEBzOi471rncN6eY8Ze01EdprZh/NFmiT8Bw8OmXAiJ3YFdwB5OuH92UU3LLY67YVbbWPVJ4JLoeEknfQ5wSglG+croB3N+32b2zaXVa+7vWDmnIXVs2rgW2D36S51Z+7e9L1r8f8+sK8G5B46tw84Edt3+2rmuiy3HdvzBsMNo4yEgfg88AuN15v46w86ua0pd3Lat5cvFtD+T3qGAIBERERERERERyeLYcThvADC8saZx3E9HWvJqc94Z23QEMNmwya27bzrl7fdMmnPz5FWbZ6zce++KiVXzwafEth8GzLCEzahrTP2wvrr5U7nO3w4Hm3P69p2GV14CNHfeyqeQsc248a8/a3ZD6pMJs2+5sQsZES3hvDbNYdqYLakPzFg+5tieVCu6Y8VeExK29Zli9880evP4dwFdBkflI1cwUI8kGLe9PDxqFyYiIiIiIjyYaGfuwiObO7W2Wlyz9ra6xtSNwMkAbrY3gEG9j9h6wsKMaq2OO9X8sK4xdSJwRLT4mBKOsRX3Dy+qabk6vmJhTfNf6hpT57MjGGkkra1HA78t5kQvjGhenHr5FXv2YKzbveXIp8pS0XZ20/hD8cSXMhatbWvddmUXm2dWjT08j8NX4pxXUZE6dN4DB79d7cT6BwUEiYiIiIiIiIjIzuw6kooFuNdkLFtLiLjJmCT0ms1b0ufVrqz6SUUbi8EO7FgBrCaUk8/MKDynrrHqzvrqlptKMcjn16/7thufzljUGp13T2C3zHFWDBv+C2BeKc47KHlGNqjbusPuscoxW1LvAj8OeDOwF7AFeMphSaI9fdWiI9c+0lfDFRERERGRXrWmImnH3Fq95olcK924xTwEBEXubm1Nv3tZ9fpNOY9m3I5vDwjac9aKsZOWTHluVQ/H2A52Sn1N8/yuN0neBO2XbH9piTdRZEBQVOV1QzH79oXahnEHmCVvA0ZGi9zNzsiVKGOY1VK1V+dl3A/8sN0S9S8MX7N6fNueI1tbh70Z4zTwU4BE2NDnbFj/3M+AD/bu30jykejrAYiIiIiIiIiISL93KHgNkDbnskR78hX11c1V9dXN43GbAazv2NDwc6zNOoKBXjL40nAfvld9dfPeY1a37GVmpwEZ5cPt86UapJt3BAP9x81O2DCiZdf66uZX1VS3jHZPHwO07NiYE45uqHpjqc49CG0P9HJjtzFbqu4Gv54QRPUaYAwwATjc4IueTNw/uyF16dxb9x/eR+MVEREREZFeY3+69Yg1T3S5Nm2dq7k6VyybvjZ3MFBY32n7yvbk2K42LcAj9dVrugkGgrbW1auB7e2QzTtVwRm0ZjVNfKVZsh6o2r7Q7euLp665Mdf2c1bsPYZOxWX8e+tHtLxpUXXzlUumrn7y7sneuuDwdS/W16xZXl+95gMG7wK2tw/HOK2ucXxN1oGl7FQhSERERERERERE8vGSYfMW1axZkLmwvmbN8rrG1DeBi6NFuwMHA0972t9WP63l3x3bzj/B24Gr6pomzMT9fdHit8xYPj61bPraWDuwIjlXtLWNPHvZ9Me3dCw6H09Tw221DakPm/GXjuXtCTse+Fcxp0lvXdeSqKjarwQjJvmytex8qzJzG4tt7xl2SB57VLpxduvuG/+v7p49j67PaAsgIiIiIiKDm3t6vZntfMMdO6wnY/u2BLv0wrCyLJvubXWNqfXsSIAYVY7z9qVZd056cyKR/gswMWPxJfU1a77W1T5bt1ZsrqhorQNIJ33zkiktTd2dY1F18821Talzzbm0Y5mTOBdo6NnopacUECQiIiIiIiIiIjvT7s576mPBQB0SRn3aOy3a4Gk7evG05gdybW/pdL2bdQQEUTnM3gD0PCDI/CeLq9ee6bjnWj2tpmVBQ2PVi4SgJcx9crGnWjbd24DHit2/30ukx+GdJvRfBP95wpK30GaPJ4alk+3tHORwIvjJQDLa7gheHn79vBvsrVEAmIiIiIiIDHLJpKXTOe/CcjM637S5UUA0UY+ly3iuPjWnIXVsIsHvyAh8cvjWkuqWL3e3X5Rgs7iQcz0/vOWnY7ZUnQtMAjCYOffW/YcvOOaRrTvZVXqRAoJERERERERERKRb5qysr2m+pav127Ylmysqd8R+OP67roKBwnpbk/k6XaIy7ZUv7P5pp6XLaejz8XQdqWeAgwDcMsqlS2dumSX7l7e1pk/KUcXpCWBBXcOEX2P+R2A0AOZz1k9MnQL8pixjFRERERERKbPZTeMPdRJfLMWxEnDmwqnNa0txrA51TamzMC5hR/JGO+ZnLZ7a8tNSnqfD3ZO9ta4ptRDng9GiXdv32Lg/cF9vnE/yo4AgERERERERERHplhvd5npOn756fUNjlUPI6rSMXlM5JdPrSCcyl5SkTPuoVw7PJye1hSggCGy3Upx3MDKz8z3tw9xob28d+dvMFmxx9TVrls9uTH3A4c/b9yf9BRQQJCIiIiIig1S7Jyck8BNKczDOK8lxAMOstiF1Psb5GYu3mtv7FlU331Cq8+Q8d9oe9ozpgHa3kiT/SPEUECQiIiIiIiIiIj0SVd7ZHhC0M8l2S7dnbJnIc79SMGjbPj3pZS1LP6AsmrrmqoK2r26+ua4x1QhUhyV24NErxr/mtilr/1f60YmIiIiIiEjcjOWvHlFXMf4aNz8+Y/G6dMLfvmRKc1Nvn98Tvrn7dCIpNwUEiYiIiIiIiIiIFGjG8jGjK4YNv6gUxzLSP100de0/S3GsvuV/AqvueNXmicMABQSJiIiIiMig4yQew9pLc09YWflCT49R+7e996qobP+TYzUZi5/2tB29pLrrlt6l5G5jMwsMW8KfK8d5pWsKCBIRERERERERESlQYnhyV9KcXopjpdN2KzDwA4Is8V+8Uzro+L4aioiIiIiISG9aWr3qIeDzfT0OiBJWKocvBg7NWPxAoj159MIjVz1dyLFqGsftNpJk5v3pzfXVzZ/KZ18zf3NGPNDWkcOSjxZybim9xM43EREREREREREREemetbOp02vX3KOIiIiIiEhvOuweq6yoHHYznYOBViQTldMKDQYCaKh+diNQCewb/Rybz35zmlLjcWozx3Dz5FWbCz2/lJYqBImIiIiIiIgBclFAAAAEZ0lEQVSIiBQovbX9pcSwil+U4liJpD9RiuP0OUvvCbbjpak8vIiIiIiISG8avTX1bfBpGYvuTrxE3W2zn36p2GMaLHD4aPRyv9l3pmYtmta8pLt90vj5YCM6Xjt+ZbHnl9JRQJCIiIiIiIiIiEiBlk3f8Dw7JkgHlbrG1F+BKgCMh+unNr83n/3SljjUMurDt1vi4V4ZoIiIiIiIiFB7Z9UbLGHnZCzaCsnjFs5eVXQwEEB7OvmLRKL9I0QdpzzBz2csH1+zbPra5lzb1zWkPojZx7cvcP7b3rb2+p6MQUpDAUEiIiIiIiIiIiKSqQKYDIDz+hnLx49aNn3tpu52MMzqqDpuRzgQz+/1TPM9vTlIERERERGRoSyR4NMOyYxFBu3L6hpTBR3HSJy4qHr13R2vl0xbdW9dU9XPcPtEtGi/isrEvbWNqa+0t279Q5QgQ92K1CE452Ccxo5ysVuS+En1072tB381KREFBImIiIiIiIiIiMh25r7IzWZHL0dUVCTeC3TbHq22seokh9dnLLp2/gne3muDFBERERERGcIuwBJO1dtji4cB+xZ6LKdtRHzZmNHjPrVhw7oU+LujRRMMrqyoHP6LusbUBmAXYGRst02GnXhbTfO/Ch2D9I5EXw9ARERERERERERE+o90JdcCL29fYFw4+47x+3e1/eym8YcCl2csehmS3+u9EYqIiIiIiAxtd92VegUwpreOP/+g+7bVVDefYM45wAsZqxLAXmQFA/mdnvbqRdVrFvTWmKRwqhAkIiIiIiIiIiIi2y0+vKWltmnC18z9omjRWE8mVtQ1pb4wcnjytzdPXrUZoO6ePfewl4ed6pb4OrB7x/4GZy+qXvVUX4xdRERERERKw9w+v/1FIv2P7rbdti3ZXFmR3r59gvTK7rZvs8S9Fc7nM5Y8Gd/GsZsSzv8A3NI5q4+acwXYwujFuu7OmbHXN83ZNfw5/XB++/Q/6bRv7vQ76oHWymFP5Fp+Pp6mhktnLB//y8rKxHscZgAHm/uebonNwFo3VlqaW+prmpeXYixSWgoIEhERERERERERkU6mTW3+fkND1WswPhIt2gvnFy9vab+8rrHqcbBKGLaPG5WddjS+uWhq85XlH7GIiIiIiJTSopo1F+18q2DZ9FXPAXlvv7R6zf3A/d1ts6R6za3Ard1ts6im+bp8z9mhvnrN5Tvfqv9bOLV5LQX8m/fEsulrNwFXRj8ygKhlmIiIiIiIiIiIiHRyPp5eXNPyUcc/BjyfsWoY2IHAvtApGGiN46fUT23+SlkHKiIiIiIiIiI5qUKQiIiIiIiIiIjk8muMVPijZ5Vvz+G7GBb9eUW3W3p6LYnk9kxGS1tW+Xk3v9uw7dsk29JZ5d8TztJ0gq3bF9x/fzsHdT/INFxvxr3RSfIsKT9wtVYkmiva09v/HT3h9+W7r+NONT+vaRz3u5GWOAW3o4E3AWOBNLAW41+kuTWxmd8unN3yUun/BiIiIiIiIiJSjP8H8l+hhx7/KKMAAAAASUVORK5CYII=" - } - }, - "cell_type": "markdown", - "id": "d1df7878", - "metadata": {}, - "source": [ - "
\n", - "\n", - "
" + "The total number of routes we need to traverse is $O(N!)$, where $N$ is the number of cities. This comes from the fact that the number of possible routes is equal to the number of possible permutations of $N$ cities. Thus the cost of the algorithm is $O(N!)$, which becomes expensive very quickly when $N$ grows.\n", + "\n", + "In practice, however, we will not need to traverse all $O(N!)$ possible routes to find the shortest one since we consider pruning. The nearest city first heuristic also makes more likely that the shortest route is among the first routes to be traversed (left part of the tree), thus speeding the process. However, the solution can be anywhere in the search tree, and the number of routes to be traversed is $O(N!)$ in the worse case scenario." ] }, { @@ -188,7 +180,12 @@ "source": [ "## Serial implementation\n", "\n", - "Let's implement the serial algorithm. First, we sort the neighbours according to their distance. " + "Let's implement the serial algorithm.\n", + "\n", + "\n", + "
\n", + "Note: The implementation of this algorithm is rather challenging. Try to understand the key ideas (the explanations) instead of all code details. Having the complete functional implementation is useful to analyze the actual performance of our parallel implementation at the end of the notebook, and to check if it is consistent with the theory.\n", + "
" ] }, { @@ -196,7 +193,9 @@ "id": "f2b70f85", "metadata": {}, "source": [ - "### Nearest-city first heuristic" + "### Nearest-city first heuristic\n", + "\n", + "The first step is preprocessing the distance table to create a new data structure that takes into account the nearest city first heuristic. This is done in the following function." ] }, { @@ -217,27 +216,12 @@ "end" ] }, - { - "cell_type": "code", - "execution_count": null, - "id": "2eeecdd6", - "metadata": {}, - "outputs": [], - "source": [ - "C = [\n", - " 0 2 3 2\n", - " 2 0 4 1\n", - " 3 4 0 3\n", - " 2 1 3 0 \n", - "]" - ] - }, { "cell_type": "markdown", - "id": "f769627c", + "id": "9fc1a398", "metadata": {}, "source": [ - "The data structure we will use for the connections table is a matrix of tuples of the form (destination, distance). The tuples are sorted by their distance in ascending order (per start city). " + "Execute the next cell to understand the output of `sort_neighbors`." ] }, { @@ -247,15 +231,21 @@ "metadata": {}, "outputs": [], "source": [ + "C = [\n", + " 0 2 3 2\n", + " 2 0 4 1\n", + " 3 4 0 3\n", + " 2 1 3 0 \n", + "]\n", "C_sorted = sort_neighbors(C)" ] }, { "cell_type": "markdown", - "id": "51ed8312", + "id": "a63dc266", "metadata": {}, "source": [ - "The connections matrix can be indexed by a city. This returns a `Vector{Tuple}}` of all the destinations and their corresponding distances. " + "The output is a vector of vector of tuples. The outer vector is indexed by a city id, for instance:" ] }, { @@ -271,6 +261,14 @@ "C_sorted[city]" ] }, + { + "cell_type": "markdown", + "id": "f769627c", + "metadata": {}, + "source": [ + " This returns a vector of tuples that contains information about the connections to this city of the form (destination, distance). In this case, city 3 is connected to city 3 at distance 0 (itself), then with city 1 at distance 3, then with city 4 at distance 3, and finally with city 2 at distance 4. Note that the connections are sorted by their distance in ascending order (here is where the nearest city first heuristic is used). " + ] + }, { "cell_type": "markdown", "id": "44025bd5", @@ -284,7 +282,7 @@ "id": "6c91a99f", "metadata": {}, "source": [ - "Next, we write an algorithm that traverses the whole search tree and prints all the possible paths. The tree is traversed in depth-first order. Before we go to a neighbouring city, we also have to verify that it has not been visited on this path yet. If we reach a leaf node, we print the complete path and continue searching. " + "Next, we write an algorithm that traverses the whole search tree and prints all the possible paths. To this end, the tree is traversed in [depth-first order](https://en.wikipedia.org/wiki/Depth-first_search) using a recursive function call. Before we go to a neighbouring city, we also have to verify that it has not been visited on this path yet. If we reach a leaf node, we print the complete path and continue searching. " ] }, { @@ -333,7 +331,7 @@ " end\n", " return nothing\n", " else\n", - " println(path)\n", + " println(\"I just completed route $path\")\n", " return nothing\n", " end\n", "end" @@ -357,7 +355,7 @@ "source": [ "### Serial implementation without pruning\n", "\n", - "Now, we add the computation of the minimum distance. At each leaf node, we update the minimum distance. Furthermore, as we add another node to our path, we update the distance of the current path. That makes it necessary to include two more parameters in our recursive algorithm: `distance`, the distance of the current path, and `min_distance`, the best minimum distance found so far. " + "Now, we know how to traverse all possible routes. We just need a minor modification of the code below to solve the TSP problem (without pruning). We add a new variable called `min_distance` that keeps track of the distance of the shortest route so-far. This variable is updated at the end of each route, i.e., when a leaf node is visited. After traversing all routes, `min_distance` will contain the distance of the shortest route (the solution of the ASP problem)." ] }, { @@ -375,6 +373,16 @@ "" ] }, + { + "cell_type": "markdown", + "id": "9ac4875c", + "metadata": {}, + "source": [ + "
\n", + "Note: We could further modify the function so that we also return a vector containing the cities in the shortest route. However, in this notebook, we will only return the distance of the shortest route (a single value) for simplicity.\n", + "
" + ] + }, { "cell_type": "code", "execution_count": null, @@ -382,6 +390,7 @@ "metadata": {}, "outputs": [], "source": [ + "verbose::Bool = true\n", "function tsp_serial_no_prune(C_sorted,city)\n", " num_cities = length(C_sorted)\n", " path=zeros(Int,num_cities)\n", @@ -411,7 +420,7 @@ " else\n", " # Set new minimum distance in leaf nodes\n", " min_distance = min(distance,min_distance)\n", - " #@show path, distance, min_distance\n", + " verbose && println(\"I just completed route $path. Min distance so far is $min_distance\")\n", " return min_distance\n", " end\n", "end" @@ -425,6 +434,7 @@ "outputs": [], "source": [ "city = 1\n", + "verbose = true\n", "min_distance = tsp_serial_no_prune(C_sorted,city)" ] }, @@ -435,7 +445,7 @@ "source": [ "### Final serial implementation\n", "\n", - "Finally, we add the pruning to our algorithm. Anytime the current distance exceeds the minimum distance, the search in this path is aborted and continued with another path. " + "Finally, we add the pruning to our algorithm. Anytime the current distance exceeds the minimum distance, the search in this path is aborted and continued with another path. By running the function below, you will see that only three routes will be traversed thanks to pruning as shown in next figure." ] }, { @@ -472,6 +482,7 @@ "function tsp_serial_recursive!(C_sorted,hops,path,distance,min_distance)\n", " # Prune this path if its distance is too high already\n", " if distance >= min_distance\n", + " verbose && println(\"I am pruning at $(view(path,1:hops))\")\n", " return min_distance\n", " end\n", " num_cities = length(C_sorted)\n", @@ -493,7 +504,7 @@ " else\n", " # Set new minimum distance in leaf nodes\n", " min_distance = min(distance,min_distance)\n", - " #@show path, distance, min_distance\n", + " verbose && println(\"I just completed route $path. Min distance so far is $min_distance\")\n", " return min_distance\n", " end\n", "end" @@ -507,6 +518,7 @@ "outputs": [], "source": [ "city = 1\n", + "verbose = true\n", "min_distance = tsp_serial(C_sorted,city)" ] }, @@ -526,13 +538,14 @@ "metadata": {}, "outputs": [], "source": [ - "n = 12 # It is safe to test up to n=12\n", + "n = 11 # It is safe to test up to n=11 on a laptop\n", "using Random\n", "using Test\n", "Random.seed!(1)\n", "C = rand(1:10,n,n)\n", "C_sorted = sort_neighbors(C)\n", "city = 1\n", + "verbose = false\n", "@time min_no_prune = tsp_serial_no_prune(C_sorted,city)\n", "@time min_prune = tsp_serial(C_sorted,city)\n", "@test min_no_prune == min_prune" @@ -543,7 +556,7 @@ "id": "6088ddc9", "metadata": {}, "source": [ - "You can observe that, especially for larger numbers of cities (n=11 or n=12), the performance of the algorithm with pruning is much better than the performance of the algorithm without pruning. " + "You can observe that, especially for larger numbers of cities (n=11), the performance of the algorithm with pruning is much better than the performance of the algorithm without pruning. " ] }, { @@ -556,11 +569,13 @@ }, { "cell_type": "markdown", - "id": "c6375465", + "id": "732a3ffb", "metadata": {}, "source": [ "### Where can we extract parallelism ?\n", - "Unlike the previous algorithms we studied, in this problem we don't know beforehand how much work is performed since we don't know where the pruning cuts off part of the search tree. Still, we want to divide the workload among multiple processes to enhance the performance. " + "\n", + "All branches of the search tree can be traversed in parallel. Let us discuss how we can distribute these branches over several processes.\n", + "\n" ] }, { @@ -585,7 +600,7 @@ "source": [ "### Option 1\n", "\n", - "The first idea how to parallelize the TSP algorithm is to assign a branch of our search tree to each process. However, as mentioned in an earlier section, the number of branches in the search tree can be up to $O(N!)$. This would require an unfeasibly large amount of proecesses which each do only very little work. " + "We can (at least in theory) assign a branch of our search tree to each process. However, as mentioned in an earlier section, the number of branches in the search tree can be up to $O(N!)$. This would require an unfeasibly large amount of processors which each do only very little work. Thus, we skip this option as it is impractical." ] }, { @@ -609,7 +624,8 @@ "metadata": {}, "source": [ "### Option 2\n", - "Instead of assigning one branch per worker, we can assign a fixed number of branches to each worker. This way, each worker can perform the pruning within their own subtree and less workers are needed. \n" + "\n", + "Instead of assigning one branch per worker, we can assign a fixed number of branches to each worker. This would be a good strategy if we do not consider pruning. However, it is not efficient if we include pruning (which is essential in this algorithm). " ] }, { @@ -632,13 +648,14 @@ "id": "e3af7def", "metadata": {}, "source": [ - "### Performance issues\n", + "### Performance issues: Load balance\n", "\n", - "#### Load balancing\n", - "However, this approach has a problem with load balancing. Since we don't know beforehand how much pruning can be done in each subtree, some workers might end up doing less work than others. This uneven distribution of workload leads to some workers being idle, which impairs the speedup. \n", + "Pruning is essential in this algorithm but makes challenging to evenly distribute the work over available processors. Image that we assign the same number of branches per worker and that the workers use pruning locally to speed up the solution process. It is not possible to know in advance how many branches will be fully traversed by each worker since pruning depends on the actual values in the input distance matrix (runtime values). It might happen that a worker can prune many branches and finishes fast, whereas other workers are not able to prune so many branches and they need more time to finish. This is a clear example of bad load balance. We will explain later a strategy to fix it.\n", "\n", - "#### Search overhead \n", - "Another disadvantage of this kind of parallel search is that the pruning is now less effective. The workers each run their own version of the search algorithm and keep track of their local minimum distances. This means that less nodes will be pruned in the parallel version than in the serial version. This is called **search overhead**." + "\n", + "### Performance issues: Search overhead \n", + "\n", + "Another disadvantage of this kind of parallel search is that the pruning is now less effective. The workers each run their own version of the search algorithm and keep track of their local minimum distances. This means that less nodes will be pruned in the parallel version than in the serial version. The parallel code might search more routes than the sequential ones. This is called *search overhead*." ] }, { @@ -647,7 +664,7 @@ "metadata": {}, "source": [ "
\n", - "Question: How many nodes are pruned in total when we assign two branches to each worker? Look at the illustration below.\n", + "Question: How routes are fully traversed in total when we assign two branches to each worker? Look at the illustration below. Assume that each worker does pruning locally and independently of the other workers.\n", "
" ] }, @@ -682,33 +699,42 @@ "id": "d0bc4fdd", "metadata": {}, "source": [ - "In this example, the parallel algorithm prunes less nodes than the serial version because not all workers are able to use the global minimum distance as a pruning bound." + "In this example, the parallel algorithm traverses more routes (1 more) then the serial version because not all workers are able to use the global minimum distance as a pruning bound. Remember that the sequential code only traverses 3 routes completely. See figure:" + ] + }, + { + "attachments": { + "g26375.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1oAAAHpCAYAAACbY01sAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAACAASURBVHic7N15fFxl9cfxz7mTZtKWRQrIItAmadkqyCaI7IsisikKgsiOFOVHwQLNTFrgKs3MpC1Vyr6oQBWxZRGogFAoImURQUCRpSRpWcsiFeiSSTNzfn/cDEymycwkmZk7k5z369WX5s6duac0mcy5z/N8H8EYY4wpnBpgD2BXYOuuP1sB6wAju/73f8BKYAXQCrza9edp4AUgWfKqjTHGGGOMMabMbAZMAhYAqwAdwJ//AncAJ+I1ZsYYY4wxxhgzZAhwFHAf0MnAmqve/nwK3Iw3OmaMMcYYY4wxg1YAOAH4F8Vprnr78wCwTwn+fsYYY0xBiN8FGGOMqRhfBa4hvxGmj4F/4629agU+xJtW2I43JXAksDHeGq5tgO3x1nflcjvwM+CtPtZujDHGGGOMMWVlBHAVkCD7qNMTwIXAbngjX30xHDgIaAJez3GdT4FzsJuFxhhjjDHGmAq1HdmnCS4HongjU4UiwF7ATUBHlmv/CdiggNc1xhhjjDHGmKI7Gi+CvbcGKwysV+QaRgNXA2t6qaMNGF/kGowxxhhjjDGmIE6h9+ZmLrBJievZEXi8l3o+AvYucT3GGGOMMcYY0ycX0nND8z5wqI91CXA+PU8nXAl8w7/SPhd5PbJXZGlke7/rMMYY4y9bSGyMMSbdGcD1rP37YRHwA+Dtkle0tq8B84AtMo6vAA4Enil5RV2u+8d1wz4a9dFLQD1wRyARCE8eN7nFr3qMMcb4xxotY4wxKUcBd7B2YuDdwHF40ezlYkvgL3hhHek+xAvSeK3kFQGRtshEUbk87dAa4LcBCVwyuXbyMj9qMsYY4w9rtIwxxgCMBZ5l7XCLOcBpQGfJK8ptQ+BBYJeM4/8C9gBWl7KYWEtsfRVdjLc/WKYViv5KAjIrPDq8vJR1GWOM8YfjdwHGGGN8FwT+yNpN1nzKt8kC+C9wCN6myOl2AC5f+/TikmEyUpC/4q0Zy7SOIFNJsCTSGmma+erMjUpdnzHGmNKyES1jjDHT8QIw0j0NHECJR4X6qRb4O5DZvHwHb9pjScVaYjuo6EXAMVlOWwn82qlymhu2aninRKUZY4wpIWu0jDFmaBsP/BMYlnZsOd50vCUFeP31u15rR6Am7XgH8MsCvH7KoXgjcOkzNd7EW8O1soDXyVvTkqYDnKQTxZvG2JtVKDc4SWdmw7iGt0pVmzHGmOKzRssYY4YuAf4K7JNx/LvAn/rxeusAOwG7pv3Zlp6nqa8A1u3HNbKZAVyQcSyGt7GyL1RVokuiR4mKC3wly6lrgNsEuSxUF3qhNNUZY4wpJmu0jDFm6DoMbxQo3e1kn/LWm58DU8l/7W8xGq3hwEt4UwlT2oE64N0CX6vPoi3Rg1W0SZDdc5y6SJDmhtqG+SLS03ovY4wxFcAaLWOMKQPNS5q304Tur6L7iSM3h8aE7i/BZRcBX0/7egWwPd6Uu766HJjYh/OL0WgBHMna67JmAJOLcK1+iS2JHapJvQjYM9t5gjwP/HJEYsQfJ46bGC9NdcYYYwrFGi1jjPFBdGm0jiQHo+wN7I+3L1TK7HBd+Nwil7Af8GjGsYFMs8vWaC3BS+JLH2kqVqMF8DjeXlrp19oKb+1Z2Yi2RA/GIYxyYI5TP1D0hmQyee3UsVP70wQbY4zxgTVaxhhTAtHXo2MlIAep6gF4jdUmWU5/IVwX3qnIJf0OOCHt64FOsUs1Wu/i7ceV+vM08D4QBUJp5xez0ToUuC/j2NnA1UW63oA0tTXt5KgzCW9T6GFZTk0Cjwgy26YVGmNM+bNGyxhjiiCyOLKxBGR/4GBBvqFoba7npEkGhwU3nrTlpI+KVN66wDJgRNqx64CzBvCadcAnwIe9PF7KRgvgBbykw5SnyDFVz2/TWqeNrtKq81T0dHL9t1H+o47ewDDmNG7R+N/SVGiMMaYvrNEyxpgCcF9y16mpqdlPHT0I5WDgy/T9PbZT0eccdR4NaOCyC8de+H4RSgU4Gbgp49ieeM1IsZS60ZoEXJZxbGtgcRGvWRBum/uFIMEJKD/Fm/KYTRzhThLcGKoPLbRRLmOMKR/WaBljTD+4C92q4JbBrxDg4K7Gal+guo8vk0B4HmUR8Hhc4g+5te7/Cl/tWv6AN00t5VW8GPZiKnWjtSleqEdV2rFzgCuLeM2CmqtzAy1LW46UpJyt6IHk+J2toi2SlF87w5ybbRNkY4zxnzVaxhiTB1WVyJLIVxx1DkI5CGFfYGQfXyYBPIfyiATkr9Iujzds2/BpEcrNRoB38BqRlFKk8pW60YK1UxXvBL5X5GsWRaQlsrUgp4nIBEW/kOP0JPAkwi3xVfFb3fHuilLUaIwxpjtrtIwxphfNbzRvnuxM7gUcjHIYwpf68TKtwAJgQXBY8OEirrvK1/Z4e02l+zZQ7Dh5PxqtS/H29kpZDmyE14hUJHexu17QCf4I4Qxg5zyesgK4I6nJOWvq1ix0xa3Yv7sxxlQaa7SMMaZLZHFkY6mSA0XlIODgPgZYpLwLPIzwsNPpLGgY1/BWgcscqOOBW9O+TgBfwPtAXkx+NFoH4TW56cYAS4t83ZKIvh7dFeEMhB8C6+XxlLcQ5klCbm+ob3jS1nMZY0xxWaNljBmy5urcQEtLy05d66yOwAuEcPr4MivxpmktIMGCUH3ouTL/AOsCl6R93QKMLcF1/Wi0NsFLV0z3TeChIl+3pGYsmzFyzco1x4rI6XTfPyybt1DuEOT29rr2J2ykyxhjCs8aLWPMkJK2UfDBeB+61+/jS3QivEDSmw4Yb48/5o53OwpfadHcijeqlXIfcFgJrutHowXedMH0NU0VFYjRV7GW2Fbq6PEoZ5B/A/0hcL8g89qXtt/vHuB2FrFEY4wZMqzRMsYMajOWzRjZubJzT+Bg4AiE7fvxMp+ts4on4n9xx7mfFLTI0lqIt2FyylXA/5Xgun41Ws8Cu6R9HQGmlOC6vou+Ht0Vh5OAH+KtTcuHNV3GGFMg1mgZYwYVV10n2BLceYCx6581VlqtjwyyDWH/Aeya9nUT3QMjisWvRiuzsbwCmFiC65YNt82tCSaDhyEcgzd6uU6eT31PRe8UlT+NTIz868RxE+NFLNMYYwYda7SMMRVvetv0TTuTnYeKyCF4I1cb9uX5gvxP0YcRHgQeDNeGlxSjzjLxKt7GvSlhIFaC6/rVaN0NHJn29U3AqSW4blly29yaGq35hqLHAEeRX4gGwGpgkYjMJ8ldofrQG8Wr0hhjBgdrtIwxFSdj1Ko/IRZJhH9W8DqrgWgF0tMUzwdmleC6fjVac4Fj0r7+A95UuiEvo+k6kr6tV2wF5qPcO2r5qL9O2G3CmuJUaYwxlcsaLWNMRZj56syN1gxbcwDeiNWRdN9wNx/vAY8JMr96WPX8MtjPyi//Ar6c9vUlwC9KcF2/Gq37gW+lfX0DcGYJrltRZi+eHVwVWPXN/jRdin4kyMMIC5KSvHfKmCnvFq9SY4ypHNZoGWPKUg9rrfYHqvrwEquBRRUUu14qTwJfS/t6BjC5BNf1q9F6nO6R55cBF5TguhVr9uLZwRXOim+IyPfx1nTlG6QB3r5sfxfkPhFZsHrJ6n9YoIYxZqiyRssYUzYib0U2lLh8E+HbwCHAxn18iX8L8oAgD66W1X9za932IpRZ6TJHeG4BTi7Bdf1qtF4DxqV9fTFwaQmuOyj0ME336/Tts0Ol7TNnjDEFY42WMcY3qiqxltgu4sihin4b2B0I9OElVgAPi8j9JLnfFujn5Srgp2lfP4W3xq3Y/Gi0qvE+6KePhJ6At5eY6YfI4sjGTsA5VNHD6d8+dB8AjyIs6JTOhy4ac1Fb4as0xpjyYI2WMaakZr05a3i8I74XwhHA0cAWfXyJVmCBIPNHJEY8aJHTfTYRuDzt6+XAqBJc149Ga1vg5YxjX8WLuDcDNFfnBlpbW/dU9HAcDka7bRuQr3eBxxEWJKoSf5665dS3C12nMcb4xRotY0zRzXh9xhcTTuJbXXfBDyX/fXwgba2Vonc31ja+Upwqh4xDgAcyjm0NLC7ydf1otE7Gi3NPUbwRmE+LfN0hafri6fWdVZ2HicqhwD7AyD6+hAL/VvQxR5zHJSCPNWzV8E7hKzXGmNKwRssYUxSxxbHxWqWH93Ndx2cbBsdXx+93x7srilLk0PQF4EO6T9E8C7iuyNf1o9G6GTgp7esXga8U+ZoGcBe6VcEtg19JC7PZBwj246XeBR4XkUWa0MdtjZcxppJYo2WMKYgBTglsp2v6kDp6b+Poxv8Up0rT5Rlgt7Svb6f7XlPFUOpGS4A3gS+lHbscOK+I1zS9cN9xRwRXB78OHNw1zXBn+rb3Xcr7wN8RHpekLNpg+QZP2x5exphyZY2WMabfmhc3b6FVepiqHgEcCAzvw9PfAeYLMr+9pv1hd3N3VXGqND1opnuk+ypgM+CTIl6z1I3WfsCjGceOAu4p4jVNnlL74qnqQSJyEDC2ny/1CcoihEVJJ/nEmpVrnrERcGNMubBGyxjTJwOaEqj8B7hXkPkNdQ2LbAqQb3YHns44djrwmyJes9SN1o14f6eUT/CaSWvoy1CsJbZV0kkeIMi+KHvjrRvsj07gX4o+4eA85SScJyePm9xSwFKNMSZv1mgZY7JyX3Kra0bUHJBMJr8rIkcAm/fh6auBhxHudQLOfFvYXjaCQBte45Hyd2CPIl6zlI3WKGBJxuv/HvhRka5nCqyptWmTAIHdVXUvhL3xbg4M6+fLvQc8g/Is8Hh8ePwJG0E3xpSCNVrGmLXMenPW8I41HQcreowgRyj6hT48/QO8VLt7nQ7ngYZtGyzhrXx8EW8Prf8DNuzh8W8CDxXp2qVstFzgkoxjq4EbgFnA0iJd1xSJu9hdr9qp3lsc2RtlH7yY/v6EawCsAZ4HnkR5qjPQ+ZTt52WMKQZrtIwxAETeimzodDiHdUWwf5u+RDPblMByNxY4B/gx2dfRPYa3tqm/FuClGvbkS8CmaV8ngX9mea1G4MF+1PAFvNTKDXp5PAncB0xj7emTpkK4bW5NtVZ/tWuq4V4ismcfbwhleh94WpC/C/K0qv49VB/6uFD1GmOGJmu0jBnCprVOGx2QwCFd660OIf+pOauBRSIyXzrljoZxDW8Vr0ozAPsCFwCHkX/C23HAH/t5vQ+Ajfr53EzHA7f143lXAmfnee7DwEzgL3h7OJkKFl0arZOE7K3orgh7DSDZMKUV733uWZI8OyI54hnbIN0Y0xfWaBkzxDS1Nu0YkMB3UL6r6E59eOoHCPeKyp+qh1UvmLTlpNVFK9IMhIPXWIWBPXOcuxRvzV16g/0OsB39SyD0u9HaBW+tWfoeYavJnYa5GLgKby+x9j5e05Sp5lea19Vh+hV1dK+ugI296H2kMx9rEF5EWSTIsyR4NjQu9FKByjXGDELWaBkzyLnqOsGW4M4IRyAcB2zTh6e/ATwgyPwNPtrgAduvpqzVAMfiTbnL9W/8LDAbLyCiEfhFxuN/xBvZ6is/G63hwJOsvSHxQUAH0IDXgGb7vfcecC3ef5uP+nBtUwHm6tzA4rbF4wMa2EtF9wS+Bowb4Mu+KypPA0+ro085cedZW5dqjEmxRsuYQchd6FbVbFXzNRU9Bm8j2s1yPecztt6q0uQKuEhJrU2KAYvSjlcDLwDbZpz/Y7yI9ErxW+CUjGOZSYM74k0rPJnsQQor8KLuLThjkHMXu+vVODU7po167QFsPICXTKC8ivBsasphe3v7393xbkeBSjbGVBBrtIwZJNw2t6aGmkNU9RjgCGC9PJ+aBJ5U9E9Viaq7bM+ZipFvwEUcmAtEgFd6OWc/vPVK6VPu2vHW7T024EqL7zzglxnH3scb3VrWw/mbAmcBE8k+lSzVnDYBTw28TFPuVFWirdFxCHsIsjte47UT/Y+WB69x/4eKPgU8raJPTxkz5d1C1GuMKW/WaBlTwdw2t6ZGa76h6DHAUeTfXCWAp0RkngRknu1vVVH2xmsQjqZ7Y5TpA7xRmcuBfD7UXYIXi57uE2B/sqcD+u04vJGr9NCDJHAouVML1wVOAyYBW+U4dxHQDMzHgjOGlOv+cd2w5esv31qruka9lF0RtmNgn6HeBZ5FeFySsqjdaf+HW+va+kBjBhlrtIypMANorlYBjwgyD+Vuiy6uKKmAi0a8dSXZtABX4O0Z1ZdNWQN46XsHZRx/Hy/u/9k+vFap/AivmcwcbWgCpvbhdYYB38FLaNw9x7mp4Izr8YI2zBAUa4mtr+hXgb0RdsULnsk2dTcXC9owZhCyRsuYCjCA5uq/eFOf7q0aUXXfhZteuLJoRZpiWAf4IXA+sHWOc9MDLhL9vN4GeFMFv5xx/FO8EbQF/XzdYjgfmMHav8duA07AG9Xqj73JLzjjfeAaLDjD4IUODV86fJukJvcgyR4IewA7AFUDeNm3BHkqqcknHXWeGqEjnrV4eWMqizVaxpSpWW/OGh5PxL+FcgzK4XjTnPLxDnCnIPPqausWHSvH9vdDt/FPXwMuosATBbr25njT5MZkHO/EGyn6Bf1vYgphHbxkwBN6eGwh3pTBQnwYTQVnnISX6NibFcCtwGXAawW4rhkk3HfcEdXt1bsKsrsgX1N0D2DLAbxkO95ar8edpPO4VukT4dHh5QUq1xhTBNZoGVNGBjBy9SFwvyDz2pe23+8e4HYWr0pTROPwmqtCBFwMRD3eNML6Hh57EDgTf9L4vo6XLtjT6N6DwPfwGp9CsuAMUzBNS5o2CyQDu6l2barsfU+PGMBLtgKLEB6XTllk0w2NKS/WaBnjM2uuDPlPV/sAuBq4Eu/fv5g2xWscdu7hsVXANLz481JMZfoi3qjdqfT83+fWrseKGaHd1+CMy4E76f80TjMEuAvdqpotarYpYNBGt5CNDZZv8LTtf2iMf6zRMsYHsxfPDq6oWnEoSX4gIofjTYfKTXkb4Q5Rmdde1/6EK66fU7jMwJQi4GKg1sPbS+uYXh5/G5iJFwxRjLo2wwuomACM7OHxBN5UxmmUbjpj6t9tKrmDM17Ha4otOMPkram1aZOABL6WJPk1UdkT2I2ev//z8QnwN2Bh0kkuHDd63As2ndyY0rFGy5gScdV1alprvt61ifDx5L8p5mcjV3W1dffZL8mKlwq4uABvqmA25TIycjbeGqTeNvn9CPgjMAd4coDXqga+hbc26vAs13wXb53WwgFebyD6GpxxBV5AjSk4rQY2wntf3Qj4GPgQZImfVRXCXJ0baH29ddvPRr1gX2B0P19uBfAUwgISLIjXx/9pN+yMKR5rtIwpstji2Hh19BiEE4G6vJ5kI1eD0SbAT/A2GR6V5bxiBFwUwvZ4seb75zjvXeARvAboRbyAiGxbCWwCbAvsChyI9yEyW/BLEi/SPUzxp0/mawe8tXW5gjNW4qVCWnDGgOmOwD54o8F70vN6QoD/4W3GfSPIAyUqruia32jePNmZ3AsvXn4vlJ3pvpdcvj4Fnk41XqH60HMiYvvEGVMg1mgZUwTTXp+2ZVWg6miSnKSiu+T5tLeAO625GnRSARdnkv1DeCrgogl4tQR19YfgjcZFyL1OKd17eB/oPsZLThsOfAEvUXH9PrzO08DPGPioWbH0tZmOUL5/lzKnS+j7qM4DwKkgywpfj79mvjpzo45hHV93cPZR0a+j7IY3OtxX7wGPishCRf8Srg0vKWylxgwt1mgZUyCRtyIbOnHnWBU9AS9JKp+fr3dR5qrqvI76jietuRpUBvO0smF4018bgW1KcL1FQDNwbwmuVQjrAKfjNYW5moFymR5aYXpstJbhNfOdeE38pj088TVgH5D3i1qez2a9OWt4x5qOryLsr6oH4I38ZbvR05tXReV+HB6orqp+bNKWk2ytoTF9YI2WMQOQlhh4Il5iYD53ED8G7rG0wEEpFZQwBdgjx7mDISghABwEnAh8l/4v2O/JMuAPwC3A8wV83VIaat8PJaQteCmcD+FtpP0cyKcZ52yGt45vCt4IasptIMeXps7y4C50q4JbBr9CgINRDsabdtnb+sferMaLkl9AggXhseFnC1+pMYOLNVrG9NFcnRtobW3dU0VPxLurn89GwnHgIUHmBUYE7rhw0wtXFrdKU2I2guE1WfvjrbM6APgy3shXvlYBz+Ct73oEb0rdYPrvM5hHOH2gI0HyfB/VbfHWO6b2QUsCW4G8XZzayp/7jjuiZnXNLuroXl2N1770caqhIG2KPgQsEJUHQ/WhbGsxjRmSrNEyJk9doRYnIpxMz1NSMiWBJ0VkXrIzeWvjuMYPilyiKT1bk9O7YUAtXtDFl4Cd8NappTsXeBlvOtcbwFBYhD+Y1uxVEA3hBcyknAQyx69qyk3zK83rJoYl9hGR/REO7Ee4Rocgf1P0/kAi8KfJ4ya3FKtWYyqJNVrGZDG9Zfq4Tjp/JCI/BMbm+bQXgd8lkonbpo6d+mYRyzP+sZS5vtsPeDTj2ChgeelLKQuVnkJZYXQP4Km0Aw0g0/2qptzNfHXmRmuGrTkAOBhvm4XN+/QCyn+AewWZ31DXsMiSDM1QZY2WMRncxe56NYGa73StuzqI/H5O3gLuTDrJm6eMmfJccSs0PrLpX/1njVbPUvuqnQ9snePcZ4HZeM37YJpWWQK6M5D+3nwuyGy/qqk0scWx8Vqlh3dNM9yPvk0LXgLcY4m6ZiiyRssYum0mfCLe4ul8FvUvB+aj3BKqCz1cHnfsdCSgIKv8rmQQSQUaTAV2z3GuBRr0zhqt7FLfZ414CXHZtOA18TfgrW0zOempePuvpewH8phf1VQy9yV3nZrhNQcoejhwKLBlH57+IXC/IPPaV7f/xR3vdhSnSmPKgzVaZkiLtcS2UkePF5UJitbm8ZR2vISrW+Kr43f7+0tCNwa+iTe1Y2e8DWVTdxk78KaqPQHMAXnclxIr27rAacAkcu8ZNVgDLgrJGq385Tty+gFwNV5zXy6bN5chXQ/4O59vRfAasB2IjawUQFNr044OziF4369746WR5qToR4LMV9G7Ouh4wK1124taqDE+sEbLDDnuYne9YCB4LHAKsFceT0kADwvye+mQuxq2bfg05zOKSg/BCxH4Jnn+QgMew9uos7VoZQ0emwJnARP5PKWsJ6m1M010X/themaNVt+lgjN+jLfJc29SwRkR4JUS1FUh1MFLwLwM+ErXwXbgmyB/862sQSzyVmRDp8M5TNFjgG+Qf4T8KuDPgszZ4KMNHpiw24Q1xavSmNKxRssMGdHXo7vicCbeeoh18njKqyi34XBTuDa8pLjV9YXeBXynH0/8GDgIxPY+6dmOwNnkDrhYAdyKBVz0lTVa/fdF4Kd4TdeGWc5LNf8xvFHWIUIDeHuupQTxbpKMp3vQyBvAiTZlsDTcd9wRNe01B3U1XUcB6+XzvK6RrttFZY4FaZhKZ42WGdSiS6MbkOQYlLPxPkjn8jFwT3mtu8rUrdH6EJiH9wH2ObxNXpN4sdpH4k172yjtye8C24J8UqpqK0C+07TeA67FCyP4qAR1DTbWaA2cBWf0SKuAbCMgy4GLgRtA4qWpyaRz29yaGq35BsJ3VfVIst8w+IyKtjg4t3Rq581T66YuLXKZxhScNVpm0HHVdYKtwQMRzsS7i5ZrE8Yk8Iggc9pr2m93N3fLfHG53oXXSDUBd4NkWSemm+OtKdsu7eA0kIuKWWEFGIbXrF5A7oCLxcBVWMDFQFmjVTip4IwwsGeOc4dAcEbORgu8dau/BxpBlhW/JtMbd6FbFdwyuC8O38V7H94ij6clER5V1Zs6ajruKP/f08Z4rNEyg0asJbaVoqchnEru8AKAlxFudgLOnIatGt4pdn2Fo+OB/0C+o226Ld7eXqmgjBaQfPcEG2z6GnDRDMxnaGykW2zWaBXH3njrCY8m+5rND/BS9y7HG9keRFSA76cdcICN8TbJPrLr/6e8DxwC8nzp6jO9cdV1atpq9k5q8oci8n3yG+n6BJirjv6mcUzjUNkA3lQoa7RMRZurcwOtS1oPV9Wz8MIhcu1kv1JE5pLgxtDY0BDa/FPvB76VdmADkP/5VY0PLODCf9ZoFddYvM2PLTijG63GG/m7mM9/P7wN7AhiU4DLyFydG2hpbTkA4SS8ka5183jaKwg3BauCN0zacpL9e5qyY42WqUjT26ZvmiBxMspPgNE5nyA8K8ic6qrqOUPzzVhn4q3rSNkaZLFf1ZRQKuDiZLKnX63Au9s/Cxhy6wCa32jefJgMWz5py0nFnBpZVo3W9MXT6yePm9zix7WLzIIzeqTnAzPTDkRApvhVjcluxrIZI9esWnO0iJyCsj953EQF/uCoc11DfcM/il+hMfmxRstUDFWVWGvsoK61V98h9870HwN/xOHa8JjwP4tfYTnTa/BGdFK+CPKBX9WUgAVc5MlV1wm2BR8FvqToKY11jcWKvS6LRstd6FYFxwTPR/m5ik5orG28uZTXL6Ea4Fi8DZC3yXHuEAjO0ADehuJjug60gdT5V4/JV7QtOgY4WVROzmu/S+FZRa9Yp3Od2yaOm2jhJ8ZX1miZsue2uV8IEjyWJOcibJ/zCcKzwPXxYPx3tmA2RZ8Fdun64r94jdZg26wzFXBxIfDVHOemAi6uw9tXZ8iKtEQmichlXV8mUGaOTI68pAgfUHxvtKYvnl6fCCR+C+zTdehjJ+F8uWFcw1ulqsEHfQnOaMVruAZpcIb+Gm+NZsr6lsBaOVRVYkti+6GcChxD9imyAO+hXBtwAtdOrp1sASjGF9ZombIVWRLZU5LyU7xFztn2NQL4QFR+6ySd6wfpdKAB0N2AZ9IO3AJysl/VFEEq4OJ8YMsc55ZNwMWMZTNGjt5kdPuxcqxvIwjTW6aPS0jieWBE2uFPEyR2KEKUsu+NVrQlGkaIZBy+N1wXPrJUNfgs3+CMD4Ff4zVdFRQUlIvOwEsaIpjFdQAAIABJREFUTfkSyCD6+w0dsZbY+uroD/LcuqUDuNsRZ1ZDbYOtvTUlZY2WKSvuS251cHjwKITzUL6e8wldo1fBquCcIq8vqVDqAI/z+Z3sJLDrIEncSgVcnAt8Ict5qbUo04CnS1BXVtHXo2MRzkA4Q0XPaKxt/JMfdaRNGdyn2wPCT8K14WuLcEnfGy13oVsVHB18gowRT0VPaqxrnFOqOspAPV7DlW9wRhR4uQR1FZnOAX6U+gIYbvtqVb5Ia2QfQSYA3yP3TdlHEZrDteEHSlCaMdZomfLwWbhFknMQvpTj9E+A25Ikr5pSN+XFUtRXufTneGlbKdeBnNXb2RXiK3ijV8eRfZ1e2QRcpO3tdi7d1409GK4LH+JHTdGW6M8QZqUfE5WFDXUNBxVpo27fGy2A5iXN2yWTyefo/oFsKEwh7ElfgzMux9uXrwLpMLz3gc26DiwFGeNXNabwIm9FNmQNp4vK2eTYvkOQ5xGa68bUzfNzVoEZ/KzRMr6Kvh7dFYdzyf2h+fO1V6vit7rj3RWlqK+y6feAeXz+c/4y8FWQlf7VNCAVF3DhtrlfqKHmZJRze1nEraq6bWN942ulrCv6enQsDi/Qfcrgik6nc8eLxlzUVqTLlkWjBRBrjU1V9NKMw/eE68JHlbqWMhEEfkDfgjNuBTqLXFcvVPLfR/Cz57jAJWkHrgL5vwIWZcpE195chyk6ETg427mCtCFcXl1Vfb3NijHFYI2WKbnZi2cHVwVW/SBJ8hxBdstxeruI/EGTek24PvxMjnPNZ/RAvHVIqWlBy4F9Qf7tX039Uo3XhF8A7JDj3H8BVwK34HPARXNr8+5Jkmfjpb7lmspycbgunPmhv2hUVWJtsQfJ+AAiKj8N1YeuKeKly6bRche6VdWjq5/MfP8R5AehutDcUtdTRlLBGSHIOXU7FZxxI160dgnpb4AW4Le511jpOsDP8TYpT4kDOwyRLS6GtOaW5t2SkjwX7724Osupy0Qk1k77dW6tO6QDkkxhWaNlSmbmqzM3WjNszU/w9jXaJMfpb6JcM6xz2A0XbHPBhyUobxDRPYEHgXW6DqwCDgF53L+a+qziAi5mL54dXBlYeSTemrG9cpyeBB4Brq+vrb+zlFNXIq2RHwtyffqxIk8ZTCmbRgugqbVpRwfnGbp/+Ppw2Jph29l7DgC74n0v/5DswRkfAzfj/QyWKFhC7waOxPs5ehr4O/AfvETVj/E2Jf8SsBtwBLBexgucDzILM2Q0v9G8uXbqzxSdQPaNkN8RJDYiMeJ6i4Y3hWCNlim6rkjlicAZdJ+qtDbhWVGZvcFHG/xhwm4T1pSkwEFFdwYexvugAV7a0pEgf/Gvpj7ZDJhA7oCLBHA/cCnehyzfTGudNrpKq36qoqeTfZ0LwIei8ps1gTXXFnGKXq+aljRtFkgG/qNo+n/bVQTYITw63Frky5dVowUQbYm6SLfpZKDcFK4Pn+pTSeUoFZyR6/07FZwRw2t6iuizRquvOoGpIM0FLshUCHexu15NVc2pqjoZ2DzLqe8jzIoTv9xGuMxAWKNliiZt/VWuO6Jx4B6LXh0o/QreKMmorgMdwPdA5vtXU952wpvak2ut3qfAb4HLgDdKUFev0r6/jweqsp5cJnu7xdpid6jq0RmHLwjXhS/r8QmFVcBGS9fBa8rXwwvH+QDkf319Ffcltzo4IvgcyviMhw4J14Uf7Htdg9rGeLMRzgY2ynJeCYIz9AzgTLy9AbP9bklJAA8AU0BeKE5NppLMenPW8I41HacpegGfb2LdkzdU1e2o67jZFXew7T1pSsAaLVNQny1CFQ3lEc/+Lsr1wzqHXWlTdQZKxwML8T4MAawBjgO507+a8pJvwMUyvM2FL8fHEZDPth/wmsKv5Tg9DtyjSb28cWzjouJXl12sNXaEovekHxPk+fal7V91D3BLEWowgEZL1we+BRyC9z1Tj7eeKN3reB/srwHJO4000hbZQ1QW0f0D+5L46vgOpQrdiS6N1pHgclH5Q2Bk4O4LN72wnANrUsEZYWDbHOc+h/czW6TgDB0FHIgX1z8WrwEciZc4+gneOq7ngAUg7xb++qbSXfeP64YtH7X8eEUvwvse6s3LwCXhuvC8EpVmBglrtExBzFg2Y2RideKMLOlq6Z5BuCy+JH5HiT7gDXK6Nd4H2FRscQI4CeRW30rKLhVwcSHw5Rznvghchc8BF02tTZs44pyS1/YDytvAjZrUqxrHNX5Qmgqzi7XE1lf0pYzaO3HYPTwm/M8SldGPRks3AK4GjiL7fk/dnoTXlF+Qb8JmtDV6BV7EebrLwnXhC3o6v9BirbFGRZu6vmzHaxhvia+O3+2OdztKUUM/pIIzGsi9JrENr+HyITjDmNxSDVdSkheLSn2vJwpPSEIuDI0NPVHC8kwFs0bLDEjzK83ralBPU9UQ3gayvUkCjwgyO1QXurdE5Q0BOhb4K5/PNU8CJ4P8zr+aerUecCpeguAWOc4ti4CL5tbm3ROSOFdUvk/2xCpVdAHK7I66jvvKbYpJtDV6A94am88oGmmsa5xSwjL602htDbzay4OrgA/x1iP2tLj9r8C3QXJO1ZyxbMbIxKrEvzJuEiXV0b0bxzQ+mev5AxVtjb4A7NjDQ8uB+YLMq6utu6+M9/vpa3DGdODtEtRlTJ+4L7nVNTU1p6tomN6DmBThtoQmwlPrpvq6R6Mpf9ZomX6JLI5sLI6cLSLnZiyszxQH5mpAY42jG4u8QHqo0dF4H1zHpA4AZ5GRKFcGxgBn4YVcZPteWQP8CZgB+Bblf90/rhu2fMPl31PVc8k9PXCVqs6hitnl+v0daYvsJyoL6f5+/1pwWHCnEu8bM9BGaxVwO3Av8DeQ9zLOOws4h+7r5a4EOSef4mJLYodqUu/LOPziqI9G7VbMYJ5IW2RbUXk554nK2wh3iMq8UH2oXBNE6/AarlzBGR3AHylJcIYxfTd78ezgCmfF2SLSSO8hR6tEpLm6qnqG7cFlemONlumTWEtsKxU9n9y/SD9A+U0ykLx8ypgpNje+4HQrvA+tqTvwCpwNUsx9kPoqFXCRKywiFXAxE3izBHX1KG10dhKwVY7T30W5XoN6ReMWjf8tRX390RU5/zzd19IoSQ4Ojw0/UuJy+tto/Q1vdPNGkE+yX0IPxWvWU6OPncBYkLzuOkfboreiHJ9+TJApobpQJJ/n90fzG82bJzoTZzs4x+cx7TrlZeAPgUTg1snjJrcUq7YB2Bhve4Zz+XxKc08ULyV1Nl4DbUxZcV9y1wnWBC9AmEzv05ff6nqfuKWUtZnKYI2Wycv0lunjEk4ihPIjsk+hek3RmR3SMcciUYtFt8CbFlWXOgCcA3KVfzV9RoCD8D5gHZ7j3LIIuIi2RceQ5CwRmZBjdPaz7Qfal7bfWgnrC6Mt0RhCQ/oxVb2usb7xLB/K6U+jNRxw8l1r1fWcKN6GuynngVyezzO79vr7D5+HygDEHcfZuWFMQ+5RpwFQVYkujX5NkvJDvM1Vv5jnU58WkT8kNHHblLop7+U+vaRSwRkhYLsc5/4T+BVFC84wpv+aFzdvkQwkLwJOp7fpscIj0ikTQ+NCL5W0OFPWrNEyWTUvad4ukUhcLCLHkH3u/QsI0fiY+LxyW58y+OjTwO5pB94G/tzHF7kG5PnC1fRZwMVkWCsqO9MLwCzgD3jTBX0RXRLdmSQ/I/eIWwdwd6VtPxBrjX1F0WfoHpf/blzi27u1bp+j0AugRPtorbWu69cgZ/R2dqZIa+REQTLvTD8Wqg3tX+QNnT/jquvUtNZ8XUVPxPu5ytxwtycJYKEgc9pr2m/3cxuBHqSCMyYCB+c414IzTNlqam3a0RHnlygH9nJKB8JlceK/sJvNBqzRMr2ItkXHoITJdvcGEJXnVDQWqg3dXqoPIUZb+Hw0q7+OBrmrAMVUVMCFq65Ts6TmCFU9H9gnx+nLROSahCauK8ORgqzchW5VcEzwKZRduz3gcHR4TLgQ/+79UapGK4DXHKfi3+8Cydw7LKtoa/ReMkZkReSsUG3ousLUmD+3za2p0ZpvKHoM8D1ybfru+Ri4B+WWUF3o4TJ7b843OOMT4CYsOMOUoa7tMmbTyx5cKtoiSTkrXB8u0l5yplJYo2W66VqDNQVvfn22u/yLBGm2BEE/lEWjNQYvfOAsYP0s55VFwMXsxbODqwKrfqBoPlOYXhORq6urqq+v1AXOkbbIZFFpzjg8L1wXPtaXgjylarQ2xEsjTLkB5My+vMK01mmjAwT+DayTdvgTJ+GMbxjX8FYhquyPWEtsfYSjupqub5Fro2zPqyi3UcUt4dHh1iKX2Bd9Dc5oBmxKlikb7jvuiODq4OSu6dk1PZyiwO+0Wn9Wzmt5TXFZo2UAmPb6tC0DTuACvGS4YC+nKfBnR5ymSppCNfhorvS+fNwF8lo/nrcz5DXdriwCLma+OnOjjqqOc0Tkp3ibmfZGgYeAy0K1oYfKbASgTy5dcmltVbLqX3gbt6Z8nBiWGD91y6l+jgyUqtH6DpB+EyHvNVrpIm2R80TllxmH/xyuC+dae1gSTUuaNhOVH4jKD/E27M0lifCoqNzcvrr9zlJtxpyHjfBmTkzk820qemLBGaYsTV88vT4RSPwSOKKXU5YBE22z46HJGq0hrvmN5s2Tnckw8GOyNFiC3IHyi1B96F8lLM+Uh74EXLwLXI+3qN2PdUAATG+bvmkimTgP4f/o3nBk6gDuRpkRrg/7NuJWKKoqsbbYg2Sug1FOD9eHf+NPVZ8pVaO1AO/7Fbx95epBlvT1VVx1neCS4N9Qvt7t1dFjGusabx94nYUTaYtsK0k5TkROyjO5cDXe/lxzymh/LgvOMBUtuiT6XZJcSS83DAS5vWpN1U8u2OaCD3t63AxO1mgNUW6b+4VgMhhCmEjvkaUK3JuU5CVTaqcUMjjBVIaKC7jourM4ETiTnqdypHwC3OQknBl+TgUrtEhr5HRBbsw4/GioNnRgGYzSlaDR0uPwvgdTbgE5ub+v1rXH1fN0vwm1jADbh0eHfUvK7I2rrjO8bfhBSZInAUeT33quN1B+K8hvQvWhN4pcYj76EpyxBLi268/HxS3LmNxiLbH1VfQXwP/x+TrRdO8r+uPGusZ7Slya8Yk1WkPMdf+4bthHG350KsqlZI8PXoDSOBju8ps+SwVcXAh8Kce5vgdcQLcEwawL7AVpQ7g8MDxw44WbXjioEs2aWps2cXBeBjZIO7wqkAjsWCZ7LRW50dJxwNN8/vdfDuwIMqBGOtIS+bmIXJxx+MZwXfjHA3ndYpv15qzh8TXxw/FuOhxE7t/3SeAR4Pr46vjd7ni3o9g15mEX4DxyT1VOBWfMAAbNjRNTuSKvR/YSkesRtu/llDnx1fGfltEUXlMk1mgNIV0pObOAsVlOW4QwNVwbfrREZZnyUYv3oeZ0ck+3+yNeGti/S1BXr6Kt0W+KSkhFD8hx6jMozfG6+F2DdfuBSFvk913rdT6j6IWNdY0z/aopQxEbLV0feJLuU86+B3LnQF/ZfcmtDtYE/5nxgUkRDqyU98nmxc1bJKuSJ6CcDozL4ynLgXmicmWZTBevuPcmY2Yvnh1cEVgxVZAQPdwoUNEWJ+GcFBobesKH8kyJWKM1BDS3Nu+eJDmTbHHWwhPJZPLiKfVTHi5dZaZMVNRdY1ddJ9gW/F5Xg7VLjtMXJDUZG+zf19GW6MEID6UfE5Xn2t9o36OMNlYuUqOl6wAPAHulHYyATBnY66a92OuRvcSRx0ifCiS8FF8V36VMRn7yFn09uisOJwEnABvmfILwLHB91fCq35fBKPD6wCl405mzBWfA56PtFpxhfBVtiX4V4RZg2x4eTojIL9rHtE8brDcBhzprtAax6S3TxyUk0QR8n97/rV8BLrY0nCGnLwEXS4FrgOvwMeDCVdepaas5DPiFojtlOTUJ3DdU0jFnL54dXBlY+QKwTdrhpCPOXmX29y9Co6XD8TbrTh/RvBrk7P6/Zs9irbHrFe0+XdCbXh0t9LVKYdabs4bHO+LfweEMlAPI8XlAkP8p+jtBbgzVhV4oUZm9Sa0fbYBep2alPA/8EgvOMD5y29yaYDLoIlxID2u3RGVhIpA4YcqYKe/6UJ4pImu0BqG0vR1C9J4k+KGITGtf0n5VGd3xNsVXcR9QUiNYwC/o+Y5gyhrgNsdxog1jGl4uTXX+i7RGLhVkasbh2eG68Lm+FNS7AjdaWg3ciReckDIHOAWk4HeGo0ujG5DgFbqvbV0dSAR2KJM1cP02ffH0+kRV4nSUU4DN8njKMwg3xlfFb/V5jUnF3TAyQ1vX7IPfAFv28PD7wInhuvCDJS7LFJE1WoNM1zqsK4GtejllJcqV8WQ84o5zPyllbcZXqSk3fQm48HXKTVqDNQ3YOsupK4FfJ5KJmVPHTvVtzy4/RFoiW4vIi3S/ofKuqGwXqg+VWwpbARstHQbMA45KOzgPOB6kaFHlsdbYjxSd060S9C+NdY3fKtY1S8lV1wm2Bg9EOBP4Lrk3RP4EuC2ZTF4xZewUv9dEVdQUaDN0dd20uQZvO4NMCZRp9XX1l5bJtgtmgKzRGiQiLZGtEWYLckgvpySB3yedZIMNTQ8pFbeI3H3JrQ4OD54kSGOOPYH+KyKzq6uqr5y05aSPSlZgmVBViS2JLUA5sPsDfD9cH77Dp7KyKVCjpQG8UdZj0w7+yftair61QLQ1+hAZseOC/CBUF5pb7GuXUtOSps0cdU5COROoy+Mpi4DL40vjd/k8S6Li3vPM0BRti56Jcjk9bEUiyMNVa6qOsz23Kp81WhWu+ZXmdZPVyUvw9hwZ1stpf9aATm4c3fifEpZm/FVxd3fdl9zqmuE1xyl6EdmTMf+LcmXcif/KrXWH7BSgSEvkVBHJ3IT4gXBd+FBfCsqtAI2WBvC+X3+UdvAvwFEg8QFVl6euta8v0v3D0bK4xLcbjN+PaaNcJ+Gt9+1t38WUd1DmJKoTV0zdcurbJSixN/0Zxfd1mwoz9ESWRraXpMxFe9yr8k2SfDc8NvxsyQszBWONVgWLtkSPR5hJL+lLKtriJJ1zQ/WhP5e4NOOPitzo013oVlWPrj5VkIvoed56yvvAzPjq+DVDfe+RyFuRDaVDXgY2Tju8igA7hEeHW/2qK4cBNloqeOtr0gMpHgKOBGkfeHn5i7ZFL0Fx048pelVjXeP/lbKOUossjmwsATkJ799gmxynx4F5jjhX+RzKUnEbr5uhxX3JXSc4PHgtXhJoppWKntJY13h7qesyhWGNVgVqWtK0mZN0rqH7+oR0q1Gmx514zK11S/oBxPgiiDfXO0T3fYR68k/gV5RBApeqSqwt9n1yr8H6AOXqeDI+y9YVeqIt0d8inJJxeHK4LjzDj3ryNIBGSwW4Gjgr7eDfgENBSh453jW99Xm6/7wl1dG9G8c0PlnqevwQa4ntraITyWMtl6g8p45e53NEfF+CM94Frsd7rxx0o5SmPEVaIz8WZDZrTyVUYFq8Nu5aBHzlsUarwkRbo8coeq0go3o5ZX6n0znxojEXtZW0MOOHjfDWIUwk+54yCjwMzKZM9pTpSl6aDuyc5bT3EWbFg/Er3M3dVaWqrdzFWmP7Kvoo3d+//z3qo1G7TNhtQjnfhe9no6UCXAn8NO3gIuBbIL6NbEbaIvuJykK6/zv8a9RHo3Yt83+HgprWOm20I85ZonI63UdY16LoR8C16uiVPq8V3hn4GbmnVn8K/BaYCQypoB3jj+bW5t2TmrwT6XG66z1Oh/Ojhm0bPi15YabfrNGqEM1vNG+e7ExeCxzR0+M2TXBIqcO7K3sGMCLLeanF3s3ASyWoK6euu+BNwL5ZTnsP4ZfBquDsSVtOWl2q2ipBhY+k9KPRUsG7QZA+Je9J4BAQ3z9sRFujtwAnph9T1fMb6xtn+VSSb7q+N48CziT31OUO4I+iMiNUH/pX8avr1Ri8UdKz8NZ09aYDuBsvOOMfxS/LDGVdU3Tn4b1nZvp3Ipn49lBL2K1k1miVua5ksQko04F1ezglDjSNTIycPnHcxJIsBje+2RWvwco34GI64Odi9M80tzbvniR5Edmn7HyIMDNO/HKb8tqzaEs0jBDpdlC5Nlwf/olPJfVFfxqtw1l7FPbveN/j+XoL5NQ+nJ+3rrVyr+CNLqd8mhiW2M7nIAhfNS1p2sVJOhPwQkuy3QwCWCRIc0Ntw3wR8SuIYj3gVCw4w5SJ2YtnB1cFVl2l6Ok9PPxOUpKHTamd8nzJCzN9Zo1WGYu2RccAv14rvrmLon8nwKmWJjioVWTARUrzkubtkslklN7XEwIsF2RmYETgch/Xb5S9WEtsKxX9D90jq98jwHbh0eF+bvpbUv1ptI4BBhqb/hpIruCGfou2Rs8Abkg/pqq3NdY3Hl+sa1aKWEtsfRxOUdWJ5I6If01Erq6uqr7ex5FsC84wZaUrAv5K1k6V/lREjgnVhv7iR10mf9Zolanokuh3SfJrYIMeHm5HcOvH1M+0De0GrYoMuEjputN/Md66mt5G31aiXEkVzRXSKPgq1ha7Q1WPTj+m6EmNdY1zentOmRmUjVZXqMsiYM/040lNHjylfsrDxbpuJXHVdaqXVB8pKpOAfXKcvkyQK5LVyesat2j8bynq60FfgjOW4aVhXk6/Nt82JruuNc134I28pouLymmh+tCtftRl8mONVplx29yaoAab8UYwevKkip7WWNv4SinrMiWzMXAa3i/4zbKcV3YBFwCz3pw1PN4Zn4gSpvc1Dx3ATUkn6drm2fmJtka/ibdfVLrHQ7WhfX2cbtVX/Wm0tiCjgemHT0EeGOBrZBVrie2gos/R/abC4pGJkTvYlO7umlubd0+QOF+Qo8k+BXqlojclSc6YWjd1aanq68FOwCQsOMP4qKm1aUdHnft6CMlQoKHME2eHNGu0ykhza/M2it6m6E49PLwa4ec2ijVo9TXgIgaUzZTRtKj26XgLzHuSBO4gQKiM93oqO10hAy/Sfd+iTkF2C9WFXvCrrn4owIbF5SvaGr2C7qEdIITCteFmfyoqb9G26BiSnCUiExT9QpZT1wC3OThNDXUNr5aqvh6MwQvNmADkqvdPeJvAP1P8ssxQ0fxG8+baqX/u8TOi0hyuD4d8KMvkYI1WmYi1xk5S9CpgnR4efiaggRMm109eXOq6TNGlAi5+CASynPcxcDNlFHCREm2L7g/MRNm115OUuxxxwj5/UKpI0dboRcAv0o8JMitUFzrfp5L6a1A3Wu5id71gIPgK3UeiVyGMD9eGl/hUVtlrfqV5XQ3qaao6Cdgqy6lJ4A4NqOvzuuRUcMYFwBY5zrXgDFNQza80r5usTs4FvtXDw1fHa+Pn2F5b5cUaLZ+577gjgu3Bq4GTe3hYEX4VXxUPuePdjlLXZoomFXDRAOyV49w2vLn/NwJlFRTR3Nq8TZLkdODILKc9o+j5jXWNfytVXYNJLwEYy0Rl21B9qCwCT/pgUDda8NkNs5szDt8Rrgt/35eCKoirrlPTVnOYoo3A17KcmgTuc9T5eUN9g59R66ngjAuBL+c490XgKuAWwBJVzYB0zXL4DXBC5mOC3NBe236WNVvlwxotHzUtadrMSTp3A1/t4eH/quopjfWN80tdlymaVMBFGNg2x7nP4TVYZRNwkeK+444Irg5ORgjh/Z168hbCpfEx8RvtDb//oq3Re8jYO09Ejg/Vhm7zqaSBGPSNVtcU2keA/TOOH9ZY33ifP1VVnqYlTQdIUsKCfCPLaQrcizItXB/2e4re3ng3zg4j++cqC84wBaGqEmuN/RLh3B4eu63jjY4T3QPcsvrsMFRZo+WTrsXT8+l5qsTTnU7n8ReNuait1HWZosg34CIJ3If3S3hBCerqs1hr7AhFr6T3KT4rUC6LO/GY7YU1MNG26LdQ7s84/FioNrR/BQVgpBv0jRZAbHFsvAb0n3SPY349LvEd7GeibyJtkT1EZSo5GhhF/+KoMy1UH3q8dNX1KBWccRxrx3GnSwVnXAa8UYK6zCDUdWOnGW9UNdMdoz4adfyE3SbY1gM+s0bLB7G22CGqOpe1ozoVuGLUR6MusB+OQaEeLz0yV8BFHC/CuqwCLtJFWiJbI8wW5JBeTukEfpMkefGUuinvlbK2wWjWm7OGx9fE/033vYc6RWWXUH3oX37VNUBDotECiLZFZ6H8LP2YIBeF6kLT/KqpknXdmLyQ3GtZFySdZMOUMVOeK1FpvdkMLzTjXPILzpiJtxG3MX0WbYs2oMQyj4vIne1L2n9gI1v+skarxGJtsXNV9TLW/mXxiThyXGhMKPMOtqk8fQ24aAbeKUFdfeYudterCdRcoug59H6Hdr6Dc4EFXRROpCXycxG5OP2YqEwP1Yca/KqpAIZMo9X8SvO6yWHJlzOimFcT4MuWuNl/kaWR7SUhIbJHrStwe0ADU8ogQCoVnHE+sGWOcy04w/RbrDV2tqJXsPbn+jnx2vgpNoXfP9ZolchcnRtoaWuZjbeBa6Y3ROXwCr5TbT4PuAgBX89xbive/ldlF3CRrmua4FX08gFBRVtIcp6tIyys6Yun1ycCiX8DNWmH34qvjm/njndX+FVXAQyZRgsg2hI9HiFzI9F7wnXho3wpaBC5dMmltVXJqvPwRo16Wye6BvitU+X8vGGrBr9vZKWCMy4AdshxrgVnmH6JtcR+oqJXkfHZXpAbGmobJlTolPOKZ41WCXQlxPwOOCbzMUGel4Qc0TCu4S0fSjMDNygCLtJFX4+OxeEGMhb0p1kNROMSn2FrTgov2hK9D+HQjMPHhuvC83wpqHCGVKMFEG2LPoxyYPoxVT3Cbk4URrQtOkaTGhKR0+h9xH2Vis4WR6aHR4fL4XvNgjNM0fQ2sqXoFY11jRN9KmtIs0aryLri2++ghz0PBLm9elj1SZO2nLS4BFtVAAAgAElEQVTah9LMwGwMnN31Z6Ms55V9wEWKu9CtqhlTc7aqNtE9Tjzd/E6nc6IFtRRHpDVypCB3ZxxeEK4LZ0tfqxRDrtGKtES2FpEXSRt1UdGWDjq+bDcpCmda67TRAQKNwOn0Pl37U5SrnTVOU8O2DZ+WsLzefAVvSmGu4IwVwG+w4AyTp0hb5DxR+eVaDwi/DNeGJ/lQ0pBmjVYRdW1geS+wb+ZjKhoLjwk32lBuxUkFXPwYGJ7lvFTARRR4uQR1DUhTa9OODs6N9LzVAMDrqnquRVQXz+zFs4MrAyv/DYxNOxxX1R0b6xtf86uuAhpyjRZAtCUaQ+i2tk5UwqH60FqL183AdL2PNQGHZzntHRVtDI8J31Imv3/zDc5I3bSbBjxdgrpMBYu1xS5W1Z/38NDkcF14RskLGsKs0SqS6NLoBiS4j7U3XlQVndRY2/grP+oy/bY3XoN1NNkDLj4Efo23BsvvdQE5zXpz1vB4R/wShPPpeXH5KkGaRiRGXDZx3MR4qesbSqIt0TBCJP2YisYaaxvDftVUYEOy0eqa1fAy3bdEWJEYlth26pZT3/arrsGsua35a0lNRul9+jMIz0pCJobGhp4oWWHZrYu3DYgFZ5iCiLZFIyiZvz9U0ZMb6xrn+FLUEGSNVhF0bUT8IGvvFp8Q5LRQXegWP+oyfZYKuAgDe+Y4NxVwcQOwqsh1FUSsJba3it5A72vLHlPVHw+S0ZSyNr1t+qYJTbxK9y0flsUT8W3cce4nftVVYEOy0QKItkRPQPhdxuHfhevCJ/pS0BARbYkeLEiziu7SyykK/C4ggcmTaycvK2VtWQwDvoO3N1JvMwxSFuMFZ1yHBWeYHsRaYzMUvSDj8BqUb4frw2W9nGGwsEarwJpamzZx1HkEYfuMhzoUPaGxrvF2XwozfZEKuGgEtslx7rN4DdbvgUSR6yoI9yV3neqa6pkiciY9vwcsV9Xzw3Xhm8pkas2gF22NzgF+lH5MkBNDdaHMD+eVbMg2Wl0biz5K92nkquh+jXWNf/OprCGh67/994EmYFwvp61EmTkyOTJaZiP3+QZnvAdci/e76KMS1GUqRNf3/03ASRkPfSLIvqG60As+lDWkOH4XMJhkabJWIRxlTVbZ+yLgAm/j7W/VW5OVxJuysTewG14Mb0U0Wc2tzbsHhwefE5EJ9PyLe35iWGKHxvrG31qTVRqRJZE9gRMyDj/ZUNvwez/qMYUnIorDeXR/nxBBLnfVtd/DRSQiGq4Lzxv10ajxInIe3v6FmUYiXLIysPJfkZZItvVdpfY4cASwEzAHL7K+J5sAlwBL8YKXRpekOlP2RERHfTTqDEUfynhoPVX987TXp+WapmoGyEa0CqRruuBC1v5w/rGiR9hdy7I2FjiHQRZwkc5d6FYFxwTPR7mUnhOulil6jt0MKC1XXae6rfpJQXZPO5x0cPZsqGv4u2+FFceQHdFKibXGrlf0xxmHfxyuC9/oS0FD0PS26Zsmkokowsn0/hnozwSYWIabS28KnIW3XniDLOdZcIbpJtYSW19F/8ba+7i9GE/E9xlEU9TLjt1JK4Cm1qZNnISzgJ6aLNFDrMkqW3vjNU6v4P3i6q3J+gBv4XEt3vB7RTVZ0bbomODo4EKUGGs3WQrMCQ4Ljrcmq/SCbcHTMposgN8MwibLAP/P3pmHx1VWf/zz3kmTtOwF2aFN0rJYwYXFDVFE3ABBwIoKgoCWRbYCzUxSYFiSmbRYpbJV4IcCohRQXBEXUBBBxY1VaLOUfZG9pZk0c8/vj5O0d947SZPZ7tzJ/TzPPDpnJveekM4773nPOd/jZt12g3ndMncke5Ojqc1FlJB5TfNeSLQkvobLXhhGEsI4kCyPpHpTrUtl6WjiR5XmBbTqYhpwBiPLvTuo8uIDrMuKRQfrE5h4S/wNp875NP5/M7s3xBpurrJ/5zVFFGgVSUdfxzYOzp/ylAtqkNXUFp0mVRcO+qXzF+BedIj0SAtMN/plNh2IA89XwL+S0tnTeTzCw2hQafMMwicTzYmvzt1hblTXX2GSy5IbAxdZ5jdjJnZuEP5ElJ+2mW0vu8a1JZe3bKDhvEAcmsAkZiT+EZ8e3weYDTyd5y2TEdLdvd1/7+jrGElMIyjeQksEZ6D+/32U934Y+DnwBCohP1rVRkQN07pj63Mmaz6b57Dn08t7lyeD8GkiEAVaRXDJE5ds4YjzO0bKZEVBVjWxAfANNBv1c0ZXEfwHcAz6d72UkKgIernkiUu2SHWnfmIw1wAb5nnLLQ2TGt4dqQ4FR6PTeAFaCrQWMXJ+FamfRZSBgb6By4CHc4zCqR3LO2yV2ogyM9y/VTelbleEC9DycJv3Oq7zQKo7lV68bHFDnteDZA1wC7A38BFGl3ufCXwH6EWzYlMr4F9ElRGfGX80K9kjsPr9DKY91Z06PCC3apoolVwgyWXJjetj9X8wmD2tl6Igq7rYEjgZ+Caw+SjvG65pT6MzSkJLV3fXnq5xb0EzcTZvYTg70ZT4XoXdivDQ1de1q+u6/yG3lPPxqa9OffecPeeM1PAediZ8j9YwHd0d+zvGyTnkMJg/xJvjnwjKpwjo7O7cyRizhJHmbxkedXBOaG1qfaCijo2P3YFT0DL3xlHetxK4CfgWEI3wmGCkelLfBL5rmVe6uB9ub25/KAifapUo0CqAoQGUd+Ivx6rGIGsqOm1+UzSrI8AqVHnpFfIrMNUC4xW46ER7tUJNqjf1DYTvAvV5Xn4Al6MTMxLLK+1XRC6pntQdwKdzjIbPJJoSvwnGo7JSD2yLBlrft157F5pldivsU+Cku9M/FSOHem3GmEPjTfGfBeVThMphd/V2He3ifttg8mV9BLg6szpzVnJWcmWl/RsH4xXO6EB7umqVrdCh0JsM/W8G3QutRHvfQle5UiwjiPOskKzs1Taz7eVAnKpBokBrnCQfTdY3TGn4KcJnrZfeNpjPxJvj9wTimLI98HG0hOCdaOnbaFkc0PkbTwCPAX8C7h6yhZWxzh15GbgCuAz4XwX8KiuLnl40eWBw4HIR+VqelwcROlqaWy6abWaHQoa+luns7TzUiPmp12bE3B5viX8+KJ9KSCPwIWA/4H3ATmhmtW6Un+lHT9SfRDd6dwP/psaDr9SKVDNZHiU369CTMZlZyaZkNHw2YDr6OraJSewyETlshLf0iSNfbpvedn9FHRs/GwHHAXOBHdfz3vtQ4afRShDDwE7oXuhDwK5Dzzce5f2C9uk9CTyCrkF/onYPogFYvGxxw6rYqruxWikM5g/NTc2fivYLpSEKtMZB8u5kXcOODUsx2BuijINzcGtzqz2noBK0AEcDR7L+4bpjQdD+gZvQIbzPlOCa5cZBA6s24APreW83mi6/mho5werq6drZxb0VzQ7kYDC9IvLFREtitGbpiAqRfDRZ3zC54RFyB6dmYhLbbV7LvGVB+VUkk4FD0XVoP0YvVxorr6K9lNejG56aDLpSPamLgXavzWDa483xzoBcirBI96QPFuQqNCtrM4jQkWnOXJg0yWr/Nzr8PTkf7ekajeXoIeT3gNVl9qtUvBctlzwCPXQulix68PND4GZqdBB0R0/HVg7Og1j/zUTkwraWtvMDcqumiMQwxoiImMZpjVflCbKywNEVDrIMqpx3D7AMHVRYiiBr+Nq7o71KK4DfoJunamRDcgUuRguyQi9wkY/Ons7PCfIAeYIsDL+un1S/ZxRkVQ8NUxrOJDfIArgkpEHWNPTQ4gX0YOYzlCbIAi15Pha4C23ePwc9ma8p6qbUpbAOswRJdD3VlW9THxEA8eb4LzImMwsNOuwsTx2G8xt7G38bgr+ZC/wCeD/rF86YgQpn9KHCGeurjAmKSej3+n+Af6IqwaUIskDViD+MVr48B/wIeHeJrl01tDe3v+g67iFYeyJjzPyunq4DAnKrpogyWmMk1ZO6ELBllwXhhERL4v8q6MphaGC1ewXvCXD/0H2DyNrZbAWchPZgjaacNFx7noIR56WEkqQkncaexpQYOQf/5zgLXBBvil9sjAlz+UdNsXD5wi0HncEn0R4BRXi2boO6nc/Z+pxVwXk2bnZEN19HkX/4dbl4FVgMXIL2VtQEqe7UlzDclGM0/F+iKXF8QC5FjECqN/VpXK7BsF2el180xhwTb4rfWXHHCmc3VChqfcIZq9DMTrUIZ8SAE4AEeuBTKQTdU5yHBnY1Q2d359eMMfZe9gUX9z3tze1hbicJnCjQGgNDAgNLLLMYY06KN8Vte7mYiZ4ef2o97xO03+rPaO/Vf9HTmLfQemOD1ipvDOyAZnh2RXubdhqDH7cCZxJMSeFM9EthrAIXHeh/g5oi2ZtsrHfrrzPGHJnn5VeMMV8J2Zf9hCDVnboSw4k5RuGoREvihwG5NF4moX0e56LCOqPxKppxfwhdg3pR8Z1VaCnSRkPXeAe67uwE7In2CqwvK/YUenL90/W8LxSIiEn3pu9FT8+HcV3j7tHe1P7voPyKyM8lT1yyxZpJa64FPpfnZQG+m1mdOSc5KzlQYdeKYbyHl53o4WsQvB/NMq1vtlkWDYYeQNegJ9Hs+yrgdVSkZwM0W7cjugbNQhUn8wXS9rWvRMswa6aPK9WT+gEadK/FiLm7ubn5gKhfq3CiQGs9dHZ3HmSM+SlWM7fBnBtvjl9cARcMurnpAEaa4ZEF/gDcCPyWwsUstkfLf45GA6+R/n2sRJWMrivwPuNlrAIXL6GL33fRTV3N0flM5+ZmwNxOvgHEhn8ARySaEn2V9itidIbk3B/Cs44I8rdEU+IDIck6vgv4MboRGYkVwA1oAFSomMVktIH9i+gw8U1Hee/twPHUQO9EV0/X3i7uA+Sub39MNCeqtWx7QjOkTPhNQRaQ52BAkAdd3CPmN89fEYB7xbAh+pk6k/Vniu5Dy/B/gu5Byk09KtRxGiO3vWTQ8sib0LLjQoOgnYCD0KBjtHLBF9DSxd8WeJ+qYuELCzcYfHvw7+jh+1qivtHiiAKtURj68rsL6/TWYK6ON8e/UQEXpqJyyAeP8PqbwOVDj2dLfO8m9NT4BGDKCO+5Hp1RVY4ynuHG3Xb0BGs0wti4O266+rp2FVd+JUiT/ZoYuXLg7YEzQnaKOmHIJ+cuyL5tzW33BuTSeDgOPbwYaR34HboBupvSilY0ArOBONYXv4cVqBBQ6GWpUz2pG4GveG2CHNLW3PbzgFyKWA+dKzrfabLmx2gJns0rGI5INCX+WGG3SkG1ff82oYIUe43w+vPAIuBaSj+X7z3AWeg6k0891UXbE5LAYInvXXE6lne8y3Gcv5FbNZTF5ZOJGYm7gvIrzESB1ggsWLagJRvLPgBsYb3085amlsMqkEadAdwJNOd5rR9YiC4sr5fZjy3ROuhvkn+ReQjdQD5fovtV84laYHQu7/ywcczt+P89Zg3mzHhz3B48GFEl5BtOC9ySaE7MDsShseOgPVGnjPD6n1CRinKLrTjA4Wgw5ztkANagweCNZfajrHQt69rejblPkBvQPjH11am71fAQ69CT7E02NkjDcKbFZgDhpAr3cZeaoCtKPoxmqfLNAnsN7R2/Gt0XlZNm4GLgSyO8fieqeFjNs9XGRKo3dSLClZb5mYzJ7JZsSpZ7z1lzRKqDeUguS26crcv+DGtTK8jf6qbUfbkCQdb70B6rfEHWnejp2XmUP8gCXTzPBPYgv6DE7mjAM5b+rtHYCj0RWoGqHY0UZLmoWtKH0C+AW6j1IKu38xjjmLvwB1mrDObzUZBVvSyVpTHHON+2zAO4tAXi0NipR8tv8gVZL6PlMvtR/iAL9DN/C1q+2IEGVl4modn1uRXwpWy0zmx9RpDvWOadX5v62ol5fyCiKkg2JfsTzYnTgdkGY38n12O4Nt2d/vZSWRoLwr8S8Ge0qmZn9OBlpIBmSzToeRb9PJZCCfkgtCwvX5D1A2AXNLCrxNy5HuDLwP7k7/3+FNrCYX9Ph45EU+IqMXKTZd6+URovCcShkBMFWhZLHlwyqSHWcBvi60V4gno+WwF1sD3QEpytLPsAupH4DJqqrzQPAfsCF+EvD2oC7sUvWz0WdkKzUn3oIj1SI+4qtDThneiiX+1DIktCqid1lhFzHbrx9fI8Lh+NN8d/EYRfEWOjp6/nBPxlRZcmZiSC+AyPlUnAbWiflM3daM/C9VR+oOnbaPP5R9ADGS8GVUSr9gB2VAZWD6SwqgMEuWDR04tGEyiIqAISzYlbxJW9EB6zXxMjZ3T3dv862Zscreew2lkGnI4OIL+AkXsjG9A+78fQTNSHCrzfIWi/p12y/Abav3ksehBcae5C92nfz/Pa3sAfqV45/DHjuM7JBtPrtQlyfLo7fWBQPoWVKNCyeGXzVy4FPmGbcTmobfu2cgsszEQVfewJ5i+iQc63CXZaexbNpH0Gf5Pplmi2bZsxXmsfdBH+L1pyMZLS2Evooj4NmEMNqgiORKo31YpKWdvlGo8YMR9IzEj8IwC3IsZI13+7NhKRpNcmyKsNkxrSAbk0FgxwDXqSbNMFHEDpyoQL5a/ocNJ8DegXo6qkoSQ5K7kSQ9Iyb5ZZkwl1ADlRSMxILHfWOB9Av9tsPtkgDX/v7O3cpdJ+lZgX0eqT4e/kkWYAOug6ch+aFfsCKss+FvZFxXfsdoXH0IqfW8flcelZBXwNbXOwM+yz0KqbkXpaQ0G8Jf6G67pHYx2si5GrO5/pDH0gWUmiQMtDZ3fnXCPmJMu8xnXcL1TgBHoLNFDZ0rL3oEHJX8t8//HwW1QC9QXL3gTcwcjSzw6ajXoAzYAdxMg138tRMY7p6KJekyqCI5HqTbUi+DbkgvzOiNkn3hJ/Kgi/IsaO2+AmgK29NoM5f+4Oc6tZJa8DS94X/aI9AxWlqJYy3dfQteRHlt2gfSKhPXVtmd5yLfCwZT51QfeCQioGIipM6y6tb7U0tXzeYBbleXkGwn1dvV0fqLhjpWclWmWyCyp1P5ogzYfRkStPoFmx0caz7Ar8HP/h6wNoANZToL/l4P/QzJtd6fQBVLwj1Hvsthlt9xkxiy3zNmaNidoVxkGo/xGUknRf+jPGmAWWWQzmhPbp7XeX+fYGrTe2G7270SCrGsuM/o2W8NjB1rtRBSIvG6KLay+6gI6mYnQfqjS2C1pSWLMqgiOR7kkvzBdkATcOrBj4bLwlXjNzO2qVrmVd2yOcbpmfmPrq1ErN3SuEA9FgyosA30A/i9XGADo02R4zEUNLG3esuEclYLaZncXlDMtcnzXZVCAORYyb2WZ2Nt4cP8uI+QpW/5DBTHXF/UO6L/2ZgNwrNS6awfsguif4JSNX3rSgPdgr0ANUu59pChqQbWLZ70MrjarxwHVYUdbeqxwEzKu8O6Wl3+lPYHg0xyh8Kd2TrnYxp6ohCrSAVG9qurhyA/60dme8OX59BVw4G/isZXsBba4MukxnNJaTv4zwWLRZfmt0MX0KXVxH2vgMC1x8kAkicJEPETGp7tR3BDk7z8vXZJoyxyT3S4ZePnYi4Na5C7BKR0Tk7CpWj9sBPeyxM8wJVDK5WnHRQNCWQJ+Klh5NqrhHJSAxI3EXhl9b5sPTPel9A3EooiDiLfGbxJVP4J9tOUVc+Vm6O/3lIPwqI7ZwxkgHpe9Ae7KfQQ9FhsspF6OiN14eHrpmufvji+HP6AGx/f18EflmXoaIZFOyX5DjsfZkgly+cPlCuwIrIg8TXt49+Whyw4bJDffj/3DflmnKzE6aZCnnwuRjF+A/5IodZNAP54Nlvnep+BTaW+YN3Ic3lKNtdFaiqfdvo2IYExYRMene9FXoptHminhT/JshGWw74ck3fNaIuTveEv94gG6tj1/hP+z5HtqDEQYmo6qo77HscbS3LHR09nbuYsQ8RO4a+q9MU2bPCnwvRZSQi3sunhYj9hvWBRTDuCJyQltLm52VrRW2AU4FTiS/cuAwWVTgyg5KXkZ7sp4p0o8t0Z6yTYYe/egB8YvogXGpvltPwV/RsxwVRKqEMmLZ6Ozp7DAYu1f0hkRzwi41j7CY0BktETH1k+uvxR9k/SfTmPlqhb7MLsevKHc2hQVZMbQWej7aLPo4qgwkwFvA08A96MZjf0oXaN+JDuzzMomRgyyvwMXpTPAgC6Crt2sBeYIsQS6Pgqxw4eJ+i9zPlisi5wTlzxg4HH+Q9TD4ytdKydbAb9Bhx97HFQVebzXabP+mZT8P7fMMHW1Nbf9F5wN5eW99b/1X8r0/onqZ3zx/RcOkhg/jV8t1jDHXprpTJwfhVwV4HlUC3RE9tHlyhPfF8AdZLqpeON4gaxP08DeJ7k1eRwOqv6FrzK1oBc29Q/68hq5FRzF679hYuBwdi+FlBjqHLNQMrB64AFWf9nJUanmqmg8Qq4IJndFKd6fjYiQnQBDkVRMzeyWmJSrRcHkk/mbuX6Jp8rESQ2uXj0Z7LMYjH/skmtouxaDPGFpHPVr/1TJ0ISrnBPnQke5JnyKIfQoGQleiJWH3zERUMeme9GxBbvbaDObaeHP8hKB8Wg+T0Qb1HTy2DJoZ+m8Z73sbcFge+z+APYu47jH4ZZdvRYOw0NG5rPMdJmaW4e1ZEZ6t26Bu5wqMGokoMclHkxvWT67/icEcYL3kCnJiW3ObHVjXGg66T2lDBSNGYxFw1jivvzvwLwpPIjyLZuB+WuDPg35WHwG299j60dE0vXl/IiR0dXft6Rr3AXLbbJZlTGb3ZFMy1Bm7cjJhM1qp7tQnxMjFljkbI3ZkhYIsB808eVlN/unyo/En9DTmK4wvyAKdYXUDcDuw0Th/1iaLyirn6yG6D1Ul2pkJKnAxEqnu1FcE8Sv4GJJRkBUuFi9b3CCIndldaerMeYE4NDZOIDfIAs14lzPIOpL8QVYpuB6d9eXlcLT8KHS0zWx7WYx05hgN22Xfzp4ZkEsRRZCclVw5sHrgIOBn1kuOwSxJ9aaODcCtSmILZ4zUj/0M2sM1Xuoobl+7HfATiis3fgP/8PRG/EJDoaO1pfVBQa6yzDMbaQy96Ec5mZCBVkdPx1YY8olfJFqbW39XITcOA99Q5A7Gf+Jhq/N4WYOm7h9Cs0kjBTiHoItfsXMfHgbyqaolhq4flb95SC1PfRzDtfgzy1ckmhIXBOFTROGsrFt5EtBsmRe07tj6XBD+jIF6tEzZSy/kVbwsFVtQXgVDQQ+rvJs3Q4jVvwbeHvgOlvKsIK0dPR32UPuIEJCclRzIrM7MNmJut14yCN/r7O7MN8OuFhkWkLg8z2tnoj3cpeBptGTwSjSASgz9742MPJdzHsWtGbcAv7dsx5Kb5QolA9mBNoRnvTYRaevq6do5KJ+qnQkXaC2VpbEYsR9iz7cx5ifxpvglFXTF/hC/Smk2IP9GF5IPo7Lq26KS6zuhGa9P4l8AAD4KdOaxj5dO/E2fod3klIuu7q49cfgZ0OC1i8iPM02ZUwNyK6JAksuSGxvxNQo/k2nMfCsQh8bGkfiVQFOUN+O8mHWzAjOUJ3P2CDrDxssR+IPgUJCclRwwmHbLvKEjTiIQhyKKJjkrOdDf3/9F/JmtScaYpenudKiV6sZBA/Aly/YQWlpcKC+hIltfRAObHdF9z8loVik99L9Ho+Ike6KVQTYXoHL0hWJXMtRT3r7XipCcmXwTx1fS2eDiXiUiE7odaSQmXKC1vHf5hYLsn2MUHotNjn21goID7wT2smyLKfwEZw0qwfw+4L3oQvIXdM6MlwH0ZOeTQL7m/FPwqyKNl+fQRc7Lp7EC24lMakWq2TXur9FAeC2C/G6gf+CYSFEsfNTH6s9BJYvXIZyf3Db5djAejYmvWc+fRUvvysVB5G6qOijfjMCL0TKlYWL4BzGHhtam1luwB8IaTlqwbEExG8GIABnObKGl/14mu8b9WWd3505B+FVhDsJeN/Wwp9C92MOo0uHx6DyuZ0d/O6B9ofuj4yC8NKKl1YVyP/AHy3Y0IR054SXRlLhZkDst88fSPekjA3GoyplQgVZHd8f+BmPXyfYbY75c4cbiY6znayhcbesmtPfpBLQJdCwIcAkqq+6lDv/pUiHYmbk6oNbmhRREsjfZaAbNLdhfLoZ/xAZihydnJe3gOKLKWbh84ZYG4xtOnHkqU4kZfIUyDbBnMl2JZpnKwSaAt7b/Ecoru/44/sz90YRUAMoYI2LE/u6qz8ayySD8iSgNyVnJgUxj5nC0jG4tBjPVGHNH57JOOwipNY62nj+Hlt0VyhpyD1jGShaVoH/Vshdbxvkd6/mW6EF36DHGnIh/ttnChS8s3CAIf6qZCRNodS3r2t4xzo+xfmcxcmK8Of6fCrtjR/13oPMiCiFF4Uo2SfxZtFJMq38S+/S1NAFc6Gmk8QoxktOYL0a6XXEPbN2l9a2g/IoonDWxNUksMRljTGuVD5f+IrlroUtp1EdH4jtoo/nwvebgz7iXGjvQbQb2LvM9y0ZbU9uf8pwifznVl3pvIA5FlITktsm3GyY1HILwmPVSs4mZ25Y8uCT0GZAR2AT/fuOH5BfHqARvoPMEvUwr8pp3oqWMXmpiL5RoSvRhj/WJhHryMiECraQkHbfO/QHaiL0WY8x1bU1tP6iwOzvj74u4ocI+DPMm8EfLZvtWKPam7X3A1BJdO5SkelMniohdrvVa3WDdp9qb218MxKmIorio76ImI+Z4y/zX1umtPw/EobHzCev5vcCKMt1rf3Kz+Jehpc3l5nb8J662rHaoEGQeuSf2DoKtnhsRMubuMPdVHA5E5z15+cirU19dFIRPFWBf/DNEg9oLDWMrTm+EVuQUyhr8/aKlnGEaKJnVmYVipNtrE6S166mubYPyqRqZEIFWfV/92Qi5Q9UMj/Y39H8zAHfs4W5Z8otTVIo+6/nmJbquXXfuAB8r0bVDR1dP196Ir4zAFZGj5s2c1533hyKqnjq3LoW9WTDEq3zAdD3wIeJNs3EAACAASURBVMt2R5nutTHaszm8sXgK/1iLcrEKHdDuZb8K3bsstDe3P4SxNm7CZzv6OkL9e0VohsAR5yDA7uv8Zo3Kvtt7oefQHqsgsQcWv07+kTXjwd4LbY326Yee5KzkgCOOLQK1oZt1LwrEoSql5gOtjr6O9xkx9h/9bcc4XwioUf0j1vN/oB/moNjYev5Kia7bjf+E3O4JmRAsenrRVBf3ZiyFQYSL2lrafh2MVxHFku5Jvxv/INxfJpoSfwzAnfGwF2DX0duzp0pFF7lZ8lOBSpbI3mU9/xAhb0YfNIPtWGWXxjXpSPEr/LS2tD5ojC9DDsLlHcs73hWAS+XE3g/Yn9UgsEXKHizBNe9BM1tePlqC61YF8eb4UrQiYh3CsanlqT2C8aj6qOlAK/lccorjOj/EOnE2Ys5und76eEBu2ScZf877rsphz/J6qoTXvtd6bt+r5hERk1mT+REwPfcF7sg0Zy4MxKmIkiDIJVh9Tq5xzw3Kn3Fgr0Fvowc+peZjaC/WMDcBlS6ptNfXRkIq8z7MudPP7RXkaq/NYPZOr0gfGpRPEaUj3hT/sRFjVz9McWLOjxc9vcjOuIQVB9jVstn7hUrzAfwBUClKGVeiY3e81ERGaxjXcc/ALml2qOS4pKqmpgOthtUN38KWKxfuaG1utSdbVwoHmGnZggr4QPvF3mfZ7DR3MdgzciaCXG0O6b70HPwqQysmDU76aiTjHl66eroOwN/ndEN7U7v9hVqN2IMll1H6BvQpwNWsKxl8FR1CWmnyra/hX4eyXICdGXRJJe9OFtNPElEl9D/Vfw72bCdhVmYw0xGMRyVnB/xlekHuhfYEfkrunvhB9HCoFNT0Xqh9evs/gR9Z5o+le9OHBOFPtVGzgVZXT9cBmJzTVICXXON+LcD+ie3QDYiXJ4NwZIgEuU2ZAtxawuvbU9fzLa41S7o7vSPCAsvcj8vhZ+989v8CcSqiaETEuMZNWeYBYoQlQ2kf9pRjDeoAZniez8WvvlUJ3sAvMBD6TU7bzLaX8UtH71w/rd4eHRIRQpL7JQedOufL2KX8whkd3R375/+pUGGvQVC5vZABNkMP4b+Eysn/ldxZn93A4RTfnzWMvRcK/Rpkk52UbcUSHxKkIynJmo0zxkpN/gdId6c3cXGvxQoiROT4gNXdtshje7riXigfwz/A82Z0KnupsH83wwRSHhQjS/DLfscTMxLlKNOKqBBdfV1fRMitPzdcnpiWsBWrqhVb8KaU5cKgJTinep7fTXkHIa8P+/fLtw6HjszqzAKsINJgLkw+l7QP8yJCSOuOrc+JEXtgrnGMc00NzCqyP4MD+A9ESsU30UPk4YeLZtgfRzNWR7BuL+yi5YJ7U9p1sSbXIC/zd5j/rCC5s1mFWQ09DTUhZ18MNRloiZHFaPbEy+VtLW2/DMIfDxvlsb1ZcS/05OZ6cgPRlUB7ie+T73fL99+g5ujs6Twe+LRlfqB5evNlQfgTURqWPLhkkojY4jpv1WXr0oE4VBi2AE4pxSkagGuB2NDzt4GvoxucoLB/v5pYg5KzkiuNMXZmddv6TH0QaroRZaCtqe124BrLPD37dugHVdufwaBnSAoadO2KHkDbg4uLxf79prBujawZBlYPdGHPhDWcP9FLmmsu0Er3pA/GytQYTG9mdSYRkEte8n3B2wODy80kNHNlB6Kn4p8hUSz5Fs+a2OSMRtdTXdsazELLnJGYHD/bzA5qGGNECXht6mvfILckDqDrnBnnBFEWVygbWs9LuQYlyW30Pg8twwmSmgy0APrf7r8Sa912xEksenrRhKkcqHUy2cxZwDNemyBnDKmehpVqC7QM8GV09t5xlH5vbP9+Br/ya+hJzkquxPAtyzyzfsf6owNxqEqoqUAr2ZvcVESutMwucGxyVrLSAc1YqeRJrwNch19W9Ubg+xXyoeYliN1B9yq0BnwtYuS8tmltjwXkUkQJWPjCwg0EsWdAveQMOIsDcahw7M9gqdag9wBneZ7/B7i0RNcuhmqeaVYUyVnJAUGSXpsgm2YGMvMCcimixCRnJt8UEbvfvE6QyyJJ/zHxNDqr1Pu4l/wHQLuiGfm7gHeU2a+a/NvVTa67DLuk2Zjzk48m7eHUE4aaCrQapOG7GLbLMRoujTfH7aGVQRFkhscAlwNfsex3oaU95aBaSiUrRro7fSBwsNcmyN9mTJ9hn/JEhIzBtwfnktswjRGTbN2lNejT2PFSjgxPHTqYeHhG1SB6MlyqZvJiKGepZOAMNA380GBy1S4Np1+8/GK7aiEipLS1tP1akKWWeZ9UT+rzgThUPPZn0M6yl5KfAQdYj33RyoQtgFOAXutnPgr8Af/aUSj2GitUvpqpIpyz9TmrELos87TGKY1fC8ShKqBmAq2Ovo798AcRTzTUNZS676gYggy0FgAnWrYHgEOA/jLdsxpKJSvGkgeXTBIjdkA14GSd46KSwXAzVIp1lmVevtlrm9n9E2HAPuwoxRo0H3iv5/klwD9LcN1SYG/iairQSpqki2BnWhsd41TTd19Ekbiuezba87gWY8zCJQ8uCeMA7mop530FuALYDfix9dpuwKIS3cf+/d6m9CM1qoaMk7kSu9xV5LwamgM3Lmoi0BoaTHwNualYVxz52twd5q4Oyq88vJLHVolTxxRwtmV7CDiQ8gY+9u8mlL7JtGp4ZfNXTsE/o+jS+Mz4o0H4E1E6+tf0nwVs4rUZTPucPeesCcilYrA/g8WuQbuhoyKGWQZVJXVv/3751uFQE2+J/8qIudtrM8Ycd1HfRU1B+RRRWubPmP80gt372/zq5q+GMVNgfwYbgC2DcGSIVcBRaBbLy7GUZsB5za9BXpJNyX4jptMyb5tZkzk+EIcCpiYCrcbVjefj/zBc1ja97f4g/BmFZwA78Cv3PIUkELdsj6PDVssd9NhBxzNYJ3K1QvLR5IZGjC248pIRUysDJicsnc90bm4wXrlyDObfrU2ttwTlU5Ess54XuwZdAgzX3wswB/86FxQbAdtYtiBnF5YNV9xzLdOkOreuLRBnIspCZnJmAfBcjlFoX7xscUMwHhWMvQZB8LOlsvirFmLA7BJc2/7danIN8rLZa5tdYzB2Sea8kGZgiyL0gVa6O72bGDnTMj9nxJwXiEOj4+JfYHYt4/3OBM63bMvQIOtl/9tLjh1o2UP7aoaGyQ1nYp3ICdIWb4m/EZBLESXCZMw5WKUfLu75AQ4+L5Z8wzOLkRq2Z8Lchh7ijOXxKetn35PnPcVI5+dbX2tyk9M2o+0+QX5nmY9JrUiV4kQ+ogpIbpt8G61Q8bLjqrpVYctqPYX/MKace6Gx8h/86svvL8F1d7Ge1+xeaJg5e85Z4+La/1Z3eG3qa18MxKEACXWglZSk4xr3GtY1YAMgyElVvMF93Hq+T5nucwb++uIe4OPYJ2Ll4yPW85pU3UutSG1mMHMt8+MzmmZ8Pwh/IkrHJU9csgWGk702I+afiabEL4LyqQTYn8Mp5PZXFYNBFTfH+rBPN2N53lNMXb+9vmYIXm6+fDi+g7VJuCWfjxgRIBtkN7gaq/8FYW5SkmHaz7n4g41y7YXGix1obZ33XWNnA/zra03uhWw2zG54PdZ+U5B5E00tM0wfTB8NfQ0nGMzeXpvB3NrW3PbzgFwaC/daz/egdMo2w3wdf5D1NJrJesb/9rIwDbD7A6pF/bG0uJwmyKaW9fxIACP8rJm0Zh7+RubzQpzNAvg7/tPkjwfhSAXY33r+FyCMfXVjom162/0Id+QYhWM6uzuDLsuKKBGnzTwtAz5Vt5mNvY0HBuFPEdj7gf0C8WL9FKuc+hHWlVYPU5t7IYvTZp6WESP2iI/dUj2pzwTiUECENtDqfKZzcwS72e4NU2dOD8ShsWM3W9ahAVCpOA64ilxhkGfQRcyuly0nn7Weu8AfK3j/ipB8LjkF4RSvzWD+HW+K3xqUTxGl4ZInLtkCOCnHaPhHa3Prr4PxqGRkgPss26eLuN6z6ClwIQ+7ZzOT5z2FNo5PwT8z8O58b6wphHPJnR0WM8ZEvVo1RN2UuusEye2xFuwWimrnLuv5DsCsIByx2NF6/mLed40de219EZgwAlkDgwNXGczrXpsxpjUof4IgtIEWGTqAzb0mgzm3dcfWSpXFFcp/8WeVjirRtY8Frib37/oi8EkqXy5j/07/ogaVdhr7G4/HGmwoSGfIMx4RwOCkwQR+afD5NfK3tQ98Pkrh6oOfA1oKfNibrUfyvKdQBcND8P/9fl/gtUJDYkbiH8CvLPNRXT1dds9sREg5Z+tzVmH4ntcmRj6WWp6aEZRPBfAn/Nnlo4NwxMNO+IUrlhdxvTrgSMt2FzU8RN1maOD2Esu8b3p5+kOBOBQAoQy0Ovo63meMOcEyP9K/ov/KQBwaP/a8hgOxgsYC+Co60dz7N30JLQmy+8LKTQvwQctm/86hR0SMIKdZ5uUtTS0/CcShiJKxoHfB1oLYc+fuTzQlfhOIQ6Xnx+R+2TuU7sCnWrA3bX3o7MCax3Xc87GyWi6uPWsrIsS4WfcKcmcxGXHkmKD8KYDXAXs9/QrB7kvzqQTbhxbj4QBgK8v2oyKuF0pc434be16r4ZxgvKk8oQu0kpJ0HNe5glyVLBHk5OR+yWJraSvF963n9fiHCY+HL+APsv6H9icE0XR5OtZMM2pwcUn3pg9Ap8uvw/CtqDcr/GTdbBwtPVuLg2MLDYSZPvz9oifh7yUIK7vgVzS8nglyktw+vf2fgN2r/KWuvq5qUHaLKAHzZ8x/WpCcDK3BHBMyUYwbrOfbA4cVeK1paBa7EKEFA3QCR1j2HrSvs1DOsJ6/jD+4rHnam9tfNJicv7UY+dxEybKH6QMJQGNv41H45TZvbGtuszcN1cyjwD8s2xmoOs14ORy4CU1RD/M6Whf8SEHeFcfWgJ1tvBPt46gtxBccv1E3uc7+4ogIGR19Hdtg+EaO0fCX1uZWWzo77Hzfer4DwZfulIo2cr/fXPybuprGiDkX/b2HieWZtRURYowx11mmHeq76+1qkmrm5/hbCtopLFh6B3A7KtF+Nn4xrnzE0KzTn8kduj7M6eRmDcfD3mjbhpcfUsNiPKPhZJ0ucv9bOi7uySO9v5YIVaC16OlFkwW5yDK/5dQ59kDeMGBPeN8CODXfG0dhCpopqrPsw7Nnflfgo5i5Kwn8cswLirheVbKgd8HWGA722gS5/pytz1kVlE8RpcFxnTbsf8NZanGDehP+ftEE0BiAL6XkncCXLNtPKK7XInTEW+IPG2NuzzEKX0x3p3cLyKWIEpMh8zPgLa/NcZxCM0JBkAEWW7b3AJ8v4pq7ofurHnRe1y9QFebzgVZ0jbtkyP4s8FsgX7/Qd4BfFuGH3Vu6Bvh2EdcLNfNmzuvG/9/zmOSjSbuPtuawN+hVzcCagbPwK8JcFAIBjHzcis6R8KZOz0V7J/rGeI0Y/jk0oIFSMcGSLWc9Vt6FrdIG91ODaoODDB5pMDmfHyfr2A2fESGj66mubd1B93jLfF9iRsIWbagFMsC3yP3ybwHmUbgARTXwXfzfbcUMPQ4vg5xHjENZd6jquMadD0y4oaG1SLIp2d/Z3fkrY8xawQVBDhORs0Mk2nMpMBfYxGP7NloJU+zB5Q6MX+RH0HVxXhH3PYz8pctPFXHN8CNchuEQj2WThikNR6FK2TVLaDJaHT0dWwmS8w/fYHo3yG5gn4aEhSxgZ+emoKcoYSSGfljswK8WMwEYjC0c8Nf4zPiEkWytVbLZ7HzsbJahlkUEvoe/rDcBzAzAl1LwFfwzwX6Kv1R7QjC0Jt3mtRnMFzp6OnYPyKWIEmOMscWXpqeeSoWpF+8NNNjysiNw3jiv8xbam14MD6MKrOdQeD/nRvgzVxkgVYRfNUG8Of4HVHl7HS6n1voA49AEWjFiHViZFkFah4b3hZWb8M91OYTihDGC4lzgw5ZtKX4Z6dDT2du5C8IeXpvB/DAofyJKQ7o7vaMRc1yO0XBXoinxx2A8qghvo6fJXhrRjLtdAlwO/o1Krg8//lbEtVqAyy3bauCsIq4ZeiQmSXJ7tUyMWE0egE1EnAHnN1h9P47rHBCQO4WSRkv9vJyN9k+NlSfQHvGPouqBfwRWrudnXOBJ4Bp0sPDu+EWCxssV+CuvFlD5ETtVhzFGxEiuOrjhnam+lD3vsKYIRaCVXpaeJcixlvn+GhgKK2hflt0c+W3gvWP4+ZXA1DI8xiuisT/4Tv3fwr+Bqwkc8dXAD2bJLg3EmYiSIUbagQavzYi5ICB3KslStE/By+5oH0O5ORfdTA0/Cm2ObgRuJrf8COBiKjuovepom9b2mIjkrE+CHJ7uSb87KJ8iSkfrLq1vAX/12kRk/4DcKZTVqPCEFwcVsNlmHNfJAveg+5H90MP5HdDg6/Noxns2utbsBWyKtm98HRXEKJY5+Mdk9BBls9YSy8SuA9702oyYUwJypyKEItCSmHRiy7m7ck6IapBH41Egadka0UbNaev5WQFeK8NjPCo77wJuIffvA3Amtag0CAhii2Dc3d7cXuz0+IgASXend0QHfq9FkN/Fm+P3BONRxfkG+tn3cjJ+eeJqJAbcCLlZZjQ7VolgMQycD3jHnxgRqaVxBRMb4xvEvW/IZN5BhRKut2xbAb8GNi7ius+gwdftaBXRLWj2/EEsIZEi+RTaH+olCxyHBpIRDB0MCDdZ5s9f/PTF2wXiUAWo+g9iV2/XB4DPWeZb22a03ReEP2Uijf9EeTu0GXTLyrszZqahMyE2s+w/ROd61RwdPR1bobKta3FwfhaQOxElwsVtw5oh5bhOMhhvAmEFuiGwD68WUd2DjA1wGTrmwsvrwJHAQMU9qkLaWtqexB4abzg0ymrVDH+ynm9S31e/UyCeFMfJwOOW7T3Az6hMKXOhvB8tt7Z71C/A/7eZ8Lji2iXedbGB2NcDcaYCVH2gJa50WqasGBlvk2S146Lza2xFmp3Rk5j1ZbaCYBaaardPIR4lnD1mY8IY82lyPzeC8Iug/Ikono6+jm2MMcd4bYLcGZ8RL2ZQZRi5HVXb8mLQeVtzKu7N+qlDD3Ts9cZFs5MTumTQJiaxC7GzWki+2UERISPzduZBrEoUR5y9R3h7NbMKLe1707J/DD3U3bTSDo2B/dGxOLZM+W/QXrEIi/YZ7Y/gD0BPWCpL7cqomqCqA61Ub+rTYmQ/y3xtW1Pbf/P+QLh5CR0ybA/v2xm4j7H1bFWKj6EB4PaW/Wn0d1hfA2poMWJsRbNH4i3xiS3ZGnJi2dg87NlRrk8RdKLQip35WKcoegHV852xMaom+LU8r52GnoBHeJjXMm8Z2sfm5Yiunq6d870/IjwkZyVXYmWCBLFLacPCI6g8ui10ti+6ObeFJoLkKOBX+EfiPAh8gVwRmggvBlsUY7vu3u6w9RaOiWr50vQxJPd4sWVenZ2UDfN8l/XxOHAg/tkR2wF/ofBG8VLhoFPbf4eKZnh5BQ2y7AGotUZOoGXE1Jyq4kSi85nOzcXICV6bEXN3jZUmjwcXOAZ/KTOo3PKvCb6c+X2oXPtBeV67CL/yYMQQjuN0kLv5i4mR1qD8iSgp/7KevzMQL0rDH4Cv4u8X3x39Pe12kkrTiB4+3YAloISqGB5IDR84l4LM25mfYsnxi5FjRnh7qKnaQKurr+tzPgltMd+dv8P8mhRY8PBXNBVtZ7Ya0Q3EzwmmlHBX4C40+LWHgT6Dqvo8VmmnKklqeWoGdhbPqb1hzBOKAeZilXxkyU70co8BdMzE7Xle+xQqyR7EwNsGVKXwL8AM6zVBlcZqray8pLROb33ciPm51yYiR6V6U9MDcimidDxhPd8lEC9Kx1K0jNDObE1F16bv4T/wrQT7oBmrfOXU/0L3Qi9V1KMQkpyVHBAkJ8NuxByW7E1WY3loUVRloCUiRhB7zseb9fX1XYE4VHn+is50yFeSdjAa0LTjrwkuB1OBLuA/6AJi8xjwIbQ3q7YxvN+yuP30R42uISXdnd7EwcnJEgvyt/aW9ihLCf3AEeh8GZtt0PLC3wKVEFMw6An2w8CF+E+QB1F55okeII8JicmF5IqeTEIm9qyxWkBEbBGJ7br+22WXtIWNn6CVMm9YdoN+5v+LKqbaIhTlYEe0X/UetEfd5i60reKFCvhSExgxP7BMjY00BnGIV1aqMtBK9aYOtrNZgiyeu8PcV4PyKQAeB/ZElQdtpqCZpT70BPcdZbj/dmiA1QfMI/9CdjPwQbQ3q/Yx2M3FTySbkq8H4ktE8RhOFSTn9MzBscuVJzJZdDNzMhp42RyAnuD+HP+w8lIwCT3R/ifaczUzz3ueRct5a1LltBwkpif+hZZ/ezmho69jPPOKIqoMB2eZZTISk2rqZyqUP6Izr/6d57V3AEuA5cAplOfweWf0wGkZWlZtrNcFHSPxafwiHhGjkGhJ/B14yGsT8c3MDT1VGWgZjD38dmX9mvpLA3EmWF4GPotmr+yhxgCbow3qz6IbkS9QnCrPO1D1wztRued5+Js8Ad5GN19HMrEWlr2s5w8G4kVE0Sx8YeEGgpyWYzQ82t/U/6uAXKpmrkSz1nZpEuim42BUgfS/6FpVTG9IHVqasxhd125G5Z3zcQcqEnRvEfebkIjxqfk2xrKxMMxMixiBfqfff+BZ5xOsCivL0EPdK/GPoADNNl2GZpNuAD6DHkgXyo5o4HY/uq4djzX+Y4j/odn2c8i/R4tYD4LcYJk+0NXXtWsgzpQJOzIPnM7uzoOMMTly2YJ0tjW3tQflU5XwTnQhsVUYbbLoKfPwxudJtARxJTqcz0FPfTZCe712Grr2R4DdWP+/iVfQTFtfAb9DaElK0mnobXgT2MBjPjXRnLgsKJ8iCifVnToTwyKvzRjzpXhT3Fbci1hHI3r4ksBWafTzPHA3elr55NDjraHHSnQN2gwtTd4J7SfZA1UWW9+p9EuosqCtoBcxDlI9qXvRoHaYtxomNUyfYJUjNUWqJ/UWns+PICe0NbfVWrb3I2i/+m7red8A8AAaLD2JHhQ9jx4Or0QDp42GHs3oGvROtEXC7gG1EeBqdC2MPi9F0NHTsZWD8zTeqimhK9GSiAfnVWmxRQ0Cxxhj/8ddRZbvBOJMdfEYKpLxDeAKRs5GxtBAaM8y+bE5uiD1len6VUlsRWwauUEWBvPQCG+PqGKWPLhk0qvm1ZzTezHS3TK95ZagfAoJ/WiP1AfRMpnR2Ab48tCj1NxDFGQVjYikjDHeDO5GA2sGTsav9hsRHp7HU2JrxAStEFoO7gXOBH6/nvfVowc3+5bBhzWowmkUZBVJe3P7i6me1G/QygjFcPRSWdo+28y2VSdDSVWVDnb2dr4fu9ZfuKxtZtvLwXhUdQjwLir3dxP0RMhW/UlX0IeqIJaN+Zpf69bU1bTKYq3y2tTXvoQ1i8W4prNWFvUysyeqPOil3P/d7PXncKprrmAoSTQn7sCSBBfkm8ne5PqylRFViiCvWaZNAnGk/NhjfvKVE5YSex5WPZHCaekQbFGMbbu7u/OJr4WSqtosO+KcbZkybsydiL1ZIzENbU738jAqWrGihPd5Eu39momeXtvlce9GNzsTB+OTyn3p7J3P/l/e90ZULUOKpnNzjTyb6c/cGJBLYSNFbnlxFl0jjkNLBQdLdJ+VqLLhgcAHyN3oGJiwA6VLhjFGEBZa5q0aaazJWTYTBFudrxYDrc+hPaNeLh+yXYn2tpcCQYV45qLiYHdbrx9H+CX0q4JMf+YXQM4hgRiZHZA7JadqAq2L+i5qEuTzXpvB3Ng+vf35oHyqQvJJG58BxIHpaGA0B/ghukCMZWDem8DfgR8AX0ODuZ2BJNA99J4UftGLfPO0apnp1vMng3Aioji6ero+iy1Jbrg0OSs5EIxHoWJf4BOW7QZ0/bgOVf+big4S/hYqdzyWAeaDqGrYr9BT4n3Q/q0voQOS/42/VPBA8o+biBgHLc0tS8VIt9cmIvOWytJYUD5FFI6DkxNoiSMbB+VLmXDwZ7NWoaMd7kdFurZC1/gzgVuBR/BnxfPxP3RG31Wo0NfWaN/ot1GRjTi5mbMYuk+KKJLkrOSAMSZnbqMx5vDk3cma2GNWzS9R59bNRf/hDiNk+XZQ/lQhO+Pvd/gtupkZZvnQ43se27bAFmiD7IboQjEsjPE/xjbz4RV043SBx7YTKnVaa422eTGY6ZaplBnEiAohRs6xTG8aMd/L++YIm7T1fAB/ZuktNGDy9v5siJ4IDwtgxNCNz1toj8OzQ9cajXY0i+5V/roYbYyPKJDZZnY23ZO+VJDFHnNzd0/3ocBtQfkVURiC5AQURkwl5ktVki/jn913Kbn7GEFFeB6Ctf39DroGbY6KX0xBs/HDwhgvsP5+q78Bv8TbS6TjJxagB9sRRSDIUvSwf5gtJk+bvB/+URShoyoCrdSK1GZkOTbHaLgjPjNe+0Nwx06a3L+XMLYa4eeGHsWyiHWnRcNcANwErC7B9audad4ngkSBVshIdaf2wsqCGDFXxVvidrlNhJ9D0RJBL1cBPWP42ZXkl4YfD71o1myOx7YPKuN8R5HXntD0N/Zf29DfcB56IKcYWokCrTCSW7or1bHHKxGT8GeQXkcPgdeHi877LHbmZxuaTR+uBjPogc9ni7zuhCfTl/l9w7SGl/HMhXVxZ1MDgVZ1lA5mORlb0jc7pg/PRGEv4BDLdhvw1wr6sBL/ifZ2wIkV9CFIvAEmjjhjKYmKqCKMMfMs05pBGYzk+dePg3+DswqwZzGVmwvQGX5eJpwwT6lJbpt8W0SusMx7pXvS5VBriygjBjNoGWop0Po60GLZ0lRW+e8R4EeW7TPAxyroQ02S3C85aMgtHwQOTz6azDe/LFQE/gW1eNniBnQwnJf/xFviduPhRCZfA3oQijdXoCfLXtqAWqsDz0duU7GDre4UAorOSgAAIABJREFUUcWkVqSafT2gxtw4f8b8Yk84JwJH4S/X+TbwYoX9eB5teveyOzqoPaIYGliMBs9rEXxlthFVjiA5m1JjTK0M0Z2M7jW8PA98NwBf5uMvdY5GIpQAg7FHrGzWMKXh44E4U0ICD7RWOau+gs5cWYsRs8AYU265zrDwCXR+lpcfAI8H4MsA/gVlC7TptGYZkjvOPVUxPnWniCpGsuLvAR2MsuZjYBJwvmV7DXKHPVeQFPgOOS7CO+wyYty0bd/2Cvgklg/sXNH5ziD8iSgMI2Yj73MReSsoX0rM6WgFjZeL8Ge4K0Ef/t70D6MlhVWI1IEcAfIFz2Of9f9c5WlqaroLHUi/FoMJvfpgoIGWiBgc5lrmZzZ7bbNocOg67GbzfMFOJckX5J0N1OJgRAA2yG7gy9i5g66twhhRpSR7k5sajC1Z/cuoB3RMzAGaLVsaf7BTKfIFeTPB6vGNGDeDzuAl5Pb4GAY5LSh/IgrAsJFlqYVAaxPAzq72EawQV74gL0UVJC/ycDZwC7DU84gH6tEIzDazswg/8dpE5NCwlw8G+o+iq6/rkwg5g2AFuXTOnnNqJd1dLJ9HZ8h4uRJ/+V4lyVe2uCHQGoAvFUGM+GaRCBJltEJCgzR8HbsH1ASWkQkTk/F/IT+Pf65epclXtphElcQiCuTc6ef2Aj/z2owxR3c+07l5QC5FjBPBknM3NRFozUPHRng5l/UrlZaTfOvgbqgKYRUhOxOywcpuzF1qmTabPHlyqEd5BJvRcmWOZXrLEefqQJypPmL4s1kr0VOToLkNlTr1cjKwQwC+DCHvAfmG9di2FFfOStaX0YqZWJTRCgFDczi+aZkfjk+P/ykIf0LGGfjLdS4kmHIdL6vwr4PbAicF4EtNYcR8xzJNcQYc+3s6onrJzWi5oQ+03gGcatkeQdWOgyZfGfOFVE0Zszho1m/ykMEd5c1Vw8xpM+/BGjqdJXvwCG8PBYEFWh19HdtgOMgyXxdJLa/lKMjN9hFMA3o+8knLN6KnTAEgG6DB3xLrUaqp7b6MFkQ9WmGgYXrD4cCOXpsY+VbUA7peNkVLTrz0Av8XgC/5yJfZTzAxhHnKRrwl/mdBcg7RBDkl7KU7EwaxAq3wZ7TOww4edaZeNQQN+aTlZ5I7CypITkN7xwCuR2eGVT2zzewsOqh+LQbzuYDcKQmBBVoxN/Y1rMjfdd0om6XU4w9kXoOqGuB8J2ArQx5H6YKb8bAAfx9JyRAjvpKk/qf6V+V7b0SVIZxuWV4aYODmQHwJF634y3XyqW0FRb5hyZuDr+c3Ypw4OLaS27aNjY1HBOJMxPgwuQcNYkIthjENlXT38jfgFwH4MhLfIXdYMqh4UMBlzDKddevj//AfmlU7v7KeT0svS9uJh9AQSKAlIkYQO+q/r31G+yNB+FOF5GtA7yS4BvSRiKPZrWFi+OftlBnZl3WzvLLluIMTc/zX3bIqm14jPHR1d+2JPWTXcEWyKdkfjEehYRv85ToPAz8OwJfRuB54zLKdRQ0L81SCzV7d7GYgZ06gOBIFsFVOuju9CVb2xzHOSyO8fQipA9kT5FSQ74P8GuQfIE+D9ID8C+RHIKeDbDP6tUrOhUCDZUuQu+cImnzzBLdFWykCQgzwPdb1JZ8O5uVRfqDqyGQzd2If6jmEtnwwkM1iujd9ADDDaxMjUTZL2QD/vIjn0BlW1cbfgF9attnA+ypze5kCXIP+Ox4ErirLXbKST5wlKqWpcrJkz7JMmRixJYE4Ey7mo+uQlzaqo1zHy0jCPFWpqBUW5uw5Z43B5H5OhD06l3d+eIQfiagCsk62yba54o4inCUnoiXwfwcWA8egw3ffB2wPNAHvAY5EMzdPgVwFsmmpfc/DzsCXLdtvgbsqcO/xsgTosWxtwGYB+AJ6UH/A0P+/A0w19LONi+TM5JvAPV6bGLFbjUJDIIGWwdjp4DcGGgYiSXflDGBry3YBwTegj4S9ATNUTn7+IrQmGuAS4F/luIkxxlcutfHGG0eBVhXTtaxre2PM4TlG4UfzmubZZR4RuUwHTrBsf8NfylEt/AT4q2U7CasvL2J81K2puwpY7bU5jnNGQO5EjAHHOHagJQMNA0+N8iNbM74Stzp0E/9XkHILX6WH7jdMvr7wamEAzb552YxA5ovKdqwTCloFnFJ5H0qDMcY+xP/gwuULQ1mtUPFAq6OnYytBDvHaBLk+uW2yhIGEbAfyOUuB7pD1/1zgbIqWvnhZBlwXgC9j5RHgR5btM8DHyntbeT+s7b9Zhn+hKxn5Aq3Va1ZXibJQRD6ysewcrB5QY3yKagEiMZBZIF+x1qndA3bsIvzZWrtEuJoQ/CI8jVTvpiwUnL3z2f8Dfui1CXJo17Ku7QNyKWI9SFbsQOuFMe6rVqKVKa3oSJn3A8Nl18eg3+/eqo6dgNt0DSsLewH2fu02/Acq1cSNgD2X8Uxgqwr7cTW6jwRoAxPkKKCiEEfsXjwn62Q/HYgzRVK3/reUlpjEviZGcjZAYqQIJSvZBPgIsAe6OOyB9hjY/AVrRkgVksCfbj6P3EWuGpkPfIHcDdrFQJmmj0sDKlsaQzdaJ4NZXa694KAZHHAk90xCXIkyWlVK8tFkvcHYWZk/xpvj/wnEIQCkGVWA2mPo8V785XmggzkfqqBjXt6Fv1znN/hFb6qN36ElRR/32I5FFcHs4eplQCahIkBbohurLYB+4NWh+/8XTFn6R8uJ67qXOo7j/RzVuTH3G0RBbFVijMkNtMx6523eCfwBeADMSHuMB4DrQdKoEtzwuIe90O/8cvRtptDKmGHylQhXG1n0wMc7bHdDdE9XoUywHIsecoNWIVxemfuWh8S0RE+qJ/U4sOuwTZCD0N7cUFHRjJaIGDFynGV+oL2p/d9FXPZgVIUmCRxE/iArDGxDnnk/6BTvaqcP/5T2DwMHlul+57FO+v5aML8v032UQb/SWr3UR4FWldI4pfEw7PJbCXzI7kL0C+J09AAiX5AVNB3kficIKqUcBvIJ81xQvtvJB0EWgNyL9rk8BPwezQJdivZt3IJm/F8EuXSorCc0DIlT2fPmvh5JvVctuYGWrC/QMveDuXeUIMv73ofQ7JaXw8bl3dj4BLC/ZfsBFTkwKZqfooGpl5Ow/y5lQbZmndT8IDAnjIc7ebDLBz+15MEloasmqmig1dnT+XHW9dQoQrlEMLKUSYWuTJyHv146TvU1oI/ERfj7yFKU/N+YvBs99QeVVZ1X2uv7yVc6KJOijFa1IiL24Nrnp7429eeBOLN+qiVbvTf4VJ1uAf4ZgC+F8HfA/hsfgf5e5eAb6Dq0D+sGgo7E5uhMm8e0VDQ8GIwtwrR1w5SGzwfiTMToiG9D31fiO9wFPO953lLi64N/ZMMAlev5LgW2EE89lZkvejnrxnGkwBSTvKgaDL4+rY1f2fSVcq3pZaOigZZjnGMt0xt1G9SVaqbN82j0ewHwOXSieHeJrl1umtAZVF7uwxraVuU8D9jzV3YDvli6W0gdOjB1+ETjNDBll7yvc+p8g/4kK5uX+74R46dzRec70VLidRiWzNlzTjUENGtQOfIb0HKSjwAfCNSjdeQr10kG40rBtJN7uGYoY++mxUvomn0bGqD+DFhuvWdjtAzLLs+sWvpX9P8E4dkcowQpXR2Rj0VPL5qMYSevTYwsK+1djJAbaNnS68VyGP718Ar8g8mrmT+h5Zhevgq8s3y3lCNZl118Er/cfGjpX9H/F6xBy07MsTOeVU/FAq1FTy+ajN3gKPzonK3PKXbw6y+BjcBsC+ZgMEkwv6jEBryEXIy/AX1+EI4USRrtS/DSQemk0NtYJx3/KzAVUaqcPn36y1jZUde4tjJkRBVgsuYUcgOGwWxd9pqg/PHwTWAKmFlgvgrmUjB/pjoGAH+S3P4mUAGeMJTreHkUsKWMPwXsV4Z7vYYGVScBM8BsBWYfMEeAmQ3mUDAz0RJnr2KjA1wGskUZfCo5yf2Sg4LYZeH7prvTuwXiUERe+rP978HquZes/KO0dxHDuh4tKG0AFMOfzVqJ7inCRr4y5jId+MgWaKkyQ/c8CUzNzIlM7pccBO712kQkCrRGIrMmcxDWMD2D+eEIbx8H5nUwK4u/TmDshs6p8PJr4I+Vd6VoXmddnfAwTYA9nLoAZFe0sRT0hOPEUd5cUmab2VkgZ+CfgxPWXsCaJflockPgKMv80/k7zH823/sri3kezGDQXuQhX9anP48tLJwHZCxbmtzguwSYuUNB1VVgRqmcMI+hFRa3eYybofMGQ4HE5CqsElfXce3y3IgAMa7ZwzK9vebpNf8t8W0+S66KXinFxY7Gn/VZBLxYwntUigeB2y3bYaiaY6n5LusGtC8BU41zxopDfBnCDwx914eGypUOCl+yLE/3N/f/pWL3r1468TeghzGbNcylaO+Ul/MZ37wOC3HQwcSNQ4Y4mGcKv15BeEsmcIkyWtVGQ2PDV9HyrLW4jntlQO6EhcPxbwCuAJ4OwJdS0IeuFV72RoWSAsK4rDskGuaDQXhSCO3T25/H6n8zYo5OLktuPMKPRFQaITfQMvx7KBtQqhvsC3zfY3gELYEuBfn6mF7Bf2gbJhKoKMUwBn/GrkjkINYd0j+Pf42pCYxf7Ky+cYPGj+R9c5VSkUAruSy5MQZb//7HSZMMi9BDudgbvzLfzZRp8G6FWIWWC3rZhuIG550NfGjo/z+AKnpVFskNHh0TZbSqDsMcy/J427S2PwbhSkjIV9KyEugKwJdSciHwlmWzD7QqjFmGqhMO846gPCkIF1sUY8NGpzFUwh41jckNtEQKKRuU94N8wfM4FiQJcg9aYTNc7voocCAYO3NcKCcCzZYtjdWbEzKewJpDBxyAv0S7QGQj4Hsewyla3VV7tDa3PoJ1eC9uuMoHK/LFU19X/3lsZSbHN+R2ImKXtGQpqyRxxVgC9Fi2fDPCxoDsxLqm/AHg+KET4sri5Ga0RCQKtKqIzt7O9wM5w34N5kpjTLUO2q0GvopnRskQ30KFHcLMS+CT838X+KoqKo13wOsbI76rCknMSNyFyR3IKo4cH5Q/EetIPpecgv05NhTSn3UqOk5m+HEdWo3yEXSfshxV+d0LzFNFuOxlA/yZmOfAF9iHkfPxlzHbokOFsh3rRhkNACeD/G70B95yu/dbr1etwI0xRsSIXRL5iUCcKZDKnPD5ywafSExPhDlrUwryNWn/H1DquuogWIM/YNwMmDu+y6wtGRwO0juGeh4qjojknKgYTFQ6WEU44tibvtUSkxsDcSYc5CvX+R/aF1ELLMAvzJNPdKhCyHvJ3ejY83aqH9ealSjskepLvTcgbyKGmJyZvDuWEIbjOqUeyyBoOV+G0u4bz8Ceeah7B3tUTBhZAb7xRfnGaBRLPRp4rO/h/TeyhfVajmJltWFcY/dp7d7R07FV3jdXIWUPtDqXdb7DYHLTfFKWaeJhYqQG9BLX8AbKjcB/LNuZ5DbTro9vsE6q+1ECVCBycHJT18j2QfkSkcvCFxZuIIg9RuDWxLREmJRHK02+QZopwl2u4+V1dEi0l+lAAFkYmQx8x2N4g9L1t1QMaZDrsU/oXd9YkogK44pr96u83f9UfyGKoX9DRxPcgoq3/AEYzlwZtJfzUuChoYODYtkUOMuyLUMzabVCvjJmezB8xHrI06dlYiZWDjXZslD2P7ZxzBewZUfrZGm571vl5BukeTnhbUDPh4t/Ds8GqET7WPEu5vXAr9aTGrczZgut9xR8AuKKa0vZbnHJE5eEQqK51hlcNfhFLBEMMT5J6oh1bEj+cp1aEw65FLAVJ8+lKGGe8SCboAcAfwX2HTIOAseB+V9lfCgdbdu3vSKIrTR39FDpWkRACL5+lb8UJoRhFg+NJpg9pKj5CTDTgF3QapvhMuxm4PcgxQ4sztdOcB7VM8S9FLyMf77ou4BiZ+k9iyqXjufhHaX0T+u17xfpT1mJt8SfQmeErSVMMu91639LkRhf2eC/2qa1BVL+VSXE8JfVrURLXWqN24H7yVXYOhHdANk9XOtj5tBjPLzPet6Y911jwNSZx3InacFg3eAuwJ8LvWZEiXA4ntxOrJ7E9MQ9beOK6ScU+TLL5wOrA/ClnKxGRTAu99i2QXtRSiz4IT8G9vIYNmadeMAwy4A5YO4u7b0rh8FcS640/SYNqxs+j7/xP6ICJB9N1hvMPjlGocQS3+YJ4HiQe1mXbZqK9lF9qsCLboPOFvTyMNobVmssQPc9Uz22i9DftcA5iuYtNPM4DsQrnvF8peaQlgox8gcjxlviuM+Ib64yyprRuvjpi7djnVocAGJkopcNHou/AX0h4W9AH4m49Txfb0jVk9kx04dVNy6OlHHae8RY6Ozt3AXJlco2Yq6ORDBGZDM00PKyjCo/0SyCqwF7zlWc3E1PKdgWPekffniDrCywGHh3mIMsgExT5vdo78laDCYSxQiI+sn170crRdbiGMfuZykR5vvArR7DJ0HGe/g5zHn4M8txtBKm1ngD/0H6dOCEyrsSXhzXsQ+1d+5c1hkK9dayBlqxwdjB1j3EFffmct6zymlEFxgv/yO3fr/WuAd8A+fyDSfMx/cYX2r8KuvnL7Ref5kCGRpF8ITXZlxjB8wRFcYR5+vkqjgNmknm+qD8CQFt+Mt15pM786WWyCfMsynjFuYpihhwGrAM5OgK3rfkJE3SxeT20IiRj6WWp2YE5dNExoixy6feaGpqKkRxcKzYAkOFzDNqAl9v333Ar/+fvfOOk6Os//j7mb2SJiGhGkhP6EUNIqAooKgUsQARpVlQrAERuBLKAuH2kmCUKChWBAFFUfjRBekoIAjSIblcSKRDqEnuLrfz/P747iYzzzN3t2VmZ/d23q/XvZJ9bnfm2b3ZeZ5v+3xLmlFtsBgwe3+ehmEkJwxMv+q/1xhSpGqjH2G0NVouh3gfavRDp0077bmBnl4HfBuYZIydy/ApQB+IVvAldwX17wlAPSTh7UJ/eNA4wJ3Gc8pSMtJK+wqMXeUmhlaMpJ9IN2l743p9y6SWF2KZUPUzATBlfB/F76UejlyGLcwTpHZWDkcA03M/2yHCAV9F0nvyNSdbAZeAruk+ZcpVv8MfeVDa0V+Naz51jbL6Mt05W83OBj43HMyU/1LqnoPUP08rbTo1Qz6N2Us+jTmhAHK2g0/HwNHOh2OaTlFEVqO18KWFo/vX9PtUQRzlXBvV+WqAMdhpdM8TR/PdyvMgUq/1ec/YF5DNyP2xzKgEHO08pT32okJFkjo4f/n87V3XPRCYpNFbKlSfQr3kKnelUuru1smtjySpcdA0qulAtL/xa66GJCGYM7HTdVoYnuk6XlzkvV/tGcsL88wJ5xQqyLh/ALgY9M6IMZuvLzgV9IO1ViORp3V664rMsszfgU/nxxTqqLROn56L/CdUgPQL6VH0+EW1lFIh12dZmBGY1YHPGpidEaeElxuQhsjDnV8jKoteEZEWJHPHbEWREMw/gfUKw1rpmjC0IotorVu7bn8M8QGtdD0bWj8ENjfGzmD4FaAPRBv+9CRFjcnZu9o1RVy2nv/0/PeEdfzO7s5PZZZl/uu67pPAecAchZoNHKXRJyutzsflP53dnS9mujPfDOu8tYrSylRueqnnuZ4bY5lM9TMTibB4uQe4KYa5xME1iDCPl+OReqqIUY8hvWq8Ms/ngA6jcWksKJQpwT2paXlTKWlkCSXStLZpH6DZN+iGLYRhsZvx2FT1HIoOjHIShn80K886xOHjZWPg5Aqd/w7g1tzPIxU6Z6golJk+uFu6O12yyFmliMzQUih/UzbN862TW2vyjxsCm2LXBDwL1FMtyTPYylT7g5X6UL04mIaW0g1653IPe9GDFzVmlmUu1lrfBOxSwEu2QFP2eWuZ9JL0RsDBvkHFFaXJGtcFZwONxli9bHDyBAnzmDWzEaFWgq/h77YUVqdalfSonv9TqDe9Y452joxrPvWIo5zPGUMvtUxreTy6M+pm/KluWeDOIg6wO3CQMfYn4OEyJ1ZLXIFt5JyIpBVHjPo8qP1zPzV57886WdPQam7KNs2KZTJFEImhldZpB82B3jHt6P+r43SnNow+P8Bchm8B+kCcidnwUpoQ14Rnt29531KMVAlXuXuUc8z07emGVeNXXQEc6z0scJ9GdyjUHBTfRpFGmkjWXP+dKGhKNR0OjPQNZhOJ6QHYGb8kN8B1FLdJGg7cBdxijB0F7Fih8//TeLxthc4bOump6R6t9F+9Yxo9e9HKRSMHek1CeKR12tFonzNba31N4XssPQv0IYVHVfV7EDlyr7z2tUX2gzPX+iy2UM1wx8V27ozE7muYEMDMyTP/i9kAOkXVpw9GUqM1cvnI3V1cX6FxHddnTUBEMLw8hGya643nkHxkr1fsg8AhSGpPuXTj7y0RqmR+et90f2ZZ5t/APvkxRzllqd6MmDwio9GH5h9r9ANa6ePnTp0bGP29Ul+Z6u7u3s/Vbl03S3a0c6T27ymebpvRFqXaVi3Tid+p5lKDLRZCog1J48tv+FJICvMXKnBus56lOfBZtUKWy3B86nFje/t6D6Q+17aK0tTd9GEMMRfHcf5WxCEmI3+npaCvAm4DHgX10oan6BGIE+IgpA/Uez2vX42UQxTKp4F9jbHfAE8XcYzhwrWI08Xb+uibwI+xW1EkeJitZmc7l3U+4G3SrbSqT0Mrq7OfUf4gxeoe3VPT/UPK4CxMz7sUYddrdO8cpJeYt7bpXMTDXqZakroNos1R1+h/KtQ+nsd7DfL0Qcl0ZT6o0d6eRnc1jmo88JQtTxmwwDinKGV65euK+SvmT3D73Y8aw6bscILwEfBnFwB/pEZz9EPgIeCvwKGesc8DewD3RXzuKcbjmu6d2Du9947m7uaVwETP8JEkhlbkKKU+b+wg3upZU9IeawYiyNAiD7WL9H1qwL9Ge1kDfAaUqUA44HSRNd5LD6I+WK+0IhH2PI1Ixs8x8UyndnC1e69SvrYGe2mtVTVnzEWSOhhQn/X39NR0TxTnqnJmIkaFl7uBv1d+KlXDq0hPCS87AqawQXWirYL6CfOWzZtc0rEUP0I86gBvZxuzXx7MyEoQstnsUWz43AB0v9N/eVzzqXJMwZmggux6ox07bbuzAuc9zPN/F3iiAueMjLRKu0qrK3yDioM6/texSUxTqhuUVv76LMUN6R3TfUUcYg3BaqMO0mdvICPrDmBWkY23Dwc+YIz9DEOqu864G7jZGDsS2DWGudQUSlmCGJt2dnVOD3xylRB6RCu36TQL9a8L+zx+9NcRwQmT8Z7/bwW6JeA5K0FFtUk7B/szNguy65GFSCqCd0E+G8kBN2u4qotm/kUfGk+ueUqn9kLSIgum47mOHchuaPaotf7JaRNPK1bBqS5RWplF9/ecPuX07lgmUzB6E+C4gF+YfWj2BZ0KeN4/QJl94obiQDxprjl+Aywt8jjDjWeBS/GrMH4M+Dh2c/UA9FhQbxV3Sn0c/tSp+/xpWjWKyyWkONUz0uSscw6jPtqWxEJmeeb92tVTfYOaYtIGAXUT6AnIPeKjSAr/DOx01l7gcaSh8KUl3INSQNoYexfZA9Q7c4FPsmEv4SCf1ecHekECKK3u10r79mCkmEUVr2uhG1opUvsbQ66r3OvDPo/BDxi6oHkywV7Lu4AoDK1dEE+Ol3xubr3zFrAA8DbunIJsRC+IY0KF0r51++uZZZkleIqCtdJ7ImpCBaOy6iueh1o5llxyQgC5HmM+ZUalVC2IYGxGYVGTA7FT/UCUqYrZ5AS1T+jBTuGpV9JIFN27sexElNGGSkH5KugjkMj8daAGaTivN0ecaycYvxgWUcXWma1PZJZlHsWjlqq1PoLE0IoO19qI9zp9TgltGtTLwO9yP+QcPJsjPT+zyDr9Nqh1AxygEL4CbG+MLaTG02ZDIl+r7410fw7YE7sVRUKO1umtb3V0dyxTWm2IYmlmIQqWVUnoqYNaa2/uJEqrR+ZOm/ty2OepAYIK0CskJVwTLAb+Z4ydwcApC9WEeRMsRRBjQ42R5qm2qW3LzSekdTqy9gu1iuu6hxlD65oammqy8WvEzMZO1/kp9neuXlkB/MIY2w3Z6BTCh5B2Fa+AfgD0L0HPk6wJfTron4K+A+kz9AP8a8GPQN1a5vyrBq206ejYe+HShWbPyITwMO+Bt7Rs1/JO4DOLQmVBvQhqidRfqdfLNLJGYO95XgN+UsYxhxtB6tOVSGOuaZQ2IquKqpZ4DzWipbVWnd2d+/jGlC4gFaNsbgarx1GhPBXmRHJ8BDjAGAvqn1DP5L3rP/eMbQ58D8jEMqMCUUr9S2u9Xo5doXZNP5Eek94x/W4hr08/kW4C3rd+wJEi/HR3ekSz2/xlFMcAO9LNppllmbXI5vh2rfTl7VPb602S28TcZPzjpIknrYplJsXxDn5FzGJZUsRzg9J13sIfQU6QYvyv4XfuZJDMg0JbbzQjaVcfLOC563LnrKlG7UORVdk/N+gG77WV6k/1fw5RmE0Ikfld83dzcX0RIq39MvtVxLeBScbYucAgEeC6I99P1ave+VFEGXXYOGMi4CHgi+sfaWZVsyBGqIZWR1fHjo7j+CRHUZF3KgdUMTKjlcBU00kK0IP5DSIRO8MzdiqSdlK1m+dsNnuv4/iCTY1NI5r2ocBaxBFNI2Zqaf6Y59nOZZ27avRlKCsFdiQiqjJTafXNzLLMTTqrj2mf2f5qOe+hFlnQtWBmlqzZ0LlGFM7U89i9rKLia8B2xth5wOsVOn+tkPeue6Xut0WK0n8/yOtuQr6TByEp6UPxLnKdLgBVqkOwajl9yundmWWZh4H3rx/UHEpiaIWOq9yjjaGePqevyPqsijAGux79eZKU0iDOAL6EX506g9SLVqXhEDsuDxn5eGNzghhVWacVamqSSqn9jKF+p9cxFULyINOCAAAgAElEQVSGOwchhdVefk3SHyGIIAN0Y+CUGOZSMO3T258AXvCOKaU+Vejr3ZQ73jegeY+LexvaZ2S9gagymWqdn1Ypdd/8FfMnFDfr2idL1oxmZXVWh9F/bTgxArtH1qvA+THMpRYIqhc5i0F7XKmnQX0X1BTEY38YsqlcjNzrf4lED09AvNNbgvrKcDSyPJgOj/3Oe+a8uu71Fzbp29MNeL34gEb/X3pq+s2YpjQYP0QyVLycAayNYS7VTpABuhuJKMaAKKUewjRCU9WbPhiuoaUtQ+u+cHKHa4agAvS1QEcMc6kVgnr6nABsFcNcCkIppdGWRP+nCz6AZqwxcqpC5Y2vSxzH2aFtWtv4tmltk3rX9o5VSn0OeMbz/Gluv/vHK/WVQep0wxfH1/sIhbqjHiN7Q/Bd/H2NQCLs9XQfLoZ3sBXQJiMNRAtArQR1Faj5oE4A9Q1Qx4NqBbUY1N2ghn3LBq21mRbb0NfQ95nAJyeUxIhJIz6FqVKquTSe2QzKpsBJxlg+RS4hmKCUyg4i6nVb67ROb30LM3ih68DQym36fE1EtdYVSBusKo7Amz4hBIk+JGzAxfbAj0R63VQtylFmD4wZC5YsKKiXg6OcUcZQY+7f09qmtR3bMqVlfd1gesd0X+vU1mtIsSfwX89r9l7WvcxneAxnMt2ZKWhD3EHXStpgxRgDPqltkLYDSbrO4AT19Dmd2hDmqQrap7c/i/L3BVNK1c39qRJopc20wVc3eWMTcx2qBtqAjYyxINGHhA0EiYRsCxwVw1xqhYe8D5RWu8U1kaEIzdDq7u6ehTS68x69ngytBuw0uLyMecLgXAeYIg/fAKq2CZ129M2IBO56sk62oPRBV7trAob/1Tq1dcDIZ9vktjdc3GPwhMs1+vsFTrfm0VofhrdvBriqUSVpg35OwU7XSVPtvenipwe7rnYzYE4Mc6lZtKtNx8cnM89lxgU+OaEo0kvSGwG+CKFG//H43Y4vRxUwCiYgIhhe8jLmCYMTlMacZtA05rrGZ2hppT+gtVYDPTlOQjO0tNZm2uCaMf1j7gvr+DXA1xEPhJcFVLGoQ5VxmvG4EVs5rWpom9z2BmZfI0VBhpZylKVOqFAXDqWYM3fa3EdR3O4Z+lD6ifSYQs5Z6yjUZ42hf7ZMankh8Mn1yaZIry0vzwB/iGEutchvgKeNsVPwN1VPGAStLEOrkf4iUqoTBqTZaT4M8GVCKK2qMW3wLPyiDiDZKYmow9C8i+2YnwwcH8Ncqh7Xcc2+knlBjKojPENL6X19j9H3zpk5p148qSOwDYVXkb41CYVxD6Lm5eXLwK4xzKUwtDXfjy9esnho75PiLXOo3+0vVLb9Ls//G0eOHLlDga+rWXJe8T18g5pqlTSOi7nY6TrtJOk6hZIFzjbGxmKnYiYMwNxpcx/FVP1Sgc23E4pFcawx8kzb9LZ/xzKXgZmJNCj2cjdY9cwJA3MBdhrzaSRpzBbr9LqHMQx47ej3DfD0WAnF0MrVZ+3lO7B26ilt8PvA1sbY2SQF6MXSitRs5XEQD1lVolPazI8f/U7jO3sFPtlD7+reJfhvELp/ev/zBZ3U9d+Eszo77JW9lKs+hVEUrNHXxzSdamQrbK/ng0A1yj5XM38EHjbG5mDf2xMG5gbj8aeTxuvlMX/5/O0x6t8Vqhoj1fOwxRtMifeEwenBFlTbDBEIS/CQU9v07YeUUmZ7nKoglBtg13NduyCF2OtxU269NFYdC7QYY88Bv4phLrXOf7FzuT8L7BnDXIZkxuQZD2i0LzU0lU0dMtTrco2Nn/MMZc/kzIJSK7TSvpx8x3EaB3rucEFrbTb/XtY+vf3ZWCZTnZyNna7TRpKuUywaW5hnBFUuzFNVKG40RjZtWt5USDPnhAFws67pROnvb+z/XSyTGZhdsJvJ/x/wzxjmUuv8FjuN+WSSNGYbxeO+x9rqQ1oVhONpylob4b4+3Wd6BocrQV+AM0gK0EvlNOx0p844JjIUs9XsrFJ+9UGt9KGFFGQqpf7jedhw1vKzTMn3YDSbeR+6Wfe1gl5Xo+S84WbtW0GNoeuEbYBjjLG7gFtjmMtw4HpsYZ7jqGJhnmpidP/o25Fak/UoV5mOkoQCWbRy0UhTbVBpdd1pE08rLAOicszHv590kX1QQvFksevTgxz6dY9y1ePG0E6xTGQIwjG0lGVoPZyemjYbrQ5HgkK6zwCXxzCX4cKzwO+NsY8C+8cwlyHRrv6LMTQx81xmj8An+16ITzGv0W0srAeE4+sVobWjq7ITeliM7B65G2bvGNtrXs+cS5KuEzZBwjxVm8JcTeTqsu/wDSZ1WiXT098z29NjEQDt6Gpr1/AR7D6Sl+NvR5JQHFcC/zHGgkpU6hujpQQws6A6+QoTiqGllfYZWkqrf4Vx3BogqEixlaQAvVzOxO4gn8Ev710VjGgacSOGB9dxHTOFwkKn9LVAX/5xykkdOdRrOrs6xyqtvBK/T8ydNvflIqZbc7jaNTdpa5sbmuslLXkoZgFmr6KrgXq5/0bFPWAZ818CqrLQutpQWpl1WrPOXXbuFoFPThgUpZWZNrhi+pTpt8QymYExWyOso4oVg2sEje3wCRJdq2u0q01Dq2GNs2abWCYzCGUbWuc9c96mSqtpvkFVFwv9JIIL0JPePuXzPPALY2wW8IUY5jIoJ008aS2SbrQejT58qPTBnDz8+veotT66o7vjQ4O9Riu9AI9hr5T6dUmTriG0suqz/pH7zBMkmuXrLUaywQmLIGEeU5UwIYB+3W+m9jpKqUTmvUjOXXbuLpj1yZpfzFazs8GviIWDgY8ZY78CumKYy3DjRszocHAbobqlubn5SYx+phpddemDZRtafY19e2FEGvrd/nowtNLYjeRaSQrQw6IDeDtgzEyTih1NQPrg8szuQ74uq+cp1Ju5hw1obujo6rDSbBa+tHB0x7KOxcA382MK1d3U0PTLsiZe5WSey4xTGN3edZI2mGNv7Nq1y0jSdcLiUeDPxthnMNR1E2xOm3HayoCUnk/GMpkaxsExHbnr3JR7cRxzGQCF7XxYi2SfJISDKc7TQFL7tp6c07XbN6iqTxCj/E2rYk/DtHjhtBmnmX0AhhvbAEcbY3cC/4hhLsOV14AfI2mEefKfe1UpLvWN6Luhuad5NTA6P6a0Ohy4f7DXtc9sfzXTlTkcxQ1Ao0KNR3F9ZlnmUTT/VEq962p36/41/fsrlFdwZY129KHDPbKjs3pvhfI5g1JuypTUr1dMgZh1JHVEYXM6EkX3Knt2YkhtJ9gorW7W6PUbHuUqM+qRMAi5RvRmOvnVc6fMfTGO+QzAEcD7jbHFwP9imMtw5R6kZYLXAXsEsBB4JJYZVR9PADM8j0OLaC1esrh5ddPqUUM/c3DKjmgprfz1Wah6kPMMiqwkBejhcx7wijGWxo4kxkp6QnoNdv+Y2YWoD7ZNb7tVKz3bkInfBcW3NPpkpdQReFUtNc872vlY25S2Ya/qqZTaxxj636kzT01SUoIjK78kSdcJmyXAxcZYUCQxwcDFaO+i2GrBkgWJcmOBNI9s/gqiNLcB10qnj5MG/E5QgLeABTHMZbgTlMZs9tqqZ0zlwdAiWmsa1nyFLKvK/SnL0Erfnm4AnwoaGn1fWe+s+gmqFfobMNzfdxy8i8jGepkEfCuGuQyFmWY0cUH3goL6x7RPbb861ZDaWWt9EfD6AE9bqZQ6s9ft3aFlesuDZc20Rgjwgt8RxzyqjKBaoSRdJzrSwBpjzJSyTjBQKXU3/s0hWSebRLUKINfS4vvG8NOt01tvj2M+AxBUK7QAWBXw3ITyeAxRIfQSVBtXn2grTXnawpcWjg58bjysLmuxaJzYuB1Go2LlDnvFQVP9LoudR5sQHhdidP8mWO0xVnpH9F4PrPaOudr9cqGvb5nU8kL79PZvjV81/r04fEBr/Rk0RylHHai13rZtWtuk1qmtZ6dnps26tWFJZ1fnWK30rsZwojYYrH73E0RAJiF8XgB+boztiq32mOAhJ/bzmG9QJRvDQhjRPeIgJE1+PUqrxUqpaqn/DlK/exX4aQxzqRfOQNLDvZhqj3WJwuql5fT19FWNYIhS6sqyarSUo8z83GzPqJ7hnDca1M/pD2BZ1Anh0YN48H/lGdsUOJEqCp+nJ6TXdCzruF6hZq8fVByZfiJ9anrHdN8gL/Vx/G7HrwMezv3ULS7u3gqV8o6ldKreDa2gfk5vIim2CdGRAb4BbOQZm4dkMiStPAbmTsQozZPUthWG2ZvzjdTo1CWxzCSYoH5OZwPvxDCXemEJUpv+Tc9Yvn/ZTbHMqEoY5Y56dnVqdRZYv19wtDMTuw9Z8cfuH3Xx6qbVZjRxcPpZhOIr6x+7/LY8QwtlepyfzdWrDFfMAvQ+EsnfSvA74CRge8/YKcBF2DVcseFo5xKt9GzP0KbNo5sPQjZkCUXgKOdj2q+y8+Kp009dEtd8qoTjALPOZT5Juk7UvA78CL+Ruw1wLPCbWGZUA2it71RKzfEMTZm3bN7k06ad9lxsk6pyzl167k4avZ9vUPPLU7Y8ZfUAL6k0Y4EWY+w5/I7QhGg4CzgK8IozzAf+jpGmW0/MmTmnN7Ms8z9g8vpB7RPHKOvYQG+hz093p0c0q+bPeoaebZnWcm95eebKrzijlR7OXvjPYva0kI3+shjmUm9ksfsDvQcxtqqGnhU9NwN+VSjX49lIKBgX1+f91lrXezRrJNBujL1Ikq5TKRYBZnPws5C/S0IATf1Nd2G0O2mgIUkfHISUkzoRf2lCv0JdGNd8AjgZrziTcAZFbEYTSuYFpJTCyy7AYTHMpapQqKXG0Mw45tHsNh8KjFs/oPitUkqXZ2hpdjFGhmsPFwc7ZWc1oj6YUBn+jB0K/h4wMYa5BJLeN92PpJJ6OXBB94It45hPrbJ4yeJmhfLVISlH1buhNQc7XWceRl1gQmS8i53RsBXVKcxTFZy87cmvoXjSO6bRgzZlr2c6lnRsptFmXe9VrdNbV8QyIZvNsNManwEuj2Eu9UoH8IYxNo8q7C9aSbTWZrZLKBGtonH4mudRv5NyLpXhEuns6pyE1MqsR2k1XOuzjsSfaw5SgP5SDHOpVzQw1xgLKsqNFQfHTCVq6Hf7CxbFSIC1ztqdgSbfoBq8J9kwZyxwqjG2HPh15adS11yI2RxToowbBTw3QTC/tx+IZRY1gEqpb2FESLWjz49pOkEEiVC1ktQpVpI3kP6iXmZCnWfOKGKPaGW6M1PQ7OMZuqFlUssLUIah5SrXVL7CxR2OEa1G7H4RbyI5+wmV5SbAlLj9OrBdDHMJpGVayzMa/YB3TCn11bjmU4toR88yhvp6V/fWs+DMqcB4Y+x0pEY0oXL0YSt9bQr8IIa51ARKKzML4X0XPXhRY+CT65jFSxY3A9/2jmn0A+1T2qtFxXkycLwx9m/gmhjmUu/8mCSN2YfGimht3tnVOTbwydFN4mt4bCql1G/z/y/Z0HKU4ze0NM/PnTbX/OMPB76JXYCewQ7fJlSGVvx5/ylsQzhWHO1cbAztdO7ycxNPboForf2fleKxYpQbhxmbYffUeZwkXScufg88ZYydDGwew1yqHtdxTUNrxBvj3qgax1i1sLph9bHAe71jSqufxDSdINJAszHWhlGDl1AR3sXumzgBw1CvJ1JOyhLK0lpXLH0w1/vuWM/Qy+NeH3dD/kHJhpZ2td/QUgzHtMGRyM3Ey4vAz2KYS4LwAHC9MfZFwGw1ECeXI01k16Nc9ZV4plJ7aAxDS/NQTFOpBs7ATteZSx2rTMVMFvmbeBmDrcSWAPQ19f0XI7UsIGJd16R12kHzQ2N4xfg3xv8llgnZbIuo3Xm5FfhHDHNJEH6OncbcRp2mMY9cN3IZcm/eQKpydVrNy5s/CUzKP1Za/T7Xqgcoo4BOO3oXpTeI42j0cEwbPBEpePZyNjCcJexrgXbgQDY4ChSS0nNQbDPy0Dq99a2Oro5rlFJHeIaPXLRyUctJE09aO+ALE7jowYsaV7FqJ9+gqtueYpOR/k1eHgCujWEuCRu4Cvk77O4Z+w5St2s2V69r0hPSazLLMk8D67/TuYj1xbHM54X0qOa1zQeg+DywDZoJKFLAyyie165+EM3f+1b23Z8TN4qc5u7mQzEbFCu1yLtRi5kO7L3i6XFMJGE9fUgf0d96xjZF2uCk45hQnARJvCutKlenpX0iGKiUutj7uKSI1qKVi0Yqrab6DqzUo6Ucq4rZGEkJ8dKN/8JOiIfHgD8ZYwcCVSMd7Dj+9EGFGt/b3/vFmKZTM6zadNVOiMjJBty6jWidTZKuU41o7KjWCJLN50D4vr9KqYpHtLTWqqO749jmnublKP6CCFx9EMVWwJbArmgOVEqdoRx1T/Pk5n9WcHq+aJZGr+pZ01Mt/dl2Az5vjP0VuC+GuST4uQT8qp7ItVSvacy+9EFNZVIHO/7XsQlwiGfo3pYpLb708pIMrbX9a7c1X6tcZf7Ba52kAL26mYv9tzAL1WOjZ0rPLZg91jRzgp+dkEe5amdjqL+5qfnxWCYTL9sCplrl34HbYphLgs3N2MI8X6OKhHmqBa20v05Ls4vWWg3w9NC56MGLGucvn/8XpdXFSM1jIYwY+inlk+nKfALwSd4rpRand0y/W4nzF0AH/r5eWRKHQrWQxa5Pr9s0Zq0MQQxVIeXBdRyN1yGq7WBMSamDjutsj/826fY4PVYxWkxsioThpyMX3Ua5n3eRnjOrkfSOZ4EVBNc6bI70aPLyOHBFNFNOKIFu4Hf4lZA+AhwA3OgZSwFTkGtiK2A0cl2MQK6JN3P/LkWuiVBETtIq7WaWZX4BLPAMv3/+svm7t0xreWCg19U7AV6orhpMt2xC+nhsg9xLxuR+HOT+8xZynS1BrrmgVOQM/vtzUBQlIV5aEc9+fjVMIWk7RwQ8dxPkepiB3IPGIrV3a9iwNv0PuR6eYxjV4ClXPWnsF8YsXL5wCyrQHiV9e7ph1fhVV6D5gmd4DXA5mpvQLE+p1Nv9Tv94hdoezSeAz0U9r/Uoa1O8prGv8YKQjj4BcdhMZsO6tzEb1rzVyLX2DNIM1+SjwP7G2B+woygJ8XEV0kLBa6wPlMbchOyLtwG2QK6H0cg6sxq5Lt5kw16oWoz9glCuWuK7z2imVeS82ld/v9pZ5/zZfE5JhpZGb6c870gr3Z2emu4p5VhlooD3AfsB+wJ7YkehBqMHeAS4A/EU34OIGAQVoLczjBa/YcJZwNHAKM/YAmTDsy+wD1Ib0GS9cmBeBv6FXA+3AaXLiqf4NVnS3vm5uN9F6jsSglDMMBLjzP4Y1cjmyPW2H5K+OgO5BgtBI5udu9lwzW2Ovdn7K3ZPooR4eQC4DviMZ2w2sBARgPCuS5tarx6YXuC/bFiX7qaG64KzKrskZXwdXNedQQUMraYpTSehOdQzdJfS6ugBmgDfD1y88KWFo9017l5Rz+3c7nPfh+bj3jGl1S9P3vbk10o4XAOy2d4v9zMLew8zGO8ADyJR2tuQz8Js0N2HpDMnVA95B9zNnrERubE2/OvSTIrb869A7j23I8Iny8ufbnRo9HPK79HZIt2dHhGlbZLpynwQb49dxZ9atmt5x3xeaWIYyp8eobR6uqTjlM5MZIN9FDB1iOcOxghgj9xPK/A2csGam5z8gppQXbwIXACc4hnbifLEArZA/v75a+Ap4FLEk1dUoXvb5LY3Ml2ZK1G+ZoJfXLh04SmnzDjllTLmOHzRfqUgpVW1RMpNRiG1C0cDn6Bww8pEIRHXKbljgUS8zHSdJJpVnbQjIjxeYZ678Dt/iqUZEdrYHUlhfxcxtC9BNj015fDrn9q/MtWd6sGTjqcdPQNxbEbGgq4FM7M6m/YM3d8wquHAU7Y8ZfVgr8v9/pYo5wbgaKcd//d8Xb/qL1bS/QPAMcCXKK825z3IpnxfxJh6C4m6erkIMx0+oRrIp5Tv5xn7OvBVSl+XQFT0jsz9gBjflwJ/BF4v47iRkCK1wvXfGlVztnlronXW+kUwsiqwtrKkGi2F2t54bPYViYoPI5voZ5A84XKMrCA2Ag5HmhR7MXs3JVQHTUgKYZQbj+2RPPXlyLX3wWJe7KbcnxpDzVmV/VrgkxMAv6Glle6KayIDsAmSHrYSMb4/RXmLWRDmBudqknSdauVxpJG6l3KMrCDGIJvpW5FNwwlUqIYoDNIq7WJIUWutzd6UoZN1sq1saOLap1P6a0MZWZViQdeCmeBLZwS44rRppz1X4CE+gWRePIRcD2ELIJj3oF7s3k0J1cM8/HtURfjr0oeQ1kYvIE6fyqn6FYCjnaAo9aSAsVBYtHLRSENZ+tmW6S2BDcaLNrRyjbl8H7BGP1PscYpkVzak9h0MFFJI24tEPJYiN6OnkFBosXmnazEaCSbEjgN8C0m5upDCr+O3c695ErkmliGpgoXI6DrItXc/8H8UeJOZO2Xuf4B/e8e00t++Ul8Z9k2w5smp94zzDaqqSR0chSxmy5EC5EJTlN9ArrPHkDTlZcBrFOccOAT4BcWlnyVEz06IN/nAIl7Th6TMdeFfl6x0kwGYitRfPIs0yKyYqESZ+L/HOtoeN51dnWPRbFB5VVzVPrm9apwVWbLt+DfC2nXdhQW89BNIWuktSCZOIawFnkeumYdy/z6P0etxCJqR2uePD/XEhIoyAlmPrqG4e8GbbFiXHs79/1XMXlTBNCHZF08Cv0GygGLn5Oknv4p5TaeiM7R61vUcptEbe4Z+rZQKDMgUnTo4aumoqdlU1udN066OKqK1EVKH8z0Gn2sPUpR8G7KpzRcUD3TRbI4Uie7MhlqegTYxI4HLgOOA7yILY0J8zEKa9Q0VWXoRSbO5E7mZPMvA4e4GZAOzLeK12RdJ2zEjmyA3s88AnwTmI3nsgy5YWukLcopXeSYt7V56EGKwJeRZF7D5ylaFoXUIcD6S3jcYS5Br7i7kPjFYQXEzUpS8LRKp3w+5HwUtlo2I6MthSHT9t9RY+tgwYwyyuTmB4HtEnl7EMXMbkn7+LGKoD7QubYqoFu6MrEn7MHCkYiLSi+rrSPF7dStzKpYa/vZopZcVn0UK/fNcEun5iuCc5edMxV2fjpXn2rkz5g72N5wA/IhgoRUv7yD3n9sRx86zDJ7yPhG5D+Vr3fdm4NquXZGo6hWIjPiLQ8wlIVoOAH6KCFwMRhcb1qUnkWtiIMdOM5JVsh2wF3JN7EKwM7sBSZ37AqICfRGFGWqRoJTSuV5aG5zgmomRnQ/lzUzqdx33DwM9t2hDq9/p316Ze4ERRFGjtTvSK2nKAL/PIl/6S5DUmmKKhV/J/dyNREQUcoM5BtnMmGFzkM33w0hDuAuLOFdCODhIcedZDBwSXwVcjuQRFyM40Y9skpewoRZvLHAock18FHsD3IzUzRyKFMAP6C0d0z/mj6tTqxfg2TQp1HdJDC0fCjXFGOof/+b4QlNpomA0kirxlUGesxy53i7F6OMxBL2IA+Ax4C+5sQmIpPsxyGbbZBPgV0h689HIPSyhsnwAWZcGMhRcxLC6BKmrKiZV7TUka+MexJmkkM3O0cg9ZlzAa/ZGohQtiDOgOlPcXZYad9BIFcG01nt6ztffMLLh7vyDK/WVqa6urqk6pbdyss46jX6ldXpr10De6LBpdBvbNNpvoOtBW5N8FlHYDfr7gziar0WuuZspLEMjz8rczz8QQ64RSYc+GnEwBaWofin3nK+SrGFxMBKJan9zkOesYMO6VEzGWS8iAPYEomgI0mfuCGRden/AazZGauUPQ+q5YjPAFWqFRs/0PI7E0Mo5S7x9W6+fO2XugO+76NRBhdVt+dX2rdvDLoz7AWIETQn4XS/wS8QL82lkY12uIpNGrP3jgK2RRsVBH1ozckFdiUTbEirDZkgdxDyCjazliFd3K+D7hKPq9xYSOdgHSRH6A2KQmeyYO98xAx1ozsw5vUZEC2D/ziWdO4Ywz+GDtnrcvHr8bscXs2kIkx2Qv+tXBvj9Q4iRPR0xuMMQ7XgBOA/xIO7LwAX5n0ScPlXToLtO+C7wT4KNrD7kfrEdIol9KcUZWUFo4F4kTXprZF18PuB5TcCPEcNu44Dfx0/Kv54q1Lj07enSxLgKwfFlPDxxypanrO7s6hyb6cp0dnV3rcRhidLqDu3oe3FY0tnd+WJmWeaic5afE3bdt495S+dN1OhjfYOaG9umt/074OmNwCLgbwQbWW8hdVOTEUP8OoozsoJYlzvOF3PHzSAp9ybjEQd33jhLqAzbINlbAxlZjyB/u6nAaRRnZA3ES4hh9wGkhc6NAzwvH4yIL71U4avTcnEjSR1scBu+jsf5rggWwchTtKGllTZvRGEWq6cQT94igiW5r0QWueOJTv3mXeTmMQ25UIOMuMORlLQtI5pDwgamIZsbs58HyELzfSRU/HPEsxcFTyIevh2wC99BIh+/ZxDp23Wpdb/AH1ZXukGfFOYkax2llFn3FJey0UeRDe4OAb97DlEb3A3Z2EaVwncHYlDtDTwa8PsJSH3QlyI6f8IGHGSj8TO8jSk38DdkA/R1wjG4g1iTm8N0JHoVZMR9DnFQbhXRHEpGucr8LqsxE8ZEZxRqXw3t8kxX5oNa6UdzfauCaq63AL7Z4DY8nenODBYpKAvHcVow9jYK1RHw1NFI3c0PsLMpssBixBHdTnSR7Vdyx5+CpKiZaWEKyfC5mvAFYBJs9kAEUHYJ+N3/kH3pB5B9clTr0r1ITeoeiLPRZAtkj/SViM4/KNrVPkNLoUI3tHI6FV7H+svjVo0L2heup5SIli/kr5UOy+BpRmQjvxXwuxXIpuOLyAVVCXqAc5GIxd8Dfv8+5KKLNte8vtkVSaMJ+oz/gniPf0ZwpCkKliB50YcjhaMmpyN5ylbU7fQpp3cr1N98g5oj56+YPyGCedYkWutNjKFVMYwwBwgAACAASURBVEzjs8hCYW4CXaQ/0g7IxqJS3IPUJf4Q25HQhERaT6jgfOqNRiQlK+gzfh6Rdv8CYoBXgl6kV+D2wA0Bv98JWZe2C/hdfGRtp0m2MWt+30MhJzS0vs5Io0eguJ4NCmSrNfpm4DIUNyjUm56XN6G5qLO7M/Tv1ILuBVsadR0At7ZObzVl7scj0ewDAg7zCFKffAIiaFAJ3gDm5M77SMDvD0TKOIrpYZpQHAcQ/BlrJGV4e2RPVKnU4XyT5O9jByMakOj+qRWay3q00mY94uSwz9G0rOnT4Kn90lw8VOZNKfLuPkNLadU90BOLIIWkWhwW8LtrESs98r4WA7AcSVE8ETssPw3xPIf+x0xgJmLgmt7HXuRvcTgVaHg5AH9BamiCrslvItE1C631AmOo2c263wt5brWMfxHRFY9ofQLxBo40xl9DFCdPJZ7Gsf1IlH8v7IhJPtpyYqUnVQcopCbOFC4AqWnZjWBjpxKsRK7JE5G0RS+TkflFmgZXDE6DY32XtWs5VkKha0XXRvjTej6FpJ+jUIt61/Zu2T6t/dNt09qOapvadtCo7KgtFep0PFEArfXC+V3zdwtzXq7rtmDcWxTqHONpo5DUvT0DDnEpIpzzcJjzKoKHkUjG4oDf7YnUhxXTJDmhMPZFouajjfHXkTq6EyleTTsMsoijezek1tiLQsTCTq7khFKkTIn3UYtWLgrVAaCU31miHX3xUK8pytDSWisMo0KjwzC0LkA2zibnIB7muJuj5b0GB2DnK2+FLLaJNyc8tka8N6bi1qtIKtX5FZ+RzcvI9RBkVH0DuXZ95PLw7/YNar41/+n5yeIEoPFtvJRSlYxo7YFEqsyU5ceR6PVAeemV5GFkUbs14Hc/Quo0EsLjJ4iEuskCJJU5LkdPnvy6tD92dGMCEpk16x5jYezrY1/H9LY7RGJoNaxrCKwZ0uiO1mmtP0zvmPZtSufMnNPbOq11nkJ5nRWNrnJDaxJ+7rJzt9BKmymJd7ZOa73L87gJuQeZRlY/IjxxDPE4erz0ItG0r2FnkuyGCCgElX0klMYsJIXUTFl+Ove766xXVJ6nkGs2yOm0ACm7qBRWL621/WtDSx/MtaA52DN0T/vU9iHFAIsytBasXPBejFxc7ZSdOngKUnPlxUVCkmdQXSpK/0C8Cy8b4zsg9RrRFffWDyORm4f55ViOFGIGFQ3HRRYR4Tgr4HenEbBJ0+jzjKFx2ebs1yOYW+2hYotoTUQi56bH8F6kXitIgCAu3kbS1f5kjDtIituHKj6j4cn3kXQpLxrx0LZQXevSXYgwygvG+DbIxj12sYJcao3PwNEqmojW6lGrg7z7KzZZtUl6sNe1TG35GcpXd3LwwqULQ2kE7OD8ELOOyVYavBC7FnktUhN6cRjzCJHfISmzpuG3P+I4Tyif9wLXY0cJH0AcznEq8pqsRmpELzXGFdJra+9KTGLtiLUrMe7NKZ0KT3mwl2PxGL1a698W8rKiDK1sX9ZKRdBuWYbWh5A6KJOTkJBkNfIfRFXF9LZ/DOmtklAe5yO1WV5eQAzcZys/nYJIE2xsXYAhqNA2te1ajF5sSquTLnrwotg3Q1WAX8lT8VYFztmA9IUx++j9G0kZfqMCcyiWPkQG/s/GeDOS+phE18tjN6Qez+QUJHJYjTyKrEGmMMJeBK+xceD7LilUUBuVsjnzvWeuxRRuUFw2VB2FUkqjfQaNWues+2i58+lY0rEZdu35fW3T27yR6SMQMRUv6xBl02qIWgRxLZK61muMH0dloxjDkbzjzGwG/Bgirf9axWc0NOsQ5/LvjfFGRB18oF61oZGekF6DEd3XSgeJ35RE+/T2RW3T2lT+p316++8KeV1xNVqO1fti3TZTtylVnGIcslEwN5hnUR2pYYPxBHKDMRvVtiN1Hgml8UUk7c7LG8iGd3nFZ1Mcaew0wtEYNT9KKa3RPzaeN3HVuFVB9Yl1hUL5G6GjzQU8Cs5B6h68PI0UeMeR914oLrKZud0Yn4TUFSWUxkZItNBM1ZlP9RpZeZYizdRNRcKTkes5bnzfZxc3SMGxbHL9sPyOUFVYJoRW2vc8pa12NkXjOE47RlRCOcqrULsN9nfWRdIFqyFleTD+gRiIZoT3QuR9JZTG6dh7yS5EFK5SIiiloJE93M3G+NbYBlhU+FK6FSp2dfCiUt2UUtO8Xyet9IrZanapnaAzYHVtvpbgyEA1ci9yg7ncM+YAv0aiGHHnUtca47CLbDUiE2oWWhbDVogc6pTc/0ciTRjfRmr/ngEeJJwme99DFhdvH4kdkVSjdH5gTHbMJatTq8/CK/ShaNFa/7FSTTOrEa11kyFkHLWhtTN2se67SKpOuR7DLZD2D+MQtcA3kchsUE+aUulFPN7/wd9z8Au5n7+GeK564WzsZro3IM3SS2UEUuc3A/k7jUEaoq9GWlS8gNyDnqB8BdUHkPoZb2qpAn6BrEvxOQ8Ufd79g6OdKGt5nsJTn6ayKkgl1kKhXjYGykpvnL9i/gS33zVLI/7dMrnlplZa849/jlwTXjqBy8o5dwW5DFG7bPWMjUGMx32orjTbWmAHYK4x1oPc68utC90c2XeMQ9aP/LoUZvbIOkRz4d/Atp7xA5FMjMuDXhQiLyMqjABorc2oYMUpztBCTdae70wZioO7YUcunkM21VF9KccgkpRBYcQZlCYlfQUSxvXW4kxGNtZJGmFxZLDFLxZQfOf5fLPXPXM/hRZCPohIkv6W0jf4LqJQ9gj+HmutyLXyDEjxdeeyzgs12iuYsWtnV+e+wG0lnrv2Uf4oQsQRLQeR4jfvgd9GIlrFsjNyL/g4opIaVNvhIpvp25Gm60+UcB6TN5BI8N34i9B/gqh2VnNUrtrYGWlK7OV/yP29mHVpYyQKv0fu5wMUVie1Ctm0/ozy0qSvRK5Dr/jCRKRutDXwFRVAuapXe/xIUUW0ANA8iWJD2p8qMHsnS4P3mVrpshoAu+vc01F+pUFXu20eh9pRwH7Gy+7D45iLgClIb8oRxvhrlB6FOh2pof6IZ+yjSErkFSUes175Kfb94jvAf0s41o7416Wg6I6LOCZuR4zjoL6NxfIOIs50P/7rbBHiuIosKqe1fkkpn8c2dkOrqNRBV7tbex8rVKnFeBcY59ZIGkyUKmOdiKdgXMCP2RCwGL6HSO16OZXCN/gJ4u01De/HkJt3sSxCNplfpLi/wW5IusMjBEvrFsrLyDXhpRkxGtfT1Nh0IUaKj3Z0bJugKsG38XJwojS0jsL+O/8R6UtVKFMRwZ5nkcVpIbLBHqiA3kE283MQNcNrCHb8FMsDSGqbl4nE0MekxvkZtuH9VYqPbu6LbC5PQOqQC62/HI+IcDyKbLStfnxFcCJg1k//AGl4HAta+R0nUUa0tNL/NB4X9D3TjvG8MgR55i2bNxmF2Tfr7rnT5/4j9/9RGOsCkglzBHYrmbBQiIMpH9Xw/pTTQLof2cOZmTznYbfLSBiY2diG99WI+EihTEIiYk8j68yPkGjSQCl0DmKQfQ8x5q5HUv3K5VFs9eUtkBKbyHBwzKhf7KmDRRlaCuX78LXWpdRnfQrY3Ri7GFP2Olz2QjzVUfAusoB5GYEUTicUxlxsw3sO0S02g7Ed4tn5bBnHuApb6vQQxKMEwEkTT1ql8SvWKNT+nUs79yrjvLWOf+OlrP5AYeEgUWcv71B8z4+fIanOpdZxHIIshB8Z6okFkMHeWJ9AeZuneuJjgCl8cAXBUvpR04xkRFxB6YqBa7Gjc03Y130l8X2fNTqyiJZKqevwrh+6sO+Y0uojxuOgBr0FkdKpNMY9TaFO8zw8DtvRcg7Rqskdh9T5RMFyoMMYmwCWsZkQjMKOOK/B3l8OxY+BefjT9orhQMTRbRp8pXAedobId4i27YQv/VcrXVuGFoaVq5UuRfbYtGbfJdp0hpGIIVdKc+ZCuQo75es4qsCSrgG2Q+pJvFyBNIIul7eQXjLzkb/HAchmah9kkzsXMfDNtKDm3BxmlHHuH2DXW/iuc0c752FuPhxdTi1IrePblJge8BA5FEMNEtnghCXj3gPcg+Sin49ESq8nOF1ifO53s8o851psQ3Ej7M12QjDmuhT0eZZCFvHs/jJ3vM8jEth7Ihve4xFvddC1cThSM1YqN2GLKRyLXRtdKXzfZ+3oyCJabZPb3kDev5wL/eX0kvRGg7yE9BPpJu1or/Lfmt6Rvf8c8AWDsKBrwUwUR/kGNTd6+mY1YV9fXUhGRlRMwI58h815gFlScipJb61COBh4vzHWSXhCYL1IyujlSD38hYguQpCy7sZI2cYeZZ6zD1ER9zIau3VGaLi4PkNL6fjFMAo2PnI3KZ9yjuM4xUa0ZmF7DS/ClqQNk3PY4HHWSLpOFJgL4giii6INJ+bgvw5dypMjfhxJu5mFbGIPQAyc3yAL793AncgNpgO5HvfErokYiXiGSuVZJBXNy6F4Gn63Tm9dgbJS1Q6e3zV/tzLOW5Okn0g3YaTw6mxkhpbpIXwdWXTK4S3kXrYPskjtjdTrnYgYOwcjjpfvYAtibIRstsvtw3c1dn7990M47nBnR2wv/2+x+1IVytuIwtahyD1oV8Sg+hHyN7oVqcO5BTHAvobcF34RcKwfUnrEFOx1qYn4jG+fU0mhoqvRAlzHTSPrCQo1vjnVfGFapwfc84wYOSKjtFqfWqm0+mVOLrpo+uk/G+N75ygn7Xl4GLbBOx8ii+KD3OPG5f6/Bo8hGiK9iHHgZRLyXUgYHHNdegtbIKxY3kYE2vZD1qUPI+vSCch94BBkXfoGtsE1GglSlGsk34jd//Q72MquoeCkrNTB0ekn0qbYTEUp2NBqamqycjazbrZYD/AxxuNeopXM/RCy0clzEdGJDdyJeLG9HE159V/DnWYkH93L1cCTZRzzRCSd6z/kFtkCuB/ZGJvKgwcwcL1NIWSMOTjITW49qf5UB0bkqx6jWiNTI62bbkRiGNtg12YtxpbELpQViEPlvUivnDsZWEylF1EY2x276fnOYHjAi0djp+5sgdSNJQyMuS6tI7iPVqH8AxF2+iuFq0y+jVxHZmuTRkSpq1Tuy83Hy1FEm+ExEP7vhY5mo5Vn7pS5/1Eob23Lkc3dzVd3dHds533evGXzJmeWZS7RaK/n/YWUTmVKOe+5S8/dSSk12zeo+VvLtJYHPCPmNfc80jcpKo7Gnw4/FzvVOCx+j50dYL7fBD+TkfRlLxdSuhrg80jN1XsRI+p2JNMiiD7EGPsg9t9tW8JJ/TSd5+ORVhSho9GWMmNzc3OsUa2Cb7YqqyxDa2TjyGIiWg2IQIGXqwlHVjuIZiSKkS8ofpHyJHoLweyjNJVw6i+GK59hg4ctT5BXtxK8gl24mcKOwBbDk8BdxphXoZJTZ57ahRH50lp/vrOrc+cyzltzpFTK2nQppaLw7pqNNLOU3ndqPhJt+AV2T73BeCZgHiBe7nK5CtuIK9eAG8442IbMDURbJzMY7djG2b5lHtNcl7YinPqLoghIBY48nWxUdtR3EedHns8orZ7KLMssz3RnHswsyyxJkerG/318Rzv6sFNmnFJSpk1Kpc7ByNJQSnnb1kzA7pH0G6JrZ7EZfof2vxFlu6joRSLCXvYnHOGf4crR2HXqpa5LP0bKHi6guDZDXcCXsEspwliXrsUWjYtkXXIcx1z/UCre9MHCvVraUiFZc9LEk4pRCfwYtszipUW8vlhOR1JC8nyX6Bu9XY29SNZ9I9pBMNMJnideefOg5pBblXlM00u5DdJzZD0pnTob2fDnUS5upMo81UZ2ZNbadKVIRbHxML+Pf6d0Z89dlJ7qcwt2OoXp0SyFfuyU1c8QUZrGMGBPbIWtKNeloViD3zAA2ZiXw3XYir4VX5eUazlOIr8m58yc0+v0OZ9BWRv/yWhmIRvSDVknmidd192rfUr7v0o5X2ZpZpZW2i+kpPhT67RWrzT35/ArSmqKUzstlp+zQXygH0ljLbX/aaFcin/DnkLed0Iw5l7oDuxat0K5h4GjV0NxN3Zm1t6UHwF3sftnHYCkJ4bK2q61r2BkM7nKrRFDS1kbzmLrs0wP2uvY3aPDYlf80sZXAX+L6Fxe1mD3faq457BGUNie2j8R/QIwGJYnhPK9rldhb8a9DY05dfqpS4C/eMeUUofPXza/VNWgmqPP7atE6uAERHzFS5w9XkynwhiMOtgSMd/TKMprWTCcMe/P7yCGSZyYkZRyDZJe7PWv8hEt+/tcEYGElu1a3mmb2vZ1jf5ozuAy7/PvAtdr9DHTp03fZe6MuY+XfDKHefjLBbIabdbJmZ/9g8CSks85OIfj38TPBx6O6FxeliDvy0uyFwpmE6T/p5dqWpeaoLzG3TnM99SEGHGhkt433Q/+tgyKeCNaBRdJa623MpqAFVsobH7J7sBWZQuDBiQMn5fFfQsp/KsUt+IPie6IFBuW29F7uLEjdoTzljgm4mHTgLFSC+LzvI30OfKmkO6LUYuhU/pslVWHs8H5kcpFtXyphsOVlLZTB13lhm1oBS30Zv1KJXk1YGw0stkvhweRwmZvWu6+hKPkOdwwr4m7iC6Fq1DMTU0Yapi3Al5FvZlIXUjFUiSVUr7PVeloxTBM2qe1302ujcziJYub3069vWV/tv+N9Mx0oXV0g9KxtOPDmPWQit+3T233yls72JHrqNa9TfCnCD6LyH5XiluRup88+yLvv9Da6Xoh/7l4iXMvNNC6FDReDI8iTg7vvm9fohBlUfxaadWstX5NK/1KykmVpB4aFgUbWgE5jsXc/Juw5YtvL+L1xdBmnOsUwpNtLgTTG6AQicyrKziHWsD0sK/DDllXGjNvXhNOf7fb8BtaHzaf0D65/clMV+YaFJ/3DB+5oGvBvFzEa1ijtW5Shm6MckKv0TKvuaco35AuB7NmIUv5i1n+OHfhL363rrkEHEQwyUtU61KhNGPXhYZ1D9L4oy17UElDC9WnPdlk2omuj9ZQzJk5p5eQ37ujnHO0v7xlHY4lArAttkMvqmvufDZsajUitlJqSlkp3Ia/Ln4T5P0/VcE51ALmutRNeJLupRBUSxeU7VMsGnH2ebUaIlmX2qa2VVXpRTF5lz5DS6GK+eCnYzdevL+I1xfKdvj7odyJqKlUkpXYhp2ZrpRgfyZPICkccTEOOMMYux5RlSsX81rflKBQfIpzMPLas2TrosbP0Y616co62bAjC2Yq5gOBz6ocZuP2LsJLnTWvubpJQy2CyUgbBy9RrEvFcDqiyJWnn9KL4r28gl3zUdF1yUwd1Dq6PlqVJtOV+YRW2kyF/1Xb5DZT2c/8HmqiuQ8dhF/h9pdUvv75AWxhheQ+ZGN+JnHfg8x1aQXFiT0NRl2uS4WrDqJ8MteucosxtII+TLNvUbk4SMrgiNzjXsSDY37RK4H53raJYQ7VjnlNPBPLLIT3I17FKZ6xd/C3BiiHoPdmXRNtU9oeRhTPAP6lUIe0TW8rSWK41gjqqTNizYiwDS1zY2l2rK8kM7EVScOsDTKvua2QGrCEDQStS3FdE6OBBYjstpcOYGlI54h1XTJVRKPuo1VRlNWvrMfJOkH3bvOae5HCWwAUylj86r0vEb3ichBvY5dMJHshG3NdinMvNAmjhpxo16Vgp/Mwo/AaLbTP0FKoYqRPpxmPXyD8m8sPgb08j88mvhD1M/iFHqYP9MQ6xrwmwja8veyH36kwAmkSux3yd/ow/pSa15C0q66Qzr8cMfy9G4sZgKVs5eK2p1Tqp61TW6MSiqlKtNZNZse5d513w0wdHIGt3hblNTcUGfzXnIv0nwkLc0FTyHfObGhcz5j3oFXIdz8K8jVReRTSQHQCsBuiDDnWeM1ipPl6WDyDv4aooutSXGIYUdPR1XEwRvqXQl3YMrMlSDCsEuvej/AraX4XuxltpXgGfypashfy4+C/L0C861IHtsz8xSEeP8iInI4hXjHcKMjQynVV9skwKlVU6uDGxuMw8j29bIM0qc3zGOU1nCwX8/2Z7z8h+mvCy3XYKUJBrAMuQ9JPw+zvlkVuJN6NvrmpAmDutLmPUoebYdWgmrXrDz6PZ3yYEa2NsJuHR3nNDcZnseV8LyPcv3vQewu85uqYSt6DvoHUCxfCo8BpSO+ZMIl3XXLpM76BNR/R0lqrzu5OM+V8dZbsggFeYn7mYYtk7Ye/wex1SOPsuEj2QoMzBnsfHte69Cn86aYgashmG5JyqMt1qaDUwVFNo0x1OLJki7kYTMniMGtxHCSHPb+RdpE+EetCPEexmKphYUg2DzfMz6RcpbVyWYHcZL5ONE20k2tiEFztWpuu78/4fpgRraDPO45rbgZ2M8/XCT+1J+i9JdecnyjXpVLIAj9DRHnCNrIg/nuQ6TipeUMr0505FL+yHhp9/txpcwfaH0V5zY1G9kJ5c/Zt4FshHr8U4r7mqp1qWZcmY/cPfJPCnUOFshpbdXLYXxMFGVr9jf2bm2MN6xqKSR00m5KFeXP5Ln6VpvMJSMmqMMnNZXAU0tvHy+o4JuJhEnAlUqMxO4Ljm6myyTXhIaBeo08pFWZ9ZVB9UqWvufcg/Yy8YgcaMe7DVkbtxe7fllxzfqJcl0ohBXwPcfpcQPie3njXJWVdjzWdOqi1Vgp1pjH81ojGET8a5GVRXnPz8acmVlpxOYhkLzQ41bAujUT6fW5mjH+H8FVJNfY1P+yvicJqtLTV70iPZGQxMsRmdMlUICyVyeCTT30OWzkuDswFJGyZ6lpHI2pa3s8prGsiiNPxX+sOUoC5PVKf5d3QzEQaJ38cEVMJq+eHZUiEdNxhQYC8e9hCGEER7iivOZORSIuHnYzxRcA1EZzPwb6/J9ecn6jWpSBuxK5DGI04eD6EvyB+BLLJORj4JOEVx8e6Lml0r/Edr+mIllJKn7v03C85jnMG0hgYpdSikyaetGqQl0V1ze2FrFd57iIctcpySfZCgxP3utSMpJaa7ZcuILqmyXW3FyrI0HJwtjD6Q7yZ60NRKFFYsAqRLPUe63sB54qDakuLq0bexe/Zj1IRbTAP40gkZbADv0fnm8jf7eSQ5pBcE4MQFNEK+RRBn3elVPiagD9jN8e9FDg1onOOxs5YSK45P5X0rN7O4P2SZiH3oE96xiYhDbXfTzj91WK9Bzk4vcY+oqYjWgBzZ8x9HJjduazzoxp9ak9/z0+GeEkU19xIRLAg/33vRVIG41BcNknWvcGJc11KIWvQp43xvwInRHTORmxDa9hfEwUZWlprM3WwmLRBsD/IjYp8fRDH4V+ULiVcGcpyMFM+hv2FVAJv4ze04iqIXIv0Wrse2dRs7/ndSchNJ4yu4uY1n1wTHhSq2diEhR3RCvq8K3HNpYA/IH1tvFyNFK2HFTE1CXpvyTXnJ4p1qVQeQorRz0GEMPJsBfwYOCqEc8S6LrnK7VPaF9Fq0lqrkFOEY6F1WutdSBRpKMwU8jDuQecgmRjex9XSFDjZCw1OnOvSpeQisR5uBr5MeP0cTepyXSqoRkujzdzNYg0tU1xgSqHnHoAJSD5yntcJL/IQBlONx1GIK9Q6ptqSKXtbaV5E1OC8G3xFOBGHsdi9IpJrwoPZvFShwja03gbWGGNRX3MDLWa3AEcg6bNREfTekmvOj/l5TKSyaTtBnI4thHEEtgR0KcS6LjnKsb7TP13605qPahWJue6Zf5Ni+RD+fo+PIf3YqoVkLzQ4PYjohJeo1yWF9Fn7kjF+G/A5wndyeqnLdamgiJZCjfcN6KJ7jZh9AUYii1qphXbfAsZ5Hv8YCbcWEnINao42Gb+lvQ5YWeLcoLqa8VYrzwJ7eB5XQyPDJcAfgWM9Y59EQt3l3HyCGqMm14QHM6IV0HOnXFyk8esunrEor7l8A3VzMbuD6BczsK+5tUBQX596xlyXGpCNQNzfzbORvlp5UkhE9MIyjxvruqT7da/pXl3FqnLvrbWGec3NRO4VpUa2f4hcH3kyyN6qEMwIbgp7I7yG0iXoHfyRNoj/u1WNPAvs7nkc5bqUN7KOM8b/iTiaeyI8N9j3oHVAd8TnjJ1CxTDGe2tYlVKDFXsGEfTl2pnSDS1z3vNyP6XykPH4afwpZMXQhP1FSW4uNuZnYooExMWt+A2tkcjNoZweRzsaj+vi5lIM2tHNRkVBFAWyz+A3tKK65hTwc/zXEcA9yAbajKxFgXnNPUt0aYq1SlBj0J2I/379ENJg1utMfF+Zx0zhF9yACr9PpVSfkR7MGHdMvUW0zM98JNKwdUmJxzP3QpeXeByQVP4uY+waxDFUCtOw+1fG2Yy3WnkGv6EV5V7oJ0j9uZcHgAOojL6BuS4tI95WTBWhsPQ95aulQaOLNbRewfaKfKzIY9QKu2PfXOquAW0BmJ/JlgRHfipNkBxuUBS0GPYxHj9FHdxcisFMHSQaL7d5zX2Y8FPFFLAYezG7H4lKVEqsZx/jcXIPsnkLWG6M7VP5aVho7HSa8UFPLIJZ2BGMil4TQVHqnlE9Na08WAKPYzs8huteaB/jsYu8/wQ/5vdwD0R5NGwywBxj7BHEyDJrB6NiH+NxXaxLhdZJmamDb5RwrjuMx/uWcIxa4OPG43eA/8QxkSrnbuyCS1OVLQ6C0k/LLdY039dtZR5v2KFQjcZAFIboHcbj9wC7hXyODKJ+6uUR4EAqt5htgmQMeBlM8a6eucN4XC3rktlvKex70BrEk10xXMe1vtOp/lTcNXGV5g3gv8ZYtVxzYWPuhR6GkvaOw507jMcjgD1DPsc8oNUYexRpjl5s4KRUxmLLyNfFulRY6qA/hQGckr4styFFvXnej+QSl1IL9W9E2r0UdkJ6Tni5BH9uaqk5yeDPrQe4k2iL3muVt4AHkWLePIcgKVdxYqbXQHnXwweArY2xuri5FINCpXxpRToS1aP7kYiS15g+hPAanHcALcZYpRczkPdkhx8naQAAIABJREFUOtES4z6Y24CveB7vAMxA6vniYiNE8MnLy2Ue01yX7qXCtVEpN5XVhsBgqj+VGuDpw5nbkP1Pnk9Teh3wLZQu/f8R5HrP04PshbyYRmGhNONXhYZk3RuIvAHq3WcfQnif19nAXGPsGUTl1OztFyUHYtscdbEuDWloaa1VZ3fnxt4xpYuu0QL4O5ISka/2chDJ2kwJx/pb7qcU5mAbWicRzgW3A7bFflMIxx2u3Izf0PoE8F7iU6FRwGxj7BXKm8/RxuMebA9W3aO1Tvl7mUZiaK1DbuyHeMaORBahcuuXzgHajLGnkc1GJRczsK+5pym9Hna4cwtyreU3/Ar5/M6MbUbwBeyU1lI3vCCGo+khr/i65Da4WZX1f8n7nf56NLRuQkQs8oxH0or/WsKxynFMXoDf0HoHOL6M43k5CDvdNdkLBZNF7kPevceXgFMo30l/CqJk6mUJEkUtx4FcCua61E389bAVYcjUwbOWnzUWwyDTuugaLZCF3uwzcQwY26vaxix+XwdcGcdEaoQ/GI8bCKdfTKkch51Kdh2lb/qbsFXnrqVyKWS1g/IpZ6FQUfXxMK+5idgpLsWSxt/7CKToez/Kj0QUyxTsmg/zPSds4CVEAMfL0ZTXfqQcNgXONcb6gBvKOKa5zmYRddWKksqmrO90KlWXEa3bsWuBzb1DrWO+n+dJHIyDYd6jt0Bqp8rhJGyp/6WIkVVpZ/YEYH9j7LIKzyE2hlxMUio1zhxzU26paTDmxbQdcHCJx6o2NsIugL+B0sP69cAS4D5jbA5ioJTCQiRaUazxroBvYMsnu4gUaqkci9wwvZipGQmAVtq34dLoqAyta7H7lpTTg+9k7OhHXIsZiKfce1/XlKdEVg+Y69JU4NASj7U/kqpTioDOdCTiaqYNXoakWpfCaKQdipdbgBdKPF7JuK5rfaf7++syopXF/k4ejK3IVqtsj72v+wPRNcEdDtyI7ZQrZ106EfiRMbYCuT8FCX5FzQ+wM+jqxgE4pKHV0N9gqR052inV0LoSe8Ewc0drlTnAxsbYb+KYSI3xK+Px1ogHthRmIXK0S5CG1ntjK215GYd4r+9Fav7MG8GvkHrAUmjArtdZiaRLJhgorfwbrmhqtEBSNy81xj4JfLCEY/0AMe695Bezim9kkbRbsz/K30laCQzFX7HTO9spLdtiIyRVZwXwF+DLDN6UtgFRGfsposhmipi8gV3EXgzfATYzxmJZl/ob+u2IllOXES2A3+JPV3aAU2OaS9i0499busDvYppLrdCP7YT9KFJHVyxzkN6yXlYizr/lJRyvXDbFdvbcSZ2kDUIBhpbjOJah1dvfW6qh9TaSF+zlQ8DnSzxetbA5Eqb18iiSdpYwOH/AFkQ5HVt1qximI4vWXUj0ogsRQrgFyRO/F7nhrEJubkEKP7cgG+lS+WZuHl7OI5F1D0RhGFoqUu/nj7D/DqXUipq57wCTEMNGl/hziH3IgjkTWxa4lPdVb6wBzjfG3odfvKlYRiFRscuQXjFvIuqzdyD3oNuQNeJdRIzle9h/u3eR6+GVEucwHnvz/jSl1QKVjepXVr1J1snWq6H1NHad+Zfx9/mrRd6HnS5/FXW0qS6DH2M3DM5QvMMnyDEzEdkHlboumbXrxXA6tppzXa1LQxparnJNQ6v/zBlnliM1uwi7l8z5BMtq1wrzMZUZRYFMBzw3wU8fYoB4mYRd81IqCmmcuDsitvEpRAxl8gDP14jx9VlgbYnn3ARJH/LyMvDrEo837NFamxuuKA2t57DTFj5OeRvruJmFpL96+RfiOUwYmsXYKaWLEEniMBiLKM19DLkH7YtErwbqI9WFRFrvKeOcHYg32UuGmBpXNzY1Wt9pJ+vUq6EFIrnt3SM0IOnrtVq3rpD5m3/T+THMpRZ5ETvy9xFqu35vJySq7uU/SKZF3VBIwa9pQLyhlCrHgHgd6U7tZSKi2lWL7If9RXgISRtJKIxfIV5fLych3rFi+BvSDLhU7kHSvo6ldCMLJA3IrNE4G/GcJwRhimGoyMQw8pyD/TdehL0xrQWake+QWZs1XFKRKsFb2A6fLSne8/oUUptreqYL5WXgLMQIK6ftwEewDe/HiLFer7/fTh10nLo2tB4B/myMfZjwlP8qzbews0P+iOyHEgqjAzsQsQC5F9UajYhz2SzJaKHOghBDyrsrrcZr/2cSRj+YDiRMPs0zdgKSVnFNCMcfjHuxQ6ulboA3R+o9vB4oF0kDSQo/C2ct8F2kIDRPE7IIzaJwlb6f5n5mIBuNDyMblhnYhs864H+Id+UhJL3h2dKm7+Pr2KkTDwEXhXDsYYtWOqX0hq+R1pGJYeTpRu5DXgfPe5Fo5sEU5vV/hMFrAEvBjKoUwkL8fXkAfk950ZB6ZCGieurtpfdtpLn6FQUe40lE2no0UmOxJ1L/NxOJoptr7irgCeQ+dBtipJUr6TwOidiahvecEI5dMs3rmrPrGv0Zu9ls3aYO5jkRiXB6I6c/RkSiHon43NcgtYR5ynEE7oQtvvAO5Qk61CP/Qxwt3trfzZD7zycobF/5KOHXCJfSO/dc/O17QAxvU+V12FNIw2IzohWGobUWuel7a5gUUiD6QezoRpg8RDgelkbEO2gqRP0KW0kvYWhuQiJS3nq9GYhH5IsU5wFZmvu52DPWhKSnNiGGWxTRpfchKUheskjoPDG8B8EUw6iAoQWymB2Jf2N9AFLMPa+A1+8XxaSKZDbi2PHyBrYQS8LQ9CGf5S34nWc/RwyhYupMViOOoxuN8Y2BkUjEq5TNy1A0IOuSmRr9e2KW1143Yl3WvAvWeUSL/2fvzMPkqsrE/Z6q7nQnnRUIEHYIq6CgoCCiIO67uKCMgjoqiCLz01EIiJoZgbCoI+467joujNsIKCoqi4IsAi5hJyEJECAb2bvT3ff8/viq7HvPuVVdy92q6nufp57k3qq691TXqXO+/UPCxf4D8aZXGUQE0qNozfDSKL8hmRCuOUgEz1Tn/MfIp8Jdp/MZpCBYuDDOccg8aSSl4qUpjKlZXoOvZG8g2j+uZ5g0dNAaG83RMoltDlfhl87eDvnhF91NapAqdW7/nfvRcJ12OA1/YX4j4qVql22IkeAx0lGy9kas0dOc858Abknhfl2FWwwjg9BBgBFEiXdDCP8T+NcM7t8uxyICtJvT8S5aL6DQ6/wOvzDGLMQKu3sC138SEa7TULIMsqe6gtaDiOckV0a2jXi/6R4uhhHmMkS5D3MAoqS3UxQqC6YinrEDnPN/IJl9uxcZQ6JiXDnlI8D7sx9O0xyJFAFy96X3kU813tyZVNEygYkqWjYRj1aVD+C7x+cjAmsrfUiywCCu/bc754eBN6DNaNthFeJhcDfk9xFf4a0o7IqUbZ/nnP8DjXlGep6Mi2GE+Ru+ccQgoZ5FroZ6BCLguJXqPktOVeW6iLPxjSO7IcbBHbMfTsNchIQuhxlBiry02ocrMYZmDGkxjHgCpM3IY875o5CQsVoFU/JmAPgR0kYlzEpEUdAojtZZjKTTuPwXxS7adCgiv7sGgq/SQ32zXBrxaKUROlhlGPFYuE19n46U5k7CgpgkfUhVGPcHYJFy3n/LfETdx3XEewX/E4kBL1pFpgOBG5EcjDAPIXmIutk0QvbFMMJ8Hr+3Vh/S96+Inq0XIUq8WxHvetSjngTbkJBMt+H0U5G8t3p9sfKgjAgycd/9GcBt2Q4nns1bN3u/aVMyqmgJjyNzzi2i8irEs5V0Lmi7zETG9Srn/DASJeA231Wa52v4fUbLiLfo9OyHMynHIfKbW6n8zxTAo54njVQddD1aSYc8PAC8HEmcDPMUpHDFsxK+X6vsgOSUxZXaXIAvqCmt82n8CmAglQh/AMzIdjg1eREieO3hnF+FJDi7FkqlNnnkaIV5J34+TR+y2X0Cv2RxXpyKrENuO4y/I3HxI5mPqDtZhuTruZ6g/ZB96TmZjyieOcDP8SsMguTIFKalxLw187zfdBAERfldFYEbiDfOPR8RYN2+jHmxL2LUeb5zfhwZ/w2Zj6h7OR2/QFwJKaN/MY3VWciCtyP7p2v8uxspLtVOFeeOZ3JFy0YVLVuySXq0qtwGvA4/JnV35Ef7QfL1ZDwXuAMRnl0uRcpvKslyFlIcxeVNyHxptvR7kvQhwvfV+CGuTyJVx5KoYNhL5K1ojSLedbdSn0ESkK/BL3yTJTORIgdfQQq6hHkAyctJM3G+F/kr0jDYLbc8DykssYDGjJVpcRSyL70y5rnPUrCWKSsPX+mHDhoNHXT4GZKr7FY9PQwp4vXGzEcU5cTKOA51zgdIeXe3CbPSHuNIGObvY547C1mH8oz8GkKKjn0TP4z9IWRfWpPtkIrH5JuEiSpaJVtKQ9ECEWSOB1Y756cgIWPXE63CkgWzkUTVPyAx+mEsUgVGQ3XSwSJJ/XHNDvdHcijyaHR9OGLRPg//97MSsfLdmvGYOh6LzTN0sMpmpIRuXI7TcUzEzWctHL4KCUt22waAeLKOpUeTjDOgarl3w9v7kB5bt5B91MUQko91A/GN1y8mPr8jVxaahQFO9djAqEcrhq8j+d5uGOEsJJz5CuK/9zTZBWl98SP8MMZtSG51YbynXcZWJOrr8pjnnoN4jc4me+/Wq5D9Jy7KazHioFge81zPUVfR+uz9nx3AKdkZ2CAtRQvgZkSgWRbz3DFIid3Pk74GPxUpP39v5V93MxhBQo0WpjyOXsciVuMP4YdT9CPfzWIkj6Y/5bHsh1R4qyVY3QUcTfq9T7oSY5zy7mTu0apSrUT49ZjnZiOld29GvJZpe9mPRqqw/oJ4werXyEarSla63IYIDQ/GPHc4kqP5ZWCvlMcxiLSKuJ94wWoU8Ya4fSKLRMRTYwLN0arBzxBBNs5L/UrgH4j84ebDJM12iEH5PqRgh8s6RAn4Ycrj6HVGkLDML8Y8VzW83IaEj6e9Lz0TKXjxC+LzVX+PyOsPpzyOjqGuorV1YKtf+a+cSlnaMIuBZyBfoksfUoHuAcR6krQlcTekh85SxFsSV2FqCTKJvpnwvZXafArJh3KT00Hyo76OzIkPkGxVMIM0Hf0+YjU6hfjfzHeQufhQgvfuLWzUmFGypTyLiIwh3tR3Et8K4HAkT+p2ZE4kWYJ5CrJZ/g7xnL4o5jXjwMeJz21V0uFe5Hv/ScxzZUTBuQ8Jo3l2wvfeBVGslgBfwK9uCmKcfB5SFKPIRH7XroFFiXANIgvFtQeZjqwBDyGpCwfGvKYdDkTSIh5Ccv3i1rhbKuP7XcL3VuIZR+Tfk/HDmUHCOX+OhDy/g2Rz2fsRBf9q5Ht/WcxrAqRJ8YvRMPYIdRWtcTs+2zuZfDGMONYCr0UqlWyOeX4KIgTdjAjACxHlpxWvxkHI5P0tslldAOwU8zqLlKd8BgWp4tRj/AGpRnlFjef3QIpoPFx5zbtpLXl4KtIfbREi2FyHhGzFCQTrkCTQtxE/T5XGiXq0TG4erTDfQBToWg3OD0O8nI8hyvabiV87JmM2olx9EfFO/ZzazZCXIOGN/4mfx6Gky3okpOt9xLfx6EfWghsRpesTiPLj5tQ1wgFIIvzVSPjNRcQrWCDhXM9AqnsVncjvOqatgxJlKeJNvRQxALnMAD6MyEE3V/7/DJrPHSwhhoQPMyFXfYh4YX0MUe6eixoX8+B7iFfp5hrPPxXZux5DKhS+hdprRz1mIl7VzzMhV8XVKQBZo16KpFQUYe8uFHVjOstBeWbg7OXW2Kz6cVjEq/RTpHfA62u87kDEsvNxRNj9K3APstGtRTTrjYhFZgYyefavPA6hsQl4F7K5XtvSJ1GS4nEkOf1VyNyIc1tXLS/VBPHliJf0XiT0ZwNiDdqKWAXnAHMRweYA4Gn4SZ0uFrFcn42fu6G0RjRHy+aSoxXHYqQB43uQnmi+8Unm0cmVh0XWnrsq/y5jYs6NI2vQDCT8eX9k/TqYyfO+hhHh5iJ6vIJTAfgiogx/ito9bfZDhI7zEK/o35jYl1YT3ZemI/vSfsgadAiNFV65F2lg6ja7LTJRRcvYolRNKzLbkFzw7yIeTbdvVZVnMRHlsw4JY7+v8qjOt/VIrtcMZO+rykKHVo4n4wZEFvp7C59DSY57kNDydwEXEt93dhoSbvgvlePwvvQQMh82Ir/J6hq0GzIfquvQZL/Pbcg6eD7x0R8Kk/wRAxt4vRumDE7JuiHvCsSKeCyyab2wzmuHkMl3dEL3fhARbL6NxL8rxeAKJKziNMTqtmud1+5RecS5upvFIiGt56NezUSx2LIJhZbbUiE8WlXGEQHncqQC6nup3dfGMKG0J8E2RKlfhFqPi8SjiKf788i+9NI6r52GVAg8KqF7P4Qo3V9H5kcnoaGDrVMtfHMC8BHEc1WLOUgRF7cEe6vcjux7P8cpaKLkRoCECv8Eif46g3hDYJWqUp0Eo4jivwhJ21DqUN+9bD238fiHdvpQXlrrdUi+QrVbelpWXYuUeD4ZsTZ/DVWyishWpDDBfEThSlPx2YDk5B2GhLSqkpUwXjGM7Mu7N8Iq4Byk6MF5pLvBrER6yVXn90Mp3ktpnT8hRpxnIiE9aYYQ34jkXuwPfInOU7LACX/T0MGmsUiUzxFIQZ6riA8pTIKxyvVfgYQV/gxVsorIGuCjyL50Dum2lnkCiTDbD0nfUSWrAep6tCx2pokWMNlkjMn7h3Yz4gqdiXi6TkDi4NvpnD6GlOT+FRLTuqTNMSrZMYJYdb6K5Nu9FbEuH0Z7PW7WIqGiP0GseOoWTxFjTdmG9vAChQ7GsQ7J5bwQ8Z6fhBiB2rUWPox4an+EhIMV+W+gRLkNMc5NR8LcX4d4H9wGns0wjuQH/gpR4rpBqFGPVjJYpPLbL5G80JOQkPqjmTz0vR7DiEJ/BWLQfry9YSoZsh6JwLoIcUichBSmaLdQyqPIvnQ5Uuk2LcW+a6kff1lihmO/KFKFqw1Iwt83kM9xODK5qmE7x+AnIa9HciUeQbT+e5Ccruso1mdTWuNuJKTiI0hZ2uchOVcHIkLwPCZikUEWjK1I/Ho1f+Ju4CYkvl2LDWSE20cL0xFKhkU8Gn+qHO+KtKc4GBG24xSvYWQNWo0Izvcic+4GtMl1N7AJCTX/NpJ39wxkXzoQ2Zf2QvKvwm1TAsSD+SjRfel6ZM/qJqKKlpZ3T4LHkeiOzyBK1rMRD2s112YPJCdrNhLabJF5uglJj7gXmXe3IUqW279L6Tz+zERxnF0Qo88hTIQP7oTIQtVqkqOILPQYsi/dU3ncUPlXaYO6ilbJlmaGrczY2EpLRWAM8XSFq7DcSbR7+X+gfa96ibWIJ+rnMc/tiSw2VcvMFmpX8FGywFIOO88NhfZo1eIRxCMOsrZ+OPTcTYjir9bA3mEciZRwG5gvQHIbqtxP8uW5i4pbDEMVrWQZRir0/iHmuachAnZ1DVqJCtG9wKOId9JlCuKQKDMxJ/5CfEVVpQ2ay9Ey6vVRugYVeIuEKWR596TROaf0Oho6mC+6BilhLDonUqeuohWUgoiiZbGq6SqKkgbRtchq2KaidBvW2IhQFwSBKlqKonQ1dRUtY02kwETJlNSjpShK4lhj3bVIFS1F6TKMdYppmbYKFimKohSeyRa5qEfLWlW0FEVRFEVRFEVRJmEyj5aGDiqKkjrGmkgfCWtt3m0kFEVRFEVR2qKuomVL1u1NpR4tRVEURVFaIWJAMUQNLIqiKN1GU1UHS1ZztBRFSR5X4DLk3hhdURRFURSlLSbL0Yp4tDR0UFEURVEURVEUZXKaK4ZhtBiGoijJY7HRHK2S5mgpShcS+V1bYzV0UFGUrqav1hOX28vLDy59cFrkZCINi+2uwJ7ADsBcYCqwHlgO3A5GlTlFURRFURRFUTqamorWXQ/dNWOAgWjexLhpIXTQzgHeDjy78titzosDsNcAnwVzVfP3UhRFURRFURRFyZ+ailbfeN8ML7CwNY/WfsCnG3xtCXixPOxPgFPAbGnhnoqidBYRo06JkoYOKkr3oVUHFUXpKWoqWqX+0gzGnXOmlEQxjBHgfmAZUFWi9gSeioQRVnk9sB3YF4FxRqIoiqIoiqIoilJcaipa5aA8MyBwX92KR2scuAW4pvK4EcyI/zI7A3g38Amgmhv2fOB04PMt3FdRlM4hYtkOCDLyaNkS8Cvgmc4TR4BZks0YFKVd7DeB1zgnXwvm+jxGU4eoRytQj5aiKN1NTUXL7aEFwJZWFC3zF+DIBl63Efg02H8AVzMheJ2GKlqKoqTDe5FwZZdy1gNRlNawr0DyoF36Mx6IoiiK4lBT0QpsMDNqYybYesDWzamPCPMbsL8DXlg5cQjYmdBKIQ5FSQM7FRgEpiDCTAnx3G4DNoIZznFwnUo0R8tmkaNl9wQuTP8+ipIWdhbw5bxHoSiKosRT26NVYkbUyc+mhWZhUOPVSXMbE4oWSBl4VbSUnLAlpFrmLKSJ95RJXr8JeARYCUaLOhQSa4D/ZqJX4J3AYfmNR1Fa4tNMVPLthDkc7aOF9tFSFKW7qaloWexMEzYy2yR6aDWMG7azPsN7K4pLHzC/iddPBw4A5kkobFxOouIQbVhM6g2L3wW8qPL/qxDjTtGFVEUJYV8AvKNycCtiOPhqfuNRksNOQ4xAA6GT42AeyWlAihLCDiDzc5rzxCNavM6npqJlAjMUEX0MmzIYT5VjQv9/AMzqDO+tKJMxjlTMHAZGESWhuvCE8yJmAk8HexuYscxHqdTA7gJcXDnYALwHUbwUpUOwQ4hSZYAxJJf56bkOSWkRWwa2R/aP6iNONhtBIiUUJUOswZ+ftaJ6VoJbr1ypHTpoGIocWpNBfhaAfRvS2LiKFsJQisB6YB2wFtgQHxJoDRLmuh8TC9FUYG+kpYFSDL4IzKn8/2wwDzsRTYpSdC4F9qn8/xIwd4AtvqJlsWEDrjFadRARXA/OexCKUoMS0n5JaZF6ita0sOxhjU1R0bJl4FDEKvfO0BO/RBUtJXfMNuD2Bl5ngScqOVpHMBECuzPYB8FklePYeVgikcomtdw2ezITZbBvQkOtlI7DHot4YUEMOOfnOBglPar7RSnXUShKPBaZo1qhdxJq52gFdlrY2GSxW2q9tjnsq4DPhE70AzsSjUUeqbzmYxrvqXQeZgvYx4FdKif6EM9WRl5hJR47F/hU5WAEeJcqv0pnYacBX0NCBi1wOpit+Y5JSQCLhKNvdB5PBbbLcVyKAvHzcxOwF7BHfsPqDGrnaBnjhg4mpGgxnYmQhzjuQASgBjwIilJY3JzGKaiiVRvjFMOwqRTD+BIS2glwPpi7UriHoqTJ+cC+lf9/Dczv8hxM05SwkUgZrToIkid6XY1w9MwHoygOAXBDvNND52cj1HRJG2Oi1URMZkLi04E/g/062DmTvlpRiokrQIzmMgqlgn0j8PrKwT+AS3IcjKK0gD0SOLNy8Bhwdo6DURLDBNoGRCkuxmpkWXvUa1g85BiZk/JoXUG0VPZsYB7wHOBkpCdIP/CvwDFgjwOzMqF7K0pWzA79fwz1Zk2GiR4kKXjY7YHPVQ4C4LRK3p2idAh2APg6E/kQZ4BZl+OAWsNGTeAGLYahKEp3U9ujRVoeLbMJzJLQ43YwV4E5F9gfqQhWZX/gf9DwAqWjsDswEaIG0ltCLZb5cRmwU+X/nwNzY56DUZQW+DgTlemuBPOTPAejKIqiNEZtRctGc7SwiXm06mC2gnkf8IPQyecDL0j/3orSDrYEdibY/YFDQk+sBx7KZ0wK2FcAb6kcLAc+muNgFKUF7GHAhyoHG4DTcxyMoiiK0gS1qw4aG/FoGRIrhtEIC4GTQsevBa7J8P6KUgc7E2lHEMb9LQVIc8klWtmuIaLFMEpJFMOws4Avh06cAWZj+9dVlKywfUjIYLUR+lnS961jsdEDjVZRFKW7qd1Hi2jD4gyLYQDmPrCrmAi/OjC7eyvKpBjq/3a2Avd2ZA5Fd/EpJOcT4PtgrshzMIrSAh8BnlH5/03Af+c4FkVRFKVJ6jXCi3i0Ahtk6dGCaPGNgZqvUpTiMRU4DOyhYKfmPZjexB6PFNQBWAN8IMfBKEoL2IOAcyoH2vdNURSlA2nYo1WypQw9WnYA2Dl04vHs7q0ok7IR+LNzbgowE5m30yvntgMOB3unFIFR6hCtRha0XY3sg0yEI/4GOHaSnh9PcY5fVsmNqY7of9scj6I0y/uZMDJeDxwM9uA6rz/COX4e2HCz26vINgXAx1ByfoaqOCqK0tXEKloL7cISS6NepKCUqUfrVUS9WP/I8N6KMgkmQMIDw2xFCl+sALs70sLAILkVh4C9Ra3RdbAEkSwtU9fb3gjl0P9PIprz2QiXRQ9tSStHKhkTnsMvqjya4WPO8V7AsnYG1DZBtDV5sm0cFEVRike8MHMX03CS08u23IJHyxqwM5p8zzzgUufkz5u/t6LkhVlBVKCZStRDq7gYTZJXlK7HNaBY9WgpitLdxHq0hgaGpo0xFjk3Hoy34tHqBx4C+wUkGf2e2i+1ZeA1wKeBPUNP/AzMnS3cW1HyZDmwBxPGjB2AR/MbTuGJCFzW2HY9WndQPzTaZZ/Ko8qNJNekXVFa4W6aq7a7C9EQ2NuBtaHj4SQG1SYpVBdVFEUpLrGCyHDf8FBfEH3Klm2rOVrbIb1rPgp2KSIAPQisQ4Sr2cC+wDH4Vv8lwBkt3ldRcsSMg90MVD260+q9WvEs220qWubc5l5vFyJNYau8Hcz97Y1BUdrBfAb4TOOvt/+KlIKvchaY3yU8qHZRj5aiKD1FrKLVP9o/zZajhiYTJJJEu3fl0Qg3AW8Go14ApVMJCxEaClcHg7E2FD2YQDEMRVGKR9SjhXq0FEXpbmKtxqZshtxzwZSgFY/WGHAW8MfK/xvhFuAdwDFglrdwT0UpCoOh/2/LbRQdQGCCqGW7/WIYiqIUD/UoUeHyAAAgAElEQVRoKYrSU8R6tAITTHMrIZeDcgseLRMghS0uBTsEPBM4CPFqzUJyuDYATwJ/B24Dk29VJEVJBDuLaOVMLe9eB2ONFsNQlC7HYEzEc61VBxVF6XJiFS0TmCFH7mFo21CboYNmM3Bt5aEoHYSdAqYJj5TtBw5wTq5OckRdiHq0FKXLsUSL3JiStrxQFKW7iVW0rLFu4v7YmfudOZLBeBSliBwBdi3wGLC+dj8la4DtkeIuU0NPrAezJu1BdjgRgasUlFTRUpTuI+KpDgjUo6UoSlcTX/7YMOSEDmqZY6WXMcC8ymMM7CakQfEooiD0IYrVDGCK894RpEyzUp+8QwcvA74TOl6R8f0VpV3+l2jEyMqcxlGPqEfLqkdLUZTuJl7RCpjm1EhTRUtRhD6kJcHsBl67EVgMZmu6Q+oCDEFE1co8dNCsQ1pOKEqHYjYia05xsZiwbKE5WlXsPOJbgITP9YGdH/OaUS0cpqSL3Q6YE/OEKwftBTbOeLK0UrOhJ4kPHcQOmqimpYqW0svcj4QEziFa4KIW6xFr8mO1wwyVCDbq0TJoeXdF6TpcA4pWHawyF9lj6lEG9og5PwyooqWkyWzi557LbjXOL8PvldkzxBfDMGZq5IQtREd5RckJ8wTwhPzfDgFDiKWxXHmMIWGEW4CNzRXOUCpoMQxF6X6ifbRK2kdLUZTuJj500LHaG4wqWooCVKpnttJTTqmDwQRhp5YNrCpaitJ9uL/rnrVyO6xF8nlbYTTJgShKDBuBR9t4f08bVGopWuFGq1hjteKgoiipYbF5F8NQFCV9oh4tqx4twTyc9wgUpTZmFbAq71F0KrFWY4uNKFrGqkdLUZQUMVHLtjGao6UoXYh6tBRF6SliFS2DiYQOWqwqWoqipEaMZVtDBxWly3A91cZqsSBFUbqbWsLMoHOsipaiKGkSsWxr6KCidB8lnEbkJfVoKYrS3TQUOmjRHC1FUdLDuD02tOqgonQdrgHFzc1UFEXpNhoKHdSqg4qipExE4CoFJVW0FKX70D5aiqL0FA15tNDQQUVR0iUaOmg0dFBRupBS9KCkHi1FUbqaWh6tQedYFS1FUdJEi2EoSvcTNaCoR0tRlC6noWIYmqOlKErKRMu7o+XdFaUL0WIYiqL0FA3laKGhg4qipEs0dNDacl4DURQlG7QYhqIo3U6jOVrq0VIUJT2Ml6OloYOK0n30hQ+steN5DURRFCULtI+Woij5YxkLHxqMerQUpfuI/K5NyaiipShKV9OQoqXFMBRFSRWLK3D1xb5OUZSO5HJ7eRmnGIYJzFiNlyuKonQFtRStSI6WFsNQFCVVTNSjhVFFS1G6ibvuusv3UpdQRUtRlK5GPVqKouSPEzqIRUMHFaWbmOMbT2ygOVqKonQ3DXm0AoJOVLTcz7YDsDswJ4exKMWgDzEiTMl7IEoUY7xcjW7zaE0DDgP2AbbHWWOVnmEImOGc66cX9qXNMb/pQD1aGdCHrDeu8UpbaPQmhglZyEWLUKWAt/AtXLxwCv4fu+iK1t7A8cBRwP7AgcCOzmveV3kAbALuqzzuAP4A3A5enojSmRhgJiK8DCFC7jRqLyLTgKOBLZXHBmAdWm0zMwIbjJlo66xOU7SGgGOAY4GDK/8Pcyiy1lQZB5Yha9DdwPXAdci8U7qDPYHnI2vL/sABwM4xr9sHWAtsZmJfuhPZl/4C3aGMDEwZKLs7rClpjlbCDCH73gwm9r1aa+nOiAG6uu9tRNafzekPU8mIMjALmM2ELDRIbVnoMETuqc6JJyuP0dRH2sX4P8ApvpZb0Bytw4BTgBOAvZp873TgGZXHmyvnngR+A3wXuJou2dx6iBKyaeyEbDTNhp4NVB5zgF0r57YAq4DHKv9XUsIY04lVB2cDJwL/ggjT/U28t4wI2PsALwU+gPQSux34IfB9YGWSg1Uy4anIvvQ65LtthiHg6ZXHmyrnNiD70veAX9LBAo/dZvtMOepECYJAjZvtMxtRmran+WiNPsQoOZMJI8A2YA2y7z2Z0BiV7OgD5iKy0Cya81IZRBEbBLYDdgMsonw/XnkUUR8oNJ6iNWSGBsfcvHRbmBytKcDJwL8hG1qSVIWmE4EngG8A/1X5v1JcBpGQ0J1J3gsyDbFK74kIPCsQxUubbCZPVOCyhfZoHQachRh54sIvWqUEHFF5XAz8Gvgk4tlQiks/omz/G6IkJclM4A2Vx2rgm8i+1HFKuO23fSZwotXKatBskTJiENyVZNcgEDlrXuUxDDxSeahSXGyGEFllLsmGABrEOTEdMR6tQ2ShtQneo6vxvoxxM+79aAtQDKMfeD/wAPA1kleyXHYEFgAPAZ8lPtxDyZdBJET0KMTqkrZgPhMJCTsSmQ8a354ghqhHyxpbRI/WM4ErEa/TSSQv4IQpAy8Hfg/cCLwkxXsprdEHnI6E+n2L5JUslx2ADwNLgC8y4XnvCPpG+7zftBnX0MEmKSOpEkcD80l3DaJy/fnAs5HIoSKuy73OdEQmfhbixUozz8ognq5DgcMRL6oyCZ5wWqI0MO4YLnL2aB0LfAERcusRAH8DbmUizv0JxOW5GbHSDCGb1d5IzPyhyAIytcY1pyIK3inAecCXUKtO3pQQD9aeTL7ojwPrkZy8rZXHWOW8rby/jMyNqYgHayYyT2oxFTgIEXLuQ+LalTbxcrSK5dHaDrgQeDeTb2JPAH9E8q7uBZYj8+9JZM7NRubZrkjOzkGI0LRHnWs+Gwln/hnw/yrXVPLlaGQ/eNokr7PA34FbmNiXHmdiX+pHBKXtmdiXnoZ857XWoUFEwXsr8HHgc3RAqHvQF/S5sQBBWUMHm2BHYF8mL6RjkQiMTUjI+1Yk5HQckZNKyL7Xz8S+Nx3Z+2oZEPuR+bkLYvDWSJ/86UO+k12Z3PA7ishCm5E5MYzMh+q6UZWFBpjI7ZtFfUV+JrJWrUHWtbwdMoXFE2YCAj9Hy+SSozUNuAx4J7Un0QhiYf4hEl6zpoX7DCBekRMQK7VbRANkwn0OeDsSInJfC/dR2mc6onBPq/OaESS2fA2y2bQS5jcFydXaCRGy4+bfTMSiswKxMGs4YRu4VQetsUVRtF6NeNHn1nnNYuA7wK+Af9DaXJiPeK3eggjxcZwAvBjxanyphXso7TMIfBp4D7X3pW1IPtUPkH1pVQv3mYJ4z1+L7DlxURUzKmN5G7J33d3CfbJjnD7PTDFefAWxAExBojfqeQ/GkHm2CjHqtKLAlhFD0NzKI24NHkD24J2R+daxOYMdzvbInKiXk7eFCVloU4v3qeZq7YTMjVpjORJ4EHi4xft0NX5fC6ynaJVsKWtN9SnA5dT2Yj0CfAr4Nu3HiY4g1b6uAz4EvALJv4gTdg4HbgNORZQ7JTt2Rax5tTwK6xBL/zraV3q2MZH4WY1X3x2/2IFBPBGzEWFbLTqtEy2GYXIvhjEFuAjxIMUJ1GPAj5B8mb8kcL8HkXCwLwL7AWcgHjTX2z5Uec1xlec3JHBvpTH2R/alQ2s8vxKZD9+gNaNfmG3ADZXHWcDLEAX7eTGvPRSJ5HgvovAXklKpVA4IIuf6+vrUo1Wf2Yg8VMuLtQWpXrqK9qNtxpF5W/VQ7IhEjsQZNrdHQqnvQgtmZIlB8qRqRUBYZC6sIJm9YRh4tPKYishhu+BHE5WQfWsOooCrASWEJ7Ra4yta5aCcpQD5ciTMIk7JegKxJM5HNrSkk/HGgP8DnoOU5b015jUzEEvlJWieThYYJLxqf+KVrHWIoHsnMh+S9ixtQzaym5CQibgFZCZSwGBWwvfuHUyhimHMBq5BKgG6v3GLVCY9AAndSkLJcrkfKaywF7LOxVmNTwRuRgQhJX1eiBjZ4pSsNYhivA9wKe0rWS7jSOTGsYiidVPMa4YQw+NlFLQXjh33vdSao1WXXZHCO3FK1lbEe34L4rVIWmENKte9pXKfrTGvGaiMr6NyBTuYPmT9qaVkPY7sCYtJxwC3FZGBbkKM2kHMa3ZAZKFa6Tg9ibcgG2u8H/WmsU1ZKVonAz/Hj00PgC8jrtKvkE15yWuRkML3Et/b5sNIAnQzJZ2V5ighSZ5xYTPbEGvanWRj1R9HrEQ3IwuaSz+yCGpyaCtYt9RpborWLkhPq+fGPLcY8SSdgoSLps0TwAeRNhQ3xDx/IFIoI+3iQL3Om4Cr8BsNW+DryPfwBbLxaN+AGALfRbxCdybSGqB4TdnL/m96pDyiilY8eyHGRdfQEyBFum4hmwq4VQ/JLZX7usK1Qca5V8rj6HWmIEptXGPzLYgcdBfxCnHSjCIRGLcSLxtPRfYsd73sWXyPVkzo4Lyt87JQbN6NWORcxWUV4uU6neybeQZILsRhxFsRT0FCSfIOc+pGStRWXNYiP/I4hSdtqgreYnzvVhkReuvl8yhxGOdvaXP5Te2CCLJxisuXEEvd9ZmOSPgHouCdhz/ndkHCnmuFsyntcQrxissa4DWIwrM64zFVFbxDiVfA34QUTimUEXC8NO79pvvH+zV00Gc+UuTAZSviQV9KvDchTYLKff9CvDC/NzJuJXmmIBVN4xSXlYinPY9G91UF70F8hb+qGM7MelBFxA8xMF6VkfHTjjgt7YTH1yGCjGu9uRn5sn6d8v0nYzkStvG5mOdei3jZNIwwOQwSOhqXfLkUqS65LdMR+TyBLHBuI2ODxNTXShxVYrDWOqVOM/dozUYq+7lNZoeRQgPvJd8cvAC4AHgBvidjDlKIo9kGuUp9XoEoNO4+eTtisb0i8xFFeQQ4Hum15vJyJFesMPtSX9Dnhw72a+igwx7Eh4atRoyLrRY1SIpNyL4XZ1yoNXaldfqQyn5unlyA5ELdQ/6VsJcDd+DLZLXG3nN4ilaJkqtopS1cHAP8D75X6NeIUPFoyvdvlFEkLGMBvvb+TmBh1gPqYvZHYn3DWGRReYjiVPjbighdbuhiNeSxXpl4JYSxJs8crX7gF/ierPXASylW4ZvrkTXTLfE+D1kzt8t8RN3Js5BoBXce/h7J3y1Kif0xJIz9/+F7Od6KFHQpBDbwc7RK20qqaE2wE/FeoUcRr3beAnWVMWQ8cbLZfORzKO1jgEPwPVnjiLH5scxHVJv1iCzkejurKRXFC2XOEE/RCggiOVqWVEu7z0WEGFe5+wVSVnlzivdulYuB98WcPw8RypT22BkJhwpjkXC9ldkPZ1JGEfe5W3mpD1kkNay0AYzxLNtZ/t0uws/JWo94C67LcByNcg+ibD3knN8X+CYF8mJ0KHOQipKuJfZqxFNUxEqPlyFhjK4R6sNIiGPuBKXA+02PDo4WRXnImyGkwI7LCqQfX1GMi1UsMq4VMc8dgBoZk2Bv/JyscUTeyCNUcDKqhmdX2RpECpr17L40qUfLkFqzYoP0p3Er1tyEhOrkHRpWjy8BH3POlZDSulqBp3WmIt4sl6I3SBxHmpK6YR3TkER5ZTLcYhjxPVzS4BVIdcEww4ih5/aMxtAKK4AX4ecpvhrxbiitYZBwwb2c87cAbySbQkyt8k3gbOecQYo2xeX8ZIotxXi0RtSjhcgOT8E3Lj2O5L8UmQfwDaBlJPRfjYytMwc/DNMinsQiGnqqbEPCCN11cjt6OKy0kWIYaSlapyJCQZgHEIuhm/fSLEPID/3ZSFne5yDehbiKLa3yCWRjCzMXqY6oNE81t8ldnJfRGU3wxojPHdsRPwxScbDGupbtLDbpOcTnsbyd9otelJGN5XDEM3Z85f97xNyvVR5AckTdObeIeOu4MjmnII2hwyxD9qW882Ma4VL8Ztazga/mMJYIcTla5aGyKlqSWzndOfckkoNTNE9WHPfiR3QMUQDlvkPpI94DdA/JtzRKgxHE8OyGMu9Nj3o646zGUUXLpqJobQ+c75wbQaolNdv8bghpnHc0olg9k/oxwg8iQtS3kIpN7Sxk70WSosMVv16JhGr8XxvX7UV2wa9Q8yRS/CItphJfQGAjreVgjCAhjocSXST3Q1z9GiZTC8tY+C9mMFl4tC5EFOEwX0TCxprBIJ7Lo5hYh/andtW3DUhC+f8iPfnWN3m/MH8GzkEauFcZAD6PeLyUxpmD9EcMMwr8C631xupHjHzPQdaEAxHL7jTkO1+HVC/9M1JYI6m8rw8ARyJ7U5UXIvtrs3M7MQITlN3ddvPWzb2+Jg4BuznnqpVtW5FNyohiPQtR3qYicp5BjIGjiMFgPVLQIglF1yLz+JlEc3F2Q/KIOsFAUST2wu+dtpJ0c7JmEx+NtZrWqjtvRAyB4QglgxgAixwpkgpxwkz0CzaphEpcgm/lX0DzX8CrgZ/QXJjR/MrjHUhVw1MRT0QrDCOb8O1E/26XAb8hm54G3UA/vvVrjNY3m0aoCsdx1QHb8TisQwSmcCPZwcpxFr2XOhJjzJgNfdUWP8woYY5AfvthFgP/3sK1HqC5in8zmfByXYLkd36B1hXx/0IE6ZeFzr0QCXX73xav2Yucj694fwzpVdYoA4j36y3Ai6ndS2YOIlA9HSlacRmibJ2LeDLaYQR4M/BXoo1DP430A8tF8LWB7TPGWVofSkTQ72QOIN5z0Yzc1YdE0+yEKFi1Glb3I/NhJmLYHEeE6KW0n6qxDRn300LnDGJkvKPNa/cScYr3FqSJfVqUEVkorslwOzLsI8g6F253MwvJwy9SIY/UaaRhcdIerX2Q8IwwtxNfOn0yhmgvl+NIxLJ8YhvXuIuoNRlEqP7XNq7Za+yOb/1fSrr5ELuSXgn2h/B/N7tRsL42RcIr755+6OBCouufBc6gtfWunV4hMxAh+xf4RYEaxSJ9Bt2Q6/+gttClRNkdKSYRZjH+2l6P7ZFKbD8FXk9zDTvLSBjo7cg8bJf7kRDSMLsApyVw7dYo+Xv1x4/7eC97tLZDBM8wT9Cc93QW4jE9EBFqm/m9l5E58Szi+1U2yxqk72mY2SSbstHt7I2veD9AutEw+xCvZCXB/fhj34seK4zh52iZaI6WsYkXw1hAVDmySAheUhNpNfBHpPnxFxCL8VcRD1NcfGs/0pCynYqBF+CHfZxFj5e0bJA+fJf1JsQakhaDpNtzKMC3QJXxLVVKlVKmxTAORbwOYb4HXJvQ9bchScs/RdaeS5FQvh8ghpk4Xk57ZeSX4Ye9HYSfb6TE82H89fq9SKhVowwweXn9JxHPdq0Q+UHE6PjhJu5bi0sQIS3Mv9O6Qt8WJjCu8WTcGNMJOUhpsadzPI7/fU1GH5MrV6OIAamWjNWP5LAnoWzVEqyVyZmGH+nVrOLdLLNIt4DbCH513Kn4kQNdzaQ5WhabpKI1D3ibc+5KJISvVVYDv0QUqRupn9PTj4QbXkJU0C4jTYefQmsl5bcg+R7hQhh7INUTv93C9XqJXfDn4VLSTQI+kAmPyRiiGCWtFK9GcnHC3o7dEIW8l624sVhrx03IyJVy6OBZRC1qY7TXB28cyfu8CjHy/IX63tj9gY8iIWNhXoOEfLWqcH0a6fUXFvYXIOHVSm22x/dm/Zb2C6JY4E9ISOANSPREWHHbDXgD8CF8YecSZB79vo37jyDhkN8KnavuwV9p47qtUaLPWdV7OWxwFn5ExSO0H8VhEcF8LaLMbyG6l05DQrd2Ixo1UEIKiN3c5hhGEK/u7qFzs5F9sMjV8oqAWyjJkm6OegmRhar33IrI/0l7mx5G5kNYxtqT1nK/OpI4S0gkdNBgkgzfegu+QNtOQ8UrkEXjbUjT48km5SgidByBbGJh9qA96+838b1a72jjer3CPOd4M+lacHYhGsrwIM1ZrZthmXNcjaVXXExU6DJ41u+kmIX/O/8h7eXPHQAciwjHNzK5oHIfcDLwwZjn/q2NcWzED8E+gmjehOJzEn7ozIVtXG8TMhcOQPqzXYK0LXHXmYeBzyCNsn8bc53P0r7Q8338fTGffSnwDGq9bHDa2TkOaK+67jZkL7sRqfj2CLKXugbLLchadyt+qHGZ+IbJzbIcv+Kcu88rUcr4Xp7VtF+Bux57E+0VmFa/tgC/39oQ7YXcdxS+omWiilBggiT7WZ3sHP+Z5hKNXTbR2mK9DlHO3Enllptvhm34pd2fh7rN6zETvynoCtLzZg0Q3UjWk24T5NX4yaT1KmL2LCbwGhan5dF6E75Q/Zk2r9lq1cD/wvdYHEl7c+Rz+Int7rqrRHH/PnfSWhjpKKJU7Y30s2o0gX0dkp+12Dl/MJI/0w6j+Mr3keRQ/t8Yz3jSqx6tEr5Q/QSteZLGkHDDmxAFp1F5bStSLMX9DubS/tq7Db/v5Y5ovmg95uLnJcc1g06KmUS9jitJtwnyo/iyes/IQv7Et1FFy2CSsvYfgm9ZzTOsbjF+lcN2+z58j6glxyDWUiUed7MJ8JNpk2R/JjaRgPQsOGHc6jpz0Nw9D1My7iKclqLl/h4X43u3s+S7zrGhvXVoDRLCGObN9FjycRPsi6/MtLovrUIUrNUtvHcLUnHQxc0lbIXv4wvUme9L1kbDgS22VxWt7fHXt1arsK1HBHLXg9QIw/jCfIlkile4n6ePZHLAuhVX6dhKe20/6uGGDG6j+dzAZhnDXxd3okf2pTgLQ6QymjEmKY/WC53jbcDlCV27VdzJ1e4CswK4zjnnfm5lAjdxPKm+HnHsTDTRdBmt5eM1ixuHbNAqTB6BDdzvPY3QwSGkz1UYV9HJmjivR7vz43vO8W5IYQzFx12fx5GiJXlwNX6o0F4JXPdx/NDE7HusOVUHDZ5xpVdwf98jNN8/NCniDJtJFEt5Et9Dp/tePCX86pNplj/fk2jj4PvJxrvsykL9+I26u5I4j1ZE0bLWJuXROt45von8u1y7noUkxvMr5/ho0iud2clMwe8SnlZuVj9iua6ymeSag07GVnzhSTccF5NJ1cFj8H/zv0zhPs0Q591sN4Tjt/j5QO76qwju3+U28kvS3oZfbdWtQtYq7r70LDLOkYipOtirHi13/V9D+pEVtYgrdpZEGxKLL0/pvhfPTHzDYlqy8XSi1S7X4Id5psU6fM9rT8wJv4+WMe7Gn4RHyyD5SmGuTeC67WCAZzjnkuhY/TvneBCJiVeixPWwSitG+AAmNg+LhAy2EmrRKu7nSqt/V8dSsiXPun25vTxpr5a7Bq1CyrDnyeHO8SitN1CvshFRGMIc2+Y1uxX373JtHoMI4RqfkhK43H2pD9+7my7GM570oqI1BT8vOS9vFsRHNSX1vbj73jQ0bD4OVx4YQ9bwpDFEQwbHEFkoKwL8cMiekIX8PlrYqDXDJFKRbTd812i7pXPb5fX4fSy+n8B178T/kRycwHW7DVegGCadBsU7Eq309wjpxT7Xwt1IB9HE4Ch+Hy0ee+CxpL1a7u/wj+RnSQbxdJ/unPs5yVSactdXXYN85uLniea5L83Gr87WTiW6MHfj50hkOifcHC16s+qgu+9BvopW3HiSaukT97ni7tfruH+T9aSzL+1JtIn6EtKRuerhzomemA+T52gFiRTDiKtwVKtxZxYcB3zNOXcFyWyy1SILYfZP4LrdhmvVSyNfqh/YL3Q8THtlvFvFFZwNGk4awQbWE7rWDq1N2qPlrkN5rkGzgB8T7ee3FfhYQte/xzmeT7pNoDuRou1LJ+Enh/8moWtb/DmR6b5kjdXQQX/fGyN7YTeMW4TBklxkyQj+d+x+fsX/m6RR0n0aUcfCBqQSYNa4n22AHjA6Z1XefT/neAPpJvu5lJGk4jcAP0VKKoc9bHeSbG8RVbQmx1U00lhc9iMaqhDXtT4L3BLvoBtOlCBG6NqcqGJQJqrUgPSzypLZSLjWJyr3DleUGwVOwReGW8Vdg6agrSZc3H1pmOxyN10GkGbTYR5DvK5Jkeu+VLIlDR301/24vSErBvAVrSdJtq+k+/l03/NJWxaqhgxW5f0A2WfyiOboSaOzL8g4xTBKppTEj85t0prmZnYx8O7QcVzRhSrjwDeQxqGbEhyD26hWm9T6uAm3SYUrVNme6CbyOK2VXU6CcSTXMaz0aax6CFMyY9ZZ92cOzkxS0ZqF/zdPax3aF7gl5v61LHd3A+9ECgQlhbsGgRRWSLuMbyfhrssPk23uZphzEGEozH+SrNCb777k5miZngwdTHvfa4b98IswuM2t22WYaLhaEoU2uoky/neQ9JzYnahjIauKy3HEfbYp5DeeTIgTZCLCiA0SqTo4wzlOI9GvylQmr2QyBnwJ+CzpCB7u53M/v+LPvSQ33T6iYUGj5C9gup8vjfLlHUsQBOOmFI2aGh4eTvJvFPcb3JDg9cOUaaya0u2IMH0FyQv4cZ9N16EoWe5L9XgOomiFWYwf3t4uue5L1thyxJZie9Kj5a5peSmb8/AV7SdIPn9Z9736xP09kpwTg0QjGbaQn9ce4j9b188JvxiG8YphJBE6WJQNrUofkoT+OdKpxqWK1uSkueHsi4RFVHmAZKpntoNuOPUo+0KX7feS59sh7jeY9zr0DOAzwL+TfEjNZnzlTdehKEXYl3ZB+kmGDZzDwFtJ1psFee9L1lnz/JYOvUARwidn4YeNjpBOKHUWbTs6mTg5IKk5YZD+idV7VPM08/LaV8fg3r/rZSFv0htron20TCIeLTfBN83Y0HuBa0LH05A+Ba77tA94aeXxFeD9JLexuUJ11yf7JUBSc2IO0cpd68g2H7AW7ufriY7ojWLGzZj7K7FjiSpacX/vtNahzUTXoDKyBu2IrENh9gIuAd4FnAj8NaExVDe08F+16ze0JslyX4pjNnAlomyF+SCSN5w0+e5Lhr7wX9havwCOkjpTgUOIfvcWKQKTtGJfvbaSD7sSLZ+eR8XlOHpOFpo0dLAUJJKj5eY/pdkN+guVh4sBngK8BTiDqDXvNCSn50SSWRjcRpB5W86LyDjR+ZeEEFgmGjI4TrZ9IupRBEtmYQnKwXjJRuW+crmcpGIQl4OZ1jr0MPCiGs/NAV4B/BtwRFfz36cAACAASURBVOj8/kiRnuchYWPtMg1/zqUVKtmpZLkvuUwDfgE83Tl/GRLWngb57ks2Oh+NMb24BuYZ2TAIHIafq3ov6ZWY15L+9UkrlG6QaPGnvCouuxj8z9f168Ck5d0TqjpYhFA6iwgw5yIWHbeh5xuA9yV0ryKEpBQdd4FJwnsxn2gFm6XkW9UpTFFi8wtJeazsGXTKQTnJxOm432Ae69A64HvAUcB5RA072wE/IJlCKUUMlSwaee1LUxFP1nOd898EPpDiffPdl9xiGL2Zo+V+5qwUrQFEyRp0zj8ArEzxvrrv1Sfu75GELHQA0b99XhWXXdLOSSskcYpW1KNFIh4tt7v9rglcsx2WIxZntwrTR/EXolZwP9+aBK7ZbbjzaiD2VY0zi2gIzgaSa/bZLiX8aktphGl0LEEp8P4eY31jSSpa6/EX9N0SvH6zjAMXABc6558KvCmB68d9Nncd7nXcv8cupB/GMgXpn/Z85/yPkWq5aYZa5bsvORWNDYn06Ow0XEWr3X2vEaYgSpZbRnsJsCLle7ufrxe/83qM4+cstWtom4cY7arkWXHZJW6+d/2c8BUtywrkB7gcWGetTaLs4v3O8faVR548iViUw+xI7ZCfZnAbYbqfX0m+v8YBTAhJFgmHKEp8+FR8Aa4onrZCYErG85zbwCZZAn8U37BShP525yMbYZi3JnBddw0aJ/nSzZ2Ouy5Px8+XSpJ+RKF6uXP+/5BmxWlbdvPel6IVja3Nu0BRHmTdV6ofUbLc+ywjvgVE0mTRjLfTSXJOlJFiYFWKUHE5TNxn63pZyHNRnjP/nINTuE9cnsyBwJ9SuFcz/B9iYQr/HY5Gyi23g7uhZd0YtRNwF9x2N5zwJm6R8NBGca0s2yGhXWGW0XqIRdxn0w0nxHjf+Gh5NBpVUApKSfdcuZdo3LrbtygPhpEwsneGzj07geu6a9BSpLKYMkGtfemRFO5VBr4DvMo5/xvgzWSTp5DrvmSM6bc2ZPsy3W/JjsFd9/srjzT+Fn3Aofh9RKvG9LSpfrYwXS9Ut8AWot9Rrb6vjVAiKs+WkOq2zbw/zK6IAyLMvUgIfCu4stAIPRo6mAbL8BeY52R073psxK9INy/uhU1wEL637u42r9mNuPNhKsk1MyxVrtfow/0dlGNe087YZjnHPbG4NENpuOR7tGyiHi3wf4dFWIPA9yzMoP3CDO5n0zXIZyV+Fa405kQZ+DaiUIX5DfAasmlauzd+6GCmc8L9PRt8L3YPEBch5O4PSVBVsty8vIfJzsMR97m6ujFti7iykFu0ph3iZJl6D5e+mNe0oze4c6InDM5ZKVrjwI3OOTdGPS+SFniPd47HgJsSvkc34FY5MkRLkXYTbvPatCo8dSzb+rZ5Fl1TNkl7tG5wjncnGmaRF0mvQYOIZz6M+9kV8Xy7f5ek9yUDfBGpdhvmj8DryEbJAn9fCsg4osRi02gd02kM43/njTQ3b4YykuvpCuwryTZc1P1cI2Q33zsJVx6YQnteraJi8BWtnpCFsuyj8Qfn+LmkH588Gf3Azs65dnsuvcQ5vhUtqxzHMH4YQTt5e2NtPNxcLhvzmlab/MUtmq263buXgZiG0jaR6nthrsNXatzfax7s4RxvIr4cfaM8D986+fs2rtfNuPvSs0nOw1BVsk51zt8IvIxsrfvuPP8rGSfIuz06sT0ZOgi+cLld7Ktaoww8Dd9o+RjZtzpxP5fue/Gsx5cv2pkT7chCLkHMa1rNfZ+Fn67UE3Miyy7d1yBVtqoMAScA/5PhGFyOx8/PaSd2eXv8De13bVyv21lHVCCci+QNtKLU/LmNcTyLqDK0GvhHG9cLsxN+IYyeWFyaYd6j80bXbhctAucJZu2zDrgdeGbo3FuJ77uXFQZpmh6m3fwJ13uyhnQa4HYD1zjHA0irj6+3eV0DfB54j3P+z8j33Y4i3SyzgFc657Lfl4xnOOnF0EGQdShs4J2GhPi1W26/hHiyXCXrCeAesi0ONRPfkK5VT+MZR4zx4e9tZ1qrCDlKe9ELxxJ1wCSZz7eTczxOj7QcydKjdSv+F3ZKhvd3KQEfc85Z4JdtXPPN+KU5f9TG9bqdJ5zjPmCHPAaSIq7HdAMaPuFx2hGnjeIIAraceI4WwA+d46PIt/rgycB+zrmr2rjeEBKSFubHaE5gLf6Gn6vU7r5kgM8C73XO34FUHMxauHgDvoczj31JQweF1fjGRHefaJYSUgDKDddbBdxF9hV4XaE6QNvc1MOVhabTXeGDJfyiGqtoPVKoo8hS0bJIo84wLwRarXL4tMqjFcrAV/DzGK6n9d5LJeB059ztJOcZ6UaexK+Elmdvo6SZhV/UoN3Q1G4mIniZIHGPFogH3Q2ROKON672J1gulHIt4PcIEtCcEvxN/zn2njev1At91jp9Hc5W6XBbhz6m/Ivtd1t5sg6/w3Q3clvE4wDFCmqAni2GArD9u2ObOtB5hVFWy3ND7VcBisley+vAVx1VkU1mzU3kCX+noJlkobn73jCyUpaIFsuGHJ1MJOKvFaz0VCYe5AvEkNVKppYT0yboZeJfz3DjwgRbHAmI1dJXGb7dxvV7A4v/YZtE9RTH2co4DfMuVMoFr4U7Do/U4Uu0tzLvwLbCN8kUk3PUjSMXRRtgd+C/gt/hVwb6BCOWtMAX4sHPuPrQYz2R8D18IPLvFa10Y896/I0pWHqFTr8JXGr+VwzjAMUgY05MNi6u4rUL68KtCNkIJkTtcJWsN+XiyQBSEnhWqW2QU3+O3M9k0tE4bg5+HPEyPFMKAbHO0AB4Efga8PnTuX5DNqZVETYPEnr8Siff+OyKkLGUiRGsQSSw8GCndW6t8+7lIaEcr9AEfdc6tQYQmpT4PI4JnWOnfi87PKZmFn9C6kh7ogt4G2wiFSwQ2SMOjBXAp0aaxUxHh+IMtXm8vpPHw+Uij9zsRIWctE+XD5yAltp8OHEG8ketvtG54Ang3vhX0kxSncXdRWYF4EcO5ba9HjHl/b+I6LwXOiTk/BvygxbGtA05s8b0l4OPOufXAV1u8XrtEGxb3buggyNqwiaj3eXekh1sznp/diQ+3rxbFaIWNiKzWCn34a9AmND+rEZYjeepVSsCedH4f1p3xQ5dX0EP7UtaKFogw8jomCgT0IeEzL2rzulOAwyuPZhgHzgMuaePeZ+A3yL2MbBOeO5VtiAIStubNQeJ5O9X7Y/DzfiyykCq1iQhepVIpDY8WwLVIee1jQufej3igW/UmVdmj8nh1k++7HRHUWw0t2x74D+fcw6hXvVEuAE5iQgEuI97K59G4QFArp+LpbYzr8Tbeeyq+N+vz5GRJNph+G/5TBj1bDKPKMqJRMP2IMaaZEuy1opLaiQppRwDeBz+Uelkb1+slNiDrfzjPbhfEG9iplav7kDkRpirz9QxZhw7CRLhfmBfiN3OcjCdpv2rR7Ug534vauMYu+ALOGuBzbVyz11iOH5+8L/kYApJgV/w8mZVoEYzJiP6eky/vHuY/neM+5Dfb7Jq4qs1xbAYWIEU52rnWJ/HDhy6gdyu7NcvdSNGQMMcAb8thLEmwI9EqvyDerM/kMBYArIn20cL0vHd/FX6J/13xw4k7hZmIPBRmM+2vkb3EQ86xQYoluZWLO4V98FMAltNjxZnyULQAzsRfYL6EWHMa5SpkMzkJKcV7N41ZYpYhIX3PRUJ4bm3ini4lxGLs5octoIfiTxNgGN/qNQAcmNH9NyPhEtWH29+rGYaA+c65UZIrkdq1GKI5GymGDoLkR/3EOfdc4kO/6nEQcCTwCaQnUyO9kTYhXrVTEcHkYtoLKX0j8Hbn3O3Af7dxzV7k3/GjED5HdutQUpSQfGg3dPk8Mu6dFcFq6KCDxQ8LM4iXq9OMjGVkLXQVgvvpoRCxBHgS34s9Ez/fOy02EZWF2jHUbY+fd7iZ1gvOdSx5/ZiXIV6kT4TOzUZKLz+Xxr/c9ZX3VEs2T0c8IXsh7td+RIDZwERvpCRLjC5EvHFh/ozmZrXCcqQgQbj3xlzkh/pIyvdenNB1ykgIqWvAWILmZk2KxUZ+9yVSCx2s8gGk713Y+7gQCSu8rsFrWOCWygNkDuyBrENzQ9fegKxXS2m9V1wc+wJfc84FSKW5nrIaJsDDSHTCpaFz04HvIxVqJ/NIX41vZGmXVr7DBfj9HO9AjJl54hpO1Ns6IViHi/FMBQ6gsX1pBckXmmhlzh2I3zfrMbRnZCs8gCgpYfl8T2T/SDvX7S8JXWeQ+OJQ99GDinee7sgB4E/4OVU/RJKSi15f/62I1TD8N9yCNL9NSnDvNWYh+Qzhv6lFEtKL3oOj2izStSKvRYoc9Nzi0iwL7184c2DKQHlk08jowoMXZpXfeBrwZefcGsTg4/ZXKhpzEaXQzQf8FPCh7IfTFfQjSvaznfM/QzyHRVde34jsoWFjzzDyeXIvMLTQLiwNLB+YBTC0bWjLmfud6bb36EX6kSbqboW5hxDDTNHZG9/jMoJEC6mBsTV2xldUxpBIhUaiJvKkH5Hj3JzVR+j8wh4tkXfc53xEg57lnP8cEl5YVF4G/B++he5fgW9mP5yuYk/85MlxpEjBev/lhcAgi6JbInwbstmo5bbY/BDphxVmOZKjsyL74TTEDOB3iIAW5mZESVQBp3X2QDxArtHkq8B7KK7R5AVISL0rsL+X/L1ZSn1mA4fhy2T3kX5ERzvsSnzhpzvR9Il2OQi/H9kIomwVNd+7DByKL9NvQmT9ojtQUqGc8/3XITG8byS6wByJTLCrKd6m9nrgcvwEv28hYUdKe2xAhMhwGEK1q3i1ZH+RKAFPwVeyqp64olufFOmrdQLRMsmzKud+RfG8qXOBX+MrWauBF6OllNtlPVKe/01EPUOHI0rYVRRPYHgV8FMkZCfMD2g+71DJnmFkz5jjnN8emWtFNDLugRRqcFlKe9UyFWEdsieFZc0+RBZaS/GMaf1ISwFXyRpDFO+ijTcz8la0QMJzNuDHlB+BJIVeSXG+oPcj+RCuJ+s3SD+wooeVdAqrkQ0nbJmtKlvDFEd56UPCBeP6mNxN8QR0JZ4RRHg+kWjFr9lINdQbKE4C776IJ8vtkbMZWUPvynxE3cl9SLW0Vzjnn155XElxPNWnImHsrifrWjoj3FER1iNCtVtcaztkrylKvpNhIhfe5RG08FNSWEQWmks0X6uqbBXJ8DyIeGTdipkBEo3U062OiqBogRSQmEq0rw2Ip+AEJGY+zxKhMxCP1Vn4hQ5uRTbjdirVKVGqC8wORJVagyw6U5BNJ09v50ziFxaQZNZHsx2O0iZPIpUI30y0ueIQcAqiyNycw7jCnIgI+G4J5VEm1kklOW5D1pzjnPMHIJENN5Cv5X4IqSx5Hv6+dCfSl60oRimlMdYi36ub3zILMfysI1/FeQAxLroRHCAy2j3ZDqfrGUfmxE5E5fUyEvVVBG/nDki4oOtNt0i9gqIYCHKjKIoWwDXIeI51zs9FShcPI0pN1iEbL0T6frnjArgeUbI6tZlckQmQhXs7/DDNmciPexPijciSEmLJOwjfs2kRJaso3g+lOZ5AwpVfQ1SBLiPeomcBN5J97sFc4AtIXyTXa7EZUbKuznhMvcK1SOjL84mGt2+P7EtjSMXJrPel44Bf4Fe9BbgJUbI0R6YzWYUYe9xejIOIwL2NfBTonRAlK64x9+OIN71oqR7dwCgSHbMDUc+WQeSj2YiyNZbxuPqR0NF98Q09AaJk5ddOokAUSdEC6UOzGtkkwptaPyLonADcSzaVePZCqpFdjJ8UDRIPfwI97hJNmXFE+J1J1MsAonzNQwTPjWRj5dsB2Wjm4ictB0i4YE91PO9CHkcqzL0C/3e/HxKmVUYSe9MOHZtSud9P8avggayVL0E9WWlzAxIS9QqiAkUfoui8Hniw8kibPYDPI5Ul58Y8fyXwatT41+msQuaXm+9SRr732YjskUX46nQkjWN34mXGFYhcpqTHKDIntsc38E5FohxKyJxI2+hjENnrqcg8dBlDwgV73pNVJe+qg7V4MfBdJA41jj8BFyJW3KQn1UFIiOBb8Cc0iED/H4h1uWgJ0d1KCalEuHuN5wNEwVlO8jHL1XDFPfEtjFWGEeuNCjfdw3ZIBdFX13h+DXAZ4mlKuvjENOAdyDq0R43X3IwUa3AbfSvp8XzgfxAhI46bkX3pSpLfG/ZH5sPJ+B5+Kve7ECnIpDlZ3cM8xMBTyyi+Gtn30ggfm4WsP3E5yCDz7D6S7+Ol1KYP6VkWZ2QBUXIerjySrm1QQsIV98QPE6yyEZGFNJUmRFEVLRAN/X/w4+PDLAe+B/wIqfDWqtt6HuKdOhk4qs7rHkUUsGtbvI/SHjsgi0ycAgzy/a9HFv7VtL7QGCR0bEckXKJe49zVSFx6UQq2KMlhkKbGi6g9B6qFNL6LhD+36uEeQMqyvxV4HfG5fyAC9WVIU9qiFGPoJXZCvusX1XnNw0iT4x8iuVKt7ks7I2GsJyMNk2vt149XXvPbFu+jFJshxKMUF7JXZTOy762iPSF3KhP73mT3W4zmAObFbkh7JDdkr0qAGAAfq/zbqvGlhCjcO+EX5XB5BEmdUAeEQ5EVLZDxvQMJ36tlVanyBBJ6eCvixr6/cm4DE5NsFhKGth9iIXwqYqWM62AdZgz4IvAx8k887HX6kZhgt79EHJuQPIVNyOazFfkuq/PBIJbCAcSLMBWZH7OprcxVGUHmWJ5FWpRsOADxXL1gkteNIvk61yP5CvchTUc3Ic3MQSyB0xHv7P7I2nM08ByiLQ3iuBPpiXRTsx9ASRSDKMSXEl8UIMwqxDBX3ZfuQxSjjUzkVMysPPZF5tohyL508CTXHge+ghTD0DCd7qaErBl7MnnKxzCy721E1p0tyFwL5/D0IXvcVGTdmYHse7U8FVXGES/6ClSgzpupyB4Sl9oSxiJy8HpEMd6CzJFxJmShElFZaBoiL89i8vm2GVnXNCe0BkVXtKpshyg5p+Ln6jTCNup7JerxK+BcRMhRisMsJJwwLka4EQJqW4PqMYZYbpahITq9xolIaNZkhpk4gsqjnkWwFo8gYWFfQedckZiNKDnvob71vxbt7Eu/Rfpj/aXF9+fKBQ9dMK9sy68OCJ5nrNkVw3QCnsCwwmCuHN46/OuFBy9Uj63PILLv7Uhr8lur+55FDNdLKE5JcUWYC+xNa2sQyHfbylzahshBj6BFUOrSKYpWlZ2ADwKn4SeJJsk4UtHpAjp0I+shZiNWvjmkO59HmYh9zrq6j1IcSkjxgwXAM1K+14OI1+RbZF9dU2mcucD/A07HbzibJONImOqF5N9qoCUWLl04OGgHL7DY06lvNH3UWnvaufPPvTKrsXUYU5F9bydaU5waJUA8sMvQvJsiY5Corz3w+7AlzTCStrMS9Wo2RF3B9PwV5+9aHi2fYI19irFmV4sdMJjHsaykxB22315z7m7n5tGUdRBJUj8FKZwxWZhXo9yJxN//AK0e12lUS9/uzOQhWI0SIEUPHqv8q1YbJczTgLchvbfc3latsg74MdKA9k/onOskBoBXIvvSS/BL8bfK35Bc5O8j1uOO5JP3fnKH0f7RK4EjG32PwXxkwT4LLkxxWJ1OH6Lo74wYn5MwNoZznVehhsVOYwiZDzuR3Bo0hsyFx5C5oftSE8T+KC958JL9xhm/DMNLqG8tCTBce87e50yWu5AmQ0ij4+ORBfwgalcrDLMJiSv9K/B74HeoctUtDCKW5dlIPsw0GrP6jSDxy+uReOP1qMVGmRyDNFd/AfA8JMdmHyY3AAWIpfhuJK/r98DtaHhgNzANybs7HimwdCCN5ZVW8x3+xsS+1LHKVZWFf1jYN7jn4NUWG5YVVgCXBEFwbd+UvrVj42M7loPyS62xH0LKWANYY81bF8xf8P3sR91x9CN73mzEqzGNxkKVx5B9bwOy7z2JFnfqFoaYmBPTEdloMlnIMiELPYkY/zaiylXLeIrWhUsufLfBfJbJkyIBsNi15+5z7vaTvzJTZiN9sOYwMbmqHbQ3INUDtalsbzGI5EOUkc3HMJEMOoaERaiAqyRFH6Js7YCsQdVQ502Vx1qkQpOGBPYOs5B9aTvi96XHkJCcruOiBy863Rr7xdCpm4w1L1swf4FXXKoSSfN7JNEfi127zWybv3DvhZps3zz9yDzrQ/a+EjLnqvveMKpU9RIGXxaCCVloFJGF1MCcIBFFa9HSRadi+XLkvOUug7mSEkustWuNMdtZa/dDKmUdabFPFlDRUhQlYxYtW9R2fsrQtqEtZ+53piofitIlLLQLSwNLB5Yy0RNuw3j/+FPO2/28mp66i5ZcdKjF/oVKxTNr7EXn7n3uORkMV1EUJVH+6Va+cMmFz8XyJSaUrFUW+95z55/741pvvmTpJTuPMfbmtAepKEoHMM4TtFZV759sKW85AymlrihKF9C/rP8wQo23Lfbb9ZQsgAX7LPjroiWLrkT6iGGsecfl9vLzTjQnatSBoigdRR9IJSBjzdeYiN1cEwTB8R/Z9yP/qPfms/Y+6zHgMymPUVGU3mFj3gNQFCU5SkHp6MixLf26kfcZa35tjX1N5XCnBx564BjguqTHpyiKkiYlgEEGT6MSDw1gMB+cTMlSFEVJmK22bK/IexCKoiSHxUaaOhtjHmjwffdH3mfNi5Icl6IoShb0AVjsu/95xrD47L3O/u4CFuQ2KEVROo9z9jmnqTYLFzxwwSGlUunvoVM/OWfPc9YlPCxFUXLEWDMjnA0+GoxuaeR9tmw3myD0RstTkh6boihK2pQWPbjomVgO/ucZyzeNMVrGUVGUVCmZ0rvCx0Ep+EZeY1EUJTUi1QL7bF9DDVVLlGZHThhVtBRF6TxKSA+qf2Ks+Y37oksfu3To0scuHcpsVIqidDULFy+cguFfqscGs3R0z1HNv1CUbqPEo+FD22cPaeRtNvBet2tiY1IURcmIPot9lpnw628c3md4McCFD1748hKld2M4bmzL2GyARUsWbQVuAa4obSt99ewDz9bEdUVRmmZg6sBrgLmhU99YaBZq7w5F6TLMmPmTLYeCZCwnAD9q4K2vc46HFtqFJV0nFEXpJErGmH+GDRrMgwPLB2YtWrLox8aYq6yxr7XYsPt+KnAs8MlgSvDghUsufHXmI1YUpeOx2HeGDgMs38ltMIqipMbZ+559F3BP6NTrFz2w6PB676nIFkc5pw0PMD3p8SmKoqRJCQg3GV3DOD8HXh85B/8AVjjvnWswP1u0dNHb0x2ioijdxMX3X7ybwbzwnycsv14wf8HyHIekKEpKGGMshotDp/oo8fMLllzwtLjXL3pg0fEGE2t4mTk4s60+fYqiKFnTB/zTY2Wxx1HtxI69BfjQOXuf88dqcYyLHrxoDwznhaoUlrB8adFDi/56zl7n3JHx2BVF6UCCcvAOKusMgDVWi2AoShezYK8F375o6UWvpdKAGNitROkvi5Yu+l9r7R8M5kmD2dFiXwK8EjDAOHAfcFDlPXa33XZbn/3oFUVRWqcEDIaOq8LPdYP9g8edu8+5N4QrEC6Yv2D5gn0WnAqcF3rPIONckMFYFUXpcKy1xhr7ttCpNdPHp2vvLEXpYowxtrStdDJwZeh0H5aTDOarwOUW+3ngVYiSFRjMvwF3hV6/8URz4nh2o1YURWmfErDZOTc6zvjbPrj7B7fWetPI3iOLKh4vwfDSRcsW7ZPSGBVF6RIuXHLh8caa+f88YfjOmfudOZLjkBRFyYCzDzx748jeI6/BcBpQL1T47/+/vfsLbasMwwD+vCdp03Zu1elW6uxqMwfeTPwv240OES+cYCcMBHUwh94Vb1Z6uokfsuakVHIno6KwP4gXwyHCdlFQZBtD1AleVKYuSUs3yuwcFcdc0uS8XjSxJ23jYk3OWdrnB7l43/N94bkKHHLO9yr0mb5o3wcK7fD0L9c4IhFR1YWhuA5Bq6d36kD0wPi/bTJiXCftHILiyUJLNK/bAaRqlpSI6p5YsgeeA8hE5UhwaYjIT4UTAz80aj5qGG94OJQPPaXQNgjCAplUS88VX0MY/n644RqubfFsPx9MaiKipQvDwjS0ZD7FmYp25nEW1lwpKlvKLyailS6ejLeq6kvFWqHf2lH7xyAzEZH/CjdcPxQ+i5peO/0IZk86BgCo6Hc+RCMiqioLLn4p6WjpcMFyMqHMpZKG4O7qxSKiZUfwKoCWYmmJxUMwiGhRqvqKtwznwicDC0NEtESWio56GyJS0cum7b+3l6xTVR67SkTlKfZ4qr9u4mYlQ0uJaIVxxp27VPS1Yq3Qkd7NvckgMxERLYUFWfDc87pKNk61Ta331iJytWqpiGhZGUgNPKSij3pax02XmQ4sEBHdtiQvg8DcUzICSQQYh4hoyaxsJDsC4EaxoaqPV7QxZz0xr/VzNYMR0fIhkL3emrOziFaWxESi+VZrVFWclPOeZ1YnIPjUjtojNQ1HRFQjlrnX3BDIqX86gu7BC4Orb7VRXHndW2tIv6pBPiKqc2bUNArE+75Fyr7fPh1YICLyXXYme85JOidiydhOkzZ3eq8lJhLN8VT8xfhY/CyAdzyXxsL58Nv+JiUiqp4wAKilMbjYidm5Wq1uo/s+gLfKbYon4y+ozJ0eBuBMf2f/T+XWE9HK1dTStFNV7ynWAvnYOwidiJY/hUYg6BZId0QjcFLOJIA/oFidmcmsA9CI0l+FcQi273tg32+BBCYiqgILAApzKz7x9N90ks4h86tZ412sqhJLx3ar6HHMTm8HgLyo9PsTl4jqjauu9xCMfM7NHQssDBHdLtoBPAjBBgCN86595lruVrvLHvM/FhFR9RRvlmBGzR2RlsjXUDzmuX4dgtNQXFLVNSKyDcDGed/Ra0ftIV/SElFdOXjxYEfICqUBhAqtk3bU3hFkJiLyXywde9pSa4dCnwewHe2s/QAAAQ5JREFUYO6mQKYV+oWr7tH9m/Z/GUBEIqKqE28xkBpoE8gxgTxXwd6siPT0dfUN1ygbEdU5J+kYCN4t1qr6cv+m/hNBZiKiYJm0aQpruC3shjcoNGM1WpNdHV1XdsmuisbLEBHVC5nfUFWJj8V3Q7EXwLZF1kwJ5HMVjfFvfSIqx6ixIulICkBnoXV1VX7VfT2bezJB5iIiIiLyw4Ihw4WX1A8DODx0cWh9TnKdKtqulv4pIleyG7MXjBjX96REVFea083PunA7Pa0jvMkiIiKilWLBjZZX4bQfnvhDRP+ZC/eNefXRoLIQERER+W3Bo4NERP9XYiKxNjOTuQygqdD6xo7aW4PMREREROSnvwFzu+nn7+UKTAAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "id": "f6329f5d", + "metadata": {}, + "source": [ + "
\n", + "\n", + "
" ] }, { "cell_type": "markdown", - "id": "95643cd8", + "id": "1c8e5eb7", "metadata": {}, "source": [ - "
\n", - "Question: The previous example described positive search overhead. There is also negative search overhead, resulting in superlinear speedups. Can there be negative search overhead in this parallel TSP algorithm? (Provided the workers communicate the minimum distance with each other)\n", - "
\n", - "\n", - " a) No, because we use the nearest city first heuristic. \n", - " b) No, because each worker has to search the whole subtree before the algorithm completes. \n", - " c) Yes, because the parallel algorithm does not need to search the whole search tree.\n", - " d) Yes, because the global minimum distance can be found more quickly, enabling the parallel version to do more pruning." + "In order to minimize search overhead, workers need to collaboratively keep track of a global minimum distance. However, this needs to be done carefully to avoid race conditions. We show how to do this later in the notebook." ] }, { - "cell_type": "code", - "execution_count": null, - "id": "fff58498", + "cell_type": "markdown", + "id": "5e4cee1a", "metadata": {}, - "outputs": [], "source": [ - "answer = \"x\" # Replace x with a,b,c or d\n", - "tsp_check_3(answer)" + "### Negative search overhead\n", + "\n", + "The parallel algorithm might search more branches than the sequential one when we parallelize the pruning process. However, it is also possible that parallel algorithm searches less branches that the sequential one for particular cases. Imagine that the optimal route is on the right side of the tree (or the last route in the tree in the limit case). The parallel algorithm will need less work than the sequential one in this case. The last workers might find the optimal route very quickly and inform the other workers about the optimal minimum, which can then prune branches very effectively. Whereas the sequential algorithm will need to traverse many branches in order to reach the optimal one. If the parallel code does less searches than the sequential one, we way that the search overhead is negative. \n", + "\n", + "Negative search overhead is very good for parallel speedups, but it depends on the input values. We cannot rely on it to speed up the parallel execution of the algorithm. \n" ] }, { @@ -717,7 +743,16 @@ "metadata": {}, "source": [ "### Option 3: Dynamic load balancing with replicated workers model\n", - "In our parallel implementation, we will use a coordinator process and several worker processes. The coordinator process (or _master_) searches the tree up to a certain maximum depth _maxhops_. When _maxhops_ is reached, the coordinator creates a job and delegates it to a worker. The workers repeatedly get work from the master and execute it. This is an example of **dynamic load balancing**: the load is distributed among the workers during runtime." + "\n", + "In this third option, we explain a strategy to improve load balance based using the [*replicated workers model*](https://en.wikipedia.org/wiki/Thread_pool) also known as *worker pool* or *thread pool*. In this model, the main processes (aka master or coordinator process) sends jobs to a job queue. Then, workers take one available job from the queue, run it, and take a new job when they are done. In this process, workers never wait for other workers thus fixing the load balance problem. It does not matter if there are some jobs that are larger than others as long as there are enough jobs to keep the workers busy. The main limiting factor of this model is the number of jobs and speed in which the main process is able to generate jobs and send them to the queue. This is an example of **dynamic load balancing**: the load is distributed among the workers at runtime.\n", + "\n", + "\n", + "In our parallel implementation, we will use a coordinator process and several worker processes. The coordinator process will search the tree up to a certain maximum depth given by a number of hops/levels _maxhops_. When _maxhops_ is reached, the coordinator will stop searching the tree and will let any available worker to continue searching in the subtree. In the figure below, the master process will only visit the nodes in the top green box. The worker processes will search in parallel the subtrees below.\n", + "\n", + "\n", + "\n", + "\n", + "\n" ] }, { @@ -745,28 +780,19 @@ }, { "cell_type": "markdown", - "id": "81219a27", + "id": "9e345393", "metadata": {}, "source": [ - "
\n", - " Question: To find the right maxhops level is a tradeoff between...\n", - "
\n", - " \n", - " a) Communication overhead (large maxhops) and load imbalance (small maxhops). \n", - " b) Search overhead (large maxhops) and load imbalance (small maxhops). \n", - " c) the number of workers (large maxhops) and the job size (small maxhops). \n", - " d) buffer for the job queue (large maxhops) and idle time of the coordinator process (small maxhops)." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "0cf1ec88", - "metadata": {}, - "outputs": [], - "source": [ - "answer=\"x\" #Replace x with a,b,c, or d\n", - "tsp_check_4(answer)" + "### Performance impact of maxhops\n", + "\n", + "We introduced a new parameter `maxhops`. Which is then the optimal value for it? When choosing `maxhops`, there is a trade off between load balance and communication overhead.\n", + "\n", + "- A small `maxhops` will reduce the number of jobs communicated to the workers (less communication), but reducing the number of jobs is bad for load balance. In the limit, we might generate even less jobs than the number of workers.\n", + "\n", + "- A large `maxhops` will increase the number of parallel jobs, improving dynamic load balance, but it will lead to more communication.\n", + "\n", + "\n", + "The optimal value of `maxhops` will depend on the given system, the number of workers, problem size, and also the particular input values. It is not possible to determine it in advance." ] }, { @@ -776,6 +802,8 @@ "source": [ "## Implementation of the parallel algorithm \n", "\n", + "We will implement this algorithm using the task-based programming model provided by Distributed.jl as it is convenient to implement the replicated workers model.\n", + "\n", "First, let's add our worker processes. " ] }, @@ -937,7 +965,7 @@ "\n", "### Simplified example\n", "\n", - "We will demonstrate how the workers communicate the minimum distance with each other with a short example. Each worker generates a random value and updates a globally shared minimum. The variable for the global minimum is stored in a `RemoteChannel`. The buffer size of the channel is 1, such that only one channel can take and put new values to the channel at a time." + "We will demonstrate how the workers communicate the minimum distance with each other with a short example. Each worker generates a random value and updates a globally shared minimum. The variable for the global minimum is stored in a `RemoteChannel`. The buffer size of the channel is 1, such that only one worker can take and put new values to the channel at a time, thus solving the race condition problem." ] }, { @@ -1087,7 +1115,7 @@ "metadata": {}, "source": [ "## Testing the parallel implementation\n", - "Next, we will test the correctness and performance of our parallel implementation by comparing the results of the parallel algorithm to the results of the serial algorithm for multiple problem instances. " + "Next, we will test the correctness and performance of our parallel implementation by comparing the results of the parallel algorithm to the results of the serial algorithm for multiple problem instances. Run it for different values of `n` and `max_hops`. Try to explain the impact of these values on the parallel efficiency." ] }, { @@ -1097,12 +1125,13 @@ "metadata": {}, "outputs": [], "source": [ - "n = 18 # Safe to run up to 18\n", + "n = 18 # Safe to run up to 18 on a laptop\n", "using Random\n", "Random.seed!(1)\n", "C = rand(1:10,n,n)\n", "C_sorted = sort_neighbors(C)\n", "city = 1\n", + "verbose = false\n", "T1 = @elapsed min_serial = tsp_serial(C_sorted,city)\n", "max_hops = 2\n", "P = nworkers()\n", @@ -1115,6 +1144,50 @@ "@test min_serial == min_dist" ] }, + { + "cell_type": "markdown", + "id": "92e68978", + "metadata": {}, + "source": [ + "### Super-linear speedup\n" + ] + }, + { + "cell_type": "markdown", + "id": "9a724509", + "metadata": {}, + "source": [ + "
\n", + "Question: For some values of `n` and `max_hops` the parallel efficiency can be above 100% (super-linear speedup). For example with `n=18` and `max_hops=2`, I get super-linear speedup on my laptop for some runs. Explain a possible cause for super-linear speedup in this algorithm." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "eebe7e9a", + "metadata": {}, + "outputs": [], + "source": [ + "uncover = false\n", + "q_superlinear_answer(uncover)" + ] + }, + { + "cell_type": "markdown", + "id": "19835531", + "metadata": {}, + "source": [ + "## Summary\n", + "\n", + "- We studied the solution of the TSP problem using a branch and bound strategy\n", + "- The problem is $O(N!)$ complex in the worse case scenario, where $N$ is the number of cities.\n", + "- Luckily, the compute time can be drastically reduced in practice using the nearest city first heuristic and branch pruning.\n", + "- Pruning, however, introduces load imbalance in the parallel code. To this fix this, one needs a dynamic load balancing strategy as the actual work per worker depends on the input matrix (runtime values).\n", + "- A replicated workers model is useful to distribute work dynamically. However, it introduces a trade-off between load balance and communication depending on the value of `maxhops`.\n", + "- The parallel code might suffer from positive search overhead (if the optimal route is on the left of the tree) or it can benefit from negative search overhead (if the optimal route is on the right of the tree).\n", + "- In some cases, it is possible to observe super-linear speedup thanks to negative search overhead.\n" + ] + }, { "cell_type": "markdown", "id": "c789dc7a", @@ -1130,15 +1203,15 @@ ], "metadata": { "kernelspec": { - "display_name": "Julia 1.9.1", + "display_name": "Julia 1.10.0", "language": "julia", - "name": "julia-1.9" + "name": "julia-1.10" }, "language_info": { "file_extension": ".jl", "mimetype": "application/julia", "name": "julia", - "version": "1.9.1" + "version": "1.10.0" } }, "nbformat": 4,