From ab95b334eb01441a062959f6a96995cb32858b75 Mon Sep 17 00:00:00 2001 From: Francesc Verdugo Date: Wed, 18 Sep 2024 12:01:27 +0200 Subject: [PATCH 1/4] Work in asp notebook --- notebooks/asp.ipynb | 565 +++---- notebooks/figures/fig_jacobi.svg | 2420 +++++++++++++++--------------- 2 files changed, 1509 insertions(+), 1476 deletions(-) diff --git a/notebooks/asp.ipynb b/notebooks/asp.ipynb index a14e0d1..8509089 100644 --- a/notebooks/asp.ipynb +++ b/notebooks/asp.ipynb @@ -38,18 +38,10 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "id": "1dc78750", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "🥳 Well done!\n" - ] - } - ], + "outputs": [], "source": [ "using Printf\n", "\n", @@ -65,11 +57,19 @@ "function q1_answer(bool)\n", " bool || return\n", " msg = \"\"\"\n", - " It is not needed to start the loop over `j` with `j=k` as none of the entries of the matrix will be updated\n", - " in this particular case. Rememebr: `C[i,j] = min(C[i,j],C[i,k]+C[k,j])` if we substitute `j=k`, we get:\n", - " `C[i,k] = min(C[i,k],C[i,k]+C[k,k])`. Rememeber that `C[k,k]=0, thus, `C[i,k] = min(C[i,k],C[i,k])`, or\n", - " `C[i,k] = C[i,k]`. In other words, the new value of `C[i,k]` will correspond to the old value.\n", - " The same is true for `i=k`.\n", + " The we can change the loop order over i and j without changing the result. Rememebr:\n", + " \n", + " C[i,j] = min(C[i,j],C[i,k]+C[k,j])\n", + " \n", + " if we substitute j=k, we get\n", + " \n", + " C[i,k] = min(C[i,k],C[i,k]+C[k,k]).\n", + " \n", + " Since C[k,k]=0, thus, C[i,k] = min(C[i,k],C[i,k]), and C[i,k] = C[i,k].\n", + " \n", + " In other words, the value of C[i,k] will not be updated at iteration k.\n", + " \n", + " The same is true for i=k.\n", " \"\"\"\n", " println(msg)\n", "end\n", @@ -97,8 +97,8 @@ "id": "1faddbfa", "metadata": {}, "source": [ - "We represent the distance table as a matrix $C$, where $C_{ij}$ is the distance from node $i$ to node $j$ via a direct connection (a single hop in the graph). If there is no direct connection from $i$ to $j$, this is represented using a very large value in $C_{ij}$ (e.g. the largest possible floating point number, `inf`). \n", - "The next figure shows a simple directed graph with 4 nodes an its corresponding distance matrix (matrix labeled as \"input\")." + "We represent the distance table as a matrix $C$, where $C_{ij}$ is the distance from node $i$ to node $j$ via a direct connection (a single hop in the graph). If there is no direct connection from $i$ to $j$, this is represented using a large value in $C_{ij}$ representing infinity. \n", + "The next figure shows a simple directed graph with 4 nodes an its corresponding distance matrix (labeled as \"input\")." ] }, { @@ -121,7 +121,7 @@ "id": "ade31d26", "metadata": {}, "source": [ - "The ASP problem consists in computing the minimum distance between any two pair of nodes $i$ and $j$ in the graph. All these values can be also represented as a matrix (matrix labeled as \"output\" in the figure above). For instance, the minimum distance from node 2 to node 3 is 8 as highlighted in the figure." + "The ASP problem consists in computing the minimum distance between any two pair of nodes $i$ and $j$ in the graph. All these values can be also represented as a matrix (labeled as \"output\" in the figure above). For instance, the minimum distance from node 2 to node 3 is 8 as highlighted in the figure. You can understand both input and output matrices as distance tables. The key difference is that the input contains the distance using direct connections only, whereas the output contains the (minimum) distance allowing indirect connections." ] }, { @@ -136,21 +136,10 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "id": "4fe447c5", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "floyd! (generic function with 1 method)" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "function floyd!(C)\n", " n = size(C,1)\n", @@ -176,25 +165,10 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "id": "860e537c", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "4×4 Matrix{Int64}:\n", - " 0 9 6 1\n", - " 2 0 8 3\n", - " 5 3 0 6\n", - " 10 8 5 0" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "inf = 1000\n", "C = [\n", @@ -228,7 +202,7 @@ "source": [ "### The algorithm explained\n", "\n", - "The main idea of the algorithm is to perform as many iterations as nodes in the graph. At iteration $k$, we update the distance matrix $C$ by finding the shortest paths between each pair of nodes, allowing indirect paths via nodes from 1 to $k$. At the last iteration, it is allowed to visit all nodes and, thus, the distance table will contain the minimum possible distances, i.e. the solution of the ASP problem.\n", + "The main idea of the Floyd–Warshall algorithm is to perform as many iterations as nodes in the graph. At iteration $k$, we update the distance matrix $C$ by finding the shortest paths between each pair of nodes, allowing indirect paths via nodes from 1 to $k$. At the last iteration, it is allowed to visit all nodes and, thus, the distance table will contain the minimum possible distances, i.e. the solution of the ASP problem.\n", "\n", "This process is cleverly done with three nested loops:\n", "\n", @@ -243,7 +217,7 @@ "end\n", "```\n", "\n", - "At each outer iteration $k$, we do a loop over the distance matrix $C$. For each pair of nodes $i$ and $j$ we compare the current distance $C_{ij}$ against the distance via node $k$, namely $C_{ik}+C_{kj}$, and update $C_{ij}$ with the minimum." + "At each outer iteration $k$, we do a loop over the distance matrix $C$. For each pair of nodes $i$ and $j$ we compare the current distance $C_{ij}$ against the distance via node $k$, namely $C_{ik}+C_{kj}$, and update $C_{ij}$ with the minimum. I.e., at iteration $k$ one checks if it is beneficial to visit node $k$ to reduce the distance between nodes $i$ and $j$." ] }, { @@ -266,7 +240,7 @@ "id": "722e330c", "metadata": {}, "source": [ - "The update of the distance matrix at each iteration is illustrated in the next figure for a small ASP presented above. We highlight in green the distances that are updated in each iteration." + "The update of the distance matrix at each iteration is illustrated in the next figure for the small ASP presented above. We highlight in green the distances that are updated in each iteration. Note that some distances that were initially infinity (i.e., no connection) will be updated with a finite value in this process. You can understand this as adding new edges in the graph as illustrated in the figures below." ] }, { @@ -352,28 +326,17 @@ "source": [ "### Serial performance\n", "\n", - "This algorithm is memory bound, meaning that the main cost is in getting and setting data from the input matrix `C`. In this situation, the order in which we traverse the entries of matrix `C` has a significant performance impact.\n", + "Before starting to parallelize this code, we want to make sure that we have an efficient sequential implementation. In this algorithm, the order in which we traverse the entries of matrix `C` has a significant performance impact.\n", "\n", "The following function computes the same result as for the previous function `floyd!`, but the nesting of loops over i and j is changed.\n" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "id": "75cac17e", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "floyd2! (generic function with 1 method)" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "function floyd2!(C)\n", " n = size(C,1)\n", @@ -399,19 +362,10 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "id": "907bc8c9", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 1.777208 seconds\n", - " 2.967238 seconds\n" - ] - } - ], + "outputs": [], "source": [ "n = 1000\n", "C = rand(n,n)\n", @@ -457,32 +411,19 @@ "\n", "\n", "
\n", - "Question (hard): Can we really parallelize the loops over `i` and `j` ? To compute `C[i,j]` at iteration `k`, we first need to compute `C[i,k]` and `C[k,j]`. In order words, it seems that the order of the loops over `i` and `j` cannot be arbitrary. The first value of `i` and `j` in the loops should be `k`. However, this is not really necessary, why?\n", + "Question (hard): Can we really parallelize the loops over `i` and `j` ? To compute `C[i,j]` at iteration `k`, we first need to compute `C[i,k]` and `C[k,j]`. In order words, it seems that the order of the loops over `i` and `j` cannot be arbitrary. However, this is not really true, why?\n", "
" ] }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "id": "8d05b686", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "It is not needed to start the loop over `j` with `j=k` as none of the entries of the matrix will be updated\n", - "in this particular case. Rememebr: `C[i,j] = min(C[i,j],C[i,k]+C[k,j])` if we substitute `j=k`, we get:\n", - "`C[i,k] = min(C[i,k],C[i,k]+C[k,k])`. Rememeber that `C[k,k]=0, thus, `C[i,k] = min(C[i,k],C[i,k])`, or\n", - "`C[i,k] = C[i,k]`. In other words, the new value of `C[i,k]` will correspond to the old value.\n", - "The same is true for `i=k`.\n", - "\n" - ] - } - ], + "outputs": [], "source": [ - "uncover = true\n", - "q1_answer(uncover)" + "uncover = false\n", + "q1_answer(true)" ] }, { @@ -616,7 +557,7 @@ "metadata": {}, "source": [ "
\n", - "Question: How much data is communicated in each iteration in this parallel algorithm?\n", + "Question: How much data is send from the owner of row k in each iteration in this parallel algorithm?\n", "
\n", "\n", " a) O(N²/P)\n", @@ -627,18 +568,10 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": null, "id": "1bf4de56", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "It's not correct. Keep trying! 💪\n" - ] - } - ], + "outputs": [], "source": [ "answer = \"x\" # replace x with a, b, c or d\n", "floyd_check(answer)" @@ -659,7 +592,7 @@ "source": [ "### Computation complexity\n", "\n", - "Each process updates $N^2/P$ entries per iteration. The computation complexity is $O(N^2/P)$." + "Each process updates $N^2/P$ entries per iteration. The computation complexity per iteration is $O(N^2/P)$." ] }, { @@ -699,7 +632,7 @@ "metadata": {}, "source": [ "
\n", - "\n", + "\n", "
" ] }, @@ -714,7 +647,7 @@ "- On the receive side $O(N)/O(N^2/P) = O(P/N)$\n", "\n", "\n", - "In summary, the send/computation ratio is $O(P^2/N)$ and the receive/computation ratio is $O(P/N)$. The algorithm is potentially scalable if $P^2<\n", - "Question: Which of the following statements is true?\n", + "### Running Floyd's updates in parallel\n", + "\n", + "As discussed above, we need to communicate row $k$ of matrix $C$ in order to perform iteration $k$ of the algorithm. The function below is similar to the sequential function `floyd!`, but there is a key difference. At the start of iteration $k$, the owner of row $k$ sends it to the other processors. Once row $k$ is available, all ranks can do the Floyd update locally on their portion of matrix $C$." + ] + }, + { + "attachments": { + "fig-asp-efficiency-comm-2.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1AAAAMbCAYAAABDhHSeAAAACXBIWXMAAB7CAAAewgFu0HU+AAAAGXRFWHRTb2Z0d2FyZQB3d3cuaW5rc2NhcGUub3Jnm+48GgAAIABJREFUeJzs3Xt81dWV9/HPSggJIJcqNxEUW8TitYpYFFCsYlWIM9MiUYeZWqVFGwUqGrk8WquDIIpVaFrQUeplShEfnWnUto/ai0FEW7x3ULxFCYpEBCn3QNbzxz4hh3BOrifnknzfrxevnvM7+7d/C6EkK3vvtczdERERERGRzGRmxwP/BIwC+gPdAQO+AN4ESoEH3X1dA+aaD+TWM2wHsC0y/9vAq+7+ST3zTgaOibxd6u5/rC+WqHv7AD+JunSlJziJMbPpwG2Rt3nuvivuWCVQIiIiIiKZx8y+CswBxhISprrsAe4HbnD3L+uYcyvQqQnh/BUocvc/x5n3D8C5kbeT3X1+Qyc2s2OBt6IuZbt7VRNijDd/NvC/wMDIpToTqKxEPVhERERERJLDzM4EVgEXUZM8OWFF6C/As8A7QHWi0Q6YCLxqZke1QEhDgGfMbFwLzN3S5lKTPNWrXQsGIiIiIiIiCWZmI4HfU7PVbiswG/hV7a10ZtYD+AEwg7CydCTwFzP7hrtvqOdRPwLejfNZe+AwYARwMZBDyC0eMLMX3X1tY39fyWZmQ4AbgfzG3KcESkREREQkQ5hZd+ARapKnD4Bz3P3DWOPdvQK4zcz+m7AqdWjkVzFh9aouL7v7qnrG3GdmDwJPE5KqTsD1wKQG/HaSzsxmA6cBXwd6NWUObeETEREREckctxFWfgC+BL4VL3mK5u7/C3w/6tJ3zOxriQjI3Z8DHoi69N1EzNtCzoz8ik6enm/MBEqgREREREQygJn1BP4t6tIN7v5RQ+939z8AqyNvs2jk1rV6/N+o133M7JAEzp1IfwUeBxYCUwiVAb/dmAm0hU9EREREJDNcCuRFXm8EHmzCHAuB4ZHXOxIRVETtEumdCDGmFXefXPuameXFGhuPEigRERERkcwwIur1/7j7zsZOECkf3uAS4o3Qo9b7tEueEkVb+EREREREMsPpUa9fSlkUsV0Y9foDd9+WskhamBIoEREREZE0F2n2Gl344J1UxVJbpKx6YdSl/05RKEmhLXwiIiIiIunvK9Q0zIVQga+ldTazr8S43gnoAgwC/olwNis78tkm4PYkxJYySqBERERERNJfx1rvE1kAIp4/NXL8VuDCBjTozWjawiciIiIikv4213rfJSVRxLYXeAI4wd2XpzqYlqYVKBERERGR9PcPYA81378no8/Sy8CWGNerCFsI1wGvAc+6e+0y5rXtiXqdHXdUbNE5i0d+pYwSKBERERGRGMysH3ADcCqwEri9AYlCi3B3N7N3CeeOAE4Eft/Cj/2Ru69K0Fxbo153auS9B0W93unuSqBERERERNKFmR0CXA9MAjpELg8BJprZr4Cb3P2zFIS2nJoEalhTJjCzY4A+kbefuvvfExFYA0QnUI1dPYsen4ziGXXSGSgREREREcDMupjZT4EPCStPHWoNaQ/8EFhjZjeZWeckh/hc1OvzzOzQJsxxN/BM5NelCYmqYT6Ken1MI++NHl+egFiaRQmUiIiIiLRpZtbBzKYC7wM3AfUlRl2AnwLvm9kUM8tt6RgjHiecOwLIAW5szM1m1hUYHnXpbwmKqyHeino91MxqJ6d1OSvOPCmhBEpERERE2iQzyzGzHwJrgDuB7rXHdOjQgTFjxpCXlxdrih7AzwgrUleYWYsej3H3ykic1a40swsbMcVN1KyqbQJ+l6jYGuBlaoo/dAEua8hNZnYscHbUpb8kNqzGUwIlIiIiIm2KBRcRVjMWAX1rj8nJyWH8+PGsWLGCe++9l5dffpnCwkLat28fa8rDgf8E3jKzfzezlvweez41/ZkMWGZm3zczi3eDmWWZWRHw46jLt7v7zhaMcz/uXg78IerSHWZ2QV33mNlRwDJqqvZtBv5vy0TYcJbiIhYiIiIiIkljZucAtwMnx/o8KyuL0aNHM336dPr373/A5+Xl5cyfP58lS5awd+/eeI95C7jF3ZclKOz9mFkf4I/A0VGXXwR+BTxP2OZnwGGELXsTgcFRY/8IfNvdo0uLV8+9lZoqeacksAofZvZ1wkpU9RZJJ5zrehx4k1BoIhcYAIwCLo68r/ZDd78vUfFExZXH/o2J89x9V9zxSqBEREREpLUzs9OA24CR8caMGDGCm266iWOPPbbe+d555x3uuusunnzySer4fnoFMMPdE77tLFIp8AlgRCNv/S1wibtvjzNviyVQkfnPIcR9UH1ja5nl7v8nkbFUa2wCpS18IiIiItJqmdlxZvYoIZkZGWvMkCFDePzxx1m6dGmDkieAo48+mkWLFvHb3/6W4cOHxxt2OvBnM3vGzGKueDWVu28k/H7GA+814JY3CInTP8VLnpLB3Z8FTgGeJjTkrc8bwOiWSp6aQitQIiIiItLqmFl/YDowgTiLBt/4xjf48Y9/zKhRo5r9vNLSUmbNmsUbb7wRb4gDjwEz3f3dZj+wFjM7DjgHOIJQ3MKAL4C3gRfc/bUGznMWNWeOXnb3LYmONepZfQkFIo4jFPDoBPwD+DTy63l3f7Olnh8VRxbwrahLf3T3uMmdEigRERERaTUi35TfCFwOxKyKN2DAAK6//nrGjBlDHbUXGs3defbZZ5kzZw6rV6+ON6wSWEw4I7Uu3iBJX0qgRERERCTjRc4EXQ9M4sAGuAD06dOHKVOmcPHFF9OuXctVHK+qquKpp57itttu46OPPoo3bDeh6MNN7v5ZiwUjCacESkREREQylpkdBBQStut1jTXm4IMP5qqrrmLChAnk5iar5y1UVlaydOlS7rzzTjZs2BBv2FagGJjt7l8mLThpMiVQIiIiIpJxzKw9oRnrLUCvWGMOOuggvve97zFp0iQ6d+4ca0hSbN++ncWLF7NgwQK2bIl7pGgjcAdwTzL7M0njKYESERERkYxhZu2AS4GbgSNjjenQoQOXXnopkydPpnv37skMr06bN2+muLiY+++/n5074+ZIa4H/AB6I1adJUk8JlIiIiIikPQvVHsYSkouBscbk5ORQUFDA1KlT6dUr5qJUWli/fj3FxcU8/PDD7N69O96wdwh9qx6pqyKcJJ8SKBERERFJa5Hmq7cDMXspZWVlMXr0aKZPn07//v2TGltzlJeXM3/+fJYsWcLevXvjDXuLULFvWRJDkzoogRIRERGRtGRmpxFWYUbGGzNixAhuuummBjfATUfvvPMOd911F08++SR1fG++Apjh7n9JYmgSgxIoEREREUkrkaawNwEXxRszZMgQpk+fztChQ5MXWAtbtWoVc+bM4YUXXqhr2LNAkbu/mqSwpBYlUCIiIiKSFsysP6Ec+QQgK9aYb3zjG/z4xz9m1KhRSYwsuUpLS5k1axZvvPFGvCEOPAbMdPd3kxeZgBIoEREREUkxM+sL3AhcDsTscDtgwACuv/56xowZQ6gn0bq5O88++yxz5sxh9erV8YZVAosJZ6TWJS+6tk0JlIiIiIikhJkdAlwPTAI6xBrTp08fpkyZwsUXX0y7djFzq1atqqqKp556ittuu42PPvoo3rDdwK+AG909bsdeSQwlUCIiIiKSVGZ2EFBI2K7XNdaYgw8+mKuuuooJEyaQm5ub1PjSUWVlJUuXLuXOO+9kw4a4OdJWoBi4zd3jduyV5lECJSIiIiJJYWbtgcuAW4CYjZo6derEZZddxqRJk+jcuXMyw8sI27dvZ/HixSxYsIAtW+LmSJ8DdwL3uHvcjr3SNEqgRERERKRFmVkW8F1CL6cjY43p0KEDl156KZMnT6Z79+5JjS8Tbd68meLiYu6//3527oybI60lNB5+wN33JC+61k0JlIiIiIi0CAvVHsYSvokfGGtMTk4OBQUFTJ06lV69Yi5KSR3Wr19PcXExDz/8MLt374437B1CP61H3L0qedG1TkqgRERERCThzOwcworTybE+z8rKYvTo0UyfPp3+/fsnNbbWaO3atSxYsIAlS5awd+/eeMPeBG5192VJDK3VUQIlIiIiIgljZqcRVjtGxhszYsQIbrrpJo499tikxdVWvPPOO9x1112UlJTUNWwFMMPd/5KksFoVJVAiIiIi0mxmdhxwE3BRvDFDhgxh+vTpDB06NHmBtVGrVq1izpw5vPDCC3UNexYocvdXkxRWq6AESkRERESazMz6E8qRTwCyYo0ZNGgQU6ZMIT8/P4mRCUBpaSmzZs3ijTfeiDfEgceAme7+bvIiy1xKoERERESk0cysL3AjcDkQs8PtgAEDuP766xkzZgyhnoSkgrvz5JNPMnfuXN5///14wyqBxcAt7r4uedFlHiVQIiIiItJgZnYIcD0wCegQa0yfPn2YMmUKF198Me3axcytJAWqqqp46qmnmDVrFh9//HG8YbuBXwE3unvcjr1tmRIoEREREamXmR0EFBK263WNNebggw/mqquuYsKECeTm5iY1Pmm4yspKli5dyp133smGDXFzpK1AMXCbu8ft2NsWKYESERERkbjMrD1wGXALELNRU6dOnbjsssuYNGkSnTt3TmZ40gzbt29n8eLFLFiwgC1b4uZInwN3Ave4e9yOvW2JEigREREROYCZZQHfJfRyOjLWmA4dOnDppZcyefJkunfvntT4JHE2b95McXEx999/Pzt3xs2R1hIaIj/g7nuSF136UQIlIiIiIvtYqPYwlvDN8sBYY3JycigoKGDq1Kn06hVzUUoy0Pr16ykuLuahhx6isrIy3rC3CeXqH/M2mkgogRIRERERAMzsHMKK08mxPs/KymL06NFMnz6d/v37JzU2SZ61a9eyYMEClixZwt69e+MNexO41d2XJTG0tKAESkRERKSNM7PTgFnAWfHGjBgxghtvvJHjjjsueYFJSr3zzjvcddddlJSU1DVsBTDD3f+SpLBSTgmUiIiISBtlZt8gJE4XxBszbNgwpk2bxuDBg5MXmKSVl19+mdmzZ/PSSy/VNewD4Ep3fyZJYaWMEigRERGRNsbMBhKq6o0DYna4PfHEE5k2bRpnnnlmUmOT9PXHP/6ROXPm8NZbb8UbUgX0dfdPkxhW0imBEhEREWkjzKwvoQDA94GYHW6POuooioqKuOCCCwj1JERqVFRUcPHFF7N69ep4Qy5398XJjCnZ1BpaREREpJUzs+6EBrg/AvJijenbty9Tp05l7NixZGdnJzU+SX9btmxh4cKF3HfffWzbtg2Ak046iVdffbX20A+THlySKYESERERaaXMrDNwLTAViNnhtnv37kyePJl/+7d/o3379kmNT9Lfzp07eeCBB/j5z3/O5s2bARg8eDDTpk2ja9eunHvuubVviVu2r7VQAiUiIiLSyphZe+AywjmnmI2aOnXqxGWXXcakSZPo3DlmbiVtWGVlJUuXLuWuu+5i/fr1ABx99NFce+215OfnA9R1FqpVUwIlIiIi0kqYWRbwXUIvpyNjjWnfvj3jxo2jqKiI7t27JzU+SX/uzpNPPsmcOXP48MOwG69fv35cc801XHLJJdreiRIoERERkYxnodrDWOA/gIGxxuTk5FBQUMDUqVPp1SvmopS0caWlpdx66637VpZ69+5NYWGhtnfWogRKREREJIOZ2TnAHCBmo6asrCxGjx7NtGnTOPLImItS0sb97W9/Y/bs2bz44osAdOvWjcLCQq644gry8mLWHGnTlECJiIiIZCAzGwrcBpwVb8yIESO48cYbOe6445IXmGSM1atXc/fdd1NSUgJAx44d+f73v88111xDly5dUhxd+lICJSIiIpJBzOxY4CfARfHGnHLKKcyYMYOhQ4cmLzDJGO+//z733HMPjz/+OFVVVfu2d1533XX07Nkz1eGlPSVQIiIiIhnAzPoTejldAcQ8yT9o0CCmTJmyr0qaSLRPPvmEu+++m9/85jfs2bOHrKws8vPzmTFjBkcccUSqw8sYSqBERERE0piZ9QWuB64EYp7kHzBgANdffz1jxowh1JMQqfHFF1/wy1/+kv/8z/9k165dmBmjRo1i2rRpDBo0KNXhZRwlUCIiIiJpKFKS/FlgJBAzK+rbty9Tp05l7NixKi8tB9iyZQuLFi3i3nvvZdu2bUA4Fzdz5kxOOOGEFEeXuZRAiYiIiKSnm4hTIKJ79+5MnjxZ5aUlpp07d/LAAw9QXFzMpk2bABg8eDDTpk1j2LBhKY4u8ymBEhEREUlPA+J+MGAAgwcPVvIk+6msrOQ3v/kNP/vZz1i/fj0ARx99NNdee622dyZQVqoDEBEREZGYXo/3wcqVKxk9ejQTJkxgzZo1yYxJ0lBVVRVPPPEEZ555JjfccAPr16+nb9++zJ07l2effZb8/HwlTwmkFSgRERGR9LSnrg/dnaeffprf//73jB49munTp9O/f/8khSbporS0lFtvvZW33noLgN69e1NYWKjtnS1ICZSIiIhIZqgC3geO2u9iVRUlJSX8/ve/p6CggKlTp9KrV6/URChJ87e//Y3Zs2fz4osvAtCtWzcKCwu54ooryMvLS3F0rZu28ImIiIhkBgeOBSYCn9T+sLKykkceeYRhw4Yxa9Ysvvzyy6QHKC3v7bffZuLEiVx44YW8+OKLdOzYkcLCQlauXElhYaGSpyRQAiUiIiKSAczM3L3S3e8FjiQkUhtqj9u+fTvFxcUMHTqUefPmsXXr1qTHKon3/vvvM2nSJM455xxKSkrIyclh/PjxrFixgpkzZ9KlS5dUh9hmKIESERERyQAWVQXA3XdHEqmvAdOALbXHf/nll8ybN4/TTjuN4uJidu/encRoJVE+/fRTioqKOOuss3jssccAyM/P5/nnn2fu3Ln07NkzxRG2PUqgRERERDKAmdmnn37aMfqau29199sJidTtwM7a923cuJFZs2YxbNgwHnnkEfbu3ZukiKU5Nm3axKxZszj99NP3/bmNGjWKZ555hkWLFnHEEUekOsQ2SwmUiIiISIYws5Gxrrv75+4+DRgI3EuMCn7r1q2jqKiIs88+m5KSEty9ZYOVJtm2bRvFxcX7Vg537drFiBEj+N3vfseDDz7IoEGDUh1im6cESkRERCRDuPuYej5f6+4TgeOBZYTCE/tZs2YNEydOZMyYMSxfvryFIpXGqi4CcvrppzNr1iy2bNnC4MGDefTRR1m6dCknnHBCqkOUCCVQIiIiIpnjQqDejqju/ra7jwNOJCRSB3j11VcZN24cBQUFvPbaawkOUxqqsrKSZcuWMXz4cIqKiqioqGDgwIEsWrSI3/72twwfPjzVIUotSqBEREREMsdh69atO7Ghg939zUgiNRx4PtaY0tJSLrjgAgoKCli9enWi4pR6uDslJSWMHDmSyZMns3btWvr27cvcuXN57rnnyM/PJ6puiKQRJVAiIiIiGSQ7Ozu/sfe4+wvufiYwCng11pjS0lJGjRrFxIkTKSsra2aUUpfS0lLOO+88Jk6cyIcffkj37t2ZOXMmy5cvZ/z48WRnZ6c6RKmDEigRERGRDFLfOah67n0WOAUYB7xX+/OqqipKSko488wzKSoq4rPPPmtGpFLbqlWr+O53v0tBQQFvvvkm3bp1Y+bMmbz88ssUFhbSvn37VIcoDaAESkRERCSzDFm7dm2fpt7s7lXuvgw4htCM95PaY6oLGgwbNmxfQQNpurfffpuJEyeSn5/Piy++SMeOHSksLGTlypUUFhaSl5eX6hClEZRAiYiIiGQWy87OPr+5k7h7ZaQZ71HAFGBD7THbt2+nuLiYoUOHMm/ePLZu3drcx7Yp77//PpMmTeKcc86hpKSEnJwcxo8fz4oVK5g5cyZdunRJdYjSBEqgRERERDKMmTX6HFQ87r7d3e8hNOOdBhyw3LR582bmzZu3rzfR7t27E/X4VunTTz+lqKiIs846i8ceewyA/Px8nn/+eebOnUvPnj1THKE0hxIoERERkcwzqry8vEMiJ3T3re5+OyGRuh3YWXvMxo0bmTVrFsOHD+eRRx5h7969iQwh423atIlZs2YxbNiwff99Ro0axTPPPMOiRYs44ogjUh2iJIASKBEREZHM07Fdu3YjW2Jid//c3acBA4F7gT21x5SXl1NUVMTZZ59NSUkJ7gf0621Ttm3bRnFx8b4Vup07dzJixAiefvppHnzwQQYNGpTqECWBlECJiIiIZCB3T9g2vjjzr3X3icDxhGa8B2RJa9as2VccYfny5S0ZTlqqLrZx+umn7yu2cfLJJ/Poo4+ydOlSTjyxwS27JIMogRIRERHJTGOAFu+06u5vR5rxnkhIpA7wyiuvMG7cOAoKCnj99ddbOqSU27NnD8uWLWP48OEUFRVRUVHBwIEDWbRoESUlJQwfPjzVIUoLUgIlIiIikpn6rVu3LmlLHO7+ZiSRGg48H2tMaWkp559/PgUFBaxevTpZoSWNu1NSUsLIkSOZPHkya9eupW/fvsydO5fnnnuO/Px8zFo8p5UUUwIlIiIikqGys7NbdBtfLO7+grufCYwCXos1prS0lFGjRjFx4kQ++uij5AbYQkpLSznvvPOYOHEiH3zwAYcccggzZ85k+fLljB8/nuzs7FSHKEmiBEpEREQkQ7n7mBQ++1lgMDAOeK/251VVVZSUlHDGGWdQVFTEZ599lvQYE2HVqlWMHTuWgoIC3nzzTbp168bMmTP561//SmFhIe3bt091iJJkSqBEREREMtcpFRUVvVP1cHevcvdlwDHAROCT2mOqCy0MGzZsX6GFTPD222/vK5CxYsUKOnbsSGFhIStXrqSwsJC8vLxUhygpogRKREREJHNlVVZWjk51EO5e6e73AkcBU4ANtcds376d4uJihg4dSnFxMTt27Eh6nA2xdu1aioqKOOeccygpKSEnJ4fx48ezYsUKZs6cSZcuXVIdoqSYEigRERGRDGZmKdvGV5u7b3f3e4ABwDTggOWmzZs3M2vWLE499VSKi4vZvXt30uOM5dNPP6WoqGhfE1yA/Px8nn/+eebOnUvPnj1THKGkCyVQIiIiIpltVFlZWVrtJ3P3f7j77cDXgNuBnbXHbNy4kVmzZjF8+HAeeeQR9u7dm/Q4ATZt2sSsWbP2JU579uxhxIgRPPPMMyxatIgjjjgiJXFJ+lICJSIiIpLZOuXl5Z2V6iBicffP3X0aMBC4F9hTe0x5eTlFRUWcffbZlJSU4H5Av94WsW3bNoqLiznttNMoLi5m586djBgxgt/97ncsXbqUQYMGJSUOyTxKoEREREQynLsnvZx5Y7j7WnefCBxPaMZ7QJa0Zs2afUUbli9f3mKxVBe1OP300/cVtTj55JN59NFHWbp0KSeemLTWWpKhlECJiIiIZL4xQNp3cHX3tyPNeL8JPBlrzCuvvMK4ceMoKCjg9ddfT9iz9+zZw7JlyxgxYgRFRUVUVFQwcOBAFi1aRElJCcOHD0/Ys6R1UwIlIiIikvn6rVu3LmOWTtz9r5FVs+HA87HGlJaWcv7551NQUMDq1aub8yxKSkoYOXIkkydP5uOPP6Zv377MnTuX5557jvz8fMzSPveUNKIESkRERKQVyMrKSptqfA3l7i+4+5nAKOC1WGNKS0sZNWoUEydO5KOPPmrU/KWlpZx33nlMnDiRDz74gEMOOYSZM2eyfPlyxo8fT3Z2dgJ+F9LWKIESERERaR3S+hxUXdz9WWAwMA54r/bnVVVVlJSUcMYZZ1BUVMSGDQe0mdrPqlWrGDt2LAUFBbz55pt069aNmTNn8vLLL1NYWEj79u1b5jcibYISKBEREZHW4ZSKioreqQ6iqdy9yt2XAccAE4FPao+JVQAi2ttvv72vEMWKFSvo2LEjhYWFrFy5ksLCQjp06JCc34y0akqgRERERFqHrMrKytGpDqK53L3S3e8FjgKmA5tqj9m+ffu+EuS/+MUv+Pvf/86VV165rxR6Tk4O48eP54UXXmDmzJl06dIl6b8Pab0sWbX2RURERKThzOzHwF3V77Ozs1m7dm19t/33oYce+i8tGliSmVk3oAiYBHSqa2xWVhajR49mxowZaoCbBG+99Rbnnntu7ctnuHtpKuJJFq1AiYiIiLQeo8rKyvJSHUQiuftmd58B9AduB3bGG3vrrbeyaNGijEmeysrKuPrqqzn88MMZN24ce/fuTXVI0gBKoERERERaj055eXlnpTqIluDun7v7NGAQ8BBwQLZRX3GJdPHZZ58xffp0zjzzTB5//HH27NnD8uXLKS8vT3Vo0gDtUh2AiIiIiCROpL/S71IdR0tx9zLge2Y2B3gFyIv6LFVhNcjmzZv5+c9/zuLFi9mxY8cBn6d7/BIogRIRERFpXcYAhUCr/m7c3Veb2WYg7SsPbtu2jfvuu4+FCxfuVzmwa9euuPsB1QQlvWkLn4iIiEjr0m/dunUnpDoIqSm7Pnz4cObOnbsvUerQocO+8ur9+vVLcZTSWFqBEhEREWllsrKy8oHXUx1HW1VVVcVTTz3F7NmzKSsr23c9JyeHgoICpk6dSq9evVIXoDSLEigRERGR1icf+I9UB9EWlZaWcvPNN7N69ep916rLq0+fPp3+/funLjhJCCVQIiIiIq3PKRUVFb179OixPtWBtBWlpaXcdtttvP76/gt/I0aM4Cc/+QnHHHNMiiKTRFMCJSIiKWFmXwdOdvdfpzoWkVYoq7KycjRwf6oDae1eeeUV5syZw/Lly/e7PmTIEGbMmME3v/nNFEUmLUUJlIiIJJWZ9QD+k1ApbKeZPePuFSkOS6TVMbMxKIFqMWvWrGHevHk8+eST+5UfP+mkk5g+fTrDhw9PYXTSkpRAiYhIsn0BHEuoBNsR+BHw07puMLP2wMXA4e6ucx0iDTOqrKwsr3///jtTHUhrUl5ezvz581myZAl799b08j3qqKO47rrrGDNmDGaWwgilpSmBEhGRpHL3vWZ2DzA/cqnQzOa6+4FdJQEzmwDcAhwKfDtJYYq0Bp3y8vLOohU31U2mjRs3snDhQu677z5279697/phhx0y4xcbAAAgAElEQVTG5MmTueSSS8jOzk5hhJIsSqBERCQV7gduAroDPYDLgF/WHmRmHYGfAQcB5cBzyQtRJPNVVVWNQQlUs2zZsoX58+ezePFiduyo+TlPz549mTx5MuPHjycnJyeFEUqyKYESEZGkc/ftZrYQ+D+RS9eZ2b3uvrfW0HxC8gRwf4zPRaQOZpYPXA14fWMltrFjx/LWW2/te9+1a1cKCwu5/PLL6dixYwojk1TJSnUAIiLSZi0Aqn+c+1Xgn2OMuSTyvw48nIygRFqZfuvWrTsh1UFksup+TllZWVxzzTWsXLmSq6++WslTG6YESkREUsLdNwCPRF26IfpzM+sGnBd5+0d3fz9ZsYm0JllZWfmpjqE1aN++PdOnT6dr166pDkVSTAmUiIik0p1AVeT1EDOLrvs7FsiNvF6c1KhEWhclUCIJpARKRERSxt3XACVRl66Pel29fe9L4ImkBSXS+pxSUVHRO9VBiLQWSqBERCTV7oh6PcbMvm5mhwJnRq69DlQmPyyRViOrsrLyglQHIdJaKIESEZGUcvcXgBWRt1nAVKAAqG6ocgbwlpl9KwXhibQKkWp8IpIASqBERCRhzCzbzMaa2cBG3npn1OvxwA9rfT4QeNbM7jOzg5sVpEjbNKqsrCwv1UGItAZKoEREJCHM7ArgHWAZcEojb/8f4N3I6zxgUOT1o8DH1Y8AJgCrzezfzMyaF7FIm9IpLy/vrFQHIdIaKIESEZFEuQT4WuT1Vxtzo7tXAXfVulwFXEdIpm4Hqpvo9gQeAv5sZoMQkQapqqoak+oYRFoDJVAiIpIor0a9HtCE+x8ENkS9f87d17r7dnefRjgLtTrq8zOAV83sZjPLRUTqFDkHpZVbkWZSAiUiIg1mZl+r4+NXol7XNS4md98BFEddOsrM2kV9vgI4CbiVmqp8ucBPgDdUZEKkXv3WrVt3QqqDEMl0SqBERKReZnaBmZUC75rZZXGGRa9ANTqBivgFsD3yuj+hme4+7r7L3W8CBgMvR300EPiNmZ3axOeKtAlZWVmqxifSTEqgRESkIW4EhhO2/9xrZufEGLMG2Bp53dvMOjb2Ie7+ObA46tJ1cca9CZxOKHn+BvAj4Ah3fznWeBHZR+egRJpJCZSIiDTEe1Gvc4D/a2b7bQWKFIJ4PfLWaGQhiSjzgD2R14Pjbc1z973ufpe7n+juv4xsARSRug2pqKjoneogRDKZEigREQHAzLrW8fF7td53AUrMrE+t6806BwXg7h8CT0RdirkKJSJNklVZWXlBqoMQyWRKoERE2jgzO8nMfg18ZmZnxxn2btTr8sj/Hg48aWYHRX3W3Ep81aIb655nZsc1Yy4RiRKpxiciTaQESkSkDTOzI4C/EHo45QJLzOzwGEOjV6AWRu6BUBVvaVS1vOgVqKZu4SNylul5YBMwB/isqXOJyAFGlZWV5aU6CJFMpQRKRKQNc/ePgIuoKQveA3gsRl+l6ATqcOA7wNuR9xcAP4+8/l9gV+R1UyvxVbscONzdZ7h7RTPnEpEanXJzc0emOgiRTKUESkSkDbAgZlU8d/8DcGXUpSHAglpjvgA2Rt4eFXk/mprGtxPN7AZ3rwTejFxrVgLl7u+7+9b6R4pIY7m7tvGJNJESKBGRVsrMDjGza81sJbAN2GZmO83sD2Z2iZlZ9Vh3fwD4adTtPzCzK2pNWb0KNSByzwfAhdT0bZptZhdTcw7qiOhGuCKSPiLnoKzegSJyACVQIiKtTGS1aQoh4ZkHfBPoEPk4FzgX+DXwgplFlzP+KfCrqPc/N7PBUe+rE6i+ZtYBwN1fAsYDVYRvxhYDnSLjcgjb/UQk/fRbt27dCfUPE5HalECJiLQiZpYNPAz8DOgG7AWeA+4C7gXWRg0/DVhhZj0B3N2BHwL/L/J5HqHf0yGR99UJlBG1Pc/dn6Cm1HgecGnUM5p7DkpEWkhWVpa28Yk0gRIoEZHW5RbgXyOv3wJOdvdz3H2qu08kVMabQVgxAjiSUHkvCyByhukiahriHhH5PJv9C0kcFf1Qd/8ZNYUkoimBEklfY1IdgEgmUgIlIpKBzCzbzAbUunYkUBR5uwE4293fiB7j7nvcfTYwKerytwjb8KrHbCFU1qterRpFSMyie0Htl0BFTAF+W+uaEiiR9DWkoqKid/3DRCSaEigRkQxjZhcBHwEv1Wpi+wOgumjDfHffcMDNEe5ezP7Jzq1mlhP1+SeEJGpz5NJ04Nio8Qc0yXX3vYTte3+LXPozByZUIpI+siorKy9IdRAimUYJlIhIBjGzfwWWAocBBwPRlfKGRb3+cwOmKwL2RF4fTihLvo+7v0Xo97SbcO7pLsKZKoi9AoW7bwPygVPd/Sx3L21AHCKSIpFqfCLSCEqgRETSnJmdZmbfjqw23U1N6eEvgK9EDe0V9bre/knu/g7wZNSlf40x5k+EhrYOdAWyIx/FTKAi96x397/W93wRSQujysrK8lIdhEgmUQIlIpKmzOwYM1sOrCAUaPgXoDthFagI6O3uN0fdsjvqdb8GPuaRqNenxxrg7v8FzKx1uU+8xrwiklE65ebmjkx1ECKZRAmUiEj6+hyo7sM0APiPyOsid78jUjEv2uqo1yMb+Iw/R73uY2ZdYg2KFJ5YGHXpPaBzA58hImnM3bWNT6QRlECJiKSpSBGIh6IuHU4oHrEgzi0vRL2+xMzaxRkX/YyNwPaoSznxxgJXE7YQfhf4urt/Vt/8IpL+IuegrN6BIgIogRIRSXfzqOnZBPB0jJWnakuB6s/6ABfXN3mk8l77yNsdwJfxxrr7Xnf/sbs/7u5V8caJSMbpt27duhNSHYRIplACJSKSxtx9DfuXAj+sjrGfAY9HXbqlVpnzWEZQU/r8r+6+p67BItI6ZWVlqamuSAMpgRIRSX93RL0eY2Zfr2PsTdSUJj8S+KWZxdyaE9nid0vUpV82K0oRyWQ6ByXSQEqgRETSnLuvIFTig/Dv9tQ6xq4B5kRdGg88bGZdo8eZ2aHAf1PTO+qPwLJExSwiGWdIRUVF71QHIZIJlECJiGSGO6Nejzezur7RuRl4Our9vwIfmdkSM7vDzB4H3qemce4rwCXuvhdJS2aWa2ZfMbMjI+Xth5jZWDP7d5WTlwTJqqysvCDVQYhkAiVQIiKZ4X+ANZHXecA18QZGEqF/Ae6PutyVUFTiushnHQhb/YqBMyIV/yQNmdlwwp/9auAN4DXgZeBRwrarnamLTloTM9M5KJEGUAIlIpIBIlXv7oq6dGVdBSLcfbe7TyAUiVhGTXW9PcDbwFzgOHe/2t23tVDYkgDuvpxQQv6gyK8cwp/jQ8A4VUSUBDq3rKwsL9VBiKQ7JVAiIpnjIaB6pehg4Ir6bnD35e4+zt27EVauOrr7IHe/wd3facFYJQHMrI+Z3UxYTawuDvIP4A53v8zdPWXBSWvUKTc3d2SqgxBJd0qgREQyhLvvAH4edWlKQ5rlRt2/q44eUpJGzGy4mT0KvAN8FRgFPAB8Acxy9xmpjE9aL3dXNT6ReiiBEhHJLMVA9Za7/sDY1IVSPzPLM7MrzewlM+uZ6njSmZl1NrMfmtmbwK+AVUB/d/93d38dcGCmu99e9zxkm5Hd8hFLa2Rm+UDM1gciEiiBEhHJIO7+BeGb62rT4vV5ShMGzAJOBb6f4ljSkpkNNLM5QBlwEaE319Hufru7b6we5+5T3X1h/HnINaMfcCLQq4XDltarX3l5+fGpDkIknSmBEhHJPPOoOQ9zInBWCmOpU2Tb4cORtz80M33dAcwsy8zOMbMS4CXgK8Bwdx/l7ssaU1LejM5mDABOAA4F2gE9zbSKIE2TnZ2tbXwiddAXMhGRDOPuHwJPELbyLQDeS21E9VpI2H5WfZanzTKznmZ2A/AB4c/uWaCvu09099UNnwczo7sZxwGDCEVFohOm9sAhCQxd2hYlUCJ1aPDhYxERSSvXAVdFb/FKJjPLAf4Z2O7uT9U11t3fNrO/ACOBq4A/tHyE6cXMBgM/BAqA/wdMcPdnGz8P7YGekV/1fQ3vDXze2GdIw5hZe6AbYfWw+lf0+87Ab919RcqCbLohFRUVvXv06LE+1YGIpCMlUCIiGcjdP07Vs80sl9DY9fDI+8XAFHffUsdtCwkJ1Ggz6+vu5S0eaIpF/jtdCEwGvgY8CBzv7msbPxedgB5Adxq+e6SjGV3cqevPpU0zs47ETn5qv4/1ulMDHjESGJrouJMgq7Ky8gJC5UcRqUUJlIiINIq77zKzl4gkUITiEGeb2eXu/lyc254APiMUN5gA3NzigaaImfUhrDb9CPgYmA8saWwJ+cgZpq6ElaQuTQynN7TuBMrMulJ3wlPXZ+1bMLTdwG0tOH+LMrMxKIESiUkJlIiINMUiQsW4aocDz5jZfcBUd98aPdjdd0dWqqYRiknMam09qcxsODAJOJ+QMI6KlB9v5DxkE1abetP8b/C7mdHBnR3NnCetmNm3gEcICXk6nufeBVzk7iWpDqQZzi0rK8vr37//zlQHIpJu0vEfHRERSX9/JGzjA/gt8CdCEYMfAm+Y2Rkx7lkI7CVUihuTjCBbWgN6NzViLjqa0QE4jpCQJmp1pDWWNB9E+HuUjt/H7AD+KcOTJ4BOubm5I1MdhEg6Ssd/eEREJM25uwP3Rt6eSTjrM5FQGfBI4E9mdk/kHFD1PR8RCigQGZuxGtq7qWFz0cWMgYTEqS+JL/zQw4ycBM+Zar8gbJFMt+2J24DR7t4qCqW4u6rxicSgBEpERJrqAWA74ZzOOHe/l9CXajnh68skYJWZnRx1z6LI/55rZkclM9jmSnDvpmwzeppxAvB1wrkcInN+CVQlMnRC1b5Ww4NfEnpfvZTqeCK2AOe5+59SHUiimFk+qJ+YSG1KoEREpEncfRPwWOTtlZFr7xMa+04jHKI/FnjJzOZESp8/CXxE+KbsiqQH3QRm1s3MJgPv04zeTWEucs3oB3wD6A/kxRjWncSvQvU0a31f8yOrmmcAS1McyhbgXHdfnuI4Eq1feXn58akOQiTdtLp/TEVEJKmqV5SGRHod4e573P12YDDwKqFg0Q2ElamjgMWRe64ws1gJRFows8FmtoiwTW8Y8AN3H+Tu97j7tsbNRdfINr0TCWd3susY3hIJVA6ttLGuu+8G/pVQJj4VNgJnuXu6rIQlVHZ2trbxidSiBEpERJos0iS0uljClbU+ews4DbidUDziVOAV4KDI++7Ad5IWbAOYWa6ZXWRmywmrZZsIvZvGNbbxrRlmRnczjgeOpmabXn2yCGXLNzfmeQ3QO8HzpY3I9snLgfuT/OgNhOTplSQ/N5mUQInUogRKRESaq7qYxCWRnjz7uPsud59GWMF5B+gAXEfNCkxaFJMwsz5mdjOwlrBadi9wuLtPa2zjWzNyzDgMOAn4KuH33Fg9CX2zEqmDGV3rH5aZ3L0KuAp4IUmPXA+c7e5vJul5qTKkoqKi1SbfIk2hBEpERJrrYcIZkE7A+FgDItubTiKsRkUXSDjDzI5r8QjjMLPhZvYoIbn7KuEcyynu/lATGt92MuOrhPNNh9G8XovtCdvutjdjjlha9TfCkT+zSwjb6lrSWuCMyCpra5dVWVl5fqqDEEknSqBERKRZ3P0fwJLI2yvrGLcjshr1beDjyOVKwta+pKmnd9NrjZsLM6OzGb0JBTO6k7iqZb0JqxyJ1NWMjgmeM61EVgwntOAjPiQkT++24DPSSqQan4hEKIESEZFEqC4mcZyZDa9rYOQs0QmE7VaHu/sDLR0cgJkdlcDeTTlmHEooCvF1YCvgCQ65IyHB3J3geVtjY10AzCzHzC4ibMNsCe8CZ7p7WQvNn67OLSsrS9uCLyLJpgRKRESazd1fpaYfT73nmtz9S3df6O6JXmHZT63eTX+lGb2bwnx0NKM/IXHqR9hqZ4QCEV8kNnogJDsbEjxn99bWWNfMukSVmn8UGNoCj1lNSJ4adSauleiUm5s7MtVBiKQLJVAiIpIo1atQF5lZj1QGEqd302FN6d0U5qObGV8HjiMUeKj99bMnUNHMsGPpBvyDULUwUYxWsgplZl8zs3uAT4C7CUltS3gDGOnun7bQ/GnP3cekOgaRdKEESkREEuU3hFWYXOB7qQggqnfTWuAc4AfAMU3s3dTOjEPN+AYwkFBaPJ52hGp7/2hi6HU5BDXW3U+t4h+TCAVMWsqrhGp7iV4JzCiRc1CJOt8nktGaUyFIRERkH3ffYWYLCInG/yTruWbWHvgn4IfA8YTCEMc0dauVGXmEFZoeNO4Hjb0JiVvnpjy3Dt2Bt0nsqlG7yLwZkxRE/TlPBb6ZpMeuIlRmbIntmZnm8PLy8uP79u37RqoDEUk1JVAiIpIw7n5zsp5lZn0ISdOPCFX95gNLGlt+vGY+uhCSoIY2vK0tl1BIYieQyAP3WUBXQlPfryRw3t5kQAIV6S12GSFxaswWvd3AUkIxju824dGlwOhIlUkBsrOz8wnbGUXatIxdvhcRkbYpwb2bss3oacbxhGp6TU2eqvUm8Q1wIZyxSnSyk2fW7N9vi4k637SOxp1vqiD0G/uqu/878N9NePzzKHk6gM5BtYyqqqr6B0laUQIlIiJpL6p30xvAgzSjd1OYj1wzcglNb/sTzi8lQmdC89s9CZqvWg6h4l+jznE1QNo11m3G+aZ3gSmEvxfT3H1d5Hpj/378HjhPydOBzOzUioqKtPs7k6lWrVrF2LFjWb26pq5NVpa+Nc8E2sInIiJpy8yOAq4gNEZ9FbgVeLyx5cdr5qMz4SzRV4ByQtGHRK/CVK8W9UnwvL0J1ea+lsA5u5jR0Z3tCZyz0Zp5vukFworTk+4eqxfX2zR8W+VTwFh339nIGNqKrMrKyvOBxakOJJOtXr2aOXPm8Mwzz+x3feTIkRx22GEpikoaQwmUiIikFTPLAr4FTAZGEM6xnOHu/9u0+TBCJbvehPMw1XoBH5L4BOpgQs+gQ0ls1bIOhHLmuwmrUYlQPVdKEqgEnG+6w93frGugu+8xsw+BQfXM+RhwaVPP0LUVkWp8SqCaoLy8nPnz57NkyRL27q35GdBRRx3Fddddx5gxYzBTocNMoARKRETSgpl1I5Q/n0JYMVgIXNzY8uM185FDWA3qReyvd+0JW+O2s39i1VxGWOHaSKh0l0i9CGesmtvvaFtkno3uxFq1aVFm9jXC9rwraFwJ8grgAWBB1Ba9hthVz+dLgfHunuitl63RuWVlZXn9+/fXKl0Dbdy4kYULF3Lfffexe/fufdcPO+wwJk+ezCWXXEJ2dnYKI5TGUgIlIiIpZWaDCdX0LgX+TOjd9Fyc7VgNmI+DCInGwdS/AtQbWE8oRpFIPYE1JD6B6krYxrcXaOx3XE6o5Lfena0JjqtBzGw4IXH6Do2L/12gGLjP3ZuyWlZXAvVr4HtKnhqsU25u7kjCWTGpw+bNm7n//vtZtGgRW7fW/F/ukEMO4corr+QHP/gB7dsnajFZkkkJlIiIJF0L9G6qXvXpDRzUiFs7ApUkdlschOSgE7CFuhvwNkV3wkpMQw/z74mM/8yd3fUNTrSoP+vrgFMbeXt955saKt7vexHwI3dXGbRGiFTjUwIVx/bt21m8eDELFixgy5Yt+64fdNBBfO9732Py5MkcdFBj/pmSdKMESkREksbMDgUmUtO76V4gv6mH9s1oR2h424umJ0C9CEUf+jbx/rrm/ZiWSaBWR+ava4VtO+H39bk7SU8Qos43XUfj/ts2+HxTI8T6M5gPTGlmYtYmRc5BXQPJ3/6ZziorK1m6dCnz5s3js89quhl06NCByy+/nKuvvpquXbumMEJJFCVQIiLS4qK2bp0PPEHo3dTo8uM189GRsE2uO81vydEN+JSmbYurSy4hwdlB4sqkE5mzurHuwTE+30zYprclxmctzswGEL65Ttb5poaoXRFxrrvfkOBntCWHl5eXH9+3b1811SX0cXrqqaeYPXs2ZWVl+67n5ORQUFDA1KlT6dWrV+oClIRTAiUiIi3CzDoDlwBXE76Rvhe4yt03Nm0+jLDK1IvE9y86BPg8MnciHUoo1tA/wfP2At6jJoHaS4h/vXu9BRNaRArPN9UXV3fCKmW1W939pkQ/p63Jzs7OB9p8AlVaWsrNN998QC+n0aNHM336dPr375+64KTFKIESEZGEaoHeTdnUbNMDaNI5qXp0J/QLSnQC1YkQ7x4S+zW3HaGv0UZCL6uN7jTpv29zpMn5pvpEFwiZ6e63teCz2ozIOahZqY4jVUpLS5k9ezavvbb/QvqIESP4yU9+wjHHHJOiyBJr5cqVvPHGG/zzP/8zPXv2THU4aUMJlIiINFuiezeFOckjJDTd2X9Fw2l4Y9SGyiKck9lEKEaRSC3RWPdLYIc7GxI4Z4Ol2fmm+rwG3AO84e4PJOmZrZ6ZnVpRUdG7R48e61MdSzK9+uqrzJ49m+XLl+93fciQIcyYMYNvfrOxfaDT02uvvcacOXN4/vnnAfjTn/7EkiVLUhxV+lACJSIiTVard9Mu4Jc0o3dTmJPOhK1v8Rrc9iZsizuiqc+IoxfwAYlPoL5CKPrQm+ad16oCvgA+dWdHIgJrrKjzTRNoXO+sljzfVCd33034+ymJlVVZWXk+baip7q5duxg9evR+10466SSmT5/O8OHDUxRVYr333nvccccdPPnkk0QvDEcXxRAlUCIi0gRmdjKhml6iejdlE84h9ab+laXOQDmJ3xaXQzhjtY3GFT+ojxHOKm1k/7M4DbWbmjLkKelVlIDzTfe6e0qSPmk5kWp8bSaBiv7n7eijj6aoqIjzzjsPs/razaW/Tz75hLvvvpvf/OY37Nmjlmj1afQXHjNrH/lpjoiItCFxejcd6+4fN31O2lNzvqkxX5N6EpKKQ5v67Dh6ExrVfi3B8/YA3qFxCdQ2wkrbRvfkl4vOkPNNklrnlpWV5fXv379JbQgyRYcOHfY1wu3Xrx/XXXcd3/nOd8jOTmTRztSoqKjgnnvu4eGHH6aysnLf9cMOO4xLL72UO+64I4XRpa86v1iZWRfgu8AFwBDCF6wOZrabUPL1JaAEWObudVb9MbPzgMvriWc34QvGJsIXjdeAVe4etxSrmR1J+EcaYLe7j6/nGbXvvxo4I/L2t+7+SGPuFxFp7SK9m/6dsHVrPc3s3RTmpBMhaTqEunsZxXMwNdviEvnj3w6EinYt0Vi3M+HsUl2NYJywUrXenYRXpGuIZpxv2gU8SigR/lYLhCbpp1Nubu6ZwB9SHUhLuvPOO1m2bBnf+ta3GD9+PDk5OakOqdm2bdvGr371K+bPn88//vGPfdcPPvhgrrrqKiZMmMCGDRuUQMURM4Eys2zgKuAmYv+0rD1h7/kRwDjgDjO71t3rOl02ALioCTHuMrNfA9fHKX3bLWrepmwPGBJ1/4dNuF9EpFWq1bvpd8BYd1/Z9Pkwwnmg3sBBzQ0vMtcXhCQskXoRfojXrwXmLSN2AlVJKEP+mTsp2eXRjPNNGwjbuOa7+yctEZukL3fPp5UnUBdeeCEXXnhhqsNIiB07dvBf//VfzJ8/n88//3zf9U6dOnHZZZcxadIkOnfunMIIM8MBCZSZ5QH/RdjnHO1TYA1hy0Rn4Bhqvrj0Bn5tZmcAhe6eyI7nucD3gaFmNszdNyVwbhERiWJmBxHONUX3bvqRu39e5411zokRVnaOJpwzSpSehK9LiU6guhK28SW6sW77yHzbqUlQthG+rn7uTiK/djZYJFG+ARhN41bz1gC/QOeb2rTIOahrIPnbTKXhKisrWbp0KfPmzduvIER1s9+ioiK6d++ewggzy34JVKQM7X8D3466/CxhJWpl7X3MkUPENwP5kUtXEr4wTK3nuS8DP6ojpq8ARxG2jJwSuT4IuJtQ7UlERBIo0b2bwpx0IuxiOAj4O4n/BiubkORtIZQgT6TuhMQm0Q17exO2QXYjbNPbmuD5GyRyvuliwtfrExp5u843SbTDy8vLj+/bt2+bb6qbjqqqqnjqqaeYPXs2ZWVl+65XJ07XXnstvXsn+p+51q/2CtQ09k+e6mw45+6vABea2Y3ALZHLPzazJ9x9ebz7gC3uvqqe2H5vZsWE1bCLI9fGm9lP3f2Deu4VEZF6tETvpjAv3QiJQnRS05Ww1asxZ2oaohfwMS2TQK2OzJ+oM1Z7CGegNrrT5BW95jCzHoTzyNcAhzXiVp1vkriys7PzASVQaaa0tJRbbrmFv//97/uumRljxoxh2rRpHHnkkSmMLrPtS6DMrB9hNanaPQ3t1u3ut5rZaYR98kb4iVZdCVSDuHtVpMjDhYTtDlmEikA/a+7cIiJtVVTvpsmEYgm/BC5x9yavhkTKkPcgJE6xii/0Bt4jNJNtTi+k2nIJX3d2ELYJJooRkr5NhIIVzbGTkDxuSOE2vaMI2zJ1vkkSzt3HALNSHYcEL7zwAnPmzGHVqv3XKkaNGsW0adMYNGhQiiJrPaJXoK6hZm96GTC9kXP9nJBAAXzbzNq5e7MLybv7RjNbDpwbuXRsc+cUEWmLYvRu+iHN6N0U5qQDITk6hLoToy6ExOpzwtmlRKpurNs/wfP2IiR9TU2gthC26W1OXEiNo/NNkgxmdmpFRUXvHj16rE91LG3Za6+9xpw5c3j++ef3u37aaacxffp0TjnllDh3HmjTpk0sXLgw0SG2Gu0ALHQAiz5b1JR/MF8kHDaudjDhJ1eJEP1Tr8b85ExEpE1rid5NYV66EBKXbo24rbrHUqITqINomca67QgrXFtpeNXAvYQy5J+5N6kybLNFnW+6jvBn3hg63yRNkVVZWXk+baipbjp59913mTt3Lk8//fR+zX5POOEEpk2bxsiRIxs819atW7n33ntZtGjRfuXNv/rVryYy5IxX/YXmaPb/gvZoYyeKVMebmIigYog+3ZaSfeMiIpmkhXo3ZUWtLsUAACAASURBVBNWmnoDeU2Y4hBCorOJUCwokXoSfmjXJ8HzHkqIeUA943YSVsE+d6fJhTeaQ+ebJJXMbAxKoJKqvLycefPm8dhjj7F3b80/OwMGDOD6669nzJgxhDWS+u3atYuHHnqI+fPns3FjTdegTp068YMf/IDCwsKEx5/JqhOooVHXNgJpU6TBzLoTDjdXez1VsYiIpDszG0w42/QvhN5NF7n7i82bk1xCgtKD5q3wWGSe9SQ+gfoKNY11E3nGKo9QPXAXYTWqtq2E388m99SUcdb5JkkT55aV/X/2zjw8yvLq/58TdgPKnrAJFkSwUixgEcpoW6GVQnzb0rIotSrSIGhYQjABrLgkhH1r1KggKlZw6e/VoLUFX7UDggsUXIooIAgIYUdZhGDO7497JjOTzCTPJJPJdn+uy8vJPfdzz5lMmOc5z33O97u7focOHUp9k8bijGPHjvHoo4/y5JNPcu7cuYLx1q1bM2HCBIYPH07t2s6+qr0qfRkZGezZs6dg3KvSN3nyZFq2jHTRQNXH+9v1v2P3eWXZtheRBsAyjEwtmBPY6xUXkcVisVQ+/LybxmFKzR4HJpXFu8m3Nh2JrM9SS0wZ32l83+2RQDCl48cwCnqRxGuse6nnZ8XcbDyoypkIv5ZjbH+TpZLRsF69etdTzU11K5LTp0+zfPlyFi9eHFBe16RJE8aOHcudd95JvXrB7vMURVVZu3YtmZmZbNu2rWA8JiaGQYMGMXXqVNq3bx/x91Bd8CZQ/ncCT0bhdRuISKhiyosxJ6vewG2Av8biPFU9UM6xWSwWS5VARDphdh283k0PA/+vLAI+HtNbb5neboxKXySpjUlwDgIdI7x2C2A7kU+gLgb2Y5T+jgCHVSmzSFJpsP1NlsqMqiZgE6iIc/bsWZ577jkWL17MkSO++2KxsbHcdttt3HPPPVx8sXMnB7fbTXp6Oh99FKg873K5mDFjhlXpc4A3gfKXfj0XbGKE+SmwM8xjVmEMfS0Wi6XGUo7eTXUwu0Nx+M4NrYA9mGQqUl5IeNb7GGhHcMnz0lILswN3EiNBHilOYW7YfhzBNcMiAv1Ns1T105ImWyxlQUQSMH+jNkGPAHl5eaxatYp58+aRm5tbMO4tr0tJSaFFixaO19u0aROZmZmsX78+YNzlcjF16lS6d+8esdirO96TpL/EaqOKCKQYdmK8BZbbO2YWi6WmIiKXYHblI+bdZNYlFpM0NaNoktQEY1J7jMiW8dXHqPflYpKoSOLdOStrAqUYsYuDqpTpd1wWytjf9Cjw10iUclosDrl037593dq2bWtNdcuAty9p5syZ7N69u2DcmzhNmjSJ+Pj40AsUYvv27cyfP5/Vq1cHqPT16NGD1NRU+vXrF8nwawTeBOqY35jzVLb05AL/DvHcBUxC9xnwPvBeCYlTnt/j0jQ31/F7XCEGhxaLxRIKP++mEcA7RMa7ydsvFE/JfUjxwAEim0B51/0c04NbK4Lr1vWsd4bS2V7kYcr0clUjXr7omDL0N30EZAHP2v4mS0VQq1atwZi/Q0spcLvdPPTQQ3zyiU8QU0QYPHgwqampXHbZZcUcHci+fftYvHgxzz//fIBKX+fOnUlOTg5Lpc8SiDfh2O431kVEGpTzF+/Hqjo0Qmv53xmsIyJ1VTWck56/t4c92VgslgonhHfTVRHwbqqD6Q+Kw3npXAtM/883mF6gSNEIsxN1xBNPJPEa6zq/0jAJ1yGMDHmF3EwrQ3+TAm8Ci7H9TZYKxtMHlVHRcVQ1PvjgA2bOnMnGjRsDxl0uF9OnT6dbN+dfCQcPHiQrK4tnn32W8+d9l8Rt27YlKSmJESNGUKuWs/tW+fn5HD58mLi4SH9NV228CdS7mN2XGMyOTG+MS71jRKQecJPf0D9V9ZsIxFgS3xb6uTmBxrsl4d9sHA0BDYvFYgmKn3fT3ZgE4HHgprLe0BLhIkx/U3PCl/iOwSRRB4lsAgUm0dmHiS2St0FjMWWOeQRWGRTGW6aXq1rkXBI1bH+TpTohIj85fPhwfIsWLQ5WdCxVgW3btrFw4UJycnICxnv16kVaWhp9+vRxvNaJEyfIyspi6dKlfPedT02+WbNmjBkzhtGjR1O3rrN7Z/n5+bz88svMmzePr776invuuYe0tDTHsVR3aoMxwRWRD4GfeMbvIMwECnO3zGvAq4TnTl8WjmGSKG/v1pU4TKDE7Fte6Te0L7KhWSwWS8kE8W4aWlbvJrMujTFJSlkTnziMB99ZAkWHykpTYC+mbLu8jHWDJSTfY3a+DqpGRTgpKH79TaMJ7/dq+5sslZmYvLy8gVhT3WLZsWMHc+bMKdKX1KVLFyZOnEhCQoLjtc6cOcNTTz3FkiVL+OYb395F48aNGTduHHfccQcNGjj7ilFV/vnPfzJr1iy2b/cVqK1du9YmUH749wwtAZ71PB4mInNUNRzFIf/dp8+itPuEqqqIfIrPDLg/sNbh4b0IbDSuMIUli8VSsxCR+sBQIBnTX/QkcFmEvJviMAp6kVK4q4tJdnKBDhFaE8yuUxymx6o8jHUPYH4P3l237zDJx6GKKtODMvU3bcX4N9n+JkulRkQGYxOooHz99dcsXLiQlStXcuGCzw2hY8eOJCUlMWTIEGJinBUKeFX65s6dy6FDhwrGL7roIm6//faw5c3XrVtHZmYmmzdvLvKcrQwOxD+BWgXcD3TCnCyfFZGfqeqJoEf6ISJtgSS/oeciGmXJbMSXQP1JRGap6nEHx030e7wf+CLikVksFosf5eHdZNalPr5eIiWy8uBgdrK2AW0pnWBPKLzGuqcI7EmNBM0wO031MbtNJZ7PygtPmfswIAW4KoxDbX+TpSryy927d9fv0KHDdyVPrRkcO3aMRx99lCeffJJz53wb361atWLixIkMHz6c2rWdfbV6VfoyMjLYs2dPwbhXpS85OTmsnqX//Oc/ZGZm4na7A8avuuqqADELi4+CT0pV80TkZozRXh2gO/B/IjJcVT8PtYCIdAZewbeTcwBTWhBNlmJqx2thTvJ/F5Fhqnoo2GSPj8p0jKqVlyfsiclisZQHIbybro9E34oIF2O+97xl04pJdOKIfF9RQ8wOTusIrlsLn7Fupwiu+z2Qr8reCK4ZNiLSErgdc5MxnN+b7W+yVGUa1qtX73qsqS6nT59m+fLlLF68mG+/9bVaNmnShLFjx3LnnXdSr149R2upKmvXriUzM5Nt27YVjMfExDBo0CDS0tLo0KGD49i++OIL5s6dW6SMsGvXrkyYMIGrr76a3r17O16vJhGQ6qrqByKSiGlcrg38GPhYRJ4D/hcjOXsIU8rRFfgNcDPm7h6YL/zbVNVfFr3cUdVPRGQupiQC4GfAThF5HiP7ux/TUNwMU7Z3C9DRb4kvgLlRC9hisdQIytG7qRbm+yyOor0zgkmmjmO+qyNJHMZjKZ7wxSiKw2usew5wdiURmnOY89RhVcq0q1cWPDcXxxF+f1Mu8Bi2v8lSxfGo8dXYBOrs2bM899xzLF68mCNHfP+UY2Njue2228Iur3O73aSnp/PRR4EK8S6XixkzZtC1a1fHa+3fv59FixYVkTfv1KkTKSkpBfLme/dW6P2nSk2RvUJVfUpEDgMrMLtKdTF3z24vYa2jwB9V9V8Rj9IZ0zClIN44G2JOXKNLOG4n8GtVPV2OsVkslmqKiLQGZqvqSL+xiHs3mXWph0liWlC8d1JLzI2hSCdQTTBiO8cIVDAtK/Uw55tc4NJSrnEKs4t1XJUKqyaIQH/TM6pqy54sVR4RScCIpNQovH1J8+bNIzc3t2DcW16XkpJCixbOLVc3bdrErFmzWLduXcC4y+Vi6tSpdO/e3fFaocoIW7duzYQJE8IqI6zpBP0tqepqT53+dIwiX6Ng8zx8AzwNPKSqhyMfojNU9XsRGQX8HzCDwB2mYJzElP49qKpWvtxisYSN53vyRSC3vLybzOvQCJM4NcHZRXltzK5HefQVxWESlUgmUGDEHrZjVPOcGusq5ubdQVXORDgex9j+JoslKJfm5uZ2i4uLqxECXd6+pMzMTL788suC8Tp16vA///M/pKSk0K5dO8frbd++nfnz5xcpr+vRowepqan069fP8VqnTp3i6aefLlJG2LRpU+66666wyggthpBppqd0YIKITAH6AddgTpwXA6cxJRLvA+863L15BfjM87hcSvw8J58VnpLDnp7/OmFiro3pzzoM/BdYZ1WMLBZLaRGRqzGCOVdidk52ElnvJsGU6cUDF5ViCa/HUiT7isAkTvuIvLFuQ0zSdxgTe3Gcx6emV5FlemXtb8pU1f+WR2wWS2UgPz8/gRqgcOx2u3nooYcCBBdEhMGDB5Oamspllzn39N63bx+LFy8uUl7XuXNnkpOTC8rrnOAtI1y0aBFHjx4tGPeWESYlJdGoUXF7JJZQlLhPp6rnMbs6/1eWF1LVvRCdZl5PIvWh5z+LxWKJKCJyPfAMvnKzlsDjqjqm7GtTx7NeHGVTu6uP2eGIRF+RPzGY+MrLWHcvoQUwTmOS1KMVXKZn+5ssFgd4+qAyKjqO8uLDDz8kIyODjRs3Boy7XC6mT59Ot27dHK915MgRsrOzeeKJJzh//nzBeNu2bUlKSmLEiBHUquVsc76kMsIpU6bQvHmkiwhqFrbQ0WKxWMJARG7CeOb5Jw8C/F5EPlfV+aVbl/qY8rWmRE49z1tu1z5C6/mvWx7Guk0wCZS/AIZ6fj6oSpnEN8qK7W+yWMJDRH5y+PDh+BYtWhys6FgiybZt21i4cCE5OTkB4z179mTq1Kn06dPH8VonTpwgKyuLpUuX8t13vq+HZs2aMWbMGEaPHk3dus5cKfLz8/n73//OvHnzisibjxgxgokTJ4Ylb+6/hiUQm0BZLBZLeHTCmN7uA05gLu73Y3ZHwtpV8JTpNcWIQuzFlOxFkos9sV0gst/3dTBxHwSc16aUjL+x7sWYcr5cVc4Xe1Q5Uob+pnxM5Ybtb7LUZGLy8vIGUk1MdXfs2MGcOXOK9CV16dKFiRMnkpCQ4HitM2fO8NRTT7FkyRK++eabgvHGjRszatQoEhMTadjQeQvrP//5T2bNmsVnn31WMBYTE8NvfvMbJk+eHJa8+a5du5gzZ05AgtigQSTvlVV9bAJlsVgsYVDaHSZ/RKiNSZri8BneXowRt7kk1HGlpCUmEWkV4XXjMf2k7YjsuSRWla9E+E8Fl+nZ/iaLJQKIyGCqeAL19ddfs3DhQlauXMmFC762y44dO5KUlMSQIUOIiXHm7OAtr5s7dy6HDvnsSi+66CJuv/32sOXN161bx6xZs9i0aVPA+IABA0hNTQ1L3vzAgQPMnz+fVatWBbzPDh068Je//MXxOjUBm0BZLBZLlBDhIkxC05yiPkpej6VIJ1BNMca68UTWWPcijPBDLqb0sKycwJTpfQNQUclTBPqblqjq0ZImWyw1iF/u3r27focOHapc+Woo2e9WrVoxceLEsGS/vSp9GRkZRcrrhg0bRnJycljldVu2bGHBggWsWbMmYLxXr16kpaWFVUZ4/PhxHnnkkSJlhPHx8YwdO5Zbb73VcRlhTcEmUBaLxVKOeMr0GuNTMQ1FXYx89xlKp7oXMgRMb9ExIl8iGA98idndKo2x7veYsseDqpwraXJ5Uob+pi0Yg2Tb32SxBKdhvXr1rqcKmeqePn2a5cuXF5H9btKkCWPHjmXUqFHUr1/f0Vqqytq1a8nMzGTbtm0F4zExMQwaNIi0tLSwyutClRF27dqVCRMmRKyMcNy4cWG9z5qGTaAsFoulHBChFj4ZcqdnoHjMTkYk+4rAlAvuIPIJVGPMeeSo5zWc8h2mrPCQKt+XNLm88OtvmgL8MIxDbX+TxRIGnjK+Sp9AecvrZs+ezZEjvpZWr+x3uOV1brebjIwMtm7dGjDucrmYMWNGWOV1ocoIO3XqREpKSljy5t73OWfOHA4f9lm4lraMsCZiEyiLxWKJIB41vRaYUj2nhrBeYjE9NHkYoYZI4TXW/ZbijdFLg1fpz0kCdRKz21Sh5uWe/qaxmFK9cLR8vf1NM1V1W0mTLRaLQVVvAu6p6DhCUZLsd0pKCi1aOL9HtHnzZjIzM1m3bl3AuMvlIi0tjauvvtrxWqHKCFu3bs2ECRNKVUaYnp7OV1/5PN6973Py5Mm0bNnScWw1GZtAWSwWSwQQoREmmWhC2XqN4jC7UG0jEZcfXo+lSCdQLTBKf6EEMPIx5YMHVKlQ83IR+REmafojtr/JYokml+bm5naLi4urVKa63oQiMzOTL7/8smC8du3a/OY3vyElJYV27do5Xu/zzz9n3rx5RcrrevToQWpqKv369XO8VqgywqZNm3LXXXdx5513Uq+eM4s/VWX16tXMmjWLXbt2FYx7ywinTp1K+/aRdruo3tgEymKxWMqICFdiBBUiQROMjHc+pesrCkU9jKfSdzgvKXSC4DPW9U+gzuOTIb8Q7MBoIKam5QZgPLa/yWKpMPLz8xOASpVApaamsmLFioKfY2JiuOmmm0hJSeGyy5xXUu/evZs5c+bwyiuvkJ+fXzDepUsXUlNT+eUvf+l4rbNnz/Lcc8+xePHioGWESUlJNGrk/D6Y2+0mPT2djz76qGBMROjfv3/YKn0WHzaBslgslrLzLZFLoMD0Kh3BJCaRJB6T6HSI8LotMUnfGUySlgscrWAZ8jL3N6lqTkmTLRaLM1Q1Acio6Dj88RdO6NevHzNmzODKK690fHxubi4LFizg+eefJy8vr2C8ffv2TJ48md/+9rdhy5uHKiOcMmUKzZs7rzjetGkTmZmZrF+/PmDc5XIxdepUunfv7ngtS1FsAmWxWCxlJ5fIyoS3AD4j8glUI8rHWLc2pn9rW0WKQkCZ+pu+A17E9jdZLOWCiPzk0KFDcS1btswteXb0+fOf/+w4eTp+/DhZWVksW7YsQPY7Li6O8ePHc8stt1CnjrM2Vm8Z4cyZM9m9e3fBuDdxmjRpEvHx8Y7fx/bt25k/f36ACS6Urozw5MmTPP7442zdupWxY8fSt29fx8dWd2wCZbFYLGVElfMiEZUJj8FInp/AKN1FkpbAIcIzhw1FHmanLFeV8xFYr9SISHdM4hRuf9NBIBvb32SxlDcx+fn5A4HlFR1IaSlO9nvUqFEkJibSsKHzYgS3282DDz7Ip59+WjAmIgwePJjU1NSwygj37t3LkiVLeP755/n+e999rM6dO5OcnByWSt+ZM2dYunQpjzzyCCdPGs2fY8eO8frrrzuOp7pjEyiLxWKJDAeJrEx4S4zHUqQTqCb4jHVL22N1GtPfdESV/JImlxe2v8liqVp4yviWV3Qc4eItr5s7dy6HDh0qGC+t7PcHH3zAzJkz2bhxY8C4y+Xivvvu46qrrnK81sGDB8nKyuKZZ54JKCNs27YtSUlJjBgxglq1nAnC5uXlsWLFChYtWhTwPoGAnTaLTaAsFoslIqhyWiSiMuF1MVLm5WGs2xSjjBdOiRuYHbGDqnxT4sxyxPY3WSxVll/u3r27focOHarE1bi3vC4jI4M9e/YUjHvL65KTk4mLi3O83rZt21i4cGGR8rpevXqRlpZGnz59HK914sQJsrKyWLp0aUBy06xZM8aMGcPo0aOpW7euo7Xy8/N5+eWXmTdvXoC8eUxMTIAohsWHTaAsFoslchwksjLh8Rhxho4RXBNMj9XnOEugLuBT06voMr044C5sf5PFUlVpWK9eveupAqa6brebGTNmsG2b7yvDK/udlpZGhw4dHK+1Y8cO5syZU0TevEuXLkycOJGEhATHaxVXRjhu3DhGjRpF/frOhVaDlRF63+fIkSMZNmyY47VqEjaBslgslgihynGRiMqEX4RJYM5jdqQiRS2M6MM3mF6rYHyH6ZU6VJFlehDQ33Qr4f1ubX+TxVLJEJHBVOIEyu12k5GRwdatWwPGXS4X999/f1gqfV9//TULFy5k5cqVXLjgc3Po2LEjSUlJDBkyJGyVvkiVEb7//vvMnDmT9957L2Dc5XLxl7/8hR/+8Ifs3bvX8Xo1jaglUCLyLtDF82OCqq4vbn6INQ5gvEwAfqiqByIVn8UgIrUxF01eOqhqhZbrWCxVjFwgko6EXmNd526Oztf9iqIJ1DeYMr0TEX69sChjf9N/gIXA86qaV9Jki8USPVT1JuCeio6jMFu2bOGxxx7j3XffDRi/7rrrSE1N5eqrr3a81rFjx3j00Ud58sknOXfuXMF469atmTBhAsOHD6d2bWeX4N4ywvT09IDyOm8Z4eTJk2nZ0rlg65YtW1iwYAFr1qwJGL/mmmtIS0vj2muvdbxWTSaaO1AXY5qXy/K6jfHdfYykwaQlkCZ+jyMly2yx1BQOA22I3PdrY0wZ3/eYnaNIUQ/z7/ssZnfrKKZM72wEXyNs/Pqb7gWc3+o1/U2vA4tUdW15xGaxWCLCpbm5ud3i4uIqlanu/PnzA37+8Y9/TFpaWliy36dPn2b58uUsXryYb7/9tmC8SZMmjB07ljvvvJN69eoVs4IPVWXt2rVkZmYGLSOcOnUq7ds7v1f3xRdfMHfu3CJlhF27dmXChAlhlRFaKlEJn4hkAJ08Pz6sqh8VN99isVgqI6rki0RMJtyL11jXebeyM5oCO4FzlcC/qbT9TaeAvwELVPWz8ojNYrFElvz8/ASgUiVQXrp06cK9997Lr371K8fHeMvrZs+ezZEjRwrGY2Njue2228Iur3O73aSnp/PRR4GXwi6XixkzZtC1a1fHa+3fv59FixYVkTfv1KkTKSkpYcmbW3xEM4F6AN/OxudBnr8B+Inn8RNRichisVjKh0NAKyK3g9scn7FuJNY8hekPOq6KljS5PIlAf9NiVT1WHrFZLJbywdMHlVHRcTRr5nOeaN++PcnJyfzud78Luy9p3rx55Ob6/IG95XUpKSm0aNHCcTybNm0iMzOT9esDu1xcLhdTp06le/fujteKZBmhpShR+82p6ovRei2LxWKpSDzGukcJXyY8FP7Guk1KmBsyLEyZ3kFVzkQorlIhIjHAL7D9TRZLjURVex86dCiuZcuWuSXPLj+mTJlCixYtiI+PZ8iQIdSpU8fRcd6+pMzMTL788suCcW/iNGnSJOLj4x3HsX37dubPn19E3rxHjx6kpqaGVUZ48uRJHnnkEZYuXcqZM76v+hYtWpCUlMQf//hHx/LmltDY1NNisVjKh4NELoECU763k/ATqDzMjliuKhdKmlye2P4mi8XiISY/P38gFWyqe8kllzBhwoSwjnG73Tz00EN88sknBWMiwuDBg0lNTeWyyy5zvNa+fftYvHhxkfK6zp07k5ycHFZ53ZkzZ1i2bBlZWVmcPHmyYPziiy/mrrvu4s477yQ2NtZxbG+++SaZmZkFP9syv0Bqi8hvMGaNAFtVNVh5HSLSA58Xybuquj/EvH6Y0hWAfaq6wTP+K3xqT2+r6mHP+E2YZuamfstcJyKNPY9fUdWQ3iMiEg/cAlyDubA4DLwHPFeWsg4R+TG+nqxPVfW/InIJMBrog/mdzVPVd4Ic2w+40XN8M4xh5U6MbOe/1b97jwK1qd/hE8bYpKq7QsT1E3wKX25VPRhi3vWYch+APar6fsnv2jkicgXwI7+hkDFbLDURVc6IFCsTHi51MN+VpzES5CVRmcr0vP1Nd2O+E51i+5sslmqKqiZQwQlUOHz44YfMnDmTDRs2BIy7XC6mT59Ot27dHK918OBBsrKyePbZZzl/3neJ27ZtW5KSkhgxYgS1ajnTDMrLy2PFihUsWrQoQN68QYMG3H777dx99900bty4mBUCef/998nIyOD99wMvG2+88UbHa9QEagNJwM89Pz+JSRCC8Si+HqWHgftCzFuOL9FKA7x/afPwOcb/DPAmHkspepd2ut9jbwJSBBEZC8wCGhZ66hbgIREZoar/CBFnSdyBOdkDzBCR1cD/I1BK+FV878Nby/8YEEoDMg34UETuUtUPvYOqqiKSAvT2DC0CQt0SWQpc5Xk8FZgZYt7z+BLZ8UDEEigR6Qa8he9CKAfzu7BYLIEcJHIJFBhj3a8JbayrwHFMmd6pCL5uqRCRqzGJk+1vslgshfnl7t2763fo0OG7ig6kOLZt28bChQuLlNf16tWLtLQ0+vTp43itEydOkJWVxdKlS/nuO9/bbtasGWPGjGH06NGOy+u8ZYQzZ85k9+7dBePeMsLk5GTi4pzrDoUqI+zZsyepqan89Kc/dbxWTaA25uLXm0C5gk3y3D3s5Tc0mCAJlIi0JvDEnlN4TgTJwJyUwRg+7gAuwZfgXAK8KCI/VtUvyvhaHYA3KKYcR0R+jkkivMnc95ikZR9Gjas35vfdC3hHRH5fKLlbjS+Bui7Ea3TAlzyB+RyKJFAicjm+5Mm7dkTw7DytwZc8/T9geHG7hBZLTUWVEyKcBRpEaMkGmO+Wwsa6eRiVvlxVKvTfou1vslgsDmlYr16966mkpro7duxgzpw5RWS/u3TpwsSJE8OS/T5z5gxPPfUUS5Ys4ZtvfNaajRs3Zty4cdxxxx00aOD8NOF2u3nwwQf59NNPC8a88ubhlhHu3buXJUuWFCkjvOKKK5g0aZJV6QuBN4Hyit93FpE4VS3c1DeQQN+l7iLSVlX3FZrnf+H/pap+SslcjjnBrgV6eMZ+B7zteRzKzPFW4BzwIPBXr9mriHTG1Mp3xJS5JANjHMRRHLd5/r8Zs0v3JSaZ2ux5zbbAC/iSp38Dt6lqQWehiLQDnsKoDV4E/E1EevjNyQEe8jz+kYhcoqq+IlbDoEI/9xaR5qp6pNC4fyL8aaRK60TkMszn5L2l8RJws73QsViKJRdzEyZS+BvrnsH0Nx1RJT+CrxE2fv1NqYBzjV3b32Sx1Fg8anyVKoH6+uuvWbhwIStXruTCBV/baMeOHUlKSmLIkCFhr1hZ7QAAIABJREFUq/TNnTs3oLzuoosu4vbbbw9b3vyDDz4gIyOD9957L2Dc5XJx3333cdVVV4U4sigHDhxgwYIFRd5nacoIayK1VXWHiGzDnPAEc/H9UqF5hS/cxTOWXWjc/8Ld0e6Tqp4AEBH/5uZTqnq8hEOPATeq6geF1vtcRKYAL3uGBjqJwwELgBRVDeaVch++3amPgYGqGqBypap7PV8UbswuVGOMtPutnue3isgeTH9TLaAvULj8sPDnUAvz/p4tNO6fyEZkF9CTJL4JtPUMrQT+qKoV2pRusVQBjmD+3URKtOdi4CvglCrfljS5vLH9TRaLpbSo6k3APRUdB4SW/W7VqhUTJ04MS/bbW16XkZHBnj17CsZLW163ZcsWFixYwJo1awLGe/XqxdSpU7n22lCdI0U5fvx4gUqffxlhfHw8Y8eO5dZbb7UqfQ7w/iXk4LtjeB1+CZSI1AV+6fnxv0Bnz3GDKZpA+V+4R6xsLARDCidPfmz0e3ypiFxUOKEJkxwgubD4A4CINARG+g1NDvVaqvqdiEzC7FABDBORiap61PPzaoyJJJjfZUECJSKx+EotP8H0kwnmcyicQPknsmX+HDwXSGsB757wCswOW4Uab1osVYEIGut+j0nGDqpyrqTJ5U0Z+psOAI9j+5ssFgtcmpub2y0uLq7CTHVPnz7N8uXLWbx4Md9+67sn1aRJE8aOHcuoUaOoX9/ZV5yqsnbtWjIzM9m2bVvBuLe8burUqbRv376YFQL54osvmDt3bpEywq5duzJhwoSIlhGG8z4tgQnUFM/jwn1QLnxN0CuBAZ6xX4hIA1U9CyAizfDJ0n6Dn7hCOVFcX1Mu5mLDu/d4CZTJ92RTsOTJQ29MSR4YBcCSSlDWAXsx5Td1gX7AK57ncvAlUIU/hxvwXaQsB0YAPYFfikgdbxmdZ6foB37xbKRsNAP+F7jC77XvrE7Jk0cF8ceYv5mPivmsLZbSkosRgHBW9xHId5gyvUOVoEzPv79pcJiHb8YI5Nj+JovFUkB+fn4Cpnon6rz00kvcf//9HD/uK3pq1KgRiYmJ/PnPf6Zhw8IaZaF56623yMzM5OOPfW9FRPj1r3/NlClTuPzyyx2vtX//fhYtWlSkL6lTp06kpKSE1ZfkLSOcM2cOhw8fLhgvbRmhxeBNoDZg7mw2x/TfNPaW1hFYNvYapnnZhUkafuEZA5MIeC8O/lmRogKq+r2I5OFLoMqziNPfFnqzqhZ7geNR3NuMT+zianwJ1NvAt0Aj4Br/BJWin0MjTALVGPO7f8vznH/i9XoEEp0cAv1aIrFmpUFE+mOUHL39dx+IyFTbi2GJJKrkeYx1nVvSmxtRB1VD9oFGDRGpDwzF9jdZLJYI42lvyKiI1167dm1B8lS/fv0C2e8mTZzb7YWSN7/++utJTU2le/fuIY4sSqgywtatWzNhwoRSlRGmp6fz1VdfFYx7ywgnT55My5Yti1nBUhy1oSDh+AfwR0wS1Bdz0gPfXcYDGIWk84DXWWsQvgQq7P6naoJ/zX9QT6Yg+It0FPhfqeo5EfkXMASzO9UbeNuzQ/Jrz7RdqvqZiLwO3O8ZG4QvgYp0/1Nhs8tHROQdVT0UdHYVQUT6Yv6OC+/0XQOsEZG1wNRiykQtlnDJpeQE6nvgKCZxqnBpX4/P3hhK3980X1W3l0dsFouleqCqvQ8dOhTXsmXLwgJmUWXJkiUMGlS41Tw027ZtIzMzs0hfUmlkv0+dOsXTTz9dpIywadOmBSa49erVc7SWqrJ69WpmzZrFrl0+DbHSlhFaguOfxuZgEigwF+GvexTtvHuOr3lKmz4Rkd0YVanBwFi/Y8BcAJTWe6kq4l8w6nTXzf/CqLBuZQ4mgQLzO30bs0vlFW/w9jR9iLkgi8N8DpM9496E4DzwL4fxlMRTmESqN2aXchGmhLDKISJXAjOA31O8vHJ/oL8nkUpW1Y+iEJ6lGuMx1j2JKSkuzDlMmd5hVSpcmMX2N1ksligSk5+fP5AKNtV1mqDs27ePxYsXFymv69y5M8nJyWGV1509e5Zly5bx17/+lZMnfcLLsbGx3HbbbSQlJdGoUSPH78HtdpOens5HH/kuWUSE/v37k5qaSteu4RQQWIrDP4H6Jz5vEW8y5F/j/rrf49cwvTrtPOaxOzE9JAAbgshqV2f8y2uc/pX7F5sWLs95HV//ljcZGlToeVQ137MLdTtwhcf76Ti+HaO3VTUSCl1LgT9jRCs2AXWA4SLyoqr+PQLrRwWPBPsDGJPlcPpQ+gObRORp4AFV3Vse8VlqDAcJTKBOecaOq1KhvXe2v8lisVQUqppABSdQJXHkyBGys7N54oknOH/ed7+8NLLf3r6kefPmkZvr23jzltdNmTKF5s1DWo8WYdOmTWRmZrJ+/fqAcZfLxbRp0/jRj37keC2LMwoSKFX9RkTewYhE9BSRi/BduJ8jUBzBm0DhmfOB31rlrb5X2fja77HTDsFOfo/3+z+hqodFZCPwU6CPiNTB9zmcxuePBeZzuN3zeBCwG9+uSqQ+h2RPX9fHIjILmO4Zf0RE/l3Zk2WPguB0TBIYUpfzF7/4BefPn2fdunXBnq4NjAJuEZFHgJmV/X1bKieqnBThNHAWU6ZXFnGbiGD7mywWSyXglzt27KjXqVOnClcYLcyJEyfIysoqIvvdrFkzxowZw+jRox3Lfnv7kmbOnMnu3bsLxksrb759+3bmz59PTk5gx0bPnj2599576devn+O1LOFRuBMtB5NAeaXLvTsg/y60m/EWRtXuIsydygaF1qhJ+HcNdhORZn6y5EUQkYsx4g/BjveSg0mgYoEbgZ94xteqqv+Xyxp8u4aDga2F1og06cAfMIp8ccBi4OZyeJ0y45GXHwdMJXDHL4AePXqQlpZWUKvsdrvJyMhg69atwabXByYBfxaRLCDDa+BssThFFScG4+WO7W+yWCyViIaxsbHXE7nWgzJTnOz3qFGjSExMDEulz+128+CDD/Lpp75TgLcvKTU1lcsuu6yYowPZu3cvS5YsiUgZoaV0FE6gVmMuisGUO9XxPH7Nf5LHz+hNIAFzce8tXdulqv8tZSyn/B4X7guqzGwDtmOSirqYC5L0YuaPxvf+9mBKXwqzGp9Qx8P4Ss4Kfw7fiIgbI3HuAtp4nvpEVXeH9S4c4Pnc/4zZBRNghIi8oKr/G+nXKi0e37LbgIeAkPIyl19+OZMnTy7yJeNyufjHP/6B2+1mxowZAT4OfjQE7gVGichczB34Cm/4t1icICI/BiYCw/F9xzvB9jdZLJZyQ0QSqAQJlLe8bu7cuRw65NPLKq3s9wcffMDMmTPZuDHQVcblcnHfffdx1VVXOV7rwIEDPPLIIzzzzDPk5fmqpUtTRhgpLlyo8LbdCiEggVLVL0XkY6Ab4F8wGXDh7jeWgOnV8X76Zdn18D8hX1qGdaKKR5Z8LvCEZ2iaiLhV9d+F54rItRgBAy/zVbXIX56qfioiuzB+Tt7PQQnsQ/PyGiaBqgt08YyV2y6gqv5bRB4HEj1Dj3reb8hdt2jg6d8YgpEkD3kbp02bNowfP77ELxmXy8WaNWuCSoD60RyT6I4TkYeBpdVJ4t1SffD8+xgEJGH6+sLB29/0t2DfVxaLxRIJVPUm4J4KfH1ycnLIyMhgz549BeOlLa/bsmULCxYsKKLS16tXL9LS0ujTp4/jtY4fP84jjzxSpIywefPmJCYmhlVGGCn8E82aSDAx+dWYBMrLdlXdEWTea5iLev89wrJcuPvLYk8SkVxMz8+Xqhp0G6ASsRT4HTAQs7v0LxFZAqzC3LWNx6i+TcCnaPU2kFXMmjmYZm4vW1R1f5B5rwHzgxxbntyLSZ5bY97bYow4Q9TxSLwPxuz6dQs1rzRSoDExMSQkJHDjjTcGNaHzox2QDUwQkfuBl6wZr6Uy4CllvRmz49SlhOn+2P4mi8USbS7Nzc3tFhcXVyGmuvfcc09AqV6tWrX4/e9/T3JyMm3bti3myEB27NjBnDlzWL16Nf6XAl27dmXChAkkJCQ4Xqu4MsJx48YxatQo6tcPRyi17Fy4cIEXX3yR+fPns39/sMtSFHPtW60JlkDlAGl+PwfbfUJV94nIR/iMZE8CRXZdwuDvGNlcwewgvOAZn4Ypk6u0eHahhgErMX5N9TCy4pNDHLIW+EMJuxWFE6hQn8PnIvIFPgGLQ8B7YYQfNqp6UkTuxnxmADd7SvleKe64SOMxwZ0J9Ao1p7RSoP7UqVOHkSNH8tvf/pbly5cX8Wnwoyvm7/Y9jxnv/5XqBS2WMuLX33QPfl5zDvgWeB7b32SxWCqA/Pz8wUCFJFDeBEVEGDhwIPfeey+XX+5UGwz279/PokWLWLlyZUBZW6dOnUhJSQmrLynSZYSRwOsvNXv2bHbu3BlqWh7wYIiNl2pFsATqPWAHvqbi4tTc/o6v3O7VEuRrv8HIbANFfU5U9U0RScSUuLX2eyrf7/EJTHJSeDwY4cwNxll88Z4tabKqfuup370ZkzgFs57+BFgAPO2g1OvfwF5Mvw0U/zm8jK+k7u8e1byycNzvcdCdFFX9fyKyEviVZyhDRP4vQtLpxSIi12ASpxtCzfFuuaekpNCiRUnepc6IjY1l3LhxjBgxIqhTuB+9gTc9HlL3qmqwPjeLJeJEoL9pkaoeL2myxWKxlAee66iZ0Xq92rUDL4Ovu+46UlNTufrqqx2vcezYsaDXBK1bt2bChAkMHz68yOuEwqvSV7h1wHtNM3nyZFq2DNneXW4E85cqhAIvAdNU9YvoRVZxSGWsNBKRphjltEOqWuEyv6VBRFoDHTGJ6DGMwMa+io2qaiMiXYAHKcYE16toM23aNC69tHxb6bx3mwqr4BSixn2pWKJLGfubNmFKcG1/k8VSCRGRifiV6deqVYu9e6u1HWF+rVq1Wrds2TK35KkGEfG2SgCQlJREamqqo2M3btzIhAkTaNOmDZMmTSpQ5HXCqVOnePrpp4tUpZSmZcC7uzNr1ix27dpVMO69ppk6dSrt27d3HFuk2LRpE7NmzQpl8eKlRt4srpQJlMXij4i0Be4D7iD4rilghB9mzJgRdaftL774grlz5xapdy5EHvAUxoz361CTLBan2P4mi6X6UwMTKETk9vj4+OVhzC91AlUazp49y3PPPcfixYs5csRnCVnaloFguzsiQv/+/UlNTY36NQ34/KVKuK55F5iqqu9EMbRKg7M9RYulAhCRZkAKphcsZJfkNddcw7Rp0/jJT34Sakq5cvnll5Odnc3mzZuZOXNmESdwD3UwZr4jReRJ4GFVDapIYbEURwT6m+ap6uflEZvFYrGUFVUdDCyv6DgK4+1LmjdvHrm5vg0yb3ndlClTaN68ueP1Nm3aRGZmZpFrBpfLxdSpU+nePVgnSPmyb98+Fi9eXFJlzSeYPqcXoxhapcMmUJZKh4jEYsw904BLQs27+uqrSUtLw+VyhZoSVXr06MGLL76I2+3m4Ycf5uOPg/bBXoQptbpdRB4B0qPRN2ap+tj+JovFUkP41Y4dO+p16tQpaJNxtPH2Jc2cOZPdu3cXjHsTp0mTJhEfHx96gUJ4d3dycgIFk3v06EFqair9+vWLVOiOOXLkCNnZ2TzxxBOcP38+1LTtQAawIgK99lUem0BZKg1+JrgP4LcdX5jSKNpEE5fLxRtvvMHq1avJzMzkyy+/DDatEUYO/g4RmQcsVNVKcbKwVB5sf5PFYqmBNIyNjb2eSmCq63a7efDBB/n0008LxkSEwYMHk5qaymWXhbSdLMLevXtZsmRJkd2dzp07k5ycXCHXNCdOnCArK6uIv1Qh9gEPAcvsucSHTaAsFY6fCW4mxjw4KK1atWLixIlhKdpUFCIS4CFVeMvfjxaY932XiGRgzXgt2P4mi8VSs/Go8VVYAvXBBx8wc+ZMNm7cGDDucrm47777uOqqqxyvdfDgQbKysnjmmWfIy/OJVbdt25akpCRGjBhBrVq1Iha7E0L5SxXiKDAHcz4JmV3VVCr3Vail2uPxcppLcNl3AJo0acLYsWMrxDCurHg9pIYMGcKyZcv461//ysmTJ4NNbY8x400SkQdqem1xTUVEWmEsCUrT3/QUsEBVd5dDaBaLxRI1VPUmzPdgVNmyZQsLFixgzZo1AeO9evUiLS2NPn36OF4r1O5Os2bNGDNmDKNHj6Zu3boRi90JofylCnEKyAJmqmrQCxaLTaAsFYSI9MV4PVwXak5FGsZFmgYNGjBu3Dj+9Kc/8fTTT7No0SJOnToVbOoPgRdEZAOQVlPVbWoaItIDmED4/U27gceAx21/k8ViqUZcmpub2y0uLi4qpro7duxgzpw5RVTnunbtyoQJE0hISHC8VqjdncaNGzNu3LgKuRns7ePKyMhgz549oaadx4h3/EVVHcvI11RsAmWJKiJyFfAX4A+h5lS0YVx50rBhQ8aNG8fw4cN57LHHimvY7AO87THjnaKq/4lupJbyxvY3WSyWcFFVdu3axQ9+ELLavdqQn58/GCjXBOrrr79m4cKFrFy5kgsXfF+lHTt2JCkpiSFDhhATE+NorVC7OxV5M1hVWbt2LZmZmWzbti3UtDxgJSZx2h214Ko41gfKEhVEpANGVe9OIOi3kdcwLi0tjQ4dOkQvuArEoWRoPvAyxm9hR/Sis5QHfv1Nk4ArwjjU29+UqapBtfItFkv1QkTGAwv9x2rXrs3QoUNJTk6mVatWFRRZ+SMiG+Lj4/s6mFdqH6gxY8bw6quvFvzcpk0bkpOT+cMf/uC4L+nChQu8+OKLzJs3j6+/9tk81q1bl1tvvZWkpKSw5M0jhdvtJiMjg61bt4aaosBLwDRV/SJ6kVUPnKXVFkspEZE2IrIII3/5Z0L8zblcLv71r3+RnZ1dY5InME2ks2fPZu3atcWVCMRgduz+KyLZnj4ZSxVDRFqJyAxgD6bfzWny9C1mt+kHqppgkyeLpUaxpfDAhQsX+Nvf/kbfvn154IEHOHbsWEXEVe6oau9Dhw7FRev1xowZw/r16xk+fLij5ElVefXVV/n5z39OcnJyQfJUq1Ythg0bxvr163nwwQejnjxt2rSJoUOHMmzYsOKSp7VAL1UdapOn0mETKEu5ICJNRSQT+AJTohS0U7JXr178/e9/Z9WqVVx55ZVRjbEyccUVV5CdnU1OTk5xTapeM94vRCRTRBpHL0JLaRGRHiLyDCZxuh/n4hC7gVSgvaqOV9WQhesWi6V64umDvR0o0pNy7tw5srOzufbaa5k3b16ovtqqTEx+fv7AaL1Y3759HYs6uN1uBg4cyJgxY9i5c2fBuPdm8IIFC2jTpk15hRqUzz//nMTERG666SbWrVsXatoG4GeqOkBVN0cxvGqHTaAsEUVELhKRe4GdGJ+jBsHmdenShezsbF599VWuvfbaqMZYmenZsycvv/wyq1at4oc//GGoabGY3+1OEblXRIL+ji0Vh4jEiEiCiKzB9Cv9EefiEJuAPwGXq+osKw5hsdRsVHU50BFzQ+VE4edPnTrFvHnz6N27N1lZWcX5+VQ5VHVwRcfgz6ZNm/jDH/7AsGHD+OijjwrGXS4X//jHP1i1ahVdu3aNakz79u1jypQp3HDDDeTk5BCiNecTYKiq9rXiVJHBJlCWiCAidUTkz8AOjK9R0N2Rdu3aOSlZq/G4XC7++c9/llTS2BTzu/5CRP4sIlYUpoIRkYaefwf/BV7FuThEPrAa6KeqvVT1GSsOYbFYvKjqaVWdhUmkHsCU9gZw/Phx0tPT+elPf8qKFSsCRBGqML/asWNHvYoOYvv27SQmJpKQkMD69b4q6h49evDCCy+watUquncP6cZSLhw9epT09HT69evHihUrQvVRb8fckOtu7VEii02gLGVCDH/AXDBmA0H7c5o1a8a0adNwu92MHDnSsapNTSYmJoaEhATeeecdZs+eTVxcyFLwNpjf/ScicqtH3c0SRWx/k8ViiQaqekxVZ2ASqVnAucJzDhw4wJQpUwoSqWIEiqoCDWNjY6+vqBffu3cvU6ZMoX///uTk5BSMd+7cuaDsvl+/flGN6cSJE6Snp3PNNdeQlZUVSsl3H8ZT8CrPDbn8qAZZA7AXWpZS4zHB3QS8AHQKNueSSy5h2rRpvP/++4wbNy7qpnHVAa8Z7/r165k2bVpxMqhXAE8DWz1JraWc8etv+orw+pu+xJTjXGr7mywWS7io6mFVTcV87z8OFMmSQl38VzVEJOrlKgcPHuS+++7D5XIFJKFe4ac333yThIQERCRqMZ05c4asrCyuvfba4ko1j2LOLZ1V9XFbyVB+2ATKEjYicq2IvAWsAX4cbI7XOHbjxo2MGzeOBg1sm05ZueiiiwJ+p8UY8V2FMeNdJyKuKIZYIwjR3+S0fNLb39TZ099UpJ/BYrFYnKKqe1Q1EfgR8CJGmjoA//Kzd999N+oxlhVVvSlar+Xd3enbty9Lly4t2N3xVtGsW7eOkSNHOpY4jwR5eXmsWLGCvn37kp6eHmDO68cpzI5kR8+55WzUAqyhWB8oi2NE5EpgBg5McJOTk4srObNEgAMHDrBgwYIiBoBBWAtMVtWQeqaWkhGRRsAISu/fNFNVq97Vi8ViqTKISG8gHbgh1ByXy8X06dPp1q1b9AIrIzExMd3i4uI+CfZcpHygBgwYwMaNG/n2W197WePGjbn77ru54447irtpWS7k5+fz2muvkZGRwZ49IYsUzgPLMSa4RZQaLeWH3YGylIiIXCoi2cBHhEieRISEhATefvvtkvp1LBGiVatWzJ49m7feequkUoL+wGYReUFEqr99fYSJYH+TTZ4sFku5oqrvqWp/YADwYbA5brebG2+8kcTERHbt2hXdAEtJfn5+uZfxrVmzpiB5io2NZcKECWzcuJGxY8dGPXlyu90MGDCAxMTEUMnTBeBZ4ApVTbTJU/SxCZQlJCLS3OPl9DnGfyjonrXL5eKNN94gOzubyy67LKoxWqBjx45kZ2c7NePd5jHjjQ810WIQkZ6F+puaODzU9jdZLJYKRVXXquo1mETqoyDPk5OTw3XXXUdiYiJfffVV9IMMg2j1QdWtW5dRo0axYcMGpkyZUlzPcbng9ZcaNmwY27ZtCzZFMaWaP1TVW1V1d1QDtBRgEyhLETxSzP5eTkElRHv27MmLL77IqlWrqlQpQHWla9euZGdn88orr9C7d+9Q0+pikuEdHjPeS6IXYeWnUH/Th9j+JovFUoVR1bWYXuWhQJHtpvz8fHJycnC5XEyZMoXDhw9HPUYnqGrvQ4cORby0xXvtUqtWLYYNG8a6det46KGHaN68eaRfqlg2b97M0KFDGTZsGFu3hqy2Xwv0UtWhqvp5FMOzBMH2QFkKEJG6wG3AQ0DLUPM6d+5McnIygwcPjqoCjSU83G43M2bMCHUXy8tRYA6wSFWrj/timPj1NyUDncM41PY3WSyWKoHfOX4GISxHYmNjue2227jnnnuivvtSEiJyW3x8/NNBxkvdA6WqbN68mRYtWnDppZdGLliHfP7558ybN4/Vq1eHMsAF2ABMVdW3oxeZpSRsAmXBY8B6M8acr0OoeW3atGH8+PGMGDEiqgo0ltLjsAkVYC/wMLCsJsmeikhrzI5cEs5L9AC+wTTuzrclehaLpSohIrHA3ZhS46Cm902aNGHs2LGMGjUq6v0/xfByq1atfl94sCwJVEWxb98+Fi9ezPPPP1+cT9cnwIPWALdyYhOoGoyY7aPfYy6cQ951b9q0KXfddRejR4+2Pk5VlLy8PFatWsWcOXNKKtH4DPgL8JJW4y8HEekJjMfsOjkt0QPT35QNZNsSPYvFUpURkabAFOAe4KJgc1q1asXEiRMZPnw4tWuH81VZLpw6ffp0806dOgWYB1elBOro0aM89thjPPHEE6EMcAF2AzOBJ60BbuXFJlA1FI8JbibQM9Qc71Z+UlISjRo1il5wlnLj9OnTLF++nCVLloTykvDyPqZk4M0ohVbuiEgMMAiz29Q/zMM3YRT1/laTdugsFkv1R0RaYMqXJxCi57ldu3bcc8893HzzzcTEVGj7/K9atWr1L/+BqpBAnThxgqysLJYtW8bZsyEtmvZhWihqVCVIVcWKSNQwROQnIvImxgQ3aPJUp04dRo4cyYYNG5g2bZpNnqoRsbGxjBs3jg0bNjBu3Djq1Qt6rgT4CbBWRNaISK8ohhhxRKSRiIzHiKK8ivPkKR9YDfRV1V6q+ow9qVksluqGqh5W1VSMRcPjQJGasr179zJlyhT69+9PTk5O1GP0IiKDK+zFS8GZM2fIysri2muvJSsrK1TydBRTTtlZVR+355mqgd2BqiGISFdMj9PvgaDKDzExMQwaNIjp06fTrl27qMZnqRi+/vprFi5cWFIdtgIvAdOrkvKPiHQAxmB6nErT3zRPVSu3tq/FYrFEGBG5EiM0EfJ6oWfPnqSlpdG3b99ohgawp1WrVh38ByrjDpS3bH7u3LkcOnQo1LRTQBZGhOhk9KKzRAKbQFVzRKQdMB0YRQgfJxFh8ODB3HvvvfzgB9ZntSbyxRdfMHfu3JKUgPKBl4Epldl7ogz9Tbswd19tf5PFYqnxiEhvIAP4Rag5LpeL6dOnR9XKJCYmpltcXNwn3p8rUwLlULjpPOYm3V+sAW7VxZbwVVNEpJlTE9zXX3+d7OxsmzzVYC6//HKys7NZvXo1/fr1CzXNa8a73WPGG1LqPtr4+Teto/T+TVdY/yaLxWIxqOp7qnoDxoz3w2Bz3G43N954I4mJiezaVcRmqlzIz8+PiqluuLjdbgYMGEBiYmKo5OkC8CzQRVUTbfJUtbEJVDUjiAluUP3RH//4x7zwwgusWrWK7t27RzVGS+XF/+/iRz/6UahpXjPenR4z3gozC/Hrb9qF6W/6qcNDbX+TxWKxOEBV16rqNZhE6qMgz5OtZCx6AAAgAElEQVSTk8PPfvYzkpKS+Oqr8q18FpFKlUC53W4GDhzIsGHDQvkuKvAi8ENVvVVVv4xuhJbywJbwVRNEpD5wFzAVCGmh3blzZ+69915uvPFGa4JrKRbvSXH27Nkl3Vk8j1ENuitKodn+JovFYqkAPGqmQzAqvkHLVurUqcOwYcNISUmhRYsW5RFGfq1atVq3bNky1xNThZTwbd68mczMTNatW1fctLXAvaq6udwDskQVuwNVxRGRWiJyO7AdmE+I5KlNmzYsWLCAN998k4EDB9rkyVIiIsJNN93E22+/zezZs4mPjw81tS4wRkQmRiGmniLyDPAFZofVafK0C6NydKmqjrfJk8VisYSPquZ7jF27AonAwcJz8vLyWLFiBX379iU9Pb0ky4zSEJOfn39jpBd1yueff05iYiIJCQnFJU8bgJ+r6gCbPFVPbAJVRRHD74CPgWXApcHmNWvWjAceeID169czbNgwatUK2gplsYSkdu3ajBw5kuzsbC6+uNhqvV+Wx+tHqL+ps6e/ySodWSwWSxlR1fOq+jjQCXNzqkjv6OnTp8nKyqJPnz5kZWXx3XffRfL1o17Gt2/fPqZMmcINN9xATk5OKMGlT4ChqtpXVd+OboSWaGITqCqIiPwC2IhRROsabE7Dhg1JTk5mw4YNjB49mrp160Y1Rkv14csvv2TMmDH85je/KbiTePnllwebGlGJ8zL0N32P6W/q49ffFFKj3WKxWCylQ1VPq+osoCMwCyhidHT8+HHS09P56U9/yooVK7hwISLtpr/asWNHSCPDSHL06FHS09Pp168fK1asCGX5sRuzI9fds0NnqeaEI/FrqWA8hqYZmEbOoNStW5c//elPJCUl0axZs+gFZ6l25ObmMn/+fFauXEleXh4AV1xxBZMmTaJhw4bccssthQ85GonXFZHLMCeiRKBxGIfa/iaLxWKpAFT1GJAqIvOAZGACEJDgHDhwgClTppCdnU1SUhJDhgwhJqbU9/EbxsbGXg/8q0yBF8OJEyfIyspi2bJloQxwAfYBD2H6gK0QUQ3C7kBVAUTkChF5AXifEMlTTEwMCQkJvPPOOzzwwAM2ebKUmpMnT5Kenk7fvn159tlnycvLo23btsyePZu1a9eSkFA+lRN+/U2fY/qbnCZPuzAn69a2v8lisVgqDlU9rKqpwBUYX70i2zU7d+5k/Pjx9O/fn5ycnFK/logMLn2koTlz5gxZWVlce+21ZGVlhUqejmJKFzur6uM2eap52B2oSoyItAXuA+6gmM/K5XJx//33c+WVV0YtNkv14+zZsyxbtoy//vWvnDxpWoWaNWvGmDFjyq0M1KPoNAhzIgrX0n49sAj4uy3Rs1gslsqDqu4BEkVkETAD+D0QoF712WefkZiYyOOPP87UqVPp06dPuK9xE5AUoZDJy8tj1apVzJs3j9zckBZNp4AsYKbtqa3Z2ASqEiIiTYEpmC+GBqHmXXPNNUydOpXevXtHLTZL9SPYSeOSSy7hzjvvJDExkYYNG0b8NUWkEebGwESgfTjhAv8LzFfVjREPzGKxWCwRQ1X/CwwVkWuBdOAXheds2rSJIUOG4HK5mD59Ot26dXO6fPvc3Nyryhpjfn4+r732GjNnzmT37t2hpp3HlIj/xRrgWsAmUJUKEYkF7sbcjQ9ZvtSlSxcmTpxYbqVUlpqBqrJ69WoyMzP58kvj69egQQPuuOMO7r77bi655JJyeV0RGQfMBBqFcdhxIBv4q6ruL5fALBaLxVIueG543SAi/THf/70Kz3G73dx4440MHjyY1NRULrvsshLXzc/PL9OFkNvtZsaMGaEMcMGYrr+M8XKyBriWAmwCVQkQkTrA7Zht7lah5rVr14577rmHm2++uSyNlxYLbrebhx9+mI8//hjwGR8mJycTFxdX3i9/AOfJ005gCfCkqp4uv5AsFovFUt6o6loReRMYDDwM/KjQ8+Tk5PDGG2/wP//zP6SkpNCuXbvilixVH5Tb7SYjI4OtW7eGDBV4CZiuqhFVmLVUD2wCVYH4OXrPxEiABiU+Pp5JkyYxfPhwate2H5ml9GzatInMzEzWr18PGLPccO72RYj/xSRGIf/msf1NFovFUi1RY6CUIyKvYa6BMoEf+M/Jy8vjpZde4pVXXmHYsGGkpKTQokWLYMtdGxcXd6SYnqUANm/eTGZmZnEGuABrMTtO1gDXEhK7jVFBeLaxNwEvEOJCsnHjxkybNo13332XkSNH2uTJUmq8zuk33XRTQfLkcrl44403yM7OjmbyhKrmA4uDPJUHvIjxb+qnqi/a5MlisViqJ6qa7/FM6oqxrThYeE5eXh4rVqygb9++pKenF3gR+hHTv3//Ev2gvOfAhISE4pKnDcAvVHWATZ4sJWETqCgjIn1E5G1gDXB1sDkNGjRg3LhxbNy4kXHjxlG/fv2oxmipPuzfv7+Ic3rPnj158cUXWbVqVTjNupHmKXzO9d9gEqqOqjrUikNYLBZLzUFVz6vq40AnTA/4icJzTp8+TVZWFn369CErK4tz584VPDdgwICQCdS+ffuKnAOD8CkwVFX7qupbZX5DlhqB3dKIEiLyQ+B+4A+h5kS5D8VSjTl27BiPPvooTzzxBOfPnwegc+fOJCcnM3jwYESkhBXKF1X9VkQeBM4BT9v+JovFYqnZeM4Ds0TkCUIoER8/fpz09HSWLVvGxIkTGT58OP369atXt27dgnMdwNGjR3nssccCzoFB2I1poVhqqx0s4SIhsnFLhBCRizClel1CzYmJieG3v/0tkydPpn37cBSdLZZAvvnmm4LE6cyZMwC0adOG8ePHM2LECGrVqhWR13nrrbe45ZZbCg/fr6oPRuQFLBaLxVKjEZE2mEQqEQi6y9SxY0eSkpJ4+eWX+fe//w1Ap06d2L9/fygDXIB9wIPAU9YA11Ja7A5U+bOMYpKnAQMGkJqaSteuXaMYkqW68d1337Fs2TKysrI4fvw4AE2bNuWuu+7izjvvpF69EkvELRaLxWKpNHgsK8aLyHxgKjAKCLgLuHPnTsaPHx9QtbNjx45QSx4F5gCLVTVkdmWxOMEmUOVPSKWxFi1aMHToULp0CZlfWSzFcuHCBVatWsX8+fM5cOAAALGxsdx2220kJSXRqFE4VksWi8VisVQuVHUPkCgij2Ckz4tIl5egwvctMB9jwF5EhcJiKQ1WRKL8+W+oJw4fPszo0aMZNGgQbrc7mjFZqjiqyquvvsrPfvYzUlJSOHDgAHXq1GHkyJFs2LCBadOm2eTJYrFYLNUGVd2qqglAP+DfDg75DpM4/UBVZ9jkyRJJbAJV/pT4D3bLli0MGzaMYcOGsWXLlmjEZKnCvPPOOwwcOJAxY8awa9cuYmJiSEhIwO12M3v2bJo3b17RIVosFovFUi6o6npVvR4YCASTG88HngQ6q2qyqh6JaoCWGoFNoCqGoGovbrebX//61wwbNoxt27ZFOyZLJec///kPQ4cOZcSIEXz00UeICAMGDGDNmjVkZ2dz6aWXVnSIFovFYrFEBVV9A+gFpABnMInTTuBHqjpaVfdWZHyW6o1NoCqGoRjD0KASiG63mwEDBpCYmMhXX30V3cgslY4dO3aQmJjI4MGDCwwAXS4Xr7/+Ok8//bQVIPn/7N15fFTl2f/xz52wLwKyb24FFVdQcEHiY61aldDa+rOotQ8u2KhUEIHIUpVaEzCyCEo1KriUqqj1aQVcqlVrVBRFrRsIoiBL2EVEtkCu3x9nJplJJslMMpMzk3zfrxcvJufc555rWJK55r7PdYmISL1knilm1tzM0s2sh5l97ndcUvcpgfLHKjP7DXAq8O9IA4qLi5k/fz4ZGRlkZ2ezefPm2o1QfLd+/Xqys7M5++yzSxoA9unTh6effpp58+Zx4okn+h2iiIiISL2jBMpHZva+mZ0DnAt8EGlMUVERc+fOpX///uTk5PDDDz/UbpBS64KNAs844wzmzp3L/v376dGjB/n5+SxYsIABAwb4HaKIiIhIvaUEygddu3ZtFPq1mb1qZv3wEqlPI13z448/MmvWLE4//XRmzZrF3r17ayNUqUW7du0q93fcpUsX8vLyeO211xg0aBDOOb/DFBEREanXlED54Morr+wb6biZvQr0xrtH6ptIY7Zt2xa2OnHgQMR6FJJCyq4y7tixgzZt2jBhwgTefvttrrjiCho0UMs2ERERkWSgBMoHRx55ZEZF58ys2MyeAY4GsoCI3eEi3R8jqSV4n9uZZ55JdnY2mzZtolmzZgwbNoxFixYxbNgwGjdu7HeYIiIiIhJCCZQP2rZte2ZVY8xsn5k9CPQAxlJBP6kVK1aQlZXFoEGDSiq0SfIrKCjgvPPOIysri9WrV5c0wX3nnXeYMGECBx10kN8hioiIiEgESqB80LBhw04bN248PpqxZrbTzO4CfgLchddZu5wPP/yQ3/zmNwwePJhPPvkkjtFKPL3//vv86le/YvDgwXzxxRclTXDffPNN8vLy6NChg98hikgd45yb55x7OvCrpd/xiIikOiVQPikuLs6MZbyZbTGzscBRwINU0oz3ggsuICsri2++iXgblfhg2bJlZGVl8ctf/pL33nsP8Ho5/etf/yI/P59DDz3U5whFpA67JOSX9gWLiNSQEij/xJRABZnZt2aWBRxPBc14zYz58+dz1llnkZ2dzcaNEW+jklqwcuVKhg8fzjnnnMP8+fMB6Nu3L//3f//HvHnzOOaYY3yOUERERERioQTKP6dt3Lix2vu1zGxpoBnv6cDrkcaEVne79dZb2bp1a3WfTmK0YcMGsrOz+elPf8qzzz5LcXExRx99NPn5+Tz//POceuqpfocoIiIiItWgBMo/aWZ2fk0nMbP3zOxsvB5SH0Yas3v3bmbPns3pp59OTk4OO3furOnTSgW2b99OTk4O/fv3L2mC2717d/Ly8nj11VcZNGiQ3yGKiIiISA0ogfJRcXHxwHjNFegh1Revh9SKSGN27twZ1qh137598Xr6ei/YBPe0005j1qxZ7Nmzh06dOpGXl1fSyyktTf/dRERERFKdunP6yDl3/hdffNHomGOOiUsmY14zqGecc/8ArgJuB7qUHbd161ZycnJ47LHHGD58OJdddhnp6enxCKHeKSoqYt68eUydOrXkXrPWrVszbNgwrrnmGpo0aeJzhCIC4JxrCgT/Q+4xs92B40fhbYVuBPzbzFZGuDYd6IfXVqIVXluJVcAiM9tfwfO1Cflyl5ntrWBcM0oLO/xQyXwtgIaBL4vMLK5bCZxzDYEWIYf2mtmueD6HiEhdoY/E/XVQ27ZtB8R7UjMrCvSQ6onXQ+q7SOPWrl1LdnZ2WIEDiU6wCe7//M//lBTqaNq0KcOGDePdd99l2LBhSp5EkksOsC3wa4Jzrrlz7nFgKfAIkA+cF3qBc66pc24sUAgsAv4K3Ac8DrwJbHbO/bmC0uDvhjzfHyuJ6+8h44ZWMu7NkHG3Vf5SYxNI4l4Nmf9ToFs8n0NEpC5RAuWzWMuZx8LMdgV6SB2Kl0j9EGncl19+WdKMd9GiRYkKp84oKCjg/PPPJysri1WrVqkJrkjqaQS8APwOcJEGOOc64BXomQS0DzkVumOgNV5ytMg5d0iZKRaEPM6o4DmaA2eFHIq4rds51wo4IeRQ3D7xcs41Bv4BBBu8rwHOMrPl8XoOEZG6RgmU/36R6Ccwsx/KNOONuJVkyZIlXHzxxQwePJjPPvss0WGlnLJ/PsEmuP/5z3/Iy8ujY8eOfocoItG5Di9h2A+8CMwCngDWAjjnGgDPAcFymd8BfwDamVljvMTpGiDYI+JYYGFgm2BQaJJzaiBRKescSrcVAvyszBxBZwDBfdZbgXeieI1VCmzbewavCBHAarzk6at4zC8iUlcpgfLfT9avX39UbTyRmW2Othlv6ApLfRdphS4jI4OXXnqJ/Px8DjvsMH8DFJFYtQQ+BnqZ2YVm9gcz+62ZBZOeP+AlLeDd73SWmc0ys60AZva9mc0JjAkmUccB40Oe4y1Kt083wbuHqqyyK05NgZ9FGHdmyOMXzSzi9+5YBO7rmgsES4N+g/c6v67p3CIidZ0SqCSQlpaWsG18kZjZ6kAz3hPxPn0sJ9I9PvVNpHvETj75ZJ599lnmzZvHcccd53OEIlJNK4GfRVppcc6lASNCDt1mZp9EmiRQcGJMyKEbgitIgWIQL4acC02CcM454MLAl6H3qUbaxhe6BbDG2/cCr3E2XtVW8P48zjKzVTWdW0SkPlAClQTMrFYTqJDn/TzQjLc/8J9IY4LNeM844wxycnLYsWNH7Qbpg2CVwgEDBjB37lwOHDjAUUcdRX5+PvPnz6d///5+hygiNfOUmW2r4NyxwGGBx3uBR6uYax6lCdDBeBX9gkKTnbL3QfUBugYePwYEV34GBpIroKTAQ9/Al0XAy1XEUxWHt2VxSODr5XjJ07c1nFdEpN5QApUcBnz77bdtqh6WGGa2yMzOwtsH/3GkMZH6HNU1kfpkdevWTU1wReqXU0Ief2pm31c22Mz2AYtDDp0a8vglvKQHoH9g21xQ6ErTwsAvgO6EF4w4Fa/oBcCbVcUThbvx7gELGmZma2s4p4hIvaIEKjk0aNCgwc/9DiLQjPdkvG0d5XqhAGzfvp2cnBz69+/P3Llz2b8/YsuSlLJ7924efvhh+vfvT05ODjt37qRt27ZMmDCBt956iyuuuEJ9skTqj9BqMN9EeU3ofUOdgg/MbDvevVAABwG9Q8YFE6gdeCXKF4acC92VELr1L7SyX3UNKfP1pEDRDBERiZISqCThnItYvra2mVmxmT0D9AKy8PqflLNhwways7P56U9/yjPPPENxcXGtxhkPwe2J/fv357bbbmPLli00b96cYcOGsWjRIoYNG0ajRo2qnkhE6pLQPgQ/RnlNaFPbVmXOldvG55zrSGlRiVcCq1hvhDzfwLLXRJirJpZR+r29L5Adp3lFROoFJVDJ40IgaT4FjNCMd3ukcStXrmTEiBEp1YzXzJg/fz5nnXVWSYGMYC+nRYsWMWHCBFq0aOF3mCLij9CkKdpu2M1DHpftt/d8yONgMnQhpT9/FwKY2V68ZrbglT3vGCgzflrg2BeBohU19SVepb/hIcduc86pKo6ISJSUQCWPgwsLC0+reljtMrMfy/SQ2h1p3LJly8jKyuKXv/wl7733Xq3GGIuCggIuuOACsrKy+Oabb2jQoAFXXHEF7733Hnl5ebRr187vEEXEX1tDHneL8pquIY9Drw9W6lsa+DKjTPU9I7xSX3AbXxpwPt6W6mByFo/tewCZZrbezJ7Fa6AL0BiYo618IiLRUQKVRJxzvlTji4aZbQv0kDoSr4dUxJuf3n//fX71q18xePBgli5dGmmILz788EN+85vfMHjwYD755BOccwwaNIg33niDvLw8OnXqVPUkIlIfLAl5fGIFDXBLBEqCh/Z4+iDCsODyfHu89hHnBZ/LzDaEjHsBL6kCbxtf6P1P8VriD91N8AcgWJSiHzA6Ts8hIlKnKYFKIn6VM4+Fma0N9JA6Dq+HlEUaV1BQwLnnnktWVharV6+u1RhDrVixoqQJ7ltvefdyZ2Rk8OKLL5Kfn88RRxzhW2wikpQ+pHQVqSXw6yrGnwt0CTzeTWnRiFChyc94Su+zCi0cgZmto7QS6s+BswOPtwCLqgo8VoHnGxtyaKJz7ph4P4+ISF2jBCq5HLtp06af+B1ENMzsy0APqSqb8Z555plkZ2ezadOmWotv/fr1ZGdnc/bZZzN//nzMjD59+vD0008zb948TjjhhKonEZF6x8yKgPyQQ3c55zpEGuucawVMCzn010DlvbIW4SVBAP8v5PgLEcYGt+odROlK1YtmdqCq2KvpQaAg8Lgx8EiZcusiIlKGEqgks3///gurHpU8zOzTQCI1gNIfwmFCq90luhnvtm3byMnJ4YwzzihpgtuzZ0/y8/NZsGABAwYMSNhzi0idcRelrRy6A286535apsHtaXgNyIMrNhuA2yJNFkh+gvc6BefYSOTtfqFJVXBswir0mFkx8Hu8psHg9cHSVj4RkUoogUoyyXwfVGXM7G0zOxNvO8snkcYEm/EGG9Xu3bs30rBq+fHHH8vN3aVLF/Ly8njttdcYNGgQIe99REQqZGY7gIuAdYFDRwGvAYXOuQ+cc2vxVpVODJzfCvzKzDZWMm3ZJOjFQPJS1mIgdLl+H/ByjC8hJma2DMgJOTTROdcrkc8pIpLKlEAln7O2bNnS0u8gqivQjLcPXjPeryON+e6778JWiWrSjLfs6tYPP/xAmzZtmDBhAm+//baa4IpItZjZZ8CpwJNAMNHpiFcZL7Tq3j+BU83s3SqmfBkvGQqKtH0vuCIUWpnvzUBCl2h3AZ8FHjfBq8qnb54iIhGoZGnyaVRUVHQu8JzfgVRX4A3AM865fwJXAnfgvfEIE7xP6cEHH2TMmDFkZmZGvUpUXFzMwoULycnJ4dtvvwWgefPmXHnlldx4440cdNBBVcwgIvXMNOBvgccRG4SXFSiycLlzbize6novvMISO4EVeE1wo+rNZGY7nHMnUdpb6vNKht8C3Bt4XNmqVrRCqwRG7OlnZvucc+cSnhw2BnbF4flFROoUJVBJyDk3kBROoILMbB/woHPuCWAYMA5oVXbcV199RVZWFn369GHcuHFV3qdUUFDAxIkTS8qkN2zYkMGDBzNmzBjat28f/xciIinPzNYCa6t57bfA7DjEUFnSFDpuI/FJnILzLal6FARKqm+ocqCISD2nLXxJKFDOvM783ZjZzjLNePdEGvfRRx+F9Woqa/HixVx00UUlPabS0tIYNGgQBQUF5OXlKXkSERERkYSrM2/S65gOGzZs6Ot3EPFmZlvLNOONWJa3oKCACy64gKysLL7++ms+/vhjhgwZwkUXXcTixYsBr5fTK6+8Qn5+PoccckjtvQgRERERqde0hS9JBVahFvsdRyKY2Rogyzk3E7gTr9pV2THMnz+fhQsXYmaYef16+/Xrx4QJEzjllFNqN2gREREREbQClcxSspx5LMzsczP7FV6lq9cijSkuLsbMaNSoEfn5+fzzn/9M2eQpWBXwt7/9LWvWrPE7HBERERGpBiVQyav3unXruvkdRG0ws8Vm9jPgfODDSGP27dtHs2bNajewOPn000+5/PLLueSSS3jttdd4/fXXefDBB/0OS0RERESqQQlU8nJpaWkD/Q6iNpnZy0BfvB5Sm8uej2fj3drw9ddfc91113H++efzxhtvhJ3bvXu3P0GJiIiISI3oHqgkFrgPKt/vOGqTeTc7PeOcOxyvYl/K2bBhA9OmTeOpp56qUZNgEREREUk+SqCSmHPuZ4WFhc06d+5cHxsZFvsdQKy2b9/Offfdx5w5c9izp7RSe7Dc+p49e3j55Zd9jFBEREREakpb+JJb07S0tLP9DkIqt3v3bmbNmsVpp53GX/7yl7DkKSMjgxdffJH777+fbt3qxS1tIiIiInWaVqCSXHFx8UBggd9xSHlFRUXMmzePqVOnsnHjxrBzJ510EuPGjeOMM87wKToRERERSQQlUEnOOfcL4AbA/I5FPMXFxSxcuJBJkyaxatWqsHM9e/Zk9OjRZGZm4pzzJ0CRGDlHQ6BT4EsjvMl12cdWwbjiwLE9QONK5ig2S70tuiIiIkFKoJKcmXVZt27diV27dv3Y71gECgoK+POf/8xnn30Wdrxr166MGDGCyy67jPT0dJ+iE6m2hkDnOM21FOhV2YAyny2EVloJJmGh5zYArYFGVJy8HShzXWVJ327gR+DgCM9dXOa6aM4dMNMHXCIi9YkSqBSQnp4+CFAC5aMlS5YwadIk3nnnnbDjBx98MNdffz1Dhw6lcePGPkUnUmPxXC6Nda7Kfg41xkvumgLxagT3HbAOOCxO8x0AljjHSUA6lay8EX2Ctg3vz6UZ4UllRat+kc6FJo4HgH14SShUnLSaWdgcIiISgRKoFGBmA4E/+x1HffTll18ybdo05s+fH3a8efPmXHnllQwfPpyWLVv6FJ1IUor3akwi5otnwhiMzwV+hf5cre7P2H14yWObGsQVahewBTikqoFlVgcrW9n7itIk1AhPAKuzsvcd0ILS4laVbRetKjFVIigiCaUEKjX027x5c6f27dtv8DuQ+mLt2rXMnDmTJ598kgMHSn8ON2zYkMGDBzNmzBjat2/vY4Qi9Up9vKEwEUlerMruRw59z5AGNK/mvJHsAQ6N8JzVsQv4rMpRIiLVpAQqNaQVFRVdADzidyB13datW3nggQd46KGH2LdvX8nxtLQ0Bg4cyIQJEzjkkCo/xBVJNcmcoCTi/qJErUDFe854ivffcbzni+dr1j1pIpJQSqBShHMuEyVQCbNz504ee+wxZsyYwc6dO8POZWRkMHHiRHr1qvS+eBHxJCIZS/bkJBGS/TWnQpInIpIQSqBSx3lfffVV4x49euz1O5C6ZsmSJfzv//4v3333XdjxM888k3HjxnHiiSf6FJlIrUnmN+vJnvCkygpUvGkFSkTqLSVQqaNF8+bN/wf4l9+B1DVPP/10WPLUp08fxo0bx4ABA3yMSkRCxDs5SYWVjvq05S4oFf5eRESUQKWYgSiBirv9+0sLRl188cXMnDlTTXClvvGzjHlVUmU1IZm/aaRCspMqf88iIiXlQiU1DPI7gLquTZs2Sp5EaibZ36wnqox5PCX7nyEkd4xKxkQkoZRApZbDN2zYcIzfQYhInaMVqBpwrl4WzkjmT5qS/t+MiKQ2JVAppri4WKtQIpLMkv3Nq1agklOy/7sRESmhBCrFOOcG+h2DiEgtSpWiD/GWzEmekh0RqdeUQKWe/uvWrWvrdxAiUqcke4KSzBXpEpHgpcIKVDL/m1GCJyIJpQQq9aSnpaWd73cQIlKnJPOb4XhLlTfX9WZvc2QAACAASURBVG0Fqj79GxSRFKcEKgU55zL9jkFEpJYke8KTKitQ8ZbMrzkV/vxEJIUpgUpBZnYB0NDvOEREakmyb7lLhGR+zVqBEpF6TQlUamq1YcOGM/wOQkTqDJUxr75UScjiLZn/npP934yIpDglUCmquLhY1fhEJBkl++pEKiQ8ibhnSStQIiJxogQqRek+KBGJo2R+85oKqwnJ3kg3EbQCJSL1lhKo1HX02rVre/odhIhILUjmFahENdJN5rLjWoESkXpNCVQKS09P1yqUiMSD7oGqmWR/858KCU8q/D2LiABKoFKac073QYlIskmFN+vJvhqT7H+G9TE+EZESSqBSmJmduWrVqtZ+xyEiKS+ZV6DiLVXeXCuhEBFJUkqgUlvDJk2anOt3ECIiAfV1NaY+bmdL5kQ5Ff78RCSFKYFKcWam+6BEpKaS+c1wvKXKm+tkTvJS5c9QRCQhlEClvoFAut9BiIgEpEIylszJSXDOZJfMrzkV/vxEJIU18DsAqbG269evP7VLly7v+B2IiKSs3cCmwON0St8cO8I/oAl9nEb4h3DpeG9cg7/i9QY7md+oJ1K8k7x4fmCa7NsqRUQSSglUHRCoxqcESkSqxYwfgB/iOOX7wQfOxZyElT23G/iK8J9XaVSc5FV2Lh3YCxTjvd6yzx16Xei5qn5W1sc3/8mc2KZKkiwiKUoJVB3gnMsEJvgdh4hIWWYYsD/k0P6KxlZiW5zCCbW9Ohc5Vy7pc3iv6b9UnoTFsrK3G9gYOF52XGjiEm1SeSAkzrLxJ4v6mISKSIpSAlUHmNkJGzZsOKxTp06r/I5FRKQuM6MYbwWrrL1xfqpdcZ4P4JuyB5yr1speMVCEtzIIsSWOFa3s7Qd2lLkumjnKJpUiIgmnBKruGAjM8jsIERFJHWbVWhEMinfSuKwmF4dsF42U4IqIxE0yLuNLNZjZQL9jEBER8YsZZsb+wCqhiEjCKIGqO87evHlzC7+DEBERERGpy5RA1R2Ni4qKfuZ3ECIiIiIidZkSqDokUI1PRERE4sA518U5187vOEQkuSiBqlsGompEIiIiNeacawMsBwqdcy84537nnGvpd1wi4j8lUHVL58LCwpP9DkJERKQO+BHYjFex+ALgcWCjc26ec+6XzrnGvkYnIr5RAlXHmJm28YmIiNSQme0DhpU53BT4DfAPvJWph51zZzvn9H5KpB7Rf/g6xjmncuYiIiJxYGYvAM9UcLoNcA3wb2CNc266c65frQUnIr5RAlX3nLx27dqufgchIiJSR9wE7KliTJfAuMXOueXOuT85545OfGgi4gclUHWPS09Pv9DvIEREROoCM1sPPBXDJT2B24ClzrnPnXMTnXNHJCY6EfGDEqi6Sdv4RERE4mdmNa87BrgdWOGce8s5N8I51yGOcYmID5RA1U3nrl27tqnfQYiIiNQFZvYR8F4NpkgDzgDuwbtfar5z7jLnXPO4BCgitUoJVN3UrEGDBmf5HYSIiEgd8lKc5mkEZAJPAJsDydQlzrlGcZpfRBJMCVQdVVxcrHLmIiIi8fN6AuZsipdMPQ1scM497pwb5JxLT8BziUicKIGqo5xzgwDndxwiIiJ1xLvA7gTO3wb4HfA88I1z7m7nXJ8EPp+IVFMDvwOQhOm+du3a47t16/aJ34GIiIgkinOuTZlDzfG2yQU1BFqUGdOK8A+RmwJNQr5OBw4qc81BwI7A2ETrDowGRjvnluKtUD1hZstr4blFpApKoOqw9PT0TEAJlIhIHeacK/vmH8onBFV9nahrEjVvM6Ax9UMvvEp+tzvnFgNPAo+b2TZ/wxKpv5RA1W0DgVy/gxARSZQIyUMyJxPxSkBaop/f9dUpgV8XAxk+xyJSb+kbcN122qZNmzp26NBho9+BiEh8VXPVIZoxyXwNePeJiNRne4AX/A5CpD5TAlW3pRUXF58PPOZ3ICKJ4pxrABwScqi69zaEVr1qQvh9Dg5oXeaaFnj3VgQ1wrv3IlR17s1oTXgBmPq0VUlEKvYF8Dgw28y2+B2MSH2mBKqOM7OBKIGSuq0TsNLvIEREEmA7XgGJfDP70O9gRMSjBKru+/kXX3zR6JhjjtnndyAiCXLA7wBEpFJ7CC//XdXX8RqTiGseBE4isYqBfwNzgH+Y2Z4EP5+IxEgJVN13UKtWrTLwvhmL1EX7/Q5ApALJ8qa/NufdZWZ7qYOccw44LIFPsQ6YCzxoZl8n8HlEpIaUQNUDaWlpmSiBkrpLCVRyStYVhETO+4OZ6d9j3XUUcHCc59yL1zj3r8ALZqYVdZEUoASqfvgFMNLvIEQSJBnfsCZLYlBrCYiZfYdI3XZ6HOcKFoSYY2ab4ziviNQCJVD1wxGFhYVHd+7ceZnfgYgkwB5gbMjXO4GikK/3AT+Wuabsm/1deJ8EB+0Hfigz5nu8exOCduveBJF6ZWANr98OPIGXNC2JQzwi4hMlUPWEcy4TUAIldY6ZFQF3+R2HiNRdzrmOeLs5YmXAO3irTX8zs7If5ohICkqreojUBWaW6XcMIiIiKWoI4X3fqrIe74OdnmY2wMweVPIkUncogao/Bqxbt66t30GIiIikEudcU+CGKIbuA54BLgC6m9lYM1OPugDnXJ5z7vsyv7ZGee3hEa793jk3NMrrn45wrbZRSrVpC1/9ke6cOw940u9AREREUsgtwKGVnP8Ur2fTXDPbUjshpaSmwEFljkVbdTA9wrUAjaO8vnmE61tGea1IOUqg6hHn3ECUQImIiETFOXc4kB3h1PfAU3gFIRbXblQi4jclUPXLBXh/58lY9llERCTZ3Ia3cgJeQYg3gdnA381sl29RiYivdA9U/XJwYWFhPPtYiIiI1GXvA0uBXOBIMzvLzP6q5EmkftMKVD0TKGde4HccIiIiyc7M/gL8xe846oh3gRZljkV7D9QO4NEIx5dGef0rwKYyxzZEea1IOUqg6plAOfNb/I5DRERE6g8z+xvwt2peuwm4qgbPfU91rxWJRFv46p9j1q5d28PvIEREREREUpESqHooPT39Qr9jEBERERFJRUqg6qdMvwMQEREREUlFSqDqp//ZsmWLGsiJiIiIiMRICVT91KioqOg8v4MQEREREUk1SqDqKefcQL9jEBERERFJNUqg6ikzG4j+/kVEREREYqI30PVXh40bN/bzOwgRERERkVSiBKoeKy4uVjW+WnLgwAE2bSrbBF1EREREUo0SqPpNCVQtePnllznnnHOYP39+ybGGDRv6GJGIiIiIVFcDvwMQX/UuLCw8tHPnzqv9DqQuWrRoEbm5uSxZsiTseMeOHfntb3/rU1QiIiIiUhNKoOQC4AG/g6hLli1bxvTp08NWnABatGjBkCFDGDFiBC1atPApOhERERGpCSVQkokSqLhYs2YN9957L0888QTFxcUlxxs2bMjgwYPJzs6mXbt2PkYoIiIiIjWlBErOLiwsbNa5c+ddfgeSqrZu3coDDzzAQw89xL59+0qON2jQgEsvvZSbb76ZTp06+RihiIiIiMSLEihpamY/A+ZXOVLCfP/999x3333Mnj2bPXv2lBx3zpGZmcktt9zCEUcc4WOEIiIiIhJvSqAE59xAlEBFbffu3cyZM4f77ruP77//PuxcRkYGEyZM4IQTTvApOhERERFJJCVQgnNuEHA9YH7HksyKioqYN28eU6dOZePGjWHnTjrpJMaOHcuAAQN8ik5EREREaoMSKMHMuqxfv753ly5dPvI7lmRkZixYsIBJkyaxatWqsHM9e/Zk9OjRZGZm4pzzJ0ARERERqTVKoASAtLS0QYASqDIKCgr485//zGeffRZ2vEuXLtx0001cdtllpKen+xSdiIiIiNQ2JVACgJkNBO7wO45ksWTJEiZNmsQ777wTdvzggw/m+uuvZ+jQoTRu3Nin6BJn586d5Ofn889//pMTTzyR6dOn06CBvk2IiIiIBOmdkQT13bx5c6f27dtv8DsQP61atYohQ4bwyiuvhB1v2bIlWVlZZGVl0bx5c5+iS5x9+/bx+OOPM2PGDLZu3QrAV199xeWXX87pp5/uc3QiIiIiyUMJlASlFRUVXQjM8TsQP7366qthXweb4I4ZM4b27dv7FFXiHDhwgL///e9MmTKFtWvXlju/d+9eH6ISERERSV5KoKSEcy6Tep5ABTVo0IBLLrmEUaNG0aVLF7/DSYiCggL+9Kc/8cUXX/gdioiIiEjKSPM7AEkq561ataqJ30HUttAtec45Bg4cyGuvvcbUqVPrZPL0zjvvMGjQIAYPHhyWPHXs2JFJkybRrl07H6MTERERSW5agZJQzRs3bvw/wMt+B1Kbrr/+ejZu3EhaWhpZWVn07t3b75ASYtmyZUyfPp3588N7Jrdo0YIhQ4YwYsQIWrRowT333ONThCIiIiLJTwmUhHHODaSeJVCdO3cmPz/f7zASZs2aNdx777088cQTFBcXlxxv2rQpl19+OTfddBNt27b1MUIRERGR1KEESsKY2S+A4X7HITW3YcMGZs2axeOPP05RUVHJ8WBhjFGjRtGxY0cfIxQRERFJPUqgpKxDN2zYcGynTp0+9zsQqZ7t27cza9YsZs+ezZ49e0qOO+fIzMxk7NixHH744T5GKCIiIpK6lEBJOWY2CFAClWJ2797NnDlzuPfee9mxY0fYuYyMDP74xz9y/PHH+xSdiIiISN2gBEoiGQhM9jsIiU5RURHz5s1j6tSpbNy4MezcSSedxLhx4zjjjDN8ik5ERESkblECJZGcXlhY2K5z585b/A5EKlZcXMw//vEP7r77blavXh127uijj2bs2LGcd955Mc25d+/esPulRERERCScEiiJJB04H5jrdyAS2SuvvMLkyZNZunRp2PHu3bszevRoLr74YtLSom/zduDAAZ555hmmTJnCtm3bSo43aKBvESIiIiKh9O5IInLOZaIEKuksXryY3NxcFi9eHHa8Xbt23HTTTfzud7+jYcOGUc9nZrz44ovcddddrFixIuxcr1696NOnT1ziFhEREakrlEBJRGZ2PtAQ0H6uJLB8+XKmTp1arglu8+bNufLKKxk+fDgtW7aMac7333+fnJyccslYp06duOGGGxgyZEhMyZiIiIhIfaAESirSasOGDQM6der0ut+B1Gfr1q1jxowZPPnkkxw4cKDkeLCX05gxY2jfvn1Mc3788cdMnz6dV155Jex469atGTZsGNdccw1NmjSJS/wiIiIidY0SKKmQmQ0ElED5YNu2bdx///089NBD7Nu3r+R4WloaAwcOZMKECRxyyCExzbly5Ury8vJYsGABZlZyvGnTplx99dXceOONHHTQQXF7DSIiIiJ1kRIoqUwmMNrvIOqTH3/8kUcffZSZM2fyww8/hJ3LyMhg4sSJ9OrVK6Y5CwsLmT59Ok899RT79+8vOR5cxRo1ahQdO3aMS/wiIiIidZ0SKKnMUevWrTuya9euy/0OpK4L9nLKy8tjy5bw6vH9+vVjwoQJnHLKKTHNuX37dmbNmsXs2bPZs2dPyXHnHJmZmYwbN47DDjssHuGLiIiI1BtKoKRSaWlpmcA0v+Ooq/bv38///d//MWXKFNasWRN2rnfv3owfP54BAwbENOeuXbt45JFHuPfee9mxY0fYuYyMDG699VaOO+64GscuIiIiUh8pgZJKBe6DUgIVZ2bGggULuOuuu/j666/DzvXo0YMxY8aQmZmJcy7qOYOrWFOnTmXjxo1h504++WTGjRtH//794xK/iIiISH2lBEoq5ZzLWLVqVevDDjtsu9+x1BUFBQXk5OTwySefhB3v3LkzI0eO5NJLL42pgW1xcTELFy5k0qRJrFq1KuzckUceyahRoxg0aFA8QhcRERGp95RASVUaNmnS5Dzgab8DSXUfffQRkyZN4q233go73qZNG2644YZqlQ8vKCjgjjvu4PPPPw873rVrV0aMGMFll11Genp61PPt37+fp59+mmeeeYa+ffsyfvz4mFbBREREROo6JVBSJTPLRAlUta1YsYIpU6aUKx/erFkzrrrqqmqVD1+yZAm5ubksWrQo7PjBBx/M9ddfz7XXXkujRo2ini+4pTAvL4+VK1cC8N5773HeeefRr1+/mGITERERqcuUQEk0BgLpwIGqBkqp9evXc88991TYBHf06NF06NAhpjm//PJLpk2bxvz588OON2/enCuvvJLhw4fTsmXLmOZ88803yc3NLbelELyy6iIiIiJSSgmUROPg9evXn9alS5e3/Q4kFXz33Xf85S9/4eGHH2bv3r0lx4NNcKtTPnzt2rXMnDmzwmQsOzubdu3axTRnRVsKRURERKRiSqAkKs65gYASqEoEm+BWVD789ttv55hjjolpzq1bt/LAAw/w0EMPsW/fvpLjDRo04KKLLmLMmDF07949pjmXL1/OXXfdxUsvvRS2pbB58+Zce+21PPbYY3z33XcxzSkiIiJSXyiBkmhlAuP9DiIZBcuH33333WzevDnsXLAQw2mnnRbTnN9//z0PP/ww+fn57Ny5s+R4sAnuLbfcwhFHHBHTnMEthU899RT79+8vOR5cxRo1ahQdO3bkySefjGleERERkfpECZRE6/iNGzce3rFjx2/8DiRZBMuH5+bmsnr16rBzRx99NCNHjoy5fPju3buZM2cO9913H99//33YuYyMDCZMmMAJJ5wQ05yJ2FIoIiIiUl8pgZKoHThwYCBwn99xJIOCggImTpzI0qVLw453796dG2+8kcsvv5y0tLSo56usCW6fPn0YN24cAwYMiCnGXbt28cgjj1S4pfC2227j2GOPjWlOERERkfpOCZRELXAfVL1OoN5//31yc3N57733wo63bduW6667jt///vc0bNgw6vmC5cMnT57MN9+EL+717NmT0aNHk5mZGVMvpmAyNmXKFDZt2hR27uSTT2b8+PGcfvrpUc8nIiIiIqWUQEksfrply5aW7dq1+8HvQGrb0qVLueeee8qVD2/dujXDhg2rdhPcO++8k08//TTseJcuXbjppptiboJb2ZbCo446iptvvjnmLYUiIiIiEk4JlMSicVFR0c+Af/gdSG1ZuXIleXl55ZrgNm3alKuvvrraTXAnT57M22+HFzVs06YNN9xwA0OHDqVx48YxzVlQUMCf/vQnvvjii7Dj3bp1Y/jw4TEnYyIiIiISmRIoiVUm9SCBKiwsZPr06VVWrIvF8uXLmTp1arlkLNgEtzrJ2Ntvv82kSZP48MMPw4537NiRkSNHctlll8W8pTC0z5SIiIiIhFMCJbEaBKQBxX4Hkgjbt29n1qxZzJ49mz179pQcD5YPr07FunXr1jFjxowKm+COGTOG9u3bxzTnJ598wqRJk/jPf/4TdrxVq1YlWwqbNm0a05yvv/46kyZNYsuWLSXHYimEUZsC9+NdBAw3s91+x1MXOEcHoBmw2gyraryIiEh9pQRKYtVhw4YNJ3fq1Ol9vwOJp6oq1t16660cd9xxMc25bds27r///grLh48fP55DDz00pjm//vpr8vLymD9/frkthddccw3Dhg2jVatWMc25ZMkScnNzWbRoUdjxrl27xlwyvTY457oBjwLtgDOcc78xs8/8jSq1OUcL4FDAAU2d4yszinwOS0REJCkpgZKYFRcXDwTqRAJVWfnwk08+mXHjxtG/f/+Y5vzxxx959NFHmTlzJj/8EF5vIyMjg4kTJ9KrV6+Y5tywYQPTpk2L65bCFStWMGXKlHJbCps1a8ZVV11VrS2FieacawA8hZc8AfQCFjnnrjOzv/kXWepyjoZAD7zkCaAlcIxzLDdDq3siIiJlKIGSmDnnMoGJfsdRE8GKdZMmTWLVqlVh54488khGjRoVc8W6YDKWl5cXtg0OoF+/fowfP55TTz01pjmr2lI4duxYDj/88JjmXL9+Pffcc0+FWwpHjx5Nhw4dYpqzFuUAZ5Q51gKY65z7OXCdme2q/bBSk3M4vOSpUZlTjfGSqK/N+K72IxMREUleSqCkOk5at25dt65du671O5DqKCgo4I477uDzzz8PO961a1dGjBhR7fLhOTk5fPvtt2HnevXqxU033RRzMrZ7927mzJlT4ZbCP/7xjxx//PExzZmILYW1yTl3PDCmkiG/A04MbOn7spbCSnWH4q04RZIO9HSOQjPW1GJMIiIiSU0JlFSHS0tLuxB40O9AYlHRvT4HH3ww119/Pddeey2NGpX9IL5iZsarr77K5MmTWbp0adi5n/zkJ2RnZ1e7CW6kLYUnnXQS48aN44wzyi7AVK6qLYW33347xxxzTExz+sHMPnXOXQLMBiq60esE4APnXJaZPVF70aWeQNGIaJYaOztHY+Brs7pZPEZERCQWSqCkWgJV0FIigfryyy+ZNm1auSa4wfLhw4cPp2XLij6Ej6ygoIDc3Fz++9//hh3v3LkzI0eO5NJLL6VBg+j/e0WzpbC6ydjdd9/N5s2bw8717duX8ePHc9ppp0U9XzIws7875z4FngZOrGBYC+Bvzrnz0Za+iEKKRkTrYKCJc6wwY2+Vo0VExBfOubZAJ7x7hXcBG83s28qvklgpgZJqMbNzCwsLm3Xu3Dlp35yuXbuWmTNnVnivT3Z2Nu3atatkhvI+/vhjcnNzeeutt8KOt27duqR8eJMmTWKas6CggD//+c989ll4IblEbCk8+uijGTlyZMxbCpOJmS13zp0G3AUMr2To74CTA1v6Pq9kXL0SoWhEtJoBxwaSqB+qHC0iIrXCOXcYMAwYiFdcqez5zcC/gPvN7O0q5joNiKYo0w7gR2Az8AlecbFXzCzih2zOuYbAspBDP40lsXPOZQHZgS/fMLNror02ZI4OwKIqB3qv60dgK/AZsAR42cxK7qlQAiXV1dQ5dxbwgt+BRLJv3z7OOOMMiopKKzE3aNCASy+9lJtvvplOnTrFNN+KFSuYPHkyL730UrkmuNdeey3XXXddzBXrqtpSOHToUBo3bhzTnAUFBUycOLHclsLu3btz4403cvnllydtb6dYmNkeYIRz7n3gfrxVp0iOobRKX73f0ldJ0YhoNQCOdo5VZmyucrSIiCSMc64RcCfeh4mVvWFoD/wW+K1z7lngD2a2sYKxTYEjYgzlosDv651zQ83sxUjhlpm3YYzP0Trk+mWVDaxEOrG/toGB33c450ab2UOgBEpqwMwySdIEyszCkqcLL7yQ8ePHc8QRsf2/WbduHVOmTOHZZ58tt4r1u9/9jhEjRsTcBDcRWwoXL15Mbm4uixcvDjveqVMnbr755pi3FKYKM5sbSKKexrv/KZKWaEtfUGVFI6LlgMOdozlquisi4gvnXEvgOeCckMNFwJvAx3grQ43wPjT7GdA1MOb/4e3OONfMVsY5rC7A8865gWb2rzjP7beDgAedcw3N7C917x2V1KZMvCXjpH8DFWvytHXrVmbOnMljjz3Gvn37So6npaXx61//mtGjR3PIIYfEFENVWwrHjBkTczL28ccfM2nSJAoKCsKO12RL4auvvso//vEPevfuzdChQ2O61g9m9qVz7lSi39J3iZl9UTvRJY8YikZEqwNe090VZuyvcrSIiMSFcy4N+DvhydMcYIKZbYgwPh3vZ+A0oA1wOLDQOXdSFR8qFppZl0riaIqXoP0KGIu3etUAmO2cO9LMkr2XYGsz+z7SCedcY7wPHX8O3Iq3igcw1Tk3XwmU1ET3devWndC1a9f/Vj00NezatYtHHnmkwvLht912G8cee2xMc27dupUHHniAhx56qFwyNnDgQCZMmBBzMrZy5Ury8vLKNcFt2rQpV199dbWa4L7//vvk5uby3nvvAfDcc8/Rt29fevfuHdM8fohxS9+7gSp9T9ZagD6rRtGIaAWb7n5uxoEqRycp51wjM9tX9UgRkaQwBjg38NiAEWZ2b0WDzewA8GjgZ+TbeJVsjwLG4SUH1RJIkD4FPnXOfYaX1AF0AwYDj1Z3br8F7uVaDix3zr2Fd+9UY6AJMEwJlNRIWlpaJpDyCVSwYt2UKVPYtGlT2LmTTz6Z8ePHc/rpp8c0586dO3nssceYMWMGO3fuDDuXkZHBxIkT6dWr3L2elSosLGT69Ok89dRT7N9f+qF/cBVr1KhRdOzYMaY5ly9fztSpU8slY+A18k0lMWzpe8I5dwH1YEtfDYpGROs7oINz7DYjtf7BUHJj8yvOuY+B0WZWVNU1IiJ+cc61Af4YcugvlSVPoczsc+fcrcDMwKEs59wd8fi+Z2bPOefeAfoHDp1PCidQoczsI+fc34CrA4fOVwIlNRIoZ57jdxzVFaxYl5uby+rVq8POHXXUUdx8880xV6wLJmN5eXls2bIl7FxGRgbjx4/nxBMrqsAd2fbt25k1axazZ89mz549JceDq1jjxo3jsMMOi2nOdevWMWPGjHJbClNdjFv6jnPODTazFbUTXe2KQ9GIquwAdgI9A8+3zox1CXquRJkKnBn4daxz7gIlUSKSxH5P6S6LrcAtMV7/V2AG3odq7YHjgQ/jFNsblCZQPeI0Z7J4g9IEqocSKKkRMzt106ZNHTt06FBRNZekVVBQwJ/+9Ce++CL8dphu3boxfPjwmMuH79+/n6eeeopp06axYUP4FuTevXszfvx4BgwYEFOMVW0pvPXWWznuuONimnPTpk3MmDGDuXPnhhXaSE9P55JLLuHFF1/k++8jbglOGSFb+j4A/kLFW/r6AEucc783s6dqLcDaE4+iERXZC6zF2wYS1NU5mpIiTXedc5cDN4Yc+ljJk4gkuUtCHj9uZj/GcrGZbXfOXYm3FQ2I686B70Iep37J33Bhr00JlNRUWnFx8QWk0DLtBx98QE5OTsm9PkFt27bluuuu49prr6VRo+g/sDczFixYwF133cXXX38ddq5Hjx6MGTOm2k1wK9pSOG7cOPr371/B1ZH9+OOPPProo8ycOZMfwXCN+QAAIABJREFUfghv4xO6pfD1119P+QQqyMz+6pxbTNVb+p50zl0IZKXATa9RSUDRiFDFwDd4NyKX/ZQhJZruOudOBB4KOfQdkO6cewE4ALwL5JvZlkjXi4jUtkDlvdAtLPMrGlsZM3s8PhGV85OQxyn3wXoVwl6bEiipMTMbSAokUMuWLWP69Onlyoe3aNGCIUOGMGLECFq0qGihIrKCggJycnL45JNPwo537tyZkSNHxlw+PLilcNKkSaxatSrs3JFHHsmoUaPiuqWwX79+TJgwgVNOOSWmOVNJNbb0/cbMvqqd6BIjgUUjgr4hUIWvgvNJ3XQ3cA/B3/HiDGoD3BTydSYwyjn3azN7oxbDExGpSG9KWxAV4zV4TQrOuYOAi0MORdOwNiUEqh4OCTm0SAmUxMP5X331VeMePXok7afN2dnZLFq0qFzFumuuuYZhw4bRqlWrmOb78MMPmTx5Mm+99VbY8TZt2nDDDTdUuwnuHXfcweeffx52vLpbCoPJ2J133smaNWvCzvXu3ZuRI0dy7rnnVnB13RKypW8J3pa+5hUM7QN8mMpb+mqhaEQh3taPg6sYl5RNdwM/COdS+mniPuAJvHsAHDAA+DXeylob4Dq8ve8iIn4L7XXyvZntqHBkLXLOtQf+Rml8+4F5/kUUP865ZsB9eO8PguYqgZJ4aNGsWbMM4FW/A6nIO++8U/K4YcOGXHbZZYwcOTLminUrVqxgypQp5SrWNWvWjKuuuqpa5cM/+OADcnNzeffdd8OOJ2JL4U9+8hOys7Nj3lJYV5jZ4yFb+o6vYFjKbumr7aIR0YSE13S3KbAmSZru3gZcGPL1TWZ2f8jXM51z/YAFePcGZNVmcCIilWgT8rg29to3cc5dUsG5NkBbvMTiQsI/mJxqZl8mOrg4uMg5F6kS70F4r+9YYBDe6wz6p5m9oARK4sI5l0kSJ1AAzjkyMzMZO3Yshx9+eEzXrl+/nnvuuafCJrijR4+mQ4fYbjepaEth8+bNufLKK5NiS2FdZGbLAlv67sGrZlSRVNzSV9tFI6LVCa/p7ko/m+4Gvk+F9jx5tEzyBICZve+cOwtIq6jJoojUDc65JngflJwPrMZ785+slVlDt6HURvncNngfOMbifmB8AmJJhEdjHP8CcDmU7qMUqalBhN8/4KtGjRrRsWNHNm707mE8++yzGTduXMxNcLdt28b999/Pww8/zN69pTsUg+XDx48fz6GHxnaryZo1a7j33nt54oknKC4uLVQWTMays7Np165dTHN+9NFHTJo0qdyWwtatWzNs2DCuueYamjRpUsHV9U9gVSnLOfc20W3pu9bMkno7gnO0w5+iEdFqhdd0d4UZtb6q55zrgVe+N1gZ6kPghorGm9nSMte3xqvmWBhoSikiKSywnfdivPtjQz9VvcY59yRwm5mt8iO2SmwLedzatyjKOwD8Cy/5/LffwSTAO8B9ZvZk8IASKImXIwoLC3t17tx5adVDE885x7PPPsvLL79Mv3796NevX0zXV1Wx7vbbb+eYY46Jac6tW7fywAMP8NBDD7Fv376S4w0aNODSSy/l5ptvplOnTjHNuXz5cu666y5eeumlsC2FzZs35/e//z3XXXcdLVsmakEi9cWwpe+pQM+zpNzSFygaEduyamyqKhoRrSZ4SdTXZmElYRMqsIf975S+4dgKXFzV36Vzrhtej5VfAIcEDu92zhUA95vZPxIUsogkiPP2r18C3EHkFfUGeDsQ/p9zbhYw2cy21mKIlQmNo7VzrmmCfyb9QMW9PvfibeteCXwUxf1YRXgfxgU/xIp1q3nojeXxajcxEdgT4fh+vC2S3+K9tnL38SqBkrgJbI9JigQKvPt9brihwg+YIwpWrLv77rvZvDn8/0vfvn0ZP348p512Wkxzfv/999x3333MmTOH3btLv88FtxTecsstHHHEETHNuXbtWqZOncqzzz5bbkvh//7v/zJixIiYV7E+//xzJk+eXLJqF4yxrgvZ0jcDuLaSob/Da7Q6OAm39O0DdlHxSlpNRFs0IlrpQM9abrr7EKVl7A8Al1f1ybJz7lq8fxNlk8amwHnAec65l4CrzawwvuGKSCI4584BJgMnRzG8KTAauC6QSE1Kgi29/6U0CUnHq8qXyGp3O83srnhMZGbmnPuR0m3msf68Cr2nIV5J4z3V/TtVAiVxEyhnfrffcVRHsGJdTk4O3377bdi5o48+mpEjR8ZcPnz37t3MmTOH++67r1xfpYyMDCZMmMAJJ1TUmiiyrVu3MnPmTB577LGwVay0tDQuvvhiRo8eTffu3WOac9WqVeTl5fH888+HbSls1aoVvXr1immuVBX4BO/3zrm3qHxL30mUNt5Nmi19ZuxzjqXAEcQv0YHYi0bEoqtzNAG+SWTTXefcCAJ71gNuM7N/VXHNZLyVp1ArgQ+AhsCZQDu8eybeds6dY2ZfIyJJyTnXH5iE9383oj59+vDll1+ya1e5mgIt8L4fXO2cy8Vbffal6rCZbXPOLQOCW2DOpRoJlHNuIqWNdP9qZp9XMjyevqc0geoS47Wh431fEVQCJfE0YN26dW27du3q+z/sWBQUFDBx4kSWLg1fPOvevTs33ngjl19+OWlp0TfUDq5iTZ06NWw1B7xv0OPGjWPAgAExxbhz507y8/PJz89n586dYefOO+88xo4dy9FHHx3TnBs3buSee+7hiSeeoKiodDW8QYMGDB48mFGjRsVcGCPVhWzpewY4roJhB+Ft6TsbGO7XD9KyAknIV87RGYgti46sJkUjotUWMCAhyYdzLoPwD3X+ifcmqrJrRhKePH0L3GBmC0PGNMK7Sfo2vK2TC5xzfc0sUjUnEfGJc+4YvG1a/48KWjuEtvWoaKt9QHtgOnCzc+5OYI6Z+VEUZz6lCdTVzrncWOJwznUAbg859Ld4BleFFUC3wOPjgedjuDb0JvZvKxxVS6J/VyhStfS0tLSf+x1EtBYvXsxFF13E4MGDw5KnTp06cccdd/DWW29xxRVXRJ08mRnz58/nrLPOIjs7Oyx56tmzJ/n5+SxYsCCm5KmoqIi5c+cyYMAApk6dGpY89e3bl+eee45HH300puRp586dzJo1i4yMDB577LGS5Mk5x6BBg3jjjTe4++67Y74fq64ws2XAKcDDVQz9PfCOc+4nVYyrVWYUAsupWYWmeBSNiMZ+YJNzHOtcQqoH3oS3YgTen8kQC71ZsAzn3GlAXsihT4DTQpMnADPbZ2YTKU20ehFe3U9EfOScO9Q5l4/3f/gSIiRPwZ/LCxcuLOmJ2LZtWyZMmMDbb7/NFVdcUVHvxe5APvCZc+4SV/t73e+j9B6gQ4FRMV5/WcjjLcCyeAQVpc9CHke9rcc5dxil27ABPopTPNWmBEribaDfAVTl448/ZsiQIVx00UUsXry45Hjr1q2ZMGEC77zzDkOHDqVhw4aVzBKuoKCA888/n6ysLL755puS4126dCEvL4/XXnuNQYMGRX1PUXFxMfPnz+fMM88kOzubTZs2lZw76qijyM/P5/nnn4/pfqzdu3cza9Ys+vXrR05OTlgylpGRwQsvvEB+fn7M92PVRWa228yuxes8/mMlQ0/Cq9L3m9qJLDpmbMe7H7G6q2PxKhoRzfN0w9syebRzYU0i4+FSvDcbO4FfV7bX3TnXEK+kbXBnxhrggirub5qK9xrAq+qoUpciPnLOtQ9swf0S70OuchlQND+Xu3btGs3P7qPwChD9t5JeSXFnZmuBB0IO/ck5F9WH1865Q/FWzoPmmlm8CjJE4/WQx6c65y6I8rrbKM1ZfsCriucrbeGTeLsA79+Vb71eKrJy5Ury8vLKNcFt2rQpV199dbWa4C5ZsoTJkyfz9ttvhx1v06YNN9xwA0OHDqVx48YVXB1ZRVsKu3XrxvDhw7nssssq+lQsokRsKawvAlv63sf7IVnZlr55zrmfATeaWbl9H34wY5dzfI53/1IsqzvxLhpRkbV4cQX/0wWb7jYHVsej6W7gjcGNzrm7zayqLR+XUrpd8QDwWzNbX8X8xc65V/GKj7TBu6H73cquEZH4c84dDGQDNwLNIo05+OCDuf7662P6uRxcpaqoVUjA8cDTzrl3gHFm9mb1XkVMbgHOCjx3Y+CfzrnxwL0VJUSBLc2PU/q9fTOQm/hQwyzE2w1wZODrJ51zw4AnzazcvbCB9hF3AleFHH7YzCr7YLNWKIGSeGtTWFjYv3PnzrXxDSQqhYWFTJ8+naeeeor9+0vzumDfpVGjRtGxY8eY5ly+fDlTp04tl4wFm+BWJxl7//33yc3N5b333gs73rZtW6677jquvfZaGjWKvuqnmbFgwQImT54ctioG0KNHD8aMGUNmZma9qLRXE2a21Dl3CjATGFrJ0N8DJweq9K2snegqZ8Z+51iGV4I7mn/kiSwaEeo7vNWxbhHOdQAax7PpbhTJE4T/3T5qZgVRTh/6g/xwQhIo51y6ekaJJI5zrjnwB2AsFfRFCv5cHj58eLXbevTp04enn36agoICJk2axMcffxxpWH/gP4EPVbLNLGHbzMxst3PuF8CLwNF4SdRU4Cbn3D/x+txtwUsmewI/B0I/Kd0FXBapPHcimdk+59yVeCtRjfH6A84F7nTO/Rvvfti9eB+snQCcQ3j1vWV497T5TgmUxJ2ZZQK+J1Dbt29n1qxZzJ49mz17Ssv8B8uHjxs3jsMOOyymOdetW8eMGTN48skny5UPHzx4MGPGjKF9+9h2IS1dupR77rmH+fPnhx1v1aoVQ4cOJSsrixYtWlRwdWQFBQXceeedfPrpp2HHu3Tpwk033cSll15Kgwb67x+tQJW+a4P9f6jgE0680rjBxruxdm9PiMBKzmrn2I23X76ijLk2ikaA13NjQxXPU6tNd51zTYHQ/bB5FY2NILRUZcnqY6BJ55vOubExJGMiEoXAltur8N5Md440pmnTplx++eXVautRkYyMDDIyMircKRJwDvCBc+7vwPhEtb0ws1XOuQHAI5TeT9QdL6GszFfAlWb2dhXjEsLMFgWSv6fxvtcDHAZcU8WlHwG/jKLfVK3QOyiJu0A/qGw/YygqKuLUU08t1wT33HPPZezYsTGX5960aRMzZsxg7ty5YRXr0tPTueSSSxg9ejRdusRWkXPlypXMmDGD5557Lqx8eHBL4R/+8AdatWpVyQzlffjhh0yaNCmuWwqlVIpv6dsUSKJ6UFpYIai2ikYcwPuE8SdUfQ9ubTbdbU9pU8cVZrY8mouccx3xttEEhZYCPhvvE+l/O+fGmNmMeAQqUp8FPpi4GK+aZsQCPjXZXRKtjIwMXnnlFRYuXEhubi6rV68uOyQNr3jFRc65R4A/VbUluDoCDX5/4Zz7KXAz3vedij7g+xx4EHjI74bwZvYv51wvYALe9um2lQz/L6Vx1+b9WpVSAiWJ0Gvt2rU9unXr5luz0eLi4rDk6ZRTTmH8+PGccsopMc2zY8cO7r//fh566KGw3hDOOS688EKys7Pp2TO23U4bNmxg2rRpcd1SuGLFCqZMmVJuS2GzZs246qqrqrWlUCILbOk7He8m3t9WMjS4pe83ydIjyIwfQu6LCu11VVtFI74GuhLeUb4yfjTd3RDD2NsofS2r8W5cDwp+mtoQrxiJEiiRGgg0wZ0CnFjBeTIzMxk7diyHH354wuNJS0tj0KBBnH/++cybN48pU6aEFXwKaIj3s+AK59zDQI6ZlRtUU2b2OvB6oJBNH7wt2+3xVvw3Ax+Z2cZKpig7V8L39gcK9Pwh0KuvJ95WxDZ4ucnmwK+VZhbL9+RonjMur00JlCREenr6QJLoDcO0adNiqi63Z8+ekia427dvDzs3YMAAxo8fT+/evWOKoaothdX5pl/VlsLRo0fXu15OtcHMduL9QPwXVW/p+8g5N9TMnqm1ACsRaLq7DK/pbhtqv2hEbMuqnkQ33V2D1+CxFVH20Ap84ntdyKHpwRLpzrm2wK9Czk2JU5wi9U5gm1oukFHRmIyMDG699VaOO66ijQGJ07BhQ6644gp+/etf88gjj3DvvfeyY0e5XWbNgOHAVc65vwC5idiKZmZ7qEZjXT8F7hNdRu2WU68xJVCSKEmVQEWruLiYhQsXcuedd7JmzZqwc6HN9mKxa9euCr+pZmRk8Mc//pHjjz/+/7N35+FRldcDx78nYV9EAUVAEQUVcKWIskXQgqIQqYrGKta2LumvaUVcIpJat6IYt4KijXtdqhFxKW4otdWwKlStCoiokS0gq8oiBHJ+f9w7YZLMTGaSmXtnJufzPD7C5M2dQyCZOfc97zkxXXPTpk089NBDPProo+zcubdTdUZGBiNGjGDChAkccsghMV3TxC6opG8aVYf8BdsHp0PTwyRJSZ8qe4AvRWiPU1bnZ9OIaLUDmouwTJW4fg1VVd2D178CuopIVqRzSyLSHShmbxnil8AjQUsupurOVFKchzMmlbjNe24Hfh5uzQknnMANN9xA//79vQssjBYtWpCXl8dFF10U8mapqzVOB71LReRuYLKb9JgUY3OgTKIM2bx5c13uNPsiMAT35JNPJjc3t0ry1K1btxrD9qIRGII7cOBAJk6cWCV56tOnD9OmTaO4uDim5Gnbtm1MnTqV/v37M3Xq1CrJU1ZWFm+//TZFRUWWPHlIVZfgNCD4Ry1LrwDmiEjSDNpSZYP7y0Ts6gTswCmLi0dNTQvgKBFi66oSnUL2zs16TERCHkwXkWOAd6FyZtUe4Dequj1oWXBHv/tUNenGOhiTrESkp4i8gNPRMmTy1KNHj8p5iMmQPAULzJT84IMPyMvLC9c9tz0wCfhCRK4QkUSePTUJYAmUSZTGO3fujG2rxiclJSWceeaZ5Obm8vXXe4+qdOzYkcLCQv7973/XaQju4MGDyc/PrzJ76Ygjjqj8oT9w4MCoYwwkYwMGDGDixIlVznf17duXl19+meLiYnr16hX1NU38qOpWVb0I56zL9ghLT8Ap6fNs6GJt3AYNi6n70N1I9uCcrzqM+L3eNMYZuhuftlouVf0c584wODtyC0XkYhFpASAiXUTkVmABe8v8FPi/4G5W7vm4wG7kJuCxUM8nIs1F5BoR2S+efw5jUpX7PVYEfIrTgKHGi263bt2YPHkys2bNIjs7u8Y1kkn79u0pKChg9uzZjBkzJtz8xi5AEfCpiJwnNlckZVgJn0mYioqKEcCLfscRTrjBePvuuy95eXlceumlNGvWLKZrlpSUcNttt/HZZ59Vebxz586MHTs25iG4gZLCiRMnsmJF1VE2PXr0YNy4cUn/ItKQuCV9C3FKtiKV9BW7df3XJUlJX2Dobnf2DraNh1ibRkQrAzjM3YmKy9BdAFWdLCJNgDuBTjhDJ58Ske3UPOe2B7haVR+p9njw7tND7nm5KkTkWJwdy6OA/xORc1T1f/H4MxiTakSkPXAtMBbnPGYNHTt2ZNy4cSk5guOggw6isLCQSy+9lHvvvbfGyBJXT5zXjQ9EZIKq/svbKE2sUutfoUkpIjIC541OIsuDYrZ8+XLuuuuuuHasW7RoEbfffjvz5lU9uxmYfB7rEFwg7JyJbt26ceWVV3LuueeSkWGbyMlGVRcHdem7MMwywTlQPMAdvOt7lz536O4XRD90tzb1aRoRrQNwmj/Erc25qt4lIh/htM0NlB1WT56+BH6vqrOCHxSR1sD57m9/Au6v9nEBrsJpwRxIKrsB43Bm2hjTYLjfL78HJhDmxk1gBEddbmgmmyOPPJKioiKuuOIKJk2aVGPciOtEYJaIzAHGq+rsUIuM/yyBMom0/7p1607s0KHDfL8DAVizZg1//etfw7YPr0vHui+++CLkHaX6TD4vKSnh9ttv55NPPqny+IEHHsjVV1/t+x24hQsXct999/n2/KlAVX8ELhKRmUTu0ncCzuDdy1TV993aGIbu1iYeTSOisQH4UYQjgBWqxOUwtqrOEpEjgVE4DXF6ALtxdtTeAF4KM4/kl1B5Puvp4LbBItIJeBIIVdocsszPmHTklsVejpM4hXzRDbyGpuMIjsAZ6JKSEiZOnMj//hdy83kgUCIis4BrVfWTUIuMfyyBMglVUVExEucgqK8KCwt566232LVrb7VURkYG5557Ltdeey0HHxxV5+JKq1atYsqUKWHbh+fn58c8+fzjjz/m9ttvj2tJYTwtXbqUSZMm8fbbb4dbYp2Eqgkq6ZsGhDug1ganS9/9JE9JX6Shu7X5CadpxJFxD6yq7UApznmlNkBrEb5SZUvEz4qSmyC9SGxlyIHZTxXAPYEHReQXOF36Aj8UdrP39Xex3WU2DYGINMbZab0Jp0S2hsBr6HXXXcf+++8faknayMrK4s033+S1117jzjvvrHIGO8hQnJts04EbVPUrb6M04VgCZRJtJPAnv4P45z//WeX3p512GuPHj6dHjx4xXWfjxo387W9/45FHHqmRjI0YMYI//elPMSdjiSgpjKcVK1Zw991389JLL1FREbYacxvwz3AfbMjckr5+OAeFfxlmWXBJ3/mq+o1nAYbhDt1dDBxB9AN2E9E0IpRyYBnO+apAiWBg6O4qVcoS+Nwhud35ApO6X1XVL0SkOU6nrSuDln4IvA9c4/6++hkqY9KKiGQA5+K0JO8eak3gNbSgoIAuXbp4Gp+fRITs7GxGjBgR9rwzzs/S84BfiMgTwM3uQFjjI0ugTKIdV1ZWdkjHjh2/9TsQcLbOCwoK6NevX0yft3XrVv7+978zefJktm7deyZcRBg6dCjjx4+nZ8+eMV2zrKyM++67L2xJ4TXXXEOHDvE4ilI369evZ/LkyTz99NOUl4eqVqr0Fk6JQUoNwfOSW9J3oYi8Re0lfR+JyKWqOt2zAMNQZaebRAWG7tbma5w7y/FuGlElLGA50BKo3mpcgINFaEHihu6Gc3nQr+8WkROAZ3ESUHCSy9uBW9m7K/8T8HSoi7nJ1+mq+kpiwjUm8URkKM6IgN5hPs7IkSO5/vrrYxp2n24yMjLIzs5m+PDhFBcXc9ddd7F+/frqyxrjjMO4SEQeACapalx23E3sLIEyCSciZ+K8afRM48aN2XfffdmyxfnZcvTRRzN+/HhOPfXUmK6zY8cOnn32WSZPnszGjRurfCwrK4sJEyZw3HHHxXTNzZs38+CDD9YYshe4A3fDDTfQtWvXmK4ZT9u2bePJJ59kypQpVdqlh7AAmKCq73oUWspzS/o+xRnCGm54bRtgWrKU9AUN3e3I3vbdoXjRNAJgBU4yEqlEsB3QTIQv4z10NxQRaQZc5P52LtAX501joHPMCuBiVX3fTaz6uI+/pKpVf7A41zsYmA70FZFngSuqzZkyJqmJyACcZiknh1uTlZVFQUEBxx57rHeBJbnGjRszZswYzj77bJ588knuv//+KjMkXS1xRi5cLiKFwP3288F7lkCZhFPVEXicQGVkZPD000/z0ksv0a9fP0aMGBFTx7ry8nKKi4u55557qsxxAujduzc33HADgwYNiimm7du388QTT4T8gZiVlcWNN97I0UcfHdM14ynwZw5z5yvYEpwa9hc1uObQREVVPxKRPjhd3i4IsyxQ0tff7dKXDCV9ZSLsJHR5npdNIzbitP+u7Ru6JdBLhOWq1GglHmfnAm3dXx8HDAj62HM4s6K+d38fvFNVo3xPRIbj7FwFrncRzo7lOfEM2JhEcEtZb8QpOQupT58+jB8/PqZZiA1Ny5YtycvL48ILLwx5w9XVFqdE+BoRuQf4q6omYp6fCUHs/U9iuXeR/xD82MyZMznmmGN8isgXOzIyMvbv0KHDtmg/QUSuBe4KfuzRRx/lzDPPjHtwwVSV1157jUmTJvHNN1Xfs3bv3p3rrruOkSNHRj1UF/YmJnfffTffffddlY/16dOHCRMm+DpJPdKsqWpWAn8BHlPVPZEWmuiIyK9w2p1HOmP0PZAUJX0Abnnc4ewt0/sJ59zTkST23NN2nOS9O7HtclXglPPV2OmJFxH5NzCk2sM/4OwgPhy0rhWwGqdl8zKgR+AmhNviPB+YiHOeK2AakKuqcWvVbky8uV0rbwNGE6Z755FHHsnVV19tswvrIFzJfzXf4pQJ22u0B2wHynih+Z49e35OkjcZKCkp4S9/+Quffvpplcc7derEVVddFXP78EBicscdd1BaWlrlY8nyQhJu1lQ1G4C7gcmqap324iiopO8FwhyuJvlK+oKH7rbE26YRnYi9RDAD6OYO3V0Rr6G7Ae4Q0Orb0XOBMSF2Dn/J3nk3jwYlT/vgDO0dFbR2M/A7VX2hjnEdDeynqiV1+XxjouGWm/4J+C1h3lMedNBBXHnllTEPkjd7dezYkcLCQnJzc5k8eXK4pk6H4DQrGisiN2NVIgllUziNJ9yhuknpv//9L+effz45OTlVkqf99tuPgoIC5syZw5gxY2JKnkpKSjjttNPIzc2tkjwFJpLPmjXL1+SppKSEM844g5ycnEjJ01bgTqCbqt5pyVNiqOpHwM+A5yMsC5T0zRaRQyOs84Qqu4EvgKU4nfD8ahoRiw7AESLE9R2cqm7AaTW8Dqc9+Z3AkDBll1e4/98F/B0q79zPo2ry9C5wbD2Sp9Y4O1fvisj1dbmGMZGISDsRmYRzY+MKQiRP7du3p6CggNmzZzNmzBhLnuKgW7duTJkypbb3EL1wbsrNFZFTvIuuYbEdKOOVbOB3EN+7v/Xx5Zdfcvfdd8e1ffjChQu5/fbbmT+/6uirdu3a8bvf/Y7LL7+cJk2ahPnsxAs3a6qaXTgDP/8cPAjUJI7bpe+XIvImkUv6+gIfisglqvq6ZwGG4O7kbBNhE07ziLoO3a1NNE0jotUGOMptLrEjDtcDQFXfE5ETgU6qGnLunYj8DKfLIsArqvqdiIwGHsf5+oFzjmwCcF9d7xy7LaOfxRn+C3CbiLxqXTJNPLiWVrgtAAAgAElEQVRlqHnADYTZDU6W2YXprEePHhQVFXH55Zdzxx13MG/evFDL+uHcRJkFjFfVRd5Gmd4sgTJe6VhWVta7Y8eO//U7kDVr1vDXv/417BDca6+9lgMOCDkcPaylS5dy3333MWPGjCqPt2rViksuuYSxY8fSqlWruMRfF+FmTVVTgdP56/pkaFrQEEVZ0tcOmOGW9F3rDnz1jTt09yeceOP9mhJoGtGL+FVMNMNpLhG3obsAqroCJ9kLJ7h5xONuic2f2Zt4LgYuUtWP6xnKn3BuWAWMs+TJ1JeINAF+jdOGP+R8jWSZXdiQnHDCCUyfPp2SkhJuu+02Pvvss1DLhuLceHsRuFFVv/A2yvRkCZTxjIhkA74lUJs2beKhhx7i0UcfZefOvY1qAu3DJ0yYwCGHHBLTNVeuXMn999/PP/7xjyr1yM2bN+fCCy/kqquuol27dnH7M8QqyoOnALOAa1T1fx6FZsJwu/T9DKdDW06YZYGSvn5ul75Sr+ILRZUf3HNRsQzdrc12oBSnYUW8b2N7OnTXvWt/ofvbzTjNIgIzFRS4Dyiob5ms28HvpqCHnlHVqfW5pmnYRKQRzr/dm4GQ5cP1uflo4iMrK4uZM2eGbYKF85pxHnCuiNiN0jiwBMp4xm1nfovXzxtprlFWVhY33XQTvXr1iumaa9euZerUqTz11FNVhswmyxDccLOmQpiDs7UfsabPeMst6btARN4gcknficBCEfmVqr7hWYAh1GHobiSBphGdSdxcKQE6iPAdUBHv5hLVBDeP2I+9ydNa4Leq+mZ9n0BEDsEZyhvYqfsfkFvf65qGye0KORqn8+oRodbU5+ajiT8RqTKMN9QYFpyfD+cBo0TkSaxUv84sgfJBA26KcsLKlSs7HXzwwWu8eLJIc4369u3LhAkTOOmkk2K65pYtW5g6dWqNxCQwTX38+PEceqh/Z/wjzZqq5kOcIbizPArN1IFb0vcZzuDdSCV9ryVDSV8MQ3cjXob4NI2oTQXwJU5Cc4B7LipRX7vLQzw2Hac9eb3bq7uDfKcD7d2HNgPn2HBNUxciMhSnGcrPwq3Jysri5ptvpmfPnt4FZqISGMZ77rnn8uyzzzJlyhQ2bNhQfVkTnOYfF4nIA8AdQbPqTBSsC58PLr30Up555pkq528aCMnMzDzDiycqLy+nf//+5OfnV0mejj32WJ577jleffXVmJKn7du3M2XKFPr168fUqVOrJE+nnHIKM2fOpKioyLfkqby8nGeeeYYBAwYwceLESMnTF8D5wEmWPKUGVf0v0AcniQonuEtfVw/Cisgti1uOk6TEKtA0oltcg6rpW5yv26FAK5zmEi3j/STunfz32dtA5wfgElUdHY/kyVWE828EnK/5GFX9Kk7XNg2EiPQTkXeBdwiTPGVlZfHGG29QXFxsyVOSa968OZdddhnz5s2joKCA1q1bh1rWErge+EpErheReJVgpz1LoBKvxjvZ1atXk5+fz7Bhw3j77bf9iMk3IjLSi+epqKhgzZq9G12HHXYYRUVFvPnmmwwePDjq65SXl/Pkk08yYMAAJk2aVCUx6dOnD9OnT+fZZ5/l6KOPjmv80aqoqGDGjBkMHjyY/Pz8GoN6g6zCKec5WlWn2WyI1KKqP6jqBTh/h5EmzZ+Ic1g4sROno6DKJpzBt7HMrQo0jehOYl+f1gJb3OcJNHFoAvQUqdzFiQt1XAtcAMwEjlPVp+J1fRHJA34V9NCtfpdzmtQiIkeJyAs47fRDtr3u3bs3L7zwAsXFxRx//PHeBmjqpWXLluTl5TFv3jzy8vJo2jTk1Il2wCRgmYhc4Z59MxGIvY9KLBHphvNDaf9wa/r06cOECRPo37+/d4H5Z9vOnTvbd+3aNeLBHBG5Frgr+LFHH32UM8+M7n3hzp07q+wGzZ49m8MOOyzqICsqKnjllVe46667+Pbbb6t8rEePHowfP57TTjst6uslQklJCbfccguLFy+OtGwTUAhMUdW4tW02/nEbTLxA5B0aBXwv6QMQoRFOI4iQtz+DbMfpRHc4iTv3BPAjzk7skRFiWqfKt2E+ljREpB/wHk7yB/AaMEpV67LzZxoYd7f6BuBSCD0f7fDDD+faa69l5MiROJupJtUFOhHX0lyqFLgDZ+C3/TwJwXagEswtozgKeIAwd2IXLVrEueeey5gxY8K1oEwnLZs2bTrE7yAiKSkpYfjw4fzhD3+okjx16tSJwsJC3nnnHV+Tp4ULF3LOOeeQk5MTKXnaRtUhuJY8pQm3pC+QRIWTNCV97tDdpcD6CMu8aBoBzs/g5UAXIid0HUQ4Mt5Dd+NJRDoAL7I3eSoFfm1vdkxtRKSziEzG+b68ghDJU+fOnSksLOTdd98lOzvbkqc0EngvU8vfbVec0uBPROQ8TwNMEZZAeUBV16vqH3HurD6MU99fw7vvvsvpp59Obm5uqBaUaUNERvgdQyiLFi1i9OjR5OTkVElk27ZtS0FBAXPmzPF1mvrSpUvJzc3lrLPOqjGoN0g5zr+x7qo6XlXjNufGJA+3pC8Hp6QvUolcoKTPk7OH4aiiqnyD8ya/etmDAl/hXdOINkA0vZYDQ3eTbhKoiDTGSaA7uw9tx9l52lhtXSMR6SYip4vIOWLvghs0EWkrIpNwvg+uBGrUcrVr1y4pXu9M4nXv3p2ioiJef/11hg0bFm7Z0cALIjJXRKI//9AAWAmfD0SkF85MhdHsrb+vIlnaYSfIio4dO0bseeplCd+yZcu45557agzBbdmyJb/+9a+58sorwx2+9ES4WVPVBIbg3mCHxxsWEQk0mEiVkr7WODeTAjX23+KcFe1FmDKiOPkG2AH0JMzP3TB2A8tVa55n9YuI3AdcFfTQbcACnK9rN5yzXd2BQ4DGQeumA79x2+SbBkJEWgJ/AMYD+4ZakyxD341/PvjgA+644w4WLFgQadlc4GZVfcejsJKWJVA+cuvXbyfMoU1InoGs8ZaRkXFMhw4dwtYrepFArV69msmTJ/Pcc89V6YgYSF6vu+469t8/7NG1hAs3ayqEWcB1qvqxR6GZJCMi++AM3j2/lqXvAxeq6urERxWeCE1xZstsx0mgehH/YbnB1gJlOOXUTWpZG4qCN0N3ayMivwT+UY9LLMNpcf55nEIySUpEmgK/AwoIcw67RYsWXHrppfz+97+nTZtEVs+aVKCqvPXWW9x5550sW7Ys0tK3VfV0r+JKRpZAJYFoZi6k4d2hCR07drwj3AcTmUBt2rSJhx56iEceeYRdu/ZWPwWGAhYUFNClS5eY/jDxFG7WVAhzcXac3vcoNJPkROQKnJ2mSEnCBuBX8RjeWh/u+SIlOZpGRGsj8I1qndqz15uIHIPTlChSu/VdOHGuAb7GSRyr//pbVW1wczQaChHJBC4BbsI571dDYFbQ2LFjOeCAaCpaTUOyZ88epk+fzq233sqmTZvCLeugqmFb/6Y7a1OYBFR1loicgFPSNxHnDUUVW7duZerUqTz//PP87ne/4/LLL6dJk7rcSE0aI3A6vHhm27ZtPPnkk0yZMoUff6xawZIMQwF37NjB448/Hs0Q3M9wWhVP8yg0kyJU9WERWYRzPiZc28n2wOt+D951h+4iwlYSl0BF2zQiWu2ApgkeuhuSiOwLvMTe5GktTunmCqAvTpt0gHxVnexlbCY5uGfczsUp6ewRak1GRgbnnHMO1157ra83Ck1yW758OTNnzmTz5s0AZGZmhppdGrIfekNhTSSShDsrZBpOiUkuzl3CGjZu3MjEiRMZNGhQqg/j7VdWVhbXeSuRPP744/Tt25eJEydWSZ6SYShgDENwS3H+bRxnyZMJR1UXAb2BSP9GAl36ZolIJ08CC0OV1ThNJOK9qxNoGrEv0TWNiFbChu6G474xfhznXBM4zWLOV9WrVPVenDlvAZG6HZo0JSKnAR/gfN+HTJ5OP/10Zs2axZQpUyx5MiGtXLmSsWPHMnToUN58801EhOzsbCZMmBBqedge6A2BJVBJRlXLVfVhnF2o8cDmUOtWrVpFfn4+Q4cOrdH8IEVkAp51Bnv88cfZsmVvQ7rjjz+e4uJiX4cCqmqVIbjr1q0Lt3Q9zr+FHqr6sLUpNrVxu/SdT+1d+k7GaVM73JvIQlNlI84MqEhDgmP1LU6i2DWO1wxIyNDdCG4Ezg76/ThVLQn6fXD3QkugGhAROUlE/oUzpPmEUGv69u3LSy+9xBNPPEGPHiFzK9PAbdq0iYkTJ3LyySczbdo09uzZQ1ZWFu+88w5FRUVpdQY/XiyBSlKqul1V78TpqHQLTh1/DV988QW5ublkZ2czb948T2OsL1Ud6fVzduvWrbJtZ1ZWltdPX6mkpKSyZX1paWm4ZZtxEqeu7iyneL65NA2AezNmIM75l3DaA2+IyGS3PbYvVNkOfE6Yn3UxWgtswdmxSVTr7gzgIJE6NaWImogMA/4c9NCzqjq12rLgBGpDIuMxyUFEeonICzhn4k4NtaZnz54UFRXx6quv0q9fP28DNClh27ZtTJ06lf79+zN16lR27txJVlYWb775pq+VOanAEqgkp6qbVfVmnETqTsLcoQ0M483JyeHzz1OjuZKIDF+8eHFC3nw0atSIFi1aVP6+U6dO3HvvvfznP//xdShguFlT1Wyn6hDc7d5FaNKNqi4k+pK+d/ws6Yty6G5ttuKUtHWnbh33oqU4rdEPT/DQ3f3Y+3P/Y5zBp9UdGPTrjSE+btKEiHQRkSLgf8B5hLhBEJjvM2vWLLKzsz2P0SS/HTt28Oijj9K/f//Kow0/+9nPeOGFFyguLua4447zO8SkZ00kUoSqrgfGi8hDwATgUkLMTAnsbIwYMYIbbriBrl27ehxpTPZp167dIODdeF84MzOThx56iOnTp3PCCSdw8cUX07Spf+cdw82aqqYceAK4RVVDnoEzpi5U9QcRyQHmAIWETywGAx+LyK9U9S3PAgyi6iQmImzDmWMUy92OXTjnnuLVNCKSUpzdu8BZqKNEWKZKxNaZsVLVF0RkKfAYcEGYGyrBSa+V8KUhEdkfuAZn/lfIF7NOnTpx1VVXccEFF9Cokb29MzWVl5dTXFzMPffcU3ls4IgjjuCaa65h5MiRvt1cTkX2HZZiVPVbIFdEpuC0KD2v+pqKigpmzJjBW2+9lfTDeCsqKkaQgAQKYNiwYZGma3si3KypahR4EShQ1S+9i840JOrMrJgsInNwureF69K3P05JXyHOv0lfOtWo8p0IO3F236N5rQo0jWhDfJtGhPIdTkzBBwOaAb1E4j90V1X/h9NprwYRacbeLobbVHVHPJ/b+EtE9gPGAlcT5qZA27Zt+b//+z8uu+wyX28UmuRVUVHB66+/zh133FF5bKBz586MHTuWX/7yl2RmJnKGeXqyEr4Upaqfu4fEBwDvhVoT6O42cODA2rq7+WmU3wEkQuBA5sCBA2vrljgLOEFVz7fkyXjBLen7GU7SHo4A1wP/8rmk73uc5hLRJAWBphGH1rawnrbinE88KMTHGgFHilQ5k5RoHdm7S2e7T2lCRFqIyPU4HSpvIkTy1LJlS/Ly8pg3bx55eXmWPJmQSkpKGD58eOWZ63bt2lFQUMCcOXMYM2aMJU91ZAlUilPVeao6BBiGUx9fw/bt25k6dSr9+vVj6tSptQ1n9Vq31atXH+F3EPFS/UBm8KDeauYDp6jqMFX9r4chGoOqfg+cj1MOFKlLX6Ckz7eJ825J3GLCdCR1edE0Apwy25U4u2LhnkeAg0U4VCShsQRYB740IiKN3YHYy4FJOGfgqggMwZ03bx4FBQW0bp3oalWTihYuXFh5Nv6zzz6jTZs2XHPNNZUJd4rPEvWdJVBpQlVnAX1w3hR9FWrNli1bmDhxIgMGDOCZZ55h9+7kaOGfmZmZ8qdcA7t9wQcyw1iM83c0QFX/41mAxlTjzp6bjNOl75sIS/cH3hSRSSLiy61KVfao8iWwOsSHvWwa8TXOuaxoSgr3B3qIkOjOhtaBLw2ISIaInIfzGlEENXcxGzduzOjRo5k9ezaFhYW0b+/ZKEWTQpYuXUpubi5nnXUW8+bNo3nz5uTl5TF//nyuueYaWrVq5XeIacESqDSiqhXugNWeOPNf1oZat3btWvLz8znllFOYNm0aFRX+jhVS1RG+BlAPu3fvZtq0aQwaNIj8/Hw2bAj7/mUFzt/Jsao6zT2PYozvgrr0RVPS5+vgXXfo7nL2Dt31o2lEi1rWBWtN4ofuNgv6tXXgS0Eiko+TnL/A3mHJlTIyMvjFL37Be++9x5QpUzj44IM9j9Ekv+XLl5Obm8vPf/5zZsyYUblTOXfuXAoKCmjTpk3tFzFRswQqDQUN4+2OM0doS6h1X331FWPHjmXYsGF+D+PNKi0t3dfPAGIVGII7ZMgQxo4dy8qVK8Mt3YDzd3CEOwTXlwP5xkQSQ0nfEPwv6duEc5f+J/xtGhGtwNDdhEyiVNVncW7OlOPEaVKIiHyOM7bikFAfHzp0KG+//TYPPvhgsnfVNT5ZvXo1V199NaeeeiozZsxARMjOzua9996jsLAwaZuIpTpLoNKYqm4LGsZ7J2EOYi9ZsoTc3FxGjRrFggULPI3R1ahJkya+vSGLVUlJCWeccQa5ubl8/XXY+aRbqTrLyYbgmqQWVNI3iOQv6dsOfIpTVudn04hoZQDdREjI1oF7w2woziBikyJEpAPQK9TH2rZty8svv8xTTz1Fr14hl5gGbuPGjdx0000MHDiQ559/nt27d5OVlcXMmTMpKiqyhDvBLIFqAFR1k6qOB44AHgZCHn768MMPOfvss8nJyWHJkiWexigiIz19wjr46KOPOP/888nJyeF///tfuGW7cL7G3VR1vKomZetDY8JR1Q9xSvqmR1gWXNLnZce5Su68qB0k9txPNE0jYtFRhCMSMXRXVd9X1cfjfV3jj02bNnHDDTfw9ttv+x2KSTI//vgjd999N/379+eRRx5h165d9O3bl5dffpni4mKOOuoov0NsECyBakBUdZWq5gJHA9Nw7t7WUFJSwrBhw8jNzeXbb7/1KrwzSdK5ZF9++SW5ubmMHDmS2bNnh1tWgfM1PVJVc1XVSmlMynJL+s4jupK+T0TkNC/iqk4VVeUbnPNJ8T5XGGvTiGjtizMvynpOm4j/ZpcuXcqvf/1rsrOzmTt3rlcxmST1008/8be//Y3+/ftz7733snXrVo4//nj+/ve/8+qrr3LSSSf5HWKDYglUA6SqX7gzpE4CXgu1JjCM9+STTyY/P5/16xPeHbdtWVlZv0Q/SSzWrFlDfn5+ZV1xmL4PipM49XRnOZV6GqQxCRJjSd9bPpf0fQcsI8zueh2V4px5iqVpRLSa4zSX2CcB1zZpZtGiRYwePZqcnBw++eQTv8MxHgu8HxsyZAi33normzZtonv37hQVFfH6668zbNgwv0NskCyBasBU9UNVzQaygJBbK9Xbcyd4GG9SdOPbvHlzLENw+7qJ0zIPQzTGM25JX1/g9QjLAiV97/hY0hfL0N3afAdk4nTdS5RGwD4J7tBnUs89QMjZgIHzt36U2RvvBZpVnXzyyeTm5rJixQo6depEYWEh7777LtnZ2Yh4MWrOhGIJlEFVZ6tqFs4w3pCHewLDeAMDYnfuTEhPBF/PQVUfghvhz/gBMNQdgrvIwxCN8YWqbgSycUr6yiMsPQWnS59fJX3RDN2tTaBpRKJ7RX8PbMfZifJq6K5JfouBE3C6Yn4ZaoFPZfbGQyUlJQwfPryyWVXbtm0pKChgzpw5jBkzhkaNkvLEQ4NiCZSp5A7j7Y3zgztkyU713Zk4D+M9et26dYnuqFVDYJdtwIABte2yLcX52vRT1X95F6Ex/qtW0lcaYekBwBsicrMfJX2q7MGZFVVWh0+Pd9OIcHbiDAUO/LzbH6fVeaKH7pokl5mZKe732jTgKOASQny/VS+z/+47O3abDhYtWsR5551HTk4On376KS1btiQvL4958+aRl5dH06Z2dDJZWAJlqggaxtsDZ7bIulDrojwfFLM9e/Z4tgsVwzmvlThfi2NsCK5p6FT1A5w75G9EWJYJ3IRPJX1uc4mVwFfsHbpb66fhNI3oQmIb2uzBietQqNKNrxWJH7prklzv3r0r2+W7Mx2fAo4kzOtxDDcATRL74osvyM3NJTs7mzlz5lQOwZ03bx4FBQW0bp3oOeEmVpZAmZBUdVe1YbwhfyoHJl/X0qEuaiLiyTmoKEsgNlJ1CG5ct9uMSVVuSd9Ioi/p8+WUsyobcUqiInUSDCjFaRqR6ATmG6ATTiOJ6hI6dNckv969ex9X/bFoXo8DZfb9+vVj6tSp/PTTTx5Ea+pr1apV5OfnM3ToUGbMmFGZOC1YsIDCwkLat0/kMUxTH5ZAmYhUdWu1YbwhfypHOSMpGkM2bNiQsFstUc662kbVIbj2SmRMNTGW9L3plvR5/prjDt1djHO2KZzvcHadEv1uZQ1OV799I6xJ6NBdk9w6d+5cI4EKiOb1eMuWLUycOJEBAwbw6KOPsmtXNPcOjNfWrl3LjTfeyKBBg3jmmWeoqKggOzub//znPxQWFnLggQf6HaKphSVQJiqquqHaMN6QrekCXYICBx/roGl5efnQeoQa0pIlS8jNzWXUqFEsWLAg3LLqQ3C/j3ccxqQbt6SvL9GV9M0SEc/fGaiyC1hC6KG7gaYRB4X4WDwFmkZ0inJ9wobumuTVunXrQ9evXx/xeyTE63GN6oi1a9fy5z//maysrNq6yRoPBSe4jz32GLt27SIrK4uZM2dSVFTEoYd6fgzc1JElUCYmqrrSHcZ7DGGG8QZabw4ZMoQrr7ySlStXxvQcIhK3c1BfffUVubm5ldvjYQSG4PZ0h+CGPPdljAlNVTcQfUnfJ36U9Lnnor6m6tBdv5pGRGtfnJI+OzneQIiIlJeXnxnN2mhej1euXFmlRMz4I1SJZZ8+fZg+fTrFxcUcffTRfodoYmQJlKkTVV3iDuPtD7wbas3u3bt58cUXGTRoEPn5+WzYEOrmb8hrj2zUqFG93syUlZWRn5/PKaecUluTi1lAb3eWU522zIwxKVXSFxi6W453TSO+pmbTiGi1wIbuNiix3kRU1aXu6/FxOIlUDdWbFBhvhGry0aNHD4qKipgxYwb9+/f3O0RTR5ZAmXpR1QWq+nOcGVIhZyJVH8b7448/1nbZA84555w6ldMEtsejaLM+BzjZneVUr0Nbxpi9gkr63oywLLhLnx8lfd8DnwD74E3TiI6EbhoRrUbAkSL4MqTYeO600tLSZrF+kqp+6iZSg4D3Q62p3ibbJEaoNvMHH3wwhYWFzJo1i+zsbL9DNPVkCZSJC3eGVF+cOUnLQq2pPqg20uHWM844o2cszx9DB6JPgfNVdZCqlsTyHMaY6LglfSOovaTvVJwufXE/91gbVSpwmjpsSeDTRNM0IloCHCxCVxu6m/ZaNm3adEhdP1lV56jqYJwbmx+HWlN9UKuJn+pdfjt27EhhYWHlENyMDHvrnQ7sb9HETbXhf7k4Nf81bNq0qcouUajDrccff3yvaJ4zsLs1cODA2mZgfIEzkPB4N0ZjTAIFlfQNJczPAlcH4C0/SvrcobtfAmsTcPlYm0ZE6wCgh0hCyw6Nz1S13meB3RubfXBubC4P8fEq55VXrFhR36ds0AJNtAJdfvfbbz8KCgoqE6dGjexbNp1YAmXiTlV3uzMrDsNJpEKOSF+9ejX5+fn8/Oc/r3G4tUOHDp06dgxfrRLYHh88eDD5+fmsWxe278NqN4ajVfUpVY12qKYxJg5U9X3geJK0pM9tLrGC2Ibu1mYnzu5TolpqtcY5F9UiQdc3PhORbOLQ2ERVK9ybhr1wXgvXVF8TOK+clZVV21B5E8J///vfyjEun3zyCS1atCAvL4958+aRl5dHs2YxV2OaFGAJlEmYEMP/Qh5+WrZsWeXh1rlz5wYelqFDQ1f1lJSUcPrpp5Obm0tpaWm4p9/kPufhNgTXGH/FWNK3UESyPAksiDt0dwnRDd2NJNA0oit1axoRrUwgU4T9Evgcxj9dVq1adUy8Lqaq5e7r8eE4r42bq68J1fDAhPfll19WvneZPXt25RDcefPmUVBQwD77WN+XdGYJlEk4Vf2x2vC/naHWLVq0iNGjR5OTk8Nnn31G9QRq0aJFZGdnk5OTw+effx7u6bYBfwEOc4fg7ojfn8QYU1fVSvpq3AUP0hn4t08lfdtwhu5uq8dl4tE0Itrn6QwcbkN301NmZmbcOw2o6nb39fgQnESqRpZU/bzyzp0hX7IbrED1zKmnnsqMGTMQEbKzsykpKaGwsJD999/f7xCNByyBMp5R1fXu8L8jqWUY7+mnn05xcXGVre+HHnqIRYtCNvoD5672wzg7TjfaEFxjkpNb0ncc8FaEZYGSvrdFpIMngbmChu5urMOnlxG/phGRrMTpIBi4xW1Dd9NQPM5BRbh29RubNTovbd68uXLoay1dbRuEjRs3Vjm/XVFRQXZ2Nu+//z5FRUV06dLF7xCNhyyBMp5T1W/d4X99gNfDrOGNN96I5s5XBfA0cKQ7BLcsvtEaY+LNLek7k9pL+n6OU9I3yJPAXKpUqPIVsIIQw0nD+B5n5yreTSOq24xTZlg9sbShu2lGRE5cv359Qs8EquqG2m5sBs9VnDZtGhUVDeso8datW2t0EM7KyuLNN9+kqKiIww47zO8QjQ8sgTK+UdVP3DtsJ+PMZQq1JtIlZgF9VPVXqvpNAkI0xiRIUEnfMCKX9B2EfyV9a3HGMoTcLQ+yE6dhTaKaRgT8hNMxMNzz2NDd9JJRXl5+hhdPpKor3Bubx+AM463x4vvVV18xduxYhg0bVqPxUzrasWMHU6dOpW/fvkycOJGtW7fSp08fpk2bRnFxMccee6zfIRofWQJlfKeqJao6CMjGmdNUmxJgoGHpT4MAACAASURBVDsEN+SMC2NMalDV93C69EUq6WuEfyV93wOfE6LEyVWB0zTiUBLbNGK3+zyHEfm1OzB019Ovk0kMEUlYGV8oqrrEHcbbD/hXqDVLliwhNzeXs846i/nz53sZnieqN9P4/vvvOeKIIygqKuKf//wnAwcO9DtEkwQsgTJJQ1Vfw3kjdTGh70h/DoxQ1ZNVdW6IjxtjUpCqrmdvSV+kgxZ+lfT9hPPzJ9TQ3a+BA/GmacRBEFWJngCH2NDdtHBaaWmp532wVfUDVR0KZAGzQ61ZuHAh55xzTmXjp1QXajzKQQcdRGFhIf/617/Izs5GxL6djMMSKJNU3JkVz+DczX0Sp0PQZuAO4FhVfcPH8IwxCRJDlz5fSvqChu4Gn7Msw0mcEt1KfBVVm0ZEKzB0t3H8QzIeadW0adPBfj25qs5W1SycUtv/hVpTUlLC8OHDaxstktSqj0dp164dBQUFzJ49mzFjxpCZaf1ZTFWWQJmk5M6Q+o2qtlHVtqo6wYbgGpP+gkr6ZkZYFijpm+llSZ87dHclztDdLThNIzon+Gk345yxquufMzB0t2X8QjJe8rqMLxRVnQX0Bs7H2XWtIobh9knlww8/rNxF+/zzz9l3330pKCjggw8+IC8vjyZNmvgdoklSlkAZY4xJKm5J3xk4c2oiNXAYilPS5+mhBHfo7pc4u2GJtIPITSOi1QRnJ8qG7qYgVT3L7xigskJkGtATyMX5t1lF8PmhG2+8kQ0bNngeZzQ+/vhjLrnkEkaNGsX8+fNp0aIFeXl5zJ8/n7y8PJo3T3RFrkl1lkAZY4xJOm5J3504SVKk8QQHAf/xoaRPgaXUb+huJLtxzj3V1jQiWpnY0N1U1WXdunXH+B1EgFsh8jDQHecmR42zgTt27OCxxx6rbMTw448/eh5nKMuXLyc3N5cRI0bwzjvv0LhxY8aMGcOcOXMoKChgn32sgaWJjiVQxhhjkpaq/gdn8G40JX2vikg7L+KCKkN3E3GbPZamEbHoKEJ3EXv9TyUVFRW+l/FVp6rbqg3j3VF9TfUZSlHMdkyINWvWkJ+fz6mnnsqMGTMQEbKzs3nvvfcoLCykQwdrWmliYz9AjTHGJLUYSvpGAh97WdLnDt39Gmfobryswjm7lKjb4W2BXiIJbbtu4khEsv2OIRxV3eQO4+2Kk0jVyJI2bdrExIkTGTRoEM888wx79tQ2Wi0+As87cOBAnnnmGXbv3k1WVhZvv/02RUVFdO3a1ZM4TPqxBMoYY0zSS4GSvrXAF9Q+dLc2gaYRB9Y7qMi2A21FaJ3g5zFxoKonfffdd0m9TaKq37mJ1JHAw4T4Xli9enWVnSDVGvN642Lbtm01dr5OPPFEXnnlFYqLi+nVq1dCntc0HJZAGWOMSRlBJX1vR1gWXNLX1ou4IKqhu7X5ifg0jajNVmA9zo5BDxu6mxIyKioqhvsdRDRU9VtVzcX5Pp0Was2XX35Jbm4uI0eOZPbskGOm6iTQxKJ///6VZ6969+7NCy+8wCuvvMKJJ54Yt+cyDZslUMYYY1KKW9I3nOQs6fsJWAx8H+On7sFpDx2vphHhlOOUG3bHGbhrQ3dThKombRlfKKr6uaqeD/QH/h1qzUcffcT555/PqFGjWLBgQZ2fK5A4nXTSSeTn57NhwwYOP/xwioqKeO211xg0yNPZ26YBsATKGGNMygkq6RtG5JK+g/G4pE+V3cCyWuKq7msS0zQimLrPcwjUGK5rQ3eT3+nLly9P5L+PhFDV+ap6Ks736qJQaz788EPOPvtscnJyWLx4cSzXZsaMGQwZMoT8/HzWrl1L586dKSws5N133yU7OxsRuy9g4s8SKGOMMSlLVf+NM3g3mpK+V7wq6as2dLe2IeCJbhoR8C1OA4lwQ3Vb4zSXsCE4yalVy5YtB/sdRF25w3j74gzjXRZqTUlJCaeddhq5ubmUlpZGvF5JSQnDhw8nNzeXb775hrZt21JQUMDs2bMZM2YMmZnWI8UkjiVQxhhjUpqqfgecCdxC5JK+bJySvgGeBEbl0N2lOKVzoXjVNGIDTrne/rWsa4qTRNnQ3SQkIknXzjwW7s5xYBjv+Tjt+quoqKhgxowZDB48mPz8fNatW1fl44sWLWL06NHk5OTw6aef0qpVK/Ly8pg3bx55eXk0bZpym3QmBVkCZYwxJuWp6h5VvZnoSvre87ikbytOc4nqQ3e9bBqxAegS5frA0N1OiQvJ1IWqnuV3DPGgqhVuItULuIYQs9QC55oGDRrEnXfeyYIFCxgzZgzZ2dnMnTuX5s2bc9lllzFv3jwKCgpo3doaShrvWAJljDEmbQSV9L0TYZkfJX3Vh+7uxtumEd0g5iYRB9nQ3aRzyLp16472O4h4UdWfVPVenH+ftwA/Vl+zbds2Jk+ezNlnn827775L48aNGTNmDHPnzuXWW2+lXTvPZmfXS3l5uW+DhE382Q9FY4wxacUt6TsD5w1ZpPNHnpb0BQ3dXYVTuuRn04hoBYbuWl1UkqioqEjpMr5QVPUHdwf5UJxhvDvCrf3zn/9MYWEhHTqkRvf9HTt28MADD3DcccfRs2dPSkpK/A7JxIElUMYYY9JOUEnfUJwyuXACJX3Xi0ftulRZg3PuKVwzh3iprWlEtFoAR4kkvMmFiU5KtTOPhapuDBrG+xjOTm0VZWWxNLf0T3l5OU8++SQDBgzg9ttvZ8uWLfz000+8/XakfjcmVVgCZYwxJm25JX3HUXtJ3yS8LenbTv2G7tYm2qYR0WoEHCkSt+uZuuu3bt26A/wOIpFUdaWqXgYcjXOzIfhj/gQVpYqKCl588UVOPvlkJkyYUKMJRrLHb6JjCZQxxpi0FkNJ31nARyLS35u4Kofu/hDnS28DNhJ904hoCXCoCIfY0F1fZajqcL+D8IKqfkGIc1HJaubMmQwdOpQrr7ySb7/9FgARoUuXeH8rGr9ZAmWMMSbtVevSF6mkrwvwvlclfe7Q3S+IbehuJOU4pXuHEXvTiGjth7MjZXyiqmlbxpeKPvzwQ8455xx+85vfsHTp0srHs7KyeOONN8jLy/MxOpMIlkAZY4xpMFT1XZwufbMiLAsu6Uv4PKSgobvf4DR+qPOlqH/TiGie4yvVsHOtjDeGL1++3Bp7+GzJkiXk5uYyatQo5s+fX/l47969eeGFFyguLua4447zMUKTKHYHyRhjTIOiqutEZDhwo/tfuJuJZ+F06btAVeclPi7Wi7ADOJy6JUDxahoRSalq6pRUpbFWLVq0yCLyjQCTIMuXL+euu+7itddeq3Km6fDDD+faa69l5MiReNSTxvjEEihjjDENjqruAW4WkfeBZ4EDwywNlPT9CSjUBJ8AV2WrCJ8DR+B0v4vWeuLbNCKU71RZn8DrmxiISDaWQHlqzZo1/PWvf+X5559n9+69DQI7d+7M2LFj+eUvf0lmZqaPERqvWAJljDGmwVLVd0XkBOA5ICvMskBJX38R+Y2qbk5sTOwSYTHOTJxopoQGmkYcmcCwtuLscJnkkQ2M9TuIhmDz5s08+OCDPProo1WG4bZr147f/e53XH755TRp0sTHCI3XLIEyxhjToKnqahE5hdpL+kbhlPTlqOr8MGviFBMVwFcibMeZVRVOOVCKs2OVqJqhcmC5ar3OZ5n4O3Tt2rW9DjzwwMV+B5Kutm3bxpNPPsn999/PDz/sbZbZqlUrLrnkEsaOHUurVq18jND4xRIoY4wxDV5QSV8JTklfhzBLAyV9N+JNSV+Zey6qG1C9NijQNKIriW0asVyVXQm6vqmHioqKbJxW+CaOysvLKS4u5q677mL9+r1Vq82bN+e3v/0tf/jDH2jTpo2PERq/WQJljDHGuFT1X0ElfYPCLGuMtyV9W9ySviOA4M5r1jSigRORkcCdfseRLnbv3s3LL7/M3XffzcqVKysfb9y4MTk5OVxzzTV06BDu3oppSKyNuTHGGBNEVVcBp1D74N1ROIN3+yU+JnYAn7N36O4GrGmEgf5lZWXt/Q4i1akqr7zyCoMHD2bs2LGVyVNGRgajR4+mpKSEwsJCS55MJUugjDHGmGpUdbc7ePc0YF2EpYcA/xGRhB/mDxq6uxIngeqSwKezphGpIRM4w+8gUt0tt9zC73//e7755pvKx04//XRmzZrFlClT6NIlkd9qJhVZAmWMMcaEoar/Ak4AZkdY1hT4q4i8nOjBu+7Q3TIgkS2/dgFfWtOI1KCqI/2OIdV9+OGHlb/u378/M2bM4IknnqBHjx4+RmWSmSVQxhhjTAQxlPT9Aqek76TEx8QGYClOh7y4XhqnaUS8r2sSRESGL1682Hpox8mtt95Knz59/A7DJDlLoIwxxphaBJX0nU7tJX3veVTS9yPOuahtcbxsqSpb43g9k3j7tGnTJtwMM2NMAlgCZYwxxkRJVWfhlPTNibAsuKRv38TGwy5gCc4g3fqyphEpKiMjw8r4jPGQJVDGGGNMDNySviFEV9L3caJL+lSpUOUrnOYSdWVNI1LbWX4HYExDYgmUMcYYE6Ogkr5RRN798bKkrwxYBuyJ8VPLcc49WdOI1HVYWVlZT7+DMKahsATKGGOMqSNVfQ04nuhK+l7yoKRvC05J385oPwWn496uxEVlvKCq2X7HYExDYQmUMcYYUw8xlPSdjdOl78TExsN2qg7djcSaRqQJEbFzUMZ4xBIoY4wxpp6qlfRtirC0K/B+okv6gobulkVYZk0j0suAsrKy9n4HYUxDYAmUMcYYEyfJVNLnDt1dCZRCjfNN1jQi/WQCw/0OwpiGwBIoY4wxJo5UdSXRl/R9ICLHJzYevqPq0F1rGpGmrIzPGG9YAmWMMcbEWVBJ3y+IXNJ3ODDPg5K+wNDdrTjJkzWNSEOqOnzx4sVN/I7DmHRnCZQxxhiTIKo6A6ekb26EZc1wSvqmJ7ikb5cqi91kyqSnNu3atRvkdxDGpDtLoIwxxpgEckv6BlN7Sd85wIJEl/SZ9FZRUWFlfMYkmCVQxhhjTILFUNJ3BB6U9Jm0dpbfARiT7iyBMsYYYzxSh5K+Nt5EZtJIt7Kysh5+B2FMOrMEyhhjjPFQUEnfndRsLx7sHJwufcd5EphJGyKS7XcMxqQzS6CMMcYYj7klfeOJrqRvvpX0mVioqp2DMiaBLIEyxhhjfKKq/wR6A/MiLAuU9L1oJX0mSgNXr17dzu8gjElXlkAZY4wxPlLVFcDJ1F7Sdy5W0meik5mRkTHc7yCMSVeWQBljjDE+q1bStznCUivpM1ERESvjMyZBLIEyxhhjkoRb0nc80ZX0PS0irbyJzKQaVT0DaOx3HMakI0ugjDHGmCQSQ0nfGGChiBzrSWAm1bRZu3btIL+DMCYdWQJljDHGJJmgkr6ziVzSdySwwEr6TCjWjc+YxLAEyhhjjElSqvoqTknf/AjLrKTPhDPK7wCMSUeWQBljjDFJzEr6TD10W7NmzZF+B2FMurEEyhhjjElyqlpuJX2mLjIyMqyMz5g4swTKGGOMSRFuSV9voivpe0pEWnoTmUlWqprtdwzGpBtLoIwxxpgUoqrfAkOAKbUsvRinpO+YhAdlktmg1atXt/M7CGPSiSVQxhhjTIpR1Z2qOpbaS/p6AB9YSV+Dlikip/kdhDHpxBIoY4wxJkWp6is4JX0LIiyzkr4GTkSsjM+YOLIEyhhjjElhbknfYKykz4R3JtDY7yCMSReWQBljjDEprlpJ35YIS3vgdOm73JvITJJos3bt2oF+B2FMurAEyhhjjEkTbknf8UQu6WsOPGwlfQ2Lqlo7c2PixBIoY4wxJo1YSZ8JRURG+R2DMenCEihjjDEmzQSV9J2DlfQZQFW7r169+gi/4zAmHVgCZYwxxqQpVX0Zp0vfBxGWWUlfA5GRkWFlfMbEgSVQxhhjTBpT1VLgZKIv6Ts64UEZv1g7c2PiwBIoY4wxJs3FWNL3gYhc5k1kxmODVqxYsZ/fQRiT6iyBMsYYYxoIt6TvRODjCMuaA49YSV9aatSoUaPT/Q7CmFRnCZQxxhjTgKjql0B/oivp+9BK+tKLiFgZnzH1ZAmUMcYY08Co6k9uSd+5RC7p64mV9KWbM4BGfgdhTCqzBMoYY4xpoFT1JeAkoi/pa+FNZCaB9isrKxvgdxDGpDJLoIwxxpgGTFWXEX1J30IROSrxUZlEUlUr4zOmHiyBMsYYYxq4aiV930dY2hOYLyIXeROZSQQRsXlQxtSDJVDGGGOMASpL+k4EPomwrBXwjJX0pbQeq1atOtzvIIxJVZZAGWOMMaaSW9LXj+i79FlJXwrKzMy0XShj6sgSKGOMMcZUEVTSN5rIJX29cEr6LvQmMhMvqmoJlDF1ZAmUMcYYY0JS1elEV9L3rJX0pRYRySotLd3X7ziMSUWWQBljjDEmLCvpS1uNmzRpcrrfQRiTiiyBMsYYY0xEQSV9FwNbIyztBcwTkV/G43lFJEdEtovIpfG4nqnKuvEZUzeWQBljjDEmKqr6DHAC8L8Iy1oD/4hTSd9wnEG+94nIIfW8lqnpTKCR30EYk2osgTLGGGNM1FT1C+Akoi/p61WPp+vs/r818JiISD2uZWpqW1ZW1t/vIIxJNZZAGWOMMSYmMZb0za9HSV+noF//3H0+E0dWxmdM7CyBMsYYY0ydJLKkz91t6lzt4XtF5IDYIzXhqGq23zEYk2osgTLGGGNMncVY0jdbRLpHeemeQPU22+2ieB4Tm56rVq063O8gjEkllkAZY4wxpl6CSvp+BWyLsLQ38F8RuSCKyw4N83iOiPwi1hhNeJmZmSP8jsGYVGIJlDHGGGPiQlWfxinp+zTCstbAc25JX/MI634e4WMPish+dYnR1GTnoIyJjSVQxhhjjIkbVV0KnEh0JX1zQpX0uclRpASqIzCpzkGaKlT15NLS0urlksaYMCyBMsYYY0xcBZX0XULdSvouB1rW8jSXi0i4Mj8Tm8bNmjU7ze8gjEkVlkAZY4wxJiFU9SliLOkTkUZAXhSXF+BhEakt0TJRUFUr4zMmSpZAGWOMMSZh3JK+k4BHall6MTAbuBroEuXlDwVuqnt0JsgIoJHfQRiTCiyBMsYYY0xCqeoOVb2C2kv6fkbsZ5vGicgJdQ7OBLQtKyvr53cQxqQCS6CMMcYY44koS/okxss2Ah4TkcZ1DswA1o0vEVSVb7/91u8wTJxZAmWMMcYYz8RQ0heLY4H8OF6vQVLVbL9jSCf//ve/GT58OA8++GDlY82aNfMxIhMvlkAZY4wxxlMxlPTF4kYR6RGnazVUvVatWlWjrbyJzcKFCzn33HO56KKL+PTTvZut/fv357LLLvMxMhMvdljQGGOMMb5Q1adEZD0wA8is5+WaAo+KyMmqWlH/6BqmzMzMEcBkv+NIRcuWLeOee+7htddeQ1UrH+/Rowfjxo0jO9s2+NKFJVDGGGOM8YWI9AMep/7JU8BA4PfAA3G6XkM0EkugYrJq1SqmTJnCc889x549eyofP/jgg/njH//IhRdeSEaGFX2lE0ugjDHGGOM5EbkY5xxU0zhf+nYR+aeqrojzdRuKwaWlpft27dp1i9+BJLuNGzfyt7/9jUceeYRdu3ZVPt6xY0fGjRvHBRdcQKNG9lY7HdnfqjHGGGM8IyJtgDuB3AQ9RWugCDgjQddPd42bNWs2DJjmdyDJasuWLTz22GMUFRWxdevWysf3228/fv/733PppZdas4g0ZwmUMcYYYxJORBoBvwFuBjol+OmGi8jFqvp0gp8nLanqSCyBqmH79u088cQT3H///fzwww+Vj7do0YLf/OY3/PGPf2SfffbxMULjFUugjDHGGJMwIrI/cDHwR6Crh099n4jMVNXvPHzOdDEC51zantoWNgTl5eUUFxdzzz33sG7dusrHGzduTE5ODtdddx3777+/jxEar1kCZYwxxpi4E5FWwDM4b8b9eL/RDpgCXODDc6e6dmvWrOnXqVOnOX4H4qeKigpef/117rjjDkpLSysfz8jIYMSIERQUFNClSxf/AjS+sQTKGGOMMYnQExjlcww5IvIPVf2nz3GkHBEZCTTYBKqkpIRbbrmFxYsXVz4mIgwdOpTx48fTs2dPH6OLnw0bNvDII4/www8/cO2119KuXTu/Q0oJlkAZY4wxJu5U9UMROQ84DzgdaONTKA+KyHuq+r1Pz5+qsoEb/A7Ca3PmzCE/P5+PPvqoyuOnnHIK48eP55hjjvEpsvj64YcfKCoq4uGHH2bbNmeWdcuWLfnTn/7kc2SpwRIoY4wxxiSEqr4IvCgimUB/nBlDZ+HsTnmlM1BI4rr+paujvvvuu24HHHDAV34H4qWbb765yu/79OnD9ddfz6BBg/wJKM5++uknnnjiCR544AE2b95c5WM//vijT1GlHkugjDHGGJNQqroHmO3+N15EDsPZ4RgJDAYaJziEy0VkmqrOSvDzpJXdu3efCdzvdxx+6NmzJ+PHj2fYsGF+hxIX5eXlvPLKK9x9992sXLnS73BSno1FNsYYY4ynVPVrVZ2sqsOAA4HzgaeBRA1vFeBhEWmZoOunJRHJ9jsGL+y7776Vv+7atStTp07lnXfeSYvkqaKigldeeYUhQ4YwduzYyuQpIyOD0aNHM27cOJ8jTE22A2WMMcYY36jqJpyZQ9OqlfqNAnrE8akOBW4C8uN4zXQ3eMOGDa3bt2+f1rVdEydO5LHHHqNXr16MHj2axo0TvSHqjZKSEv7yl7/w6aefVnk8KyuLP//5zxx11FEUFxf7FF1qswTKGGOMMUnBg1K/q0XkBVVdWM/rNBRNysvLTwOm+x1IInXt2pXbbrvN7zDiZtGiRdxxxx3MnTu3yuN9+/blhhtuoF+/fj5Flj4sgTLGGGNMUlLVr4HJwGQRaQecipNQnUXduvplAo+JyAmqWh6/SNNaNmmeQKWLL774gnvvvZcZM2ZUebxnz55cddVVZGc3iIpMT1gCZYwxxpikp6obiU+p37E4ZXwT4x5kejoTJ/Hc43cgJrSVK1dy//3389xzz7Fnz96/pu7du3PdddcxcuRIRMTHCNOPJVDGGGOMSSlxKPW7UUReVtXFtawzsP+aNWtO6tSp09zalxovlZWVcd999/H888+ze/fuysc7derEVVddxQUXXECjRvZWPxHsq2qMMcaYlFat1K89zq5JNnAasE+IT2mK05XvZFWt8C7S1CQiIwFLoJLEpk2beOCBB3jiiSfYuXNn5ePt27fnyiuv5Fe/+hVNmjTxMcL0ZwmUMcYYY9KGqm4AngKeEpEmODtSgd2pQ4OWDgRygOc8DzL1ZAMT/A6iodu6dSsPP/wwRUVFVYbe7rPPPuTm5nLFFVfQsmX0nfoXLlzIU089lYhQ054lUMYYY4xJS6q6C3jH/e9KETkaJ5HKBnoBZT6Gl0qOXrdu3aEdOnT4xu9AGqJdu3bx97//nSlTprBx48bKx5s1a8Zvf/tb8vLy2G+//aK+3pIlS5g0aRLvvPNOlcd79uwZt5jTnSVQxhhjjGkQVPUz4DNgkt+xpJo9e/aMAB7wO46GZPfu3bz44ovcc889rF69uvLxxo0bc8EFFzBu3DgOPPDAqK9XWlrKXXfdxauvvkpFxd7K1W7dupGfn29d+mJgCZQxxhhjjIlIRLKxBMoTqsqsWbOYNGkSS5YsqXxcRBg5ciTjx4/n0EMPjXCFqjZu3Mjf/vY3HnnkEXbt2lX5eMeOHRk3bpw1m6gD+2oZY4wxxpjaDPn/9u49LMoyfwP4/YJ4TjMPgGKamqmth/KYOtUmdDBo2zRprU1b9ZrEFTRgZLDSMg4eEEHHMkXLrLSTuwtu15V2/XZ3PCtqqSGaR0BQUFEBTXC+vz+AyWEGeAeGGZD789f2+PC8X9x/vK+Z937y8vLu6dChw/Xqt1JNGY1GREdH46effrJY12g0ePvtt9G/f3/VZ+Xn58NgMGDt2rW4ceOGeb1du3YICgrClClT0Lx5c4fN3pgwQBERERFRdZoWFxf7AfjO1YPcjQ4cOIDY2Fhs377dYn3w4MHQ6/UYOXKk6rOKioqwbt06LF++HNeuXTOvt2rVCpMnT8bMmTPRpo2tckpSiwGKiIiIiKolIgFggHKo48ePIy4uDikpKRAR83qfPn0we/Zsu95LKi4uxqZNmxAXF4cLFy6Y1z08PBAYGIjw8HB07NjRofM3VgxQRERERFQtRVGeB+AGgHdn1VJmZiYSExPx5Zdf4vbt2+b1rl27YubMmZg4cSLc3NxUnWUymbBlyxbExMTgzJkz5nU3Nzc8//zzmDt3Lu6//35H/wqNGgMUEREREanR8cKFC8M8PT13u3qQhsrRhQ5GoxHvvfcefvnlF/NaednEnDlz0KNHD4fOT6UYoIiIiIhIFZPJFACAAcpO+fn5SEpKwqpVq1BQUGBer2mhw969exETE4M9e/ZYrGs0GsydOxcDBgxQfVZxcTFu377NQgk7MEARERERkSqKovgDmOvqORqKGzduYO3atVaFDi1btsQbb7xhd6HDwYMHERMTY7NsIiIiAqNGjbJrtqSkJKxcuRJFRUVISkrCmDFjVP98Y8YARURERESqiMiAnJyc7l5eXmdcPUt9Vl2hQ1hYGDp16qT6vBMnTmDJkiVWZRO9e/dGaGgo/P39oSiK6tk+//xzJCQkWMy2detWBiiVGKCIiIiIyB7PAzC4eoj6qLpCh8jISHTr1k31eVlZWUhISLAqm/Dx8UFwcDD+8pe/wN3dXfVsmzdvxpIlS3D27FmrP78zmFHVGKCIiIiISDUR8QcDlJXKCh18fX0RERGBvn37qj7r8uXL+PDDD7FmzRr89ttv5vX27dvjzTffxLRp09C0aVPV5/3www+IjY3FsWPHLGbr1q2bRdAjdRigiIiIiMgef8zLy7unQ4cO1109SH1QVaFDZGQkBg4cqPqsgoICfPrpp0hMTMT167//9d57mJMxfQAAHcJJREFU772YMWOG3WUT+/btQ0xMDHbvtuz90Gg00Ov1SE9Px+zZs1WfR6UYoIiIiIjIHs2Ki4t9AWx29SCudOjQIcTHx2Pr1q0W648++igiIiIwevRo1WfduHEDn3/+ORITE5GXl2der2nZRFpaGpYtW4bk5GSL9UceeQR6vd48W3p6uuoz6XcMUERERERkl7I2vkYZoH799VcsXrzYYYUOVZVNhIaGwtPTs9azPfjggwgLC7NrNqocAxQRERER2aXsPSg3ACZXz+Is58+fx7Jly7Bx40aUlJSY12ta6FBV2YRer0f37t1rPVuXLl0QEhJi12xUPQYoIiIiIrJXpwsXLgz19PTcU/3Whs3RhQ5GoxELFizAkSNHLNY1Gg3mzZuHfv36qT7rypUrWLlypdVs9913H6ZPn273bKQOAxQRERER2c1kMvkDuGsDVGFhIT755BObhQ5TpkyBVqtF69atVZ+3f/9+xMTEYNeuXRbrQ4cOxdy5czFs2DC7Z6t4QW/r1q0xadIkBAcH45577lF9HtmHAYqIiIiIaiIAwDuuHsLRXFXooMbNmzexbt06rFixAleuXDGvt2jRAlOmTMGMGTPQtm1b1efdGb5IPQYoIiIiIqqJgTk5Od29vLzOuHoQR3B0ocPJkyeRkJCA7777DibT76+K1aTQoXy2pUuXIicnx2K2V199FSEhIXbNdurUKSxatMgi1DVpwligFv+miIiIiKimxgJY6eohakNEkJKSgtjYWJw+fdq8XtNCh+zsbMTHxzuk0MFkMiE5ORmLFi2ymu2ll15CaGgounXrZtdsS5cuxaZNmyxm69q1K1577TXV5zR2DFBEREREVCNlbXwNNkA5s9Bh6tSpaNasmV2zffDBBzh8+LDVbO+++y4efvhhu2dLSkrCzZs3az1bY8cARUREREQ19VReXt49HTp0uF791vqjqkKHyMhIDB8+XPVZji50SE1NRUxMDHbu3Gk1m16vx4gRI1SfVVRUhHXr1lnN1qpVK0yePJllEzXEAEVERERENdWsuLh4DIB/uHoQNY4dO4b4+HirQodBgwZBr9dDo9GoPqv8vaTFixcjNzfXvN6iRQtMnDgRISEh6NChg+rz0tPTsXTpUqvZ+vbti1mzZiEgIMDu2ZYsWYKLFy+a18vf59LpdHbNRpYYoIiIiIioNvxRzwOUIwsdSkpKsHnzZsTFxeHcuXPm9ZqWTWRkZGD58uX48ssvcfv2bfN6r169EB4ebtds5Rf0RkdH4+zZs1azvfXWW/Dy8lI9G9nGAEVEREREtREAwA2AqbqNzubIQofysomFCxfi1KlT5vWalk3k5OTAYDBg/fr1KC4uNq937twZs2bNwiuvvKK6GU9EsG3bNsTGxiItLc28rigK/P39ERERgQceeED1bFQ1BigiIiIiqo1OOTk5Q7y8vPa6epA7ff3119DpdBaFDh07dkRISAj++te/wsPDQ/VZP/74I2JjY3H06FGL9aeffhpz5sxB3759VZ+Vn58Pg8FgVejQrl07BAUF1ahsIjo6Gj/99JPFukajwdtvv43+/furPovUYYAiIiIiolopa+OrVwEqPT3dHJ7atGmD6dOnY9q0aWjZsqXqM/bu3YuYmBjs2bPHYn3kyJHQ6/UYPHiw6rOqK3Sw94LeAwcOIDY2Ftu3b7dYHzx4MPR6PUaOHKn6LLIPAxQRERER1VYAgHddPURlwsLCMHXqVNX7f/nlF8TGxmLbtm0W6wMGDIBer8cTTzyh+qzqCh3Cw8PRsWNH1ecdP34ccXFxSElJgYiY1/v06YPZs2fbXTbxzTff4OrVq5g0aRJatGih+mcbMwYoIiIiIqqtQdnZ2d28vb3PVr+1/srMzERiYqJVoUPPnj0RHByMcePGwc3NTdVZlRU6NGnSBC+++CLCw8PRtWvXWs/WtWtXzJw5ExMnTlQ92+3bt/Htt98iLi4OGRkZAICCggKEhYWpnqcxY4AiIiIiolpTFGUsgA9dPUdNlBc6fPbZZ7h165Z53dvbG7Nnz7ar0AEofS9p/vz5Ngsd5syZgx49eqg+69KlS/joo4+wevVqh8323nvv4ZdffrFYv7OKnarGAEVEREREtVb2HlSDClD1udAhPz8fSUlJWLVqFQoKCqxmmzJlCpo3b676vMre5yL7MUARERERkSOMyc3Nbd2xY8eC6re6Vn0udKhstpYtW+KNN96we7aDBw8iJibGarYhQ4agX79+WL9+veqzqBQDFBERERE5QrPi4uIxAP7p6kEq46xCh4ceeghvvfWW3YUOmzZtQlxcHC5cuGA1W1hYGDp16qT6vBMnTmDJkiVWs/Xu3RuhoaHw9/fHV199xQBVAwxQREREROQQiqL4ox4GKBFBcnJypYUOYWFhuP/++1Wfl5WVhYSEhEoLHey5oLe8bCImJgZnzpwxr5df0Dt37lyHzObj44Pg4GC7ZiPbGKCIiIiIyFGeB6AAkOo2OlN0dLTFhbpubm4ICAiATqfDAw88oPqcygodvLy8EBQUhEmTJtl1Qa+tQgdFUeDr64uIiAi7Lui9fPkyPvzwQ6xZs8bid23fvj3efPNNTJs2DU2bNlV9HlWOAYqIiIiIHMU7JydniJeX1z5XD3KnOwPFmDFjEBERgYcfflj1z1+9ehVr1qyxKnS49957MWPGDIcVOmg0GsydOxcDBgxQfVZhYSE++eQTJCYm4vr161az/e1vf+P9Tg7GAEVEREREDmMymfwBuDxAVaz2HjZsGPR6PYYPH676jBs3bmDt2rVYsWIFrl69al6vaaHDoUOHEB8fj61bt1qsP/roo4iIiMDo0aPtmu3zzz9HYmIi8vLyaj0bqccARUREREQOoyhKAIB5rp5jwoQJMBqN8PDwwN///nf4+vqq/llXFDooiqJ6ti+++ALLli2zmu31119HcHCwXUUYZD8GKCIiIiJypEFZWVk+Xbp0yXTlED169MCWLVvs+pnqCh0iIyPRrVs31eedP38ey5Ytc0ihg8lkwj/+8Q8sWbLEYjZ3d3eMGzcOYWFh8PHxUT1bVlYW/v3vf6veT79jgCIiIiIiR1Lc3NyeB7DK1YPYw2g04v3338fRo0ct1jUaDebPn+/SQoetW7ciNjYWaWlp5jVFUfDcc89Bp9Ohd+/eqs+6dOkSEhMT8emnn1oUYXTu3Fn1GY0dAxQREREROVoAGkiA2rdvH6Kjo20WOkRGRmLgwIGqz6qq0GHKlCnQarVo3bq16vN27tyJmJgYpKamWs2m1+sxaNAg1Wddv34dq1atwscff2xRhNGmTRvMmDEDb775puqzGjsGKCIiIiJytKeys7Nbent7F7l6kMrU50KHY8eOIT4+HsnJyRbrjzzyCPR6vV2zlb/PtXjxYuTm5prXW7RogYkTJ2LWrFlo37696vOIAYqIiIiIHK+FiIwBkFztTif79ddfsXjxYocVOlRVNhEaGgpPT0/Vs508eRIJCQn47rvvYDKZzOsPPvggwsLC7JqtpKQEmzdvRlxcHM6dO1fr2eh3DFBERERE5HBlbXz1JkCVFzps3LgRJSUl5vUuXbogJCTE7kKHLVu2IDY2FqdPnzavl5dN6PV6dO/eXfVs2dnZiI+Pd8hsIoKUlBQsXLgQp06dqvVsZI0BioiIiIjqgj8ABYBUt7EuObrQwWg0YsGCBThy5IjFukajwbx589CvXz/VZ125cgUrV660mu2+++7D9OnTMXXqVDRr1syu2T744AMcPnzYarZ3333XrsuDqXIMUERERERUF7yzs7MHe3t773fFwysrdGjbti2mTp1qd6HD/v37ERMTg127dlmsDx06FJGRkXZd0Fs+2/Lly3Ht2jXzeuvWrTFp0iQEBwfjnnvuUX1eamoqYmNjsWPHDov1IUOGIDIyEiNGjFB9FlWPAYqIiIiI6oSI+ANwSYCKj4/HypUrzf/dsmVLTJ06FUFBQXYVOvz888+IjY3Ff/7zH4v1uih0CAkJQYcOHVSfl56ejqVLl1qVTfTt2xezZs1CQECA6rNIPQYoIiIiIqoTZe9BzXf1HH5+fli8eDE6deqk+mdOnjyJRYsWWZVNPPTQQ9DpdHj22WddVuiQkZGB5cuXW13Q27NnT+h0OrvKJsh+DFBEREREVFceycrK8unSpUumK4fQaDSqw1N9LnTIycmBwWDAZ599ZnUJ7qxZs/DKK6+gSRP+876u8W+YiIiIiOqK4ubmNhbAx64epDrlhQ5JSUm4efOmeb0uCh3eeecd/OEPf1B9Vn5+PgwGg9Vs7dq1Q1BQkN2zUe0wQBERERFRnRGRANTjAFVZoUOrVq0wefJklxY6FBUVYd26dZXOZu8FveQYDFBEREREVGcURRmTnZ3d0tvbu8jVs9ypPhc6lM+2ZMkSXLx40bxe/s5UeHg4OnbsqPo8ciwGKCIiIiKqSy3c3NyeApDi6kGA3y/BjYqKqvNCh+DgYIwbNw5ubm52zRYdHY2zZ8+a15s0aYIXX3wR4eHh6Nq1q+rZqG4wQBERERFRnTKZTAFwcYByVqGDt7c3Zs+ebXehg9FoxPz585GWlmZeUxQF/v7+mDNnDnr06KH6LEfJzc3Ftm3bnP7c+o4BioiIiIjqWgCANwFIdRvrwv79+/HVV1/hyJEjFut+fn6IiIhA3759VZ/l6EIHo9GI6Oho/PTTTxbrGo0Gb7/9Nvr376/6LEe5du0aPvzwQ6xevRpFRTa/eVlia7GxYIAiIiIiorrmnZ2d/Yi3t/cBVzz8X//6l8V/jxw5Enq9HoMHD1Z9hqMLHQ4cOIDY2Fhs377dYn3w4MHQ6/UYOXKk6rMc5caNG1i7di0MBgPy8/Mr27ZbRHIr+8PGgAGKiIiIiOpc2aW6LglQ5fr06YPZs2e7tNDh+PHjiIuLs3lB71tvvWXXbI5SXFyML774AsuWLcOFCxcq23YTwEoA7ztvsvqJAYqIiIiI6pyI+AN4z1nP69y5s/l/9+rVC+Hh4fD394eiKKp+vrpCh7CwMNx///2q58nKykJCQoJV2UTXrl0xc+ZMuy7odZTy98JiY2Nx+vTpyraZAHwLYI6IVLqpMWGAIiIiIiJnGJyZmdnFx8cnyxkPmzRpEtq0aYOmTZti7NixLit0uHTpEj766COsXr3aomzCy8sLQUFBmDRpEjw8PFSf5yhGoxELFiywei/sDgLgGwBvi8hx501W/zFAEREREZEzKO7u7mMBrHbGw9zd3TF+/Hi7fsaRhQ5Xr17FmjVrsGrVKhQUFJjX7733XsyYMQNTpkxB8+bN7ZrPEfbv34+YmBjs2rWrqm3bAESISKqTxmpQGKCIiIiIyCkURfGHkwKUPaoqdIiIiMCoUaNUn1VexLBixQpcvXrVvN6yZUu88cYbdpdNOMqxY8cQHx9vddFvBbsBRIrI/zlprAaJAYqIiIiInEJE/LKzs1t6e3vb7MZ2NkcWOpSXTcTFxVkUMZSXTYSFhaFTp04OnV+NkydPIiEhAd999x1MJlNl234BMB/AN3LnXwTZxABFRERERM7SQlGUPwLY4sohHFnoUF42ERMTgzNnzpjXyy/ojYyMRLdu3Rz9K1QrOzsb8fHx2LhxI0pKKr226SyAaABJInK7sk1kiQGKiIiIiJymrI3PJQGqukKH119/HU2bNlV9ntFoxPvvv4+jR49arGs0GsyfP9+uC3od5cqVK1i5cqXVRb8V5AKIA7BMRH5z3nR3BwYoIiIiInIaRVFeABCE0pY3pygoKMCnn36KhIQEhxQ67Nu3D9HR0dizZ4/FukajQWRkJAYOHOiw2dUqLCzEJ598YnXRbwWXASwCsFxE6sXXKBsiBigiIiIichoR6Xz+/PlBnTt3PljXz3J0ocOhQ4cQHx+PrVu3Wqw/+uijiIiIwOjRox02u1rl714tXrwYubm5lW0rBLACQKyI5DtvursTAxQRERFRPfDll1+iX79+GDBggKtHqXNubm4BAOo0QG3btg1hYWG4ePGiea1p06Z4/fXXERISgvbt26s+68SJE1i4cCG+//57i7KJvn37Ys6cOXj66acdOrsa5e9eRUVF4dy5c5VtKwawDsB8Ecl23nR3NwYoIiIiIuezeu9k3759eO655/D8889Dp9OhV69erpjLKcreg3q/Lp+xe/duc3hyd3fHyy+/jNDQUHTp0kX1GZmZmYiLi8M333xjUTbRrVs3hIWF4c9//jPc3NwcPntVRAQpKSlYuHAhTp06Vdk2E4BvAehF5KTzpmscGKCIiIiInExEriqK8g2A8RXWkZKSgu+//75G/+BvQIZkZmZ28fHxyXLGw/R6PYKCglTvz8vLQ0JCAj777DOLsglPT0+EhITg1VdfhYeHR12MWiWj0YioqCj8/PPPVW3bBiBMRH6qahPVnHMjMxERERGVewWAFoBViLh9+zY2btyIUaNGYd68ebh06ZLzp6tbiru7+3POepjaZr3CwkIYDAaMGjUKSUlJ5vDUtm1bhIaGwmg0YvLkyU4PT6mpqXj55ZcRGBhYVXjaAeBxEfFjeKpbDFBERERELiAit0XkYwA9UBqkLlbcc+vWLaxevRrDhw9HVFRUVe1qDZG/qwcoV1xcjA0bNuCxxx5DVFQUrl+/DgBo0aIFZsyYgd27dyM0NBStW7d26lzp6enQarUICAjAjh07Ktu2F4CviIwWEaMTx2u0GKCIiIiIXEhEbpUFqZ4AIgBYpaSioiIYDAaMGDECBoOhqvt9GhK/7Ozslq4coDw4DR8+HDqdDnl5eQAADw8PvPbaa9i5cyfmzp2Ltm3bOnWuzMxM6HQ6+Pr6Ijk5ubJtaQAmABghIj86bzpigCIiIiKqB0SkQEQWojRILQRglZLy8/MRFRWFkSNHYs2aNSguLnb6nA7UUlGUJ13xYBFBcnIynnzySeh0OuTk5AAA3NzcEBAQgP/+979YtGgRPD09nTpXXl4eoqKiMHr0aGzYsMGiuOIO51D6iWV/Efla7qwFJKdggCIiIiKqR0QkT0QiAPQG8DGAkop7cnJy8O6771b3D+16r6yNz6mMRiOeeeYZaLVanD592ryu0Wjwww8/YNWqVejevbtTZyoPxsOGDYPBYLAorrhDHko/oXxIRD4WkYb5f/pdgAGKiIiIqB4SkQwR0QLoD+BrAFafNGRkZKj5qld99gIAxRkPSk1Nxbhx4xAYGIgjR46Y14cOHYrNmzdj06ZN6NevnzNGMVP51czrKP1EsqeILBSRu+L7mw0ZAxQRERFRPSYix0RkAoCBKA1SVu4sG9i5c6dzB6ydLllZWQPr+iErVqxAQEAAdu3aZV4bNGgQNm3ahH/+858YPnx4XY9gofzdq5EjR1ZVDlIEIBFALxGJEJG7qkGkIWOAIiIiImoARORwWZAaDeB/tvakpqZi/PjxCAwMxOHDh507YA25u7sH1PUzyi/UBYDevXtjzZo12LJlCzQaTV0/2oLJZEJycjIef/xx6HQ6i7nuUIzSr24+KCIhImJzE7kOAxQRERFRAyIiO0TkCQB+AA7Z2mM0GvHss89Cq9Xi1KlTzh3QTnX1HpSiWH4z0MfHB/Hx8fjxxx8xduxYqz+va0ajEX5+ftBqtTh79qytLSaUfsLYT0S0InLeqQOSagxQRERERA2QiGwDMBilVda/2vhzc9NccHAwMjIynD6jSkNyc3O9HH3o2LFj0a5dO3h6emLBggXYsWMHAgMD4e7u7uhHVWnv3r148cUXERgYiLS0tMq2bQMwREQmiIjV/5dUvyhsPiQiIiJq2BRF8QDwBoD5ALxt7fHw8EBgYCDCw8PRsWNHZ45XLRGZ2rlz56SK64qi5ALoUP7f06dPxzvvvOPU2Wrq4MGDiImJwfbt26vathOAXkRsfiWT6id+AkVERETUwIlIcdllvL1QWnV9peIelcUFLqEoitPrzOvKiRMnoNVq4e/vX1V4OgxggoiMYnhqeBigiIiIiO4SIlJUdhlvN5QGqesV9xQWFsJgMOCxxx6DwWDAb7/95vQ5bfA7c+ZMc1cPURtZWVnQ6XR46qmnkJycjEq+5ZUOYBKAQSJis1GR6j8GKCIiIqK7jIhcLwtSPVF6h5BVSrpy5QqioqIwatQobNiwASUlVvf1OlOr5s2b/9GVA9TU5cuXERUVVd2lxpkAtAD+ICLrRcTk3CnJkRigiIiIiO5SIpIrIhEAeqO0GtvqX/fnz59X88lJnTOZTA3qa3wFBQVqPsm7hNJPAh8UkY9FxKUplRyDAYqIiIjoLici50REC6A/SquyrVLSr7/+Cq1WC19fXyQnJzt9RkVRAgA4t1u8Bm7cuAGDwYChQ4ciKioK169bfUsSAApQ+slfTxFZKCI3nTsl1SUGKCIiIqJGQkTSyi7jfQzAj7b2pKWlQavV4k9/+hN2797tzPG6ZmVlDXDmA+1RsYTj6tWrtrbdQuknfb1EJEJEbG6iho0BioiIiKiREZE9IuKL0st499vas2/fPrz00ksIDAzE0aNHnTKXm5tbvfsan8lkQnJyMp544gnodDpcuHDB1rYSAJ8B6FN2Ca7NTXR3YIAiIiIiaqREZJuIDEVpkPrZ1h6j0YhnnnkGWq0WZ86cqeuRAur6AfZQ8bsLSr8S+bCIvC4ip506ILkEAxQRERFRIyci2wA8AmACgFMV/1zlpzCOMDQ3N9errg5Xa//+/Wo+fdsGYIiITBCR404cj1yMAYqIiIiIICKmsruJ+qK0cjun4h6V7wHVhltxcfFzjj5UrfL3v1544YWq3v/aDeApEfETkQNOHI/qCQYoIiIiIjITkVsi8jGAXiit4M6vuEdlE12NlLXxOZXKBsKjACaIyGMi8n9OHI/qGQYoIiIiIrIiIoUVLuO9UXFPxbuQbt265YhHP33mzJnmjjioOirvwDqL0k/kBpZ9QkeNHAMUEREREVVKRC6XXcb7IIBEAFY3xl6+fBlRUVEYNWoUNmzYgNu3re7rtUerZs2aPVGbA6pz5coVi3lLSmzeb5sFYBaAh8ouwa3VL0V3DwYoIiIiIqqWiGSJSAiAPii968gqUGRlZan5REfNs+rka3yFhYUWn5j99ptVFgSAyyj96uKDIpIgIjY3UePFAEVEREREqonIGRHRAhiI0gpvKydOnIBWq4W/vz+2b99u9zPK3oNSajfp7yqWX1y7ds3WtkKUflWxp4gsFBGrrywSAQxQRERERFQDInJURCYAeAyAzVKFgwcPYsKECQgMDMShQ4fsOf7+zMzM/rWdsaSkBF9//TVGjx4NnU6H3NxcW9tuofQTtV4iEiEiVqUZRHdigCIiIiKiGhOR3SLyFEov47VZ6200GjF27FgEBgYiLS1N1bnu7u7+tZgJycnJePLJJxESEoKMjAxb20wo/QStr4hoRcSqtp3IFgYoIiIiIqq1sst4h6D0Ml6bF8sajUb4+flBq9Xi7Nmz1Z1Xo/egjEYjnn32WWi1Wpw6ZXUncLltAB4puwS30k1EtjBAEREREZFDSKmvATwMYBKA0xX3mEwmJCcn4/HHH4dOp8PFixdtnqUoyjBPT0/V/1ZNTU3F+PHjERgYiMOHD1e2bRuAoWWX4P6s9myiOzFAEREREZFDiUiJiKxHaWOfFsCFintUFDu4+fr6Nq3uWenp6dBqtQgICMDOnTsr27YXgG9ZcNpv329DZIkBioiIiIjqhIjcEpGPAfRCaTX41Yp7ioqKYDAYMGLECBgMBty8edP8Z35+fpUGqIyMDOh0Ovj6+iI5ObmybWko/UrhCBH5sTa/C1E5pab9/ERERERE9lAUpT2AcAAhAJrb2tOhQwdotVpMmzYNJSUl0q9fP+XWrVsAgOnTp2PatGkwGAxYv349iouLK3vUOQBRAJJ4AS45GgMUERERETmVoig+AN4B8DcATWzt8fHxQXBwMFJSUvC///0PANC9e3fk5ORYfEpVQTZKg9NqEbnl+MmJGKCIiIiIyEUURXkIwAIA41HJxbmdOnWqtGjiDtcBrAQQJSLXHTokUQUMUERERETkUoqiDAYQDeBpO3+0EEAigMUicsXhgxHZwABFRERERPWCoihPojRIPVbN1lsAVgP4gBfgkrMxQBERERFRvaIoygsAPgDQv8IfCYANAOaJiNUdU0TOwABFRERERPWOoihuAOYCiERpY18GgD+LSKpLB6NG7/8Bnwl3P/EFHr0AAAAASUVORK5CYII=" + } + }, + "cell_type": "markdown", + "id": "18a9f60f", + "metadata": {}, + "source": [ + "
\n", + "\n", "
" ] }, - { - "cell_type": "markdown", - "id": "4ec6718c", - "metadata": {}, - "source": [ - " a) The processes are synchronized in each iteration due to the blocking send and receive of row k.\n", - " b) Receiving processes may overwrite the data in row k, which can lead to incorrect behavior.\n", - " c) The sending process can only continue the computation after the data are received in every other process.\n", - " d) The receiving process does not know the source of the received data." - ] - }, { "cell_type": "code", "execution_count": null, - "id": "4f4a57de", + "id": "138c77eb", "metadata": {}, "outputs": [], "source": [ - "answer = \"x\" # replace x with a, b, c or d\n", - "floyd_impl_check(answer)" - ] - }, - { - "cell_type": "markdown", - "id": "c624722a", - "metadata": {}, - "source": [ - "### Testing the implementation" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "09937668", - "metadata": {}, - "outputs": [], - "source": [ - "function rand_distance_table(n)\n", - " threshold = 0.4\n", - " mincost = 3\n", - " maxcost = 10\n", - " infinity = 10000*maxcost\n", - " C = fill(infinity,n,n)\n", - " for j in 1:n\n", - " for i in 1:n\n", - " if rand() > threshold\n", - " C[i,j] = rand(mincost:maxcost)\n", - " end\n", + "code3 = quote\n", + " function floyd_iterations!(myC,comm)\n", + " L = size(myC,1)\n", + " N = size(myC,2)\n", + " rank = MPI.Comm_rank(comm)\n", + " P = MPI.Comm_size(comm)\n", + " lb = L*rank+1\n", + " ub = L*(rank+1)\n", + " C_k = similar(C,N)\n", + " for k in 1:N\n", + " if (lb<=k) && (k<=ub)\n", + " # Send row k to other workers if I have it\n", + " myk = (k-lb)+1\n", + " C_k[:] = view(myC,myk,:)\n", + " for dest in 0:(P-1)\n", + " if rank == dest\n", + " continue\n", + " end\n", + " MPI.Send(C_k,comm;dest)\n", + " end\n", + " else\n", + " # Wait until row k is received\n", + " MPI.Recv!(C_k,comm,source=MPI.ANY_SOURCE)\n", + " end\n", + " # Now, we have the data dependencies and\n", + " # we can do the updates locally\n", + " for j in 1:N\n", + " for i in 1:L\n", + " myC[i,j] = min(myC[i,j],myC[i,k]+C_k[j])\n", + " end\n", + " end\n", + " end\n", + " myC\n", " end\n", - " C[j,j] = 0\n", - " end\n", - " C\n", - "end" + "end;" + ] + }, + { + "cell_type": "markdown", + "id": "ad1c3fca", + "metadata": {}, + "source": [ + "### Collecting back the results\n", + "\n", + "At this point, we have solved the ASP problem, but the solution is cut in different pieces, each one stored on a different MPI rank. It is often useful to gather the solution into a single matrix, e.g., to compare it against the sequential algorithm.The following function collects all pieces and stores them in $C$ on rank 0. Again, we implement this with `MPI.Send` and `MPI.Recv!` as it is easier as we are working with a row-partition. However, we could do it also with `MPI.Gather!`." ] }, { "cell_type": "code", "execution_count": null, - "id": "dd77ee3d", + "id": "c12fd15d", "metadata": {}, "outputs": [], "source": [ - "using Test\n", - "load = 10\n", - "n = nworkers()*load\n", - "C = rand_distance_table(n)\n", - "C_seq = floyd!(copy(C))\n", - "C_par = floyd_dist!(copy(C))\n", - "@test C_seq == C_par" + "code4 = quote\n", + " function collect_result!(C,myC,comm)\n", + " L = size(myC,1)\n", + " rank = MPI.Comm_rank(comm)\n", + " P = MPI.Comm_size(comm)\n", + " if rank == 0\n", + " lb = L*rank+1\n", + " ub = L*(rank+1)\n", + " C[lb:ub,:] = myC\n", + " for source in 1:(P-1)\n", + " lb = L*source+1\n", + " ub = L*(source+1)\n", + " MPI.Recv!(view(C,lb:ub,:),comm;source)\n", + " end\n", + " else\n", + " dest = 0\n", + " MPI.Send(myC,comm;dest)\n", + " end\n", + " C\n", + " end\n", + "end;" + ] + }, + { + "cell_type": "markdown", + "id": "cbca58aa", + "metadata": {}, + "source": [ + "### Running and testing the code\n", + "\n", + "In the cell below, we run the parallel code and compare it against the sequential. Note that we can only compare both results on rank 0 since this is the only one that contains the result of the parallel code. We have also included a function that generates random distance tables of a given size $N$." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2daef9be", + "metadata": {}, + "outputs": [], + "source": [ + "code = quote\n", + " using MPI\n", + " MPI.Init()\n", + " $code1\n", + " $code2\n", + " $code3\n", + " $code4\n", + " function input_distance_table(n)\n", + " threshold = 0.1\n", + " mincost = 3\n", + " maxcost = 9\n", + " inf = 10000\n", + " C = fill(inf,n,n)\n", + " for j in 1:n\n", + " for i in 1:n\n", + " if rand() > threshold\n", + " C[i,j] = rand(mincost:maxcost)\n", + " end\n", + " end\n", + " C[j,j] = 0\n", + " end\n", + " C\n", + " end\n", + " function floyd!(C)\n", + " n = size(C,1)\n", + " @assert size(C,2) == n\n", + " for k in 1:n\n", + " for j in 1:n\n", + " for i in 1:n\n", + " @inbounds C[i,j] = min(C[i,j],C[i,k]+C[k,j])\n", + " end\n", + " end\n", + " end\n", + " C\n", + " end\n", + " comm = MPI.Comm_dup(MPI.COMM_WORLD)\n", + " rank = MPI.Comm_rank(comm)\n", + " if rank == 0\n", + " N = 24\n", + " else\n", + " N = 0\n", + " end\n", + " C = input_distance_table(N)\n", + " C_par = copy(C)\n", + " floyd_mpi!(C_par,comm)\n", + " if rank == 0\n", + " C_seq = copy(C)\n", + " floyd!(C_seq)\n", + " if C_seq == C_par\n", + " println(\"Test passed 🥳\")\n", + " else\n", + " println(\"Test failed\")\n", + " end\n", + " end\n", + "end\n", + "run(`$(mpiexec()) -np 3 julia --project=. -e $code`);" ] }, { @@ -909,10 +971,12 @@ "id": "91a772df", "metadata": {}, "source": [ - "### Is this implementation correct?\n", + "## Is this implementation correct?\n", "\n", - "Point-to-point messages are *non-overtaking* (i.e. FIFO order) between the specified sender and receiver according to section 3.5 of the MPI standard 4.0.\n", - "Unfortunately this is not enough in this case. The messages can still arrive in the wrong order if messages from different processes overtake each other." + "In the cell above, the result of the parallel code was provably the same as for the sequential code. However, is this sufficient to assert that the code is correct? Unfortunately no. In fact, the parallel code we implemented is not correct. There is no guarantee that this code computes the correct result. This is why:\n", + "\n", + "In MPI, point-to-point messages are *non-overtaking* between a given sender and receiver. Say that process 1 sends several messages to process 3. All these will arrive in FIFO order. This is according to section 3.5 of the MPI standard 4.0.\n", + "Unfortunately, this is not enough in our case. The messages could arrive in the wrong order *from different senders*. If process 1 sends messages to process 3, and then process 2 sends other messages to process 3, it is not granted that process 3 will receive first the messages from process 1 and then from process 2 (see figure below)." ] }, { @@ -920,7 +984,7 @@ "id": "1277772d", "metadata": {}, "source": [ - "If we are lucky all messages will arrive in order and we will process all rows in the right order in all processors." + "If we are lucky all messages will arrive in order. In our parallel code, all processors would receive first row one, then row 2, then row 3, etc. The computed result will be correct." ] }, { @@ -943,7 +1007,7 @@ "id": "df60e4e7", "metadata": {}, "source": [ - "However, FIFO ordering is not enough. In the next figure, communication between process 1 and process 3 is particularly slow. Note that process 3 receives messages from process 1 after it receives the messages from 2 even though FIFO ordering is satisfied between any two processors." + "However, FIFO ordering between pairs of processors is not enough to guarantee that rows arrive in consecutive order. The next figure shows a counter example. In this case, communication between process 1 and process 3 is particularly slow for some unknown reason. As result processor 3 receives first messages from processor 2, even though processor 1 sent the messages first. In our parallel code, the received rows would be first row 3, then row 4, then row 1, then row 2, which is not correct. Note however that process 3 received all messages from process 1 in the correct order (guaranteed by MPI). But this is not enough in our algorithm." ] }, { @@ -968,10 +1032,25 @@ "source": [ "### Possible solutions\n", "\n", + "There are several solution to this synchronization problem:\n", + "\n", "1. **Synchronous sends**: Use synchronous send MPI_SSEND. This is less efficient because we spend time waiting until each message is received. Note that the blocking send MPI_SEND used above does not guarantee that the message was received. \n", "2. **MPI.Barrier**: Use a barrier at the end of each iteration over $k$. This is easy to implement, but we get a synchronization overhead.\n", - "3. **Order incoming messages**: The receiver orders the incoming messages, e.g. according to MPI.Status or the sender rank. This requires buffering and extra user code.\n", - "4. **MPI.Bcast!**: Communicate row k using `MPI.Bcast!`. One needs to know which are the rows owned by the other ranks." + "3. **Order incoming messages**: The receiver orders the incoming messages, e.g. using to MPI.Status to get the sender rank. This requires buffering and extra user code.\n", + "4. **MPI.Bcast!**: Communicate row k using `MPI.Bcast!`. One needs to know which are the rows owned by the other ranks since we cannot use `MPI.ANY_SOURCE` in `MPI.Bcast!`. This is trivial however if the number of rows is multiple of the number of ranks." + ] + }, + { + "cell_type": "markdown", + "id": "7c8a16e4", + "metadata": {}, + "source": [ + "## Summary\n", + "\n", + "- We learned how to parallelize Floyd's algorithm.\n", + "- The considered strategy based on a row-wise data partition has little communication overhead if the problem size is large enough.\n", + "- One needs to be careful in which order the messages are received to have a correct algorithm.\n", + "- There are several strategies to solve this synchronization problem, each one with pros and cons.\n" ] }, { @@ -979,61 +1058,11 @@ "id": "de96ad1b", "metadata": {}, "source": [ - "## Exercise \n", - "Rewrite the worker code of the parallel ASP algorithm so it runs correctly. Use the `MPI.Bcast!` to solve the problem of overtaking messages. Note: Only use `MPI.Bcast!`, do not use other MPI directives in addition. You can test your function with the following code cell. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "31194529", - "metadata": {}, - "outputs": [], - "source": [ - "function floyd_par!(C,N)\n", - " comm = MPI.Comm_dup(MPI.COMM_WORLD)\n", - " nranks = MPI.Comm_size(comm)\n", - " rank = MPI.Comm_rank(comm)\n", - " T = eltype(C)\n", - " if rank == 0\n", - " buffer_root = Vector{T}(undef,N*N)\n", - " buffer_root[:] = transpose(C)[:]\n", - " else\n", - " buffer_root = Vector{T}(undef,0)\n", - " end \n", - " Nw = div(N,nranks)\n", - " buffer = Vector{T}(undef,Nw*N)\n", - " MPI.Scatter!(buffer_root,buffer,comm;root=0)\n", - " Cw = Matrix{T}(undef,Nw,N)\n", - " transpose(Cw)[:] = buffer\n", - " MPI.Barrier(comm)\n", - " floyd_worker_bcast!(Cw,comm)\n", - " buffer[:] = transpose(Cw)[:]\n", - " MPI.Gather!(buffer,buffer_root,comm;root=0)\n", - " if rank == 0\n", - " transpose(C)[:] = buffer_root[:]\n", - " end\n", - " C\n", - "end\n", + "## Exercise\n", "\n", - "@everywhere function floyd_worker_bcast!(Cw,comm)\n", - " # Your implementation here\n", - "end\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "1b7eb4c2", - "metadata": {}, - "outputs": [], - "source": [ - "load = 10\n", - "n = nworkers()*load\n", - "C = rand_distance_table(n)\n", - "C_seq = floyd!(copy(C))\n", - "C_par = floyd_par!(copy(C),n)\n", - "@test C_seq == C_par" + "### Exercise 1\n", + "\n", + "Modify the `floyd_iterations!` function so that it is guaranteed that the result is computed correctly. Use `MPI.Bcast!` to solve the synchronization problem. Note: only use `MPI.Bcast!`in `floyd_iterations!`, do not use other MPI directives. " ] }, { diff --git a/notebooks/figures/fig_jacobi.svg b/notebooks/figures/fig_jacobi.svg index b2d5321..0babb12 100644 --- a/notebooks/figures/fig_jacobi.svg +++ b/notebooks/figures/fig_jacobi.svg @@ -2985,9 +2985,9 @@ borderopacity="1.0" inkscape:pageopacity="0.0" inkscape:pageshadow="2" - inkscape:zoom="0.48951065" - inkscape:cx="9359.0459" - inkscape:cy="1494.9076" + inkscape:zoom="1.3845452" + inkscape:cx="9572.9314" + inkscape:cy="1546.0048" inkscape:document-units="mm" inkscape:current-layer="layer1" inkscape:document-rotation="0" @@ -137511,991 +137511,6 @@ y="484.46548" />81234921531234123412935000012341234129350000Inputk=0infinf1234921531234123412935000012341234infinf1infinf2infinfinf9infinf3infinf5infinf0000Inputk=0infinfinfinfinfinfinfinfinfinfinfinfinfinf Date: Wed, 18 Sep 2024 18:09:17 +0200 Subject: [PATCH 2/4] More work in GE notebook --- notebooks/LEQ.ipynb | 568 +++- notebooks/asp.ipynb | 81 +- notebooks/figures/fig_jacobi.svg | 2059 +++++++++++- notebooks/figures/fig_matmul_machines.svg | 3638 ++++++++++++++++++++- 4 files changed, 6200 insertions(+), 146 deletions(-) diff --git a/notebooks/LEQ.ipynb b/notebooks/LEQ.ipynb index e15b6d5..4f4a1ec 100644 --- a/notebooks/LEQ.ipynb +++ b/notebooks/LEQ.ipynb @@ -37,10 +37,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "id": "7e93809a", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "ge_lb_answer (generic function with 1 method)" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "using Printf\n", "function answer_checker(answer,solution)\n", @@ -50,19 +61,27 @@ " \"It's not correct. Keep trying! 💪\"\n", " end |> println\n", "end\n", + "function ge_par_why()\n", + " msg = \"The outer loop of the algorithm is not parallelizable, since the iterations depend on the results of the previous iterations. However, we can extract parallelism from the inner loops.\"\n", + " println(msg)\n", + "end\n", "ge_par_check(answer) = answer_checker(answer, \"a\")\n", - "ge_dep_check(answer) = answer_checker(answer, \"b\")" + "ge_dep_check(answer) = answer_checker(answer, \"b\")\n", + "function ge_lb_answer()\n", + " msg = \"It is a form of static load balancing. We know in advance the load distribution and the partition strategy does not depend on the actual values of the input matrix\"\n", + " println(msg)\n", + "end" ] }, { "cell_type": "markdown", - "id": "8dcee319", + "id": "8ad95aa5", "metadata": {}, "source": [ "## Gaussian elimination\n", "\n", "\n", - "[Gaussian elimination](https://en.wikipedia.org/wiki/Gaussian_elimination) is a method to solve systems of linear equations, e.g.\n", + "[Gaussian elimination](https://en.wikipedia.org/wiki/Gaussian_elimination) is a method to solve systems of linear equations, like this one:\n", "\n", "$$\n", "\\left[\n", @@ -89,47 +108,129 @@ "\\right]\n", "$$\n", "\n", - "The steps of the Gaussian elimination will transform the system into an upper triangular matrix. The system of linear equations can now easily be solved by backward substitution. \n", + "This is just a small example with three unknowns, but practical applications need to solve linear equations with large number of unknowns. Parallel processing is needed in these cases.\n", "\n", + "### Problem statement\n", + "\n", + "Let us consider a system of linear equations written in matrix form $Ax=b$, where A is a nonsingular square matrix, and x and b are vectors. The goal of Gaussian elimination is to transform the system $Ax=b$, into a new system $Ux=c$ such that\n", + "- both system have the same solution vector $x$,\n", + "- the matrix $U$ of the new system is *upper triangular* with unit diagonal, namely $U_{ii} = 1$ and $U_{ij} = 0$ for $i>j$.\n", + "\n", + "\n", + "For the particular system shown above, the transformed one is the following:\n", "\n", "$$\n", "\\left[\n", "\\begin{matrix}\n", - "1 & 3 & 1 & 9 \\\\\n", + "1 & 3 & 1 \\\\\n", + "1 & 2 & -1 \\\\\n", + "3 & 11 & 5 \\\\\n", + "\\end{matrix}\n", + "\\right]\n", + "\\left[\n", + "\\begin{matrix}\n", + "x \\\\\n", + "y \\\\\n", + "z \\\\\n", + "\\end{matrix}\n", + "\\right]\n", + "=\n", + "\\left[\n", + "\\begin{matrix}\n", + "9 \\\\\n", + "1 \\\\\n", + "35 \\\\\n", + "\\end{matrix}\n", + "\\right]\n", + "\\longrightarrow\n", + "\\left[\n", + "\\begin{matrix}\n", + "1 & 3 & 1 \\\\\n", + "0 & 1 & 2 \\\\\n", + "0 & 0 & 1 \\\\\n", + "\\end{matrix}\n", + "\\right]\n", + "\\left[\n", + "\\begin{matrix}\n", + "x \\\\\n", + "y \\\\\n", + "z \\\\\n", + "\\end{matrix}\n", + "\\right]\n", + "=\n", + "\\left[\n", + "\\begin{matrix}\n", + "9 \\\\\n", + "8 \\\\\n", + "4 \\\\\n", + "\\end{matrix}\n", + "\\right]\n", + "$$\n", + "\n", + "The most challenging part of solving a system of linear equations is to transform it to upper triangular form. Afterwards, the solution vector can be obtained easily with a backward substitution." + ] + }, + { + "cell_type": "markdown", + "id": "980cb36f", + "metadata": {}, + "source": [ + "\n", + "\n", + "### Augmented system matrix\n", + "\n", + "In practice, vector $b$ is added as an additional column to A forming the so-called *augmented* matrix $A^* = [A | b]$.\n", + "\n", + "$$\n", + "\\left[\n", + "\\begin{matrix}\n", + "1 & 3 & 1 \\\\\n", + "1 & 2 & -1 \\\\\n", + "3 & 11 & 5 \\\\\n", + "\\end{matrix}\n", + "\\right]\n", + "\\left[\n", + "\\begin{matrix}\n", + "x \\\\\n", + "y \\\\\n", + "z \\\\\n", + "\\end{matrix}\n", + "\\right]\n", + "=\n", + "\\left[\n", + "\\begin{matrix}\n", + "9 \\\\\n", + "1 \\\\\n", + "35 \\\\\n", + "\\end{matrix}\n", + "\\right]\\longrightarrow\n", + "A^*=\n", + "\\left[\n", + "\\begin{matrix}\n", + "1 & 3 & 1 & 9 \\\\\n", "1 & 2 & -1 & 1 \\\\\n", - "3 & 11 & 5 & 35 \\\\\n", + "3 & 11 & 5 & 35\\\\\n", "\\end{matrix}\n", "\\right]\n", - "\\rightarrow\n", + "$$\n", + "\n", + "With this new notation, the goal of Gaussian elimination is to find the augmented matrix containing $U$ and $c$, namely $U^*= [U | c]$, given the augmented matrix $A^* = [A | b]$.\n", + "\n", + "$$\n", + "A^*=\n", + "\\left[\n", + "\\begin{matrix}\n", + "1 & 3 & 1 & 9 \\\\\n", + "1 & 2 & -1 & 1 \\\\\n", + "3 & 11 & 5 & 35\\\\\n", + "\\end{matrix}\n", + "\\right]\\longrightarrow\n", + "U^*=\n", "\\left[\n", "\\begin{matrix}\n", "1 & 3 & 1 & 9 \\\\\n", - "0 & -1 & -2 & -8 \\\\\n", - "0 & 2 & 2 & 8 \\\\\n", - "\\end{matrix}\n", - "\\right]\n", - "\\rightarrow\n", - "\\left[\n", - "\\begin{matrix}\n", - "1 & 3 & 1 & 9 \\\\\n", - "0 & 1 & 2 & 8 \\\\\n", - "0 & 2 & 2 & 8 \\\\\n", - "\\end{matrix}\n", - "\\right]\n", - "\\rightarrow\n", - "\\left[\n", - "\\begin{matrix}\n", - "1 & 3 & 1 & 9 \\\\\n", - "0 & 1 & 2 & 8 \\\\\n", - "0 & 0 & -2 & -8 \\\\\n", - "\\end{matrix}\n", - "\\right]\n", - "\\rightarrow\n", - "\\left[\n", - "\\begin{matrix}\n", - "1 & 3 & 1 & 9 \\\\\n", - "0 & 1 & 2 & 8 \\\\\n", - "0 & 0 & 1 & 4 \\\\\n", + "0 & 1 & 2 & 8\\\\\n", + "0 & 0 & 1 & 4\\\\\n", "\\end{matrix}\n", "\\right]\n", "$$\n", @@ -142,43 +243,71 @@ "metadata": {}, "source": [ "### Serial implementation\n", - "The following algorithm computes the Gaussian elimination on a matrix which represents a system of linear equations.\n", - "- The first inner loop in line 4 divides the current row by the value of the diagonal entry, thus transforming the diagonal to contain only ones. \n", - "- The second inner loop beginning in line 8 substracts the rows from one another such that all entries below the diagonal become zero. " + "\n", + "\n", + "The following algorithm computes the Gaussian elimination on a given augmented matrix `B`, representing a system of linear equations.\n", + "\n", + "- The outer loop is a loop over rows.\n", + "- The first inner loop in line 4 divides the current row by the value of the diagonal entry, thus transforming the diagonal to contain only ones. Note that we skip the first entries in the row, as we know that these values are zero at this point. The cells updated in this loop at iteration $k$ are depicted in red in the figure below.\n", + "- The second inner loop beginning in line 8 substracts the rows from one another such that all entries below the diagonal become zero. The entries updated in this loop are depicted in blue in the figure below." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "id": "e4070214", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "gaussian_elimination! (generic function with 1 method)" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "function gaussian_elimination!(B)\n", " n,m = size(B)\n", " @inbounds for k in 1:n\n", - " for t in (k+1):m\n", + " for t in k:m\n", " B[k,t] = B[k,t]/B[k,k]\n", " end\n", - " B[k,k] = 1\n", " for i in (k+1):n \n", - " for j in (k+1):m\n", + " for j in k:m\n", " B[i,j] = B[i,j] - B[i,k]*B[k,j]\n", " end\n", - " B[i,k] = 0\n", " end\n", " end\n", " B\n", "end" ] }, + { + "attachments": { + "g30822.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzAAAAJsCAYAAAAiM0YjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAACAASURBVHic7N15nBx1nf/xV/X0zOS+LxJOEw4JEORGEMEFFEXwRF1wFQWPXd0VcfHADU0WVERWRV1XQMRjXcFdEfH4KaCcchiCAoKAAiEhCQFykWuurt8fNQM9ne6eqU73VNXM6/l49CNd1d/v1LtnJj396W/V9xsgSRru8sDZJdt/Aa7rvd8OnAy8G9gD2AkoAo8DvwIuBZ6u8nX3A84AXg3sBowCVgP3AN8Hrm3kk5AkSZI0MowGwpLbj3r37wM8XPZY+W0D8LayrzcK+E+gZ4C+PwfGNOk5SZIkSRqmKhUwBwGbqF2A9N26geN7v9Yo4KZB9guBXwJBk5+fJEmSpGGkvID5DfBE7/2twOVEoyyHA8cAnwZWlfVZ2vt1vl2y7z6iU9OOBQ4FTiE6Na28iDmt+U9RkiRJ0nBRXsD03R4Fdq/SZ2bv46Xtf9D7bxH4VyBXpe8ny/rd14gnIUmSJGlkqFTArCG6YL+WEyr0C4FFA/QLgHvL+uxZZ3ZJkiRJI0ylAuZjg+iXY9tTyZYBrYPo+7Gyfn8fO7UkSRVUG/6XJA1fPcBVg2hXBJaU7fs+0DWIvn8o23YERpLUEBYwkjTyPAisG2Tb5WXbd9TZb9Ig+0mSVJMFjCSNPNUWpqxkY9n2ikH221S2PT7GMSVJqsoCRpJGnvKipJZinX3L+7kWjCSpISxgJGnkCZMOIElSvSxgJEmSJGWGBYwkSZKkzLCAkSRJkpQZFjCSJEmSMsMCRpIkSVJmWMBIkiRJygwLGEmSJEmZYQEjSZIkKTMsYCRJkiRlhgWMJEmSpMzIJx1AktR0IbC2ZHtTjL5byvr21HnMzTGOKUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2N0cCpwM+BtoSzSJKk+KYCvwPeTfR3XZKGnQA4CrgWWAVsBf4v0USSJGl73Eb09/wZ4Drg1UAu0USS1ADzgEuAZcCzQNh7WwXslGAuSZK0fQ6g/9/2NcBK4GvAHgnmkqTYJgMfAf5MVKh089KLW9/twcTSSZKkRnmKbf/GF4HngUeBjwFTEkunYS9IOoAyrRU4AVhI9KnLqN591dwOfH8IckmSpOb5GPDyGo93A1uAB4AvAr8EuoYgl0YICxjV6zDg10QX5I9KOIskSUqnTqJrZg4BHkk4i4YJCxjVKwccA3wcOAIYB7QM0Odxok9jJElSdh0KzBqgTRewFvgFcCnwx2aHkqQ4RgHvAH4PrCZ60So/NzYE7kgqoCRJapjHqPx3fgvRBf13AqdQ+7RySUqNHYHzgSfpP0tJ3yxkYxNLJkmSttdsor/nfX/be4imVH4Q+DAwMblokrT9DgK+R/RpzHqic2A/mWgiSZK0Pf6LqGh5jmi5hIuBlyWaSJKaoBU4GbiFaIrFtmTjSJKkOkwluq7lx0TXv3ottaQRoT3pAJIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZI0kMnAmpLbN5KNI0lSOuSTDiBJqiggKmL6jEkqiCRJaZJLOoAkSZIkDZYFjCRJkqTMsICRJEmSlBkWMJIkSZIywwJGkiRJUmZYwEiSJEnKDKdRlqThZ0dgZtm+B4GOBLJIkiRJGgGmAGHJ7TuD7HccsL6kXxEoNCGfJEmSJL2ongLmvUBnSZ8O4O+blE+SJEmSXhSngAmIRllK268Fjm5qQkmSJEnqNdgCJg9cVtb2aWDBEGSUJEmSJGBwBcw44Jdl7R4AdhqijJIkSZIEDFzA7AAsKWtzIzBxCDNKkiRJElC7gJkPLC17/LtA6xBnlCRJkiSgegFzDNEF+qWPfZXoQn5JkiRJSkSlAubtwJaSfd3Ah5MKKEmSJEl9yguYlUSLUvZtbwTekFg6SZIkSSpRXsCU324A2hJLJ0mSJEklyguYO4hGYUr3/QIYlVRASZIkSepT6RqY3YDHy/bfDIxPJqIkSZIkRarNQrYz8FjZY7cBExLIKEmSJElA7XVgZgEPlD2+GJg6xBklSZIkCahdwADMAP5Y1ubPwA5DmFGSJEmSgIELGIDJwF1l7R4G5gxRRkmSJEkCBlfAAEwEbi9r+zjRBf+SJEmSNCQGW8AAjCFaF6a0/VJgXpMzSpIkSRIQr4ABaAd+WtZnJbBPEzNKkiRJEhC/gAFoA/63rN8zwIImZZQkSZIkoL4CBqAFuKqs7xrg0MZHlCRp6AVJB5AkVZQDdi3ZfgF4dpB9W4BdyvZtBlZtfyxJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJUnq1AlOSDiFJkiQpnfJJByjzQeBNwLFJB9FghbsBeySdQpIkpdrtEGxKOoSGhyDpAGUeAmYC84C1CWfRoISfBL6QdApJkpRq8yF4KOkQGh5ySQcoMQ+YBowFTks4iwYUjoZwAvz0mKSTSJKktPv0CdH7hrA16STKvjSNwPwHcFbv/SeAlyWYRQMKrwNOSjqFJEnKlDMhuCLpEMq2tIzABMDbS7Yn4nUVkiRJksqk5SL+VwGjS7YnE13Qf3YycVSHJcA/JB1iWwf8HHb+X/jpVUknqezYT8OGfeCeU5NOUtm3doKvXwsPHJR0kur2uxve8R449y9JJ6ns0KtgzFL43XlJJ6nslFPgsffDfa9NOkl1+/4JHliQdIrq9r8RXv4N+J9rk05S2asvhI4ZcNeZSSep7NwFcP234P7Dkk5S3b73wr+dAKesTjpJZQf/CCYvht98KekkZcYDdyYdQmqWnwBh2W056TrFTf2E10EYltxuSzpRFY+Q7kL4UtL94j4XSPusMRuA/ZMOUcPNwOVJh6jhQ0Sn7aZZV9IBBvAUcHrSIWq4Crgh6RA1HAasSzrEALYAc5IOUcM9wMVJh9hWOKnsvUII4RlJp1L2peEUslHAKyvsHwMcOcRZJEmSJKVYGgqYtxLNPFZuMvCxIc4iSZIkKcXSUMB8DBhX5bEjiEZiJEmSJCnxAmYmsFONx8cBbx6iLJIkSZJSLulZyN5PdKpYNWOBfwH+e2jiKGEzgb2Blt7tR4BlycWRJElS2iRdwJxJNAr0DNFMRzsCbcDjRMXLWGB3YBawKqGMap4jgGOAg4ADiX7+pT4KfH2oQ0mSJCm9kjyFbD6wA/BlYAHRdK3P9j72dmAXojewPUBK18jQdjoP+HfgZLYtXiRJkqRtJDkC8zjwMmBFlcc7iOauvwaYOESZlIxO4H7gXqLC9XXJxpEkSVJaJTkCs4XqxUupzcDKJmdRMr5EdOrYOOBgogX17ko0kSRJklIt6WtgNLL9JukAkiRJypakp1GWJEmSpEGzgJEkSZKUGRYwkiRJkjLDAkaSJElSZljASJIkScoMCxhJkiRJmWEBI0mSJCkzLGAkSZIkZYYFjCRJkqTMsICRJEmSlBkWMJIkSZIywwJGkiRJUmZYwEiSJEnKDAsYSZIkSZlhAaMknQyEZbdCyeNfq/D4kUMbUZIkSWliASNJkiQpM/JJB9CI9hDwqZh9nmxCDkmSJGWEBYyS9BhwUdIhJEmSlB2eQiZJkiQpMyxgJEmSJGWGBYwkSZKkzLCAkSRJkpQZFjCSJEmSMsMCRpIkSVJmWMBIkiRJygzXgVGDLJ8FfCjpFBVMAY4CNiUdpIpXAHNI5/cOYCbQSnrzAbQD7wAOSzpIFTsDo0nv9/A1wETSmw+iD9vSnG8CcBzR72IazQcmkd7v4Tyi711a80H0fuk9wJqkg1SxA3Awqfse7j46WvJNaqwg6QBllhO9mTsQWJJwFtUUXgec9NL2PVvh0FWJxaluJ2AjsDbpIFVMI/rD/XTSQapoBWYDS5MOUsMuwCqgI+kgVcwGuoHVSQepYmLv7amkg9SwK/Bkwhlq2RlYB2xIOkgVM4jegK9IOkgVo4g+LEnz68yuRO9RuhPOUc0cotfA55IO0t+UHDy/c9nOMyG4IpE4UpMsB0LggKSDaCDhdRCGJbfbkk5UxSPA2UmHqOFS4M6kQ9Qwl/SOXvXZAOyfdIgabgYuTzpEDR8Cnkg6xAC6kg4wgKeA05MOUcNVwA1Jh6jhMKICMM22EBUJaXUPcHHSIbYVTip7rxBCeEbSqZR9XgMjSZIkKTMsYCRJkiRlhgWMJEmSpMywgJEkSZKUGU6jLA1sR2APXir47yKa2UySJElDzAJG2tYbiObTP4hoSu9ZZY/vD/xpqENJkiTJAkaq5H+J1iWQJElSyngNjFTdFqLTxb6BSwlLkiSlgiMw0rY+CPwReIiXVl2+Adg9sUSSJEkCLGCkSr6XdABJkiRV5ilkkiRJkjLDAkaSJElSZljASJIkScoMCxhJkiRJmWEBI0mSJCkzLGAkSZIkZYYFjCRJkqTMsICRJEmSlBkWMJIkSZIywwJGkiRJUmZYwEiSJEnKDAsYSZIkSZlhASNJkiQpMyxgJEmSJGVGPukAUgotAj5Stm9cyf1bgZ6S7RCY2uxQkiRJsoCRKhkNTK7x+ISy7bCJWSRJklTCAkba1u/oP8IyEAsYSZKkIWIBI23rl703SZIkpYwX8UuSJEnKDAsYSZIkSZlhASNJkiQpMyxgJEmSJGWGBYwkSZKkzLCAkSRJkpQZFjCSJEmSMsMCRpIkSVJmWMBIkiRJygwLGEmSJEmZESQdoMxyYA5wILAk4SyqKbwOOOml7TtCOLInsTjV5YFi7y2NWnr/TeP3rk8e6E46RA15ou9fmHSQKtL+M8713tL+M057Pl9n6hcQZUz7z9jXmdgmAWvzZTvPhOCKJNJIzbKc6MXhgKSDaCDhdRCGJbfbkk5UxSPA2UmHqOFS4M6kQ9QwF9iUdIgBbAD2TzpEDTcDlycdooYPAU8kHWIAXUkHGMBTwOlJh6jhKuCGpEPUcBiwLukQA9hC9AFrWt0DXJx0iG2Fk8reK4QQnpF0KmWfp5BJkiRJygwLGEmSJEmZYQEjSZIkKTMsYCRJkiRlhgWMJEmSpMywgJEkSZKUGRYwkiRJkjKjfHEhSdnRCuwD7Ae09+67gfSv6SFJklQ3CxgpW04BjgYOon/h0udtWMBIkqRhzAJGypaFwPykQ0iSJCXFAkbKpqeBe3tvRwF/l2wcSZKkoWEBI2XLB4DHgVUl+76JBYwkSRohLGCkbPl90gEkSZKS5DTKkiRJkjLDAkaSJElSZljASJIkScoMCxhJkiRJmWEBI0mSJCkzLGAkSZIkZYYFjCRJkqTMsICRJEmSlBkWMJIkSZIywwJGkiRJUmZYwEiSJEnKDAsYSZIkSZlhASNJkiQpM/JJB5AUSzswpsK+PmOByWWPrweKzQwlSZI0VCxgpGw5Hfhmjce/W2HfPOBvzYkjSZI0tDyFTJIkSVJmOAIjZcstwAdj9nm2GUEkSZKSYAEjZcvDvTdJkqQRyVPIJEmSJGWGBYwkSZKkzLCAkSRJkpQZFjCSJEmSMsMCRpIkSVJmWMBIkiRJygwLGEmSJEmZESQdoMxyYA5wILAk4SyqKbwOOOml7bs74bA1icWpbgawBXgh6SBVTCJaj+m5pINUkQemAs8kHaSGmcBaoDPpIFVMA3qIMqbR2N7b6qSD1DALWJV0iBpmAJt6b2k0hejv/fNJB6minei1MM2vM7OIFgXuSTpIFdOBLmBd0kH6m5KD52eU7TwTgisSiaNhw4Us1SC7PA78W9IpKvg6cBNwbdJBqjgTmAt8KukgVcwCLgE+mnSQGr4PfAF4IukgVVwArAS+kXSQKk4g+jAizT/jq0l3vm8BPwZuTDpIFf9CVMScl3SQKvYCPkO6f8Y/BD4LpPGDOoCLgYeA7yQdpL8dxgJXJZ1CarblQAgckHQQDSS8DsKw5HZb0omqeAQ4O+kQNVwK3Jl0iBrmkt5PlftsAPZPOkQNNwOXJx2ihg+R3uKvT1fSAQbwFHB60iFquAq4IekQNRxG6kYOtrGF6AyRtLqHqIhJmXBS2XuFEMIzkk6l7PMaGEmSJEmZYQEjSZIkKTMsYCRJkiRlhhfxS2qGHYhmE3wF0QxXAL8CbkkskSRJGhYsYCQ1ymnA24kKl0oXu67FAkaSJG0nCxhJjfI2+q0NJEmS1HgWMJIaaStwP3Bv7+0VwD8lmkiSJA0rFjCSGuUjRCtpl67Z8YmEskiSpGHKAkZSoyxPOoAkSRr+nEZZkiRJUmZYwEiSJEnKDAsYSZIkSZlhASNJkiQpMyxgJEmSJGWGBYwkSZKkzLCAkSRJkpQZFjCSJEmSMsMCRpIkSVJmWMBIkiRJygwLGEmSJEmZYQEjSZIkKTMsYCRJkiRlRj7pAJKGjQnA7mX75pTdP7Ds8ceADc0MJUmShhcLGEmNcghwQ43HP9p7K/U64NdNSyRJkoYdTyGTJEmSlBmOwEhqlCXAcTH73NeMIJIkafiygJHUKGuAG5MOIUmShjdPIZMkSZKUGRYwkiRJkjLDAkaSJElSZljASJIkScoMCxhJkiRJmWEBI0mSJCkzLGAkSZIkZYYFjCRJkqTMsICRJEmSlBkWMJIkSZIyI590AA0XD74c+EnSKSrYCTgDOCLpIFUcCEwind87gHHAKNKbD2AM8BVgTdJBqlgAzCO938M9gFmkNx9AC+nONwP4GPDGpINUcRjQTnq/h9OJXmvSmg+gDfg2sDnpIFXsRfR9nJt0kP5mtcKqpENoGHIERkpWkHSAAaQ9n7ZfmHQASZKybDnRH9MDkg6igYTXQRiW3G5LOlEVjwBnJx2ihkuBO5MOUcNcYFPSIQawAdg/6RA13AxcnnSIGj4EPJF0iAF0JR1gAE8BpycdooargBuSDlHDYcC6pEMMYAswJ+kQNdwDXJx0iG2Fk8reK4QQnpF0KmWfIzCSJEmSMsMCRpIkSVJmWMBIkiRJygwLGEmSJEmZYQEjSZIkKTNcB0bSSDSXl9bgAfgLcGtycSRJ0mBZwEgaCQ4C3kZUtBwITC57/HIsYCRJygQLGEkjwTtJ93pAkiRpkCxgJI0kG4D7gHuBNuAjycaRJElxeRG/pJHgO8BeRKeOHU00GnNTkoEkSVJ9HIGRNBL8OekAkiSpMRyBkSRJkpQZFjCSJEmSMsMCRpIkSVJmWMBIkiRJygwLGEmSJEmZYQEjSZIkKTMsYCRJkiRlhgWMJEmSpMywgJEkSZKUGRYwkiRJkjLDAkaSJElSZljASJIkScoMCxhJkiRJmZFPOoAkDYEcMLFs39iS++3A5LLHNwMdzQwlSZLicwRG0kiwC7Cm7PaDksf/ocLjZwxxRkmSNAgWMJIkSZIyw1PIJI0EzwEfjNnnjmYEkSRJ28cCRtJI8AJwWdIhJEnS9vMUMkmSJEmZYQEjSZIkKTMsYCRJkiRlhgWMJEmSpMywgJEkSZKUGRYwkiRJkjLDAkaSJElSZljASJIkScoMF7JUg6yaBrwt6RQVTAQOIJ3ZAPYCZpDefDsALaQ3H0ArcDwwL+kgVczq/Tet38NDgHGkNx9EH7alOd9Y4DCiBVPTaC4whfR+D/cC2khvPoheB08Enk86SBXTgb1J3fdwn7HwYNIhNAwFSQcosxyYAxwILEk4i2oKrwNOemn77k44bE1icaqbAWwhvW8sJhK9AX8u6SBV5IGpwDNJB6lhJrAG6Eo6SBXT2lpacuPb2lKZb3N3d76zpyc3qb29M+ks1azZsqV9yujRHUnnqGZdR0fb6Hy+2N7S0p10lko2dHa2BkBafwc7e3pym7q6WiePGpXan/HarVvbJ7S3d7YEQZh0lko2dHS0BUEQpu1nXAwnsXbrivay3WdCcEUigTRsOAKTPfsCry/ZvhZ4NKEsJQ69B3hV0ikqeAS4DLgk6SBVXAocDByedJAq5gL3E43EpNUG4Fjgj0kHqaS1peX2dy9Y8MorTjopla+331y8OPjFI490/fzUU1OZD2DKRReFz33yk6nNt+ell3Z//y1vaTlkxx1TmfE9114b7DZ5ck/h6KNTme/OZcv4wM9+1vPAP/1TKvMBzLj44uJfP/rRlgmjRiUdpaJ//PnPu8a0trZ+6bWvTdX3cN2WUUy+qLFfMywUJhGNKEaef/7p4GtfS23xq+ZI1S+6BuVA4Asl24+RigJGkiSp6f4RWPTi1vTpBwP3JZZGifAifkmSJEmZ4QiMJEmSpNjCc8+dQz5/5Ys7guD/gkLhsmYf1wJGkiRJUnxBMIYg+LuSPX8aisN6CpkkSZKkzLCAkSRJkpQZFjCSJEmSMsMCRpIkSVJmeBH/yDEX+ApQugrX/wLfSiaOpIGs3bKFxStWBItXruTeFSuCB595JugqFgH4/LHHFk+ZPz+Vq4JLUlqFhcJhwBsIwyMJghnANOB54DngTuBXFAq3BFD362u4aNHBFIsnEi3wPQOYDqwhDJ8jCO4CfgXcHBQKxUFmnkax+OYXd+Ry9waFwhKA8BOfGMuYMW8hCN4C7EoQzOw91jKC4Ho6Oq4OPv/55+t9LlUzLVz4dmAS0fMrtV+4cOGZVTvmcv8TFAobt/f4FjAjwyHA9fT/JbsUuDyZOJIG8parr85d+/DDQbXHN3S48LQkDVZYKOxHGF4CHANA0O/ldSqwB/BK4GzOO+8PYUvLx4OFC++MdYxFi+ZTLF5CsXhshYenEgS7A4cDZwFLwkWLzg4WLrxtwC+cy+0EfLNkzyJgSXj++ccRht8jKpBKzSAI9gKOo739/LBQODsoFL4X57kMItN5wF4VHjmWXK7S8490df0G2O4CxlPIhr+Tgd/xUvESAp8C/gUYVOUvaeit3rSp33Y+l2PSqFFVWkuSqgkLhdcDtxMExwyqQxAcTLH427BQOG3Qxzj//OMoFu8Aqr957+8AisUbwoULTx/sMfodb+HCdxOGv2Db4qXcZODKsFD4bD3HSStHYIa3M4gq9r6fcwfwXuBHSQWSNDh7TZ3KHlOmhAfOmRMetMMOLJg5Mzz/lltyX7j99qqjMpKk/sJFi46gWPwJ/d/zrgG+Q/QB72qi08iOBN4PzOxt0wp8JywUNgSFws8GOMbBFIvXAW0lu9cBVxEENxGGzxAEU4FXEobvB2b3tsmTy10WLly4MVi06MeDf1LhfHK5TxANRHQA3yEIricMlwHjgAOADwD7lfQqhAsXLgsWLfruoI9TS7H4ZXK5qUSjV2eXPHI78Muq/Vpb1zbi8Hn6V4rP0n8Bmh2B9wALgDlAQPSDvoPo+oknGhFCDRcA5/Xe+qwF3gTcmkgiSbFccfLJjpBK0nYIzzlnPMXiVZQWL2F4B0HwjqBQWFXW/DdhofAV4AfA8b37AuBb4Wc+c3fwuc89U/EYhcIYisXv0r94uQd4W1AorChrfkNYKHwVuAo48cVj5HLfCM899/fBhRc+PagnFgRv7b33NLnc64OFC/9c1uKesFC4ArgY+OiLe3O5S8LPfOY3wec+t3JQx6kVYdGibwOEn/3s7uTzpQXMPUGh8MXt/foDyQE3lNwW9e4fDfwX8CRwAfB2ovMCDyc6JemLwF+Ai4CWZodULG1E//lKi5cniX5+Fi+SJGlkGDPmTGC3kj2PsXXrSRWKFwCCQmEN8DbgjyW7p9PWdlbVYxSLpxNdP9PnCeDECsVL3zHWAe8kKnL6TKG19RO1nkoFncAbKxQvfcfpplD4OGF4bcnuSbS1xT1OKlW6BmYKcBfwQWoXJ23AOUBjhqLUCJOAXwN/X7LvfqJh0b8kkkiSJGmIhYVCjui97EuC4GPBRRetr9UvKBQ2k8t9mP6zkL0vPOus0dscIxo9+VDZ7rN7C6Fax9jae4zSkfb3hOecM75WvzL/GRQK99c8DoQEwVnAlpLd7w4LhcxfUFlewOSBq3npnLlHgEuIhp8+DHyJ6NP8UqcCg77ISU0zB7gZOLpk3w1EU/gNbkhSkiRpeNiLaAmJPo8E553368F0DBYu/ANwd8muKUya9MptGhYKc4GXl+x5kkLh+kEe40+EYekMZBMYO/aowfTtddmgjlMoLAd+XrJrCkHwqhjHSaXyAuZ4omtithBd7L038Ang60SnlP0r0S/EVWX9Pkt0nqCSsS/RqNmCkn1XAW8ANiQRSJIkKTHF4uFlewZVWJT4ab+tMCz/egCHlR8j1voxYVh+jPKvV81jQaHw6KCPA7/ot9XTc0iMvqlUaQSmCJxEdGpYpYtIO4AzgQdL9u0JHNyMgBrQcUSTKuzYux0CBeB0oCuhTJIkScnJ5eb32y4W74vVPwjK28+v0Grvsu14x8jnl/TbDsN9BtUvDGueOraNXO6+su1KzyVTKl0D803gxgH6dQNfK9s32KpRjfUhoPScyU8A5yeURZIkKQ0m99vK55fH6t3V1b99GE6p0Kp8X7xjdHSUt690jG0FQbxLA4rF/rOOheHUWP1TqFIBc+kg+/6ubHtwVaMarXw10/cBs5IIIkmSlBITy7bjnVKfz5df7D+p4cdobR3MMSqJu5J9/1xBUJ47c8oLmOXAYM+pe5z+5/kNrmpUo/0z8PuS7fm927tVbi5JkjTsdfbbKhZbY/Zv67cVBB0DHiOXa8YxKom3EP369eW5Oiu2y5DyAibOwpQ9wKaS7QnbH0d1WE80+cJNJft2Ixohm5dIIkmSpGStK9se7OhGJJcrH6Uo/3oQLRL+kjCMd4xtM1U6RiXxRlAmThzMc8mU8gKm5tzYFXTX+FoaOpuIJl4onR5wF+A2Kl90JkmSNJw9U7a9KpF01QAAIABJREFUV6zexeLLy/ZUWr1+db+tnp54x9g2U6VjbCsM9xi4UT/l7Ssuspkl5UVHpVnHlA2biYqYn5TsmwX8lpfW9ZEkSRoJ/lC2fWjM/v3bF4uLt2kRBP2PkcvFPUb/CbAqHaOSINg//MAHBn+6WrFY/lzuHXTfgeTz5dNGD8mAhqMmw0sncArw/ZJ9M4gWuMz8nN+SJEmD0tFxN/0/mH9jWCiMGUzXsFDIE72fekkud8c2DTdvvof+ZyO9PjznnPHbtKt8jBzwzgGPUdlkZs/+u0G2hSDo/1zy+d9XaRlfZ+emsj2TK7ZrMAuY4aeHaA2YK0v2TQZ+A2y7iqwkSdIwE3z+888CvyzZNYFi8axBdS4WPwzsULJncVAoPLTNMS66aD1heF3JrjGMGfOJQR7j/cDOJXseDAqFJdWaV/CZcBCLyIfnn38CQfCKkl1LgoUL/xzjOLW1ta2n/6Re0xv2tWuwgBmeeoAz6D8l9kSiIubYRBJJkiQNpSDov2ZhLvepsFA4slaXsFA4iFxuUdnu6kuMlB8DPhEWCq8Z4Bj7kct9od/OYvGrtfpU8EoKhbMHOM5swvDrZcf5Rszj1BQUCpuJZibuc0h41lmjG3mMSuJNw6YsCYGPAV1A3y/4WOBnwJvpf8G/pJT5w9NPB5ffe2+/T9fuWfHSdZff/9OfgnuWL+/3+LlHHVXcZVLcSXAkaXgKzjvvprBQ+G/g1N5do4Hrw0Lhk8CVQaHw4ulf4dvf3sL8+acC/0HpAuFheAPnn/8/VY9RKNweFgpXEq3DB9AOXBsWCp9mxYrLg8su63rxSxUKOYrFdwBfpXQmsTC8hVzuuzGe2vre/p8PC4WprF+/KPjyl7eUNggXLTqcYvFKokmd+vyeXK70MoNG+S0wt/f+NCZOvD4sFP6TXO4JisXyCcKeKv2+18sCZngLgU8AzwJ9lf5ooiLmXfS/4F/ZNYqoOJ1INJ15D9EiV+t6/+2q3lVp9de1a7l8yZKqpwfcunRpcOvSpf32feDAA4NdJk0qv6BSkkayfyEM9yMI9u3dHg/8J7AoPO+8OwiC1cBU4HD6nzYG8Djd3WcE/U+R2tbmzWczevQrSk7VGgtcyuzZ54WFwh3AM4ThFOAwcrk5Zb2XEgSnB4VCnIm0/gt4LbA/8K9MnPjBsFD4LbAUmEAYHkCxuKCsz2q6u98fXHBBMybs+gbwHl5a1+Zo4GiKFQ7V1TW3N+d2sYAZGS7q/beviGkDriG6VqYZlbiaZxeidX9eQTT94nyiiRqqCYGngIeBPwNLiE4lfK65MbW92nI5Jo8aFatPPudZwZJUKigU1oWFwjFE73tKT+2aRhCcXKPrYuBNwYUXrhrwGF/84gvhOee8htGjf0QQvLbkoalEM8RCUPHzqD/S1XVycOGFTw90jDIddHe/nXz+Z8DLiT68fNNLgbY51kpyudcHF1zwWMzjDEpQKDwYFgpnAN8kKt6azgImex4BLivZHuzioxcRjcSUTqV3ONECmJmfD3yY2xN4P/AGYO+YfQOiomcX4HW9+3qAe4hG4q6kfB57pcJb9947fOvee/cknUOSUqVY3EIuV7qA5ICnIwWFwroQXkuh8HbgM8A+NZo/RrH4JR5++Krgxz8e9Gtw8MUvvgC8ISwU3kIYnksQlI+AlPobcAlwZXDhhXWdThVccMETYaFwOPB5olPkKi0ovxX4IfCpYOHCNfUcZ9B5CoUfhoXCzcBpwJFEi6lPY9uJBhoyAmQBkz139t7qcSX9ZydTuh1HdB3T62jshBstRMXr4UCB6MXtK8D9DTyGJEkNFyxa9GXgy7H7QUihcA1wTXjuubvQ2noExeJMcrlpFItrgNUUi3dt7yhFUCj8BPhJeO65O9HSciS53EyiN/LriE7juju44IJHtucYJcfaCHw0POusc5g06TWE4W7ADIrFteRyS4Ebg0JhQyOONcg8K4Av9t6aygJGSp95wNd4acSkmdqJTiV8L/ADogkfnh2C40qSlIjgwguX0oDrMAY4xjKg6sX/DT1WdAH/L4biWGnhCdNSeuSBfwceZGiKl1IB8G7gIeAfhvjYkiRJg2YBI6XDVOD/AZ8lGhVJyjTgu8C3eGk2EUmSpNTIA1NKtuNOt7obL12cs91zOksj1Bii2U52TThHqQ8QzXJWc5EsSZKkoZYH1g7Yqrp1jQoijVBTiWYWS+P1aEcRTbNddS0SSZKkoeYpZFJydgdOJp3FS5+9iE5pGz9QQ0mSpKGQtk9WlwNzgAOJFtxTaoXX0bc4EwB3hHBkGtesyBPNOd6MlWe3V6MLl/KVghv5/zskWj8mjfJE2VK5An0Q5FqCXEsQBEEafwcJwzAICYNckEtlPoBisZjL5dKbLwzDXBAEISn9HSwWi0GvlH4Pw6BYLAa5XEtK86X/ZxyGYS4MwzCXy6UsXy4IwxlBCBC+jbB4CcCZEFyRbK5sCRctegXF4h9Kdi0KCoVFiQVKgTR/8qtMOeIO4FVJp6igb+HPS5IOUiIH/Bw4YTu+xhbgp8D/AXcBlVbxDYimZD4ceAdwPPX/nw+A84EL6uzfTBuITnf7Y9JBKsvdOmXP49pfdvy//V/SSSp58qYvHrZh+eKj9nvPNU2ft79ei79+9OcP/MjNn046RzVLvvW6T80++D03zjrgXYuTzlLJn390xin5tnET9nzLV1L5pvHZh6/fedmt33zfAR/8ZSHpLNUs/sYxF8x/13cuHjVl1/VJZ6nkz1ef+U/59rFP7vmmr6RqKt3urfnRKxfPLnRsuJl1j99MmNoSNeW2bl1BW9tnXtzO5e5IME0qWMBIQ+8c6i9etgBfBb4ADPSHNAQe6719j2h083yiNV9a6jh2AbgNuKWOvpIkqQ7B5z73DEOwOGSWeA2MNLQWEK31Uo/FwD7Apxm4eKnkaeAMohGZJ+vo30J0Uf/YOvpKkiQ1hAWMNHQC4OvUN/L5PeBI4PEG5PgD0XVmN9fRdyeitWokSZISYQEjDZ3TiIqQuH4MvA/oaGCWNcAbgFvr6PtxYM8GZpEkSRo0CxhpaIwGLqqj3y3A39OcGcA2E03j/ETMfm3AxY2PI0mSNDALGGlonA7sELPPs8CpQHfj47xoHdEMZZ0x+70ReEXj40iSJNVmASM1XwtwVh39/pnK0yM32h+ob0Tl7EYHkSRJGogFjNR8byVajyWO3wNXNyFLNZ8DlsXs805gbhOySJIkVeU6MFLzfaiOPmcztCs+byaa3vmyGH1agPcDnxmoobbP84/eMGf1fT8+fPPaJ+cWOzdPCIKWrvyoCWvGzV7w4I6v+sc7R02YvSXpjJIkDRULGKm55hCtEh/HrcBdTcgykO8RLXQZ51qdU4mmVXZ95Sb5688/deyav936d4ThiyPmIT35zk3PzVnz2E1z1i+967Cdj/qX/56+zxuXJplTkqSh4ilkUnOdSvxV7/+jGUEGoQP4Rsw+O1Pf1NAahMd/8+9HrvnrLccRhrkg19I9fs6Cu2cd8M5rps1/43XtE+c8DtDTuWni0pu/9N71S/8wLem8kiQNBUdgpOY6LWb71cAvmhFkkK4kGoWJU3T9PfWtJ6MaNq68f/LzD//6BIAgl+/a9TXnXF42yvL7R3/68RPWPXnn0cXuzjFLf3fxyfu995pvJxRXkqQh4wiM1Dy7AvvG7PMjmjtt8kBWEq09E8ebgKAJWUa0Zbf/19Fh2JMHmLz7MTdWOkVs9xO/8Ou2sdNWAGxdt2yPZx+8fpehzilJ0lCzgJGa57g6+lzT8BTx/U/M9jOB/ZoRZKQKuztzm555eF+AINfSteMRH7q7Ursg31actPsxv+/bfv6R3ywYqoySJCXFAkZqnmNjtl9HMhfvl/sl8WdAO74ZQUaq5x+7Ycdi99axAG3jd3iq1ixjM+e/8S999zc/++heQ5FPkqQkWcBIzZEDjonZ5yagpwlZ4loBPByzTz2jTapi46qHZ/XdHz15p5rr84yevvsLLW3j1gJ0b31hSvfWta3NzidJUpIsYKTmmA9Mj9nnpmYEqdMNMdsfiZOCNEzH2mUv/u60jZ+xdqD2+dETe9uEwfqn7ov7eydJUqZYwEjNcVAdfe5seIr6xc0yGti7GUFGou6uzWP67reOmbZxoPYt7WNfbNO16ZmxzcolSVIaWMBIzfGKmO07gD83I0idFtfRJ+5zVhVh99b2vvu51lFdA7UPWto6++73dG5ua1YuSZLSwAJGao64b+YfAAZ8ozqEHgfWxOxjAdMoxeKL6/AELS3FgZrncrkX24TdXXEXTpUkKVMsYKTGywFxp7O9vxlBtkNI/EwHNCPISBS0tL44ohJ2dQ54bVGxp+vFC/db2sd01morSVLWWcBIjTcHGB+zz2PNCLKd/hqzvVP4Nkiutf3FIqS7a9OAp4SFXR0vnnLW0ja+o1m5JElKAwsYqfF2q6NPGguYuJmmA+OaEWSkaR0zdV3f/a4Nz0waqH331g0T++6PmbrbulptJUnKOgsYqfF2raPPcChgoL7nrjKjp+y6uu9+x4aVNadFDrs7c11b108FCHL5rnGz97GAkSQNaxYwUuPVMwLzVMNTbL96MtXz3FVm4m5HLCO6Dokt657atVbbNY/fskPY0zUKoG38zGUE+bD5CSVJSo4FjNR4u8ZsXwTWNyHH9lpVRx8LmAYYN2v+urax01YAdG9ZP/35R2+YU63tcw/9Yv++++PnLEjTVNySJDWFBYzUeLNjtu+i99P2lHmGqLiKY4dmBBmJJs191d1995++69uvrdRm46oHJm1YtuQQgCCX79zh4NPuG6p8kiQlxQJGarwpMdunaf2XUt3A2ph94j53VbHLqz66OD964rMAW9cs3fPhqz/41q4XnhnV9/i6v90y69Hrznl/3+ljk192xC2jJ++2Kam8kiQNlQHXF5AU29SY7bubkqIx1hHv+cR97qoiaB3dM/d1he8+9rNP/lOxp3P0CyvvP+SP33nb/q1jJq8u9nS2d29ZPw0IAEZN2fUvc1+36LcJR5YkaUg4AiM1XtxRiJ6mpGiMjTHbOwLTQBN3OezZ3d98ydfaJ8x6EiAsdrd1bnx2x+4t66cDAUGuZ+Kuh92y97su+36Qb4t7up8kSZnkCIzUWHlgQsw+aS5g4p6S5AhMg03c8aDnF7zv2m+ueex3O6x74va5nRufm5TLt3e2T9hhzcz93/rQqEk7b046oyRJQ8kCRmqsCfSe1hNDmguYuCMwEwduonpM2f2YlVN2P2Zl0jkkSUqap5BJjdVWR580n/oT99P99qakkCRJ6mUBIzVWax190jiFcp+4EwzU8/wlSZIGzQJGaqx6RmCGUwFTz/OXJEkaNAsYqbFG+giMBYwkSWoqCxipsRyBiT+JgSRJ0qBZwEiNleZiRJIkKfPS9knpcmAOcCCwJOEsqim8Djjppe17tsKhqxKLU91ORFMBrx2i47US/Q7H0QMsa0KWRpgOjI3RPgSWNilLNbsAq4COIT7u4AS5Ofm2MSG5fNwpqYdE2LV1dBjQnsuPWpd0lmqKnZum5NrGrkk6RzXFri2Tc/lRWwiCrUlnqaSnc9P4XEtbELS0bkg6S0U9Pa3FYue4XOvooXqdjq3YtXlKrnXMOlI6a2TY3TkpDHu6cq2j467d1WRBQDh5MmEHPd1zCXtuATgTgiuSTqZscx0YNcjs5cCXkk5RwQXAHcCvhuh404F/j9nnBeALTcjSCGcAB8Vo38HQP5dLgasY+sJpUAKCT42Zvmduwi6HLE46SyXrn7xrXsf6p+fNWPDWm5POUs2Ku7795lkHvOvmpHNUs3Lx90+YuOshj4yeOu+JpLNU8tyff3ZoS/u49snzXnNr0lkq2bpu6dR1f73tlWn+Ga+45zsnT9/npDtb2sZuSTpLJc8//KvXkGt5fuqex/8p6SylwmJL29a1+57YtelhNq5c5SkKahgLGDXIjquAbyWdooKPA7cxdNl2In4Bs5F0fu8AjiVeAbOJoX8uFwPXAH8c4uMOUnBq24SZ7bMP/oe7k05SSeeGVUHX5ufmpDUfwIq7r3xTmvOtWvLDY8bOePlfZx3wrlQWqWv/dusu+bZxE9L6PXz24et3Xvf4nYekNR/Ainu+88bpLz/hvlFTdl2fdJZK1j5+20H59rFPp+172L01P3rl4tknhsVxwM1Jx9Ew4jUwUmN11tEnbadyloo7q1o9z1+SJGnQLGCkxqrnDXya/x+OidneAkaSJDVVmt84SVm0gfgXebY0I0iDxLmAH4ZusgRJkjRCWcBIjdUDxD1HOs0FzLiY7Z9vSgpJkqReFjBS48Wd7jXNBYwjMJIkKVWchUxqvOeBuTHap/n/4dSY7Z9rSooRLuza0rLivqv3eGH5vfN6tr4wjly+p33c9DXTXv66ByfNfXUa11+SJKlp0vzGScqquCMwbU1Jsf3agIkx+6R2scGsevbB63d56vavv6Nn64Z+xeQmYM1fbz5u7Iw9/jT3xM9fO2rC7FSuTyFJUqN5CpnUeCtjtm8lnVMpzyR+rrjPXTU89/Avdn7ytxd9oK94aWkbt27M1Jc9NGrSLo8GuZYugE2rH13wl2v+8X3dWzfEnfJakqRMcgRGary4q3EHwBTSdwH8zDr6PNnoECNV99YNrUt/9+XTwmJPHmDKvFffMPd1i34b5NuKAFuee3zcoz87+90dG1bt2rnxmZ3/+stzX7fXW752fbKpJUlqPkdgpMaLW8AA7NzwFNtv1zr6PN7oECPVUzf/x+E9nZsmAoydsecf5534hRv7iheA0dNetnGPN3/le7n8qE0ALyy777CNqx6YlFReSZKGigWM1HhP1tFnXqNDNEDcTCGOwDTMuqV3H9x3f84rz7ypUpvRk3fZNGGXQ+8ECMOe/KolV79iqPJJkpQUCxip8eoZgdm94Sm2X9xMq4HNzQgy0qxfvnhq95Z1MwDaxk5dMWnXI1ZXaztj/on3993fuOLBvYcinyRJSbKAkRpvBfEXs9yjGUG2U9wC5uGmpBiBNiy9Z8e+++2Tdn6qVttJu71ydS7fthmga9Nzs8PuTl/XJUnDmn/opMYLgfti9lnQjCDbIQD2i9nn3mYEGYm2rHlyRt/99gmzaq+tE+TC/KiJayA6jWzDqvsnNzmeJEmJsoCRmmNJzPbzgVHNCFKnPYi/Bkzcok1V9GxeP6Hvftu4GQOO5uVHT1jXd7/j+aVxf26SJGWKBYzUHHHfzLcC+zQjSJ0OqqNP3KJNVRR7Otr77re0j+kcqH3Q0v5im56Oje212kqSlHUWMFJz1PNm/vCGp6hf3CybgEebEWQkCnu6XlyUMmhp7Rmofa4l3913v7trc1uzckmSlAYWMFJzPAysitnn75oRpE7HxWx/CzDgG20NUklBEvb0DPg6Xezpaem7n8uP6mpWLEmS0sACRmqOEPhtzD6vITqVLGk7E39WtBuaEWSkamlp6+i7XxzEiErpiE3rqLEdtdpKkpR1FjBS89wYs/144JXNCBLT6+voYwHTQC3t4zf13e/Y+Nz4gdr3dLxQctH/zE212kqSlHUWMFLzxC1gAN7Z8BTxvStm+6eBPzcjyEg1atJOz/bd73zhmSkDte/esj5qEwTFcTsfUHvaZUmSMs4CRmqeZcRfG+UUIMmLsHcCjozZ5yfNCDKSjZ2974q++x3rntqpVtuNqx6Y1NO1eQJAfvTkZ/Ot47trtZckKessYKTm+kHM9lOAk5oRZJDeT/zXhR82I8hINnX316xsaRu7HqDjhdU7bXnu8XHV2q5+4Pq9++6Pm7Hnw0ORT5KkJFnASM31QyDuJ+LnNCPIIIwCPhSzz9+Au5uQZWQLcuG42fv8CYCw2LLs9q+/qlKz7q4X8usev7Xvuqlw6t4n/mmoIkqSlBQLGKm5VhN/NrKDgSOakGUg7wVmxuzzA6IZ19RgOx/1z7cEuXwnwLqldx319N3f3rv08bC7M/fITz7+5u4t66cDjJk+78Gpe7xmRaWvJUnScJJPOoA0AvwncHzMPl8BDgWKjY9T0XhgYcw+XcC3m5BFwOgpL9s4c/9TfrJqyQ/fQRjmnr7z2//w/CM3PjJmyq7Lit0drRufeWif7i3rpwG0tI1dt9vxn/1Z0pklSRoKFjBS810P/AXYK0afg4DTgO81JdG2/g3YIWafHxBNVKAm2fmoj95XLHbln73/2pPCYnfb1jVP7rV1zZP9fo/axkxdudtrP/vfY6fvuSGpnJIkDSULGKn5isCXgCti9vsqcBvwRMMT9fcq4KyYfUKi56Qm2/Xoj/9h2l7HPbZq8Q8P2vTsY3N7OjeOJ2jpaRs7+bkJOx364OzD3/uAM49JkkYSCxhpaPwAOI9omuLBmgT8D/BqoFmrq8/oPUbc14KfAA81Po4qGTdr33XzTvz8jdS3tpAkScOKF/FLQ6MD+Nc6+h0KXAu0NzYOEBVIvwDmxOzXAXy68XEkSZIGZgEjDZ2rgd/V0e8E4BqiC+0bZQ7Rp/kH1dH3i8BjDcwiSZI0aBYw0tD6Z6LZu+I6CfgDsH8DMhwPLAEOrKPvUuALDcggSZJUFwsYaWg9SP2nX+0JLCaaDGDnOvrvC1wH/Jro2pe4uoBTgc119JUkSWoICxhp6P0HUSFRjxbg/UQzk90EfBg4AGit0HYs0YKYnyAavbmfaCSnXucCd2xHf0mSpO3mLGTS0AuB04F7gHl1fo0c8JreG0APsK73liO6QH/y9sXs5zqcNlmSJKWABYyUjLVExceDwIQGfL0WYGrvrdGKRKeOhU342pIkSbF4CpmUnGXAT4HOpIPU8EeiaZM3JR1EkiQJIEg6QJnlRNO7Hkg0S5JSK7yOftdTPLQa5v8qsTjVvY1oyt8/JR2kiiOA6b33JyYZpILlRAXMCUQLcabVacD/A55LOkglQZB7Y+u4GbSOm/pE0lkq6Xph9czurS/MGD197gNJZ6lm8zN/OWDMzL1S+zdhy7N/XdA2foeVLaPGrk46SyVbn186N5dvz7dNnPVI0lkq6dmycXzHhhXzxszc476ks1SzedVfDhgzfd6DtORT+YFTx9qn9w6DcOOoSTs+lXSW/vItxa499y92PkPXpgkUe34GcCYEVySdTNnmKWRqkK42YMekU1SQJ7oeJI3ZAMYRnf61GNib+mYHa4alwN+AaUQfdKT1+wdRvpnAqKSDVBa05VrbybeObcSpgg1XzI8eXcx35tKaD4AgF6Q5XxDkgpa2UaPTmjHIteRzLa35tOajp2ds0JJP7f8RgKAlT0v72PFBkK9nGvym62xpaQmgPX3fw6ClGPTQHRaB7qTDaBixgFGDLHgQODbpFBU8AlwGXJJ0kCouBQ4GjiF6I/4x4Hwau2hlHE8BHwGu792eSzR7WRp/tn02AGcSjRalUHDruFnz2192/L/9X9JJKnnypi8etmH54qP2fMtXU/uJ6OKvH/35NOdb8q3XfWrqnsf/7v+3d+fRcVR3vsC/t5Ze1Gqt1mJLtryB8YKNF1nyAtgDhgQIQxaTMO+FJCTwZgkDDkkmb96ZjDLDvMmQEBwYkjfAHJJMZiA4JECAQALBxoskWza2sWxsvFuy9q219VJV9/3Rbrllt9RSxuqqNt/POTrc6v6177dbttHPt25V8ZK76uzOkkj981+5U3NlZs351EZHfoZth34z7cy7P77Hyd/juifXPjx97Tf+y5M3vcfuLInU/+Lev9LcvpNz7tj4mt1Z4hlBzdtUN6UqFNiMUM9mu+PQZYR7YIicQwJ4DNH7vfwHUrtpPoJoM7UA55sXIiIiIsdhA0PkPE0A7gawDMDPEN1EP1G6AHwPwBUAHgDQO4FzEREREf23sYEhcq49AL4AoAzANwC8g+hKyX9XP6L3dfkKgKkAvononhciIiIix+MeGCLna0H0JpLfR/SeMX8CYCGim/7nItqEJLpppYnoCssJAAcBHAKwG8BWTOyqDhEREdGEYQNDlF4CiN475qUEz2We+zIB9AEYTGEuIiIiopRgA0N0+eg790VERER02eIeGCIiIiIiShtcgSEicjhphJXm/S/O7j29a1Yk2JOlqHpEzyzsLJj3iQPZZeXtducjIiJKJTYwREQO1nHk9yWn3nn0LmOwp+DC5zoP//7jvuL5u6+89Z9e0f1FQTvyERGl2sqH9pQZRvCq2LErbO7c9uNru+zM9FG2fr1UT02pHrrhtaXrjXXfLz9wKecof3D7NUKKotgxGxgiIofqOPL7kuNv/MNfSMvQAUDRvb0uf1GjNCOucKCpTEpL7W+uX3pw01/kz//8T5/WdL9hd2YioolmWJECCLEodhzR9HpEr7pJNjiITapPTB36fqiWqQK4pA2MgJgOIa6MHbOBISJyICPUq51865HPx5qXnJmr/jDr4//4lqp7TQDoaz6YffTVb30+3Nc2NRRomn7stW/fNOeOx163NzUREdHE4yZ+IiIHOr1lY6UZ7ssFgIyCK/dfefv334w1LwCQWTyvZ84dG3+iaO4BAAic3rWqr/lgtl15iYiIUoUNDBGRA3WfrFkeG5eu+PJbiWq8k2b2ZU1bXg0A0jK15veeX5yqfERERHbhKWRERA7T2/BenjHQWQQAroz8ppyZ17WMVFs4/9b93ce33gAA/U3vzwOwOTUpiYiIgPpNd4bXfPGdx2PHvS6/OVr9H8MccL3mD/e+ETtmA0NE5DDdp2qmxsbu3NLTo9XmzFzVoqiuQcsMe8N9bSXSCCtCc1kTn5KIiChq80/WTuiVMHc/tSwCIBI75ilkREQOM9h5qjA2dmdNaRu1WGhS82Z3ANHTyPqa9+dOcDwiIiJbcQWGiMhhzIGurNhYzywIJKvX3Fk94b62UgAY7DiV7S9d1jGR+YiI0t3S++p0eIOTdaH6TKhuiHBElWq/JyfYvLnq0qwmrKl6R+sPKJNVy5UZnQMREZEDqm42Vz+2cvBSzBEZhJCWAAAgAElEQVRv5de3F0pTZBlSZiqqGkYYgdr8N86iquqyW5VnA0NE5DCWGXLHxprbF0pWL3T3UI0Z6XdNVC4ionS3+Kvbprg0sVIiMg1QNQuAgAlIFRaAgS63XL5hR6MwlV21j1d++MfMsfTBdycr0FcMdGO6AOLmAKABpgVZ/sD2Jgm5q+6Hqw+P5de85sH3ctwidGfsWFhyX80PV9QCUlQ8VLtEmnKxYSAPAAQEpCkBFVjec9OAfOiW/VavUn3uNKxLbul9dbrmM740lE3KIzUbV2y+lHNUPFCzDgpmxI7ZwBAROYw0I3psLFQ96WZIRdWGbmBphgbYwBARXahKKsu6a25WgKvlaHVCCEiUSkWWlm+oPunrCr4y5v0dVVVKRc+6G6VUrhm1TgghIKYI4E+XP7jjjCrwUrIVGVekQ5W6Lyd2bCnSs6bqHU9/T83t0sT0EV8oRYYwzUol05yz+ltbf7ntu9de8ht+BruOC1/G1KFsUETGpZ5DCssHKYbm4B4YIiKnUc43JNI0k/49bZmmGhsLTTdGqyUi+qhZv/4FdXlX9acV4Or4xwWkJSCahCKOSaARAsNWKITE9MFc711L76tL/gN5VZVS3n3zHRc2LwLCgpTNsTmEIsLDXyimmlD/bP5fvpM5nvekSiEGu123CXmueRFSCogmQB4RijgmpdU3bBYLuaGg9rmK+2uyEv166YYrMEREDqNqrqH/wVmRQX20WmD4io3q8odHqyUi+qg5OW36KmGaQ6cfQUopVKVOkbKm+rHKoZWPpffV6Yo3dI0QyrU49zOylLJAyYh8DMCvRpujsvvmFRYwe+gBIaU0sccM6tW7n1o2ED+H5jcWSkteB4no393Sys9we24B8MJY35OEmC+h+M4dHdF16+3tj6zsjasQFX9dOxsq1kkpMwFAAH5ouAXA82Odx6m4AkNE5DCq298fG0f62/zJ6s1Q71CNJ6uob7RaIqKPkpVf314oLKMi/jFL139b+4PKdy48bWv3U8siu364apcpzV8CGFrNFsDsyger5440x/L/XZsvIVYMe1Cov9v1+Mq345uX2By1j1buViFfiF/xERLTV2zYMWyFaDQSMtq8SLlv58aVL21/ZHXv8Aohax+v/DAkB/9LQA79P0VKOa18w875Y53HqdjAEBE5jDtnamtsHAq05CWrN4KBaI0QVmbpkvYJjEZElFbMsFwGKUTsWAq5v+775QdGe83uH64+rUhsj3/MElg+Ur0IGkslZNzP1Er9zh9U7BttjurHVjYC5tZhc0iUj/aaC0kFXWVnV7w1Ws3ejWu7oSu/G/5Cc1zzOBEbGCIih8mcsqApNg52n5k6Wm1f88FsM9yfDQCaJ7tdc/u5B4aICNHTtaSiXhU7FhDWQCi0bSyvnXr2TF38ygUkilZ+fXvhhXXr17+gQqjzhh4QUgpTbr2wLpGd2W/tkcDQyomEmLT0wXcnj+W10ReoOzZtEkkv9FL7vcoPIdAyFBEoTPRe0gkbGCIih8m/4oazqp4RAIBwb8u0wa4TvpFq2+tfGTqtwVd01aFU5CMiSgea2yjC8P3eJ+t/tHZMp9lu2nSnKaEO+zvVMpTSC+uOlxQXSksOXf1REeJ07ROVSe/fBQCoqrIg5MH4hxSpXjRHIlJY5kC2b8yXebYgk76XdMIGhojIaYQifZMX7AMAKS31zNYfr0pUZkYG1c5jW1aeO5ST5t0y6ikLREQfJaZmTRn2gIKGcf0CF9RbUC5aHdGhD3tMmqJxPFNYhhw2h6Jgyki18YTQ2uqr5o/5oi06MCyXBWvsKz0OxAaGiMiByq796hahaBEA6DmxfU1T3c/nDCuQhjjy0oY/NQa6iwAgI3/mofwr143rf5xERJcz5dzVt4YY6BjP61VpDttTqCjWRZc6NlV12GOKZo1vH2KGe1i9JZWxXU7ZGt97cXeFhtUryhjncSheRpmIyIG8BVf0Fi781Este19YL6Wlntn+oy92HH7zYEbezNOGMejqa6pfYAx0FgOAqmcEpq/7Py/ZnZmIyEmEJT3xW+stTRnbDSnPG3aVMtOC98ICxbI88TfGlKYY1xxBr3fQFzp/+xkhpGcsr5PCCo1nns0/WRNavqFaxi5oYEmMaR6nYgNDRORQZWs21EkzpLXVv3qbtEx9oO3ogoG2owviazRvTuvMG7/1n5nF83rsyklE5ESWqqoirrswwuGkG97jBRoaTF/J+euoCKGoFxUJaIibw1TUcc1Rj3nGctScf8Aa28/miki+eX84ISW2WwLi3HuQad0DpHV4IqLL3fQbvlWTP+fGD5v2PL9ssP3YLCPYmy1UPax5s7uyppW/X1p5717NkxVJ/isREX20KLBCMm63hNedkfTGwPEK5s93DXSf348vhLxo1cMyrJBQxPnjSMR1Yc1oVvRUu02cfz2Usa3gSNMa1zzr17+gnpLnGzBpXfxe0gkbGCIih/OXLuvwly570+4cRETpxFL0oDDPL1RELGNc+z56uzv8KuJ6HgsXNReqIoJW/LF+8T6Z0WiGJ9NUz/cSirh4joQUZIxnntPF03yIWypShDre0+kchZv4iYiIiOiyIyORzvhjRVjjuveJqojh9crFG+eFKodvjpdawXjmCGrG8DnkGDfnWxjXe1E0K+l7SSdsYIiIiIjosqOr4mz8sZRi5nheLy1tVvyxaRpnL6yxwsqwxyxg9njmUBAZVi8VcdEcCQmRvfyvavPHOo+lKDPij01THds8DsUGhoiIiIguO9WPrewUQnYPPSCt/PKv7Zw6ykuGLP2bumwFMr7hMXRFOX1hXe0TlQHIuFUYiazKB6unj2WOVd/c5pdSGWqSpBDmoPCeGstrAUDRravHUje/qt4lTXlV3EOGrkQuei/phA0MEREREV2WLEu+N/wB84Y1Ve8k2QMuhRYxbpQQQz8nW8Ch6sdWDiaqtlTsGXYs5Q1L76tLesGASFi5AcP2o8sj+7+/qD/Z6+IyLVn9ra25yeoyA72rgLhLQEt5ZKT3kirlD2wvX/7AjpuHvr5eOyP5q85jA0NEREREl6WB3Jx9EuiNHQugsL/bc/v8qvqEV/Fav/4FtWJD7TppyfOnjwlEdCFrR5pD9rkOCCHOr/QIka96w3fMvv91d8IXVFUp5RuqbwTElUO/hrBMS9Grx/XmAC0SUtdX3F+TNVJB5YPVS6Qly+PnQYY63nkuOVVVZkKIRbEvYcmi8byeVyEjIiIiostSfdX88MqHtr9uWOLO2E0cBTDb1xO4p/yB7bt1Had6BsIDHq/fo0qz5LSUS6SUwzbiKxJbqjeu7Ew8A7D7qWWRivtrXoci74KIzgEhZuSqufcs27Bjt2opp/oig/2+7Ay3GJAlVrdcIjB8E76E2Lr70WXtY31fUpqnoIhSSCVHqNY9lQ9W71I060Npil53drYa6ukptoSyyIpvxKK5qnf+c0Vab+AH2MDQJdOZDeB6u1Mk4ANwJZyZDQCmAciBc/OVAFDh3HxA9O+xcgDZdgcZQW64r1Vv3ffiuDaPpkqwu7HAjAw6Nh8AQJpwcj5pRvSB1g+KnJrRDAaypRnOcGq+gbYPi6QZVp2aDwAgLaXj6DvTdHfWmE/vSSUr2Oc1jHCu0z5Dy3K5w71LYAx+AIzx6sATYcejq05VPlj9qinELULK6L1QJLKEUNYaBuBzeQAzcu7h4aQit9X8YOUeJFH7RGXD8q/Vviyl8Qlx7n4rAvALKdZIIaNzDFqQAvF3fYnOIa2auo2rdo7rTSlKszRwRKhYJyFcElhlGcoqAIjeu0YAcvi7EZZ5YOfGVbavvgCAlELEf9rClBd+9KNiA0OXyOG5AH5td4oEsgHcDWC93UFG4EO0QXDiZwdEs7nh3HxA9LzeRwEYdgdJRMLK6m/5AIPtJ8a0cTTVLCOoSzOiNdY++3m7s4xESqk4Op9lertP1qzoOb17md1ZEjHDfW4IRTj1M5RWRLWMkMup+QBASqm27P3lpwXEuH7IShUz0u+VlsxrrH12VvLqlBKAF9IKAXJcF+e65Go2rjhUcX9Nr6XixgtXPxISCFiW+U7dD1YfHuscO39QcWTxV7c9p6vyRghRnKxeAr2KGdmy84nrDo51jnh1T6x8r+L+d0PQXTdJS454Y0sphCmlrKn74aodeNwhv4clhq6gJiAszRs5Mp6Xs4GhS2RFDYBr7U6RwGEATyH6A64TPY7o6sEKu4OMYBaA/QDy7A4yigCA6wDstTtIIgLKu7mzrnPPvOnvXrQ7SyIn336kMtBQd93CL7zwiN1ZRlL3r2v+efF9r37H7hwj2fNvH/vWlPIvvFW85K46u7MkUv/8V+7UXJlZcz618Rm7syTSdug30868++N7nPw9rnty7cPzPvPkY5686T12Z0mk/hf3/pXm9p2cc8fG1+zOEs8Iat6muilVocBmdB/ffMl+XVOGGnWpb4kdq15jTN+X2icqGwD504q/rp1tqdYsIUWpUETmuR/+DUjZb0E0CUU95svuP7y5au24/2HsvX9dfRbAz5bev32WqojZUNRSIU2/hIjOITAgYDWZquuYDIjDu55aERnvHMPf03UH11TVnx7s6FoAVbtCCisbUmRAICKk7LEEjmmQ71dvXNmJjf+dmUY2DzDPSAx9PyIRc9RT4ZY+VDdJmhFf7NiErK/97rVd45mTDQwRERERpY3dG69rAtD0x71ayNrH8SGAD4ceqqpSUFVlXZJw5+x+YtUxAMcmco6YzVXz+wDUnPsCpBQQqVtp2bTpThPAiBc5uJBuRqbFPggphCld2o5kr5FCuOLekcGrkBERERHRR9cENRYpnyMmhc3LH8OyZFlsrMB8f/e/LEu6gibiLgMtIEJsYIiIiIiIKAWkkELE9oQami7HeFEB6Y+NLGn2sIEhIiIiIqIJV/FAbaEQ8ACAVOS+7Y+s7k32mvKv7ZwKKTJix6qiNHMPDBERERERTThv7mBPfyt+BgADhYUJ762zpuodzWjR/IMu4VcVvRDSqIy/+LQ0xAdsYIiIiIiIaMJtrlobBNA8Wk2w21NquXGnCgDSwrA750h5ovaJFQ1sYIiI0oE0RPep2oJwT5Mfqsv0F83t8BZckXTpnYiI6HIgpXVWU8SrAC+jTETkaDIyqB773T9d33OqptIM92fHP+XOKj5dtPiu3xUvvvOobQGJiIgmgIAMQygDUlqtwjSO7Hz82kOxK6yxgSEicqjIYKfr4HNf/nIo0Dw9wdMiFGguO71l41cGWg+9PvPmv3831fmIiCg1dj55YwcAx95w+FKq2bjiJBK91yfOD9nAEBE51OFfb1gfa160jLyWyUs++3rOzNUNZqhPb933q6s7jrx1k7RMvf3Qm7e4c8vaSpZ/8ZDNkYmIiCYcGxgiIgdq3ffizIHWIwsBQPX4O+d97ukfe7KmDMaez5y88F3vpNktZ7Y9+SVAiuY9z31iyuLPHhG617QvNRER0cTjfWCIiByoed8vr4+Nixetfy2+eYmZvOx/Hs4omH0AAMxgIL9h57MLUpmRiIjIDmxgiIgcJtLX6g51nZkNAIrm6ZtS/oWDI9Xmz7l5V2zcc6qWDQwREV322MAQETlM+5Hfl0lpagDgyS09ITSXNVLtpPm3nIBQTAAIdp6elaqMREREdmEDQ0TkMIPtxwtjY0926ag3/NK9eWHNm9UOAJYR9A12nfBNdD4iIiI7sYEhInKYUKB5UmzsyizsTlavebKHavoaD0warZaIiCjdsYEhInIYywi6Y2PVmzOQrF7VPEMb/I1wwD1aLRERUbpjA0NE5DDSDLliY0X3GMnqFVWPxMZWqJ8NDBERXdbYwBAROZgQkGOomvggREREDsEGhojIYYTqDsfGZjioJ6u3zPBQjeL2hSYqFxERkROwgSEichhF8ww1IeZgd0ayetMIemNj3ZsTnKhcRERETsAGhojIYdxZxe2xcbivNSdZvRHsGarxFS/omKhcRERETsAGhojIYbyTZrbGxsGehuLRaiODnS5jMDAJABTN0+/NLeuf6HxERER2YgNDROQwk65cd0oI1QCAYFfDDGmER/y7ur3+9RmQlgoA3rxpR1OVkYiIyC5sYIiIHEbPLAy5c6ceBQDLCGae3fXTeSPVdhx+szw2ziqrrE9FPiIiIjuxgSEicqDiRZ/ZEhs379t0azBw1nthTVPdz+cMtB1dAACqJ6ujdPkXD6QyIxERkR00uwMQEdHFChd9+njrgVf2D7QdWWgGe/MOPvflvyy65jNv5M287rQR6nG1vP/K1V0f/mEdojeBkcWLP/eq0L2m3bmJiIgmGhsYIiKHmvOpxzYdfO4rWaFA03RjsLuwsfqZuxurn7mgSshJcz/2WknFlw7aEpKIiCjFeAoZEZFD6d688MK7n/+3vDnrfqu6MrsveFq6syafmL72oadm3vztrbYEJCIisgFXYIiIHExoLmv2x/9hM6Sxpef07vxQd0OW4vIYvqK5nd68mX125yMiIko1NjBEROlAaDK7rKIdZRXtyYuJiIguXzyFjIiIiIiI0gYbGCIiIiIiShtsYIiIiIiIKG2wgSEiIiIiorTBBoaIiIiIiNIGGxgiIiIiIkobbGCIiIiIiChtCLsDXKABQAmApQD22JyFRiVfBnD7+ePtElgdsS3OyFwAzHNfTqQh+ufQiZ8dEM2mAwjbHWQULgAGAMvuIIkIoehC1QAIR+aDZQophCKE4tQ/I5CWqQpFdW4+KVUhhAVA2p0lEWkailBUQDj09yAkpLRUIRz/PXZ0PkhLCkV14PdYVQEJac2FtHYDwL2AeMbuVJTeeCNLukQqagDcZHeKBN4D8CyAx+0OMoLvAVgC4Aa7g4xgOoBaAEU25xhNE4B1AA7YHSQx5c3c2Wvd09Z+7SW7kyTS+O4T5YHGfdfOveuZH9idZST7nr79O4vufaXK7hwjef8ndz5UvOSudwoWftKR//B25FcPflpzZ2bNvPXhZ+3OkkjXkbemNux45u6rv/j8P9mdZST7nvnTb8/9zI83unKmBOzOksiRX3/tf6mujFOzbn34DbuzxDNDurd1X9nfhgNb0X1iG6QD2ytKT2xg6BLRTAB9dqdIwAIQgjOzAdGVFwvOzTd47r9OzQdE/9U7COdmNIWimro7y5mrWIpuQsBybL5zHJ5PKqrLcGxGoZiA4tjfg0LTIwCkU/PFqLon4tiMQlhCcd73WEhNFcIDCB3OO+mH0hn3wBARERERUdpgA0NERERERGmDDQwREREREaUNNjBERERERJQ22MAQEREREVHaYANDRERERERpgw0MERERERGlDd4HhojI4YKBs97mXT9b1NdyaJYZDGQJRY/ovrzOnFnXH5i8eP2HEJoj7wBPREQ0EdjAEBE5WGPts/Oadv30M5YR8sU/Huw+g97GfRWt+148Puvj//B8ZvG8HrsyEhERpRJPISMicqimup/Paax5+vOx5sWVWdCQNXXpdv/kBXWK5ukDgFBP48wjLz/0lWDgrNfetERERKnBFRgiIgeK9LZ4Gmue+RykVAAhCxd96lfT1359Z+x5I9ilf7Dpq3820HF8njHYXXjit39/29zPPr3JzsxERESpwBUYIiIHOrH5sWstI5QBAP7Sa2rimxcA0Dy5kTmffOx51eXrBoDe5volPadqCuzISkRElEpsYIiIHKi3cc+S6EjIqav+fEuiGj2zMJQ9Y+UOAICUSsv+X12TsoBEREQ2YQNDROQw3cffLTKDvXkA4Mqc1JA5eWHXSLUFV99+IDYeaD40LxX5iIiI7MQGhojIYQIN+6bExp7cstOj1WaXLuuIbegPD3QWycigOtH5iIiI7MQGhojIYYLdpwpjY5e/sDNZvZ6R0wEAkJba07gnfwKjERER2Y4NDBGRw5iDAX9s7PYXJb2/i+rODMTG4Z4m/2i1RERE6Y4NDBGRw1hmyBUbK7onkqxeqO5wbBwJ9blGqyUiIkp3bGCIiBxGmoYeGwtVN5PVK6o6VGNFBtnAEBHRZY0NDBGRwwhVG1p1kWYk6aZ8yzSHahTdGx6tloiIKN2xgSEichgl7pQwMzyQdEVFxp1yprsz2cAQEdFljQ0MEZHDqN6s3tg43NeWlazeDPUN1biyJ/eOVktERJTu2MAQETmMJ6esNTYO97bkJauPDHRHL50sFDO7ZEnHBEYjIiKyHRsYIiKHySpdfDY2DnadLhuttqehLt8ygpkA4MrIaxG6N+mmfyIionTGBoaIyGFyZq5u0bxZ7QAQ7msv6WvanztSbdv7r1wdG2cUzz+YinxERER2YgNDRORAWSWL34uOpDiz7f+tSVQT6Wt195zYsQIAIIRVtPCT76UqHxERkV3YwBAROVDZ9Ru2KZp7AAB6G9+rOPn2dyvjn48MdroO/eqBPzPD/TkA4C+evzu7rKLdjqxERESppNkdgIiILqb7i4IlK+997szWJ78EKZXW91/+ZPfxbRXunGmnLTPoHmw/fqVlhHwAoGXktMz4+HdeszszERFRKrCBISJyqMlL/scRWOZPG2ueXW8Zwcxwf8eUcH/HlPgaT07p0Vm3PvwLT9aUQbtyEhERpRIbGCIiB5u87O4PJs25+XuNu39+dX9z/SxjsDtHqO6QnpHXlX/F2vcLF95xHEKTduckIiJKFTYwREQOp/uLgtPXPLQLwC67sxAREdmNm/iJiIiIiChtsIEhIiIiIqK0wQaGiIiIiIjSBhsYIiIiIiJKG2xgiIiIiIgobbCBISIiIiKitCHsDnCBBgAlAJYC2GNzFhqVfBnA7eeP6waA8pN2pRnFlQC6AbTaHWQEJQA8AI7ZHWQEbgAzARyyO8go5gI4CcCZN3IUyizNnSkV1dVtd5REzMigT0rLp7l8Tv0zgkiwp1j3ZDfbnWMkRqi3UNEz+hVF7bc7SyJGsDdX0XRV0TztdmdJxLIibisSzNHc/ha7s4zECAaKFLe/XRHCtDtLImZksEBaRlhz+3vszhJPQhGQk4qkNQgzMgPSfBsA7gXEM3Zno/TG+8DQJZLfBuA5u1Mk8DUAewFssTvICO4AMAXO/OwAIB/AV+HcfADwbQBvADhrd5BEBMSfe/JnKP7iBe/bnSWR3rP7poUDLdPzr7ppv91ZRtKy94Wi/Ktudmy+1vdfut5fsvCMJ7u0we4siXQeeXuh6s50Z5dVOPIzDAUac3tO1y128ve4Zd+LN+ZdueaQqnqCdmdJpOv41hUQSlfujFUf2J0lnpSqFu6dVxQZOIr+lh7wjrt0qbCBoUtkxhkAD9udIoHPI/rD7aN2BxlBIYByOPOzA4BZAO6Dc/MBwDcBPIVoo+pA4iZPdol76rVffdvuJImcfPuRSiPYU+DUfADQsu+XNzo5X9vBV8v9UxbVFy+5q87uLIkEGvfma67MLKd+hm2HfjMt0LBvgVPzAUDL/hfXFi/8zDZP3nRHrXDEBM7uu0pz+0467TM0gpq3qW7Kn0BsBrDZ5jR0OeEeGCIiIiIiShtsYIiIiIiIKG2wgSEiIiIiorTBBoaIiIiIiNIGGxgiIiIiIkobbGCIiIiIiCht8DLKREQO131sS3Hz3l8uH+g4PssK9/uFUE3Nm93hL118YOqK++p0f5Ej701BREQ0EdjAEBE52PE3qq5rP/z7j0FaavzjZmQgK3SwaUbX8a2rpv/JN36ef+W6RrsyEhERpRIbGCIihzr59ncr2z9481YAEEIxM4rm7vXmz2yAGdYCDXuvDve1TDODvXknfvd/73H7Cv41s+SaLrszExERTTQ2MEREDtTXfDC7rf7V2wBAKKpRdv2Gfy9c9OnjQwXS2vrBrx+4LXC6brVlBDOPv/0vdyy8+7lnbQtMRESUItzET0TkQA3bnlwjLVMHgNxZ1/1hWPMCAEKRc25/9DUtI68ZAIKdJ6/qOPTGVBuiEhERpRQbGCIip5GG6Gs5uBCIrr6Urvrz6kRlQnNZebPXbo8dtx367aJURSQiIrILGxgiIofpOPx2iRUJZgKAy1982pMzbWCk2oKrP/FBbDzQdnhuKvIRERHZiQ0MEZHD9DYfmBwbe3Knnhmt1lcwJ6C6fN0AYAwG8o1gQJ/ofERERHZiA0NE5DCh7jOFsbE7syjplcU0b9a5GikCZ3ZPmrhkRERE9mMDQ0TkMFaoPyM21n35vcnqVbd/qCbc1+abqFxEREROwAaGiMhhTCPsio0V3RtJVi8UfajGDPe6RqslIiJKd2xgiIicxjKG7tElVNVKVq6oqhkbSyPC+3sREdFljQ0MEZHDCFUPx8bSjKjJ6i0zMrRxX3VnhEerJSIiSndsYIiIHEbR3UNNiBHqcyerl5Hzp5ypuo8NDBERXdbYwBAROYzuzeuJjSO9rdnJ6o1gT05s7M2f2T1RuYiIiJyADQwRkcN48spaY+NQb1PBqMXSEJFgTz4ACEWN+EuuTnrZZSIionTGBoaIyGFyZqwcunnlYFdD2Wi1nUe3Fksz4gEAV2ZhA4QmJzofERGRndjAEBE5TObkhV0uX/5ZADAGOos6jvxhyki17fW/uSY29pdcU5+KfERERHZiA0NE5EA5M1bujI2bav99XaKa/rbDWYEzuysAQChaZPKSu/amKh8REZFd2MAQETnQ1Os37FQ9WR0AMNBxfN4HL95/uxHsGrpcck9DXf6HLz10j2WGvQCQPb1iq7fgil678hIREaWKnTc8ywewHMBvk9TNBFAMYMeEJyIicghV95qz1v3tzz58/e/+QpoRT+BM3aq9T9+xRPflN0sz4goPdEyGlAoAeHJKj17x8X98y+7MREREqWDnCowK4BUAuwDcBsAX95wCYAmAnwP4AEB5ytMREdksZ9b1zVfc+vCPXL5JjQBgmWFvKNA0I9zfXhJtXoT0ly6pnve5f/+J0L2m3XmJiIhSwc4VmFYAuwFUINqoBAFMOvfcGwCsc8dtAP7DjoBERHbLmXldy4joYxUAAAIVSURBVDUzVj/RVv/atJ5TtbMig11ZQtEMT9bkjoJFn6z3FcwJ2J2RiIgolexsYADgMQBPA8g+9xWTHzc+BKAzlaGIiBxFKLJgwSdOFSz4xCm7oxAREdnN7k38LwMYHOX5XkSbHCIiIiIiItsbmCCAzaM8P4Dkm/yJiIiIiOgjwu4GBgAeB9AxwnO/AxBOYRYiIiIiInIwJzQw2xFdablQO6LNDREREREREQBnNDAA8DyACy8B2g+gzoYsRERERETkUHZfhSzmRwC+AKDw3LEJ4Gf2xaE/ghuQZXaHuNgVOlCcC2x1YDYAWOoH+tzAYYfm+04J8BMBnHBoPgCYoQC3TQae6LI7SWIL3Ga4xN3X5M+1O0kiRrA0w7JaFafmi5oGR+ezyhSjf3KGUzNKs8xlGV7NqfnCgcl+yKnCqfkAALJMDLTnZhshv1P+4XcYaZRqlpLlcdpnaEYUjxlWYUV8iN7+j+jSEHYHiHMAwPxz404A1wA4Y18cGp18GcDtdqcgIiIi51PUv4dlfgcA7gXEM3bnofTmpH9JeBKAPDduA5sXIiIiIiK6gJMamP9EdON+EMCjNmeh5L4IoAR4ZYvdQYiIiMjZLNlXBaAEwH/ZHIUuA046hQwA3gJQDmAKopv4yfHk3wD4rt0piIiIyNHmA+Kg3SHo8uCUTfwxjwD4Eti8pJNfAzhqdwgiIiJyNG4NoEvm/wNSbNP5CS6+7QAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "id": "ffb84b53", + "metadata": {}, + "source": [ + "
\n", + "\n", + "
\n" + ] + }, { "cell_type": "markdown", "id": "3763b000", "metadata": {}, "source": [ "
\n", - "Note: This algorithm is not correct for all matrices: if any diagonal element B[k,k] is zero, the computation in the first inner loop fails. To get around this problem, another step can be added to the algorithm that swaps the rows until the diagonal entry of the current row is not zero. This process of finding a nonzero value is called pivoting. \n", + "Note: This algorithm is not correct for all matrices: if any diagonal element B[k,k] is zero, the computation in the first inner loop fails. To get around this problem, another step can be added to the algorithm that swaps the rows until the diagonal entry of the current row is not zero. This process of finding a nonzero value is called pivoting. We are not going to consider pivoting here for simplicity. \n", "
" ] }, @@ -192,10 +321,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "id": "eb30df0d", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "3×4 Matrix{Float64}:\n", + " 1.0 3.0 1.0 9.0\n", + " 0.0 1.0 -1.0 1.0\n", + " 0.0 0.0 1.0 35.0" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "A = Float64[1 3 1; 1 2 -1; 3 11 5]\n", "b = Float64[9,1,35]\n", @@ -203,6 +346,16 @@ "gaussian_elimination!(B)" ] }, + { + "cell_type": "markdown", + "id": "a7d6f90a", + "metadata": {}, + "source": [ + "### Complexity of the algorithm\n", + "\n", + "The number of operations of the algorithm is $O(N^3)$, where $N$ is the number of unknowns in the system. Intuitively, this makes sense as there are three nested loops. However, the length of the loops is not equal to $N$. In any case, it can be proven that the total number of operations is still $O(N^3)$. The actual proof is a bit challenging and it is not discussed here." + ] + }, { "cell_type": "markdown", "id": "39f2e8ef", @@ -221,15 +374,13 @@ "```julia\n", "n,m = size(B)\n", "for k in 1:n\n", - " for t in (k+1):m\n", + " for t in k:m\n", " B[k,t] = B[k,t]/B[k,k]\n", " end\n", - " B[k,k] = 1\n", " for i in (k+1):n \n", - " for j in (k+1):m\n", + " for j in k:m\n", " B[i,j] = B[i,j] - B[i,k]*B[k,j]\n", " end\n", - " B[i,k] = 0\n", " end\n", "end\n", "```" @@ -252,82 +403,76 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "id": "078e974e", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "🥳 Well done! \n" + ] + } + ], "source": [ - "answer = \"x\" # replace x with a, b, c, or d \n", + "answer = \"a\" # replace x with a, b, c, or d \n", "ge_par_check(answer)" ] }, { - "cell_type": "markdown", - "id": "14d57c52", + "cell_type": "code", + "execution_count": 15, + "id": "1169c86e", "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The outer loop of the algorithm is not parallelizable, since the iterations depend on the results of the previous iterations. However, we can extract parallelism from the inner loops.\n" + ] + } + ], "source": [ - "### Two possible data partitions" + "ge_par_why()" ] }, { "cell_type": "markdown", - "id": "6b17aee4", + "id": "74491f64", "metadata": {}, "source": [ - "The outer loop of the algorithm is not parallelizable, since the iterations depend on the results of the previous iterations. However, we can extract parallelism from the inner loops. Let's have a look at two different parallelization schemes. \n", + "### Data partition\n", "\n", - "1. **Block-wise partitioning**: Each processor gets a block of subsequent rows. \n", - "2. **Cyclic partitioning**: The rows are alternately assigned to different processors. " + "Let start considering a row-wise block partition, as we did for the previous algorithms.\n", + "\n", + "In the figure below, we use different colors to illustrate which entries are assigned to a CPU. All entries with the same color are assigned to the same CPU." ] }, { "attachments": { - "fig-asp-1d-partition.png": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABL4AAAI0CAYAAAATGeCIAAAACXBIWXMAAB7CAAAewgFu0HU+AAAAGXRFWHRTb2Z0d2FyZQB3d3cuaW5rc2NhcGUub3Jnm+48GgAAIABJREFUeJzs3XmcXFWZ//HvU1XdnU5nIyEhCYRVGBYBWRwQERFk2JRVUBxEXAYXXEcUB3QE11FREcF12BQFQWRRGJBNVFBQdhAwkIXsezq9d1Xd5/fHrfzsVN1Oeq17cvN5v155Kae2p+69ffv09557jrm7AGy+zOxsSVdXNX/N3S+oYw3Nkjqrmue4+y71qmFzYmbtklr6NLW5+4S06gEAAEA2mdmnJX2jqvk8d/9WGvUAaSikXQC2XGZ2uqRJfZpud/elI/Teh2tgx3e7pF5JayV1S+p097UjUQMAAACyzcxOkbR1n6Y73X3hCL33oZLGDOCpHZJ6FPdnexT3Z9eMRA3YcpnZREn/lfDQbe7+53rXAwwHwRdSYWY5SVdpw1Evz0kakeBL0i3aMFQbMDNbJ+kFSX+X9Lyk+yQ97gyPBAAAwIZ+KGlqn/8+RtKIBF+SfiFp1lBeaGZtkl7UP/uz90v6K/1ZDMJ4SecntC+URPCFzQrBF9JyqDYMvUIyQdK/Vv6tt8DMbpf0fXf/ezplAQAAIBRmtr82DL1CMl7SgZV/6y02s99I+oG7P5VOWQBQf7m0C8CWx8yaJH0t7ToGaZakcyU9Y2a/NLM90y4IAAAA6TCzBtXOmxS6mZI+IOkJM7vFzPZNuyAAqAeCL9SVmc2U9FtJh6RdyxDlJJ0u6XEz+5SZWdoFAQAAoH7MbKqkX0s6Mu1ahsgknSTpb2Z2oZnl0y4IAEYTtzpi1JjZBMWTfU6TtI+kNyn+JTuQSTpHw/skJQ3rbpHUKGmypB0k7SLp1ZIOUv8/I02SLpH0ejM7w917Rr5cAAAApMnMxkuaImkbxf3DwyWdrPSm7PiokudXGqu4f7qV/tmf3UvSwZIa+nmvgqQvSzrUzE519+oVurFl65D044T25+pdCDBcBF8YFWY2W9Kr0q6jyovu/thAn1xZyeTNkj6k/q/onSzpDjN7q7t3jUCNAAAACICZPSHpNWnXUWX2IPuz4xX3Y89RPPF+0t0Kx0j6nZkd6+5tI1MmNneVlUE/kHYdwEjgVkeMls3+2HL3Vne/2d3fLOm1ild3THKkpCu57REAACBTstCfbXP3W939OEn7Sbqzn6e+XtJ1lZXXASBTOLEBA+Duf5N0lKSPSColPOUMSZ+oa1EAAADAALn7U+5+vOLpP5Km6ThB0oX1rQoARh+3OmK03KB4fq/+nKR47q/Nhru7pCvMbK7iCU2bqp7yZTO71d3n1r+6gTOzaZK2U7yyT0HSMknz3H1JqoX1ozLh6s6Kj5epklzSCklLFdcd1bGOrSv/xkhaK2k5twQAAJBZN0v6y0YeP17StnWqZcS4+1WV/uxvFc8N1tfnzOxX7v58CqVtkpmNUdwXmyqpLGm1pBVZnG/XzJr1z75nJr+rmTXqn98xr39+R+abw4gi+MKocPeNXi0ys320mQVf67n7nWb2QUlXVz00VtK3JJ1S/6o2rhJ2fVjxyLTd+nnO3yT9QtIP3L27juUl1VJQHI6erHjeicn9PHWZmd2hOIi8sxJOjmQdhyju1B6t+PaAmlGyZjZPcaf4Pkm3uPuqkaxhE/Vto3ikYfVttt2SvkGnAQCAoXP3L27scTO7R5th8CVJ7v6AmZ0t6ZfasB/RKOm7kv4tjbqqVYKuExTXc7Tii7fVSmb2tOJJ/++QdK+7FxPe61TF05f09aK7V/fph1Ln8ZLeUNX8F3e/dRDv0awNv2vSsVXs811/K+n+pO86UszsI6rd5l9z99Yhvl9e8Xc7VvH3TPq7JDKz5yU9Iun/FPfx6dNiWAi+gCFw92vM7C2STq166EQz+xd3fzGNuqqZ2ThJn5J0nqRxm3j6gZV/55jZe909acWgUWdmR0u6XANbHGEbSe+t/HvSzD7g7o+OQA2vl/QVSW8cwNN3rPx7h6QfmNndkr7r7vcMt46NMbOtJd2reIWpvroknUQHAQAAbIy731QJbN5d9dBRZra/uz+eRl2SZGYNivt3n1Ny2NVXQdL+lX/nSlptZtcp7o/N6fO8LknnV722s3LHxpph1JqTdJniOxT66m9xrOrXNyq+/fRCbTpIbZB0QOXfRyStMrOfSbpslO46ebfivw/6ulzSoIKvylzIp0r6oqQ9NvH0nOIVSfdSfAx0mNmvJF3q7k8O5nOB9ZjjCxi6/5RUfYUlJ+ljKdRSw8wOlvS0pIu06dCrr90l3W9mR4xGXRtjZp9RfGVnKCuCvkbSn8zsXcP4/LyZXSrpTxpY6FWtoHiE2O/M7KKh1rEpZraVpHuUHHqd6O6/G63PBgAAmXK+4v5DtY/Xu5D1zGxbxaPpf6hNh15JJivuj//DzPbt036XpJernjtW0tlD+Iy+jlFt6PWcpAc29UIzm6V4ZNP3NbTRg1MUj/6fbWbV/cIgmNkExaPTbtKmQ68kLYoDuCfM7OSRrA1bDoIvYIjc/RXFt9hVOymAFR5PlvRHSTsN8fVjJN1mZnVbwtvMviHp60peZluK5zZYqnhOsv5uaWyQdK2ZDXqhgcpy37dr5Dp6LSP0Phsws4mS7lbt8uqdkk4Y7ZFmAAAgO9x9meKpLqq9tTL1RF2Z2f6SHlU8emu48pKa1/9HZV7YHyY874PD7Lufm9B2+aam4DCzAxWHXiPR384r7r8Hxcx2kPSQpONG6C0HczEf+P8IvoDh+XlC20yNzC/r4dhdtbcyr5V0naTPSnqXpLMq//9+xaFStXGSflKPZa3N7CxJn054qFvSpZJeJ6nR3We4+3TFAdfhkn6i2lU2TdK3zOyoQXx+QdKvlPxLuaz4CtW/S9pT8VXEqZL2lnS64rnelg/0s4ajcuvqnaqdn2J96HVvPeoAAACZktSf3UrS6+tZhJntJul3ivvS1ZZL+rbieaF2kjRB8WiwgxQHT3creaXKalepdoTbbpLePMSad1Y84quvtZJ+tonX7a74u85IeHiZ4nmDj1I8ncb673qwpI9WXhf8BPdmNkXJdyhIUrukHyue02w3xd9xhuJbON+jeGGJ9vpUii0Bc3wBw/N7xbc7NlS1HyzpsbpXk+yvkr6qeGLI3oTHv14ZBn6dan8xHSjp/Yp/MY0KM9tJ0vcSHnpa0inuXj0kXe5elvSgpAfN7PuSbpW0Q5+n5CRdY2b7DHCy+c8peRLXRyS9392fTXhspaRnJd1UmYfi3xUHif8ygM8bNDMbq3iY+CFVD3VKequ73z8anwsAADLvIUkdqh2tfrDi/taoq8xz9UvFt+5Vu0zSfydMqN4maZHiEWLfryz685+SPiRpfNLnuPtqM7te8dxRfX1YcUgzWB9S7WCSq9y9o78XmFmTpBsVh4vVLpX0BXdfV9W+/rs+IulyM5uueB7fDyrcUVBXSto1of1Xkj7u7our2tsU393xuOJ+/HjF++U/tZkuioZwMOILGAZ3b5OUNJH9nvWuJcFixZOc/6u739pP6CVJcvenJB0hKWlSzNGe4+Griq/y9PWCpCOTQq9qlUkuD5e0pOqhmYonCd0oM3uVpAsSHvqdpCP6Cb2qayi6+zWK9/snlTxXxpBVVjS6TbXzjnVIeguhFwAAGKpKH/GZhIfq2Z/9mJJv+fuku398IKsIuvsydz9f8XxbN27kqVcktL2lMt/WgFVWYXxPVXOkeL6ujfmk4jsH+nJJH3P3TyaEXjXcfam7f1rSLopHRwXFzE6UdGLCQ5dLOj0h9Krh7m3u/nXFI/y+q3jbAkNC8AUM3+yEtqSleevpAUmvdvfbBvoCd1+h+KpVtT0r8y2MuMrkpdUrY0aKR1mtHOj7uPs8JS8q8N7K1aKN+ZxqR+wtlPT2wa6M6O6Ru18qaT/FV+SGrXIF9GbVDsHvkHS8u29y4lQAAIBNSOrPJo3WGXGVAOmzCQ9dU+lXDYq7r3T3t0t6u6Sakf+V1SqrVy8vSDpnkB/1DtWOULtzYxduzaxF0mcSHrrS3ZPugNgod1/u7m+T9E5JQ16ZchRcnND2R8UjvTY691k1d+9090+o/4v0wCYRfAHDtyyhbVLdq9jQX4ayLLO7363kWzTfNvySEp2j2tDpN+7+0GDfyN1/pfi2zr4mKp7PLJGZTVLcKar2CXdfO9ga+tTyYqWeYancQvlL1c491i7pOHevy+0HAAAg85L6s0m34o2GU1UbIK1VvFrhkLn7je6eFOhJyaOy3l+54DhQH05o21R4dZpqt+tqxbctDpm7Xz+QOyXqobKy/L5VzesvbA951Ja7P+jufxpWcdhiEXwBw5c08eKmRhmFLGmlygNG6bOS5tW6bhjvl/TajU1yf7hqV8BZovi2wlSZWV7StZJOqnqoQ/FE9n+of1UAACCjkuakqld/9tiEtp8P5PbGYbhRtWHfdEmnDOTFlXDnwKrmf2jT84QlfdefDeT2xs1I9WT/knSPu/+j7pUAFQRfwPAlrYi4OS8ckbQy4Egss7yByrxV+1U1u+JVeYbqjoS2QzayRHX1nFmS9Et3r14psq4qK2leI+mMqofaJB3D7Y0AAGCEJfV96tWfPSyh7YbR/MDKvGZXJjyUNO1HkqTnXTaA2/jq/l1TkPQdr697FUAfBF/A8FWvgCNJm/NVmxcS2qZVliQeSa+R1FTVNreyYMBQzVEcDvU1TfGkmEkOTWh7dBifP2yVkO4nks6seqhN0rEM8QYAAKMglf5sZXXv7aqaS4pX9httP1LtBezDzKx6lfMNmNlUSadXNa+T9NNNvG5XxaPK+uqV9MSmS908VKbpODjhoerpSIC6IvgChi9p/oPRHJo9qipDrVckPDTS8zzMTGhLCt0GrHKVLWmVzW37eUl1R0uSnhpODcNRCb2uUO0S2+sUj/Qa9NxnAAAAA5BWfzapL/aPwS4wNBTu/oqk3yQ8lDR3V1/vVe1UGdcM4OJt0nd9wd17NvG6zckUSc1Vbd0aZh8fGC6CL2D4dk5oe6nuVYyspI7OhBH+jNHqYCVNSt9faDc5oa1m9Z86+rZqh863Kw69Hk6hHgAAsGXYJaGtv4nhR1LSHQUDXtl7BFyR0PYuM0vs91amo/hAVbMrebL8aml/13pI+o6rhzOpPTASCL6AYaj88tsj4aFn613LCKvHhP1JYdRwbnPc2HvUfJaZjZOUtHJPKqP1zOx/lLx6UbNqh8UDAACMpD0T2p6rw+cm9QfrOWXIfaodjTROtVNOrHe8aqfQuMvdk+44qJb2d62HLeE7YjNE8AUMz2skTUpof6TehYywfEJb1wh/Rn8Tzg9X0qSiSZ/V3/lvU5OSjobxks7v57G8pOvN7Ig61gMAALYQZrabkqegqEd/NqmPVre+WGWajB8kPNTfJPfnJrRdPsCPS/W71klS/zpr3xGbIYIvYHhOSmhbqpQnSB8BExPaRnoo9pqEtpEYVZY0ND3ps9okFQf4+nqrnuuhSdKtZvbaNIoBAACZltSfXSvpwTp89uqEtqR+6Gi6VrV3O7zazDZYnbAyOf2/VT1vtqS7Bvg5IXzX0ZY0ZUjWviM2QwRfwBBVVi15T8JDt2TgPvakYcojPfdVUhiVNHpusJLeo+azKlf4kjogI7165WC44tsdT1S8yk9f4yXdaWZJtyIAAAAMWmXajvcnPPQbd0+6QDjSkvpiSXOwjhp3b5V0XcJD1ZPcf0i1o7auGES/P/XvWgdJ33GrynEGpIYDEBi6D6t2dRbXwIc7B8nMZql25NU6jfz9+UsT2pLmSxuwyi/Vf0l4aEk/L0kaxbbvcGoYhrKk/3D377r73ZLeLam6I7W1pLvNbIe6VwcAALLoPZJ2TWi/rE6fn9QX+xczq141cbQlTU5/splNlyQzGyvp7KrH2yVdM4jPSFo1fQ8zS5pzdnO1WrX912YlH2NA3RB8AUNgZrtIujjhod+6+9/rXc8I2y+h7fHKCKmR9LhqbzXcwcz6W4FxIHZRbWi3Sv2vsvlMQlsatxNGks509yvXN7j7DZI+nvDc7ST9zsym1as4AACQPWa2naSvJTz0gLv/rU5lzJbUXdXWoHge3bpx92ck/aGquVH/HA33TtXeEfHTymixgfqHakf0N0naZxDvETR371H8PasxXQdSRfAFDFIlmLlZtfer90r6TP0rGnEnJLTdO9If4u5dkp6oajbFq+UM1VsS2v68kdDu4YS201IYjt1RCbo24O6XS/piwvN3k3SXmTFnAgAAGDQzGy/pV5KmVj1UlvSpetVRuZ3yrwkPvb1eNfRxRULbOWZWUO2k9oO+y6MSCiUFiml819GU1L/O2nfEZobgCxgEM9tW8bLHSbfDfcPdq5dD3qxUOkGnVzW7pF+P0kfel9B21jDeL+m1GwvtfqPalWa21/DCtxHl7l9Q8mpD+0m63cya61wSAADYjJnZNpJ+J+mghIe/5+7VFyZH220Jbe+q9Evr6RZJi6vaZikeFVc9Au1ed39+CJ+R9F3PMrOWIbxXqJK+47FmtlPdKwEqCL6AAbDY2yU9qeRbAf+o5JE5m5uvqPZWwbuH+It9IH6k+MpiX0eZ2VGDfSMze6dqOyXtilfqSeTu85Qcvl06nA6Ime1kZqcO9fUJPiLpxoT2wyTdWFloAQAAoF+V/uxJivuzByc85a+S/qu+VUmKJ5avvgVwipJvwxwwMzuxshLjgFRGn/044aHzEtq+N8SyrpLUUdU2TXEffMjM7JTKVCwh+D/Vzq+bV/I8agNmZgeb2aHDeQ9suQi+gI0ws4ZKB+EJSTconly82lxJp9Vp5ZtRY2anqXYYtyR9e7Q+093nK/mq0A/XTyY6EGa2s5LrvNbd127i5V9PaNtZ0k8HO9momeXN7BzFx0tSh3JIKqsFvUvJo9feIukqVssBAABJKv2T4yU9onhUU1Ifa5GkU929er6tUefuy5Q8SfyHzCxpBfWNMrOtzewnkm7V4Ffr/olq56CtNkfSHYOtS5LcfaXiC7/VPmpm7xrs+5nZVDO7UvE0LMOZJ3fEVP4mSuqXH2NmXxrs+5lZi5l9WfFAA0aNYUj4QwmoMLOcmc0ys8PN7Bwzu1Hx6iu3qP+V/l6QdFjlF3ZIjjazYwYShphZo5l9VtL1qj0n3KFRmN+ryoWSOqvadpZ030Cu0pnZvpIekLRN1UMrJH15U69393uVHL6dIunOgVw9qxw7b5H0mOLOzIjPveXuvZJOVvI8GGdKunSkPxMAAGxeKqO6tjWzw8zsfWZ2vaTlkn6r/icYn6u4P7ugboXW+oLiBYn6ykm60sy+VFlVcaPMbKKZfVrxhPnv39Tzk7j7YsV9/435fuWi5FBdImlNVVtO0jVmdtFAprGofNfzFX/X9w6jltFyuaQXE9o/Z2ZXmtkmA0kzazKz9yn+e+tCSYURrhFbEA4ejAoze4ekCRt5SnVIIUknmNleG3nNjQMYvbMxN5pZ0lWsFsWrtkxSPLn6QN0h6ezKlZvQ7K94mPErZnaLpN9Lek7xktEdiq9+7SDp3xTPi5UU7iyX9L5RWM1xA+7+gpmdp9rhz3tKetrMrpB0vbs/tv6BSqB3kOJRUP+h5HPZ+9196QDLOEfSAYpXTOzrSEl/N7MbFHcYn1I8dNsVTwb7aklvVBySjfoVKHdvN7PjFF/x2r3q4Y+a2Wp3v2i06wAAYEtgZm+TNHkjT9k2oe1YM9thI6+5xd1XDKOsq82sK6F9rOIVAgfbn71P0rvcvfrWtLpy96Vm9n7FI5f6Xog1SZ+TdLaZ/VzSXZJeVtxPHat4btZ9JR2reBT8uBEo5wrVznm7Xofi2xWHzN2XVO4QuFEb7quc4gDwvVXfdYXiv1dmKZ7W41jF89GOxHcdFe7ebWb/rnilzOrQ8r2STjaz6xT/vfK84v3ZIGmG4v35ZkknKfluG2DQbJT/psUWysxeVjxqZyTtOdC5psxsjeJf/KNhmaSLJf1wtEOhgTCzsyVdPcJv2y7pLe7+4ABraFbtqK057j6guQbMzBRP4P6BjTytW/G2N8XBadNGnvtVd79wIJ/dp4a9FI9uG/Atlptwibt/up/PalfcgVmvzd03FhRXv357SQ+pNqiTpI+5+1DnnQAAABVm9pSkfUb4bf/V3ZNGbyd9/iuKw47RsFLSVyV9d5ijl0aUmX1I8Wihkboz6XXu/pch1PG0pL0THvqRu39w+GVJZvZRSd/V4ILKjXmtu9esGlkZBfeNqubz3P1bm3pDM/urpAOrmme5+8KBFFS5xfZXksYM5PkDcJa7/2yE3gtbEG51BAZuieLlnXd29x+EEHqNklWSjhxo6DUSPPZBbfzWxDGKR6ltr/5Dr0jSBYMNvSo1PCfpECUvMz0UwxmduFHu/oqko1V7S4AUT8x/5mh9NgAA2KytkHSB4v7sd0IKvSTJ3X8g6TSNTD+qV7UTyQ/UFf20Xz7E96tRuVD5dkmtI/B2Paq9CJ06d79D8eitkbiNNtLIbCtsgQi+gP4VFd8e+E1Jb1B8dePb7h7cL5UE1yi+FXOw4dxvJB3g7o+OeEUD4O6fV3zb4FB+OT4v6Qh3H/IKQO4+V3H49UHF810MVrfiudIOdvdhrc6zKe7+d8VD+qs7dDnFk92/dTQ/HwAAbBZKiudI+o6kN0ma4e5fc/e2dMvqn7v/WtJeiucvHUq/e4ni1dZ3dPdnhljGvIS2B9z92SG+XyJ3v0nxd71MUtItrJuyWPGdKDtW+obBcfeHFI+eS5rHbSDWKt4+/+Lut49kbdhycKsjRoWZfUUjf0/2RQOdf8DMvqPa+8mTdCq+QtKquGOwVtJCxRNFznP30hBrrRsze52ks6uaL3P358zs1ZLerXhS9P5uO+yQdKeka9z9ziHW0KDaK2ArhzLyqvJ+jZLOkHSipKPU/xwGayTdrXg+iFvcvTyUz+unhoLiuQWOVDyP1x79PHWBpL8oDhpvdfdNXokys8u04ai1bnf/+BDrfLPiK6PVuiR9PuSOLQAAITOz/1byPF7D8TV3nzfAz/8fDWylvvX92XXasD/7kqS5m/PK42Y2VdI7FPfFDlM8x2q1kqRnJT2suE/44HD7hGZ2h6TjqppPcfdNTXw/nM+cpg2/a9LfUuu/658Uf9c/bGrUnpn9m6RTq5p/5e73DKCmCxTfcdHXZ929enL+ATGzcYpHuR2u+Hsm3crriifG/4vihQbudveeoXwesB7BF7CFMLNtFE8YP0XSeMVD3RdJesHdh3KFqS7MrEnSbpKmKZ5/yxVfyVsu6cV6hZNmNkbxtpuiOLRqVRzura7H5wMAAGzpzGyC4kBoiqSypNWSlrp70gJWQ/2MPRTf9dF37q35knYZyYusA6hjguKgb7LiwGuNRvi7ps3MWhTvy60l5fXP/TnUW1SBRARfAAAAAABIMrOfSHp/VfP57l49QTyAzQTBFwAAAABgi1e5tXK+pOY+zV2K5/odyvxUAALA5PYAAAAAAEjnasPQS5J+TugFbN4Y8QUAAAAA2KJV5pWdp3hO2b5e4+5P1b8iACOFEV8AAAAAgC3dWaoNvf5A6AVs/gi+AAAAAABbLDMzSZ9IeOh79a4FwMjjVkcAAAAAwBbLzI6VdGdV82JJO7p7MYWSAIwgRnwBAAAAALZk/5nQdgWhF5ANjPgCAAAAAGyRzOzVkp6WZH2aeyRt7+7L06kKwEgqpF0AAAAAAAApKUl6e1XbSkIvIDsY8QUAAAAAAIBMYo4vAAAAAAAAZBLBFwAAAAAAADKJ4AsAAAAAAACZRPAFAAAAAACATCL4AgAAAAAAQCYRfAEAAAAAACCTCL4AAAAAAACQSQRfAAAAAAAAyCSCLwAAAAAAAGQSwRcAAAAAAAAyieALAAAAAAAAmUTwBQAAAAAAgEwi+AIAAAAAAEAmEXwBAAAAAAAgkwi+AAAAAAAAkEkEXwAAAAAAAMgkgi8AAAAAAABkEsEXAAAAAAAAMongCwAAAAAAAJlE8AUAAAAAAIBMIvgCAAAAAABAJhF8AQAAAAAAIJMIvgAAAAAAAJBJhfX/x0wflrR9irX0NVGEcgAAhOYJd/0w7SIAM71L0l5p11ExXn361AAAIAgvu+sbkmTuLkky08OSXpdmVQAAIGi/dtepaRcBmOnXkk5Ouw4AABCsh931ekkqmOkd0oOzzHY6wD2UAV8AACA0lnv2WLP8h6Q9FrvrtrTrwZbHTCdJL063XPkYj/ZMuxwAABAos/kHms37tPTGBSZVhnwBAAAMzDJ3TU+7CGx5zLRM0rS06wAAAJuPmvkImlqkxjFplLJx7avnadzkHdMuo18daxd687iplis0pV1Kou725crlG9XYPCntUhKVip3q7VzrYyfOtLRr6U/4x+AiH9My2fINzWmXkqinY6WknDe1TA5yH0flXnW1LVPLpFlpl9Kv9jXzNW7SLMnCnAKxs3WxNzZPtEJjS9qlJOrtWqOoXPIx46YGeQzKXe1rXtG4yTukXUmNnk6ptyvtKoBajc1S09i0q6jVvnq+xm21vWRhnm46Wxd5Y/NWVmgMcONJ6ulcLXf3MS1TgtyAHpXU2bpYLVuFe7dM+5r5apm4nSyXT7uURJ2tS7xxzHgrNI1Lu5REvV2tKpd6vHn8tCCPQalyngmwz7Bex5oF3jxhuuXyDWmXkqirbakKDWPVMGZC2qUkKvW0q7en3cdOmB7wMRjm38e9XXHfta+aEV8HnSjtfXgdqxqgn1042d/1ldXB7vQbv7Jb8Yizrm/YetYBaZeS6P6fvkNTttsv2veI84P8i3nB83fq8bsuLp34yUeCnRz2pxds5Wd9ZbWF2om9+Zv7FF934ncaZu52ZNqlJHr45o8oX2gqHXTit4Lcx6uXPK37rj6tfNoFL4bZQ5T0889vE512wYu5UAPs2y49uLjvEZ9p2HGfU9IuJdHjd1+stlVzim9857VB9sBKxS7dcPGs6MwvrwzuPP3IbdIzv9+giRFfSEX1iK+93yQddEKKBfXjus9tHb3jCwtyhUAvRt3yrf03V+wPAAAgAElEQVR7Dzz2S42z9jw+7VISPfqbz6jU01485G3fD/J83b5mvn57+eHROz4/N7jz9Xq/+MLM8snnPZ5vHh/mqfo333tDac/Xf6iwy/7vTLuURM/cf4mWL3i0eOS7bwzyGFQU6br/nuZnfnllmH+YSLrhSzuWjvnAXYVJ03ZPu5REd//vW6NZux+T2/PQc9MuJdFLj/1csx+9unjsh+4N8xhUuBnNMw9Ij9y+YVuwJ2sAAAAAAABgOAi+AAAAAAAAkEkEXwAAAAAAAMgkgi8AAAAAAABkEsEXAAAAAAAAMongCwAAAAAAAJlE8AUAAAAAAIBMIvgCAAAAAABAJhF8AQAAAAAAIJMIvgAAAAAAAJBJBF8AAAAAAADIJIIvAAAAAAAAZBLBFwAAAAAAADKJ4AsAAAAAAACZRPAFAAAAAACATCL4AgAAAAAAQCYRfAEAAAAAACCTCL4AAAAAAACQSQRfAAAAAAAAyCSCLwAAAAAAAGQSwRcAAAAAAAAyieALAAAAAAAAmUTwBQAAAAAAgEwi+AIAAAAAAEAmEXwBAAAAAAAgkwi+AAAAAAAAkEkEXwAAAAAAAMgkgi8AAAAAAABkEsEXAAAAAAAAMongCwAAAAAAAJlE8AUAAAAAAIBMIvgCAAAAAABAJhF8AQAAAAAAIJMIvgAAAAAAAJBJBF8AAAAAAADIJIIvAAAAAAAAZFKhumH+s7dHna0PRmkUszFRuVh45LZPldKuoz+l3o7Cs3+4tNw8bpqnXUuS1Yueyne2LrbutuVBbsO21fOsY+3CfMj7WB4VHrn9vGDr6+1cW3j+4R9FC56/M7ifX0laNvfhvOVywe7jzral6u5YGfR5JvJy4bH/++9SLt+QdimJutYtLcz+60+jZXMfCvIYXD7vz7ne7nXB7mOPyvIoCrK+JS+dmJMO42IZgrPkpQejR267PbhzjkdR4W+//WzJcjVd7SD0dKxsePEvV0WLZ98f3LaTpKVz/piLSr1Bng8lqdjTpt6uNcHWJ0lRVCo8cfcXS/mG5rRLSdSxdmH+pcd+Ea1c8FiQx+CKBX/LdbUtC3ofl4pdQddXLnbnn77v6+WmsZOD/Pu4denz+XKxy9tWzSmnXUuStcteyLWueCnofRzqeXrFK4fnpLdu0G+t+W3sUTlXLvUE17mNSkUvl3rC7D1IKvV2RMWe9nzjmIlpl5KoVOpSsact2G1YKnaqVOoKtj5JKpd6gq6v1NsRFXvbgvz5leJ9bFKw2zAqFeXyYOuTJC+XvFTsKuQ9yD6iSsXOqLd7XcDHYJeKPe1RqPvYo7KiqBTkMeheTLsEING05Qty+7b9Mbhzzj+62/zVTz9UKAR6c8XCtlXRti8/mdtpwYIgC+zpmq/uqOj7dv4xuPOhJLVHPZrX3en7PhlmfZL0Umer7/bMw4Vxuca0S0m0pG1FtE3XM7ndFy8P8hh8qmuRVpTbo5D38exiUSHXt6CzzXd/4bH8hNyYtEtJtLx9uW/d0W37LF8X5DZ8qWeFOntXBn2emV3sDbK+v/fsoKVVbTVF7rjPydr78JPrVNLAvfz4L3TIqZenXUa/Fr7wu/J+R30ut/WsA9IuJVF3x0pN2W4/3/eI8y3tWpIseP5O9XSsLh9y6uXB/eCs99JjP9chp3xPsiA3oZbM+UN5n8PPy83c7ci0S0n08M0fUb7QVD7oxG8FuY9XL3laqxc/FR1y6uX5tGvpz9wnb/KDTvimNTZPSruURCsW/K281xs+kttxn1PSLiXR43dfrLZVc8qHnHp5kJ3sUrFLc5+6yQ859fLgTjKP3CatWpR2FUCtQ8burM9OPS7tMmrc0facf27qMTbGgvyVpye6FpbO3urgxje17Jp2KYm+vvIedZR7SxdNOy7IIc6LSq36a9crftG044I7X6/3u/YXovO3fnN+amFc2qUkerFnWXTGpANzJ4zfO+1SEv1kzcN6qmtx+aJpxwXZZ4gUn2dCPgYf6JhdPnfyYYVdGrdOu5REi4utfljLq+zMSa9Nu5REt7c9o5tanwz2PChJv2l7VhdNC+938P+u2V2Pd23YFuQPMgAAAAAAADBcBF8AAAAAAADIJIIvAAAAAAAAZBLBFwAAAAAAADKJ4AsAAAAAAACZRPAFAAAAAACATCL4AgAAAAAAQCYRfAEAAAAAACCTCL4AAAAAAACQSQRfAAAAAAAAyCSCLwAAAAAAAGQSwRcAAAAAAAAyieALAAAAAAAAmUTwBQAAAAAAgEwi+AIAAAAAAEAmEXwBAAAAAAAgkwi+AAAAAAAAkEkEXwAAAAAAAMgkgi8AAAAAAABkEsEXAAAAAAAAMongCwAAAAAAAJlE8AUAAAAAAIBMIvgCAAAAAABAJhF8AQAAAAAAIJMIvgAAAAAAAJBJBF8AAAAAAADIJIIvAAAAAAAAZBLBFwAAAAAAADKJ4AsAAAAAAACZRPAFAAAAAACATCL4AgAAAAAAQCYRfAEAAAAAACCTCL4AAAAAAACQSQRfAAAAAAAAyCSCLwAAAAAAAGQSwRcAAAAAAAAyieALAAAAAAAAmVSoblgy+wF59Nc0atmocm+Xnr7/G2mX0a/ertX5F//yv1o8+760S0m0ZvGz6m5fbiZLu5REq5c+p/Y18/Mh7+NyqUdPP/DNtMvoV2/H6vycJ2/UyoWPpV1KohXzH1W+oTkX6j7uaF2k3q61wdYnSeVyrz33x8uUL4xJu5REHWsX5uY88UutW/lS2qUkWvLSg+puXx7seSaKSiqXixZifSsWvEnSa9MuA6jxdM8i/XjNQ2mXUaPbi3bVmodVsHzapSRaUWrP/2bdM5rduzztUhI91rVAnVFvPsR9K0lry11qLXdZqPVJUmfUm/vZ2kc1Lt+UdimJFhfX5R5on62lpXVpl5Lozx1ztaLcngt5H/dExSDPf+t1R8XcTeue0OT82LRLSTSnuNJKHZE6vTftUhI93bVY83pXBXselKRiVAryGHy0c2ZNW03w1b52UXnlgseiulQ0GLlcw8oFjxXTLqM/lisU1q18udzTuTq8bSep2NOWt468hboNO9ctyXlUzoVanyTlcoWgj8GoXCy0rphd7u1aG+Qx2Nm2JF9obAn2GOzuWKlyqSfofWxmDasWPlnM5RvSLiWZe6GjdWEkqZx2KUm625fnS72dwR6D7mWZWZDHYNe6PfNilDgCtLbhlWjeuPuCO+c0tnrD/HG/L+bDvN6ofIcX1ox9Jpo39tngtp0kdfR6vuyyeeOWB3c+lKT2kqQ2b5g37r4g65OkxnXesKDlj6XmgnnatSTpbfPCijGtUfO4MI/B5b3Kd5rnQj0GJclXh30MWpsKC5v/XFrXqDCPwQ4vtI9Z7fPGvVxKu5Yka+S5qKxcyPtYa8I8BteU9s+pQxtceaoJvnZ97Zn5vQ8/M7jLUz+7cLIf8e5fBvrXnnTjV3YrvvYtX2vYetYBwW07Sbr/p+/QlO32i/Y94vwgt+GC5+/U43ddXAp5H//0gq38iLNuaJCF2Yu9+Zv7FPc76sKGmbsdGeQx+PDNH1G+0FQ66MRvBbmPVy95WvddfVo55GPw55/fJjrsjKsaGpsnpV1KotsuPbi49+Gfathxn1OCDEgev/tita2aU3zjO68Nch+Xil264eJZUYjH4CO3Sc/8Pu0qgFonzPLcN17rwZ1zpv5C0U8P84bmIH8jSwfcpt7P7K3G42eFt+0k6fy/SW1FFb//Og/ufChJ89ulN/2fohsOD7M+Sdr2BpV/9HoVpjcHmTnosDtU+uAeXnjnzmFeVLnkWenRFSqGuo8jSdv8Qh5qfZK0000qffsgFXafmHYlyU64R9HR2yl37h5hbsOfvyxd/VK4x6AkTQn0GLzk2UhPVd3EGOSJBgAAAAAAABgugi8AAAAAAABkEsEXAAAAAAAAMongCwAAAAAAAJlE8AUAAAAAAIBMIvgCAAAAAABAJhF8AQAAAAAAIJMIvgAAAAAAAJBJBF8AAAAAAADIJIIvAAAAAAAAZBLBFwAAAAAAADKJ4AsAAAAAAACZRPAFAAAAAACATCL4AgAAAAAAQCYRfAEAAAAAACCTCL4AAAAAAACQSQRfAAAAAAAAyCSCLwAAAAAAAGQSwRcAAAAAAAAyieALAAAAAAAAmUTwBQAAAAAAgEwi+AIAAAAAAEAmEXwBAAAAAAAgkwi+AAAAAAAAkEkEXwAAAAAAAMgkgi8AAAAAAABkEsEXAAAAAAAAMongCwAAAAAAAJlE8AUAAAAAAIBMIvgCAAAAAABAJhF8AQAAAAAAIJMIvgAAAAAAAJBJBF8AAAAAAADIJIIvAAAAAAAAZBLBFwAAAAAAADKJ4AsAAAAAAACZRPAFAAAAAACATCpUN0TlkkqlUhq1bFKp1J12CRvhisq9wdboUaQoKgZbX1Qqyj0Ktr71SuWetEvoX+SKyuHuY4/K8ijcfRyVeiV5sPWtF5V6Aq4x7PNgFJXkUTnc+krx+SXE+iIvKKHLAKSu5FJ3Oe0qkvWUJUu7iH64ZL0Bb7tSFPa+7Y0kV7j1rdcThVujSyoGXF/RpUjh1ueV/w21vvV6A97HkcI+zxRdKivc+tYLsb5SVNtmknvfhrG5C3xM7rJ61TRgbeVuG58f45t+Zjp6o5LlLed5C3MQXUe5RwXLW1OuEOQ2LHpZPVHRxgW8jzvKPdaSbwq2vm6PrCB5IdBjsL3co4LlbEyuIchtWPJInVGvTQj4GOyOSjYm0J9hSeqOipa3nBosH2SN3VFRLrfmXGOQ9UlSV1S05gB/Rjqjr1p39LG+TcvcNT2terDlMtMySdPW//fYpkvUMubTwf3MdHTLWprkoSZf3T2yfF7eEGie3dktyWRjmxTcvpUkj6TWTtmkcWHWJ0ldPbIxjXIL9Bjs7JYVClJjIcxt2NEVB8TjmsOsT5LWtMu2CvgY7O2VFQryXJh/mqitU2pskDU1hLkNe4pSb1E2fmyY9UlSa4dsYkt49XX2nKeO7m9ucPar+XX38SmH2/u2aqxfVQN0wMvf8Ed3Pi/QU7f05nnfK146/W0Nrx4zI+1SEn18ya+0V9PM6JzJhwR56vl9x2x9b9WDpZu3f3+gXTBp/5e+7o/sfF6o/QcdP/8HxQunHtNwyNid0i4l0UXL71STFUr/NfXfgtzHL/Qs00eX3FS+Z8eP5NOupT8HvXxJdM+OH8lNyI1Ju5REb3vlyuJ/TD6k4ehxewT5Y3LZqge1sHdN8RszTmpIu5Yk3V7SG+Z8J3p05/OCO09/bcWBunJN2lUAtT58rPTNs8OLl7Z+l6L5/6tcc3hdaknS/p9S75fOUOPxB6ZdSbLPXCu1d6n4/Q8qyPP1/BXS4RcqmvvjcKeNmfkelR//tvLTt0q7kmRvuEClDx2jwjsPC+/nV5IuuVV69B8q3viZMI/BKJKmvVu+/Nowt58k7XiOSnf9twq7b5d2Jcne+mVFx+wvO/e4MLfhzx+Urr5PxXu/GOYxKEmTzwzzGLzkVunT12zYFuzJGgAAAAAAABgOgi8AAAAAAABkEsEXAAAAAAAAMongCwAAAAAAAJlE8AUAAAAAAIBMIvgCAAAAAABAJhF8AQAAAAAAIJMIvgAAAAAAAJBJBF8AAAAAAADIJIIvAAAAAAAAZBLBFwAAAAAAADKJ4AsAAAAAAACZRPAFAAAAAACATCL4AgAAAAAAQCYRfAEAAAAAACCTCL4AAAAAAACQSQRfAAAAAAAAyCSCLwAAAAAAAGQSwRcAAAAAAAAyieALAAAAAAAAmUTwBQAAAAAAgEwi+AIAAAAAAEAmEXwBAAAAAAAgkwi+AAAAAAAAkEkEXwAAAAAAAMgkgi8AAAAAAABkEsEXAAAAAAAAMongCwAAAAAAAJlE8AUAAAAAAIBMIvgCAAAAAABAJhF8AQAAAAAAIJMIvgAAAAAAAJBJBF8AAAAAAADIJIIvAAAAAAAAZBLBFwAAAAAAADKJ4AsAAAAAAACZRPAFAAAAAACATCL4AgAAAAAAQCaZ5N63YUL+81FL7ntRWgX1p73cUxiXbyqlXUd/uqLeQpMVopzlgtt2ktQR9eSbVFAhly+nXUuSopet6OX82FxjsPs49GOwM+rNN1uDm1mQx+C6cle+2RrVEOgxWFLZusulfND7uNxTGJtvLEvmm352/XWWe/NNuYLnAz0PdkfFnEnWlGsI8hiUZB1RT74lF94xuK78lVxHdG7fi2XL3DU9tYKwxTLTMknT1v/3tInfjrbd+tPBnXNeWhwVdpmeK1tOQZ6v5y+PCpPHWTR+bJh9hiWrPB+5a9utc0Ger3uL0stLo8Ies3LBna/Xm7M0Kmy/tZULhTD7DPOXRfmJLaZJ4yzIfbx8ree7etx22Cbcffzc/Kiw1w7h1jdvWVSYvpWVxzSGeQzOXer5CWOlKRPCPAbXtHludbvndpkR7j5+fkGY58Fla8/LLV719Q0GeRWqn/TOiQfkTpt4VnAjwU6e/xO/bruzauoNxdkLrytfOPXo/K5NU4PbdpL05eV36VWNU/0dkw4Ichs+2jVf1655pHzFzNODrE8K/xj8j4W/KH14ymGF/Zq3C/IY/M7K+9Wcayp/cPLrg9yGL/eu1JeW3xVds92ZQdYnSae/cpX/aOYZ+ZZcY9qlJPrY4ptKp0/cv3Boyy5BHoM/XfOolpTWlc6f+uYg93Gvl3XGgquDPM/8cPUeuqk17SqAWuN2eltuxiH7BnfOee6qU3ybo67P5wtNaZeS6OVffrA0YZ8zC9N3OTS4bSdJqx/6gUo97eUZR3w6uPOhJHW2LdOcWz4RzTj6+iDrk6S/X/v2aOrh38+PaZmSdimJ5t38ifL4PY/Nz9jj6CC3Yefjv1Bx2QulGUd/Mcj6JNezV53qM47+daD1SS/87N/LU1//5fy4yTulXUqihb/9rI/d7gCb8ZrTgtyG5RfuUevz/1eecfS3g6xPkp658iSfcfStwdXX9eT2Wvzwhm01RW6VH6sdGibXq6YBM7Mg61ovbxZNL0zIh1rj2Fyjtsq3+A4Nky3tWpLM7V2lJit4qNtvve0bJivIDSipIZf3aYXxwf6cTMqPDXofd0VFFSwXbH0Vvl3DJJuQG5N2HYkarOBbF8YFewxOzDerrdwd7D7u9pJMFuR5OtRjDmjZanvN3HX7tMuokcs3+IxXvckKDc1pl5KooXl8NHX7AzVz1yPTLiXRwhfuVqmnPZq565H5tGtJ0r5mvvKNLcFuP0nK5xt9xi6HqXl8mINzG1sm+ZTtXhPsNly14An1drd5qPUpipTPNwS7/SQp3zDGp+10qCZN2z3tUhKNGT/dJ8/Y20Ldhp3rlmrVwr8Fex6UFOwxuGphbVuQV3kAAAAAAACA4SL4AgAAAAAAQCYRfAEAAAAAACCTCL4AAAAAAACQSQRfAAAAAAAAyCSCLwAAAAAAAGQSwRcAAAAAAAAyieALAAAAAAAAmUTwBQAAAAAAgEwi+AIAAAAAAEAmEXwBAAAAAAAgkwi+AAAAAAAAkEkEXwAAAAAAAMgkgi8AAAAAAABkEsEXAAAAAAAAMongCwAAAAAAAJlE8AUAAAAAAIBMIvgCAAAAAABAJhF8AQAAAAAAIJMIvgAAAAAAAJBJBF8AAAAAAADIJIIvAAAAAAAAZBLBFwAAAAAAADKJ4AsAAAAAAACZRPAFAAAAAACATCL4AgAAAAAAQCYRfAEAAAAAACCTCL4AAAAAAACQSQRfAAAAAAAAyCSCLwAAAAAAAGQSwRcAAAAAAAAyieALAAAAAAAAmUTwBQAAAAAAgEwi+AIAAAAAAEAmEXwBAAAAAAAgkwi+AAAAAAAAkEkEXwAAAAAAAMikQnXD9Wsfj/7Y8TNPo5iN6fZi7uyFPyunXUd/VpY6Cp9f/ttoYm5McNtOkp7vWZZ7snuRPdz5cpDbcFWp0xaU1uRD3sc9KuXeE3B9y4tthUtW3htNCPQY/EfvilyTFXIv9iwLchu2Rz1aUWoP+jzT46XcuYt/Wc4Hes1ibu/KwndWPuDXr/1blHYtSeYVV1tX1BvseSaSq9dLQR6Dc4uzctIhlnYdQLXlcx/2J+6+J7hzjrvnn7r3K+VcriHtUhL1dK5pePnx633lgjDP18vmPpwrl3oKT9x9cXDnQ0nq6Wq1YndrLtT6JCmKyrmnH/hW1Ng0Lsh+YWfrkvy8p3/t61bMDvIYXDr34Vxn66Jgj0FJKhe78yHXFxW788//6fvRmJYpQR6DbStm5xa6vKdjZZDH4KrFz1jbqrlBH4NRuRTkMbh07iEmHbXBH0w1wdeeY6blDh27V/2qGqAnuxfpuPF75dOuoz9ziquiN7a8KjezMDHtUhKti3o0szBRh7XsEuQ2/EfvCnW093jI+/ip7sXBH4P/2rxjbufGKWmXkqij9QmNyzfp2HF7BpnaLCq2alGpNehj8O89S/2ocXvkx1jNqTsIi0ut0cFjd8zt2TQ9yG14f8dsrS51RKHu46JHeq5naZDnmTvbpmhRMe0qgFoTFs+27VffEtzPzLNdrb7dn2/PFyzIX3l6qX1pNOnvf8zNang2uG0nSau7F6rHS759a3j7VpI6vEezu9p8+4fDrE+SnutY49v+9Y5cc64x7VISzelY4uM7um37uS8FuQ07epaqt9wR9D5+ttijkOt7uXOdz3zinty4XFPapSSa37HQx7aute0XLghyG5Z7V2lt76qgj8HneruCPAZ7eidokY7aoK3mr6d9x2yn0yfuX7eiBurrK+/10yfuH+zV5h+veaj85pbdc68eMyPtUhI91DlHezXNjE6fuH+QPbDfd8zWE10LyqdP3D/Mv+gl/c+Ke/y0iftbqAfhtWsfKR/W8qrcIWN3SruURH/vWaomKwS7j1/oWaY725+LTp+4f3An7/W+tfJ+P2nCPjYhNybtUhLd2PpE+XVjd8odPW6PtEtJtLTUpoW2phzqebDbS7p01QNBnqdf7p2mP3WmXQVQ640tu+qzU09Ku4wav++Y7V+bfoKFeqHixPk/Ln1g8qGNb2rZNe1SEn195T3qKPeWvrjN8UEOmVtUatVz3df4N6efFGq3UA91zom+MO24/NTCuLRLSXTGgqvLZ0w6sHDC+L3TLiXRT9Y8rKe6Fpe+Of2kII/BSPF5JuRj8I1zv1s+b+sjC7s0bp12KYnOWXS9H9byKjtz0mvTLiXR7W3P6KbWJ4M9BiXp/o5/BHkM/u+avfRs94ZtwXWuAQAAAAAAgJFA8AUAAAAAAIBMIvgCAAAAAABAJhF8AQAAAAAAIJMIvgAAAAAAAJBJBF8AAAAAAADIJIIvAAAAAAAAZBLBFwAAAAAAADKJ4AsAAAAAAACZRPAFAAAAAACATCL4AgAAAAAAQCYRfAEAAAAAACCTCL4AAAAAAACQSQRfAAAAAAAAyCSCLwAAAAAAAGQSwRcAAAAAAAAyieALAAAAAAAAmUTwBQAAAAAAgEwi+AIAAAAAAEAmEXwBAAAAAAAgkwi+AAAAAAAAkEkEXwAAAAAAAMgkgi8AAAAAAABkEsEXAAAAAAAAMongCwAAAAAAAJlE8AUAAAAAAIBMIvgCAAAAAABAJhF8AQAAAAAAIJMIvgAAAAAAAJBJBF8AAAAAAADIJIIvAAAAAAAAZBLBFwAAAAAAADKJ4AsAAAAAAACZRPAFAAAAAACATCL4AgAAAAAAQCYRfAEAAAAAACCTCL4AAAAAAACQSYXqhie6Fup6eyyNWjaqx0u6fm14da3XVu7O/bb9WT3TvTjtUhLN6V2l9qjHxq9tSruURM/3LNXS0rrc/2vn3qP1Kus7gX/3eznJyYUkXIPiFbVgNVXjjY4glHakxcuIrQupbWVcq2PV0VUR7Kpr7HjprKkG25mldqTt8o6o1UorqVZFsBWQa8QoUYEQLoaQkJCc5OSc8172/OFkLTBvqh1nsZ/Zfj7/Za/3j+96nt/7nL2/74aS93iQUS4pON+e0Xznin3fz5aFnU1HmeiW+XuzuOoXu8dbR3uydzxflZovSYb1uPrs7g1ZXPWbjjLRfcOZzuX7vp+dw9mmo0y0Ye6u7Bju65a6x8OMMqxHRc7gpvlfajoCTLRpfluR94fz9bD6zO4b00u36SgT3T/a1/3q3k25d7Cn6SgTbZzbmn3jhWLP612jfZkZzRU5ewfsHy9Un9uzIYd1ppuOMtF9w72dq2c3Z99ooekoE92w/86in03qlP98PDcedtbPfCdHdpc1HWWiLYOd1VWzm9Mt9F2gG+fuyt2DXcWeg0kyqEdFzuBN+x990LWDiq87uptG1dRl44cl0b9Bp1P3r5q6bNB0jkPp9Ovept7Vo3umUtzaJcnuTt2re8lVU7cVuYY7xuksdOpuyXvc7ZY9g4Nueht73xxvncqo6SyT3JO6u6RbVVdNbS5yDR9YSOaqsve46qV/7dQ/DXpV00kmG/Xr3ubehvHs1LeKnMGtc+nuT12VusfjOukUes7c0zmtG2+JU6B7OrePr5q6rLgzp9et+1f3vzjoFnpe1/26d1v/xvHuqZuKW7sk2datu6NOqqumfljceZgkc8NkVPizSa9f92/sXz6c6qZuOsskezvp/aC7c7x3akORM3jb/nTnqrpT8h6Py79v7W3oXzla0ivz+Xhvt+79sLejvmpq07DpLJNsHaYz1y17BlPoOXjH/JM7yUN/eTqo+Hr1k8bd855SF/fz1BEXp77s1+oyX3NI8gufzeDPn1v31x5R5k97Z1+RPOPwjC9YU+Yarr87ecdNGZa8x4d/IvUXfq3uF3oPmzV/l8Gfrk3/9GPLfDh9/TXJ4m49XPesFLnHN+9KXn55RiXP4OpPZvypU9NfOdV0kslO+ocMzl+T/lmPqYucwbdvSDbPZPDhk8vc4/2j5NGfyrjEGTz/ujoXbmw6BRzsZY+tO+9+VnlnzlEXZ/x3p9f96SLvCpO1l2bhbU/L1JmPKg36SeEAABmgSURBVG/tkuQt1yczgww+cFJ552GSbNmbnPaPZZ7XBzzykow+9vy6t7rMF75yymUZvubE9M55fJkzuG5jcu32DD59Wpl7PE5yTOHPx4/7TIZ/+cvpnbCizOfjF3854xccl87rTixzDT9xW/KhWzMoeY9L7WjWbRznguseeq3IgwYAAAAAflaKLwAAAABaSfEFAAAAQCspvgAAAABoJcUXAAAAAK2k+AIAAACglRRfAAAAALSS4gsAAACAVlJ8AQAAANBKii8AAAAAWknxBQAAAEArKb4AAAAAaCXFFwAAAACtpPgCAAAAoJUUXwAAAAC0kuILAAAAgFZSfAEAAADQSoovAAAAAFpJ8QUAAABAKym+AAAAAGglxRcAAAAAraT4AgAAAKCVFF8AAAAAtJLiCwAAAIBWUnwBAAAA0EqKLwAAAABaSfEFAAAAQCspvgAAAABoJcUXAAAAAK2k+AIAAACglRRfAAAAALSS4gsAAACAVlJ8AQAAANBKii8AAAAAWknxBQAAAEArKb4AAAAAaCXFFwAAAACtpPgCAAAAoJWqpK4ffGFJ78314u6FTeU5pH3DVEt7qX/yJ5sxHKeqqtTdqukkk80OU/U6yVSnzDUcjpOFcaolBe/x3CjV4m65+UZ1qiTpVmVm3DtIprqpSp3B0TjZP0q1rF9mviQZjFP1OqkLPWayME7VSdIrdI/nR0mdsr/HC+MyvyOzw3XV3Oi8B1/aVtdZ3VQefn5VVbYlOfrAvxf312XJovOL+87MD1MtKvieZmGYqttJugWeN0kyN0iqqtw1HNfJ7HyqZYvLzJckg9H/uWco9KZhfpCq2y33nmF2IelUqRYXfF84M5dqecEzOBqlqjqpO4XO4OxCqn436Rd6XzgYJcNRqumpMvMlyb75VEsXlZdvbvDmzM6/5yGT1/vxD7396anOe8rDF+qndcTFqXeck0K/NskvfDaDi09Nf+0RTSeZ7OwrkmccnvEFa8p8y2/93ck7bsrwmhcdPJOlOPwTqbefk1LvH7Lm7zL48+emf/qxZX5PXn9Nsrib4bpnlbnHN+9KXn55Rptelm7TWQ5l9Scz3vSydFZONZ1kspP+IYPz16R/1mPKnMG3b0g2z2Tw4ZPTbzrLJPtHyaM/lfH2c8o7p8+/LrlwY9Mp4GCvPzN5z6vKO3OO/J2M7/qbdKYLPa+fcV4W3vmKTJ35zPLWLkku+Eiyd38GH3hNmef1lu3JqW/NePNF5Z3XBzzi3IxufG+6q1c1nWSyk/84wz84I71zTilzBtd9Prn2+xl8+oIyZ3A8To7+vdQ7Plbm+iXJY38/wy++Lb0Tjms6yWQvelfGZzwjndf9Rplr+Ikrkw99NYOvvKPMGUySw1+Z+v6Pl7d+6z6fnP/hh14r9rAGAAAAgJ+F4gsAAACAVlJ8AQAAANBKii8AAAAAWknxBQAAAEArKb4AAAAAaCXFFwAAAACtpPgCAAAAoJUUXwAAAAC0kuILAAAAgFZSfAEAAADQSoovAAAAAFpJ8QUAAABAKym+AAAAAGglxRcAAAAAraT4AgAAAKCVFF8AAAAAtJLiCwAAAIBWUnwBAAAA0EqKLwAAAABaSfEFAAAAQCspvgAAAABoJcUXAAAAAK2k+AIAAACglRRfAAAAALSS4gsAAACAVlJ8AQAAANBKii8AAAAAWknxBQAAAEArKb4AAAAAaCXFFwAAAACtpPgCAAAAoJUUXwAAAAC0kuILAAAAgFZSfAEAAADQSoovAAAAAFpJ8QUAAABAKym+AAAAAGilKqnrB184YtH5o5VT68ZNBTqUHfPpH7kog6ZzHMquhfSW9VL3Oxk1nWWSXQvpLeokS3oZNp1lkrlxOnPDdFdOlbvH98+nf0ThM7i0l3qq0BncPpfe0n6ypFvsDFb7BumVvMc759NftSjDKql/8qcffrsW0lvSS72o0BmcGaSbKtXyQs/BOql2zpc5gzvmL+zuXnjTg38s21bXWd1YIH5uVVW2JTn6wL+XTP/leOnSPynuzNkzO+gvX9Iv9rzeu3+ht2hqqu53yzyvZ+cG3VTdasmiTpHn9biuq72zg95hS6eKO68PmJkd9JdO94edqtwZnOpP1VO9Mmdw/8KwOx5X1dLF3SJnMEl275vvr1i6qOgZXLK4P+p2Uly3kCQzs/O9qf6iLOqXeV+4MBh1FoZ1Z9l0r8h8SbJ730J/RYHn4Oz+13f27Xtb98HXej/+od97Yt393Sek++PXm3bq+tSfPT39pnMcyllfzehP16Z74soy36L7o+uSE1amftUTy1zDb2xL/nJTxh9/fpn5kvJn8OyvZfSmp6T77KPKnMF3bEiW9zL6w6eUuYabHkj+6PqMS97jf//F1B89Jb1lhSZ81dcz+t0npPsrjyhzBv/XpuSefRm9c22Ze7wwSn79n8o8Z967sc5Hb206BRzskU/5zc5TT/13xZ056z/wK/Xzfnd9r9OdajrKRF/72G+PTnzeH3RXP+55xa1dkmy88i8yHOwbPe1X31rceZgks3vuzT9f8h/rk89dX2S+JPnHD75g/NyzL+4tWnJE01Em+udLXj1+3NN+q3PcCWcUOYM/uO4j2bl14+g5L35PoXtc57L3n1affO5XCs2X/NNfvWj0zLPe11226jHFdQtJcvXn3lAf8/jnVY9/2suLXMO7blmfO7596ejkl3+wyHxJ8oX3Pb/IGfzBdUfl21c89NpBxdex08maVQ9Ton+Dqioz1wHdKuMnHJZuqRkPm0pWL069ZlWqprNMcve+ZEk34zWrynxgPuCpq1LmAibpVRk/bnm5M7h6OlncTV1qviSZ6pSdL0n95JWpVpb5HJVFnYwfvazcGTxmOpkdZrxmVXk/7iTJ/h/95l3kOX3U4qYTwGSLlx2Vwx9xVNMxJqlXrv7FqtefbjrHRJ1ef7R81WO6hz9iTdNRJlq87MgM5xePD3/EmiLP66npFam6/frwR6wp7rw+oEpVrzzmxEwvL/Pl3E5/8XjpyuM6pc7gkuXHZu8DdxU7gxmPU1WdlLp+SZJOVR921BOz8ugTmk4yUW/x8nrJYcdWpa7hzq3fztSipeXOYJKqqoqcwSWHHXyt6JIBAAAAAP5vKb4AAAAAaCXFFwAAAACtpPgCAAAAoJUUXwAAAAC0kuILAAAAgFZSfAEAAADQSoovAAAAAFpJ8QUAAABAKym+AAAAAGglxRcAAAAAraT4AgAAAKCVFF8AAAAAtJLiCwAAAIBWUnwBAAAA0EqKLwAAAABaSfEFAAAAQCspvgAAAABoJcUXAAAAAK2k+AIAAACglRRfAAAAALSS4gsAAACAVlJ8AQAAANBKii8AAAAAWknxBQAAAEArKb4AAAAAaCXFFwAAAACtpPgCAAAAoJUUXwAAAAC0kuILAAAAgFZSfAEAAADQSoovAAAAAFpJ8QUAAABAKym+AAAAAGglxRcAAAAAraT4AgAAAKCVFF8AAAAAtFLvxy985NbkG/c1EeVft3eQnHV50ykObetsen/4zeTIxU0nmeya+5Lrd6S6ZkfTSSb74Wzy3QfSLXmP9w2TlxWcb8u+9P74huSRS5pOMtkNO5I66d4+03SSyXbNJ3fuS6fkGdwzSHXO15PFhf5ksWlPuu/6VvLx25pOMtnGXcmehfRK3eNRncyNUpWYb+OuphPAZDvuuiEbr/znpmMcpK7rzi3/8v5UnYNutYswmNvd37Lx77N7+w+ajjLRjrtuyGg439t45V80HWWihdldGc7PdErNlyR1Pe5suvqv0l+0vOkoE83t3d69e9OXsn+mwAfPJPdu/pfs3XVHsTOY1BkNF6py8yXj4UL3B9d9NNPLjm46ykR777+j2nrblRmPBk1HmWjH3Tdm7wN3FzyDyXg8KnIG7719bZKTH3LtoL/GT3hSctpTH65IP73LL0512q81neLQbrw0ee5JyaOObDrJZHdenhx3ZKrT1jSdZLJb7k7uuzEpeY+v+GTZM/itf0ie88zkicc2nWSy+69O+t3ktGc3nWSyrTuT711e9gx+4zOpTj0tmZ5qOslk31mfau2TkzWPbTrJZPM3JffPJKed0nSSyYajH+1xiTO4+5vJrd9uOgUcbNGdN2fFtouajnGQev/uevnlf111qzJ/qaj33ZPejV/IiqnySsMk6cxtzbAeZcWOnU1HmWh2vJDx7AP1iq9eVDWd5VDGe+/P0q9/NNOdftNRJtu3JZ3dD2TFpuuaTjLR9vntqUezWfHV8s6XA6qFsvP1Zndl+VWfztJumTeu1eyWVDu3ZsVtG5uOMtGehV2pB7uK3uPOfJkzuGvh3PzE4ut5T07e8MKHK9JP779ekvoNL0yxf1zetz7Ds09Of+3xTSeZ7KpNydOPz/gNLyzzP29df0Ny4+0ZveGFB89kKf7kk6n/85mpqkKn8K+/nOF/eE76pxdabn7/h8mifrl7fPMdyeeuyfgNL0y36SyH8qd/m/F/ekE6K5c2nWSyi7+e4W+sTf+sk5pOMtmuvcnt2zJ8wwtT5FPA/oXkv/1tmef0nduTrym+KNCvLv2F/NFRL286xkGeddt76r849jerxVWRf/Lyki0XDd545KlTpy19YtNRJvqzHV/OvtHC8B3HnFnkeX3PcHfOuevD9fuPfXmhd4XJL9/+3vGfHfOS7lG9ZU1HmegVd31o9IqVz+y9eHmBb1wk+atdV+Vb+384fN+xv1nkDI6TPOe29xQ9g8/f/D9G/+XoM3rHT5X5Zsjv3/PJ+pSlT6heufJZTUeZ6O9nvp3P7N4wfP+xLy9yBpNk7W3vLnIG/3rXL+W/b3/oteJurgEAAADg/wXFFwAAAACtpPgCAAAAoJUUXwAAAAC0kuILAAAAgFZSfAEAAADQSoovAAAAAFpJ8QUAAABAKym+AAAAAGglxRcAAAAAraT4AgAAAKCVFF8AAAAAtJLiCwAAAIBWUnwBAAAA0EqKLwAAAABaSfEFAAAAQCspvgAAAABoJcUXAAAAAK2k+AIAAACglRRfAAAAALSS4gsAAACAVlJ8AQAAANBKii8AAAAAWknxBQAAAEArKb4AAAAAaCXFFwAAAACtpPgCAAAAoJUUXwAAAAC0kuILAAAAgFZSfAEAAADQSoovAAAAAFpJ8QUAAABAKym+AAAAAGglxRcAAAAAraT4AgAAAKCVFF8AAAAAtJLiCwAAAIBW6v34hQ2bk0/9SxNR/nULgzJzHTCzP53Lrk9u3dp0kslu35YMRqlKXcPrb03u3ZVOqfmSZDBMPv2NplMc2p7ZdK7YmOzY03SSyW65O1kyVe4e33Ffsneu3O9IkgxHyeeuSZYuajrJZNt3p/rat5PBqOkkk920Obl3Z7kzuDBMhuMyZ/B79zSdACa7fWFHLpv5TtMxDrJQD6svznw3/arbdJSJHhjNdq6avT2z44Wmo0z0/bn7MptBp8S9TZL7R/uydzRf5OwdMFcPqi/t25RVnemmo0y0Yzjb2bD/7nQLfQ9j49zWbBvuLnYG6yQL9bDoGVwYD6uv77s1m+a3NR1lonsGu6sb5+7KqpklTUeZ6LrZO7N1uLtb8h4P63GRM3jL/PEHXauSun7whcevPn/0qCPXjR+2VD+la7+f/rOflEHTOQ7lO3em95ijMl42neLWLkluuSu95dPJcUdm2HSWSXbNpLNle7pPe3y5e3zDremvfUK5+TZuSe+4I1OvXJoia4fv3pne9KLkcceUOYN79qf6wT3plbzH39qc/i8+JsNeJ/VP/vTD77t3pnf0itRHrihzBrfcl+78INWTHlnmDNZ1qg2b03t6gefgbVsv7N59/5se/HSyra6zurFA/NyqqmxLcvSBfx+39MLx8cvPL+7Muen+uv9Lh1fDTlXoef1A3Vs9nfrwRVVxa5ckt8/U3VGd6omHVUWe13OjVN/eVfeedWRV3Hl9wM076/4JK6rhVLfMGbx5Z91bvaTK0YvL/Jt8+0y686O6OnFlmTOYJNdsr/vPParcGdy4K/3jl2c03Svz+fi7D9S9VVPJsUvK3ONt+9O9b67uPHVVuXt87Y66/+wCz8G79p3fuX3mzx7yy9NBb3y99tfr7nkvSXE/Tx3+ytRXvCv9pnMcypNem8EHX5v+2uPLW7skOXtd8vTjM37LS8tcw/U3JG//VIYl7/Gq3079tXemX1VNJ5lszRszuPDc9E9fU+ZPZ6+/KFnUz/DCc8vc45vvSH7r3RmVPIPHvCrjL7w1vZVLm04y2XMvyOCCl6Z/1kllzuDbL0lu35bBR95Y5h7vX0ge9eqMS5zBN3+ozoWXNp0CDnb24+rOu59VF3fmHHVxxl98Qd2bLvKuMFl7aRbe8YxMnfmo8tYuSd5yfTIzyOADJ9XFnYdJsmVvcto/Zvy1Xy8zX5I88pKMPnt63Vtd5gtfOeWyDF9zYt075/Hl/c1LknUbk2u3Z/Dp08rc43GSYy5OXfIMPu4zGX74lPROWFHm8/GLv5zxC45L53UnlrmGn7gt+dCtGXzlBWXmS5IjCp3BdRvHueC6h14r8o8dAAAAAPysFF8AAAAAtJLiCwAAAIBWUnwBAAAA0EqKLwAAAABaSfEFAAAAQCspvgAAAABoJcUXAAAAAK2k+AIAAACglRRfAAAAALSS4gsAAACAVlJ8AQAAANBKii8AAAAAWknxBQAAAEArKb4AAAAAaCXFFwAAAACtpPgCAAAAoJUUXwAAAAC0kuILAAAAgFZSfAEAAADQSoovAAAAAFpJ8QUAAABAKym+AAAAAGglxRcAAAAAraT4AgAAAKCVFF8AAAAAtJLiCwAAAIBWUnwBAAAA0EqKLwAAAABaSfEFAAAAQCspvgAAAABoJcUXAAAAAK2k+AIAAACglRRfAAAAALSS4gsAAACAVlJ8AQAAANBKii8AAAAAWknxBQAAAEArVUldP/jC9KI314v7FzaV55DmFlItnkr9kz/ZjPE4VVWlrqqmk0w2t5Cq30u6nTLXcDRKhuNUi/pl5kuSwTBVv1duvvE4VaqkU5WZcXY+meql6nXLzDcaJwvDVNMFnzOjcapSv8NJMhil6nbKncGFYVKl7O/xcFTmd2T//LpqbnDegy9tq+usbioPP7+qKtuSHH3g34v76zI9dX5x35nBKFW/wO/yAcNxqk7B9wzzw6RTlbuGdZ3MDVNNF3zfOqpTdQvd3+RH91y9brkzuH8h6XZTTRU6g0kyu5BqScH3rXWdKlXqQh+PMzdINdUrdwaH4x/d+y8q+L51bpBqcYHn4Nzgzdm/8J6HjF7vxz/0znNSnfeShy/UT+vwV6be+fGU+r3Jk16bwSfPS3/t8U0nmezsdcnTj8/4LS8t8y2/9Tckb/9Uht9898EzWYpVv536/o+lKrXcXPPGDP781emfvqbM78nrL0oW9TO88Nwy9/jmO5LfendG3/tAuk1nOZRjXpXx996fzsqlTSeZ7LkXZHDBS9M/66QyZ/DtlyS3b8vgI29Mv+ksk+xfSB716ox3fKy8c/rNH0ouvLTpFHCw15+ZvOdV5Z05R/5Oxnf9TTrTU00nmewZ52Xhna/I1JnPLG/tkuSCjyR792fwgdeUeV5v2Z6c+taMN19U3nl9wCPOzejG96a7elXTSSY7+Y8z/IMz0jvnlDJncN3nk2u/n8GnLyhzBsfj5OjfS73jY2WuX5I89vcz/OLb0jvhuKaTTPaid2V8xjPSed1vlLmGn7gy+dBXM/jKO8qcwaTcjmbd55PzP/zQa8Ue1gAAAADws1B8AQAAANBKii8AAAAAWknxBQAAAEArKb4AAAAAaCXFFwAAAACtpPgCAAAAoJUUXwAAAAC0kuILAAAAgFZSfAEAAADQSoovAAAAAFpJ8QUAAABAKym+AAAAAGglxRcAAAAAraT4AgAAAKCVFF8AAAAAtJLiCwAAAIBWUnwBAAAA0EqKLwAAAABaSfEFAAAAQCspvgAAAABoJcUXAAAAAK2k+AIAAACglRRfAAAAALSS4gsAAACAVlJ8AQAAANBKii8AAAAAWknxBQAAAEArKb4AAAAAaCXFFwAAAACtpPgCAAAAoJUUXwAAAAC0kuILAAAAgFZSfAEAAADQSoovAAAAAFpJ8QUAAABAK/V+/MKVG5/fRI6faG6QXHhp0ykObdfeqvPxK+pcsbHpJJN9755kZi5Vr9Cq85a7k607q86Fl9ZNRzmk+f8zg1XVdJLJtu+uOp/5Rp0Nm5tOMtmGzUmnU+4eb92Z7NpbVaXmS5LZ+VTvW59MTzWdZLKtO6vO319bZ/N9TSeZ7KpNyc6ZcmdwMEz2L6Qq8W/d9bc+s+kIMNH1tz4z7730TU3HOMjcQqr/+YWk3206yWT3PVB1P//NOt+7p+kkk11/azK/UHXeW+h5vWtfsmc21XsLPK8P2DdXVR/8Up3l000nmeye+6vO+hvq3Lur6SSTff07yZ3by53Buk7mFpKSZ3DPbNX58OV1jl7RdJLJbtuW6vKbf/SMV6Ibb0u2FDyDyY86mhJn8OvfOeWga9WPvjYAAD+1bXWd1U2H4OdPVWVbkqObzgEA/P+jl+TqZPeyquo+pa6XFfouCwDQtKraVdf14puS6R82nYWfW9cl+4+tqrmn1/Uq960AwERVtbeu6+F3kpUzVV3XqapqWfLA1cmKpzQdDgAo1bYrktVn1HU933QSfn5VVbUo2fqlZHWZ/38OAKAAuzcmK3+5ruuZXpLUdb23qjLTdCwAoGTH7FR60bS6ruerKjubzgEAlGzF3rquZ5LkfwMsr/V0M+ypbQAAAABJRU5ErkJggg==" + "g31767.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArUAAAHoCAYAAABXWBf1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAACAASURBVHic7N13nB11vf/x1/ecs9l0UiCEhC5FShAISBGkiHAFERW7KAq2a7lYsF69ev1ZLhYUwYIoYi+ABRVFQAWU3gnSpJsQCKRnk83uOd/fH7PBzdnZzfaZb3g9H4/zgP3Ome98dmZ289453/lO4GnxauAAJEmS8p0D4W1FFyHlqXT9dyIsm1hoJZIkqeQemgFUi65CyhMg/h2WTYLa7jAhFF2QJEkqq0URpt4AtXshvKHoaqTuAsRYdBGSJCkp8yDMKboIqbtac8PWu8EWzyqilL7d9If/iXNf9OnSXkm+7bIv1HfY94TqhE1mFV1Krntv/AGTp23HzO0PLrqUXIsX3M7CB/5e3/Wg/yztx1plPwdv//OX6tvt+YrqpGnbFl1Krvtv+Rmt4zdtbLnzEZUNv3v0LXvyPh658+LGnENOKWV9kJ2De//Hp0II5Szxjr9+pb71bi+ubrLZjkWXkuuhO35FqLQ0ttntxaXcgWvXLGfelV9r7H3kx0tX3wO3wKJHi65C6luPULvFDjDn0AIq2YBbLzuLOYd9uugyenXX389p7LjvkdXps8sZah9/+CJmbncQux9SzlD74G33snzxTxpzDitvqL310jNLfQ7ec+13G8/a+8Dq5tttW3QpuRY/9gcmT98hzjnsiKJLybXgvkdY9MgPGnMOK2+ovfXSs5hz6Ccpaablvhu/19huzznV2TuVM9SuWHwZ1ZbxjTmHlTPUti1byT3XfjPOOezjRZfSw5KFhlqVXyl/sCVJkqSBMNRKkiQpeYZaSZIkJc9QK0mSpOQZaiVJkpQ8Q60kSZKSZ6iVJElS8gy1kiRJSp6hVpIkSckz1EqSJCl5hlpJkiQlz1ArSZKk5BlqJUmSlDxDrSRJkpJnqJUkSVLyDLWSJElKnqFWkiRJyTPUSpIkKXmGWkmSJCXPUCtJkqTkGWolSZKUPEOtJEmSkmeolSRJUvIMtZIkSUqeoVaSJEnJM9RKkiQpeYZaSZIkJc9QK0mSpOQZaiVJkpQ8Q60kSZKSZ6iVJElS8gy1kiRJSp6hVpIkSckz1EqSJCl5hlpJkiQlz1ArSZKk5AWIsXtDreV/YrXl60XV06vOtatCbcyEuOF3FqPR6AwhVGII5fw7oXNtW6hUW6hUW0q5Dxv1DhqNjlBrGV/K+gA6O1aHWsu40tYX6x2BSiWGUC26lFydHatDpVKlUh1Tyn3YqHfQqK8t9e+Zemd7qNZaS1tfo94RQqgQKtVS1ljvWE0I1VCplfMcJEZirIdQqZWuvs61Z4V652u7N82DMKeoeqQ8PULtfsfBnEMLqqYPP/zvafENn10ciq6jN7/4zI4dL3jz+S3TZ+9ZdCm5LjvvFczc7iB2P+S9RZeS68HbLmDelWd0HPueq1qKrqU3P/zY1PiGzy0p7Tl4wed36Tj4Nd9t2Xy7A4suJdcVPzmRydN3qO911CdKmboX3Hc51130oc6XfeCmWtG19OaHH5sWT/jMohAqpdyF/PKLe3Tsd9zpLbN3OqLoUnJdfeG7qLaM79zvJV8s5TFuW7aAX5++b/11/zu/dAf4yp/Cvdev12SoVemU87KiJEmSNACGWkmSJCWvlB/BSJIkDU4cDxwFHAzsBWwHzADGAZ3Akq7XP4Frul5XQVg7gG0cBWzTzzevBJYBS4E7ICzv/3ae3t5cYG5T468hPDHwvtbr9zBgx6bGH0BYM7R+ByvOBvYBNm9acBeEqza0tqFWkiRtBOIuwAeA1wATenlTDdis67UTcHRX+yKIPwLOgXBXPzb2TuAlgyiyAfEe4LfAtyHc38/1jgU+2dR2OzDEUMtJwAlNbb8CRiHUxi3Igvo+3f47s5c3fxvYYKh1+IEkSUpYnAjxa8AdwMn0Hmj7shnwPmAexG9DnDGcFXZTAXYBPgTcC/GbEAdTb8LisRDnAwvIwv0ngRfTe6DtN0OtJElKVNwZuB54D9DXrBGdwELgIaCtj/dVgLeSBc5xw1RkX9t6B3ADxM1GeFtlsgUwayQ6dviBJElKUJwDXEY2XrbZCuAC4BLgCggLm9adCOwKvIjsKuFcoPuUjZvQd0jO81Egb47hiWRjRPcH8qZB2wX4PcTnFzeWtVTagdbBrGiolSRJiYmzgT/QM9B2At8C/l/fN1GFlWRXeK8H/hfifsBngRcMoajTIGzgwRlxLvB1YL+mBfuSjdM9fQjbT9Ea4Dbgpq7XjcCjwOLBdGaolSRJCYkV4OfA7KYFbcArIVw88D7DdcAREP8D+D75V3+HQbgpuyLL74AXNi38CMSzBjYLQ5JuBd5CFmLvhNCx/uI4abAdO6ZWkiSl5F3A85ra2oEjBxdouwt/JLsL//oNvXMI21hLNuPAqqYFm5ENUdjIheshfBfCrT0D7dAYaiVJUiLiJOATOQs+CeHvw7ON8CjwfGD18PSXu40nyK42Nzts5La58TPUSpKkVJxIdkWzu5uBLw3vZkI7hPrw9tnDFTltW47wNjdqhlpJkpSKk3LazhiFADoSFuS0bTrqVWxEDLWSJCkBcSuyx952txg4v4BiVEKGWkmSlIK86bYuhzCCY19HVPPsDQBPjnoVGxFDrSRJSsHeOW03jHoVw+f5OW3/GvUqNiKGWkmSlIJn5bQlGmrjDODVOQv+OsqFbFQMtZIkKQXTctrmj3oVQxZbgB8CE5oWPAVcM/r1bDwMtZIkKQXTc9qWjXoVQxL3Aa4CjsxZ+H/PgKeJjSgfkytJklKQd6W2TKH2wxBjTvt4YCZwADCnl3VvBr4+UoU9UxhqJUlSqvJCZFE+P8j17gOOSXgWh9Jw+IEkSUrB4py2TUa9iuETge8CcyEsLLqYjYFXaiVJUgryQu0UYNFoFzIEEbgX+B3wbQj3FlzPRsVQK0mSUpAXarcg+/i+DN5B/nCINrKxv0uAOyCUaRxwKLqA4WSolSRJKXggp21f4MrRLqQX34YwUmN86zlt44ah37w+Ooeh30I4plaSJKXg5py25456FcVYmtM2cRj6ndT0dQNYPgz9FsJQK0mSUnB5TtvhEMeOeiWjLy/U5s3bO1CbNn29HELeVeEkGGolSVICwsPA7U2NmwKvKKCY0fZETttuQ+syVoCd+7GdZBhqJUlSKs7NaXtPV0DbmN1Iz5vQ9hpin88mezBEdzcMsc9CbewngSRJ2nicBzzV1PZc4JTh3UwcU66gHJ4C7mlqfD7E5uEDA/HynLarh9Bf4Up0wCRJkvoSlgGfzVnwWYj7DM824izgz/S8ilm0PzZ93QKcNLiuYivw5qbGBnDJ4PorB0OtJElKydeA65raxgGXQ3zB0LqOLwBuAp43tH5GxFn0nNrrExC3HURfHwW2b2r7LYT7B1NYWRhqJUlSQkIdeDXweNOCycDFEL8IcdrA+ox7Q7wYuAyYORxVDr9wP3BBU+NE4K8Qd+lfHzFA/BDwP00LGsAXhlhg4Xz4giRJSkx4GOIxwJ+A7gF2DHAq8BaIPyf7OP2vEJasv34cS3bn/zFdrwNI4+la7ya7irxlt7ZtgFshngv8GLgewtr1V4ubA0cA7wf2zun3NAijOJ42ngLs2svClpy2gyGe3UeHX4Nwp6FWkiQlKNwE8RDgV8AOTQunAG/vegFxNfAk2SNrN+9a3pfF5D/Fq2DhSYivIhtfO7nbgjFkj+l9B7AG4kKyG+payeaz3aKPTi+h55XbkXY0cOQA3r9L16s3vwLudPiBJElKVJgHzAXOJvsIvTfjgK3Irs72FWg7ga8DO0FYPVxVDq9wDbAfPWdDWGcssC3ZftmdvgPtOcBxEJJ9NG53hlpJkpSwsBzCO4A9gR8CawbRyRPAl4HdILy7awqtEgt3A/sAHwQeG0QHfwIOgfA2CO3DWlqBHH4gSZI2AuEO4I0Q3wX8B3AQ2QMKtie7WrnuQt5SsuEF9wLXAteQjbtd29xjH74B/L5p+80PRxhhYSXwJYhnko2XPZjse96KbJzxRLKr14u7XncAVwKXQ7hzdGvt4QzgwmHs706AAHG9gzBu0un1sRO/V7pxJKuWPDpmwtStBnLCjaq2ZQtaWsdPa1RbxpZu3wG0LV/YUmsZy5hxUzqKriVPR/uKSkf7yur4yVuUsj5I4BxcvqBl7PhNG5XamFKeg6uW/Ks2ZtwmoWXspFIe4441Kyod7Stq4zeZVdpjvGrJo2MmTNmqg9DjyUKl0LZsQcuYcVMatTHjS3kOrlmxqBYqldA6YXopz8HYaFRWL3+sOn7K7NLVt2rpZ2prVx/X/dPdeRDmFFbQoMQa0IDQ1zCFjUhsgVC6c2kk9bhSu+2cl1S323PPahHF9OWyc1/OAS87Y0zRdfTmyp+e1Njj8A9VJ2/6rNLtO4CbL/k007bYnW33eHkp9+HC+6/iodsvbOz/sq+Wsj6Ay753fLnPwZ+d3Njt4PdUp8zctbTn4OTp28Ud9nlDKffhokeu597rvtco8zG+7HvHx/1f9pWWEMo5cuzv5/9n/dkHvq06ffZepTwH77zya1RrYxvPPvBtpTzG7W2LuebC98QynoO3/3kX/nV30VUM1cYxbrT/nlmBFnJC7eTNdmDWjs03ERYvVCpx1o6Hl3a6jUqlpb7Z1vtWps/es+hScv3j799g8qY7MGvHw4suJVd722Lm33dZfdaOh5fzX2uyjzXKfA7WamPr07fcu7L5dgcWXUqu+274PpOmbd+YtePhpQw8EHng1vMb5T4HA7N2OIxQKecurLa0NqbNek61rL9nHrr9Qqot40t7jNuWLYBQKeXPyD9vLLoCacNK+YMtSZIkDYShVpIkSckz1EqSJCl5hlpJkiQlz1ArSZKk5BlqJUmSlDxDrSRJkpJnqJUkSVLyDLWSJElKnqFWkiRJyTPUSpIkKXmGWkmSJCXPUCtJkqTkGWolSZKUPEOtJEmSkmeolSRJUvIMtZIkSUqeoVaSJEnJM9RKkiQpeYZaSZIkJc9QK0mSpOQZaiVJkpQ8Q60kSZKSZ6iVJElS8gy1kiRJSp6hVpIkSckz1EqSJCl5hlpJkiQlz1ArSZKk5BlqJUmSlDxDrSRJkpJnqJUkSVLyDLWSJElKnqFWkiRJyTPUSpIkKXmGWkmSJCXPUCtJkqTk1ZobHrnzd7Qtv6KIWvrUubaN6y76YNFl9GrNqkXV2//8BcZvMrvoUnI99a+baFs6n1XL5hddSq6lj9/JsifurZX5GHeuXV3qc7B99ZLqXX//Og/d8auiS8n1xEPXsPzJ+ytr25cXXUqu5U89QNuy+dUyH+N6fS3X/+7DQCi6lFyrli6o/uOqM/nX3ZcUXUqux+6/ghBD9bqiC+lF59pV1DtXV8p4Di565NXAPkWXIfWpR6jdYv6D9V2fvKJRRDF9+Wcjtjznlis6iq6jNws76rWd77u9Pq36z9LtO4Blq5bVNmtrsMuyKzqLriXPIx2LK+3tqytlPsYPxHKfg4+tXlV71j031zer3VfKc3Dxqidq01e0sceStaXch490LKmsXLOy1Ofgg531lj1uuaIjlDTUPrF2bW2Hh+5ubPGvx+pF15KnffWiapVKKOsxbmt0hIXt7bUy1req7dDqEj/dVcn1CLVHTdy5evLUo6tFFNOX366YFz814+iWouvozVWr/tnxn9MOatmldWbp9h3Aux87n7ljt+LNU/cv5T7844p/cN7S6zvKfIwvWnFHqc/Ba9oe6Dh56oEte4/bqpTn4KqFa9m6ZVr9PdOfX8p9eHXbg5y26NLOMh/j366YF/9nxtEt1ZKG2htWP9zxxin7tTxv/PalDD+ffOJixoVa50c2O7KUx/iJzhX8re3+ehnPwQ8vnM0Da4uuQupbKX/xSJIkSQNhqJUkSVLyDLWSJElKnqFWkiRJyTPUSpIkKXmGWkmSJCXPUCtJkqTkGWolSZKUPEOtJEmSkmeolSRJUvIMtZIkSUqeoVaSJEnJM9RKkiQpeYZaSZIkJc9QK0mSpOQZaiVJkpQ8Q60kSZKSZ6iVJElS8gy1kiRJSp6hVpIkSckz1EqSJCl5hlpJkiQlz1ArSZKk5BlqJUmSlDxDrSRJkpJnqJUkSVLyDLWSJElKnqFWkiRJyTPUSpIkKXmGWkmSJCXPUCtJkqTkGWolSZKUPEOtJEmSkmeolSRJUvIMtZIkSUqeoVaSJEnJM9RKkiQpebXmhra4liWNtiJq6VOEUta1ToPIssaa0tbYHjtYVdJjC7AydtBJZyhrfeuUub46sLLRXtoa22MHa2JHaetb0WinTqO09a2zrN5GCKHoMnI1iKwo8znY6CCG8v4cL2+sKe2/de10Fl2CtEEBYuzeMLHy33F85czY2wpFWVpvq0ypjm8UXUdv2hprK62hFquhUrp9B7C8viaMCdUwttJSyn24ttEZVseOsEl1XCnrA1hWX10pc32rGx2VllCNtZKeg0vrq0NrqIZxlTGl3IftsTOsbnSEKSU+xisaayqTKmNLW19bY22lJVRjS6iW8hxc2WgPAcKESmsp92EkhtWNjjC+hD8jyxvfCmsar+v+19Q8CHMKK0jK0eNK7XumHxJOntpSussAc+//Qrx6+/eXdrjECx78WsdZs17VskvrzNLtO4B3P3Y+c8duxZun7l/KffjHFf/gvKXXd/xsqze1FF1Lb/a+/7RSn4NHPXRWx+c3P65l73FblfIc/ODCX7N1y7T6e6Y/v1p0LXmubnuQ0xZd2vmbbd7W4/diWcy9/wvxqu3fV6lSykPMMQ9/s+Njmx3V8rzx25eywE8+cTHjQq3zI5sdWcpj/ETnCl76yDn1q7d/f+l+Rj68cFcuXF50FVLfSvsPtCRJktRfhlpJkiQlz1ArSZKk5JVyXJEkSdLgxT2Bg4G9gO2AzYFWsolilnS9/glck73CAwPs/znAZv18cxuwNHuFBQPbztPb2x7YvqnxBgjLBtff0/3uDsxsarwSwtqh9dvv7U8DDgX2BuYAs4Gp/Ps4PQ7cBFwN/AVCn9NwGGolSdJGIE4H3gGcRM8AmOco4F1d694KfA/4MYSn+rHup4GXDKLGRcANwG+7trWinyu+EfhkU9sBwLUDr2E9HwZOaGqbASwaYr99iFsBrweOA/YFNnRj5LFd/50P8ZvA6RBW573R4QeSJClhsQrxfcADwGfoX6BttidwBvAQxI9BHDuMBXa3GXA08E2ykPYhiM+gLBZ/BTwEfB7Ynw0H2u5mkx3fmyHuk/eGZ9COlCRJG5e4OXApcDoweRg6nAh8FvgHxNZh6K8vk4DTgEshjh/hbZXFAQw9ez4b+AvEA5oXOPxAkiQlKG4JXA7slLOwAVwJXAL8FZgPPAmsIft4fQawC9lV06PpOT52O6AFaB9AQd/upX1C1/aeC2ySs/xw4BcQj4NQH8D2NhY3AVcAfye72r6I7EGymwMHAScDz2laZyJwMcTduo9TNtRKkqTExE3IAmteoP098FEId/Sy8uNdrzvIwmQFeCXZONm8/vrrHRD6eJperAIvJ7s6u13TwmPIxs1+bwjbT8njwLnAeRDu7eU9C4BbIJ5FNlb6q8CYbsunAF+g25hghx9IkqTUnAfs2tRWB94O4cV9BNocoQHh58BuwDuB3JuQhi7UIZwPzAVuyXnDJ7uC78bsCeADwPYQPtZHoO0mRAjfJAv9zV4L8enZGwy1kiQpIfF1wEubGhvAayH0NgSgH0JnV3h6HvDg4PvZ4HaWkF0Z7mhasA3Z1FYbs30hnA6hbeCrhp8DFzY1Vvj37AiGWkmSlIrYCnwuZ8EZXVdBh0G4BdiHbPztCAn30zOgAbxg5LZZBmEgY5TznJPTtse6/zHUSpKkVLyW7Ipmd/cBHxvezYTFG5rofxhcntPWPNZW67spp83hB5IkKTkn57R9DcIIXlUdMY/ktG066lWkZVVOW1j3P4ZaSZKUgDgDOLCpcRXwwwKKGQ55V4KdlapvzVfpAR5b9z+GWkmSlIIX0DO3XA5hWRHFDIPNc9r684jeZ7JDc9puX/c/hlpJkpSCuTltN4x6FcOn+aozdLvqqFzNw08awO/WfWGolSRJKdg5p+36Ua9iWMRJZDe9NbtqtCtJR3wd2awU3f0WgsMPJElSUqbltD086lUMj7OA6U1tq8ge7ase4qbAV5oa68BHuzcYaiVJUgryQm1i42njLIgXkP90rDMG91CCjV2sAT8HZjQt+AqEu7o3eJedJElKQdlD7Sshxpz2CcAWwP7AfwBjct7zEPDFkSstaacDhze13QD8d/MbDbWSJCkFLTltzY+aLdLPB7nek8CLICwdzmI2DvEDwHuaGheTPRJ5bfO7HX4gSZJSsCSnbZNRr2J4XQ7sDeHuogspn3gyPa9etwHHdT1muAdDrSRJSkHeHK5TRr2KoWsDfgkcCbwQwqMF11NC8STgHLo9LQxYDbwYwt96W8vhB5IkKQWLc9pmALlX7QpwWi/tq8jG/i4BbgP+ASHvaWICuqbu+jbrB9oO4JUQ/tLXmoZaSZKUgkdy2uYC14x2Ib34KIS8G8WGQyOnrXUY+h2X01Yfhn4HKb4c+D5Q7dZYB06A8PsNre3wA0mSlIKbc9qeO+pVFCNvloeJw9Bvcx8RWD4M/Q5CPAb4KetfcG0Ab4Lwi/70YKiVJEkpuCKn7XCI1Zz2jU3ezAhTh6Hf5mnSVhQzNCIeCVzA+tOdNYC3QvhRf3sx1EqSpASEu+g5fnY2cEwBxYy2vJvkdhlalzHQ89HDTw6tz0HVcTjwa2Bs90bgnRDOHUhPhlpJkpSK83La3j3aRRQgb+jFc4bY57bA5H5sZwTFQ4CLWH9sbwROgXD2QHsz1EqSpFScQzabQHcvhPj64d1MDF1XMksiLCB76lh3h0OcNIROX5rTdvUQ+hug+Dzgd2RPXOvugxDOHEyPhlpJkpSI8Djw1ZwFZ0Lcdni2EScCP6Nn2CraZU1fjwNeM7iuYgU4sR/bGCFxf+Biet6o9jEIXx5sr4ZaSZKUks8C9zS1TQX+BnH3oXUdnw1cC7xqaP2MiLNy2j4Lcfog+no7PYcv/AXCHYPoa4DiPsAf6Tn04VMQPj+Ung21kiQpIWE12RXKlU0LZgNXQXwXxJaB9RlnQfwGcDuw23BUOfzCbcClTY2bAZdAnNH/fuKrgK/kLPjSoEvr/7b3Av5Ez8cbfw7C/w61dx++IEmSEhNu7Qpnv2T9u+ankF3RfC/E7wCXALflPxQhTgOOAo4FjgPGj3DRw+HtwE2sP53XXOBOiF8CfgRhfs/VYo1sTt9TycbSNo8XPg/CxSNQb/caNiUL5c1TkT0MLIf44UF2vArCWWColSRJSQp/6Jqw/xdA80fwOwD/1/VaCnEB2XRVq4HNu14zWP/JVd11kP8Ur4KFByG+iWxO1+5Xozfl6e833k/29LWnyJ46Nh3YnZ4f969zK/Cukaq4m6n0PE4A25DVPlgL6RqaYaiVJEmJCn+GuDfZrAhH9vKmKV2v/roYeD+EtqFWNzLCRRBfCJxPNvyg2bO6Xv1xKfDq8n6vA+OYWkmSlLDwCISjgBcDVw2yk7XAhcAREI6B0HwjWsmEK4C9gG+QXX0eqLuBNwFHQVgyjIUVKkBcb5zJ5MonGhMrZ5bukvuKRnttUqW1gEe39c+quLY2LrQ0KoTS7TuAlbG92hpqtFCtF11Lno5YDx3Uq+PDmNIe45WN9trEEp+DbXFtdWxoiWU9B5fWV1cnVlupUSnlOdge66GTenVCic/BFY01tUmVsaWtb1Vsr44NLbFKpZTnYFvsqNYIjAm1Up6DQFgV15byHFza+GalrfHa7hfC5kGYU1hBfYo7Ai8DDiILfrPpOYa0AdxLNtPB1cBvIDwxgG0cTzbEoZtw2iALHqK4OfBK4GDgeWTfb7MO4A7gSrJpu/7AqP9bEacCbxuBjp8eU9sj1L592q94xeQ/j8A2h+b4R74TL9z6LSWaCHl9J83/Uf3jm/1HdfsxmxZdSq5PL/oDu7fO4uWTh/oAkpFxVdv9/Gr5rfXTZx5f2md4l/0cPHn+jztP3fQFtV1aZxZdSq7PLbqEbcZMa7x+k31L+QnRTasf4btLrql/Y9ary3sOPvqdeP5WJ4dKj3+fy+E/F/ys823TDqrtNXbLokvJddbiK2kNtfpbpx5YymO8uN7Gux/7ReMnW76pdD8jX3zyBP60cr/uTSUOtc1iK9kY2jFkT6tavDFdnewpVoFpZEMu1pJ9vyuKrWl09BhTO606ge3GDGbKs5EVQihlXetUCI1ZLZtUy1rjhEor06rjS7sP72l/nNYwprHdmOml/McGgEBp9x9AS6jEmbXJpa1xSnU8m1TGx7LW91jncsaEWmnrAwgEth0znWpJQ201VOLmtUmlPQcnVloZV+JjPKFzDIFQyvomVVqLLmEIQjvZjVPPEKEOLOp6PaOU7q9BSZIkaaAMtZIkSUqeoVaSJEnJM9RKkiQpeYZaSZIkJc9QK0mSpOQZaiVJkpQ8Q60kSZKSZ6iVJElS8gy1kiRJSp6hVpIkSckz1EqSJCl5hlpJkiQlz1ArSZKk5BlqJUmSlDxDrSRJkpJnqJUkSVLyDLWSJElKnqFWkiRJyTPUSpIkKXmGWkmSJCXPUCtJkqTkGWolSZKUPEOtJEmSkmeolSRJUvIMtZIkSUqeoVaSJEnJM9RKkiQpeYZaSZIkJc9QK0mSpOQZaiVJkpQ8Q60kSZKSZ6iVJElS8gy1kiRJSp6hVpIkSckz1EqSJCl5hlpJkiQlL0CM3Rt2av0i27Z8r6h6evXnVffEwyfsHIquozd/W3V/3G3szDC1OqHoUnLdtPoRJlfHsuOYGUWXkmt+x1Ie7lgcDxy/fWmPcdnPwetXPxR3bt08bFIZV3QpuW5Z/SibVMfF7cdsWsp9uKhzBfd3PBn3H7ddKesDuGrVPzlowrMIlLPEq9seiNuP2TTMrE0uupRct6+ZTwjEOa2zS7kD22MnN61+GdvHNAAAHuhJREFUpJS/B+e1f5YFHS9brwnCnKLqkfLUmht22fxxDt3iriJq6dM1NxNetFv56lrnrnlw6PaPMGt80ZXke+I+eNbkVRy0+VNFl5LrjsXQ/ji8aJfyHuPrbin3OfiPeXDAtg+xzcSiK8m34F7YesJKXjh7UdGl5LpzCTw5H8p8jK+/BV60692E0kWezH3/gIO3nM8Ok+cXXUqutodgTAVetPXyokvJtXwt3HVXOc/BpQ8sY0E5f3Slp/UItQdtDqfsWkQpffv0rcRTdi3p5Qng6/+g87Xb07LntKIryXfV4/C8GeU8tgAXPAz3LqfzlF1pKbqW3vzvLeU+B8++m85XbEvLgeW8GM/NT8EOk2mcsivVomvJc/kCuPkp6qfs2vP3Yll8+hbie3YlVEt6Fp57L53HbU3LEbOKriTfvcthfLW8x3hBG5x9Tzl/Rm5bDNcbalVyjqmVJElS8gy1kiRJSp6hVpIkSckz1EqSJCl5hlpJkiQlz1ArSZKk5BlqJUmSlDxDrSRJkpJnqJUkSVLyDLWSJElKnqFWkiRJyTPUSpIkKXmGWkmSJCXPUCtJkqTkGWolSZKUPEOtJEmSkmeolSRJUvIMtZIkSUqeoVaSJEnJM9RKkiQpeYZaSZIkJc9QK0mSpOQZaiVJkpQ8Q60kSZKSZ6iVJElS8gy1kiRJSp6hVpIkSckz1EqSJCl5hlpJkiQlz1ArSZKk5BlqJUmSlDxDrSRJkpJnqJUkSVLyDLWSJElKnqFWkiRJyTPUSpIkKXmGWkmSJCWv1txw73L404IiSulbR72cda2zqk7lbwvhiTVFV5JvQRvcsaS8+/CWp2DRaiplrQ+gs1He/Qewuk64YRGs7Cy6knyProQKhLLuw5uehOUd5a0PoB7h0gVQCUVXkm95B+HaRdAoupBePLQCWkJ5j/HiduholLO++W1FVyBtWIAYuzdsOf6DjZnjvlS630nzllLbfQol/ecaHlhJbeY4GuOr5fx9/sBKqhNrMGMs9aJrybNkLZVFa6jsNLm8x/gfy6jtukl563tgJdUZY4kTa+U8B+9dTnXyGJhZ0nNw8VrCE2uoPrvE5+Ddy6mVub4HV1LbdCyNSSU9Bx9ZRbUaYPb4cp6DHZHw8EqqO0wq3zF+cOV5lafaT+z+6e48CHMKK0jK0eNK7Sm7xcoHdi/fsITpPyFe/5Ke9ZbFThfQ8aNDaNlzWvn2HcAr/gIHzYD37lbOfXjBw/C1O+m48mhaiq6lN9N+XO5zcNdf0vGdg2g5cEY5z8ETr4IdJlP/xHPKuQ8vXwAfvpHOMh/j6T8mXnMstWpJr9Q+59d0fPm5tBwxq5zn4LuuhfFVOr+4bzmP8YI2eO5vqZfxHDzpb5Hz7iu6CqlvpfzFI0mSJA2EoVaSJEnJM9RKkiQpeYZaSZIkJc9QK0mSpOQZaiVJkpQ8Q60kSZKSV7q58CRJkoYmbg4cCMwFtgU2B8YBncBiYAlwH3ANcCOEVQPsfyYwvp9vrgPLICwd2DbW295UYGpT43wI7YPvEyDOACY2NT4MYZQeUBKnAfsDc4BtgC3JjtNEYDmwDLgfuAm4CsLjffVmqJUkSRuB2Aq8FjgJeB79/zS6E+IfgXOB30NY2491zgZeMsD6OoE7gRuAi4CLBxAeTwE+2dR2AHDtwGro4cvACU1tM4BFQ+y3D/Ek4CCyMPtsoL+Pk+mE+AfgixCuynuDww8kSVLi4quAfwLfAw5mYPmmBrwY+CXwIMQ3QhyJ5/bVgOcAbyELtQ9AfN0IbKfsvga8GdiF/gdayPbfscAVEL8DsceVckOtJElKVJwI8SfAz8k+uh6qWcD3gWshjhmG/vqyNfBjiD+C6Cfn/ReAk4GLs+P/b+5ESZKUoDgF+COwXy9vuA+4BPgzsBB4ClhF9vH6FsBOZFdoDwaaA+xzu9r6MxRhnct6aW8hG9O7E/kXE1+fbSeeDCEOYHsbg8fJxjXfDtwLPEY2jhZgMtk+O5RsqEfzldlDgDPJrvoChlpJkpScOBb4PfmB9mbgIxAu7WXl+cAtwMXAVyFOBt6arcOmQyjqyL5DaZwGvBH4BDCtaeGbgd+RDYHY2F0JXA78DsI9G3jvX4Czu27M+zrw8qblJ0I8B8LV4PADSZKUnjPJZjdo9mlg3z4CbY6wHMKXgWcBnyObrWAEhMUQvgrsBTyQ84b/N0JjeUsmHJ3t7w0G2u7rLAReCVzQvIDsDwXAUCtJkpISX0R2s1Wz/4LwSQiNwfUblkP4b+BosqEKIyQ8AhwPNNe5K9nUVsoVGsB7yKZl6+6Idf9jqJUkSYmIVeBLOQt+AOHM4dlG+BOwDwMbTzvQbdxKNtyg2RE5bXpaWAhc39Q4e90VbkOtJElKxcvIrmh29y/gv4Z3M+Ghfs5XOxSX5LTtOMLb3Bg82vT1WLKb8Qy1kiQpGW/NaTsLwrKc9rJ7MKdtKDeqPVM0PwFt6bo/QAy1kiQpAXEKcHhT41qyBy6kaHVO29hRryIpsQrs29R43br/MdRKkqQUvICeU5H+BcITRRQzDGbktI3gDWobhTfTc7/9cN3/GGolSVIK9slpuy6nLRXPzWl7fNSrSEY8luwRu93dSPY0OcCHL0iSpDTsktPWfCd8IuJY4DU5C64e7UrKLW4F7A+cCBzTtPBh4JUQnp7iy1ArSZJSMD2nLe8hBin4DDC7qW0t8NfRL6VoMZA/7GICPR9fvM5FwNsgrHdl21ArSZJS0PxoWYDEZj2IE4DPkz1EoNm3E53FYThM7cd72snGz34HQu6wE0OtJElKQV6oXTrqVfRuLsTY1BbI6t4C2A94NfnfxyLgsyNbXvJagRcDayAugtDjKr2hVpIkpSBvuquRfkDCQNwwyPXagGO7npb1TLWk6etJ5GfUmcC7gbdB/B/gCxCe/kPC2Q8kSVIK8q7KTh71KobX7cCBvX2c/swQIoRpTa8WsocszAVOAW5uWmkM8H/AWd0bDbWSJCkFeTcTbTLqVQyP68jmXN0Xwm1FF1NOYRWEmyF8DcJc4I3AiqY3vRPiW9Z94fADSZKUgsU5bZuS/7jZIpyf0xbJrjAvIQvldwI3QFg0moVtHMIPIT4AXE42vnadL0D8GYSVhlpJkpSC+TltezH4sazD7dXdx3cOs7x+e5vuaiBac9oaw9DvCAl/h3g68NFujVPJbsD7rsMPJElSCm7Jact7KtfGaHlO28Rh6HdSP7dVJt/OaTsUHFMrSZLScFVO26Fdk/dv7PJukhuO8cTNfayE0DEM/Y6g8BA9Hye8AxhqJUlSGm6l5xCEZwGHF1DLaMsbT7zzMPTb3Efedsqo+abBTcBQK0mSkhAi2ROlmr1ztCspQN4MCXsMrcs4m54Pgrh1aH2Omua6F4OhVpIkpeNsej5w4WUQX1REMaMnPAQsaGp8AcS8B1L014tz2q4eQn+jJM4GNm9qXAiGWkmSlIzwEHBOcyPwHYibDs82Yi27wz4Ox41Yw+kvTV9PBl42hP5O7Mc2yugNZMe8u+vAUCtJktLycXqOrZ0FXAFxq6F1HTcHLgPeN7R+RsQ3cto+D3HCwLuKrwEOaGq8AcL1g6hrFMWdgP/OWfBrMNRKkqSkhKXACUDzXfq7AldDfOnA+4wTIP43cDdwyFArHBnharquSHazDfDLgV1VjoeRDeNodvqgS+vfdgPEyyAeOsj1DwD+Ss+pzC6GcB9AgLjehL4TaqfGcdUvj9TkwYPW3qDSWinvhMCdkUo1ZEes6FryrK4TWquESkknVe6MhEYkjCnxMfYcHJoVnYQJtfKeg2sb2QPIy3yM1zaolPlnpOznYHuDUAuEaijtPgydkVArYX0rO88La+ondv/Idx6EOYUVBEA8ETiX/At0VwPfBC6F0Dz907r1a8CBwDFkH8U3j9OcBGFlL+v+BnhJU2NlBB++sG67ewDXAuOaFvwT+BRwIYQ1vay7DfAB4O30fHDDb4HjRrb+GPj37/+7gAuBPwC397GfxwGHkR2fV9Jz2MEaYA6Ef0JOqP3c3FP5r12/PEzfwPDZ6hfER1/V45spjT1/TecPDqG2x9SiK8l3wpVwwGbwrl2KriTfbx6Bb9xF5yVHlffRzVv+nPivV5f3HJz7Gzq+cSAt+21WdCX53vp32H4y9Y/OoVp0LXn+shA+cRP1vx1TzvoAtvo58eFXESolPQsP+C0dn9uHlsO2KLqSfO+/HsbX6PzM3uX8PbNwNRx8MfX7ji/fOfiOq7/Hj+5/U/emEoRa6PoY/Vx6hryn30B29fVfwCKyEDQDmAnsSN9zvU6EsKqXbgsKtQDxJOA79Ax4kH1/1wGPkE171QpsRjZTwk69dPggMBfCkuGvtbv1Qm13DeAB4ElgGdmNgJOBLcimbOvt52Et8AoIv13X0OMHu6UC40v5417eurrEsdXy1lgJ5T62LVUIgVjW+tYpc30hQGuJz8FaBcaU+BwcW4FKAufguBpUSxpqKfk5WK1k+66s9Y2tZimljPXVSjtYMfwM4l3AD8if4ioAu3S9+usW4L29B9qihXMhriQL883jaccysOETtwIvGflA26cK2cMTdhjAOo8DJ0G4uLkjSZKkRIXbgLnAO8g+hh+sa8k+5t4HwpXDUdnICb8A9gN+w+CG+ywiu+FqfwiPDmdlG3Ax0D6E9VcD3wJ2aQ60kHOlVpIkKS2hEzgb4jnA84GXAgeTXb3tLessJ/uo/lrgFxDmDWCDl9A1N2pxwp3ASyHuBrye7Pvel57jZddZSPao4cuAH0FoG5UynxYicEzXTW1HkB2fA8hu8OtrGMiDwM1k+/wXEJb19kZDrSRJ2kiEBtkd8n/Nvo41YCtgU7LgtJbs6VOLgYVd7x/MdvKm1ypIuBP4WPb/sZVszPC0rlc7T3+/4YmCCmwSVpJNwfXrf7fFzYAtyWY2aAWWkP3R8eRAhkYYaiVJ0kYqdJJd6Xuw6EpGR2gHHu16JSQsIhsSMSSOqZUkSVLyDLWSJElKnqFWkiRJyTPUSpIkKXmGWkmSJCXPUCtJkqTkGWolSZKUPEOtJEmSkmeolSRJUvIMtZIkSUqeoVaSJEnJM9RKkiQpeYZaSZIkJc9QK0mSpOQZaiVJkpQ8Q60kSZKSZ6iVJElS8gy1kiRJSp6hVpIkSckz1EqSJCl5hlpJkiQlz1ArSZKk5BlqJUmSlDxDrSRJkpJnqJUkSVLyDLWSJElKnqFWkiRJyTPUSpIkKXmGWkmSJCXPUCtJkqTkGWolSZKUPEOtJEmSkmeolSRJUvICxNi9YevJH6zPmvilRlEF9WbeYlp2n0ZH0XX05u4l1LacSGNiC6XbdwD/XEZ1fI0wawKdRdeSZ/EawqI1VHeeUs76oPzn4D1Lqc0cT2OTMeU8Bx9cTrWlCltOoF50LXmWtxMWrKb67JKfg7tNoyMUXUgv7l1CbcZ44pTWch7jh1dQDQG2nljO+jrqhPuXUX32tPKdg/cvOa+6aPWJ3S+EzYMwp7CCpBy15oZD58bqS55LtYhi+nLymXDqG2gpuo7evP9cGm96MdVtZ5Rv3wF86dewy5ZwzD7l3IfX3gO/v5HGqa8vZ31Q/nPwg+fReMMLqe40u5zn4Fm/h82nEF/5vHLuwzsehh/9lVjmY/yWs+DUE2gJJU21H/kBjVcfQmXONuX8FPC7l0JrjcYJh5XzGC9ZCR//cTnPwa9fHPnLHUVXIfWtR6jdY1s4/oACKtmAt36dePwBlPRXOXzk+9RfsAeVPbcrupJ8P72yvMcWss8Lrr2X+vEHlPMfQ4C3nFXuc/DjP6Z+yO5UDnx20ZXku+h62GEmjeMPKGfonjIBfnsD9eMP6Pl7sSze+nXiy/YnVEv6U/K/P6d+0C5UjnhO0ZXk+/PtML6VRll/zyxYDJ/8aTl/Rn53Q9EVSBtWyh9sSZIkaSAMtZIkSUqeoVaSJEnJM9RKkiQpeYZaSZIkJc9QK0mSpOQZaiVJkpQ8Q60kSZKSZ6iVJElS8gy1kiRJSp6hVpIkSckz1EqSJCl5hlpJkiQlz1ArSZKk5BlqJUmSlDxDrSRJkpJnqJUkSVLyDLWSJElKnqFWkiRJyTPUSpIkKXmGWkmSJCXPUCtJkqTkGWolSZKUPEOtJEmSkmeolSRJUvIMtZIkSUqeoVaSJEnJM9RKkiQpeYZaSZIkJc9QK0mSpOQZaiVJkpQ8Q60kSZKSZ6iVJElS8gy1kiRJSp6hVpIkSckz1EqSJCl5taILkCRJGn5xNrAXsD2wBVAFIrCk63UfcAOEFYWVqGHVI9ReMY/skJfM6rXw5V8XXUXvlqyi+t3LYNvNiq4k312PworVUK8XXUm+Wx6EBx+nVuZj3N5R7nNw2SqqP7sKrrm76Ery3fYgPL6USln34d3z4YmlVMtaH0BHJ3zlIghFF9KLJ5ZS+cmV2bEuoxv/CSGU9xxcsRrWdBDKWN+djxRdQX/F3YA3Ay8HtuvHCnWIdwC/BL4PoZ/fafwx8KJ+FtUOLCML0rcDNwB/gDC/n+sD8SPAh5oaj4RwY//7yO33W8Crmhp3gvDk0PodLnEO8GeyP0iabQVhVfeGHqH2oSdCfUyNxghVN2iVQMs199BRdB29qVap3f0v6o8tLt++A1i2mlrLUrjmHjqLriXPgsVU1nZQKfUxrpT7HKw3qM17hPqCkp6Djy+l1tmAsu7DBUsIbe3UylofZL8Hry1xfQFq9y+kvrytnOfgUyuo1qqEsh7jNR2EQDnPwceXhSqlHrIYdwK+DBzDwP7uqwJ7dr0+BfEPwEcgzNvAehOBqQPYzsyu/+4PvA3ohHgR8Ml+bAtgbM72huPT9gk5/Zbk7+ZYA84FNu3lDT3q7LFDTjw8Vj9wXG4iLtS0E4gXfJiWouvozY7voOOLb6Jlz+3Kt+8AXnEaHLQrvPfYcu7DC66GM35HR5mP8dTXl/sc3OXddHzm9bQc+OxynoMnngE7zKT+iVeXcx9efjt86Pt0lvkYTzuB+PMP0lItabTY4710fOJVtBzxnHKeg+86G8a30vnFN5XzGC9YDPueSr2M5+CbvxY5789FV9GbeApwGtA6xI4qZKH4KIhnA6dAGKnPN2tkV5OPhvhhCF8boe2k7APAPgNZwTG1kiQpQbEKfBs4qZc3NICbgL8AC4AngdXA5l2vnYGjyL8C+i7gI8DKARS0pJf2VmB8L8vGAmdADBDOGMC2NnJxZ+BTA13LUCtJklJ0NvmBdjnwReBbGx4bGmvA84B3Aq9kaB+9T4fQy11JcRJwAPAm4NX0HMpxOsRrIFw/hO1vJGIF+C5Z4AdYSzYWeYNXbUv6IZYkSVJv4geAk3MW/B7YAcJn+nezU+iEcAWEVwNzgUuHtcx/b2cFhD9BeB3Z1eHmGRcqwGdHZtvJeTfZHxrrfAG4sz8rGmolSVJC4u7kB8AfAC+FsGhw/YZbyALnx4ARnCsoXAacmLPgCIjbjNx2UxC3Bz7XreFu4DP9XdtQK0mSUvIVet4U9nfgpOzK61CECOHzwNEwkrMFhV8B1+YseOHIbbPsYgDOIZuRAbIx0W+D0N7fHgy1kiQpEfEg4IimxpXAicM7U0H4E4Q1w9dfrrwZifcY4W2W2VuBw7t9/W0IVw2kA0OtJElKxTty2s6GcP+oVzJ0/8hp621O1o1cnEU2Lds6jwEfHWgvhlpJkpSA2Aq8tLmR7CPrFC3PaZs86lWUwznAlG5fvxPC0oF2YqiVJEkpeD7/Hm+5zrUQ7imimGEwJadtwEEuffGNZGOY17kQwqAeFm2olSRJKdgvp+2aUa9i+Dwnp60f05BtTOJMshv/1lkKvGewvRlqJUlSCubktCX6sIIYgONzFtw02pUU7OvAtG5ffwjCY4PtzFArSZJSMCOnLe9mqxScRM+ZDiJweQG1FCS+Cnh5t4YrgO8MpUdDrSRJSsG0nLYEx6DG15NdoWx2EYQFo11NMeKmwJndGtaQzUnby2OG+6c2pJokSZJGx/SctmWjXsWAxcnAbLIxwW8mu+GtWQfw8dGsqmBnsP6V9/8H4d6hdmqolSRJKZiY07Zq1KvoXSMbQTBgEXgLhHnDXE9JxWOB13VruB344nD07PADSZKUgrx5XfOCbkqWAW+E8IOiCxkdcQrwrW4NdeCtEDqGo3dDrSRJSsHinLZNRr2K4bGCLNztAeFHRRczir4MzOr29ZkQhm0GC4cfSJKkFOSF2qnAI6NdSC8e6KV9WddrMXAHcCNwBYQVo1VYOcQjycYUr/MQ8Inh3IKhVpIkpeDxnLbdgdtGu5Be7DDUu/cHaDgyXEtO2wh8D3ES8G0gdGv8Twgrh3MrhlpJkpSC24DXNLU9F/hxAbWMtrzwNxzjifP6GNag2eUwYJtuX98EdEI8op/rz8ppOwzi6u4NhlpJkpSCa3PanjfqVRQjbz7e4Qi1k5u+XgNhzTD02yw0fT0XuHSIfV7U3OCNYpIkKQV/p+e8tHMh5j0+d2OTF2qfNQz9bt/09ZJh6LMwhlpJkpSA0AFckLPgHaNdSQHuzmnbfWhdxqlkD4XY0HaS4fADSZKUim8BJze1nQTxGxDuLKKgUfIPsqu1U7q1HQaxAqExyD5fkNN29SD72pCHyG4UG6xDgZ2a2r5H9iS2pxlqJUlSIsKNEH8DHNetcSzwfYgHDNck/hBfA/wGwuoNvnVUhAbEq4GjuzXOBg4B/jLITl+X0/a3Qfa1AeE24O2DXz+eR89Q+1/Nsyc4/ECSJKXkffS8Q38ucD7EcUPrOtYg/h/wU6A6tL6G3bk5badlV2sHKu7L+n8YADwMXDbwvsrDUCtJkhISHgTen7PgOOCPELcdXL/xCOAa4MODrWyE/Rp4sKltX7Jg2zy7QB/i1mTToDVnwDMgdA6lwKIZaiVJUmLCOcBXcxY8H7gb4ukQd9xwP3ESxOMhXk42xdQ+w1rmsAp1sqvUzQ9HOBX4JcSd+14/ViCeQBbcm/fNHcDZw1NncRxTK0mSUvR+oA58oKm9lSz8vQ/ig8AVwL+AJ4E1wIyu167AQcCY0Sp46MJvIH6FnleqXwocC/FG4EqyRwc/RbYvNgX2ILsxLO8hBiuBV0FoG7GyR4mhVpIkJShE4FSItwFfByblvGm7rtdALAM+A5Q15H2Y7Gptc5ivAvt1vfprCfAyCElP5bWOww8kSVLCwg+BnclupFo7hI5WAN8AdoLwpSFMlTXCQieEU4HXkl2RHYxI9kSuvSBcMWylFcwrtZIkKXHhMeBkiP8DnED2cfw+bDjnLCN7/O75wM+bp4jqw/3ATYMsdpiEn0G8EHg98AZgf2D8BlZ6hGyGg69CuGOECxxOD9Fzf/f4o8NQK0mSNhJhPnBa9orjgTlkww9mAOPIxuAu7nrdB9w1uCuyIW/2hQKEDuC87BVbgL2ArYFpwFSyK9frvt/bITxcTJ1DFT4FfGpD7zLUSpKkjVBoA67rej0DhA7g+q7XM5JjaiVJkpQ8Q60kSZKSZ6iVJElS8gy1kiRJSl6AuN7j1sa3nhrHtny5qHp6taqdMKG1x6PhSqOzTqhUiJUBPH15NLW1E1pq0FIt5z7sqENHnTB+TDnrA1i9ljCuxPXVGwQCsVrSc3DlGhhTI4yplXMfdtRhbWe5f8+0dxJaS7r/IPsZrgSoVspZ4+oOqIbynoMxQj0SaiXcf6vavxfaO97UvWkehDkFlSPl6jH7wadfR/jAcUWU0rdpJxCf+hEl/ecadnwHHed/mJY9B/rcklHyitPgoF3hvceWcx9ecDWc8Ts6rvocLUXX0pupry/3ObjLu+n47rtpOfDZRVeS78Qz+P/t3D2PTGEcxuH7zBKJSCQqJYnSS6VX+AYKjYJaoxCdT2BXodMICo2G3lsktpBIFisRCrLxEut1WbKyuzkqicgsuvP847rKqe7knGfym5yZyY6tWT15MBNDbxnn+oPkxIWs3Jtq919hthxKP38x3USjz9h2H8vy6SNZv39Pm+fk6Nlk44asnDrc5jV+9SHZezyrL8+1d0aOnEnO3xh6BfxZo2+NAADw70QtAADliVoAAMoTtQAAlCdqAQAoT9QCAFCeqAUAoDxRCwBAeaIWAIDyRC0AAOWJWgAAyhO1AACUJ2oBAChP1AIAUJ6oBQCgPFELAEB5ohYAgPJELQAA5YlaAADKE7UAAJQnagEAKE/UAgBQnqgFAKA8UQsAQHmiFgCA8kQtAADliVoAAMoTtQAAlCdqAQAoT9QCAFCeqAUAoDxRCwBAeaIWAIDyRC0AAOWJWgAAyhO1AACUt+73F27N7kvfd0Ns+aOl5WTyytAr1vbxaze6eLPPtftDLxnvyatkeTVZWR16yXgPnicv3nWjySv90FPW9L3xe/D9l2506Xaf6cdDLxnv0Vzy5mPXtXqNn75O3nxq+x5cWk6mriaj9t6ikyRvF7rR5Tt9Zp4NvWS8mWfJuol2r/Hnb8niUptnZHZu59AT4K+6pG/v9AAALZtNul1Dj4BfjZJMJwsPu25R3AIAa+oy3ycrd5PMDL0FfvfzIdam5NN0stmnLgBgDc+vJtsPJGn0y2z8z37+UGwx2bw46BIAoHHb5iNoadQPRp5HFXtIQ7AAAAAASUVORK5CYII=" } }, "cell_type": "markdown", - "id": "c518f863", + "id": "7460b0af", "metadata": {}, "source": [ "
\n", - "\n", + "\n", "
" ] }, { "cell_type": "markdown", - "id": "102d6fa2", + "id": "3ebddda1", "metadata": {}, "source": [ - "## What is the work per process at iteration k?\n", - "To evaluate the efficiency of both partitioning schemes, consider how much work the processors do in the following example. \n", - "In any iteration k, which part of the matrix is updated in the inner loops? \n", + "### Load imbalance\n", "\n", - "### Block-wise partition" - ] - }, - { - "attachments": { - "fig-asp-data-updated.png": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtcAAAJNCAYAAAD6c1l4AAAACXBIWXMAAB7CAAAewgFu0HU+AAAAGXRFWHRTb2Z0d2FyZQB3d3cuaW5rc2NhcGUub3Jnm+48GgAAIABJREFUeJzs3XeYJFXVx/Hv6ZnZvLC7LGFZwrLkDIpECRJEEMVXl/waEQyor6IoBhAFEwZEBUFUVEREEQwgIkEyIkGQKJkl7i5h8+ykPu8ft4btrqmeTtVTNTO/z/P0A32n6tbZ6urqU7du3Wvujohkx8w6gXHR2053n5BlPKOFmc0GHi8pusvdd8ggjo2B24GpJcW3APu6+4qhjkdkuDCz04AvlhQd5+5nZxVP3pjZGGBtYDxQBJYBL7p7bw3rfhU4KVb8Pnf/ZeqBjkDtWQdQjZl9B5g8yCLdhANmafT/c4GHgYf1wyQieWZmqwB/pDyxvhk4sNL5y8zWAy6NFX/C3W9tTZTSKmb2e2CDkqJL3f3rWcUjw5uZjQPeARwI7AasD7TFFltuZr90948OVpe7n2xmHcCJJcXnmNmD7n5HmnGPRLlProF3A2s0sF7RzO4B/kQ4Yd2fbljpMrMdgXeWFN3g7ldmFY+Mbmb2JmD/kqK/uvuNWcUzgp0DbFHy/r/A2919ySDrjANeHytbtdLCZjaZ8ta9+e7+vXoDlXJmtivw9pKia9396jqr2YLyz//OpgOTUcfMJgL/BxwPrFZl8QnAZrXU6+6fN7OZhDwMwrnnEjPbxt0XNRrvaDAckutGFYDXRa+vmNkVwCnunteT13bA52JlSq4lK7tSfjy+BCi5TpGZHQIcUVK0kJBYv5rypiZR/lk+CCi5bt7rKd+vXUC9ybVIU8xsF+DXwOwWbeJYYBNgp+j9eoTzx9Et2t6IMByT6yVAaX+hVRh42yPJW4EDzOx04GR372lFcCIi1ZjZNOCsWPHH3P2RLOIRkeHHzOYQEuuxsT8VgbuAfwILCF1n1wVmAXvWsw13X2FmRwL3sLKL7gfM7HfuflXj0Y9swzG5PsDdbyktMDMDpgBrARsRWhTeDOxIeeJdIPQf2tbM5rj78qEJWUSkzMnA6iXvL3H3C2tc91lgv1jZv1OJSobaB4GJJe+fyyoQGV7MbF/gN0BHSXEn4aL92+4+v8J6HcDG9WzL3Z8ws+OB80qKv2dm29bycORoNByT6wE8DHnyavR6CPgLcIqZbQR8BvgA5QfgAcAfzexAHRgiMpTMbBOg9GGi5cAna10/ahS4Ju24ZOi5+21ZxyDDj5mtxcDE+ingIHd/YLB1o7v2Dzaw2Z8RuoLsHL3fgtBlRKOzJChkHUAruftj7v5h4A2EpLvUfsC3hj4qERnlTqT8R/EMd1eLpYjU6kzK73w9A+xaLbFuRtSI+ZlY8YlRS7jEjIiW62rc/V4z2w34O1A6ju0nzez37v7PWusys3ZC36X1CE/ljgH6CK1P8whDAC5NLfgmmNkkwjBPMwl9pdoIsb4CPA086e592UWYPTPbENgSWIewb54HbnP3l1KqfzPCFf46QA/h7sp/CMdJMYX6OwjH4rrAdMJ3uo8wNOWL0XY6m91OmsysDdieMEzUmoSL/JeBJwhjTTd9NynqKrY94UGcGYTv5wLg3+7+ZLP1NxHX2sCRJUULgdMzCicVZrYusA3hx34K4RhfQPgepf1wZt2ic3bpd6SD8B1Zxspz9rLsImyemW0AbEX4DCYT9v+zwL9aNSRttM2tCfvVCeeb29z9hVZsTwIz2wk4pKSoB5gzFPvd3W8xs8uBg6KidYHDgQtave3hZlQk1wDu/qqZHUzom9g/tF8B+C5hPMiKoocG9iK0gG9HSKgHW/4e4DLgR+7+yiDLTQRuiN5Oj/35vVGfqkqucvfS4bUws9WA90dxvoHy8VOTdJrZ1YQvxh98CGYUMrNbWbn/utx90H0fW/cA4NSSot+6+3cGWf47hM+t37HufneUkB4NHEMYTSau18yuAk5w9/gdj1ribAc+RLj1v0WFxZ43s4uBHzRQ/3sIx+wbCD+og7UcFM3sLuD3wI8Hu/Azs3UIYy5DSEhL/Z+ZHT7Idgb9LKL6NyIMCXcQA4/3fovM7BLgNHd/arD6KmxjInAC4XuwXoVlHiE8BPS3eutPwbGUP3z0C3dfXG8lZnYl5S1Xu7l7V2yZnxCO7/jxMdvMBhs1abm771Fl++OA44D3EBLrJH1m9k/gW+7+l8HqK6n357H65pQeB9Ht8P8Bdif8sI8jjGRzm7t/tWS5w4E9CN+RbRn8O+Jm9m/C2OFnufvCQeKbysoRQeJDxB5jZm8dZDuXu/spsfpOBOaUFH2x1ofEoglCjiN0e9yqwmLLomPlVHf/Ty31RnX/kdAg0G9vd18cndveTzi/xYeDhLAvrwc+l/exkM3sy8DbSoqcEPd1GYVUq88AVvL+Z+7+ryHc/pmsTK4BPoGS64HcPdcvQsuCl7x2a7K+98fqc2CXKus8kLBOLa+XCT8OlepdpcF6HfhNQn07N1HfLcDaQ/B5dpZsc3md6/5vLOYzqyx/WWz5PQkPuj5W4z7pBP63zhg3A+6rY7/3EJ7srnmfAPMb/IyfB/YbpN4Nmzh+Kn4WhDsmpxMmeaq1vi7gA3Xu+zcRWutq3UY8njuH4Ph/pGR7fcBGDdbzXCz28QnLXN/gZ7mkyrb3I9z5qqfOPwOTavh33RJbb7OofE3Cg1qVjqG7Y/U83uC/fT5w8CDxrd5gvQ6cn1DfWbFljqjx89+B2s9jThhh6/tAW431x+ueBuwTO36rfX8PG4Lv02mx7X60xvW+HFuvSJjdsaXxpvDvnRb7DvQC6wxxDEbos126/zbOet/k7TWi+1xXcAHhB7jUUS3a1jTgt2Z2aIvqT9OuwI1R6/dI9XlCa+WGNS4/Dji/SmvUa8zs9cBNVG5FStJOeStEK80A/lLljkiqopbkywityfHWw2eBewnPQ8QnJBgD/MzMPlHjdt5BGBd+Zh3hDWlfQTPbgfKn9G9298eGMoZmmdn7gSsYeFdgEeFzvIeB51cILYRXm1l8yLBatnkoYXKdj9L6z2x1wiQZB7d4Ow2LJni6juTzmBO6QMW1ESYZ+X0jnwHwVUK3ylpHmRgD/NLMtm5gWy1lZp8DTikpcsIwmPGhMfPorZR/B25y96TvW8t4yLDjU6AfNpQxDAejpltIP3fvNbPfUt4x/8AaV19OaFm5mdA6+QRh3O0xhOmL1yXManckITGDcFI7y8yudfeXY/V1sfKhym2Bt5T87XZCy1Ml91aJ9RngH8C/CC3v86LtTSIk/VsRLip2LllnwyieD1ape7gqnXGwmzDiwnWEZKBA+PcfSuhH2K8d+KmZbeqD3L6Pxi3+IwO7O9xIeKr7fkL/2tUIx8mmhBNlUreUWi2J6r8lqv9pQl/rsYTjcQPCsX0IK0/IY4HzzGxLHzgU5UJWHo+7EG6r9+s/liqpNPX2eZTfel1I6Ir1S3d/pr8w6oe9I6HbSOnFzLfN7FYfZPInM9sCuJDy7hZO+DwuJbTCLSFcXMwgdO16O2HYzqH05tj7mrpKNOEiwji3kwjdB/q9RHjyv5LupEIz2x/4KeUPwl9K+Dxv95LnN6K+5R8kTLIyISremXB81TwyCmGyigPqWD5uGeF83X/Oforyc/b6rDxn93dXaydM83y9D5yFbjkrvyOvB0ovVPt/Gyq5q+F/RcTM1ifs88klxYuB7xC6fj3q7n1mtgrhTt3/EVqc+/0P8E3gU3VuuvT46SV0jbmG8DvTRvguHUZ5w8JY4NuU/65lysw+Sfj393NCi/WPq6zXRjhWWqnTq/eb3jH2vuwcEnUV2pxwkTiVcNH7KvCgp/tcwZ8p349vJtxFkH5ZN53XcAsi1W4hUZ1vYeBtrOmDLP8V4GBgbI31b0N4oKS0/o9XWefY2PLfbODftTHwNWCbOtb5Umy73cCUFn6eWXYLccKP7enA6hXWKRASvPh6p1XZ1sWx5Tup4bYoIdErvc1XS7eQ/h+sjhr3266EpLs0vsOrrBPfB59p4LM+OlbHf4ENq6xjhGStdL2rBlm+jdBaWrr8i9XOE9F25sTWa2m3EEKLb+n2NmmirqrdQkqWnRFb9oEGtrcW5d2ReoH317DeTtF3rn+9HmD9QZaPdwspfT1F+AHfi3AhvD4hmTsIOCpWz9cIF3W1nrNfR3jQu3R7x1ZZ5+Ox5b/SwH6tq1sIA7v6PEyVbgGEu0al6xSBfaqsk9TlpAv4ETCjwjptwI9j6/QN9nmn8J2quVsI8BHKu+AVgQ/XuJ3VBjku03pdU0McN8fW2ZfQkPceQkNRZ4W6+wh3VT9AjV2Daojl0ZL6O2v9ro2WV+YB1PABtiK5Xjfh4Ns95bg/GKv/r1WWbzq5biLWW2PbPqSF28oyub6FGvuGJfxIPFvppES4mIqftN82FPukjm18Pvbv+VWV5ZtKrgmtVs+XrL+QKol1ybrtlCfMRWDzCsseFotzGbBVjduZHVu3Zck1IZl/tWRbzzVZ31An199p9HgAPh1b91uDLJuUXM8DPgy0t+rzibZ9XGy7f6yy/JAm14SW6NJllwKzatzOj2Lr3lBl+XhyfRewZQ3biX/vHXh3Cz+zmpJrQlIZP0d/qI7tZJ5cExp+lsTW+TL1PWfihHNrTefIKvGcF6t30GfXRttrNPa5hnAwxodBWzPlbfwx9r7ayB1Z+lPs/awsghgCX3D3R2tc9mSgdAirmYQRCpLEn96+0GscHWEIxY/HWS3e3pGUjzjyNXd/vJYVPQzF98OSImPgjIT9Toi9P83d7685yqGzBmGYun7VunXlhpmtShhZp9/9wBl1VHEu5f2A491jBnMV4U7cOd76Cb/yfh78WOz9d732EXW+QOg+0m8PM9u2jm3v7zWMoexhxJrLY8WVRpMZEmZ2FCER7D9HO6HF+tzsomrIaoQuXqVOob7nTCB0Qb3JzAYdEagG8XPYpk3WN6KMuj7XAO7uZraM8n5rkyst3+A2XjKzblb241t9sOUz9nzsfZ5jHRLuvsDMrqF8yKEdifWDj/rivT22+vdaG11D4n35Wv0Zv6vk/7sZvI9vkn/E3u9CbNhCM1uP8uHAOgl3HPJodux9zcOi5cC+hJGN+v3E6xgf392XmtkdhJZXgK3NbJLXNh/AJ919Xh2xNmOovyM1i84zpc+MOAMfKqvIwzB6lxBacPsdSO0XefWMyR9PwjN7SN7MDgF+wcrnBPq7gpxXcaVkiyifI6MVllT5+yoVyouELh9/JdxheJ7QhWcyoTvX6wife+kzJlOAP0XP3sR//2sVP4fluQFxyI3K5DoN0VjJmxEmIFmT8CDbaoQWqumsnKygX2azGEVjs25N+HKtHr36453OwAc1NONScDPlyXVSS8/rgFVL3j/h7v9uaVQJohEAtoheaxA+2/7Puv+4LNWyz9jMCpSPHf8fH2S89wqeJvxo9P8orpuwzF6x99f6IGMUZyz+HXskkygaE2/hil/41OIpVibXbcDaDPE+iB72Kj1n95//+s/Z8SQwT+fBrSlvAHrK3Z+os47rKE+ud206qmTxiYNSbbiqVTTiy4WszHP6u4L8tN66orsmTT+Q2qSk5Po84BteeWKse4GrzOy7hLtNHy352xRCg8WcpBVrEP/+zmqwnhFpVCbX0Y//xFhx/KnwpPVmEEaTOJQwOUGeTr5lzGwXQn/Ud9D6p5xHqv/G3iclePHWjMEm50hVNHLAYYTjcVvy833eiPIuEOtHkxXVy0v+f1rC3zPb9w2IJxhVzzc5Ep8s5Edm1lNnHfFbxlObiKdmZjaTlefsHcjPd6Re8eE972ugjnhLY6uGyYtf4A7VUKMrNxgmHLuYlb/RRcIDqvXeQcuTeHLdR7hY8KSFS7l7N3BcNIrM/5b86X/MbIY3Nrtj/HOu1LI+Kg3XE02z1oYB/c2fq7SwmY0nDCn1OVYOsZdL0XTbP6R8iChpTHwK9KSTR3zovadaE8pK0Qnyy4QHqvJ4gRdvAVyd5o/H+MUwZLDvm1D3xXyOxPfznolL1SfedzRVZjaB0M/4M5QP0ThcxS8uG+kqE18n6YI1DbV092kZM9sH+AMrP/cicIy7/zy7qFIRf+agu5bEOuZThKFZ+/dNgTA849n1BuPuK8ysq6SuCYMtP9qM1uQ6PiV1kYH9xAAws0mE8Tx3qlDXAsKQNM8Qhqp6mTCk08vA+VSZKj1NZrYXod/V+IQ/9xFmLZtLeKDzJUKcLxFaRWqarGOUiY8DnZQQxH+g6p7Kuh5mNh24gcrTqr9AGH/9acKx2X8sLgeG6selVT/acfEkvqX7vknxi/Jq/SvzZKg+z1REU6RfQ+j+kWQeYTSM/nN2/3fkFeDXZNDSWoN4S38jCWz8mJtsZh3uXu9diDx7I2Go1fhvYNLEOsNNvKV4rJlZPQl29CzY9ZT336/nwda4/nkVQMl1mdGaXO8de39P0sM1ZmbAJQxMrO8jXOld4SUTYSSsX3ffrkaZ2eaEp91LTyp9hIkFzgdurfQAkZkd2foIh6VaEqL4d6jeloSamVk74eIpnlj/i/Ag31WVbu9FF4lDlVzHk5NbCS3tzViRUDaczl/xiVmSLoCHi3fS/MVBS55LiLr8XcLAxPrfhO/IlT7IjHZm9utWxJWCeKtlWwN1xNcpUt+DisPBEQllBeBXZrbI3a9spNKov36rZ+2c7+43DPL3eF/2AqHBp97v4kOUJ9fNjJRWeh7raqKeEWc4/TilIjr5Hh4rjg9T1u8gyg9CgG8AJw/BsFD1+hrl3RbmESYxGezLmrW8DwW5aux9vJsIDGwtbeXt7vcQ+vr3KwInAt9p4PZgK8VnIu1192tasJ1414qkriN5EW85G079E1+hfOSM/9Q6rGIG3kn5w7QQJgE7tZ4RTnIojYcE48fc4mG+TwZzA+GOS3+/8g7CtPZvdvdbGqhvMvC7tIKr4FpC3JX0j5Nf2ngxhfqT6/j5uaHnH6JBHUpbq9OcAXLYy3ty0wpHUv6AXy+VhzQ6JPb+Qnf/whAl1jW3TJjZRMqnjIYwY1meE2sIt7Xy2Ge432ax90l3KeIJXr1jjtYjfjz+wN2/PUSJdT3nivhFyKwU4yg1lPu+WfG7Rlkm1/W2ei6IvZ+VUhytEP+O/MzdTxmiJLKR1uRapfGdij/YHv9cR4orgQMIs9g+VVI+AbjczDIdd7tR7t5J6O5XKv6gay3i3TfiF261ip/DMu1rnzejKrk2szUJU0eXutjd51ZYJd4X6Q/pR1VRPQ9Obk553+5X3f3alONJS/xHLs8tePHuQDcnLBMfUaRSX+g0DJfj8XHKT9jrmVkrJhiIDwXVyn3frHhXhKSRZ4ZKvQ/4xYcgqzShTx5k+R1p5YOTd8febxt1W6zH9rH3WQ8t1wqXA+9w985o/OY3E/rV95tCGJpuw0yia94dsfe7NFDHOrH3LzYYy3qx9xW7yI5Goya5jkZYuIwwqHq/pYRpoSuJP8jTyluh8T6l9ZyohzLOZsW7UeTyYanoeHlbrDjpTkC87+j20UOHrTAsjkd3LzJwX32w6YgGiu/7fRtIOIZKfEzioWw9a+bcAgPHtT4qGkEpj+LfkXrHgq5Hs/u1Zu7+GOWjfUxj4Pjj1cQnu7q1qaDy6cpo2DkAohl5D6T8d2ct4O9mtnatlbr7y+5uLX7VMqLSVbH3h0RdXesRH988qdGoFvEL2UpjbY9KoyK5jlrNbmLgVd7nBnsgkYH9JGueaSp6+KyeH/p40lnzF5+BfZ3qnRFrKLtmzI+9j4+hO5j4RCit9FnKb5/dkNTPNLrrUVreBry31o3UeZw0fDxS/6g18S4X9RyPMLB/4nFmtnGddbwmGlot7jbKE5y1CbeDazWUx/2zhBkk+w1lcr2E8gdtV4se0KrVtZT301yHgdPO16zCZ5mW+Hek5ov3BrqoNXPObsSlsffH1bpiNERrafLWy8Dp3kckd7+LMNxc6QN3swkt2Lls3BnEpZSfRzZjYFeoiszsTUBpq30fAxP2WsWT60cbrGdEGtHJtZmtbWY/JMxSFP8xO9/dq43tGG/1eGeN292c0CpQz630+IG5R9R6Wov4FeMGZva6aitZcDRhXOyhEp/o48PVWhvNbJKZncHALj0tYWZvISTXpQbb9gWx95+PJniptp3+46TWFq9Gj8fXEy4u6/FY7P3+dSYfv6O828Z44Ip6WosgdOUys4son1kOAHdfBPw5Vny6mVV92MvM9iD0zRwSUWt+6bG/qZkNybTQ0TMipeeIMQx8UHuw9ZcSZncr9WUziz8YPigzazOzDwFX1LNeneLfkXfVspKZbQ3cTn0NIvFz9t4tvnD4IeUXSYeYWfzu2gDRhdS5lPcJv3SQ7pAjjrtfBxxFebfErQh9sPP8IHQZd3+VMJ17qbNr6eZiZuOAM2PF57t7o33vS1vA+8j3JF5Dz91z/SLcCvOS124Jy4wjPPG6JeHW1xcIyURvbN3+1y+Bthq2/YnYer3A+wdZfj3CCbA7YZuLqmyrQHgqv3Sdn1WKE5gae//v2LoPARsNsq19gX9W2D9ntPDzPCRhe98C2hOWXQ04PuEY6H+dWWVbl8WWv5YwUsz4CsuPI3QT6oqt92fABtnOTEIXo9J1HgF2qrD8JoQfu6TjZPkg2zk1tmwnoX9hpeU3JgzD2Jewnceq7LvJCfvh9KT9QEhIpiaUH5Cw7XnRZzDo949wMfxjQkukAx+rsNxuhFFTSrdxM7BhheXfEB0X8XUcuLNVx3207a/HtvfeJup6LlZX4jFdsvyvY8s/DEyvsOy0CsfDQ7E6ioQf6zWqbHs1wrTLj1Xbz8AtsW1sVud++Wxs/W7Cw92Vlp8FnAP0JBwP86tsq4OVdwX6X2cDhTr261mx9Y+oss2fx5ZfDrxzkOWnEc5f8XU2r7Kdx2LrDIh9kHX3jq17SSu+T9G2Tott66NVlj824bv/N2BMq2Jswb95BgNzhaeBNwyyzpqE7l2l6ywE1mkwhrVj+/HurPdL3l4W7ajcMrN5pNcdoBv4IvBdr+EfHo0N/BgDx4F8gDC28FxCwr0G4Ud7Jyq3fCx29/jQbvHtfR/4v1jxvYSxjecThnnbENgd+Je7H1my7mHAb2Pr9hC+UA8THloYT3hifD/CF7SS77v7pwaLtVFR6+fjDHygay6hn+48wpBqmxD6FA7WWvoDd4/vr9JtXUaY/j1uCaFLwYvRq4PwI7sPAx+wfBbY3t2ThuEr3dZnCRcJcXcTHhxaSOjrtz2DP+Hd6e6JrV/RA7mPMnAYrruj1zOEE92ahFaF+ANMpR53940G+TtmdiFhdJ1StwNXE0YvmEKY6nxP4LKkz8LMTiQMXxk3N6rnbkKXgw7CMbkx4SGk9WPLf9zdf1Qhzl8wsCtOH+GuwH2EriMzCN3CZiXVEbnL3eNTqqfGzPYD/l5SdJm713T3IaGu5yjvhjDBw2gClZbfl7C/S80jXGg8QdhfGwLbAVslnavMbBPC5z8l9qcVhElbbiZMYrSCcE6cSThX7Ux5q2nF/Wxmt1DeIra5uz9c6d+VsP4Uwjk7flfgPsLDYHMJ/9Y1CefrHah8zl7g7oP+9pjZOcCHYsV3ExK2+YTzyUaE/XCDu78/tv5ZhAuPfke6+0WDbG8yoSEl3lJ5HeH8/xChm+CawJuA91M+jCLAcV7lrq2ZPRbbxmru/spg65SsuzehIaPfH9x9Ti3r1svMTiP8pver5d/2RUJSXup3hH0/LIYmNLN3EWIu7X1QJIzx/mfCd9oJ38F9gHdTPkxsL3CQuzfUJSS6A3VOSdH33P3TjdQ1YmWd3Vd7UbnVsp5XH3ARVa7WK2z/zSS3agz26iJMld5ZUjZoy3W0rTWA52vcxm9i6xqhe0K9++ZRwi3f0rKWtVyX7NOklsPBXrcRJiIpLau35bqRfTO7xn9TO+HEVk/9RULiuaKkrGLLdbSdwxvYd8sI00CXlg3ach1tazbhoqCWbVT8LAjTtMdbwet9JbZcR/WvQkic6qmvM9r3pWWtbrlup/x81kmF1uMa6qq35doI4/nXsm+WDFLPVoSL9WY+y5a1XEd1vI3Kdy0rvVYQ7pKVfrcGbbmOtrU2IYmuZRvnJ6xfV8t1tM4GhDtj9e73IvClGvfhiGy5LlnvzIT9cw6D3KHM2ws4huS7n9Vey4BDm9z2jbE6E+/SjubXSO5z7YQWw5OBLdz9CHd/qO5K3P9O6LdX69TK/wB2cPdvRTHUs635hFvpT9WzXrSuA0cDtc4K2UVILrZj4PA+LRXt0/cwcNa6JIsJE6XsTvOjY/yJ2gbcLxJuv+7i7jWNNuChX+uRrLxtW80jwAHu/vkal+/fzm8JrbQVWylj/kJ48OScagsmbOsJwvjpjQ7V1F/PDwndN/5ebdkE9xFapioOqebuiwlj2tZa/22EVuzzGoinYdEx8vuSonG0ZhSVpG074TvXVH9nd7+fcJfuO9Q/ecWrhK5uLbkr1s/d/wIcRu3j7l5NuDv1vQa29TzhnD1kw5C5+5OEab5/R+3njhcILbPxFtvR6lPAhbGyDxEmYxsW3P08woVMPQ8S3kn4XWt4Qhwz25bwe9zvScKdfCkxHGZovIDBZ6NaRkjSFhFamOcSDrZHvcJ03/Vy9z+b2ZaE/riHMPA223zCU7y/cffSB8d+zspuDUnTNydt695oW0cTujRsT+hP3ke4Ff8s4bbjZQnrdgPHmNnvCX0P490qioRuJhdFsT4Hr90C/EnJcrfVEmsz3P3XZnY7IXE6iIG3cR8gtASf5dEDF2b2aCzOeoeSOgN4HzAn2uZ2hNtm7YQk/ilCF5zfuPt9ddbdv/+PNrPfAB8jJHylD7X2ELq+/Bb4lbv3ROU/Y+Xn1EMV7n6Bmd1K2HfvYOAMW88R9t2F7n4HgJmNpXzf1fQQi7vfEo2282HCPtuGMHNlL+F4fJpwPMZHMojXcyfhocjtCE/u70E4tuPdD14lXBTfAvze3R+oMc6XowdRDyckrHtS3hVhOeFW/QXAn9zdoyETS/fJUDzgdS6hG0B/V4SPmNl3vP6JqX5Nefc3HWvYAAAgAElEQVSMquu7++LoAbgDCd+DXQhdldoI58/nCRczt1epZwlwgpl9jbC/9yR05ZhJ+T7vAe4n/KD/BbjKS4ZJq+BP0Tr9Flb7d1WI8Q9mdgfhO/JOID485ousPGeXztj3E1Z+NjVdPLj7XWa2BeG4O5hwXpnCynP2M4RjOukC8RbKf4fjDxJX2uZ84LDoQe8PEC6C4w8L9xLOkX8CflLn7+FvKf+dq2dq6+co/17Fx+hO0x2xbdV6viia2fsJn03piCGrmdnmjTTEZcHdb46OvSMIF5R7MnCW4IWEblu/Bv4cXWg3Iz5KzTkp1Dni5L7Pdd5EY0quT0gGe4EX3H3e4Gs1vc32Bn58+/uMr0cYUm458JS7x4eqypyZtRH6YK9GaJF93t0b+lGN1Rvvc72XJ8xa2ej+rWH7Ywk/eNMISeMLPki/2Aa30Ua4TTyFkMw8740//V3rNlPbX1Ef/NUICc2r7l7TRWgN9U4gHFOTCBe/82pI7IaEmf2V8iEDP+zu52YYT5qf5xTCBdNCD6O5ZC46Z88ifA97Cd+R+JCgaW+zJeeUKtucTuhaOJ5w8Tw/re+TDA/R+XRNwsWks/I4SOv7PZvQr79/KM/FwHp5+a7niZJrGbFqTa5FhpKZ7U7os9jvRWDjtO60iYi0QjQsaukQnF939y9WWn40G8l9rkVEcifqOlbarWst4KSMwhERqcrM9iR0Pek3n+QRsgQl1yIiWfgs5f1YP21mb8wqGBGRSqIJ7X5B+bCVJ0UPk0sCJdciIkPM3R8DTikpagN+OQynYxaRke/HlM8RcD21j0w2Kim5FhHJxumUT0s/G7gsmq5aRCRz0URgpZOJLQM+6O7FjEIaFpRci4hkIPpxei9hhsp+ewBnm1mlWQNFRIZENPNz6djfDhzt7s3OOTHiKbkWEclINCHIoZSPU300cF40hJyIyJAzszmEsbFLz0Onu/vFGYU0rGgoPhmxzGxDyifaeCSaAEMkV6KJeuKTP9yXl7G5RWR0iSanGR8rvsfd+7KIZ7hRci0iIiIikhLddhQRERERSYmSaxERERGRlCi5FhERERFJiZJrEREREZGUKLkWEREREUmJkmsRERERkZQouRYRERERSYmSaxERERGRlCi5FhERERFJiZJrEREREZGUKLkWEREREUmJkmsRERERkZQouRYRERERSYmSaxERERGRlCi5FhERERFJiZJrEREREZGUKLkWEREREUmJkmsRERERkZQouRYZwcxsHzO7uuR1QNYxiYiIjGTtWQcgIi01A9i35P3FWQUiIiIyGqjlWkREREQkJUquRURERERSouRaRERERCQlSq5FRERERFKi5FpEREREJCVKrkVEREREUqLkWkREREQkJUquRWQAM9vXzDrNzEteX8o6LhERkbxTci0iZcxsN+AyYFxJ8UnuflpGIYmIiAwbmqFRRF5jZrsAVwKTSoq/5O5fyygkERGRYUXJtYgAYGbbA1cAk0uKv+juX88oJBERkWFH3UJEBDPbFrgGmFpSrMRaRESkTmq5FhnlzGxT4CpgWknxF9z9GxmFJCIiMmwpuRYZxcxsY+AfwJolxZ93929mFJKIiMiwpm4hIqOUmW1ISKxnlBQrsRYREWmCWq5FRiEzWxe4GpgZFTnwKXc/M7uoREREhj+1XIuMMmY2k9BivUFUpMRaREQkJUquRUaXtYDrgA1Lyh4GzskmHBERkZFFybXI6PJlYJNY2ebAb8ysLYN4RERERhQl1yKjS/9zFg8BXSXl7wTONTMb+pBERERGDiXXIqPPHcDuwKFAb0n50cD3M4lIRERkhFByLTK6XA/s7e4vu/ufgeMIDzT2+4SZnZhJZCIiIiOAkmuR0eVCd1/a/8bdfwKcFFvm62Z27NCGJSIiMjIouRYZ5dz9a8D3SooM+LGZHZZRSCIiIsOWkmsRAfgM8IuS9wXgAjM7IJtwREREhicl1yKCuztwLPDXkuIO4BIze2M2UYmIiAw/Sq5FBAB37wHmADeXFE8ALjez7bKJSkREZHhRci0ir3H3TuAg4N6S4lWBK8xsg+S1REREpJ+SaxEp4+6LgAOBp0qK1wauNrMZmQQlIiIyTFjoaikiI5GZrQ/sWFJ0p7s/WeO6s4A3xIofdfd70olORERk5FFyLSIiIiKSEnULERERERFJiZJrEREREZGUKLkWEREREUmJkmsRERERkZQouRYRERERSYmSaxERERGRlCi5FhERERFJSXvWAfQz4zLg4KzjEBERkdz6rTtHZh2EyGBykVyb2ViYPw1Wt6xjERERkbx6YbrZ2h3u3pN1JCKVZD5Doxl/geUzsO7X4VOUXIuIiEgFrzhMuBPGzXVnTtbRiCTJQ3I9H1g90yBERERkOJnrzvpZByGSJBfdQkrN2AjW3TzrKAa6+29f8e33P8nM8vkM6P3Xn9m37pYHtq26+sZZh5Loqfsuo1AYU1xvy7fmcgcuW/gcT/z74uLWbzo+l/EB3H3Vqb7tPp+ztvYxWYeS6P4bf9S3zqb7tE1ZM4dfYGDug1dQ7O3tm7XNwW1Zx5JkxbKX+O8/f+7b7vPZ3N7B+/ffT/Ot9zre2sdMyDqURA/cdHbfjI12b5s2Y+usQ0n07H//TvfyxX2zt5+Ty2Owr7eLe6893V+3/0m5Owafvh/mPZl1FCK1yV1yvcb6sM3eWUcx0L3XnsnWb/oihUI+c6/H7vpZcfb2W7bN3CSfyfWSV66mfczE4jZ75zO5fumZF3nukZ/6Nnsfn3UoFf3nHz/wrfb8lHWMzWdy/fg9v+ibtc2stvW2zGdy3bn0evq6lxe32TufyfWiBa/w5L3n+jZ75ze5vu/6H/mWe3zUxk7IZ3L95H9+VVx/qzXbNtg2n8l1T9fNLFv4bN82e+czue7p6uaBm37o2+ydv+R62SIl1zJ85DLREREREREZjpRci4iIiIikRMm1iIiIiEhKlFyLiIiIiKREybWIiIiISEqUXIuIiIiIpETJtYiIiIhISpRci4iIiIikRMm1iIiIiEhKlFyLiIiIiKREybWIiIiISEqUXIuIiIiIpETJtYiIiIhISpRci4iIiIikRMm1iIiIiEhKlFyLiIiIiKREybWIiIiISEqUXIuIiIiIpETJtYiIiIhISpRci4iIiIikRMm1iIiIiEhKlFyLiIiIiKREybWIiIiISEqUXIuIiIiIpETJtYiIiIhISpRci4iIiIikRMm1iIiIiEhKlFyLiIiIiKREybWIiIiISEqUXIuIiIiIpETJtYiIiIhISpRci4iIiIikRMm1iIiIiEhKlFyLiIiIiKREybWIiIiISEqUXIuIiIiIpMTcPdsAjPnA6v3v2zrOpL3jq9kGlaCvd4W1tY/LXVz9in09ZlbACm25jLG3p9PMCrS1j81lfMViH8XeTmsfMymX8QH09XZZXvcfQLGvOzoG23MZY2/PCjOz3B6DFPvo6em0jrH5PQaLxR4rFNodLOtQEhV7u41CgUJOj8G+3hUAOf4tcYp9PVZoG5O7+Hq7v2F9vceWFs11Z/2s4hEZTO6S6233gTcclGFAFVzwxWl+1KnzrVBozzqURJd+e5uenQ7+XsfMTfbNOpREt1zyUdrHTOzd6e3fzuUOfOmZu7j+wnf3zTnxwbasY6nk1yetXjzsS08WOsZOyjqURJd9b4fu1+9/ypj1tszhFxi4/c8n0Ne9vGfXOWd1ZB1LkkULHuFv5x5QPOxLj+f2juKFJ69VnHPig4WxE6ZlHUqiP31/555t3nRCxwbbvivrUBLddeXJLFv4bPceR/x8TNaxJOnpWsLFp21Y/N9T5+fuGLztMnjgxrIiJdeSW7n7AomIiIiIDFdKrkVEREREUqLkWkREREQkJbns/yoiIiIynJkxE9gBmA2sCUwBeoFFwELgceBe4Al3cvcQqYAZ44DxJUWL3emrtp6SaxEREZEUmLEpcDTwTmDDGldbZMbfgMuAK91ZXMN2fgccUmUxJyTxy4ElwCPAg8ANwHXudNcYH2acAJweK97UnUdqraNCvV8AvhYrnu3Ok83Um6JTgc+UvN8CeKjaSuoWIiIiItIEMzY244+ExOsEak+sAVYFDgN+C7xgxtlmbJJGWMBUYCawGfB24ETgSmCeGd8yY2oK2xnJ9mxkJSXXIiIiIg0ww8z4JHAfcDDNDwI/AfgI8JAZ5zYb3yCmAJ8FHjUjn2P4ZsyMw4E3NLKuuoWIiIiI1MmMduA84H0VFukDbgNuBuYBCwj9d9cizO+xIyF5S5pfoQDslG7EiVYDrjTjGHd+MQTbyz0zxgIfBb7RaB1KrkVERETqYIZRObFeBHwLOMedV6vUMw3YH/gEsHMTIS10H9jFI7oAmAZsQEjm5wB7xBZrB84143537mwihmHHjA2BbQkXGWsC2wB7R+8bpuRaREREpD7Hk5xY/x040p2Xa6nEnVeAi4CLzHgL8FUa7IpQof5eYH70uh34oRn7ARdSMjs2MAb4tRlbReuMFu8DvpR2pepzLSIiIlIjM7Zg4AgXABcAB9WaWMe58zdgF+AkaF2C687VwO7AstifNgXe0artjiZKrkVERERqdzowNlZ2K/ABd3qaqdidPndOI4xS8VgzdVXZzn9JvkB4e6u2mVMrgFcrvJY2WqmSaxEREZEamLE98NZY8WLgqDS7U7hzqztz0qqvggtgwOQ127d4m7niztfcmZb0Ao5qtF4l1yIiIiK1+XBC2TnuPDXUgTTLnWcJfbFLrZNFLCONkmsRERGRKsxoI8y8WKoX+FEG4aRlQez9uEyiGGGUXIuIiIhUtyMwPVZ2jTvPZBFMSibF3r+USRQjjJJrERERkeqSJnW5acijSIkZkxnYDeSFLGIZaZRci4iIiFS3bULZzUMeRXreysD5Tm7MIpCRRsm1iIiISHXrJ5Q9MORRpCCa4jtp8pTLhzqWkUjJtYiIiEh1a8XeO7Awi0CaYUYBOAfYMvanO4Ebhj6ikUfJtYiIiEh142PvF7vTl0kkDTJjI+BvDJy6vQh8zn3AuNfSgHhfGxEREREZaEzs/fJMokhWMGN26XtgVWAyMA3YBtgV2IfkhtWvuHNdy6McJZRci4iIiFS3IvZ+1UyiSLYK8HgD6zlhOvdT0w1ndFNyLSIiIlJdvKV6ghnj3Ack3cPFq8BH3Lk460BGGvW5FhEREanu+YSy+KQyw8EC4GRggzoS66Hsiz3s+32r5VpERESkurkJZa8Dnh3qQBL0AffEyroIrdMLo/8+RBjH+oEGHlxM6l/eUW+QCZLy0Dz1ZW+IkmsRERGR6u5NKNsL+PMQx5FkiTs7tLD+xQll8dFTGjExoWzYDW8Yp24hIiIiItXdnlC275BHkY2k5HpyCvXGHwrtdKc7hXozpeRaREREpLq7gBdjZVubsVcGsQy1+QllG6RQ70ax9/H9OywpuRYRERGpwp0icEnCn74w1LFk4D4YMGHO1s1UGM0UGa/jrmbqzAsl1yIiIiK1OZuBo1nsZ8a70t6QGTPSrrNR7iwDHowVH2yGNVHtzsAasbI7m6gvN5Rci4iIiNTAnYdIbr3+aWyGxIaZYWZ8Hrg8jfpSdEvs/QbAO5qo7xMJZTc3UV9uKLkWERERqd2JwLJY2RTgOjO2aqZiM9YgJNVfB9qaqasFLkgo+44Zq9VbkRn7AYfGip8Cbm0grtxRci0iIiJSI3eeAD6V8Kf1gVvMeJ9ZfYmxGatGrdWPAAemEGbq3LkVuD5WPBu43IyptdZjxi7AH2BAl5JvNzD+di4puRYRERGpgzvnAWck/GkV4HzgP2Z8yKzyiBpmTDXj7WacDzxDaK2OD02XNx8jTE5TamfgYTOOMWNKpRXN2MCMMwgT2cSH8bsL+EmqkWZIk8iIiIiI1O/ThETzxIS/bQGcA2DGs4TkeQEwFpgBrA6syTBr5HTnATOOBX5BecvzGoTk+Gwz7gCeJvx7xxH+rZtFryTzgEPd6W1V3JWYcTxwXIU/T0gou8qMngrLH+oeRjtRci0iIiJSp6gLw+fNuJuQSE+rsOg60asetwDfaCK8lnHnV1GC+VMGJqDtwC7Rqxb3A++MutpkYSrU9SDquoP8bVz//wyrKyYRERGRPHHn98DGwLeBRU1UtYjQ+ruTO29054o04msFdy4CdiV08WhEN/BjYGd3Hk0tsJww92z7jpsxn3DLAIBxk84vTljljPhA5Zlb+srcjonT1utpZkDHVlq26Ln2MeOmFjvGTihmHUuSzsXz26xQsHGTpg/5bZ9a9PZ0sWLp/I5JU9etdLsnc0tffaZj4qoze6yQz2viZQufbR83Ybq3jRmXu+8vwLKFz7e1d4yzsROn5fIY7OvpojPnx+CyV59tn7Dq2r25PQYXPd8+Zuwq3jFuUi6PwRVLX2pzL9r4yWvk8hj0orN80bMdE3N4DC5fdGLbimVHlh54c91ZP7OAKjBjInAQsEf02pKBD+716wPuAW4CbgCucqezxu0cT+jr3G+ZO+9vNO5mmLE78EFgL2C9QRbtI0xGcxXwQ3eea310gzPjcOCdKVV3kjv/hRwm17O3f4pNd34sw4iSXfeLQ33v9/7WsHz+qNx6yXF9m+1yTNu0mdtlHUqiB276IW3t44qb7XJMLnfg4gWPcu91p/vuh52X1+sn/vGrI3yPI863to5x1RfOwK2XfLRv4x3f17b6ejtmHUqiB2/6Ie4Ut9zj47k8Bpe9Opc7rzzJ9zzyl7k9Bq+/4Ch/46HnWvvYSVmHkuifl32yuMG2cwprzn5j1qEkevSOX7Fi6YK+rd/06bwNsQZAX08nN170AX/Tey7K3TH44M2b8vR9ZXfkc5lcx0XJ9prAatGrA+gEngOecB/wcOCwZsZ6wCxCF5lpQA/wSvS6350l2UU3dHLX53rytFnM3GRW1mEMZDBj470pFHK3ywBo6xhbnDZzu7aZm+ybdSiJnvrPpbSPmVicucm+uUxsxo6fSnvH+OLMTfbN5Y8eAIbP2Ggv68hpYtM+bpW+aTO2ye0x+OzDV9HXvbwvr8fgogWP0NY+zmdusm/uEpvXmPlaG+5hYydU6lqarfaxk/qmzti6kNdj8MXHb6RQaO/L63mmp2sJmOXyGJz7QNYRNCaa2fCJ6DXiuTMXmJt1HFnL5Y+MiIiIiMhwpORaRERERCQlSq5FRERERFKi5FpEREREJCVKrkVEREREUqLkWkREREQkJUquRURERERSouRaRERERCQlSq5FRERERFKi5FpEREREJCVKrkVEREREUqLkWkREREQkJUquRURERERSouRaRERERCQlSq5FRERERFKi5FpEREREJCVKrkVEREREUqLkWkREREQkJUquRURERERSouRaRERERCQlSq5FRERERFKi5FpEREREJCVKrkVEREREUqLkWkREREQkJUquRURERERSouRaRERERCQlSq5FRERERFKi5FpEREREJCVKrkVEREREUqLkWkREREQkJUquRURERERSouRaRERERCQlSq5FRERERFKi5FpEREREJCVKrkVEREREUqLkWkREREQkJUquRURERERS0p51AHHPP3YD/7r8yqzDGKCvewV3XvEFsHxejyxf9ELbgzefxXOPXJN1KIlefOImDGv7V6Et61ASdS58juWLny/86/ITsw6lot7u5XbXlSdRaB+bdSiJVix+of3RO37Ji0/enHUoiZ5/5Fow2vL6GXctfYmu5a9YXuMD6OtdYf++6qsUOsZlHUqipa883fbff/6UBc/ckXUoiV549Dq6li9sz+tnXOztptjblctjcN6TbwN2yzoMkZrkLrme/uLTxS0XXduXdRxxTxaLHVvc/Y8eyzqQCuZ1dbVv+OSDxTWfeTZ3+w6gc/m8tjYr2JZ3XduTdSxJXulbbgu6u9vzGh/A073Fjs3vubGnPacXeM8vW9K+3mP3Ftd++qlcHoNLlj/T1m4F23JpPj/jV3s7eb5rRUeej8G53T0dm9x7Q+9Ya/esY0myYMXy9lnPPFpc98WXcnkM9q14rm1FsSe358FeLzK3pyeXx+CKzu3bXtLddhkmcpdc7zFxduGE6W/N3Rfor0se8K+sfkBHW04Tm7s75/a8d8pOHbtNmJ3LAL8876+ML7T3nrj6mzuyjiXJ/Ste4LGu+X2nrvHWXMYHcNWSB4snrb5/x4TCmKxDSfSfFc91HzVlhzF7T9wkl8fgN1+6mhV9PT2nrHFgLj/jp7pf5sHnni/m+Ri8esnDxS9Mf3P7lLbxWYeSaM7cF3sOX/X1HW+ZtHkuj8EzXv4H83oWd5+6xltz+SVeVuzm2qUP5/IYPHX+LB7pyjoKkdrk8gQkIiIiIjIcKbkWEREREUmJkmsRERERkZQouRYRERERSYmSaxERERGRlCi5FhERERFJiZJrEREREZGUKLkWEREREUmJkmsRERERkZQouRYRERERSYmSaxERERGRlCi5FhERERFJiZJrEREREZGUKLkWEREREUmJkmsRERERkZQouRYRERERSYmSaxERERGRlCi5FhERERFJiZJrEREREZGUKLkWEREREUmJkmsRERERkZQouRYRERERSYmSaxERERGRlCi5FhERERFJiZJrEREREZGUKLkWEREREUmJkmsRERERkZQouRYRERERSYmSaxERERGRlCi5FhERERFJiZJrEREREZGUKLkWEREREUmJkmsRERERkZQouRYRERERSYmSaxERERGRlCi5FhERERFJiZJrEREREZGUtGcdQFyX97GouCLrMAZwYHFxBQXL5/VIEWdZsSuX+w6gy3uwIrmNb6l3UaSY2/ggHINLil30UMw6lERFitZZ7MntPuwq9tCd0/MLwBLvoojnNj4Ax1lSXIGZZR1Kol6KLM/zebDYRxe9ltf4OovdQD7P0130Zh2CSM3M3bMNwJgPrN7/fkLh+z6pcHK2QSVYXFxRWKUwLp9ZDbC82F3osDbvsLbc7TuApcUuM7CJhbG53Ie9XrQlxRU2tW1CLuMDWFLsKkwqjHHDcvkZLy92F9qtzcfk9Bhc1Ndp7VbI7THYRx+L+7oKeT4GlxW7CxMKHbk9BpcVuwod1uZjrD2v8ZmDTcrpMei4LSt25zK+JcVvW2fxQ6VXdXPdWT+zgEQGkbuW63dP2cFOmH587ppFXv/46X7TBp8stOW05fqtT/+45wur79+x24TZudt3AF+e91fGF9p7T1z9zbk75gDuX/ECn37x0r6rZh3XlnUslez4+LeL1876eGFCYUwuP+OD5/6k+/9W22vM3hM3yWV833zpalb09fScsuaBHVnHkuSp7pf5wHMXFq/b4BP5PMkAOz/+3eKV63+0MKVtfC4/4zlzf9bzwWm7drxl0ua5jO+Ml//BvJ7F3d9c6+AxWceSZFmxmzc9eWbx1tnH5+4YPHX+dvxyYdZRiNQmd18gEREREZHhSsm1iIiIiEhKlFyLiIiIiKREybWIiIiISEpy+XCZiIiIyHBmRgewJbABsAYwBegDFgGvAk8AD7jTlVmQ8hoz2oHNgG2AtQmf1xhgObAQeBj4pztVH61Vci0iIiKSAjOmAEcA7wJ2BcZXWaXXjAeBvwKXAXe4U3UoSTN+BBxQQ0gLgU5gMfAo8ABwgzv/rWHd0u0dA5wYK97XnSfrqSeh3o8An4kV7+nOs83UW8f2NwfeBrwF2AUYV2UVN+NW4Gzg9+70JC2k5FpERESkCWZMBU4GjgEm1rFqO6GldBtC8jrXjLOAn1RpIV0DmF1nmK8l42Y8AJwF/LRSghgzJWF7aQxrOrVF9Q7KjG0I//431rsqsFv0+rQZ73HngfhC6nMtIiIi0iAzDgYeAT5JfYl1kvWAbwHPmHFKk3UNZktC6+t9Zmzdwu3k1euoP7FOquN2M3aN/0Et1yIiIiINMOPLMGgS/AxwCzAPWEDodjCDMDP1G6L/TzIJeEeVutOwKXCLGYe4c1WLtzUcdAN3AA8C84GlwGrAFsAehM+l1ETgCjO2d+ep/kIl1yIiIiJ1MuOrwEkJf+oFfg6c5c5/BlnfCN1BDgA+Qmi1btRiYPukzQDTgVmEZP5/GNgNYzLwezNe585jTcQwXK0g9Hf/JaE/+oqkhcxYFfg08HnK8+cpwHeAOf0F6hYiIiIiUgcz/pfkxPpeYGt3PjRYYg3gjrtzrzvfBDYmJNhzGwyp6M4TCa/H3bndnYvd+QywCXAs4SHHUpOBX0cJ/2jRDXwPWMedI925qlJiDeDOIndOBg4HirE/v8uMDfrfKLkWERERqZEZ6wI/SvjTNcAe7jxcb53udLtzDqH7wc+aDHGw7fS5cx6wHwx4kHEnYP9WbTtn7gS2cufT7rxcz4ru/AH4dcKfDur/HyXXIiIiIrX7GrBqrOwh4GB3FjdTsTvL3PkgcBhhPOyWcOcW4IyEP72zVdvME3fud+fRJqpIugB67cFQJdciIiIiNTBjY+CoWHEXcIQ7y9Pajju/I7Qut1JSgrhDi7c5UiR1+Vmr/3+UXIuIiIjU5kMMzJ3Od+fetDfkTnfadcbqfwQGdIlYv5XbHEGSLqQKA/5HRERERJJFD/sdFit24MwMwknLvNj7CZlEMfxMTyh7tf9/lFyLiIiIVLcdsE6s7MZGHmDMkfh0368mLiVxScMevnYcKLkWERERqW6XhLIbhjyKlJgxHpgZK34xi1iGoQMTym7r/x8l1yIiIiLVbZdQdsuQR5GevYGxsbLbkhaUlaLJZI6MFc8Dbux/o+RaREREpLpZCWWpP8g4FMwoAF9I+NMVQx3LMPRFwqyMpX7qTm//GyXXIiIiItWtnVD2ypBHkY6vALvGyv4L/D2DWIYNM94MHB8rfpkw/flr2hERERGRauIjaSxxHzDLYa6ZsQphyu+jE/78pdLWVylnxizgN0BbSbEDx7qzsHRZJdciIiIi1cX7Jy/NJIpkZsbUhM+wYzMAACAASURBVPIpwFTC7IG7AUcAkxKWO9edS1oY37BmxkTgUmC12J9+6M6l8eWVXIuIiIhUF5/UZXImUSRblca7qFwMfDzFWEaUaFSVPzFw+L3bgROS1lGfaxEREZHq4rPyTTJjTCaRpKMX+Bxh6vZh1b1lqJgxFvgDsE/sTw8CB1WaRVPJtYiIiEh1SWNATxvyKJrXA5wPbOrO6e54DevUssyIYkYHoVX/gNifHgP2deelSuuqW4iIiIhIdXMTyrYhHxOvFIGnEso7CbMuLiS0tt4E3OJe90yMKxLK2hLK6pVUR2cK9TYlSqwvBA6O/WkuIbF+YbD1lVyLiIiIVHdfQtle5GP4usXubNjK+hPKxqdQ78SEskynYI8eXvw9A1usnwD2c+fpanUouRYRERGp7l8JZXsPeRTZWJRQljTqSL3iD4V2udOVQr0NMWM6YSKdHWN/ugs4wJ0FtdSjPtciIiIi1d3OwFbVHc0GjCIxEr2cULZ+CvXOjr2vKXltBTPWJ3SbiSfW1wN715pYg5JrERERkaqiETX+FCs24PMZhDPU7mPgQ41bpFDvVrH3/06hzrqZsRVwC7BZ7E9/IrRYJ3WLqUjJtYiIiEhtfpxQ9i4z9kh7Q9EwcLngziLg0Vjx25qp04xtgXVixXc2U2eDcewH3AzMjP3p58Ac98SHOQel5FpERESkBu78C7gmVlwAfmPG6mltx4zDE7aTtdti77c0Y68m6vtwDdtoKTOOAf5KmISnnwNfdOfoRqeDV3ItIiIiUrsTYEDSNRO40oy1m6nYjHFmnA1cRL5mgIQQU9wZ0QyGdTFjO+DoWPE84B+NBNbA9gtmnA78hPLBPVYQJtX5ejP1K7kWERERqZE79wBfTfjT64Hbzdiz3jrNGGPGRwhdLz7SZIit8ncG9oneDrgoGhe6JmZsSGgtjq/zg0ZbiusRXQz8joFTl88nPLh4cbPb0FB8IiIiIvX5GuFhvENj5esA15txFXAGcKN78qQoZlhUx/8AHyCd0Tdaxh034xPADZQ3zh4M3GPGJ4Fr3SkmrR8ltccSLkxWif35MeDM9KNOtAPwrljZPOAoYJ7ZgBFM6vWckmsRERGROrhTNOPdQB9wRMIi+0evTjPuBJ4hDDM3DlgLWJ0wMsWwmj7dnZvNOIlwcVFqC0LL9nwzriHMZDifMNHMdMK/dS+SJ55ZChzuzrJWxV2DNUmvj/uOSq5FRERE6uROtxlHEbpKnAqJo3uMB3ZvoPqngbOaCK9l3Pm6GU74N8enL18DOLKO6l4ADnHnrrTiywNzjw9bOMQBGPNh5RO2kwtnFldpOyXxlkKWlhRXtE8ujGt5X6BGLS2uaBtnY7zdCrnbdwDLit1t7RhjCx19WceSpNeLtsK72ybl+zNun1gY2xvuJObPkr6utomFDi/k9Bhc1NdZGGcdNrbQns9jkD6W9/W0r9KW42Owb0X7pLaxfWDZ/nBUsLSvq21cod3brS2Xx2BnsbsAZuNzeh6E/s84f8fgor5vFZYWjy3tijDXPT/dKMzYBDiN0N2g0efZisC1wM+APwzW/9iM3wGHlBQtdGdqg9ttiBlvAc4GNmiwir8BH3DnhfSiqs6M3YEbW7iJ/LVcHzB5i8LRU4/K3YOWhz7zM//pzCPbCzlNbI57/uLeY6bt1r7duHVyt+8AznrlRsbS3vfBabvm7pgDeKx7AacvuKb4k5lH5DI+gMOfOd/PWfvw9rGWzxA/9vzFve+ZunP7juPXz+UxeM4rN9Prxb6PrbZHLnfgs70L+dKLlxd/PvOoXMYHcOQzv/AfzDikbVIhN8PvlvnkC3/oO2TV7dt2mzA7l8fgrxb+i5d6l/YeP33vXH7GXd7Le5+9wPN4DP74lU34Y13TeAwtdx4BDjVjFnA4obX6jQzsWxz3EmGM5RuBS9x5psZNPgFlrb1L6go4Be78LbqoOAL4ILATya33pV4Brga+684dLQ6xkqXQ0pbyZe1mtm9JwavunmnT/NS28Ww4ZnqWIVRgzO5YjTbL5TmbNiv4Wu2r5HTfwWQbx/hCu+c1vs5iD+1WyG18AAY+q2OaTSiMyTqURGMKHcU12yfn9hhcrX0iK/p6ihuOmR6/jZkLbRgd/9/enYfJVdX5H39/u6s7IQlbBGQPi4KAuCAioKAoDoK4gDCjI6CM+wKiiOsM4zC/URBERERlwHFGR0dcQARcEB1UBNkEZE0IYQlLAknI1km6uuv8/rgVp1N9O13dfbvvbXi/nqefpM6tOvfbVbe7P3Xr3HOio7LPH0AQaVbXzNikc8Qzb02IKVFrbFHbsLOqz+EmnRuwplFvVLW+lY1eAtLO3ZtV7izSxh3VPOZapcQDwOnA6RF0AruSjed9FtnY4xrZdG+PkM0MMjelQSsftrOfTxVV81g0z65/B/hO84LFfYAdyMaSzwTqZIF6EXA7cNdovt8ipcSfyS5qHDc1sncQa10DY5oQXJIk6RkvJfqBu5pfT3vNWVGuaX49o1XzNKwkSZI0CRmuJUmSpIIYriVJkqSCGK4lSZKkghiuJUmSpIIYriVJkqSCGK4lSZKkgox6FaaIeCvwogFNdeCslNLSMVclSZIkTUKjCtcRcTxwIf935rsfOMZgLUmSpGeyEYfriDiOdYN1Hfi7lNIlRRYmSZIkTTYjGnMdEUcBF2GwliRJkgZpO1xHxBHA9/i/s929wN8arCVJkqRMW+E6Ig4Bvg90NZt6yc5YXzpehUmSJEmTzbBjriPiYOBSYEqzae0Z65+OZ2GSJEnSZLPeM9cR8QqyYD212WSwliRJkoYw5JnriNgPuBKY3mzqBY5OKV02EYVJkiRJk03umeuIeDFwBbBhs8lgLUmSJA1j0JnrZrC+Gth0QPNRKaWfTVhVkiRJ0iTUeuZ6e+BXrBusAd4cETExJUmSJEmTU+uZ6x2HuN8/ACuBE8e3HEmSJGnyGmq2kMuA9wBpQNsJEfGp8S9JkiRJmpzyZgv5HvCOlFJfRGwGfGHAts9HxOKU0gUTU54kSZI0ebSeub4VODal1AeQUjodOHvA9gDOj4ijJ6g+SZIkadJoDddLU0qNlraPA98acLsT+O+IOHRcK5MkSZImmfWu0AiQUkrAe4FLBjR3AT9qruAoSZIkiTbCNUBKqR94O/D7Ac3TgMsj4kXjUZgkSZI02bQVrgFSSquAN5CNy15rY+CKiBhqCj9JkiTpGaPtcA2QUloKvB6YN6B5a+CqiNiyyMIkSZKkyWZE4RogpfQo8FpgwYDmnYFfRUTryo6SJEnSM0YNuHnA7dntPCilNDciXg98nXUD+j9HxEebF0FKkiRJzyi1lNLeo3lgSulmYJ+C65EkSZImrREPC5EkSZKUz3AtSZIkFcRwLUmSJBXEcC1JkiQVxHAtSZIkFSTKnjUvgoXA5mtv79h9IbtMObvEivL9ZsXsdND050ZElF1KrmtX3p927t4stuzaqOxSct2+6hEiSHtO3aaST+CS/h5uX/1oeuX051SyPoDfrpiTDpi+c9Simu+Jb+h5MO3U/azYrDaj7FJy3bH6MTqJtNvULSv5Gq/oX8OfV89PB0zfuZL1AVy7cm7aZ4Mdoqujs+xScl23cl5j265NOrbrruaSC3evfpyeRj29ZNp2lXyN+1ODP/bMq+QxeM+az/Bg7zEDmx5KiVll1SOtT63sAlrt+KxFHLLd3WWXMcgNtxJ/s/s9lT3VP/tuePk2j/CcjR4pu5RcKx+Erg44ZLtlZZeSa34PPDwXDtmtesfeWjfdRrz2effSXdGD8K474SXb9vC8jcuuJN/SB6Az4JBZS8ouJddjPXDvfdU+Bm+5HV79vNlMq2a2Zu49xMue/Th7bvp42aXkewSW9MIhO1bzNV7TgD//hajiMdjz4GIeXDD8/aQqqFy4fulmcNIeZVcx2L/eRjpxN6JW0WDzH3Poe/Msug7euuxK8s1ZBtNq9J+0R/WOOYCbF8GV82mctAcVjQ3w+dtpfPB5dMzoKruSfN+dS/3w7eg+fLuyK8n3SA/09NN30h5U8hmcsxR+/CDppD2o3FnDtc74C+n9uxIzp5RdSb4fzKPvsG3pessOZVeSb/EamN9D/aQ96C67ljzL63D2HTRO2qN655EeWAG/N1xrkqjcD5AkSZI0WRmuJUmSpIIYriVJkqSCGK4lSZKkghiuJUmSpIIYriVJkqSCGK4lSZKkghiuJUmSpIIYriVJkqSCGK4lSZKkghiuJUmSpIIYriVJkqSCGK4lSZKkghiuJUmSpIIYriVJkqSCGK4lSZKkghiuJUmSpIIYriVJkqSCGK4lSZKkghiuJUmSpIIYriVJkqSCGK4lSZKkghiuJUmSpIIYriVJkqSCGK4lSZKkghiuJUmSpIIYriVJkqSCGK4lSZKkghiuJUmSpIIYriVJkqSCGK4lSZKkghiuJUmSpIIYriVJkqSCGK4lSZKkghiuJUmSpIIYriVJkqSCGK4lSZKkgtTKLqDVAyvg14+WXcVgff1w9WPQGWVXkm9ZnbjhibKrGNoDK2BKEFV8bQHuXQrLe6t57K1Vb8BvH4cNOsuuJN+KOh23LYapFa1v7jLoT3RU9TWe3wOr+6p9DPYluOZx2LCr7EryPbWGuOlJ2Li77EryzVkGC1ZV9xhc1Q/9qZq/px9aWXYFUvsipVRuAcFCYPO1t5+9wRcb2077ZKPEknLds5TarhvTV9FszbwV1DabSmPDGpV77gAeXklnR8A20+gvu5Y8K/uIh1bSudvG9JVdy1BmL6P2nA3p7wjK/aEdwv0r6NxsCmmjrmoeg/NW0FkL2G56NY/Bnn54YDm13Tep7jF433JqO86gv7Oix+C8FdQ27SZt0l3N1/ixVXTWG7B9RY/BRiLmLqfzuRtV7xh8eOW5HQtXnzDw0/aHUmJWaQVJ61G5M9fvfE7q+MLe1Ruu8qzvka4/nFqtcpVlXngp9S/tQ9fBW1fvuQP40HUwrUbfmS+t3jEHcPMiOPZ39N/4xmrWB7DF92lccxidMyp61nDvy+j93IvpPny7ah6Dp9wIPf3Uv7YvlXwG5yyFQ6+iUeVjcKv/ofHr19E5c0rZleTb73LqH38+XW/ZoZrP4am3wPweer/1Cip5bn15HZ7zo2oegyf9KXHuXWVXIbWnkn8EJUmSpMnIcC1JkiQVxHAtSZIkFcRwLUmSJBXEcC1JkiQVxHAtSZIkFcRwLUmSJBXEcC1JkiQVpHITxUuSJD0dRLAZsDOwDdANBPAUsBSYmxILSixPLSLoBp4P7ARs0vxaBfQA84E7U+LR4foxXEuSJBUggi7gMOAI4FWw/iXaI3gc+DNwJfDTlHi4zf38E3BgG3etAyvIAv19wJ3AdSmxuJ39DNjf0cB7W5qPT4n5I+knp9+3Af/Q0nxsSjw+ln5HsP8u4BXAocBrgD1h/av4RvAA8GPgaykxL+8+hmtJkqQxiGAKcALwUWDrETx0S7JgdyhwbgR/As4DLk6J+noetydw8CjLrUfwv8B5KXFZm4/ZIWd/00a5/4F2zOl3gwL6Xa/m63Uq8C7g2SN8+A7AycAJEXwF+Gzra+WYa0mSpFGKYD/gDuBMRhasB3UF7At8F7g/gg8UUF6eLuC1wE8j+F0E24/TfqpsJvAZRh6sB+oGTgF+EcGGAzd45lqSJGkUIngPcD5D56ke4GZgAfAk2VnZzclC3R7A1CEety3wPuDrRdab4wDg+gjelBI3jvO+JovFZEN1FgDLgA2BrYDdyT5paPVq4GvAcWsbDNeSJEkjFMGHgK+SnXFudQXZ8I5rUmLVEI+fRjYu+zDgWGCjMZSzHDiodRdkF+RNBXYFXgoc0mwbaCvgighemBKPjaGGyex+4D+AnwF/SYlG6x0iCLIgfSbw4pbNx0ZwUUpcA4ZrSZKkEYngMOArDA7WDwDvXBuy1iclesguZLwyglPJxmufyOhCdn9K3Lye7Zc3655BNl74n4DOAds3JwuXrxvFviezPwOfBq7KC9QDpUQCro7g5cAvyc76D3Q8ZK+7Y64lSZLa1Jxe7yLWDaeQBbX92wnWrVJicUr8E/Bc4Odjr3LI/axIiX8BjoJBYfKQiEGB8emqhywM750SvxwuWA/U/CTi3UBq2bTv2v8YriVJktr3zwwee/swcPBYh1WkxELg9cDHgN6x9DXMfi4F/j1n09Hjtc8qSYmlKfHtkYTqlsfPBu5qad527X8M15IkSW2I+OuFhgP1A8eMdO7ooaRESokvA39TRH/rkXex5L45bcr3RMvt/rX/MVxLkiS15z0MXmTk+ynxu6J3lBJPFd1nS/+3waB97Die+3ya2arl9py1/zFcS5IkteftOW3nTHgVxWkdxjKjlCommQh2AnZpaf7rgjyGa0mSpGFEsDuwc0vzDcPM0lF1rWfhl5VSxeRzBuvOFLOEbOpFwHAtSZLUjv1z2n4z4VUUJIIuBq8o+XgZtUwWEWwQwTfJZltZKwHHDxxz7zzXkiRJw9srp+3aCa+iOK8AprW03VRGIVUWQSfZIjxvBD4IbDdgcy/wrpT46cDHGK4lSZKGl3ex32QeEvLJnLYrJ7yKimnOY/4LsiEzG5FNu5i3TP0NwPtT4s+tGwzXkiRJw9smp23RhFdRgAhOIFsKfaCHyZZtf6brAl6ynu0XAN9Nid8PdQfDtSRJ0vCmt9xemdL4LfQyHiKoAacCn83ZfFpKrJ7gkiajvwM2i+BZwGV5C9EYriVJkobXOjSg8jNrNMcLbwHsAbwceBfrjhle6ydkS7preBsDRza/7ongQymte2Gr4VqSJGl49ZbbrWeyy7RxxKAVIjcgf6xwq/8F3pESqfCqJqcFwMzm/7uBzZtfuwKvA97A/8229zzgqgg+kBIXrO3AcC1JkjS8npbbG0bQldKg0F2GADYdxePOBU5Oib6C65m0msM8lgxoWtD897fANyJ4MXAJMKvZ3gGcH8GclPjt2gZJkiSt38KW26MNtFXwS2D/lPiIwXpkmrODvIZ132x1Auc1h+F45lqSJKkND+e07cbg0F0lT5GdhV0C3A38HrgmJe4ZYT9rcto6x1gb5J/krfxFlSkxN4KvAycPaN4d2A/4g+FakiRpeHfktB0EXDPRheR4KqVxPYu+NKdtgwL6bV3EZqh9VdFPWDdcQza94R8cFiJJkjS8vNULD5rwKsqRNzNKXjAeqQ1bbtdTGjS2varuz2nbFhxzLUmS1I5rgRUtbS+PYJcyiplgS3Lati+g3x1abj9ZQJ8TpfVYgOYsI4ZrSZKkYTQXWGldHrwT+FQJ5Uy0vCExuxbQ7+4tt28voM+JMjOnbSkYriVJktr1jZy2YyJ44YRXMoFS4klgXkvzYWPpM4JdgZ1amm8cS58TbM+ctsfBcC1JktSW5jzGN7Q0dwEXRwwaPzxqERwUwS+K6q8gf2q5/ZII9hpDf//Qxj6q7Kictj+B4VqSJGkkPg6DVjPcBfhxBBuPpeMIOiL4LHAVsOVY+hoHF7fcDuDLa+d2HokIdgJOaGl+Cvj1KGsbyb6nRfCqMfaxF3BsS/NqsvnDiZTKXe0ygoVky0oCsEHti2l67ZOVW4Kzt5+O7k4aZdcxlL4GHZ1Biqjm8qVr+olaB9EZ1XwOG4moN4gpFX6N6w06ujoqXV/UAqp6DK7sI6Z2EJ0VfQ4bKfs9M7VWzfog+z1T6yAxOFhUQm8/0dVR3WOwt5/oCKJW0WMQqvt7ZmX93FjVf0IMaHoopb+ukDfhIjgH+EjOpjuAv02Ju0fYX5Atq/0vwIuazbel9Nf/t97/YuDoAU3jPRUfEdSAO2HQBZwXAu9td/n0CDYH/pDTz+kp8ekxFzr8/rcCHiULwp9JiVtG+PgdgN8B27VsOj8lPgQVXETm/bumOG0vYvh7TqztLybddxQdnZWrLLPfz6h/YW+6XrVV9Z47gI/dANM66ft/L6neMQdw6yJ497X03/TGQibFHxc7/pDGnUfQMa2SzyAceAX1z76IrkO2qeYx+JmbYU0/9S/tQ1fZteS5bzkceTWN299c3U8Un/MjGje+gY5Np1TzNX7Nz6mfuAddb9q+mvX9223wSA/18/er5jG4sg/2vITG/UdX7xj8xI2Jr4902ZPx9QmyMbevbml/PnB7BN8Bzk4p90LAv4pgM+BNwPuBvcej0KKkRF8EHwMub9n0buA5EXw4Je4c6vHNNxBvAc4BtmnZ/BhwZpH1tuEQ4JAIbgQuAi5LiceGunMEGwHvAP4VBn1C8RTwubU3KvdnursDpleuqsy0TqhV7ldOJgKmdFb3uatF9txVtb6ptew5rGp9a21Q4dc4glTln9/uDuhL1a1vWkf2GWtV61trWq26NUbAlAofg7WAziBVtb5G87xjFevrqtjf3pTojeAIsoVEXtOyuQYcDxwfwSNki8w8RraS41SyT+u3BJ5HNltGxb67oaXEFRF8hcFn7V8F3BHBrWRDWuYDT5CNR9+cbCXLQ4Gtc7qtA8emxOLxqnsYL21+fSOC2cD1wENk9TeAZ5O98TkAmJ7z+D7gbSnxxNqGCv4ISZIkVVtKLIvgMOAMsrCZ94nJNsDfj6L7ZcAPx1DeePoY2RSEH87Z9iLIH8oyhGVkwfrqIgorwC4MHq6yPquB96S07sWnk+bdkiRJUpWkRG9KfBQ4EPhjAV3eCXwU2C4l/q2A/gqXEo2UOIHs7PxTY+jqNmCflLismMrathy4BOgdYz/3APumxHdbNxiuJUmSxiAl/pASLwf2A84jWwylnQtD+8im9vsS8LKUeH5KnJNS7nLjA60kWzVx7ddYQu6opMS3gVnAp8lfCjxPP9nFjEcAe6XEveNT3dBSYkVKHEm2VPm7yT4hyFuBMvfhZNPtvRXYMyVuy7uTw0IkSZIKkBLXk43ZJYJNycbyPptsNb9nAd1kZ04XAHOAm1PKXUZ7uP0cX1TNY9F8E3A6cHoE25Kdwd+B7PudSXZ2eHHz6y/AH1NieTnVrqs5Rvoi4KLmxZY7kg1p2RXYlOyixS6y2p8kmwnmj+2MDTdcS5IkFSwllgC/KruOiZIS84HvlV3HaDSnEbyf9s/Ar5fDQiRJkqSCGK4lSZKkghiuJUmSpIIYriVJkqSCGK4lSZKkghiuJUmSpIIYriVJkqSCGK4lSZKkghiuJUmSpIIYriVJkqSCGK4lSZKkghiuJUmSpIIYriVJkqSCGK4lSZKkghiuJUmSpIIYriVJkqSCGK4lSZKkghiuJUmSpIIYriVJkqSCGK4lSZKkghiuJUmSpIIYriVJkqSCGK4lSZKkghiuJUmSpIIYriVJkqSCGK4lSZKkghiuJUmSpIIYriVJkqSCGK4lSZKkghiuJUmSpIIYriVJkqSCGK4lSZKkgkRKqdwCgoXA5mtvbz3ji43tN/pkf4kl5bpzMV27z6QeZRcyhHuXUNtiGmnTKVTuuQN4YBmdHR2w/Yxq1reil3h4JbXdNqVedi1DuWsJXbtsRL3WWXYl+WY/RW2zqaSZU6v5Gj+0nM4GxA4b0ld2LXlW1WHeCrp2r/YxWHvuhvR11cquJN/sp6jNnErarKLH4PwVdNYTsWNFj8H+RvYc7jazevU9sPTczsdXnjDwhOBDKTGrtIKk9ajcr8h99kgdb39l9c6ov/d8+Njb6eqoaLr+9Hdo/N2BdOw5q3rPHcCFv4YNajTe/iq6yq4lz/0L4LwrSCcfU836AD7wDdJJf0/XlIpW+I//TePI/ejYa6dqHoPf+V/ordN412ur+Ro/tgQ+/6NqH4Mf+ibpw2+la8bUsivJd+r3abz+JXS8bJdqHoM/uBYWL6PxgUOr+RqvrsNJF1bzGPyPqxNX3lx2FVJ7Kheud90Gjtq/7CoGe+/5pCP3Jap61vC0i+k/YHc6Dn5h2ZXk+81fYPoUGkftX80/ejffB9++msZR+1PRVzgL1296GVHVYHP6j+nb/3l0H7532ZXk+9Ns6FlDf1WPwdmPwjk/Ix21PxV9Cw8fvoD0xn2ImTPKriTfWZfSv++udLxlv7IryXf7gzB/EX1H7U932bXkWb4KPnZRNY/B399VdgVS+yr5R0aSJEmajAzXkiRJUkEM15IkSVJBDNeSJElSQQzXkiRJUkEM15IkSVJBDNeSJElSQQzXkiRJUkEM15IkSVJBDNeSJElSQQzXkiRJUkEM15IkSVJBDNeSJElSQQzXkiRJUkEM15IkSVJBDNeSJElSQQzXkiRJUkEM15IkSVJBDNeSJElSQQzXkiRJUkEM15IkSVJBDNeSJElSQQzXkiRJUkEM15IkSVJBDNeSJElSQQzXkiRJUkEM15IkSVJBDNeSJElSQQzXkiRJUkEM15IkSVJBDNeSJElSQQzXkiRJUkEM15IkSVJBDNeSJElSQQzXkiRJUkEM15IkSVJBDNeSJElSQWplF9DqhjnwpUvLrmKwNXX48mXQEWVXkm/hU3R873dw27yyK8l30xzo6KCjiq8twENPwsKl1a0PYHUvce7lMKVyP7WZhUvpvPR6uHd+2ZXku+4eSNBZ1dd44VJYupKoan0AvX3E+VfCBt1lV5LvkUV0/PBaeGBB2ZXk+8Md8OQKalV9jdf0Qb2/msfgLXPLrmD0IqgBWwBTm01LgaUp0VdeVRpPlfsz/ciiaFx3L/1l19Gq1kHXn2ZTL7uOoQTU5j5O/7IeGmXXkmfxCjprncR191bzOVyykujrp1bV+gBqnXTdOId6Z0U/b1pTp3bPIzSeWlm9n1+AhxfR2V2r7jG4tAd6++iqan0AAV033ke9q7PsSvL1N6g9+ASNvv5qHoOPL6NzdW91j8H+7K9HJY/Bx5ZEJ5Pk0/YItgaOAF4J7A1sR07eiuAB4HbgVuAK4MaUSG3u4+3Anm3cdVXzaxFwP/CXlHiynX207O9A4LCW5rNG01dLvwcBh7Q0fzElFo+l3/ESwduAFw5oWpQSZw66X0ptWuu0VQAADAFJREFUvY7jJoKFwOZrb3/yyDM4/bhPlVhRvpnHkBb+J1Gr6B+VF5xE/ezj6Tr4hcPftwwf/CZMn0Lfme+s3hs6gJvvg2PPof+u86joKwybH0dj3gV0zJg6/H3LsPfJ9H7ubXQfvnfZleQ75dvQs4b6195HV9m15Jn9KBx6Go2536hugNjynTTuOo+OmTPKriTfvp+gfsoRdL1lv7IryXfq92H+Inq/9WEqee5/+SrY+X00Fv5X9Y7Bj1z4Fc69/MSBTQ+lxKyy6snTDKCfAA5ldG8EHgF+DHwtJWYPs6+LgaNHsQ+Au4GfAP+eEg+284AITgG+2NK863B1ttHvZ4B/a2neKSUq9zl8BEcAP2Ld1/a+lHhu630r9wMkSZI0WUSwRQQ/Aq4BXs/os9U2wInA3RFcFsEBRdXYYjfgs8C9EZwVQUVP2VRHBC8Fvkubr20lzyJKkiRVXQT7kZ0F3nI9d1sFPAk8QTbuenMGfGKfowN4A7A98KJiKs01BTgZ2D+CN6fEwnHc16QVwfbAZcC0dh9juJYkSRqh5njhnwHTczY/DFwIXAncktK610M1L3J8CdkQkkOBfcZYTg/w0Za2LmBG8+u5wEuBnXIeux9wdQT7pMSqMdbxtBLBRmTj4df35mkQw7UkSdIIRLAHcAmDg3UP8DngqymxeqjHN2cK+VPz63PNM+D/zOCL+9rVmxIXtFH3XsBpZMNXBno+cCbw4VHu/2mn+QboYrLnZkQccy1JktSmCLqB/wY2btn0JHBwSpy5vmCdJyWuS4nXkc0wMm4X86XELWRDTv41Z/MHIth1vPY9CZ3Hum92HiT7pGJYhmtJkqT2ncS607EBrARelRLXjaXjlPgd8GLgf8bSzzD7SClxKvDLlk0dwDHjtd/JJIKPA+8b0LQUOBx4vJ3HG64lSZLa0ByDmzdf8IkpcWcR+0iJpSnxNuDdRfS3HqfntB04zvusvOaUe2cMaOoD/jYl7mi3D8O1JElSe44DNm1p+01KfKvoHaXETUX32eL3ZGfcBxo0Z/MzyRBT7n0oJX41kn4M15IkSe15R07blya8igKkRD/wWEtz6zjyZ4wIZjF4yr0z27lQtJXhWpIkaRgRbEM2fd5Ac4Cfl1BOUVqXul9TShUlaw73uZx1p9z7MflDgIZluJYkSRregUC0tP0yJVIZxYxVBAFs1dLc1gV7TyfNKfd+yLpT7t0AHNs6P3m7DNeSJEnD2zun7Y8TXkVxXgBs0tJ2dxmFlOxrwN8MuP0A8MaxLKhjuJYkSRrezjlt1094FcXJWzDmygmvokTNKffeO6BpKXB4SiwYS7+Ga0mSpOFtl9M2phBWlgheCxzf0rwcuLSEckoRwZGsO+VeHTi6iCkVDdeSJEnDa51JY01K9JRSyRhE8AayZb07WzZ9OSUWlVDShGtOufcd1s3BH0yJq4rov1ZEJ5IkSU9zU1tuLymlilGIYGNgf7JVB9/I4Aszb2Xds7hPW0NMuXdGSlxY1D4M15IkScPrb7ndXUoV+WZEDDrr2gXMALYgf0jLWg8Db56MZ+FHqvkmo3XKvR8BnylyP4ZrSZKk4a1uub1JBJ3NxVjKVgMOHsXj/kA2zvhpPwVfBJ1kqy8OnHLvJuAdo51ybyiOuZYkSRpe63jkDgZPZTdZPAacBLz6mRCsm14AHD7g9gNkM4MUfsbeM9eSJEnDexjYr6VtBwaH7qqaQ3am+rfAD1MadCZ+fVpXcoTB47ZHI6+PvH2Nh28DB8bIvoudWm7PiODo1jsZriVJkoZ3b07bK4GbJ7qQHMuBg4ZoXwIsSYm+MfS/LKdtgzH0t74+lhbQbzs+V0AfW5LNvLIOw7UkSdLwbsppOwg4e6ILydGf0riG/PEK19NbbvcDKwrot1SOuZYkSRre7xk8ZOHVEWxeRjETLO9s8lYF9Ltt635SIhXQb6k8cy1JkjSMlFgSwTWsOyvHNOAjwD+WU9WEyRsS89wC+t215fZdBfQ5lIfJ5vkei2OBVwy4vRD4p9Y7Ga4lSZLacxGDp7z7UARfTWlyLoXejpR4KIKFZHNmr/VqxrDwTARbAnu0NOcNvSlESjwJXDCWPiLYm3XD9bKUBvfpsBBJkqT2/Bh4sKVtE+C7EcVlqgi2jeBLRfVXkNbg++qIQcM6RuKtDM6hN46hv8owXEuSJLUhJerAZ3M2HQycFTH26ekiOAS4BXjNWPsq2KUtt2vA50fTUQQbAZ9qae4FfjGa/qrGcC1JktS+7wE/z2n/KPCDCKaNptMIZkXw78CVUMmLJP+HwXN6HxvBB0fSSQTdZNPXPbtl0w9SYvEY6qsMw7UkSVKbmrNZvBOYm7P5aGB2BO+LoKud/iLYM4LzgdnAu6loNkuJ5cBpOZu+GsEXIwZNqzdIBLuQnZ0+pGXTqiH6npS8oFGSJGkEUmJhBK8DriJbpXGgbYBvAGdE8Bvgd8AjwAKyeZ03J7swcHfgQGDnCSq7COeRLSH+2gFtHcApwHERXAb8kuz7fQLoAjYDdgMOAw4FpuT0e3JK3DeOdU8ow7UkSdIIpcR9EewP/AA4IOcuGwNHNL9G4+7R1jZeUqLRXO77CuDlLZufDbyn+dV2l8BpKfH1gkqshEp+9CBJklR1KfEY2SqNH2XweOTRWAN8H9gnJd5WQH+FS4mlZNPwjTUQLwPeklIhy5BXiuFakiRplFKiPyXOAXYCTgRuAPpG0MUastUfTwC2Tom/T6naU9KlRG9KfBB4KXAJ0BjBw5cCXwB2SYlLxqO+sjksRJIkaYxSYhnwVbIL/GYA+wEvIxtf/SxgJlnuWgU8DswBrgduTInVI9zdCaw7ld1Iwm1hUuIm4MjmEvAHAK8EZpF9rzPJlotfDDwJ3EH2JuKGlOgpo94CfBY4fcDtet6dDNeSJEkFSokVZBc7XjVO/VdqNciUeAL4SfPraav5fT4x3P0cFiJJkiQVxHAtSZIkFcRwLUmSJBUkUkrlFhAsZMAyn1O7z2Ba96fKLSrHmjoxpYvK1bVWvZ/oCOjsqGaNq+rQGUR3rZr19TdgdZ2YPqWa9QGs6SOmVPT5g+ofgyvXQK2zus9hfwNW9RIzplazPshe41onKcouZAi9fURHB9QqegyuyS59qvzfkq7O6tXXs+Yrsbp+4sCmh1JiVln1SOtTuQsaP3I4nH4clfvdPfMY0oL/JGqdZVeS7wUnUT/7eLoOfmH1njuAD34Tpk+h78x3Vu+YA7j5Pjj2HPrvOo+KvsKw+XE05l1Ax4ypZVeSb++T6f3c2+g+fO9qHoOnfBt61lD/2vvaW5J4os1+FA49jcbcb1T3E8Ut30njrvPomDmj7Ery7fsJ6qccQddb9qvmMXjq92H+Inq/9WG6y64lz/JVsPP7aCz8r+odgx+5EM69vOwqpPZU7gdIkiRJmqwM15IkSVJBDNeSJElSQQzXkiRJUkEM15IkSVJBDNeSJElSQQzXkiRJUkEM15IkSVJBDNeSJElSQQzXkiRJUkEM15IkSVJBDNeSJElSQQzXkiRJUkEM15IkSVJBDNeSJElSQQzXkiRJUkEM15IkSVJBDNeSJElSQQzXkiRJUkEM15IkSVJBDNeSJElSQQzXkiRJUkEM15IkSVJBDNeSJElSQQzXkiRJUkEM15IkSVJBDNeSJElSQQzXkiRJUkEM15IkSVJBDNeSJElSQQzXkiRJUkEM15IkSVJBDNeSJElSQQzXkiRJUkEM15IkSVJBDNeSJElSQWplF9Dqhjn7cNalHy+7jEFW1+Hsn0JHRd+OPLE0On54beLWeWVXku/WedDVGR1nXZrKLiXX/Cdh0fKIqtYHsKqX+MrlMKVyP7WZx5+KzkuuT9wzv+xK8t14H9Tr1T0Gn1gGS1cSZ11adiVD61lDnHcFTJtSdiX5Hl0cHZfdkJi3oOxK8l13DyxdGZ1VPQbX1KGnt5rH4C1z9yq7BKltkVK5P+QRLAQ2L7UISZI0mTyUErPKLkLKU4XzsDdAz58jnqrmW3lJklQJEYsTrLkZuLnsWqShlH7mGiAipsKCX8EWB5RdiyRJqqpHfw3bvD6l1Ft2JdJQKjF6M6W0OoIlZdchSZKqbOtFBmtV3f8HIRFZZ5NgOOcAAAAASUVORK5CYII=" - } - }, - "cell_type": "markdown", - "id": "a67e0aad", - "metadata": {}, - "source": [ - "
\n", - "\n", - "
" - ] - }, - { - "cell_type": "markdown", - "id": "d9d29899", - "metadata": {}, - "source": [ - "It is clear from the code that at any given iteration `k`, the matrix is updated from row `k` to `n` and from column `k` to `m`. If we look at how that reflects the distribution of work over the processes, we can see that CPU 1 does not have any work, whereas CPU 2 does a little work and CPU 3 and 4 do a lot of work. " + "Each CPU will be on charge of updating the entries stored locally. However, this algorithm is a bit different than the previous ones. At iteration $k$ only a subset of the entries in the matrix `B` are updated, i.e. only the entries in the bottom right block `B[k:end,k:end]` are updated. This block is illustrated in a darker color in the next figure for $k=6$. " ] }, { @@ -347,34 +492,16 @@ }, { "cell_type": "markdown", - "id": "6409890d", + "id": "e341fda6", "metadata": {}, "source": [ - "### Load imbalance\n", + "In this particular example CPU 1 will not have any work to do at iteration $k=6$ and it will be waiting, while other CPUs are computing. In general, CPUs containing rows previous to row $k$ will have less work to do than CPUs containing rows after row $k$. This will worsen as the value of $k$ increases. At some point, only the last CPU will have work to do and the others will idle. \n", "\n", - "The block-wise partitioning scheme leads to load imbalance across the processes: CPUs with rows $\n", - "Question: What are the data dependencies in the block-wise partitioning?\n", + "
\n", + "Definition: *Load imbalance*: is the problem when work is not equally distributed over all processes and consequently some processes do more work than others.\n", "
\n", "\n", - " a) CPUs with rows >k need all rows <=k\n", - " b) CPUs with rows >k need part of row k\n", - " c) All CPUs need row k \n", - " d) CPUs with row k needs all rows >k \n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "e0565e92", - "metadata": {}, - "outputs": [], - "source": [ - "answer = \"x\" # replace x with a, b, c, or d \n", - "ge_dep_check(answer)" + "Having processors waiting for others is a wast of computational resources and affects negatively parallel speedups. The optimal speedup (speedup equal to the number of processors) assumes that the work is perfectly parallel and that it is evenly distributed. If there is load imbalance, the last assumption is not true anymore and the speedup will be suboptimal.\n" ] }, { @@ -382,9 +509,11 @@ "id": "51498a44", "metadata": {}, "source": [ - "### Cyclic partition\n", + "### Fixing load imbalance\n", "\n", - "In contrast, if we look at how the work is balanced for the same example and cyclic partitioning, we find that the processes have similar work load. " + "In this application is relatively easy to fix the load imbalance problem. We know in advance which data is going to be processes at each CPU and we can design a more clever data partition.\n", + "\n", + "We can consider row-wise cyclic partition to fix the problem. See figure below. In this case, the CPUs will have less work as the value of $k$ increases, but amount of work will be better distributed than with the block partition." ] }, { @@ -402,6 +531,209 @@ "" ] }, + { + "cell_type": "markdown", + "id": "1c9e4c8a", + "metadata": {}, + "source": [ + "### Static vs dynamic load balancing\n", + "\n", + "Load balancing is the process of distributing work to processors uniformly with the aim to efficiently exploit a parallel system. There are two key forms of load balancing: Static and dynamic load balancing.\n", + "\n", + "- **Static load balancing** the work distribution strategy is based on prior information of the algorithm and it does not depend on runtime values.\n", + "- **Dynamic load balancing** the work distribution strategy is based on runtime values.\n", + "\n", + "Static load balancing is often used in algorithms for which the load distribution is known in advance and it does not depend on runtime values. On the other hand, dynamic load balancing is often needed in problems in which the work distribution cannot be predicted in advance and depends on runtime values.\n", + "\n", + "\n", + "\n", + "
\n", + "Question: Using a cyclic partition for Gaussian elimination, is a form of static or dynamic load balancing?\n", + "
\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "a6741a25", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "It is a form of static load balancing. We know in advance the load distribution and the partition strategy does not depend on the actual values of the input matrix\n" + ] + } + ], + "source": [ + "ge_lb_answer()" + ] + }, + { + "cell_type": "markdown", + "id": "e151fb8d", + "metadata": {}, + "source": [ + "### Data dependencies\n", + "\n", + "Using a cyclic partition, we managed to distribute the work uniformly. But we still need to study the data dependencies in order to implement it efficiently.\n", + "\n", + "Look again to the algorithm\n", + "\n", + "```julia\n", + "n,m = size(B)\n", + "for k in 1:n\n", + " for t in k:m\n", + " B[k,t] = B[k,t]/B[k,k]\n", + " end\n", + " for i in (k+1):n \n", + " for j in k:m\n", + " B[i,j] = B[i,j] - B[i,k]*B[k,j]\n", + " end\n", + " end\n", + "end\n", + "```\n", + "\n", + "Note that all updates on the loop over i and j we do the following update \n", + "\n", + "```julia\n", + "B[i,j] = B[i,j] - B[i,k]*B[k,j]\n", + "```\n", + "\n", + "As we are using a row-wise partitions, the CPU that updates `B[i,j]` will also have entry `B[i,k]` in memory (both are in the same row). However, `B[k,j]` is in another row and it might be located on another processor. We might need to communicate `B[k,j]` for `j=k:m`. This corresponds to the cells marked in red in the figure below. These red entries are the data dependencies of this algorithm. The owner of these entries will send them to the other processors. This is very similar to the communications seen in previous notebook for Floyd's algorithm. There is a key difference however, in the current case we do not need to send the full row, only the entries beyond column $k$ (the red cells in the figure).\n" + ] + }, + { + "attachments": { + "g30822.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzAAAAJsCAYAAAAiM0YjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAACAASURBVHic7N15nBx1nf/xV/X0zOS+LxJOEw4JEORGEMEFFEXwRF1wFQWPXd0VcfHADU0WVERWRV1XQMRjXcFdEfH4KaCcchiCAoKAAiEhCQFykWuurt8fNQM9ne6eqU73VNXM6/l49CNd1d/v1LtnJj396W/V9xsgSRru8sDZJdt/Aa7rvd8OnAy8G9gD2AkoAo8DvwIuBZ6u8nX3A84AXg3sBowCVgP3AN8Hrm3kk5AkSZI0MowGwpLbj3r37wM8XPZY+W0D8LayrzcK+E+gZ4C+PwfGNOk5SZIkSRqmKhUwBwGbqF2A9N26geN7v9Yo4KZB9guBXwJBk5+fJEmSpGGkvID5DfBE7/2twOVEoyyHA8cAnwZWlfVZ2vt1vl2y7z6iU9OOBQ4FTiE6Na28iDmt+U9RkiRJ0nBRXsD03R4Fdq/SZ2bv46Xtf9D7bxH4VyBXpe8ny/rd14gnIUmSJGlkqFTArCG6YL+WEyr0C4FFA/QLgHvL+uxZZ3ZJkiRJI0ylAuZjg+iXY9tTyZYBrYPo+7Gyfn8fO7UkSRVUG/6XJA1fPcBVg2hXBJaU7fs+0DWIvn8o23YERpLUEBYwkjTyPAisG2Tb5WXbd9TZb9Ig+0mSVJMFjCSNPNUWpqxkY9n2ikH221S2PT7GMSVJqsoCRpJGnvKipJZinX3L+7kWjCSpISxgJGnkCZMOIElSvSxgJEmSJGWGBYwkSZKkzLCAkSRJkpQZFjCSJEmSMsMCRpIkSVJmWMBIkiRJygwLGEmSJEmZYQEjSZIkKTMsYCRJkiRlhgWMJEmSpMzIJx1AktR0IbC2ZHtTjL5byvr21HnMzTGOKUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2N0cCpwM+BtoSzSJKk+KYCvwPeTfR3XZKGnQA4CrgWWAVsBf4v0USSJGl73Eb09/wZ4Drg1UAu0USS1ADzgEuAZcCzQNh7WwXslGAuSZK0fQ6g/9/2NcBK4GvAHgnmkqTYJgMfAf5MVKh089KLW9/twcTSSZKkRnmKbf/GF4HngUeBjwFTEkunYS9IOoAyrRU4AVhI9KnLqN591dwOfH8IckmSpOb5GPDyGo93A1uAB4AvAr8EuoYgl0YICxjV6zDg10QX5I9KOIskSUqnTqJrZg4BHkk4i4YJCxjVKwccA3wcOAIYB7QM0Odxok9jJElSdh0KzBqgTRewFvgFcCnwx2aHkqQ4RgHvAH4PrCZ60So/NzYE7kgqoCRJapjHqPx3fgvRBf13AqdQ+7RySUqNHYHzgSfpP0tJ3yxkYxNLJkmSttdsor/nfX/be4imVH4Q+DAwMblokrT9DgK+R/RpzHqic2A/mWgiSZK0Pf6LqGh5jmi5hIuBlyWaSJKaoBU4GbiFaIrFtmTjSJKkOkwluq7lx0TXv3ottaQRoT3pAJIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZI0kMnAmpLbN5KNI0lSOuSTDiBJqiggKmL6jEkqiCRJaZJLOoAkSZIkDZYFjCRJkqTMsICRJEmSlBkWMJIkSZIywwJGkiRJUmZYwEiSJEnKDKdRlqThZ0dgZtm+B4GOBLJIkiRJGgGmAGHJ7TuD7HccsL6kXxEoNCGfJEmSJL2ongLmvUBnSZ8O4O+blE+SJEmSXhSngAmIRllK268Fjm5qQkmSJEnqNdgCJg9cVtb2aWDBEGSUJEmSJGBwBcw44Jdl7R4AdhqijJIkSZIEDFzA7AAsKWtzIzBxCDNKkiRJElC7gJkPLC17/LtA6xBnlCRJkiSgegFzDNEF+qWPfZXoQn5JkiRJSkSlAubtwJaSfd3Ah5MKKEmSJEl9yguYlUSLUvZtbwTekFg6SZIkSSpRXsCU324A2hJLJ0mSJEklyguYO4hGYUr3/QIYlVRASZIkSepT6RqY3YDHy/bfDIxPJqIkSZIkRarNQrYz8FjZY7cBExLIKEmSJElA7XVgZgEPlD2+GJg6xBklSZIkCahdwADMAP5Y1ubPwA5DmFGSJEmSgIELGIDJwF1l7R4G5gxRRkmSJEkCBlfAAEwEbi9r+zjRBf+SJEmSNCQGW8AAjCFaF6a0/VJgXpMzSpIkSRIQr4ABaAd+WtZnJbBPEzNKkiRJEhC/gAFoA/63rN8zwIImZZQkSZIkoL4CBqAFuKqs7xrg0MZHlCRp6AVJB5AkVZQDdi3ZfgF4dpB9W4BdyvZtBlZtfyxJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJUnq1AlOSDiFJkiQpnfJJByjzQeBNwLFJB9FghbsBeySdQpIkpdrtEGxKOoSGhyDpAGUeAmYC84C1CWfRoISfBL6QdApJkpRq8yF4KOkQGh5ySQcoMQ+YBowFTks4iwYUjoZwAvz0mKSTSJKktPv0CdH7hrA16STKvjSNwPwHcFbv/SeAlyWYRQMKrwNOSjqFJEnKlDMhuCLpEMq2tIzABMDbS7Yn4nUVkiRJksqk5SL+VwGjS7YnE13Qf3YycVSHJcA/JB1iWwf8HHb+X/jpVUknqezYT8OGfeCeU5NOUtm3doKvXwsPHJR0kur2uxve8R449y9JJ6ns0KtgzFL43XlJJ6nslFPgsffDfa9NOkl1+/4JHliQdIrq9r8RXv4N+J9rk05S2asvhI4ZcNeZSSep7NwFcP234P7Dkk5S3b73wr+dAKesTjpJZQf/CCYvht98KekkZcYDdyYdQmqWnwBh2W056TrFTf2E10EYltxuSzpRFY+Q7kL4UtL94j4XSPusMRuA/ZMOUcPNwOVJh6jhQ0Sn7aZZV9IBBvAUcHrSIWq4Crgh6RA1HAasSzrEALYAc5IOUcM9wMVJh9hWOKnsvUII4RlJp1L2peEUslHAKyvsHwMcOcRZJEmSJKVYGgqYtxLNPFZuMvCxIc4iSZIkKcXSUMB8DBhX5bEjiEZiJEmSJCnxAmYmsFONx8cBbx6iLJIkSZJSLulZyN5PdKpYNWOBfwH+e2jiKGEzgb2Blt7tR4BlycWRJElS2iRdwJxJNAr0DNFMRzsCbcDjRMXLWGB3YBawKqGMap4jgGOAg4ADiX7+pT4KfH2oQ0mSJCm9kjyFbD6wA/BlYAHRdK3P9j72dmAXojewPUBK18jQdjoP+HfgZLYtXiRJkqRtJDkC8zjwMmBFlcc7iOauvwaYOESZlIxO4H7gXqLC9XXJxpEkSVJaJTkCs4XqxUupzcDKJmdRMr5EdOrYOOBgogX17ko0kSRJklIt6WtgNLL9JukAkiRJypakp1GWJEmSpEGzgJEkSZKUGRYwkiRJkjLDAkaSJElSZljASJIkScoMCxhJkiRJmWEBI0mSJCkzLGAkSZIkZYYFjCRJkqTMsICRJEmSlBkWMJIkSZIywwJGkiRJUmZYwEiSJEnKDAsYSZIkSZlhAaMknQyEZbdCyeNfq/D4kUMbUZIkSWliASNJkiQpM/JJB9CI9hDwqZh9nmxCDkmSJGWEBYyS9BhwUdIhJEmSlB2eQiZJkiQpMyxgJEmSJGWGBYwkSZKkzLCAkSRJkpQZFjCSJEmSMsMCRpIkSVJmWMBIkiRJygzXgVGDLJ8FfCjpFBVMAY4CNiUdpIpXAHNI5/cOYCbQSnrzAbQD7wAOSzpIFTsDo0nv9/A1wETSmw+iD9vSnG8CcBzR72IazQcmkd7v4Tyi711a80H0fuk9wJqkg1SxA3Awqfse7j46WvJNaqwg6QBllhO9mTsQWJJwFtUUXgec9NL2PVvh0FWJxaluJ2AjsDbpIFVMI/rD/XTSQapoBWYDS5MOUsMuwCqgI+kgVcwGuoHVSQepYmLv7amkg9SwK/Bkwhlq2RlYB2xIOkgVM4jegK9IOkgVo4g+LEnz68yuRO9RuhPOUc0cotfA55IO0t+UHDy/c9nOMyG4IpE4UpMsB0LggKSDaCDhdRCGJbfbkk5UxSPA2UmHqOFS4M6kQ9Qwl/SOXvXZAOyfdIgabgYuTzpEDR8Cnkg6xAC6kg4wgKeA05MOUcNVwA1Jh6jhMKICMM22EBUJaXUPcHHSIbYVTip7rxBCeEbSqZR9XgMjSZIkKTMsYCRJkiRlhgWMJEmSpMywgJEkSZKUGU6jLA1sR2APXir47yKa2UySJElDzAJG2tYbiObTP4hoSu9ZZY/vD/xpqENJkiTJAkaq5H+J1iWQJElSyngNjFTdFqLTxb6BSwlLkiSlgiMw0rY+CPwReIiXVl2+Adg9sUSSJEkCLGCkSr6XdABJkiRV5ilkkiRJkjLDAkaSJElSZljASJIkScoMCxhJkiRJmWEBI0mSJCkzLGAkSZIkZYYFjCRJkqTMsICRJEmSlBkWMJIkSZIywwJGkiRJUmZYwEiSJEnKDAsYSZIkSZlhASNJkiQpMyxgJEmSJGVGPukAUgotAj5Stm9cyf1bgZ6S7RCY2uxQkiRJsoCRKhkNTK7x+ISy7bCJWSRJklTCAkba1u/oP8IyEAsYSZKkIWIBI23rl703SZIkpYwX8UuSJEnKDAsYSZIkSZlhASNJkiQpMyxgJEmSJGWGBYwkSZKkzLCAkSRJkpQZFjCSJEmSMsMCRpIkSVJmWMBIkiRJygwLGEmSJEmZESQdoMxyYA5wILAk4SyqKbwOOOml7TtCOLInsTjV5YFi7y2NWnr/TeP3rk8e6E46RA15ou9fmHSQKtL+M8713tL+M057Pl9n6hcQZUz7z9jXmdgmAWvzZTvPhOCKJNJIzbKc6MXhgKSDaCDhdRCGJbfbkk5UxSPA2UmHqOFS4M6kQ9QwF9iUdIgBbAD2TzpEDTcDlycdooYPAU8kHWIAXUkHGMBTwOlJh6jhKuCGpEPUcBiwLukQA9hC9AFrWt0DXJx0iG2Fk8reK4QQnpF0KmWfp5BJkiRJygwLGEmSJEmZYQEjSZIkKTMsYCRJkiRlhgWMJEmSpMywgJEkSZKUGRYwkiRJkjKjfHEhSdnRCuwD7Ae09+67gfSv6SFJklQ3CxgpW04BjgYOon/h0udtWMBIkqRhzAJGypaFwPykQ0iSJCXFAkbKpqeBe3tvRwF/l2wcSZKkoWEBI2XLB4DHgVUl+76JBYwkSRohLGCkbPl90gEkSZKS5DTKkiRJkjLDAkaSJElSZljASJIkScoMCxhJkiRJmWEBI0mSJCkzLGAkSZIkZYYFjCRJkqTMsICRJEmSlBkWMJIkSZIywwJGkiRJUmZYwEiSJEnKDAsYSZIkSZlhASNJkiQpM/JJB5AUSzswpsK+PmOByWWPrweKzQwlSZI0VCxgpGw5Hfhmjce/W2HfPOBvzYkjSZI0tDyFTJIkSVJmOAIjZcstwAdj9nm2GUEkSZKSYAEjZcvDvTdJkqQRyVPIJEmSJGWGBYwkSZKkzLCAkSRJkpQZFjCSJEmSMsMCRpIkSVJmWMBIkiRJygwLGEmSJEmZESQdoMxyYA5wILAk4SyqKbwOOOml7bs74bA1icWpbgawBXgh6SBVTCJaj+m5pINUkQemAs8kHaSGmcBaoDPpIFVMA3qIMqbR2N7b6qSD1DALWJV0iBpmAJt6b2k0hejv/fNJB6minei1MM2vM7OIFgXuSTpIFdOBLmBd0kH6m5KD52eU7TwTgisSiaNhw4Us1SC7PA78W9IpKvg6cBNwbdJBqjgTmAt8KukgVcwCLgE+mnSQGr4PfAF4IukgVVwArAS+kXSQKk4g+jAizT/jq0l3vm8BPwZuTDpIFf9CVMScl3SQKvYCPkO6f8Y/BD4LpPGDOoCLgYeA7yQdpL8dxgJXJZ1CarblQAgckHQQDSS8DsKw5HZb0omqeAQ4O+kQNVwK3Jl0iBrmkt5PlftsAPZPOkQNNwOXJx2ihg+R3uKvT1fSAQbwFHB60iFquAq4IekQNRxG6kYOtrGF6AyRtLqHqIhJmXBS2XuFEMIzkk6l7PMaGEmSJEmZYQEjSZIkKTMsYCRJkiRlhhfxS2qGHYhmE3wF0QxXAL8CbkkskSRJGhYsYCQ1ymnA24kKl0oXu67FAkaSJG0nCxhJjfI2+q0NJEmS1HgWMJIaaStwP3Bv7+0VwD8lmkiSJA0rFjCSGuUjRCtpl67Z8YmEskiSpGHKAkZSoyxPOoAkSRr+nEZZkiRJUmZYwEiSJEnKDAsYSZIkSZlhASNJkiQpMyxgJEmSJGWGBYwkSZKkzLCAkSRJkpQZFjCSJEmSMsMCRpIkSVJmWMBIkiRJygwLGEmSJEmZYQEjSZIkKTMsYCRJkiRlRj7pAJKGjQnA7mX75pTdP7Ds8ceADc0MJUmShhcLGEmNcghwQ43HP9p7K/U64NdNSyRJkoYdTyGTJEmSlBmOwEhqlCXAcTH73NeMIJIkafiygJHUKGuAG5MOIUmShjdPIZMkSZKUGRYwkiRJkjLDAkaSJElSZljASJIkScoMCxhJkiRJmWEBI0mSJCkzLGAkSZIkZYYFjCRJkqTMsICRJEmSlBkWMJIkSZIyI590AA0XD74c+EnSKSrYCTgDOCLpIFUcCEwind87gHHAKNKbD2AM8BVgTdJBqlgAzCO938M9gFmkNx9AC+nONwP4GPDGpINUcRjQTnq/h9OJXmvSmg+gDfg2sDnpIFXsRfR9nJt0kP5mtcKqpENoGHIERkpWkHSAAaQ9n7ZfmHQASZKybDnRH9MDkg6igYTXQRiW3G5LOlEVjwBnJx2ihkuBO5MOUcNcYFPSIQawAdg/6RA13AxcnnSIGj4EPJF0iAF0JR1gAE8BpycdooargBuSDlHDYcC6pEMMYAswJ+kQNdwDXJx0iG2Fk8reK4QQnpF0KmWfIzCSJEmSMsMCRpIkSVJmWMBIkiRJygwLGEmSJEmZYQEjSZIkKTNcB0bSSDSXl9bgAfgLcGtycSRJ0mBZwEgaCQ4C3kZUtBwITC57/HIsYCRJygQLGEkjwTtJ93pAkiRpkCxgJI0kG4D7gHuBNuAjycaRJElxeRG/pJHgO8BeRKeOHU00GnNTkoEkSVJ9HIGRNBL8OekAkiSpMRyBkSRJkpQZFjCSJEmSMsMCRpIkSVJmWMBIkiRJygwLGEmSJEmZYQEjSZIkKTMsYCRJkiRlhgWMJEmSpMywgJEkSZKUGRYwkiRJkjLDAkaSJElSZljASJIkScoMCxhJkiRJmZFPOoAkDYEcMLFs39iS++3A5LLHNwMdzQwlSZLicwRG0kiwC7Cm7PaDksf/ocLjZwxxRkmSNAgWMJIkSZIyw1PIJI0EzwEfjNnnjmYEkSRJ28cCRtJI8AJwWdIhJEnS9vMUMkmSJEmZYQEjSZIkKTMsYCRJkiRlhgWMJEmSpMywgJEkSZKUGRYwkiRJkjLDAkaSJElSZljASJIkScoMF7JUg6yaBrwt6RQVTAQOIJ3ZAPYCZpDefDsALaQ3H0ArcDwwL+kgVczq/Tet38NDgHGkNx9EH7alOd9Y4DCiBVPTaC4whfR+D/cC2khvPoheB08Enk86SBXTgb1J3fdwn7HwYNIhNAwFSQcosxyYAxwILEk4i2oKrwNOemn77k44bE1icaqbAWwhvW8sJhK9AX8u6SBV5IGpwDNJB6lhJrAG6Eo6SBXT2lpacuPb2lKZb3N3d76zpyc3qb29M+ks1azZsqV9yujRHUnnqGZdR0fb6Hy+2N7S0p10lko2dHa2BkBafwc7e3pym7q6WiePGpXan/HarVvbJ7S3d7YEQZh0lko2dHS0BUEQpu1nXAwnsXbrivay3WdCcEUigTRsOAKTPfsCry/ZvhZ4NKEsJQ69B3hV0ikqeAS4DLgk6SBVXAocDByedJAq5gL3E43EpNUG4Fjgj0kHqaS1peX2dy9Y8MorTjopla+331y8OPjFI490/fzUU1OZD2DKRReFz33yk6nNt+ell3Z//y1vaTlkxx1TmfE9114b7DZ5ck/h6KNTme/OZcv4wM9+1vPAP/1TKvMBzLj44uJfP/rRlgmjRiUdpaJ//PnPu8a0trZ+6bWvTdX3cN2WUUy+qLFfMywUJhGNKEaef/7p4GtfS23xq+ZI1S+6BuVA4Asl24+RigJGkiSp6f4RWPTi1vTpBwP3JZZGifAifkmSJEmZ4QiMJEmSpNjCc8+dQz5/5Ys7guD/gkLhsmYf1wJGkiRJUnxBMIYg+LuSPX8aisN6CpkkSZKkzLCAkSRJkpQZFjCSJEmSMsMCRpIkSVJmeBH/yDEX+ApQugrX/wLfSiaOpIGs3bKFxStWBItXruTeFSuCB595JugqFgH4/LHHFk+ZPz+Vq4JLUlqFhcJhwBsIwyMJghnANOB54DngTuBXFAq3BFD362u4aNHBFIsnEi3wPQOYDqwhDJ8jCO4CfgXcHBQKxUFmnkax+OYXd+Ry9waFwhKA8BOfGMuYMW8hCN4C7EoQzOw91jKC4Ho6Oq4OPv/55+t9LlUzLVz4dmAS0fMrtV+4cOGZVTvmcv8TFAobt/f4FjAjwyHA9fT/JbsUuDyZOJIG8parr85d+/DDQbXHN3S48LQkDVZYKOxHGF4CHANA0O/ldSqwB/BK4GzOO+8PYUvLx4OFC++MdYxFi+ZTLF5CsXhshYenEgS7A4cDZwFLwkWLzg4WLrxtwC+cy+0EfLNkzyJgSXj++ccRht8jKpBKzSAI9gKOo739/LBQODsoFL4X57kMItN5wF4VHjmWXK7S8490df0G2O4CxlPIhr+Tgd/xUvESAp8C/gUYVOUvaeit3rSp33Y+l2PSqFFVWkuSqgkLhdcDtxMExwyqQxAcTLH427BQOG3Qxzj//OMoFu8Aqr957+8AisUbwoULTx/sMfodb+HCdxOGv2Db4qXcZODKsFD4bD3HSStHYIa3M4gq9r6fcwfwXuBHSQWSNDh7TZ3KHlOmhAfOmRMetMMOLJg5Mzz/lltyX7j99qqjMpKk/sJFi46gWPwJ/d/zrgG+Q/QB72qi08iOBN4PzOxt0wp8JywUNgSFws8GOMbBFIvXAW0lu9cBVxEENxGGzxAEU4FXEobvB2b3tsmTy10WLly4MVi06MeDf1LhfHK5TxANRHQA3yEIricMlwHjgAOADwD7lfQqhAsXLgsWLfruoI9TS7H4ZXK5qUSjV2eXPHI78Muq/Vpb1zbi8Hn6V4rP0n8Bmh2B9wALgDlAQPSDvoPo+oknGhFCDRcA5/Xe+qwF3gTcmkgiSbFccfLJjpBK0nYIzzlnPMXiVZQWL2F4B0HwjqBQWFXW/DdhofAV4AfA8b37AuBb4Wc+c3fwuc89U/EYhcIYisXv0r94uQd4W1AorChrfkNYKHwVuAo48cVj5HLfCM899/fBhRc+PagnFgRv7b33NLnc64OFC/9c1uKesFC4ArgY+OiLe3O5S8LPfOY3wec+t3JQx6kVYdGibwOEn/3s7uTzpQXMPUGh8MXt/foDyQE3lNwW9e4fDfwX8CRwAfB2ovMCDyc6JemLwF+Ai4CWZodULG1E//lKi5cniX5+Fi+SJGlkGDPmTGC3kj2PsXXrSRWKFwCCQmEN8DbgjyW7p9PWdlbVYxSLpxNdP9PnCeDECsVL3zHWAe8kKnL6TKG19RO1nkoFncAbKxQvfcfpplD4OGF4bcnuSbS1xT1OKlW6BmYKcBfwQWoXJ23AOUBjhqLUCJOAXwN/X7LvfqJh0b8kkkiSJGmIhYVCjui97EuC4GPBRRetr9UvKBQ2k8t9mP6zkL0vPOus0dscIxo9+VDZ7rN7C6Fax9jae4zSkfb3hOecM75WvzL/GRQK99c8DoQEwVnAlpLd7w4LhcxfUFlewOSBq3npnLlHgEuIhp8+DHyJ6NP8UqcCg77ISU0zB7gZOLpk3w1EU/gNbkhSkiRpeNiLaAmJPo8E553368F0DBYu/ANwd8muKUya9MptGhYKc4GXl+x5kkLh+kEe40+EYekMZBMYO/aowfTtddmgjlMoLAd+XrJrCkHwqhjHSaXyAuZ4omtithBd7L038Ang60SnlP0r0S/EVWX9Pkt0nqCSsS/RqNmCkn1XAW8ANiQRSJIkKTHF4uFlewZVWJT4ab+tMCz/egCHlR8j1voxYVh+jPKvV81jQaHw6KCPA7/ot9XTc0iMvqlUaQSmCJxEdGpYpYtIO4AzgQdL9u0JHNyMgBrQcUSTKuzYux0CBeB0oCuhTJIkScnJ5eb32y4W74vVPwjK28+v0Grvsu14x8jnl/TbDsN9BtUvDGueOraNXO6+su1KzyVTKl0D803gxgH6dQNfK9s32KpRjfUhoPScyU8A5yeURZIkKQ0m99vK55fH6t3V1b99GE6p0Kp8X7xjdHSUt690jG0FQbxLA4rF/rOOheHUWP1TqFIBc+kg+/6ubHtwVaMarXw10/cBs5IIIkmSlBITy7bjnVKfz5df7D+p4cdobR3MMSqJu5J9/1xBUJ47c8oLmOXAYM+pe5z+5/kNrmpUo/0z8PuS7fm927tVbi5JkjTsdfbbKhZbY/Zv67cVBB0DHiOXa8YxKom3EP369eW5Oiu2y5DyAibOwpQ9wKaS7QnbH0d1WE80+cJNJft2Ixohm5dIIkmSpGStK9se7OhGJJcrH6Uo/3oQLRL+kjCMd4xtM1U6RiXxRlAmThzMc8mU8gKm5tzYFXTX+FoaOpuIJl4onR5wF+A2Kl90JkmSNJw9U7a9KpF01QAAIABJREFUV6zexeLLy/ZUWr1+db+tnp54x9g2U6VjbCsM9xi4UT/l7Ssuspkl5UVHpVnHlA2biYqYn5TsmwX8lpfW9ZEkSRoJ/lC2fWjM/v3bF4uLt2kRBP2PkcvFPUb/CbAqHaOSINg//MAHBn+6WrFY/lzuHXTfgeTz5dNGD8mAhqMmw0sncArw/ZJ9M4gWuMz8nN+SJEmD0tFxN/0/mH9jWCiMGUzXsFDIE72fekkud8c2DTdvvof+ZyO9PjznnPHbtKt8jBzwzgGPUdlkZs/+u0G2hSDo/1zy+d9XaRlfZ+emsj2TK7ZrMAuY4aeHaA2YK0v2TQZ+A2y7iqwkSdIwE3z+888CvyzZNYFi8axBdS4WPwzsULJncVAoPLTNMS66aD1heF3JrjGMGfOJQR7j/cDOJXseDAqFJdWaV/CZcBCLyIfnn38CQfCKkl1LgoUL/xzjOLW1ta2n/6Re0xv2tWuwgBmeeoAz6D8l9kSiIubYRBJJkiQNpSDov2ZhLvepsFA4slaXsFA4iFxuUdnu6kuMlB8DPhEWCq8Z4Bj7kct9od/OYvGrtfpU8EoKhbMHOM5swvDrZcf5Rszj1BQUCpuJZibuc0h41lmjG3mMSuJNw6YsCYGPAV1A3y/4WOBnwJvpf8G/pJT5w9NPB5ffe2+/T9fuWfHSdZff/9OfgnuWL+/3+LlHHVXcZVLcSXAkaXgKzjvvprBQ+G/g1N5do4Hrw0Lhk8CVQaHw4ulf4dvf3sL8+acC/0HpAuFheAPnn/8/VY9RKNweFgpXEq3DB9AOXBsWCp9mxYrLg8su63rxSxUKOYrFdwBfpXQmsTC8hVzuuzGe2vre/p8PC4WprF+/KPjyl7eUNggXLTqcYvFKokmd+vyeXK70MoNG+S0wt/f+NCZOvD4sFP6TXO4JisXyCcKeKv2+18sCZngLgU8AzwJ9lf5ooiLmXfS/4F/ZNYqoOJ1INJ15D9EiV+t6/+2q3lVp9de1a7l8yZKqpwfcunRpcOvSpf32feDAA4NdJk0qv6BSkkayfyEM9yMI9u3dHg/8J7AoPO+8OwiC1cBU4HD6nzYG8Djd3WcE/U+R2tbmzWczevQrSk7VGgtcyuzZ54WFwh3AM4ThFOAwcrk5Zb2XEgSnB4VCnIm0/gt4LbA/8K9MnPjBsFD4LbAUmEAYHkCxuKCsz2q6u98fXHBBMybs+gbwHl5a1+Zo4GiKFQ7V1TW3N+d2sYAZGS7q/beviGkDriG6VqYZlbiaZxeidX9eQTT94nyiiRqqCYGngIeBPwNLiE4lfK65MbW92nI5Jo8aFatPPudZwZJUKigU1oWFwjFE73tKT+2aRhCcXKPrYuBNwYUXrhrwGF/84gvhOee8htGjf0QQvLbkoalEM8RCUPHzqD/S1XVycOGFTw90jDIddHe/nXz+Z8DLiT68fNNLgbY51kpyudcHF1zwWMzjDEpQKDwYFgpnAN8kKt6azgImex4BLivZHuzioxcRjcSUTqV3ONECmJmfD3yY2xN4P/AGYO+YfQOiomcX4HW9+3qAe4hG4q6kfB57pcJb9947fOvee/cknUOSUqVY3EIuV7qA5ICnIwWFwroQXkuh8HbgM8A+NZo/RrH4JR5++Krgxz8e9Gtw8MUvvgC8ISwU3kIYnksQlI+AlPobcAlwZXDhhXWdThVccMETYaFwOPB5olPkKi0ovxX4IfCpYOHCNfUcZ9B5CoUfhoXCzcBpwJFEi6lPY9uJBhoyAmQBkz139t7qcSX9ZydTuh1HdB3T62jshBstRMXr4UCB6MXtK8D9DTyGJEkNFyxa9GXgy7H7QUihcA1wTXjuubvQ2noExeJMcrlpFItrgNUUi3dt7yhFUCj8BPhJeO65O9HSciS53EyiN/LriE7juju44IJHtucYJcfaCHw0POusc5g06TWE4W7ADIrFteRyS4Ebg0JhQyOONcg8K4Av9t6aygJGSp95wNd4acSkmdqJTiV8L/ADogkfnh2C40qSlIjgwguX0oDrMAY4xjKg6sX/DT1WdAH/L4biWGnhCdNSeuSBfwceZGiKl1IB8G7gIeAfhvjYkiRJg2YBI6XDVOD/AZ8lGhVJyjTgu8C3eGk2EUmSpNTIA1NKtuNOt7obL12cs91zOksj1Bii2U52TThHqQ8QzXJWc5EsSZKkoZYH1g7Yqrp1jQoijVBTiWYWS+P1aEcRTbNddS0SSZKkoeYpZFJydgdOJp3FS5+9iE5pGz9QQ0mSpKGQtk9WlwNzgAOJFtxTaoXX0bc4EwB3hHBkGtesyBPNOd6MlWe3V6MLl/KVghv5/zskWj8mjfJE2VK5An0Q5FqCXEsQBEEafwcJwzAICYNckEtlPoBisZjL5dKbLwzDXBAEISn9HSwWi0GvlH4Pw6BYLAa5XEtK86X/ZxyGYS4MwzCXy6UsXy4IwxlBCBC+jbB4CcCZEFyRbK5sCRctegXF4h9Kdi0KCoVFiQVKgTR/8qtMOeIO4FVJp6igb+HPS5IOUiIH/Bw4YTu+xhbgp8D/AXcBlVbxDYimZD4ceAdwPPX/nw+A84EL6uzfTBuITnf7Y9JBKsvdOmXP49pfdvy//V/SSSp58qYvHrZh+eKj9nvPNU2ft79ei79+9OcP/MjNn046RzVLvvW6T80++D03zjrgXYuTzlLJn390xin5tnET9nzLV1L5pvHZh6/fedmt33zfAR/8ZSHpLNUs/sYxF8x/13cuHjVl1/VJZ6nkz1ef+U/59rFP7vmmr6RqKt3urfnRKxfPLnRsuJl1j99MmNoSNeW2bl1BW9tnXtzO5e5IME0qWMBIQ+8c6i9etgBfBb4ADPSHNAQe6719j2h083yiNV9a6jh2AbgNuKWOvpIkqQ7B5z73DEOwOGSWeA2MNLQWEK31Uo/FwD7Apxm4eKnkaeAMohGZJ+vo30J0Uf/YOvpKkiQ1hAWMNHQC4OvUN/L5PeBI4PEG5PgD0XVmN9fRdyeitWokSZISYQEjDZ3TiIqQuH4MvA/oaGCWNcAbgFvr6PtxYM8GZpEkSRo0CxhpaIwGLqqj3y3A39OcGcA2E03j/ETMfm3AxY2PI0mSNDALGGlonA7sELPPs8CpQHfj47xoHdEMZZ0x+70ReEXj40iSJNVmASM1XwtwVh39/pnK0yM32h+ob0Tl7EYHkSRJGogFjNR8byVajyWO3wNXNyFLNZ8DlsXs805gbhOySJIkVeU6MFLzfaiOPmcztCs+byaa3vmyGH1agPcDnxmoobbP84/eMGf1fT8+fPPaJ+cWOzdPCIKWrvyoCWvGzV7w4I6v+sc7R02YvSXpjJIkDRULGKm55hCtEh/HrcBdTcgykO8RLXQZ51qdU4mmVXZ95Sb5688/deyav936d4ThiyPmIT35zk3PzVnz2E1z1i+967Cdj/qX/56+zxuXJplTkqSh4ilkUnOdSvxV7/+jGUEGoQP4Rsw+O1Pf1NAahMd/8+9HrvnrLccRhrkg19I9fs6Cu2cd8M5rps1/43XtE+c8DtDTuWni0pu/9N71S/8wLem8kiQNBUdgpOY6LWb71cAvmhFkkK4kGoWJU3T9PfWtJ6MaNq68f/LzD//6BIAgl+/a9TXnXF42yvL7R3/68RPWPXnn0cXuzjFLf3fxyfu995pvJxRXkqQh4wiM1Dy7AvvG7PMjmjtt8kBWEq09E8ebgKAJWUa0Zbf/19Fh2JMHmLz7MTdWOkVs9xO/8Ou2sdNWAGxdt2yPZx+8fpehzilJ0lCzgJGa57g6+lzT8BTx/U/M9jOB/ZoRZKQKuztzm555eF+AINfSteMRH7q7Ursg31actPsxv+/bfv6R3ywYqoySJCXFAkZqnmNjtl9HMhfvl/sl8WdAO74ZQUaq5x+7Ycdi99axAG3jd3iq1ixjM+e/8S999zc/++heQ5FPkqQkWcBIzZEDjonZ5yagpwlZ4loBPByzTz2jTapi46qHZ/XdHz15p5rr84yevvsLLW3j1gJ0b31hSvfWta3NzidJUpIsYKTmmA9Mj9nnpmYEqdMNMdsfiZOCNEzH2mUv/u60jZ+xdqD2+dETe9uEwfqn7ov7eydJUqZYwEjNcVAdfe5seIr6xc0yGti7GUFGou6uzWP67reOmbZxoPYt7WNfbNO16ZmxzcolSVIaWMBIzfGKmO07gD83I0idFtfRJ+5zVhVh99b2vvu51lFdA7UPWto6++73dG5ua1YuSZLSwAJGao64b+YfAAZ8ozqEHgfWxOxjAdMoxeKL6/AELS3FgZrncrkX24TdXXEXTpUkKVMsYKTGywFxp7O9vxlBtkNI/EwHNCPISBS0tL44ohJ2dQ54bVGxp+vFC/db2sd01morSVLWWcBIjTcHGB+zz2PNCLKd/hqzvVP4Nkiutf3FIqS7a9OAp4SFXR0vnnLW0ja+o1m5JElKAwsYqfF2q6NPGguYuJmmA+OaEWSkaR0zdV3f/a4Nz0waqH331g0T++6PmbrbulptJUnKOgsYqfF2raPPcChgoL7nrjKjp+y6uu9+x4aVNadFDrs7c11b108FCHL5rnGz97GAkSQNaxYwUuPVMwLzVMNTbL96MtXz3FVm4m5HLCO6Dokt657atVbbNY/fskPY0zUKoG38zGUE+bD5CSVJSo4FjNR4u8ZsXwTWNyHH9lpVRx8LmAYYN2v+urax01YAdG9ZP/35R2+YU63tcw/9Yv++++PnLEjTVNySJDWFBYzUeLNjtu+i99P2lHmGqLiKY4dmBBmJJs191d1995++69uvrdRm46oHJm1YtuQQgCCX79zh4NPuG6p8kiQlxQJGarwpMdunaf2XUt3A2ph94j53VbHLqz66OD964rMAW9cs3fPhqz/41q4XnhnV9/i6v90y69Hrznl/3+ljk192xC2jJ++2Kam8kiQNlQHXF5AU29SY7bubkqIx1hHv+cR97qoiaB3dM/d1he8+9rNP/lOxp3P0CyvvP+SP33nb/q1jJq8u9nS2d29ZPw0IAEZN2fUvc1+36LcJR5YkaUg4AiM1XtxRiJ6mpGiMjTHbOwLTQBN3OezZ3d98ydfaJ8x6EiAsdrd1bnx2x+4t66cDAUGuZ+Kuh92y97su+36Qb4t7up8kSZnkCIzUWHlgQsw+aS5g4p6S5AhMg03c8aDnF7zv2m+ueex3O6x74va5nRufm5TLt3e2T9hhzcz93/rQqEk7b046oyRJQ8kCRmqsCfSe1hNDmguYuCMwEwduonpM2f2YlVN2P2Zl0jkkSUqap5BJjdVWR580n/oT99P99qakkCRJ6mUBIzVWax190jiFcp+4EwzU8/wlSZIGzQJGaqx6RmCGUwFTz/OXJEkaNAsYqbFG+giMBYwkSWoqCxipsRyBiT+JgSRJ0qBZwEiNleZiRJIkKfPS9knpcmAOcCCwJOEsqim8Djjppe17tsKhqxKLU91ORFMBrx2i47US/Q7H0QMsa0KWRpgOjI3RPgSWNilLNbsAq4COIT7u4AS5Ofm2MSG5fNwpqYdE2LV1dBjQnsuPWpd0lmqKnZum5NrGrkk6RzXFri2Tc/lRWwiCrUlnqaSnc9P4XEtbELS0bkg6S0U9Pa3FYue4XOvooXqdjq3YtXlKrnXMOlI6a2TY3TkpDHu6cq2j467d1WRBQDh5MmEHPd1zCXtuATgTgiuSTqZscx0YNcjs5cCXkk5RwQXAHcCvhuh404F/j9nnBeALTcjSCGcAB8Vo38HQP5dLgasY+sJpUAKCT42Zvmduwi6HLE46SyXrn7xrXsf6p+fNWPDWm5POUs2Ku7795lkHvOvmpHNUs3Lx90+YuOshj4yeOu+JpLNU8tyff3ZoS/u49snzXnNr0lkq2bpu6dR1f73tlWn+Ga+45zsnT9/npDtb2sZuSTpLJc8//KvXkGt5fuqex/8p6SylwmJL29a1+57YtelhNq5c5SkKahgLGDXIjquAbyWdooKPA7cxdNl2In4Bs5F0fu8AjiVeAbOJoX8uFwPXAH8c4uMOUnBq24SZ7bMP/oe7k05SSeeGVUHX5ufmpDUfwIq7r3xTmvOtWvLDY8bOePlfZx3wrlQWqWv/dusu+bZxE9L6PXz24et3Xvf4nYekNR/Ainu+88bpLz/hvlFTdl2fdJZK1j5+20H59rFPp+172L01P3rl4tknhsVxwM1Jx9Ew4jUwUmN11tEnbadyloo7q1o9z1+SJGnQLGCkxqrnDXya/x+OidneAkaSJDVVmt84SVm0gfgXebY0I0iDxLmAH4ZusgRJkjRCWcBIjdUDxD1HOs0FzLiY7Z9vSgpJkqReFjBS48Wd7jXNBYwjMJIkKVWchUxqvOeBuTHap/n/4dSY7Z9rSooRLuza0rLivqv3eGH5vfN6tr4wjly+p33c9DXTXv66ByfNfXUa11+SJKlp0vzGScqquCMwbU1Jsf3agIkx+6R2scGsevbB63d56vavv6Nn64Z+xeQmYM1fbz5u7Iw9/jT3xM9fO2rC7FSuTyFJUqN5CpnUeCtjtm8lnVMpzyR+rrjPXTU89/Avdn7ytxd9oK94aWkbt27M1Jc9NGrSLo8GuZYugE2rH13wl2v+8X3dWzfEnfJakqRMcgRGary4q3EHwBTSdwH8zDr6PNnoECNV99YNrUt/9+XTwmJPHmDKvFffMPd1i34b5NuKAFuee3zcoz87+90dG1bt2rnxmZ3/+stzX7fXW752fbKpJUlqPkdgpMaLW8AA7NzwFNtv1zr6PN7oECPVUzf/x+E9nZsmAoydsecf5534hRv7iheA0dNetnGPN3/le7n8qE0ALyy777CNqx6YlFReSZKGigWM1HhP1tFnXqNDNEDcTCGOwDTMuqV3H9x3f84rz7ypUpvRk3fZNGGXQ+8ECMOe/KolV79iqPJJkpQUCxip8eoZgdm94Sm2X9xMq4HNzQgy0qxfvnhq95Z1MwDaxk5dMWnXI1ZXaztj/on3993fuOLBvYcinyRJSbKAkRpvBfEXs9yjGUG2U9wC5uGmpBiBNiy9Z8e+++2Tdn6qVttJu71ydS7fthmga9Nzs8PuTl/XJUnDmn/opMYLgfti9lnQjCDbIQD2i9nn3mYEGYm2rHlyRt/99gmzaq+tE+TC/KiJayA6jWzDqvsnNzmeJEmJsoCRmmNJzPbzgVHNCFKnPYi/Bkzcok1V9GxeP6Hvftu4GQOO5uVHT1jXd7/j+aVxf26SJGWKBYzUHHHfzLcC+zQjSJ0OqqNP3KJNVRR7Otr77re0j+kcqH3Q0v5im56Oje212kqSlHUWMFJz1PNm/vCGp6hf3CybgEebEWQkCnu6XlyUMmhp7Rmofa4l3913v7trc1uzckmSlAYWMFJzPAysitnn75oRpE7HxWx/CzDgG20NUklBEvb0DPg6Xezpaem7n8uP6mpWLEmS0sACRmqOEPhtzD6vITqVLGk7E39WtBuaEWSkamlp6+i7XxzEiErpiE3rqLEdtdpKkpR1FjBS89wYs/144JXNCBLT6+voYwHTQC3t4zf13e/Y+Nz4gdr3dLxQctH/zE212kqSlHUWMFLzxC1gAN7Z8BTxvStm+6eBPzcjyEg1atJOz/bd73zhmSkDte/esj5qEwTFcTsfUHvaZUmSMs4CRmqeZcRfG+UUIMmLsHcCjozZ5yfNCDKSjZ2974q++x3rntqpVtuNqx6Y1NO1eQJAfvTkZ/Ot47trtZckKessYKTm+kHM9lOAk5oRZJDeT/zXhR82I8hINnX316xsaRu7HqDjhdU7bXnu8XHV2q5+4Pq9++6Pm7Hnw0ORT5KkJFnASM31QyDuJ+LnNCPIIIwCPhSzz9+Au5uQZWQLcuG42fv8CYCw2LLs9q+/qlKz7q4X8usev7Xvuqlw6t4n/mmoIkqSlBQLGKm5VhN/NrKDgSOakGUg7wVmxuzzA6IZ19RgOx/1z7cEuXwnwLqldx319N3f3rv08bC7M/fITz7+5u4t66cDjJk+78Gpe7xmRaWvJUnScJJPOoA0AvwncHzMPl8BDgWKjY9T0XhgYcw+XcC3m5BFwOgpL9s4c/9TfrJqyQ/fQRjmnr7z2//w/CM3PjJmyq7Lit0drRufeWif7i3rpwG0tI1dt9vxn/1Z0pklSRoKFjBS810P/AXYK0afg4DTgO81JdG2/g3YIWafHxBNVKAm2fmoj95XLHbln73/2pPCYnfb1jVP7rV1zZP9fo/axkxdudtrP/vfY6fvuSGpnJIkDSULGKn5isCXgCti9vsqcBvwRMMT9fcq4KyYfUKi56Qm2/Xoj/9h2l7HPbZq8Q8P2vTsY3N7OjeOJ2jpaRs7+bkJOx364OzD3/uAM49JkkYSCxhpaPwAOI9omuLBmgT8D/BqoFmrq8/oPUbc14KfAA81Po4qGTdr33XzTvz8jdS3tpAkScOKF/FLQ6MD+Nc6+h0KXAu0NzYOEBVIvwDmxOzXAXy68XEkSZIGZgEjDZ2rgd/V0e8E4BqiC+0bZQ7Rp/kH1dH3i8BjDcwiSZI0aBYw0tD6Z6LZu+I6CfgDsH8DMhwPLAEOrKPvUuALDcggSZJUFwsYaWg9SP2nX+0JLCaaDGDnOvrvC1wH/Jro2pe4uoBTgc119JUkSWoICxhp6P0HUSFRjxbg/UQzk90EfBg4AGit0HYs0YKYnyAavbmfaCSnXucCd2xHf0mSpO3mLGTS0AuB04F7gHl1fo0c8JreG0APsK73liO6QH/y9sXs5zqcNlmSJKWABYyUjLVExceDwIQGfL0WYGrvrdGKRKeOhU342pIkSbF4CpmUnGXAT4HOpIPU8EeiaZM3JR1EkiQJIEg6QJnlRNO7Hkg0S5JSK7yOftdTPLQa5v8qsTjVvY1oyt8/JR2kiiOA6b33JyYZpILlRAXMCUQLcabVacD/A55LOkglQZB7Y+u4GbSOm/pE0lkq6Xph9czurS/MGD197gNJZ6lm8zN/OWDMzL1S+zdhy7N/XdA2foeVLaPGrk46SyVbn186N5dvz7dNnPVI0lkq6dmycXzHhhXzxszc476ks1SzedVfDhgzfd6DtORT+YFTx9qn9w6DcOOoSTs+lXSW/vItxa499y92PkPXpgkUe34GcCYEVySdTNnmKWRqkK42YMekU1SQJ7oeJI3ZAMYRnf61GNib+mYHa4alwN+AaUQfdKT1+wdRvpnAqKSDVBa05VrbybeObcSpgg1XzI8eXcx35tKaD4AgF6Q5XxDkgpa2UaPTmjHIteRzLa35tOajp2ds0JJP7f8RgKAlT0v72PFBkK9nGvym62xpaQmgPX3fw6ClGPTQHRaB7qTDaBixgFGDLHgQODbpFBU8AlwGXJJ0kCouBQ4GjiF6I/4x4Hwau2hlHE8BHwGu792eSzR7WRp/tn02AGcSjRalUHDruFnz2192/L/9X9JJKnnypi8etmH54qP2fMtXU/uJ6OKvH/35NOdb8q3XfWrqnsf/7v+3d+fRcVR3vsC/t5Ze1Gqt1mJLtryB8YKNF1nyAtgDhgQIQxaTMO+FJCTwZgkDDkkmb96ZjDLDvMmQEBwYkjfAHJJMZiA4JECAQALBxoskWza2sWxsvFuy9q219VJV9/3Rbrllt9RSxuqqNt/POTrc6v6177dbttHPt25V8ZK76uzOkkj981+5U3NlZs351EZHfoZth34z7cy7P77Hyd/juifXPjx97Tf+y5M3vcfuLInU/+Lev9LcvpNz7tj4mt1Z4hlBzdtUN6UqFNiMUM9mu+PQZYR7YIicQwJ4DNH7vfwHUrtpPoJoM7UA55sXIiIiIsdhA0PkPE0A7gawDMDPEN1EP1G6AHwPwBUAHgDQO4FzEREREf23sYEhcq49AL4AoAzANwC8g+hKyX9XP6L3dfkKgKkAvononhciIiIix+MeGCLna0H0JpLfR/SeMX8CYCGim/7nItqEJLpppYnoCssJAAcBHAKwG8BWTOyqDhEREdGEYQNDlF4CiN475qUEz2We+zIB9AEYTGEuIiIiopRgA0N0+eg790VERER02eIeGCIiIiIiShtcgSEicjhphJXm/S/O7j29a1Yk2JOlqHpEzyzsLJj3iQPZZeXtducjIiJKJTYwREQO1nHk9yWn3nn0LmOwp+DC5zoP//7jvuL5u6+89Z9e0f1FQTvyERGl2sqH9pQZRvCq2LErbO7c9uNru+zM9FG2fr1UT02pHrrhtaXrjXXfLz9wKecof3D7NUKKotgxGxgiIofqOPL7kuNv/MNfSMvQAUDRvb0uf1GjNCOucKCpTEpL7W+uX3pw01/kz//8T5/WdL9hd2YioolmWJECCLEodhzR9HpEr7pJNjiITapPTB36fqiWqQK4pA2MgJgOIa6MHbOBISJyICPUq51865HPx5qXnJmr/jDr4//4lqp7TQDoaz6YffTVb30+3Nc2NRRomn7stW/fNOeOx163NzUREdHE4yZ+IiIHOr1lY6UZ7ssFgIyCK/dfefv334w1LwCQWTyvZ84dG3+iaO4BAAic3rWqr/lgtl15iYiIUoUNDBGRA3WfrFkeG5eu+PJbiWq8k2b2ZU1bXg0A0jK15veeX5yqfERERHbhKWRERA7T2/BenjHQWQQAroz8ppyZ17WMVFs4/9b93ce33gAA/U3vzwOwOTUpiYiIgPpNd4bXfPGdx2PHvS6/OVr9H8MccL3mD/e+ETtmA0NE5DDdp2qmxsbu3NLTo9XmzFzVoqiuQcsMe8N9bSXSCCtCc1kTn5KIiChq80/WTuiVMHc/tSwCIBI75ilkREQOM9h5qjA2dmdNaRu1WGhS82Z3ANHTyPqa9+dOcDwiIiJbcQWGiMhhzIGurNhYzywIJKvX3Fk94b62UgAY7DiV7S9d1jGR+YiI0t3S++p0eIOTdaH6TKhuiHBElWq/JyfYvLnq0qwmrKl6R+sPKJNVy5UZnQMREZEDqm42Vz+2cvBSzBEZhJCWAAAgAElEQVRv5de3F0pTZBlSZiqqGkYYgdr8N86iquqyW5VnA0NE5DCWGXLHxprbF0pWL3T3UI0Z6XdNVC4ionS3+Kvbprg0sVIiMg1QNQuAgAlIFRaAgS63XL5hR6MwlV21j1d++MfMsfTBdycr0FcMdGO6AOLmAKABpgVZ/sD2Jgm5q+6Hqw+P5de85sH3ctwidGfsWFhyX80PV9QCUlQ8VLtEmnKxYSAPAAQEpCkBFVjec9OAfOiW/VavUn3uNKxLbul9dbrmM740lE3KIzUbV2y+lHNUPFCzDgpmxI7ZwBAROYw0I3psLFQ96WZIRdWGbmBphgbYwBARXahKKsu6a25WgKvlaHVCCEiUSkWWlm+oPunrCr4y5v0dVVVKRc+6G6VUrhm1TgghIKYI4E+XP7jjjCrwUrIVGVekQ5W6Lyd2bCnSs6bqHU9/T83t0sT0EV8oRYYwzUol05yz+ltbf7ntu9de8ht+BruOC1/G1KFsUETGpZ5DCssHKYbm4B4YIiKnUc43JNI0k/49bZmmGhsLTTdGqyUi+qhZv/4FdXlX9acV4Or4xwWkJSCahCKOSaARAsNWKITE9MFc711L76tL/gN5VZVS3n3zHRc2LwLCgpTNsTmEIsLDXyimmlD/bP5fvpM5nvekSiEGu123CXmueRFSCogmQB4RijgmpdU3bBYLuaGg9rmK+2uyEv166YYrMEREDqNqrqH/wVmRQX20WmD4io3q8odHqyUi+qg5OW36KmGaQ6cfQUopVKVOkbKm+rHKoZWPpffV6Yo3dI0QyrU49zOylLJAyYh8DMCvRpujsvvmFRYwe+gBIaU0sccM6tW7n1o2ED+H5jcWSkteB4no393Sys9we24B8MJY35OEmC+h+M4dHdF16+3tj6zsjasQFX9dOxsq1kkpMwFAAH5ouAXA82Odx6m4AkNE5DCq298fG0f62/zJ6s1Q71CNJ6uob7RaIqKPkpVf314oLKMi/jFL139b+4PKdy48bWv3U8siu364apcpzV8CGFrNFsDsyger5440x/L/XZsvIVYMe1Cov9v1+Mq345uX2By1j1buViFfiF/xERLTV2zYMWyFaDQSMtq8SLlv58aVL21/ZHXv8Aohax+v/DAkB/9LQA79P0VKOa18w875Y53HqdjAEBE5jDtnamtsHAq05CWrN4KBaI0QVmbpkvYJjEZElFbMsFwGKUTsWAq5v+775QdGe83uH64+rUhsj3/MElg+Ur0IGkslZNzP1Er9zh9U7BttjurHVjYC5tZhc0iUj/aaC0kFXWVnV7w1Ws3ejWu7oSu/G/5Cc1zzOBEbGCIih8mcsqApNg52n5k6Wm1f88FsM9yfDQCaJ7tdc/u5B4aICNHTtaSiXhU7FhDWQCi0bSyvnXr2TF38ygUkilZ+fXvhhXXr17+gQqjzhh4QUgpTbr2wLpGd2W/tkcDQyomEmLT0wXcnj+W10ReoOzZtEkkv9FL7vcoPIdAyFBEoTPRe0gkbGCIih8m/4oazqp4RAIBwb8u0wa4TvpFq2+tfGTqtwVd01aFU5CMiSgea2yjC8P3eJ+t/tHZMp9lu2nSnKaEO+zvVMpTSC+uOlxQXSksOXf1REeJ07ROVSe/fBQCoqrIg5MH4hxSpXjRHIlJY5kC2b8yXebYgk76XdMIGhojIaYQifZMX7AMAKS31zNYfr0pUZkYG1c5jW1aeO5ST5t0y6ikLREQfJaZmTRn2gIKGcf0CF9RbUC5aHdGhD3tMmqJxPFNYhhw2h6Jgyki18YTQ2uqr5o/5oi06MCyXBWvsKz0OxAaGiMiByq796hahaBEA6DmxfU1T3c/nDCuQhjjy0oY/NQa6iwAgI3/mofwr143rf5xERJcz5dzVt4YY6BjP61VpDttTqCjWRZc6NlV12GOKZo1vH2KGe1i9JZWxXU7ZGt97cXeFhtUryhjncSheRpmIyIG8BVf0Fi781Este19YL6Wlntn+oy92HH7zYEbezNOGMejqa6pfYAx0FgOAqmcEpq/7Py/ZnZmIyEmEJT3xW+stTRnbDSnPG3aVMtOC98ICxbI88TfGlKYY1xxBr3fQFzp/+xkhpGcsr5PCCo1nns0/WRNavqFaxi5oYEmMaR6nYgNDRORQZWs21EkzpLXVv3qbtEx9oO3ogoG2owviazRvTuvMG7/1n5nF83rsyklE5ESWqqoirrswwuGkG97jBRoaTF/J+euoCKGoFxUJaIibw1TUcc1Rj3nGctScf8Aa28/miki+eX84ISW2WwLi3HuQad0DpHV4IqLL3fQbvlWTP+fGD5v2PL9ssP3YLCPYmy1UPax5s7uyppW/X1p5717NkxVJ/isREX20KLBCMm63hNedkfTGwPEK5s93DXSf348vhLxo1cMyrJBQxPnjSMR1Yc1oVvRUu02cfz2Usa3gSNMa1zzr17+gnpLnGzBpXfxe0gkbGCIih/OXLuvwly570+4cRETpxFL0oDDPL1RELGNc+z56uzv8KuJ6HgsXNReqIoJW/LF+8T6Z0WiGJ9NUz/cSirh4joQUZIxnntPF03yIWypShDre0+kchZv4iYiIiOiyIyORzvhjRVjjuveJqojh9crFG+eFKodvjpdawXjmCGrG8DnkGDfnWxjXe1E0K+l7SSdsYIiIiIjosqOr4mz8sZRi5nheLy1tVvyxaRpnL6yxwsqwxyxg9njmUBAZVi8VcdEcCQmRvfyvavPHOo+lKDPij01THds8DsUGhoiIiIguO9WPrewUQnYPPSCt/PKv7Zw6ykuGLP2bumwFMr7hMXRFOX1hXe0TlQHIuFUYiazKB6unj2WOVd/c5pdSGWqSpBDmoPCeGstrAUDRravHUje/qt4lTXlV3EOGrkQuei/phA0MEREREV2WLEu+N/wB84Y1Ve8k2QMuhRYxbpQQQz8nW8Ch6sdWDiaqtlTsGXYs5Q1L76tLesGASFi5AcP2o8sj+7+/qD/Z6+IyLVn9ra25yeoyA72rgLhLQEt5ZKT3kirlD2wvX/7AjpuHvr5eOyP5q85jA0NEREREl6WB3Jx9EuiNHQugsL/bc/v8qvqEV/Fav/4FtWJD7TppyfOnjwlEdCFrR5pD9rkOCCHOr/QIka96w3fMvv91d8IXVFUp5RuqbwTElUO/hrBMS9Grx/XmAC0SUtdX3F+TNVJB5YPVS6Qly+PnQYY63nkuOVVVZkKIRbEvYcmi8byeVyEjIiIiostSfdX88MqHtr9uWOLO2E0cBTDb1xO4p/yB7bt1Had6BsIDHq/fo0qz5LSUS6SUwzbiKxJbqjeu7Ew8A7D7qWWRivtrXoci74KIzgEhZuSqufcs27Bjt2opp/oig/2+7Ay3GJAlVrdcIjB8E76E2Lr70WXtY31fUpqnoIhSSCVHqNY9lQ9W71I060Npil53drYa6ukptoSyyIpvxKK5qnf+c0Vab+AH2MDQJdOZDeB6u1Mk4ANwJZyZDQCmAciBc/OVAFDh3HxA9O+xcgDZdgcZQW64r1Vv3ffiuDaPpkqwu7HAjAw6Nh8AQJpwcj5pRvSB1g+KnJrRDAaypRnOcGq+gbYPi6QZVp2aDwAgLaXj6DvTdHfWmE/vSSUr2Oc1jHCu0z5Dy3K5w71LYAx+AIzx6sATYcejq05VPlj9qinELULK6L1QJLKEUNYaBuBzeQAzcu7h4aQit9X8YOUeJFH7RGXD8q/Vviyl8Qlx7n4rAvALKdZIIaNzDFqQAvF3fYnOIa2auo2rdo7rTSlKszRwRKhYJyFcElhlGcoqAIjeu0YAcvi7EZZ5YOfGVbavvgCAlELEf9rClBd+9KNiA0OXyOG5AH5td4oEsgHcDWC93UFG4EO0QXDiZwdEs7nh3HxA9LzeRwEYdgdJRMLK6m/5AIPtJ8a0cTTVLCOoSzOiNdY++3m7s4xESqk4Op9lertP1qzoOb17md1ZEjHDfW4IRTj1M5RWRLWMkMup+QBASqm27P3lpwXEuH7IShUz0u+VlsxrrH12VvLqlBKAF9IKAXJcF+e65Go2rjhUcX9Nr6XixgtXPxISCFiW+U7dD1YfHuscO39QcWTxV7c9p6vyRghRnKxeAr2KGdmy84nrDo51jnh1T6x8r+L+d0PQXTdJS454Y0sphCmlrKn74aodeNwhv4clhq6gJiAszRs5Mp6Xs4GhS2RFDYBr7U6RwGEATyH6A64TPY7o6sEKu4OMYBaA/QDy7A4yigCA6wDstTtIIgLKu7mzrnPPvOnvXrQ7SyIn336kMtBQd93CL7zwiN1ZRlL3r2v+efF9r37H7hwj2fNvH/vWlPIvvFW85K46u7MkUv/8V+7UXJlZcz618Rm7syTSdug30868++N7nPw9rnty7cPzPvPkY5686T12Z0mk/hf3/pXm9p2cc8fG1+zOEs8Iat6muilVocBmdB/ffMl+XVOGGnWpb4kdq15jTN+X2icqGwD504q/rp1tqdYsIUWpUETmuR/+DUjZb0E0CUU95svuP7y5au24/2HsvX9dfRbAz5bev32WqojZUNRSIU2/hIjOITAgYDWZquuYDIjDu55aERnvHMPf03UH11TVnx7s6FoAVbtCCisbUmRAICKk7LEEjmmQ71dvXNmJjf+dmUY2DzDPSAx9PyIRc9RT4ZY+VDdJmhFf7NiErK/97rVd45mTDQwRERERpY3dG69rAtD0x71ayNrH8SGAD4ceqqpSUFVlXZJw5+x+YtUxAMcmco6YzVXz+wDUnPsCpBQQqVtp2bTpThPAiBc5uJBuRqbFPggphCld2o5kr5FCuOLekcGrkBERERHRR9cENRYpnyMmhc3LH8OyZFlsrMB8f/e/LEu6gibiLgMtIEJsYIiIiIiIKAWkkELE9oQami7HeFEB6Y+NLGn2sIEhIiIiIqIJV/FAbaEQ8ACAVOS+7Y+s7k32mvKv7ZwKKTJix6qiNHMPDBERERERTThv7mBPfyt+BgADhYUJ762zpuodzWjR/IMu4VcVvRDSqIy/+LQ0xAdsYIiIiIiIaMJtrlobBNA8Wk2w21NquXGnCgDSwrA750h5ovaJFQ1sYIiI0oE0RPep2oJwT5Mfqsv0F83t8BZckXTpnYiI6HIgpXVWU8SrAC+jTETkaDIyqB773T9d33OqptIM92fHP+XOKj5dtPiu3xUvvvOobQGJiIgmgIAMQygDUlqtwjSO7Hz82kOxK6yxgSEicqjIYKfr4HNf/nIo0Dw9wdMiFGguO71l41cGWg+9PvPmv3831fmIiCg1dj55YwcAx95w+FKq2bjiJBK91yfOD9nAEBE51OFfb1gfa160jLyWyUs++3rOzNUNZqhPb933q6s7jrx1k7RMvf3Qm7e4c8vaSpZ/8ZDNkYmIiCYcGxgiIgdq3ffizIHWIwsBQPX4O+d97ukfe7KmDMaez5y88F3vpNktZ7Y9+SVAiuY9z31iyuLPHhG617QvNRER0cTjfWCIiByoed8vr4+Nixetfy2+eYmZvOx/Hs4omH0AAMxgIL9h57MLUpmRiIjIDmxgiIgcJtLX6g51nZkNAIrm6ZtS/oWDI9Xmz7l5V2zcc6qWDQwREV322MAQETlM+5Hfl0lpagDgyS09ITSXNVLtpPm3nIBQTAAIdp6elaqMREREdmEDQ0TkMIPtxwtjY0926ag3/NK9eWHNm9UOAJYR9A12nfBNdD4iIiI7sYEhInKYUKB5UmzsyizsTlavebKHavoaD0warZaIiCjdsYEhInIYywi6Y2PVmzOQrF7VPEMb/I1wwD1aLRERUbpjA0NE5DDSDLliY0X3GMnqFVWPxMZWqJ8NDBERXdbYwBAROZgQkGOomvggREREDsEGhojIYYTqDsfGZjioJ6u3zPBQjeL2hSYqFxERkROwgSEichhF8ww1IeZgd0ayetMIemNj3ZsTnKhcRERETsAGhojIYdxZxe2xcbivNSdZvRHsGarxFS/omKhcRERETsAGhojIYbyTZrbGxsGehuLRaiODnS5jMDAJABTN0+/NLeuf6HxERER2YgNDROQwk65cd0oI1QCAYFfDDGmER/y7ur3+9RmQlgoA3rxpR1OVkYiIyC5sYIiIHEbPLAy5c6ceBQDLCGae3fXTeSPVdhx+szw2ziqrrE9FPiIiIjuxgSEicqDiRZ/ZEhs379t0azBw1nthTVPdz+cMtB1dAACqJ6ujdPkXD6QyIxERkR00uwMQEdHFChd9+njrgVf2D7QdWWgGe/MOPvflvyy65jNv5M287rQR6nG1vP/K1V0f/mEdojeBkcWLP/eq0L2m3bmJiIgmGhsYIiKHmvOpxzYdfO4rWaFA03RjsLuwsfqZuxurn7mgSshJcz/2WknFlw7aEpKIiCjFeAoZEZFD6d688MK7n/+3vDnrfqu6MrsveFq6syafmL72oadm3vztrbYEJCIisgFXYIiIHExoLmv2x/9hM6Sxpef07vxQd0OW4vIYvqK5nd68mX125yMiIko1NjBEROlAaDK7rKIdZRXtyYuJiIguXzyFjIiIiIiI0gYbGCIiIiIiShtsYIiIiIiIKG2wgSEiIiIiorTBBoaIiIiIiNIGGxgiIiIiIkobbGCIiIiIiChtCLsDXKABQAmApQD22JyFRiVfBnD7+ePtElgdsS3OyFwAzHNfTqQh+ufQiZ8dEM2mAwjbHWQULgAGAMvuIIkIoehC1QAIR+aDZQophCKE4tQ/I5CWqQpFdW4+KVUhhAVA2p0lEWkailBUQDj09yAkpLRUIRz/PXZ0PkhLCkV14PdYVQEJac2FtHYDwL2AeMbuVJTeeCNLukQqagDcZHeKBN4D8CyAx+0OMoLvAVgC4Aa7g4xgOoBaAEU25xhNE4B1AA7YHSQx5c3c2Wvd09Z+7SW7kyTS+O4T5YHGfdfOveuZH9idZST7nr79O4vufaXK7hwjef8ndz5UvOSudwoWftKR//B25FcPflpzZ2bNvPXhZ+3OkkjXkbemNux45u6rv/j8P9mdZST7nvnTb8/9zI83unKmBOzOksiRX3/tf6mujFOzbn34DbuzxDNDurd1X9nfhgNb0X1iG6QD2ytKT2xg6BLRTAB9dqdIwAIQgjOzAdGVFwvOzTd47r9OzQdE/9U7COdmNIWimro7y5mrWIpuQsBybL5zHJ5PKqrLcGxGoZiA4tjfg0LTIwCkU/PFqLon4tiMQlhCcd73WEhNFcIDCB3OO+mH0hn3wBARERERUdpgA0NERERERGmDDQwREREREaUNNjBERERERJQ22MAQEREREVHaYANDRERERERpgw0MERERERGlDd4HhojI4YKBs97mXT9b1NdyaJYZDGQJRY/ovrzOnFnXH5i8eP2HEJoj7wBPREQ0EdjAEBE5WGPts/Oadv30M5YR8sU/Huw+g97GfRWt+148Puvj//B8ZvG8HrsyEhERpRJPISMicqimup/Paax5+vOx5sWVWdCQNXXpdv/kBXWK5ukDgFBP48wjLz/0lWDgrNfetERERKnBFRgiIgeK9LZ4Gmue+RykVAAhCxd96lfT1359Z+x5I9ilf7Dpq3820HF8njHYXXjit39/29zPPr3JzsxERESpwBUYIiIHOrH5sWstI5QBAP7Sa2rimxcA0Dy5kTmffOx51eXrBoDe5volPadqCuzISkRElEpsYIiIHKi3cc+S6EjIqav+fEuiGj2zMJQ9Y+UOAICUSsv+X12TsoBEREQ2YQNDROQw3cffLTKDvXkA4Mqc1JA5eWHXSLUFV99+IDYeaD40LxX5iIiI7MQGhojIYQIN+6bExp7cstOj1WaXLuuIbegPD3QWycigOtH5iIiI7MQGhojIYYLdpwpjY5e/sDNZvZ6R0wEAkJba07gnfwKjERER2Y4NDBGRw5iDAX9s7PYXJb2/i+rODMTG4Z4m/2i1RERE6Y4NDBGRw1hmyBUbK7onkqxeqO5wbBwJ9blGqyUiIkp3bGCIiBxGmoYeGwtVN5PVK6o6VGNFBtnAEBHRZY0NDBGRwwhVG1p1kWYk6aZ8yzSHahTdGx6tloiIKN2xgSEichgl7pQwMzyQdEVFxp1yprsz2cAQEdFljQ0MEZHDqN6s3tg43NeWlazeDPUN1biyJ/eOVktERJTu2MAQETmMJ6esNTYO97bkJauPDHRHL50sFDO7ZEnHBEYjIiKyHRsYIiKHySpdfDY2DnadLhuttqehLt8ygpkA4MrIaxG6N+mmfyIionTGBoaIyGFyZq5u0bxZ7QAQ7msv6WvanztSbdv7r1wdG2cUzz+YinxERER2YgNDRORAWSWL34uOpDiz7f+tSVQT6Wt195zYsQIAIIRVtPCT76UqHxERkV3YwBAROVDZ9Ru2KZp7AAB6G9+rOPn2dyvjn48MdroO/eqBPzPD/TkA4C+evzu7rKLdjqxERESppNkdgIiILqb7i4IlK+997szWJ78EKZXW91/+ZPfxbRXunGmnLTPoHmw/fqVlhHwAoGXktMz4+HdeszszERFRKrCBISJyqMlL/scRWOZPG2ueXW8Zwcxwf8eUcH/HlPgaT07p0Vm3PvwLT9aUQbtyEhERpRIbGCIiB5u87O4PJs25+XuNu39+dX9z/SxjsDtHqO6QnpHXlX/F2vcLF95xHEKTduckIiJKFTYwREQOp/uLgtPXPLQLwC67sxAREdmNm/iJiIiIiChtsIEhIiIiIqK0wQaGiIiIiIjSBhsYIiIiIiJKG2xgiIiIiIgobbCBISIiIiKitCHsDnCBBgAlAJYC2GNzFhqVfBnA7eeP6waA8pN2pRnFlQC6AbTaHWQEJQA8AI7ZHWQEbgAzARyyO8go5gI4CcCZN3IUyizNnSkV1dVtd5REzMigT0rLp7l8Tv0zgkiwp1j3ZDfbnWMkRqi3UNEz+hVF7bc7SyJGsDdX0XRV0TztdmdJxLIibisSzNHc/ha7s4zECAaKFLe/XRHCtDtLImZksEBaRlhz+3vszhJPQhGQk4qkNQgzMgPSfBsA7gXEM3Zno/TG+8DQJZLfBuA5u1Mk8DUAewFssTvICO4AMAXO/OwAIB/AV+HcfADwbQBvADhrd5BEBMSfe/JnKP7iBe/bnSWR3rP7poUDLdPzr7ppv91ZRtKy94Wi/Ktudmy+1vdfut5fsvCMJ7u0we4siXQeeXuh6s50Z5dVOPIzDAUac3tO1y128ve4Zd+LN+ZdueaQqnqCdmdJpOv41hUQSlfujFUf2J0lnpSqFu6dVxQZOIr+lh7wjrt0qbCBoUtkxhkAD9udIoHPI/rD7aN2BxlBIYByOPOzA4BZAO6Dc/MBwDcBPIVoo+pA4iZPdol76rVffdvuJImcfPuRSiPYU+DUfADQsu+XNzo5X9vBV8v9UxbVFy+5q87uLIkEGvfma67MLKd+hm2HfjMt0LBvgVPzAUDL/hfXFi/8zDZP3nRHrXDEBM7uu0pz+0467TM0gpq3qW7Kn0BsBrDZ5jR0OeEeGCIiIiIiShtsYIiIiIiIKG2wgSEiIiIiorTBBoaIiIiIiNIGGxgiIiIiIkobbGCIiIiIiCht8DLKREQO131sS3Hz3l8uH+g4PssK9/uFUE3Nm93hL118YOqK++p0f5Ej701BREQ0EdjAEBE52PE3qq5rP/z7j0FaavzjZmQgK3SwaUbX8a2rpv/JN36ef+W6RrsyEhERpRIbGCIihzr59ncr2z9481YAEEIxM4rm7vXmz2yAGdYCDXuvDve1TDODvXknfvd/73H7Cv41s+SaLrszExERTTQ2MEREDtTXfDC7rf7V2wBAKKpRdv2Gfy9c9OnjQwXS2vrBrx+4LXC6brVlBDOPv/0vdyy8+7lnbQtMRESUItzET0TkQA3bnlwjLVMHgNxZ1/1hWPMCAEKRc25/9DUtI68ZAIKdJ6/qOPTGVBuiEhERpRQbGCIip5GG6Gs5uBCIrr6Urvrz6kRlQnNZebPXbo8dtx367aJURSQiIrILGxgiIofpOPx2iRUJZgKAy1982pMzbWCk2oKrP/FBbDzQdnhuKvIRERHZiQ0MEZHD9DYfmBwbe3Knnhmt1lcwJ6C6fN0AYAwG8o1gQJ/ofERERHZiA0NE5DCh7jOFsbE7syjplcU0b9a5GikCZ3ZPmrhkRERE9mMDQ0TkMFaoPyM21n35vcnqVbd/qCbc1+abqFxEREROwAaGiMhhTCPsio0V3RtJVi8UfajGDPe6RqslIiJKd2xgiIicxjKG7tElVNVKVq6oqhkbSyPC+3sREdFljQ0MEZHDCFUPx8bSjKjJ6i0zMrRxX3VnhEerJSIiSndsYIiIHEbR3UNNiBHqcyerl5Hzp5ypuo8NDBERXdbYwBAROYzuzeuJjSO9rdnJ6o1gT05s7M2f2T1RuYiIiJyADQwRkcN48spaY+NQb1PBqMXSEJFgTz4ACEWN+EuuTnrZZSIionTGBoaIyGFyZqwcunnlYFdD2Wi1nUe3Fksz4gEAV2ZhA4QmJzofERGRndjAEBE5TObkhV0uX/5ZADAGOos6jvxhyki17fW/uSY29pdcU5+KfERERHZiA0NE5EA5M1bujI2bav99XaKa/rbDWYEzuysAQChaZPKSu/amKh8REZFd2MAQETnQ1Os37FQ9WR0AMNBxfN4HL95/uxHsGrpcck9DXf6HLz10j2WGvQCQPb1iq7fgil678hIREaWKnTc8ywewHMBvk9TNBFAMYMeEJyIicghV95qz1v3tzz58/e/+QpoRT+BM3aq9T9+xRPflN0sz4goPdEyGlAoAeHJKj17x8X98y+7MREREqWDnCowK4BUAuwDcBsAX95wCYAmAnwP4AEB5ytMREdksZ9b1zVfc+vCPXL5JjQBgmWFvKNA0I9zfXhJtXoT0ly6pnve5f/+J0L2m3XmJiIhSwc4VmFYAuwFUINqoBAFMOvfcGwCsc8dtAP7DjoBERHbLmXldy4joYxUAAAIVSURBVDUzVj/RVv/atJ5TtbMig11ZQtEMT9bkjoJFn6z3FcwJ2J2RiIgolexsYADgMQBPA8g+9xWTHzc+BKAzlaGIiBxFKLJgwSdOFSz4xCm7oxAREdnN7k38LwMYHOX5XkSbHCIiIiIiItsbmCCAzaM8P4Dkm/yJiIiIiOgjwu4GBgAeB9AxwnO/AxBOYRYiIiIiInIwJzQw2xFdablQO6LNDREREREREQBnNDAA8DyACy8B2g+gzoYsRERERETkUHZfhSzmRwC+AKDw3LEJ4Gf2xaE/ghuQZXaHuNgVOlCcC2x1YDYAWOoH+tzAYYfm+04J8BMBnHBoPgCYoQC3TQae6LI7SWIL3Ga4xN3X5M+1O0kiRrA0w7JaFafmi5oGR+ezyhSjf3KGUzNKs8xlGV7NqfnCgcl+yKnCqfkAALJMDLTnZhshv1P+4XcYaZRqlpLlcdpnaEYUjxlWYUV8iN7+j+jSEHYHiHMAwPxz404A1wA4Y18cGp18GcDtdqcgIiIi51PUv4dlfgcA7gXEM3bnofTmpH9JeBKAPDduA5sXIiIiIiK6gJMamP9EdON+EMCjNmeh5L4IoAR4ZYvdQYiIiMjZLNlXBaAEwH/ZHIUuA046hQwA3gJQDmAKopv4yfHk3wD4rt0piIiIyNHmA+Kg3SHo8uCUTfwxjwD4Eti8pJNfAzhqdwgiIiJyNG4NoEvm/wNSbNP5CS6+7QAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "id": "44639340", + "metadata": {}, + "source": [ + "
\n", + "\n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "id": "cf189776", + "metadata": {}, + "source": [ + "### Implementation\n", + "\n", + "The parallel implementation of this method is closely related to the Floyd's algorithm. But there are some differences.\n", + "\n", + "At iteration $k$,\n", + "\n", + "1. The CPU owning row $k$ does the loop over $t$ to update row $k$\n", + "2. This CPU sends the " + ] + }, + { + "cell_type": "markdown", + "id": "9c553ada", + "metadata": {}, + "source": [ + "The computation of the complexity of computation and communication is left as an exercise.\n" + ] + }, + { + "cell_type": "markdown", + "id": "6b17aee4", + "metadata": {}, + "source": [ + "1. **Block-wise row partitioning**: Each processor gets a block of subsequent rows. \n", + "2. **Cyclic row partitioning**: The rows are alternately assigned to different processors." + ] + }, + { + "attachments": { + "fig-asp-1d-partition.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABL4AAAI0CAYAAAATGeCIAAAACXBIWXMAAB7CAAAewgFu0HU+AAAAGXRFWHRTb2Z0d2FyZQB3d3cuaW5rc2NhcGUub3Jnm+48GgAAIABJREFUeJzs3XmcXFWZ//HvU1XdnU5nIyEhCYRVGBYBWRwQERFk2JRVUBxEXAYXXEcUB3QE11FREcF12BQFQWRRGJBNVFBQdhAwkIXsezq9d1Xd5/fHrfzsVN1Oeq17cvN5v155Kae2p+69ffv09557jrm7AGy+zOxsSVdXNX/N3S+oYw3Nkjqrmue4+y71qmFzYmbtklr6NLW5+4S06gEAAEA2mdmnJX2jqvk8d/9WGvUAaSikXQC2XGZ2uqRJfZpud/elI/Teh2tgx3e7pF5JayV1S+p097UjUQMAAACyzcxOkbR1n6Y73X3hCL33oZLGDOCpHZJ6FPdnexT3Z9eMRA3YcpnZREn/lfDQbe7+53rXAwwHwRdSYWY5SVdpw1Evz0kakeBL0i3aMFQbMDNbJ+kFSX+X9Lyk+yQ97gyPBAAAwIZ+KGlqn/8+RtKIBF+SfiFp1lBeaGZtkl7UP/uz90v6K/1ZDMJ4SecntC+URPCFzQrBF9JyqDYMvUIyQdK/Vv6tt8DMbpf0fXf/ezplAQAAIBRmtr82DL1CMl7SgZV/6y02s99I+oG7P5VOWQBQf7m0C8CWx8yaJH0t7ToGaZakcyU9Y2a/NLM90y4IAAAA6TCzBtXOmxS6mZI+IOkJM7vFzPZNuyAAqAeCL9SVmc2U9FtJh6RdyxDlJJ0u6XEz+5SZWdoFAQAAoH7MbKqkX0s6Mu1ahsgknSTpb2Z2oZnl0y4IAEYTtzpi1JjZBMWTfU6TtI+kNyn+JTuQSTpHw/skJQ3rbpHUKGmypB0k7SLp1ZIOUv8/I02SLpH0ejM7w917Rr5cAAAApMnMxkuaImkbxf3DwyWdrPSm7PiokudXGqu4f7qV/tmf3UvSwZIa+nmvgqQvSzrUzE519+oVurFl65D044T25+pdCDBcBF8YFWY2W9Kr0q6jyovu/thAn1xZyeTNkj6k/q/onSzpDjN7q7t3jUCNAAAACICZPSHpNWnXUWX2IPuz4xX3Y89RPPF+0t0Kx0j6nZkd6+5tI1MmNneVlUE/kHYdwEjgVkeMls3+2HL3Vne/2d3fLOm1ild3THKkpCu57REAACBTstCfbXP3W939OEn7Sbqzn6e+XtJ1lZXXASBTOLEBA+Duf5N0lKSPSColPOUMSZ+oa1EAAADAALn7U+5+vOLpP5Km6ThB0oX1rQoARh+3OmK03KB4fq/+nKR47q/Nhru7pCvMbK7iCU2bqp7yZTO71d3n1r+6gTOzaZK2U7yyT0HSMknz3H1JqoX1ozLh6s6Kj5epklzSCklLFdcd1bGOrSv/xkhaK2k5twQAAJBZN0v6y0YeP17StnWqZcS4+1WV/uxvFc8N1tfnzOxX7v58CqVtkpmNUdwXmyqpLGm1pBVZnG/XzJr1z75nJr+rmTXqn98xr39+R+abw4gi+MKocPeNXi0ys320mQVf67n7nWb2QUlXVz00VtK3JJ1S/6o2rhJ2fVjxyLTd+nnO3yT9QtIP3L27juUl1VJQHI6erHjeicn9PHWZmd2hOIi8sxJOjmQdhyju1B6t+PaAmlGyZjZPcaf4Pkm3uPuqkaxhE/Vto3ikYfVttt2SvkGnAQCAoXP3L27scTO7R5th8CVJ7v6AmZ0t6ZfasB/RKOm7kv4tjbqqVYKuExTXc7Tii7fVSmb2tOJJ/++QdK+7FxPe61TF05f09aK7V/fph1Ln8ZLeUNX8F3e/dRDv0awNv2vSsVXs811/K+n+pO86UszsI6rd5l9z99Yhvl9e8Xc7VvH3TPq7JDKz5yU9Iun/FPfx6dNiWAi+gCFw92vM7C2STq166EQz+xd3fzGNuqqZ2ThJn5J0nqRxm3j6gZV/55jZe909acWgUWdmR0u6XANbHGEbSe+t/HvSzD7g7o+OQA2vl/QVSW8cwNN3rPx7h6QfmNndkr7r7vcMt46NMbOtJd2reIWpvroknUQHAQAAbIy731QJbN5d9dBRZra/uz+eRl2SZGYNivt3n1Ny2NVXQdL+lX/nSlptZtcp7o/N6fO8LknnV722s3LHxpph1JqTdJniOxT66m9xrOrXNyq+/fRCbTpIbZB0QOXfRyStMrOfSbpslO46ebfivw/6ulzSoIKvylzIp0r6oqQ9NvH0nOIVSfdSfAx0mNmvJF3q7k8O5nOB9ZjjCxi6/5RUfYUlJ+ljKdRSw8wOlvS0pIu06dCrr90l3W9mR4xGXRtjZp9RfGVnKCuCvkbSn8zsXcP4/LyZXSrpTxpY6FWtoHiE2O/M7KKh1rEpZraVpHuUHHqd6O6/G63PBgAAmXK+4v5DtY/Xu5D1zGxbxaPpf6hNh15JJivuj//DzPbt036XpJernjtW0tlD+Iy+jlFt6PWcpAc29UIzm6V4ZNP3NbTRg1MUj/6fbWbV/cIgmNkExaPTbtKmQ68kLYoDuCfM7OSRrA1bDoIvYIjc/RXFt9hVOymAFR5PlvRHSTsN8fVjJN1mZnVbwtvMviHp60peZluK5zZYqnhOsv5uaWyQdK2ZDXqhgcpy37dr5Dp6LSP0Phsws4mS7lbt8uqdkk4Y7ZFmAAAgO9x9meKpLqq9tTL1RF2Z2f6SHlU8emu48pKa1/9HZV7YHyY874PD7Lufm9B2+aam4DCzAxWHXiPR384r7r8Hxcx2kPSQpONG6C0HczEf+P8IvoDh+XlC20yNzC/r4dhdtbcyr5V0naTPSnqXpLMq//9+xaFStXGSflKPZa3N7CxJn054qFvSpZJeJ6nR3We4+3TFAdfhkn6i2lU2TdK3zOyoQXx+QdKvlPxLuaz4CtW/S9pT8VXEqZL2lnS64rnelg/0s4ajcuvqnaqdn2J96HVvPeoAAACZktSf3UrS6+tZhJntJul3ivvS1ZZL+rbieaF2kjRB8WiwgxQHT3creaXKalepdoTbbpLePMSad1Y84quvtZJ+tonX7a74u85IeHiZ4nmDj1I8ncb673qwpI9WXhf8BPdmNkXJdyhIUrukHyue02w3xd9xhuJbON+jeGGJ9vpUii0Bc3wBw/N7xbc7NlS1HyzpsbpXk+yvkr6qeGLI3oTHv14ZBn6dan8xHSjp/Yp/MY0KM9tJ0vcSHnpa0inuXj0kXe5elvSgpAfN7PuSbpW0Q5+n5CRdY2b7DHCy+c8peRLXRyS9392fTXhspaRnJd1UmYfi3xUHif8ygM8bNDMbq3iY+CFVD3VKequ73z8anwsAADLvIUkdqh2tfrDi/taoq8xz9UvFt+5Vu0zSfydMqN4maZHiEWLfryz685+SPiRpfNLnuPtqM7te8dxRfX1YcUgzWB9S7WCSq9y9o78XmFmTpBsVh4vVLpX0BXdfV9W+/rs+IulyM5uueB7fDyrcUVBXSto1of1Xkj7u7our2tsU393xuOJ+/HjF++U/tZkuioZwMOILGAZ3b5OUNJH9nvWuJcFixZOc/6u739pP6CVJcvenJB0hKWlSzNGe4+Griq/y9PWCpCOTQq9qlUkuD5e0pOqhmYonCd0oM3uVpAsSHvqdpCP6Cb2qayi6+zWK9/snlTxXxpBVVjS6TbXzjnVIeguhFwAAGKpKH/GZhIfq2Z/9mJJv+fuku398IKsIuvsydz9f8XxbN27kqVcktL2lMt/WgFVWYXxPVXOkeL6ujfmk4jsH+nJJH3P3TyaEXjXcfam7f1rSLopHRwXFzE6UdGLCQ5dLOj0h9Krh7m3u/nXFI/y+q3jbAkNC8AUM3+yEtqSleevpAUmvdvfbBvoCd1+h+KpVtT0r8y2MuMrkpdUrY0aKR1mtHOj7uPs8JS8q8N7K1aKN+ZxqR+wtlPT2wa6M6O6Ru18qaT/FV+SGrXIF9GbVDsHvkHS8u29y4lQAAIBNSOrPJo3WGXGVAOmzCQ9dU+lXDYq7r3T3t0t6u6Sakf+V1SqrVy8vSDpnkB/1DtWOULtzYxduzaxF0mcSHrrS3ZPugNgod1/u7m+T9E5JQ16ZchRcnND2R8UjvTY691k1d+9090+o/4v0wCYRfAHDtyyhbVLdq9jQX4ayLLO7363kWzTfNvySEp2j2tDpN+7+0GDfyN1/pfi2zr4mKp7PLJGZTVLcKar2CXdfO9ga+tTyYqWeYancQvlL1c491i7pOHevy+0HAAAg85L6s0m34o2GU1UbIK1VvFrhkLn7je6eFOhJyaOy3l+54DhQH05o21R4dZpqt+tqxbctDpm7Xz+QOyXqobKy/L5VzesvbA951Ja7P+jufxpWcdhiEXwBw5c08eKmRhmFLGmlygNG6bOS5tW6bhjvl/TajU1yf7hqV8BZovi2wlSZWV7StZJOqnqoQ/FE9n+of1UAACCjkuakqld/9tiEtp8P5PbGYbhRtWHfdEmnDOTFlXDnwKrmf2jT84QlfdefDeT2xs1I9WT/knSPu/+j7pUAFQRfwPAlrYi4OS8ckbQy4Egss7yByrxV+1U1u+JVeYbqjoS2QzayRHX1nFmS9Et3r14psq4qK2leI+mMqofaJB3D7Y0AAGCEJfV96tWfPSyh7YbR/MDKvGZXJjyUNO1HkqTnXTaA2/jq/l1TkPQdr697FUAfBF/A8FWvgCNJm/NVmxcS2qZVliQeSa+R1FTVNreyYMBQzVEcDvU1TfGkmEkOTWh7dBifP2yVkO4nks6seqhN0rEM8QYAAKMglf5sZXXv7aqaS4pX9httP1LtBezDzKx6lfMNmNlUSadXNa+T9NNNvG5XxaPK+uqV9MSmS908VKbpODjhoerpSIC6IvgChi9p/oPRHJo9qipDrVckPDTS8zzMTGhLCt0GrHKVLWmVzW37eUl1R0uSnhpODcNRCb2uUO0S2+sUj/Qa9NxnAAAAA5BWfzapL/aPwS4wNBTu/oqk3yQ8lDR3V1/vVe1UGdcM4OJt0nd9wd17NvG6zckUSc1Vbd0aZh8fGC6CL2D4dk5oe6nuVYyspI7OhBH+jNHqYCVNSt9faDc5oa1m9Z86+rZqh863Kw69Hk6hHgAAsGXYJaGtv4nhR1LSHQUDXtl7BFyR0PYuM0vs91amo/hAVbMrebL8aml/13pI+o6rhzOpPTASCL6AYaj88tsj4aFn613LCKvHhP1JYdRwbnPc2HvUfJaZjZOUtHJPKqP1zOx/lLx6UbNqh8UDAACMpD0T2p6rw+cm9QfrOWXIfaodjTROtVNOrHe8aqfQuMvdk+44qJb2d62HLeE7YjNE8AUMz2skTUpof6TehYywfEJb1wh/Rn8Tzg9X0qSiSZ/V3/lvU5OSjobxks7v57G8pOvN7Ig61gMAALYQZrabkqegqEd/NqmPVre+WGWajB8kPNTfJPfnJrRdPsCPS/W71klS/zpr3xGbIYIvYHhOSmhbqpQnSB8BExPaRnoo9pqEtpEYVZY0ND3ps9okFQf4+nqrnuuhSdKtZvbaNIoBAACZltSfXSvpwTp89uqEtqR+6Gi6VrV3O7zazDZYnbAyOf2/VT1vtqS7Bvg5IXzX0ZY0ZUjWviM2QwRfwBBVVi15T8JDt2TgPvakYcojPfdVUhiVNHpusJLeo+azKlf4kjogI7165WC44tsdT1S8yk9f4yXdaWZJtyIAAAAMWmXajvcnPPQbd0+6QDjSkvpiSXOwjhp3b5V0XcJD1ZPcf0i1o7auGES/P/XvWgdJ33GrynEGpIYDEBi6D6t2dRbXwIc7B8nMZql25NU6jfz9+UsT2pLmSxuwyi/Vf0l4aEk/L0kaxbbvcGoYhrKk/3D377r73ZLeLam6I7W1pLvNbIe6VwcAALLoPZJ2TWi/rE6fn9QX+xczq141cbQlTU5/splNlyQzGyvp7KrH2yVdM4jPSFo1fQ8zS5pzdnO1WrX912YlH2NA3RB8AUNgZrtIujjhod+6+9/rXc8I2y+h7fHKCKmR9LhqbzXcwcz6W4FxIHZRbWi3Sv2vsvlMQlsatxNGks509yvXN7j7DZI+nvDc7ST9zsym1as4AACQPWa2naSvJTz0gLv/rU5lzJbUXdXWoHge3bpx92ck/aGquVH/HA33TtXeEfHTymixgfqHakf0N0naZxDvETR371H8PasxXQdSRfAFDFIlmLlZtfer90r6TP0rGnEnJLTdO9If4u5dkp6oajbFq+UM1VsS2v68kdDu4YS201IYjt1RCbo24O6XS/piwvN3k3SXmTFnAgAAGDQzGy/pV5KmVj1UlvSpetVRuZ3yrwkPvb1eNfRxRULbOWZWUO2k9oO+y6MSCiUFiml819GU1L/O2nfEZobgCxgEM9tW8bLHSbfDfcPdq5dD3qxUOkGnVzW7pF+P0kfel9B21jDeL+m1GwvtfqPalWa21/DCtxHl7l9Q8mpD+0m63cya61wSAADYjJnZNpJ+J+mghIe/5+7VFyZH220Jbe+q9Evr6RZJi6vaZikeFVc9Au1ed39+CJ+R9F3PMrOWIbxXqJK+47FmtlPdKwEqCL6AAbDY2yU9qeRbAf+o5JE5m5uvqPZWwbuH+It9IH6k+MpiX0eZ2VGDfSMze6dqOyXtilfqSeTu85Qcvl06nA6Ime1kZqcO9fUJPiLpxoT2wyTdWFloAQAAoF+V/uxJivuzByc85a+S/qu+VUmKJ5avvgVwipJvwxwwMzuxshLjgFRGn/044aHzEtq+N8SyrpLUUdU2TXEffMjM7JTKVCwh+D/Vzq+bV/I8agNmZgeb2aHDeQ9suQi+gI0ws4ZKB+EJSTconly82lxJp9Vp5ZtRY2anqXYYtyR9e7Q+093nK/mq0A/XTyY6EGa2s5LrvNbd127i5V9PaNtZ0k8HO9momeXN7BzFx0tSh3JIKqsFvUvJo9feIukqVssBAABJKv2T4yU9onhUU1Ifa5GkU929er6tUefuy5Q8SfyHzCxpBfWNMrOtzewnkm7V4Ffr/olq56CtNkfSHYOtS5LcfaXiC7/VPmpm7xrs+5nZVDO7UvE0LMOZJ3fEVP4mSuqXH2NmXxrs+5lZi5l9WfFAA0aNYUj4QwmoMLOcmc0ys8PN7Bwzu1Hx6iu3qP+V/l6QdFjlF3ZIjjazYwYShphZo5l9VtL1qj0n3KFRmN+ryoWSOqvadpZ030Cu0pnZvpIekLRN1UMrJH15U69393uVHL6dIunOgVw9qxw7b5H0mOLOzIjPveXuvZJOVvI8GGdKunSkPxMAAGxeKqO6tjWzw8zsfWZ2vaTlkn6r/icYn6u4P7ugboXW+oLiBYn6ykm60sy+VFlVcaPMbKKZfVrxhPnv39Tzk7j7YsV9/435fuWi5FBdImlNVVtO0jVmdtFAprGofNfzFX/X9w6jltFyuaQXE9o/Z2ZXmtkmA0kzazKz9yn+e+tCSYURrhFbEA4ejAoze4ekCRt5SnVIIUknmNleG3nNjQMYvbMxN5pZ0lWsFsWrtkxSPLn6QN0h6ezKlZvQ7K94mPErZnaLpN9Lek7xktEdiq9+7SDp3xTPi5UU7iyX9L5RWM1xA+7+gpmdp9rhz3tKetrMrpB0vbs/tv6BSqB3kOJRUP+h5HPZ+9196QDLOEfSAYpXTOzrSEl/N7MbFHcYn1I8dNsVTwb7aklvVBySjfoVKHdvN7PjFF/x2r3q4Y+a2Wp3v2i06wAAYEtgZm+TNHkjT9k2oe1YM9thI6+5xd1XDKOsq82sK6F9rOIVAgfbn71P0rvcvfrWtLpy96Vm9n7FI5f6Xog1SZ+TdLaZ/VzSXZJeVtxPHat4btZ9JR2reBT8uBEo5wrVznm7Xofi2xWHzN2XVO4QuFEb7quc4gDwvVXfdYXiv1dmKZ7W41jF89GOxHcdFe7ebWb/rnilzOrQ8r2STjaz6xT/vfK84v3ZIGmG4v35ZkknKfluG2DQbJT/psUWysxeVjxqZyTtOdC5psxsjeJf/KNhmaSLJf1wtEOhgTCzsyVdPcJv2y7pLe7+4ABraFbtqK057j6guQbMzBRP4P6BjTytW/G2N8XBadNGnvtVd79wIJ/dp4a9FI9uG/Atlptwibt/up/PalfcgVmvzd03FhRXv357SQ+pNqiTpI+5+1DnnQAAABVm9pSkfUb4bf/V3ZNGbyd9/iuKw47RsFLSVyV9d5ijl0aUmX1I8Wihkboz6XXu/pch1PG0pL0THvqRu39w+GVJZvZRSd/V4ILKjXmtu9esGlkZBfeNqubz3P1bm3pDM/urpAOrmme5+8KBFFS5xfZXksYM5PkDcJa7/2yE3gtbEG51BAZuieLlnXd29x+EEHqNklWSjhxo6DUSPPZBbfzWxDGKR6ltr/5Dr0jSBYMNvSo1PCfpECUvMz0UwxmduFHu/oqko1V7S4AUT8x/5mh9NgAA2KytkHSB4v7sd0IKvSTJ3X8g6TSNTD+qV7UTyQ/UFf20Xz7E96tRuVD5dkmtI/B2Paq9CJ06d79D8eitkbiNNtLIbCtsgQi+gP4VFd8e+E1Jb1B8dePb7h7cL5UE1yi+FXOw4dxvJB3g7o+OeEUD4O6fV3zb4FB+OT4v6Qh3H/IKQO4+V3H49UHF810MVrfiudIOdvdhrc6zKe7+d8VD+qs7dDnFk92/dTQ/HwAAbBZKiudI+o6kN0ma4e5fc/e2dMvqn7v/WtJeiucvHUq/e4ni1dZ3dPdnhljGvIS2B9z92SG+XyJ3v0nxd71MUtItrJuyWPGdKDtW+obBcfeHFI+eS5rHbSDWKt4+/+Lut49kbdhycKsjRoWZfUUjf0/2RQOdf8DMvqPa+8mTdCq+QtKquGOwVtJCxRNFznP30hBrrRsze52ks6uaL3P358zs1ZLerXhS9P5uO+yQdKeka9z9ziHW0KDaK2ArhzLyqvJ+jZLOkHSipKPU/xwGayTdrXg+iFvcvTyUz+unhoLiuQWOVDyP1x79PHWBpL8oDhpvdfdNXokys8u04ai1bnf/+BDrfLPiK6PVuiR9PuSOLQAAITOz/1byPF7D8TV3nzfAz/8fDWylvvX92XXasD/7kqS5m/PK42Y2VdI7FPfFDlM8x2q1kqRnJT2suE/44HD7hGZ2h6TjqppPcfdNTXw/nM+cpg2/a9LfUuu/658Uf9c/bGrUnpn9m6RTq5p/5e73DKCmCxTfcdHXZ929enL+ATGzcYpHuR2u+Hsm3crriifG/4vihQbudveeoXwesB7BF7CFMLNtFE8YP0XSeMVD3RdJesHdh3KFqS7MrEnSbpKmKZ5/yxVfyVsu6cV6hZNmNkbxtpuiOLRqVRzura7H5wMAAGzpzGyC4kBoiqSypNWSlrp70gJWQ/2MPRTf9dF37q35knYZyYusA6hjguKgb7LiwGuNRvi7ps3MWhTvy60l5fXP/TnUW1SBRARfAAAAAABIMrOfSHp/VfP57l49QTyAzQTBFwAAAABgi1e5tXK+pOY+zV2K5/odyvxUAALA5PYAAAAAAEjnasPQS5J+TugFbN4Y8QUAAAAA2KJV5pWdp3hO2b5e4+5P1b8iACOFEV8AAAAAgC3dWaoNvf5A6AVs/gi+AAAAAABbLDMzSZ9IeOh79a4FwMjjVkcAAAAAwBbLzI6VdGdV82JJO7p7MYWSAIwgRnwBAAAAALZk/5nQdgWhF5ANjPgCAAAAAGyRzOzVkp6WZH2aeyRt7+7L06kKwEgqpF0AAAAAAAApKUl6e1XbSkIvIDsY8QUAAAAAAIBMYo4vAAAAAAAAZBLBFwAAAAAAADKJ4AsAAAAAAACZRPAFAAAAAACATCL4AgAAAAAAQCYRfAEAAAAAACCTCL4AAAAAAACQSQRfAAAAAAAAyCSCLwAAAAAAAGQSwRcAAAAAAAAyieALAAAAAAAAmUTwBQAAAAAAgEwi+AIAAAAAAEAmEXwBAAAAAAAgkwi+AAAAAAAAkEkEXwAAAAAAAMgkgi8AAAAAAABkEsEXAAAAAAAAMongCwAAAAAAAJlE8AUAAAAAAIBMIvgCAAAAAABAJhF8AQAAAAAAIJMIvgAAAAAAAJBJhfX/x0wflrR9irX0NVGEcgAAhOYJd/0w7SIAM71L0l5p11ExXn361AAAIAgvu+sbkmTuLkky08OSXpdmVQAAIGi/dtepaRcBmOnXkk5Ouw4AABCsh931ekkqmOkd0oOzzHY6wD2UAV8AACA0lnv2WLP8h6Q9FrvrtrTrwZbHTCdJL063XPkYj/ZMuxwAABAos/kHms37tPTGBSZVhnwBAAAMzDJ3TU+7CGx5zLRM0rS06wAAAJuPmvkImlqkxjFplLJx7avnadzkHdMuo18daxd687iplis0pV1Kou725crlG9XYPCntUhKVip3q7VzrYyfOtLRr6U/4x+AiH9My2fINzWmXkqinY6WknDe1TA5yH0flXnW1LVPLpFlpl9Kv9jXzNW7SLMnCnAKxs3WxNzZPtEJjS9qlJOrtWqOoXPIx46YGeQzKXe1rXtG4yTukXUmNnk6ptyvtKoBajc1S09i0q6jVvnq+xm21vWRhnm46Wxd5Y/NWVmgMcONJ6ulcLXf3MS1TgtyAHpXU2bpYLVuFe7dM+5r5apm4nSyXT7uURJ2tS7xxzHgrNI1Lu5REvV2tKpd6vHn8tCCPQalyngmwz7Bex5oF3jxhuuXyDWmXkqirbakKDWPVMGZC2qUkKvW0q7en3cdOmB7wMRjm38e9XXHfta+aEV8HnSjtfXgdqxqgn1042d/1ldXB7vQbv7Jb8Yizrm/YetYBaZeS6P6fvkNTttsv2veI84P8i3nB83fq8bsuLp34yUeCnRz2pxds5Wd9ZbWF2om9+Zv7FF934ncaZu52ZNqlJHr45o8oX2gqHXTit4Lcx6uXPK37rj6tfNoFL4bZQ5T0889vE512wYu5UAPs2y49uLjvEZ9p2HGfU9IuJdHjd1+stlVzim9857VB9sBKxS7dcPGs6MwvrwzuPP3IbdIzv9+giRFfSEX1iK+93yQddEKKBfXjus9tHb3jCwtyhUAvRt3yrf03V+wPAAAgAElEQVR7Dzz2S42z9jw+7VISPfqbz6jU01485G3fD/J83b5mvn57+eHROz4/N7jz9Xq/+MLM8snnPZ5vHh/mqfo333tDac/Xf6iwy/7vTLuURM/cf4mWL3i0eOS7bwzyGFQU6br/nuZnfnllmH+YSLrhSzuWjvnAXYVJ03ZPu5REd//vW6NZux+T2/PQc9MuJdFLj/1csx+9unjsh+4N8xhUuBnNMw9Ij9y+YVuwJ2sAAAAAAABgOAi+AAAAAAAAkEkEXwAAAAAAAMgkgi8AAAAAAABkEsEXAAAAAAAAMongCwAAAAAAAJlE8AUAAAAAAIBMIvgCAAAAAABAJhF8AQAAAAAAIJMIvgAAAAAAAJBJBF8AAAAAAADIJIIvAAAAAAAAZBLBFwAAAAAAADKJ4AsAAAAAAACZRPAFAAAAAACATCL4AgAAAAAAQCYRfAEAAAAAACCTCL4AAAAAAACQSQRfAAAAAAAAyCSCLwAAAAAAAGQSwRcAAAAAAAAyieALAAAAAAAAmUTwBQAAAAAAgEwi+AIAAAAAAEAmEXwBAAAAAAAgkwi+AAAAAAAAkEkEXwAAAAAAAMgkgi8AAAAAAABkEsEXAAAAAAAAMongCwAAAAAAAJlE8AUAAAAAAIBMIvgCAAAAAABAJhF8AQAAAAAAIJMIvgAAAAAAAJBJBF8AAAAAAADIJIIvAAAAAAAAZFKhumH+s7dHna0PRmkUszFRuVh45LZPldKuoz+l3o7Cs3+4tNw8bpqnXUuS1Yueyne2LrbutuVBbsO21fOsY+3CfMj7WB4VHrn9vGDr6+1cW3j+4R9FC56/M7ifX0laNvfhvOVywe7jzral6u5YGfR5JvJy4bH/++9SLt+QdimJutYtLcz+60+jZXMfCvIYXD7vz7ne7nXB7mOPyvIoCrK+JS+dmJMO42IZgrPkpQejR267PbhzjkdR4W+//WzJcjVd7SD0dKxsePEvV0WLZ98f3LaTpKVz/piLSr1Bng8lqdjTpt6uNcHWJ0lRVCo8cfcXS/mG5rRLSdSxdmH+pcd+Ea1c8FiQx+CKBX/LdbUtC3ofl4pdQddXLnbnn77v6+WmsZOD/Pu4denz+XKxy9tWzSmnXUuStcteyLWueCnofRzqeXrFK4fnpLdu0G+t+W3sUTlXLvUE17mNSkUvl3rC7D1IKvV2RMWe9nzjmIlpl5KoVOpSsact2G1YKnaqVOoKtj5JKpd6gq6v1NsRFXvbgvz5leJ9bFKw2zAqFeXyYOuTJC+XvFTsKuQ9yD6iSsXOqLd7XcDHYJeKPe1RqPvYo7KiqBTkMeheTLsEING05Qty+7b9Mbhzzj+62/zVTz9UKAR6c8XCtlXRti8/mdtpwYIgC+zpmq/uqOj7dv4xuPOhJLVHPZrX3en7PhlmfZL0Umer7/bMw4Vxuca0S0m0pG1FtE3XM7ndFy8P8hh8qmuRVpTbo5D38exiUSHXt6CzzXd/4bH8hNyYtEtJtLx9uW/d0W37LF8X5DZ8qWeFOntXBn2emV3sDbK+v/fsoKVVbTVF7rjPydr78JPrVNLAvfz4L3TIqZenXUa/Fr7wu/J+R30ut/WsA9IuJVF3x0pN2W4/3/eI8y3tWpIseP5O9XSsLh9y6uXB/eCs99JjP9chp3xPsiA3oZbM+UN5n8PPy83c7ci0S0n08M0fUb7QVD7oxG8FuY9XL3laqxc/FR1y6uX5tGvpz9wnb/KDTvimNTZPSruURCsW/K281xs+kttxn1PSLiXR43dfrLZVc8qHnHp5kJ3sUrFLc5+6yQ859fLgTjKP3CatWpR2FUCtQ8burM9OPS7tMmrc0facf27qMTbGgvyVpye6FpbO3urgxje17Jp2KYm+vvIedZR7SxdNOy7IIc6LSq36a9crftG044I7X6/3u/YXovO3fnN+amFc2qUkerFnWXTGpANzJ4zfO+1SEv1kzcN6qmtx+aJpxwXZZ4gUn2dCPgYf6JhdPnfyYYVdGrdOu5REi4utfljLq+zMSa9Nu5REt7c9o5tanwz2PChJv2l7VhdNC+938P+u2V2Pd23YFuQPMgAAAAAAADBcBF8AAAAAAADIJIIvAAAAAAAAZBLBFwAAAAAAADKJ4AsAAAAAAACZRPAFAAAAAACATCL4AgAAAAAAQCYRfAEAAAAAACCTCL4AAAAAAACQSQRfAAAAAAAAyCSCLwAAAAAAAGQSwRcAAAAAAAAyieALAAAAAAAAmUTwBQAAAAAAgEwi+AIAAAAAAEAmEXwBAAAAAAAgkwi+AAAAAAAAkEkEXwAAAAAAAMgkgi8AAAAAAABkEsEXAAAAAAAAMongCwAAAAAAAJlE8AUAAAAAAIBMIvgCAAAAAABAJhF8AQAAAAAAIJMIvgAAAAAAAJBJBF8AAAAAAADIJIIvAAAAAAAAZBLBFwAAAAAAADKJ4AsAAAAAAACZRPAFAAAAAACATCL4AgAAAAAAQCYRfAEAAAAAACCTCL4AAAAAAACQSQRfAAAAAAAAyCSCLwAAAAAAAGQSwRcAAAAAAAAyieALAAAAAAAAmVSoblgy+wF59Nc0atmocm+Xnr7/G2mX0a/ertX5F//yv1o8+760S0m0ZvGz6m5fbiZLu5REq5c+p/Y18/Mh7+NyqUdPP/DNtMvoV2/H6vycJ2/UyoWPpV1KohXzH1W+oTkX6j7uaF2k3q61wdYnSeVyrz33x8uUL4xJu5REHWsX5uY88UutW/lS2qUkWvLSg+puXx7seSaKSiqXixZifSsWvEnSa9MuA6jxdM8i/XjNQ2mXUaPbi3bVmodVsHzapSRaUWrP/2bdM5rduzztUhI91rVAnVFvPsR9K0lry11qLXdZqPVJUmfUm/vZ2kc1Lt+UdimJFhfX5R5on62lpXVpl5Lozx1ztaLcngt5H/dExSDPf+t1R8XcTeue0OT82LRLSTSnuNJKHZE6vTftUhI93bVY83pXBXselKRiVAryGHy0c2ZNW03w1b52UXnlgseiulQ0GLlcw8oFjxXTLqM/lisU1q18udzTuTq8bSep2NOWt468hboNO9ctyXlUzoVanyTlcoWgj8GoXCy0rphd7u1aG+Qx2Nm2JF9obAn2GOzuWKlyqSfofWxmDasWPlnM5RvSLiWZe6GjdWEkqZx2KUm625fnS72dwR6D7mWZWZDHYNe6PfNilDgCtLbhlWjeuPuCO+c0tnrD/HG/L+bDvN6ofIcX1ox9Jpo39tngtp0kdfR6vuyyeeOWB3c+lKT2kqQ2b5g37r4g65OkxnXesKDlj6XmgnnatSTpbfPCijGtUfO4MI/B5b3Kd5rnQj0GJclXh30MWpsKC5v/XFrXqDCPwQ4vtI9Z7fPGvVxKu5Yka+S5qKxcyPtYa8I8BteU9s+pQxtceaoJvnZ97Zn5vQ8/M7jLUz+7cLIf8e5fBvrXnnTjV3YrvvYtX2vYetYBwW07Sbr/p+/QlO32i/Y94vwgt+GC5+/U43ddXAp5H//0gq38iLNuaJCF2Yu9+Zv7FPc76sKGmbsdGeQx+PDNH1G+0FQ66MRvBbmPVy95WvddfVo55GPw55/fJjrsjKsaGpsnpV1KotsuPbi49+Gfathxn1OCDEgev/tita2aU3zjO68Nch+Xil264eJZUYjH4CO3Sc/8Pu0qgFonzPLcN17rwZ1zpv5C0U8P84bmIH8jSwfcpt7P7K3G42eFt+0k6fy/SW1FFb//Og/ufChJ89ulN/2fohsOD7M+Sdr2BpV/9HoVpjcHmTnosDtU+uAeXnjnzmFeVLnkWenRFSqGuo8jSdv8Qh5qfZK0000qffsgFXafmHYlyU64R9HR2yl37h5hbsOfvyxd/VK4x6AkTQn0GLzk2UhPVd3EGOSJBgAAAAAAABgugi8AAAAAAABkEsEXAAAAAAAAMongCwAAAAAAAJlE8AUAAAAAAIBMIvgCAAAAAABAJhF8AQAAAAAAIJMIvgAAAAAAAJBJBF8AAAAAAADIJIIvAAAAAAAAZBLBFwAAAAAAADKJ4AsAAAAAAACZRPAFAAAAAACATCL4AgAAAAAAQCYRfAEAAAAAACCTCL4AAAAAAACQSQRfAAAAAAAAyCSCLwAAAAAAAGQSwRcAAAAAAAAyieALAAAAAAAAmUTwBQAAAAAAgEwi+AIAAAAAAEAmEXwBAAAAAAAgkwi+AAAAAAAAkEkEXwAAAAAAAMgkgi8AAAAAAABkEsEXAAAAAAAAMongCwAAAAAAAJlE8AUAAAAAAIBMIvgCAAAAAABAJhF8AQAAAAAAIJMIvgAAAAAAAJBJBF8AAAAAAADIJIIvAAAAAAAAZBLBFwAAAAAAADKJ4AsAAAAAAACZRPAFAAAAAACATCpUN0TlkkqlUhq1bFKp1J12CRvhisq9wdboUaQoKgZbX1Qqyj0Ktr71SuWetEvoX+SKyuHuY4/K8ijcfRyVeiV5sPWtF5V6Aq4x7PNgFJXkUTnc+krx+SXE+iIvKKHLAKSu5FJ3Oe0qkvWUJUu7iH64ZL0Bb7tSFPa+7Y0kV7j1rdcThVujSyoGXF/RpUjh1ueV/w21vvV6A97HkcI+zxRdKivc+tYLsb5SVNtmknvfhrG5C3xM7rJ61TRgbeVuG58f45t+Zjp6o5LlLed5C3MQXUe5RwXLW1OuEOQ2LHpZPVHRxgW8jzvKPdaSbwq2vm6PrCB5IdBjsL3co4LlbEyuIchtWPJInVGvTQj4GOyOSjYm0J9hSeqOipa3nBosH2SN3VFRLrfmXGOQ9UlSV1S05gB/Rjqjr1p39LG+TcvcNT2terDlMtMySdPW//fYpkvUMubTwf3MdHTLWprkoSZf3T2yfF7eEGie3dktyWRjmxTcvpUkj6TWTtmkcWHWJ0ldPbIxjXIL9Bjs7JYVClJjIcxt2NEVB8TjmsOsT5LWtMu2CvgY7O2VFQryXJh/mqitU2pskDU1hLkNe4pSb1E2fmyY9UlSa4dsYkt49XX2nKeO7m9ucPar+XX38SmH2/u2aqxfVQN0wMvf8Ed3Pi/QU7f05nnfK146/W0Nrx4zI+1SEn18ya+0V9PM6JzJhwR56vl9x2x9b9WDpZu3f3+gXTBp/5e+7o/sfF6o/QcdP/8HxQunHtNwyNid0i4l0UXL71STFUr/NfXfgtzHL/Qs00eX3FS+Z8eP5NOupT8HvXxJdM+OH8lNyI1Ju5REb3vlyuJ/TD6k4ehxewT5Y3LZqge1sHdN8RszTmpIu5Yk3V7SG+Z8J3p05/OCO09/bcWBunJN2lUAtT58rPTNs8OLl7Z+l6L5/6tcc3hdaknS/p9S75fOUOPxB6ZdSbLPXCu1d6n4/Q8qyPP1/BXS4RcqmvvjcKeNmfkelR//tvLTt0q7kmRvuEClDx2jwjsPC+/nV5IuuVV69B8q3viZMI/BKJKmvVu+/Nowt58k7XiOSnf9twq7b5d2Jcne+mVFx+wvO/e4MLfhzx+Urr5PxXu/GOYxKEmTzwzzGLzkVunT12zYFuzJGgAAAAAAABgOgi8AAAAAAABkEsEXAAAAAAAAMongCwAAAAAAAJlE8AUAAAAAAIBMIvgCAAAAAABAJhF8AQAAAAAAIJMIvgAAAAAAAJBJBF8AAAAAAADIJIIvAAAAAAAAZBLBFwAAAAAAADKJ4AsAAAAAAACZRPAFAAAAAACATCL4AgAAAAAAQCYRfAEAAAAAACCTCL4AAAAAAACQSQRfAAAAAAAAyCSCLwAAAAAAAGQSwRcAAAAAAAAyieALAAAAAAAAmUTwBQAAAAAAgEwi+AIAAAAAAEAmEXwBAAAAAAAgkwi+AAAAAAAAkEkEXwAAAAAAAMgkgi8AAAAAAABkEsEXAAAAAAAAMongCwAAAAAAAJlE8AUAAAAAAIBMIvgCAAAAAABAJhF8AQAAAAAAIJMIvgAAAAAAAJBJBF8AAAAAAADIJIIvAAAAAAAAZBLBFwAAAAAAADKJ4AsAAAAAAACZRPAFAAAAAACATCL4AgAAAAAAQCaZ5N63YUL+81FL7ntRWgX1p73cUxiXbyqlXUd/uqLeQpMVopzlgtt2ktQR9eSbVFAhly+nXUuSopet6OX82FxjsPs49GOwM+rNN1uDm1mQx+C6cle+2RrVEOgxWFLZusulfND7uNxTGJtvLEvmm352/XWWe/NNuYLnAz0PdkfFnEnWlGsI8hiUZB1RT74lF94xuK78lVxHdG7fi2XL3DU9tYKwxTLTMknT1v/3tInfjrbd+tPBnXNeWhwVdpmeK1tOQZ6v5y+PCpPHWTR+bJh9hiWrPB+5a9utc0Ger3uL0stLo8Ies3LBna/Xm7M0Kmy/tZULhTD7DPOXRfmJLaZJ4yzIfbx8ree7etx22Cbcffzc/Kiw1w7h1jdvWVSYvpWVxzSGeQzOXer5CWOlKRPCPAbXtHludbvndpkR7j5+fkGY58Fla8/LLV719Q0GeRWqn/TOiQfkTpt4VnAjwU6e/xO/bruzauoNxdkLrytfOPXo/K5NU4PbdpL05eV36VWNU/0dkw4Ichs+2jVf1655pHzFzNODrE8K/xj8j4W/KH14ymGF/Zq3C/IY/M7K+9Wcayp/cPLrg9yGL/eu1JeW3xVds92ZQdYnSae/cpX/aOYZ+ZZcY9qlJPrY4ptKp0/cv3Boyy5BHoM/XfOolpTWlc6f+uYg93Gvl3XGgquDPM/8cPUeuqk17SqAWuN2eltuxiH7BnfOee6qU3ybo67P5wtNaZeS6OVffrA0YZ8zC9N3OTS4bSdJqx/6gUo97eUZR3w6uPOhJHW2LdOcWz4RzTj6+iDrk6S/X/v2aOrh38+PaZmSdimJ5t38ifL4PY/Nz9jj6CC3Yefjv1Bx2QulGUd/Mcj6JNezV53qM47+daD1SS/87N/LU1//5fy4yTulXUqihb/9rI/d7gCb8ZrTgtyG5RfuUevz/1eecfS3g6xPkp658iSfcfStwdXX9eT2Wvzwhm01RW6VH6sdGibXq6YBM7Mg61ovbxZNL0zIh1rj2Fyjtsq3+A4Nky3tWpLM7V2lJit4qNtvve0bJivIDSipIZf3aYXxwf6cTMqPDXofd0VFFSwXbH0Vvl3DJJuQG5N2HYkarOBbF8YFewxOzDerrdwd7D7u9pJMFuR5OtRjDmjZanvN3HX7tMuokcs3+IxXvckKDc1pl5KooXl8NHX7AzVz1yPTLiXRwhfuVqmnPZq565H5tGtJ0r5mvvKNLcFuP0nK5xt9xi6HqXl8mINzG1sm+ZTtXhPsNly14An1drd5qPUpipTPNwS7/SQp3zDGp+10qCZN2z3tUhKNGT/dJ8/Y20Ldhp3rlmrVwr8Fex6UFOwxuGphbVuQV3kAAAAAAACA4SL4AgAAAAAAQCYRfAEAAAAAACCTCL4AAAAAAACQSQRfAAAAAAAAyCSCLwAAAAAAAGQSwRcAAAAAAAAyieALAAAAAAAAmUTwBQAAAAAAgEwi+AIAAAAAAEAmEXwBAAAAAAAgkwi+AAAAAAAAkEkEXwAAAAAAAMgkgi8AAAAAAABkEsEXAAAAAAAAMongCwAAAAAAAJlE8AUAAAAAAIBMIvgCAAAAAABAJhF8AQAAAAAAIJMIvgAAAAAAAJBJBF8AAAAAAADIJIIvAAAAAAAAZBLBFwAAAAAAADKJ4AsAAAAAAACZRPAFAAAAAACATCL4AgAAAAAAQCYRfAEAAAAAACCTCL4AAAAAAACQSQRfAAAAAAAAyCSCLwAAAAAAAGQSwRcAAAAAAAAyieALAAAAAAAAmUTwBQAAAAAAgEwi+AIAAAAAAEAmEXwBAAAAAAAgkwi+AAAAAAAAkEkEXwAAAAAAAMikQnXD9Wsfj/7Y8TNPo5iN6fZi7uyFPyunXUd/VpY6Cp9f/ttoYm5McNtOkp7vWZZ7snuRPdz5cpDbcFWp0xaU1uRD3sc9KuXeE3B9y4tthUtW3htNCPQY/EfvilyTFXIv9iwLchu2Rz1aUWoP+jzT46XcuYt/Wc4Hes1ibu/KwndWPuDXr/1blHYtSeYVV1tX1BvseSaSq9dLQR6Dc4uzctIhlnYdQLXlcx/2J+6+J7hzjrvnn7r3K+VcriHtUhL1dK5pePnx633lgjDP18vmPpwrl3oKT9x9cXDnQ0nq6Wq1YndrLtT6JCmKyrmnH/hW1Ng0Lsh+YWfrkvy8p3/t61bMDvIYXDr34Vxn66Jgj0FJKhe78yHXFxW788//6fvRmJYpQR6DbStm5xa6vKdjZZDH4KrFz1jbqrlBH4NRuRTkMbh07iEmHbXBH0w1wdeeY6blDh27V/2qGqAnuxfpuPF75dOuoz9ziquiN7a8KjezMDHtUhKti3o0szBRh7XsEuQ2/EfvCnW093jI+/ip7sXBH4P/2rxjbufGKWmXkqij9QmNyzfp2HF7BpnaLCq2alGpNehj8O89S/2ocXvkx1jNqTsIi0ut0cFjd8zt2TQ9yG14f8dsrS51RKHu46JHeq5naZDnmTvbpmhRMe0qgFoTFs+27VffEtzPzLNdrb7dn2/PFyzIX3l6qX1pNOnvf8zNang2uG0nSau7F6rHS759a3j7VpI6vEezu9p8+4fDrE+SnutY49v+9Y5cc64x7VISzelY4uM7um37uS8FuQ07epaqt9wR9D5+ttijkOt7uXOdz3zinty4XFPapSSa37HQx7aute0XLghyG5Z7V2lt76qgj8HneruCPAZ7eidokY7aoK3mr6d9x2yn0yfuX7eiBurrK+/10yfuH+zV5h+veaj85pbdc68eMyPtUhI91DlHezXNjE6fuH+QPbDfd8zWE10LyqdP3D/Mv+gl/c+Ke/y0iftbqAfhtWsfKR/W8qrcIWN3SruURH/vWaomKwS7j1/oWaY725+LTp+4f3An7/W+tfJ+P2nCPjYhNybtUhLd2PpE+XVjd8odPW6PtEtJtLTUpoW2phzqebDbS7p01QNBnqdf7p2mP3WmXQVQ640tu+qzU09Ku4wav++Y7V+bfoKFeqHixPk/Ln1g8qGNb2rZNe1SEn195T3qKPeWvrjN8UEOmVtUatVz3df4N6efFGq3UA91zom+MO24/NTCuLRLSXTGgqvLZ0w6sHDC+L3TLiXRT9Y8rKe6Fpe+Of2kII/BSPF5JuRj8I1zv1s+b+sjC7s0bp12KYnOWXS9H9byKjtz0mvTLiXR7W3P6KbWJ4M9BiXp/o5/BHkM/u+avfRs94ZtwXWuAQAAAAAAgJFA8AUAAAAAAIBMIvgCAAAAAABAJhF8AQAAAAAAIJMIvgAAAAAAAJBJBF8AAAAAAADIJIIvAAAAAAAAZBLBFwAAAAAAADKJ4AsAAAAAAACZRPAFAAAAAACATCL4AgAAAAAAQCYRfAEAAAAAACCTCL4AAAAAAACQSQRfAAAAAAAAyCSCLwAAAAAAAGQSwRcAAAAAAAAyieALAAAAAAAAmUTwBQAAAAAAgEwi+AIAAAAAAEAmEXwBAAAAAAAgkwi+AAAAAAAAkEkEXwAAAAAAAMgkgi8AAAAAAABkEsEXAAAAAAAAMongCwAAAAAAAJlE8AUAAAAAAIBMIvgCAAAAAABAJhF8AQAAAAAAIJMIvgAAAAAAAJBJBF8AAAAAAADIJIIvAAAAAAAAZBLBFwAAAAAAADKJ4AsAAAAAAACZRPAFAAAAAACATCL4AgAAAAAAQCYRfAEAAAAAACCTCL4AAAAAAACQSYXqhie6Fup6eyyNWjaqx0u6fm14da3XVu7O/bb9WT3TvTjtUhLN6V2l9qjHxq9tSruURM/3LNXS0rrc/2vn3qP1Kus7gX/3eznJyYUkXIPiFbVgNVXjjY4glHakxcuIrQupbWVcq2PV0VUR7Kpr7HjprKkG25mldqTt8o6o1UorqVZFsBWQa8QoUYEQLoaQkJCc5OSc8172/OFkLTBvqh1nsZ/Zfj7/Za/3j+96nt/7nL2/74aS93iQUS4pON+e0Xznin3fz5aFnU1HmeiW+XuzuOoXu8dbR3uydzxflZovSYb1uPrs7g1ZXPWbjjLRfcOZzuX7vp+dw9mmo0y0Ye6u7Bju65a6x8OMMqxHRc7gpvlfajoCTLRpfluR94fz9bD6zO4b00u36SgT3T/a1/3q3k25d7Cn6SgTbZzbmn3jhWLP612jfZkZzRU5ewfsHy9Un9uzIYd1ppuOMtF9w72dq2c3Z99ooekoE92w/86in03qlP98PDcedtbPfCdHdpc1HWWiLYOd1VWzm9Mt9F2gG+fuyt2DXcWeg0kyqEdFzuBN+x990LWDiq87uptG1dRl44cl0b9Bp1P3r5q6bNB0jkPp9Ovept7Vo3umUtzaJcnuTt2re8lVU7cVuYY7xuksdOpuyXvc7ZY9g4Nueht73xxvncqo6SyT3JO6u6RbVVdNbS5yDR9YSOaqsve46qV/7dQ/DXpV00kmG/Xr3ubehvHs1LeKnMGtc+nuT12VusfjOukUes7c0zmtG2+JU6B7OrePr5q6rLgzp9et+1f3vzjoFnpe1/26d1v/xvHuqZuKW7sk2datu6NOqqumfljceZgkc8NkVPizSa9f92/sXz6c6qZuOsskezvp/aC7c7x3akORM3jb/nTnqrpT8h6Py79v7W3oXzla0ivz+Xhvt+79sLejvmpq07DpLJNsHaYz1y17BlPoOXjH/JM7yUN/eTqo+Hr1k8bd855SF/fz1BEXp77s1+oyX3NI8gufzeDPn1v31x5R5k97Z1+RPOPwjC9YU+Yarr87ecdNGZa8x4d/IvUXfq3uF3oPmzV/l8Gfrk3/9GPLfDh9/TXJ4m49XPesFLnHN+9KXn55RiXP4OpPZvypU9NfOdV0kslO+ocMzl+T/lmPqYucwbdvSDbPZPDhk8vc4/2j5NGfyrjEGTz/ujoXbmw6BRzsZY+tO+9+VnlnzlEXZ/x3p9f96SLvCpO1l2bhbU/L1JmPKg36SeEAABmgSURBVG/tkuQt1yczgww+cFJ552GSbNmbnPaPZZ7XBzzykow+9vy6t7rMF75yymUZvubE9M55fJkzuG5jcu32DD59Wpl7PE5yTOHPx4/7TIZ/+cvpnbCizOfjF3854xccl87rTixzDT9xW/KhWzMoeY9L7WjWbRznguseeq3IgwYAAAAAflaKLwAAAABaSfEFAAAAQCspvgAAAABoJcUXAAAAAK2k+AIAAACglRRfAAAAALSS4gsAAACAVlJ8AQAAANBKii8AAAAAWknxBQAAAEArKb4AAAAAaCXFFwAAAACtpPgCAAAAoJUUXwAAAAC0kuILAAAAgFZSfAEAAADQSoovAAAAAFpJ8QUAAABAKym+AAAAAGglxRcAAAAAraT4AgAAAKCVFF8AAAAAtJLiCwAAAIBWUnwBAAAA0EqKLwAAAABaSfEFAAAAQCspvgAAAABoJcUXAAAAAK2k+AIAAACglRRfAAAAALSS4gsAAACAVlJ8AQAAANBKii8AAAAAWknxBQAAAEArKb4AAAAAaCXFFwAAAACtpPgCAAAAoJWqpK4ffGFJ78314u6FTeU5pH3DVEt7qX/yJ5sxHKeqqtTdqukkk80OU/U6yVSnzDUcjpOFcaolBe/x3CjV4m65+UZ1qiTpVmVm3DtIprqpSp3B0TjZP0q1rF9mviQZjFP1OqkLPWayME7VSdIrdI/nR0mdsr/HC+MyvyOzw3XV3Oi8B1/aVtdZ3VQefn5VVbYlOfrAvxf312XJovOL+87MD1MtKvieZmGYqttJugWeN0kyN0iqqtw1HNfJ7HyqZYvLzJckg9H/uWco9KZhfpCq2y33nmF2IelUqRYXfF84M5dqecEzOBqlqjqpO4XO4OxCqn436Rd6XzgYJcNRqumpMvMlyb75VEsXlZdvbvDmzM6/5yGT1/vxD7396anOe8rDF+qndcTFqXeck0K/NskvfDaDi09Nf+0RTSeZ7OwrkmccnvEFa8p8y2/93ck7bsrwmhcdPJOlOPwTqbefk1LvH7Lm7zL48+emf/qxZX5PXn9Nsrib4bpnlbnHN+9KXn55Rptelm7TWQ5l9Scz3vSydFZONZ1kspP+IYPz16R/1mPKnMG3b0g2z2Tw4ZPTbzrLJPtHyaM/lfH2c8o7p8+/LrlwY9Mp4GCvPzN5z6vKO3OO/J2M7/qbdKYLPa+fcV4W3vmKTJ35zPLWLkku+Eiyd38GH3hNmef1lu3JqW/NePNF5Z3XBzzi3IxufG+6q1c1nWSyk/84wz84I71zTilzBtd9Prn2+xl8+oIyZ3A8To7+vdQ7Plbm+iXJY38/wy++Lb0Tjms6yWQvelfGZzwjndf9Rplr+Ikrkw99NYOvvKPMGUySw1+Z+v6Pl7d+6z6fnP/hh14r9rAGAAAAgJ+F4gsAAACAVlJ8AQAAANBKii8AAAAAWknxBQAAAEArKb4AAAAAaCXFFwAAAACtpPgCAAAAoJUUXwAAAAC0kuILAAAAgFZSfAEAAADQSoovAAAAAFpJ8QUAAABAKym+AAAAAGglxRcAAAAAraT4AgAAAKCVFF8AAAAAtJLiCwAAAIBWUnwBAAAA0EqKLwAAAABaSfEFAAAAQCspvgAAAABoJcUXAAAAAK2k+AIAAACglRRfAAAAALSS4gsAAACAVlJ8AQAAANBKii8AAAAAWknxBQAAAEArKb4AAAAAaCXFFwAAAACtpPgCAAAAoJUUXwAAAAC0kuILAAAAgFZSfAEAAADQSoovAAAAAFpJ8QUAAABAKym+AAAAAGilKqnrB184YtH5o5VT68ZNBTqUHfPpH7kog6ZzHMquhfSW9VL3Oxk1nWWSXQvpLeokS3oZNp1lkrlxOnPDdFdOlbvH98+nf0ThM7i0l3qq0BncPpfe0n6ypFvsDFb7BumVvMc759NftSjDKql/8qcffrsW0lvSS72o0BmcGaSbKtXyQs/BOql2zpc5gzvmL+zuXnjTg38s21bXWd1YIH5uVVW2JTn6wL+XTP/leOnSPynuzNkzO+gvX9Iv9rzeu3+ht2hqqu53yzyvZ+cG3VTdasmiTpHn9biuq72zg95hS6eKO68PmJkd9JdO94edqtwZnOpP1VO9Mmdw/8KwOx5X1dLF3SJnMEl275vvr1i6qOgZXLK4P+p2Uly3kCQzs/O9qf6iLOqXeV+4MBh1FoZ1Z9l0r8h8SbJ730J/RYHn4Oz+13f27Xtb98HXej/+od97Yt393Sek++PXm3bq+tSfPT39pnMcyllfzehP16Z74soy36L7o+uSE1amftUTy1zDb2xL/nJTxh9/fpn5kvJn8OyvZfSmp6T77KPKnMF3bEiW9zL6w6eUuYabHkj+6PqMS97jf//F1B89Jb1lhSZ81dcz+t0npPsrjyhzBv/XpuSefRm9c22Ze7wwSn79n8o8Z967sc5Hb206BRzskU/5zc5TT/13xZ056z/wK/Xzfnd9r9OdajrKRF/72G+PTnzeH3RXP+55xa1dkmy88i8yHOwbPe1X31rceZgks3vuzT9f8h/rk89dX2S+JPnHD75g/NyzL+4tWnJE01Em+udLXj1+3NN+q3PcCWcUOYM/uO4j2bl14+g5L35PoXtc57L3n1affO5XCs2X/NNfvWj0zLPe11226jHFdQtJcvXn3lAf8/jnVY9/2suLXMO7blmfO7596ejkl3+wyHxJ8oX3Pb/IGfzBdUfl21c89NpBxdex08maVQ9Ton+Dqioz1wHdKuMnHJZuqRkPm0pWL069ZlWqprNMcve+ZEk34zWrynxgPuCpq1LmAibpVRk/bnm5M7h6OlncTV1qviSZ6pSdL0n95JWpVpb5HJVFnYwfvazcGTxmOpkdZrxmVXk/7iTJ/h/95l3kOX3U4qYTwGSLlx2Vwx9xVNMxJqlXrv7FqtefbjrHRJ1ef7R81WO6hz9iTdNRJlq87MgM5xePD3/EmiLP66npFam6/frwR6wp7rw+oEpVrzzmxEwvL/Pl3E5/8XjpyuM6pc7gkuXHZu8DdxU7gxmPU1WdlLp+SZJOVR921BOz8ugTmk4yUW/x8nrJYcdWpa7hzq3fztSipeXOYJKqqoqcwSWHHXyt6JIBAAAAAP5vKb4AAAAAaCXFFwAAAACtpPgCAAAAoJUUXwAAAAC0kuILAAAAgFZSfAEAAADQSoovAAAAAFpJ8QUAAABAKym+AAAAAGglxRcAAAAAraT4AgAAAKCVFF8AAAAAtJLiCwAAAIBWUnwBAAAA0EqKLwAAAABaSfEFAAAAQCspvgAAAABoJcUXAAAAAK2k+AIAAACglRRfAAAAALSS4gsAAACAVlJ8AQAAANBKii8AAAAAWknxBQAAAEArKb4AAAAAaCXFFwAAAACtpPgCAAAAoJUUXwAAAAC0kuILAAAAgFZSfAEAAADQSoovAAAAAFpJ8QUAAABAKym+AAAAAGglxRcAAAAAraT4AgAAAKCVFF8AAAAAtFLvxy985NbkG/c1EeVft3eQnHV50ykObetsen/4zeTIxU0nmeya+5Lrd6S6ZkfTSSb74Wzy3QfSLXmP9w2TlxWcb8u+9P74huSRS5pOMtkNO5I66d4+03SSyXbNJ3fuS6fkGdwzSHXO15PFhf5ksWlPuu/6VvLx25pOMtnGXcmehfRK3eNRncyNUpWYb+OuphPAZDvuuiEbr/znpmMcpK7rzi3/8v5UnYNutYswmNvd37Lx77N7+w+ajjLRjrtuyGg439t45V80HWWihdldGc7PdErNlyR1Pe5suvqv0l+0vOkoE83t3d69e9OXsn+mwAfPJPdu/pfs3XVHsTOY1BkNF6py8yXj4UL3B9d9NNPLjm46ykR777+j2nrblRmPBk1HmWjH3Tdm7wN3FzyDyXg8KnIG7719bZKTH3LtoL/GT3hSctpTH65IP73LL0512q81neLQbrw0ee5JyaOObDrJZHdenhx3ZKrT1jSdZLJb7k7uuzEpeY+v+GTZM/itf0ie88zkicc2nWSy+69O+t3ktGc3nWSyrTuT711e9gx+4zOpTj0tmZ5qOslk31mfau2TkzWPbTrJZPM3JffPJKed0nSSyYajH+1xiTO4+5vJrd9uOgUcbNGdN2fFtouajnGQev/uevnlf111qzJ/qaj33ZPejV/IiqnySsMk6cxtzbAeZcWOnU1HmWh2vJDx7AP1iq9eVDWd5VDGe+/P0q9/NNOdftNRJtu3JZ3dD2TFpuuaTjLR9vntqUezWfHV8s6XA6qFsvP1Zndl+VWfztJumTeu1eyWVDu3ZsVtG5uOMtGehV2pB7uK3uPOfJkzuGvh3PzE4ut5T07e8MKHK9JP779ekvoNL0yxf1zetz7Ds09Of+3xTSeZ7KpNydOPz/gNLyzzP29df0Ny4+0ZveGFB89kKf7kk6n/85mpqkKn8K+/nOF/eE76pxdabn7/h8mifrl7fPMdyeeuyfgNL0y36SyH8qd/m/F/ekE6K5c2nWSyi7+e4W+sTf+sk5pOMtmuvcnt2zJ8wwtT5FPA/oXkv/1tmef0nduTrym+KNCvLv2F/NFRL286xkGeddt76r849jerxVWRf/Lyki0XDd545KlTpy19YtNRJvqzHV/OvtHC8B3HnFnkeX3PcHfOuevD9fuPfXmhd4XJL9/+3vGfHfOS7lG9ZU1HmegVd31o9IqVz+y9eHmBb1wk+atdV+Vb+384fN+xv1nkDI6TPOe29xQ9g8/f/D9G/+XoM3rHT5X5Zsjv3/PJ+pSlT6heufJZTUeZ6O9nvp3P7N4wfP+xLy9yBpNk7W3vLnIG/3rXL+W/b3/oteJurgEAAADg/wXFFwAAAACtpPgCAAAAoJUUXwAAAAC0kuILAAAAgFZSfAEAAADQSoovAAAAAFpJ8QUAAABAKym+AAAAAGglxRcAAAAAraT4AgAAAKCVFF8AAAAAtJLiCwAAAIBWUnwBAAAA0EqKLwAAAABaSfEFAAAAQCspvgAAAABoJcUXAAAAAK2k+AIAAACglRRfAAAAALSS4gsAAACAVlJ8AQAAANBKii8AAAAAWknxBQAAAEArKb4AAAAAaCXFFwAAAACtpPgCAAAAoJUUXwAAAAC0kuILAAAAgFZSfAEAAADQSoovAAAAAFpJ8QUAAABAKym+AAAAAGglxRcAAAAAraT4AgAAAKCVFF8AAAAAtJLiCwAAAIBW6v34hQ2bk0/9SxNR/nULgzJzHTCzP53Lrk9u3dp0kslu35YMRqlKXcPrb03u3ZVOqfmSZDBMPv2NplMc2p7ZdK7YmOzY03SSyW65O1kyVe4e33Ffsneu3O9IkgxHyeeuSZYuajrJZNt3p/rat5PBqOkkk920Obl3Z7kzuDBMhuMyZ/B79zSdACa7fWFHLpv5TtMxDrJQD6svznw3/arbdJSJHhjNdq6avT2z44Wmo0z0/bn7MptBp8S9TZL7R/uydzRf5OwdMFcPqi/t25RVnemmo0y0Yzjb2bD/7nQLfQ9j49zWbBvuLnYG6yQL9bDoGVwYD6uv77s1m+a3NR1lonsGu6sb5+7KqpklTUeZ6LrZO7N1uLtb8h4P63GRM3jL/PEHXauSun7whcevPn/0qCPXjR+2VD+la7+f/rOflEHTOQ7lO3em95ijMl42neLWLkluuSu95dPJcUdm2HSWSXbNpLNle7pPe3y5e3zDremvfUK5+TZuSe+4I1OvXJoia4fv3pne9KLkcceUOYN79qf6wT3plbzH39qc/i8+JsNeJ/VP/vTD77t3pnf0itRHrihzBrfcl+78INWTHlnmDNZ1qg2b03t6gefgbVsv7N59/5se/HSyra6zurFA/NyqqmxLcvSBfx+39MLx8cvPL+7Muen+uv9Lh1fDTlXoef1A3Vs9nfrwRVVxa5ckt8/U3VGd6omHVUWe13OjVN/eVfeedWRV3Hl9wM076/4JK6rhVLfMGbx5Z91bvaTK0YvL/Jt8+0y686O6OnFlmTOYJNdsr/vPParcGdy4K/3jl2c03Svz+fi7D9S9VVPJsUvK3ONt+9O9b67uPHVVuXt87Y66/+wCz8G79p3fuX3mzx7yy9NBb3y99tfr7nkvSXE/Tx3+ytRXvCv9pnMcypNem8EHX5v+2uPLW7skOXtd8vTjM37LS8tcw/U3JG//VIYl7/Gq3079tXemX1VNJ5lszRszuPDc9E9fU+ZPZ6+/KFnUz/DCc8vc45vvSH7r3RmVPIPHvCrjL7w1vZVLm04y2XMvyOCCl6Z/1kllzuDbL0lu35bBR95Y5h7vX0ge9eqMS5zBN3+ozoWXNp0CDnb24+rOu59VF3fmHHVxxl98Qd2bLvKuMFl7aRbe8YxMnfmo8tYuSd5yfTIzyOADJ9XFnYdJsmVvcto/Zvy1Xy8zX5I88pKMPnt63Vtd5gtfOeWyDF9zYt075/Hl/c1LknUbk2u3Z/Dp08rc43GSYy5OXfIMPu4zGX74lPROWFHm8/GLv5zxC45L53UnlrmGn7gt+dCtGXzlBWXmS5IjCp3BdRvHueC6h14r8o8dAAAAAPysFF8AAAAAtJLiCwAAAIBWUnwBAAAA0EqKLwAAAABaSfEFAAAAQCspvgAAAABoJcUXAAAAAK2k+AIAAACglRRfAAAAALSS4gsAAACAVlJ8AQAAANBKii8AAAAAWknxBQAAAEArKb4AAAAAaCXFFwAAAACtpPgCAAAAoJUUXwAAAAC0kuILAAAAgFZSfAEAAADQSoovAAAAAFpJ8QUAAABAKym+AAAAAGglxRcAAAAAraT4AgAAAKCVFF8AAAAAtJLiCwAAAIBWUnwBAAAA0EqKLwAAAABaSfEFAAAAQCspvgAAAABoJcUXAAAAAK2k+AIAAACglRRfAAAAALSS4gsAAACAVlJ8AQAAANBKii8AAAAAWknxBQAAAEArVUldP/jC9KI314v7FzaV55DmFlItnkr9kz/ZjPE4VVWlrqqmk0w2t5Cq30u6nTLXcDRKhuNUi/pl5kuSwTBVv1duvvE4VaqkU5WZcXY+meql6nXLzDcaJwvDVNMFnzOjcapSv8NJMhil6nbKncGFYVKl7O/xcFTmd2T//LpqbnDegy9tq+usbioPP7+qKtuSHH3g34v76zI9dX5x35nBKFW/wO/yAcNxqk7B9wzzw6RTlbuGdZ3MDVNNF3zfOqpTdQvd3+RH91y9brkzuH8h6XZTTRU6g0kyu5BqScH3rXWdKlXqQh+PMzdINdUrdwaH4x/d+y8q+L51bpBqcYHn4Nzgzdm/8J6HjF7vxz/0znNSnfeShy/UT+vwV6be+fGU+r3Jk16bwSfPS3/t8U0nmezsdcnTj8/4LS8t8y2/9Tckb/9Uht9898EzWYpVv536/o+lKrXcXPPGDP781emfvqbM78nrL0oW9TO88Nwy9/jmO5LfendG3/tAuk1nOZRjXpXx996fzsqlTSeZ7LkXZHDBS9M/66QyZ/DtlyS3b8vgI29Mv+ksk+xfSB716ox3fKy8c/rNH0ouvLTpFHCw15+ZvOdV5Z05R/5Oxnf9TTrTU00nmewZ52Xhna/I1JnPLG/tkuSCjyR792fwgdeUeV5v2Z6c+taMN19U3nl9wCPOzejG96a7elXTSSY7+Y8z/IMz0jvnlDJncN3nk2u/n8GnLyhzBsfj5OjfS73jY2WuX5I89vcz/OLb0jvhuKaTTPaid2V8xjPSed1vlLmGn7gy+dBXM/jKO8qcwaTcjmbd55PzP/zQa8Ue1gAAAADws1B8AQAAANBKii8AAAAAWknxBQAAAEArKb4AAAAAaCXFFwAAAACtpPgCAAAAoJUUXwAAAAC0kuILAAAAgFZSfAEAAADQSoovAAAAAFpJ8QUAAABAKym+AAAAAGglxRcAAAAAraT4AgAAAKCVFF8AAAAAtJLiCwAAAIBWUnwBAAAA0EqKLwAAAABaSfEFAAAAQCspvgAAAABoJcUXAAAAAK2k+AIAAACglRRfAAAAALSS4gsAAACAVlJ8AQAAANBKii8AAAAAWknxBQAAAEArKb4AAAAAaCXFFwAAAACtpPgCAAAAoJUUXwAAAAC0kuILAAAAgFZSfAEAAADQSoovAAAAAFpJ8QUAAABAK/V+/MKVG5/fRI6faG6QXHhp0ykObdfeqvPxK+pcsbHpJJN9755kZi5Vr9Cq85a7k607q86Fl9ZNRzmk+f8zg1XVdJLJtu+uOp/5Rp0Nm5tOMtmGzUmnU+4eb92Z7NpbVaXmS5LZ+VTvW59MTzWdZLKtO6vO319bZ/N9TSeZ7KpNyc6ZcmdwMEz2L6Qq8W/d9bc+s+kIMNH1tz4z7730TU3HOMjcQqr/+YWk3206yWT3PVB1P//NOt+7p+kkk11/azK/UHXeW+h5vWtfsmc21XsLPK8P2DdXVR/8Up3l000nmeye+6vO+hvq3Lur6SSTff07yZ3by53Buk7mFpKSZ3DPbNX58OV1jl7RdJLJbtuW6vKbf/SMV6Ibb0u2FDyDyY86mhJn8OvfOeWga9WPvjYAAD+1bXWd1U2H4OdPVWVbkqObzgEA/P+jl+TqZPeyquo+pa6XFfouCwDQtKraVdf14puS6R82nYWfW9cl+4+tqrmn1/Uq960AwERVtbeu6+F3kpUzVV3XqapqWfLA1cmKpzQdDgAo1bYrktVn1HU933QSfn5VVbUo2fqlZHWZ/38OAKAAuzcmK3+5ruuZXpLUdb23qjLTdCwAoGTH7FR60bS6ruerKjubzgEAlGzF3rquZ5LkfwMsr/V0M+ypbQAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "id": "c518f863", + "metadata": {}, + "source": [ + "
\n", + "\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "746e37f6", + "metadata": {}, + "source": [ + "### Block-wise partition" + ] + }, + { + "cell_type": "markdown", + "id": "102d6fa2", + "metadata": {}, + "source": [ + "To evaluate the efficiency of both partitioning schemes, consider how much work the processors do in the following example. \n", + "In any iteration k, which part of the matrix is updated in the inner loops? \n", + "\n", + "### Block-wise partition" + ] + }, + { + "cell_type": "markdown", + "id": "d9d29899", + "metadata": {}, + "source": [ + "It is clear from the code that at any given iteration `k`, the matrix is updated from row `k` to `n` and from column `k` to `m`. If we look at how that reflects the distribution of work over the processes, we can see that CPU 1 does not have any work, whereas CPU 2 does a little work and CPU 3 and 4 do a lot of work. " + ] + }, + { + "cell_type": "markdown", + "id": "6409890d", + "metadata": {}, + "source": [ + "### Load imbalance\n", + "\n", + "The block-wise partitioning scheme leads to load imbalance across the processes: CPUs with rows $\n", + "\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e0565e92", + "metadata": {}, + "outputs": [], + "source": [ + "answer = \"x\" # replace x with a, b, c, or d \n", + "ge_dep_check(answer)" + ] + }, { "cell_type": "markdown", "id": "866824c6", diff --git a/notebooks/asp.ipynb b/notebooks/asp.ipynb index 8509089..33869e2 100644 --- a/notebooks/asp.ipynb +++ b/notebooks/asp.ipynb @@ -682,7 +682,7 @@ }, { "cell_type": "markdown", - "id": "bfede7cc", + "id": "4c2e0010", "metadata": {}, "source": [ "We are going to implement the method in a function with the following signature\n", @@ -697,15 +697,36 @@ "\n", "- On output, only the value of C will be correct on rank 0. It will not be efficient to try to write the result on all ranks.\n", "\n", - "- The parallel function takes an MPI communicator object. This allows the user to decide which communicator to use. For instance, `MPI.COMM_WORLD` directly or a duplicate of this one (which is the recommended approach).\n", - "\n", + "- The parallel function takes an MPI communicator object. This allows the user to decide which communicator to use. For instance, `MPI.COMM_WORLD` directly or a duplicate of this one (which is the recommended approach)." + ] + }, + { + "attachments": { + "g3642.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABRQAAAMuCAYAAABo148ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAACAASURBVHic7N15fFTV/f/xV0IChMiusijIorK4oagoQusC1rbgtyp8tdaqSLUFQRCqBCWTZMKqYLW41VYK9VurFtpfv9J+bWMVC9a6gLsiqICyibIq+zK/Pz6MTiaT5NzJ3Nnyfj4e82i5nHPvBySfuffccz4HRDLLQ0Ao4jM3pdHUTWOgC9ARaJjiWEQkOeZSOYc9mNJoRETi979UzmdTUhtOXJoDnYEeQDugILXhiIjUC9Oo/P3x/1IbjsQrL9UBiNQjucAPgB8D/YAjo35/PbAImAP8M6mRiYi4yQdOBs4Eukb93h6gNNkBiYg4ygPOAb5z+H97UfVeDGAF8DLwZ2zQ9GCyAhQRkbRyPPATD+2/BLYD7wOvHf7/6aAB0B27f++GjUtEKgN2JzsokVTI1BmKvYBlVI69ps+zwHEpiVRE/DSXzJmh2AA4CbgWuA9YAuyi+ry1NTVhikiKZMIMxRzsJe4jwBbc78PCnzXAVUmPWkQku2XKDMUBeP/eCH8OAf8GrgMaJTHmXGzW/TXAvcBi4KtaYm0R78U0Q1HEf98F5gNNPPS5CHgVuBh4w4+gRERq8TLQO9VBiIjUwY+Ax+rQvyPwB+BS4HpgXwJiEhGR7JcDnHv483NslWIynuv/CFyehOsAGlAU8duZwAKq1uTZBfwV+Aj7OewGXIItJww7Cvg79kC/1vdIRUQq0z2CiGS6BjX83kFgFbAJuy9rDvQECmO0/SFW7/pKtARaRES8ORmbrXgxtuLHT0m9f9fDgoh/GmJvtaMHEx8DxgFfRB0/Fvg1NrAYdjS2RHKAPyGKiHh2AHgXWx6h0gwikkk2AY9jL2xfxOpdRcoHvofVg+0V9XtXACOB2f6GKCIiaewO4B8xjjcFWmOTgYZi9RcjFQB/wb5bPvUzwGocAj7AlkR3S8H1RdJCJtVQHEXV+gQPYdOfq5OPJZroft/xNVIRSZa5ZE4NxTeA/djg4e+AMVgtsnD5ht+iGooi9Vkm1FC8DovtZeAyKq8EqUkjLO/FqhXbPPFhiojUK5lcQ9Glrm4ucAuwN0b/3/gS6Tf+gs2kfx+byDQW6I8NeIK9MEtYDUWRTJMpA4qFwAYqx7oStzqKbbDZi5F9X6PmgUgRyQxzyZwBxZ5UnWEdSQOKIvVbJgwo9gcGxdk3D1uaFv3gdXViQhMRqbeyfUAx7IYY/fcDRyY2zEpO4JvBw1hKY8QU94Bi9HbRIpIYg4G2UccmYzV6avMZ8MuoY72BMxIQl4iIq/eA3akOQkSkDhYDC+PsewBb2hbtkhjHREREos3BaidGysM2YPXLSqqW8/CNaiimTg5VR4J3ULnQcz5wHtAH6AS0PNzmXeC+Ws5/JDYI1RPoDByBLd/YevjzFnaTtTHO+POoOvIdPTulAPth6QMcg9UU/AJYAzyDTcNNheZUHUzfQ2IfnC+N+vU2bMclV3OAYir/jP4XsLSOcYkkSi5Vl31tx+pzhDXEZoecxTc5bBvwJrXPzDsKy2EnHe57xOHzbcFyzZtYDtsUZ/zROSx0OLZITbA3k32A9of7fIEV8X8GWBHntesqVg7bjeUxEfGuAdAs6tg2LC+ENQa+jW221hHLZ5uxpbRzazl/O765J+uI5bM8vslnS7F6fpvjjD//8DnDDmH5OFJTrBj8mYfjycXy2YdYPvs4zmvXVQuqrsDYhS0TSwdLsP9GLSOOdUxRLCKSnlpG/fpL7IVEWAPgHKAv9lzeEstzK4HptZy7BXYf3QPoiuX6Ar55pn8PeAFYF2fsLt9/DYELsN2KO2Dfh19gdQD/gY0rpEJTqo5n7cVtAk8y/Q/23z7SOcCTKYhFskgrqk41DRfHzANuBdbHaBPCBuRi6Q3cBbyN3UzG6hv9+RdWfNqrPjHOFX7AzQcmUnXZbvTnxcPn8aKuS56LqPp3s5SqswnrIh9L8JHX8DKYGPafqHOkKlmLxHIMVX+mOxz+vYbABGy2bayf/epeJpwNzMJemrjmsH8CA+OI//yo80S+UGgEBKj6cxz9WYT3mcNzo87hZclzDrZMIfrv5j/YAGyyacmzZItTqPrzHR6gK8B+7jbHaBOi6swDsPuhftjmHR9U0y/6cwj46+F+Xl0eda7IB8tC7IH1y1qu/3/YgKcXdVnynAv8IkYcz5J+NQrfoHKMb6c2HBFJI7lUzWN9In5vBPbsHivvRr/4CTsFy6fLsMlGLt8h4TqxXlegdotxrlaHf68BVj97Yy3XXoq9cPOirkueR2CDtpHneI/EbxZY1yXPEHvc5PcJjNGr0hjxqIZiBqpuQPEo7Oa0ph/aWLsC/bSWPrV9fk/NtbKiVTeg2AZLaK7X3Ye3H8p4BxQbYA/usW6gj6ihXzxOjXGdW+M4z8yocxyi5noIIslU3YBiO6zmZ00/9x/EON/YWvrU9nkUGwh0dX5U//CA4jHA6x6uuwf4gYfrzo3q7zqgmI/NXI6+/l9wq83qh99GxaIBRclU1Q0odsYeUGrKAS/FOF9ZLX1q+/wCb6uIqhtQ7Aos93DdL4ELPVw33gHFxsD8GNd/DHshlW4+onKc/0ptOCKSRqobUGyOvSCpLedGu7KWPrV9/oK358XqBhRbAs97uO5B4EYP1413QDEnRt9wXm5VQ794JWJA8YQY5/hbAmP0qjRGPKqhmCUKsQGuc2tpF2tzjpp2rdvPN8tqqnM19ma8QS3XrknB4XOc7aFPPjYN+Jw6XLc2TYA/Y28yIs3Bah1+leDrdY9x7NU4zhPdJ6eac4uki2bY0ofetbTzmsP2YTkseklypBuwn/O6fK8dgeXgXh76NAKe8tjHq6bA08CwqOMPYgMJ6ba0QyQbHI3NgO5RSzuv+Wwvls+qm5kC9oJlXi3XrU1roIJvVr+4OALLNV3reO2atMYesq+IOj4NuBbL9+nkCKoucf4kFYGISMZoiL1wqa1OntfvjwN880wfqqbNpdh3l5eX7LFi+DP28t1VLvArrLSGXxpi4wZFUcf/ePi6W3y8dl3EmryU6PGHlNGAYnqZyjcP4gewH5ghwMnYzJ/TgR8Dz9VwjkPYUuLbsSTQEvvha42N2jfGBu/upurD+QVY3b54/Toi/o3AnYd/3QwbqGwP/Ah4J6pfA2z7dD/+PR6NvV0ZHHW8DPgJletbJEqsh4/VcZwnVp/aHmxEUmkWlq/AXmTMxZZfnITlsDOA67Dah9U5iL1lHA98C3tj1gjLYS2xFxd9gXuo+mb3u8Btccaegz3An3L41+uwG5ZeWA7Lw2YvXovN+ImUj+U/P7THauN8J+JYCCsrcTOV6+6KSOI8iM1QBJuJ/Ah2L9ETy2dnYfcRNb0wPIANnt2C1cRuit2HtcZyWyGW5x6kah3nq/E22yNSHvaiIxz/KmAclp+bYjmrw+Hzr4rq2wT/dp/vjN2jnhdx7CD2wvcOqn9ATqX/pups0YpUBCIiGeNOLLeDPZv/EZvVdgqWe087/OuaZqmFgFew3DgA+97I55tn+kZYTdzJWJmxSGcBM+oQ/y/4ZgnzZuy5uQ/2vZWLlQobiq1IipSDDSr6MdO8BVbv9+oYsV5FetcRjzUh6POkRyFZJ9aS5/DnQ755qHU1DLgXb4Wij6Hq8updWKKqTawlz+HPfGpeRtwQewMe3c9ltyMvS55PwP4uI9vvx2Yy+emxqGvuI76Zn+2o+ncUTFCMInUVa8lz+PM+3mfT/gxb5n+Mhz4dqbq8egdVi0vHcj7Vx/97al5GXIA9UEb3iy64HMvcqD41Pbj3xF4sRLbfi72YSQe/pXJsWvIsmSrWkufwZynfDMy5uh0ox15qujqRqsurN+D2YBa95Dk6x9R0jmbYsu3ofi453MuS5zOpWodrJ1Vf+KaTPKx+dfR98pGpDEpE0kqsJc/hz1pscM+LIcDDwPEe+hxF1eXV+/mmtnlNYi15Dn+eoealsA2Ax2P0i56BHouXJc8dsNq1ke0PYrP5/ZaIJc9PxDjHzxIYo1elMeJRDcUMVN2A4md4e6Cuq+bY2+nIGG536FfdgOLfcJtp2Iqqm7Y86tDPdUDxXGzkP7Ltl8AlDteoq+gb7Hh33cql6uYLte3uLZIs1Q0oforVUk2WVtjPWGQMox36nU/s+P9M7CUo0drwzS544c/9Dv3mRvWpbkDx29jSjci22/BW38xvGlCUbFHdgOJyknuTfQxVf+5dXiBUN6A4x/G6XbAZkpF9XV5gug4ofh9b3hXZdhPeN+ZLtglU/Tuty6wfEck+1Q0obsPboGBdNcFWAUbGMNWhX3UDikuoefl1WCF27x/Zd4FDP9cBxdOwgdnItruxgddkqOuA4llU3TwmRHL/bUQrjRGPaihmkbHEPwAVj+3YNOZI8ez6DPbWdhg2CFabLdhMvkheai/W5DKsdkTkG+SN2AP6Mwm6Rk0Ko34dvYzJ1SGqTt/WpiyS7kZhL0aSZQtVH2K/G+e5dgDDsS/W2nyGvXGMlKgcdhXwd2yJd9haoD81l7wQkcS6kZprtybaOqycQ6R489kG3F6uAHyMrRyJlKh8dhP2oBh5b/QhNqP75QRdww+9gZKoY5uwh2ARkdpMxHJdsuwCJkUdi/eZ/gBW4me/Q9udWOmySIn6/hiIlUGKnGy15fDx+Qm6hp96Y99/0SsV/0Vy/234SgOK6WUtVvMm2aJvIs/E2+6CYY/hbSDhH1G/7k7dCsiC3Tz/kco7Vi/HZiwuq+O5XUUv965LTYfowchE70gtkkgfYjNWki06h/XBbZZhtDl4K+gcncNOoe7fq7dhy0cic+HbWA57u47nFhF3r1JzvVe/ROezeDetewh70HMVnc9Oi/O6YTlYba9fUfme8mVsMDGdH6baYLPVI+8lQ1gN4GQOMItIZtqKreJItr9TeWOrk4nv2fFP2IsmL9eNdCxuJdRqch222WtkGaPVWA3eJXU8t59aYwOej2Kl5dpH/f4hbLA5a2hAMb38mdQU2N+MzcwJKwSOi+M8/+ex/btRv84j/u3ec7H6a7+k8luAJVjiWR3neeNREPXrvXU4V3Tf6HOLpJMFuM3uS7S1VH6L2gorGO1VXXNYY+KfRdwAWzJ9F5UHQ5/DZiaujfO8IhKfVM1+WBX16y5YbvGqrvnsKOJ7MQNWs3EetjFBpP/FyjakczH6Qux+PLr22CySs8pFRDLfQlKzSchubFVeWANsSbNXXr8/3otxzEsN4WjF2IBs5JLrZdjL9eiNEVPhN9gEhOjPAayk2z+wPRti1S++DRtozBrxzEIT/0TvlFRXnYBTsZl/rfhmt+VYov8ttIzZqmave2wfayZQc2yZjheNsBvXK6OOz8d2xU52Qo++Xl1mXUb3jXf5tEgyJDqHdcFyWDcsJ9WUw6IHMlviPZckKodt93ieJtisxP+KOv577IZkX5UeIuK3pQk8Vw5WL+lUbPOV5li9olgDdtHHcg633RijbXUOAW96jDE6nzXAZrZ86fE8zbGXS9Eb7T2ErSJJ553pGwN/wR5aI/2ZLJtRIiK+SvT9cAfs+6MHVtKrKdWP40RvTJiMZ/od2GBaZEzN47huHrYhzfCo489gu0p/Fcc5/VBI1RJntdkDFJGF+yFoQDG9rE7AOZpjN2w/xHYIjVc8ycfLUkGwWg/RvM7Aa4W9BfhW1PH7gHG41XNMtOhkF8/MgrDov490SaQisaxOwDlaAbdgOezEOpzHaw4LkZocdhRW8zV6WeN04A5SM+NTRBKTz9oAY7C6qF53io7UEm8Dijtwq30Vqbp85mVA8VhsmfgpEcdCWC6b7jGeZGtI7IHQf2DfRweSHpGIZKrVCThHIXAzcDV1K0ERz2Ybm+Pos4vKg5le74ebYrPYo+sGzwF+Subm4D1YObZpwPvVtGlG5b0fanMA+KSOcSWMBhTTi9dZLdEux3YMTcQOq/HMqot1M+q3wTGOjadqUfNkih70i3eZci5VByO9zhQQSaa65rCrgNl4+1KtjtcctpfUzJyJ3qUuhN1APpSCWETkG3XNZzcCdxPfLI1oXvNZKu7HwIr4RzoAXI/Ntk5nedgmW9EbGCzBNvqrS+kaEal/6vr98R1sWe2xCYglnoktqfgOuTDGsSDf7EicTlZR/SSEbYc/H2AzVf9F7QO01wAPeLj+p0BHD+19pQHF9FKXpbnXYiP4sZYD7sVGsdcfvsaOGG0GU7eZdOmkI7ZEKFXJJ/pL5ChscNDrbMmjqbr0KdZ/O5F0UZcc9lNsEC3WEsA9WA7bQPU57AdUrrWSqXJIo5sEkXqsLvlsAtXPyNsNrMFmHO6h6ovCHKq+aMhUeSTmgdhPDYDfYQOHkZYCg0jd4KyIZK66fH9chr3giFV/bx82mLTu8DViDVx+h6rLnjNVB+wZOt1KZdyB/TcSNKCYLTpj9QYiBxN3Ao8AT2JFTGtb+rKB+DYxSLW/Ae2A0yOOjcFmBY4gNUueo3cuzMdiXOfxPLEGFVbGFZFIeuuObagUOZj4JZbX/ojVcqltqcN2MnNA8f8BJwAnRRwrwnLYraTfW1kRqdnZwNSoY1uw2Qd/wnZrr+nhKI/MHVD8A9AHq38bNh3LZ6WpCKgWudgsoB9GHX8Leyiv6ywjEREv2mKbkUQOJu7BJg09js14q23G9HIyc0BxEXYff17EsWHY98ePydwlz1lPA4rZoYTKy2q/AM6n6o59NUnEkpxU+BybJvx/2E1s2E3YjMsbSP5bjVi7T3XC+4BiJ8dzi2S6MirfPG3ActgKx/7hzQMy0QZsaeQ/SK8XIyISnynYQFXYx8AFuNc7ytT7MbBlYLdhdWEjdxYN36dOSEVQ1cjBBnmvjzr+LjCA+GqIiYjURRGVvwO+xJYCe9nkJRMHE8Fe4PwIq6MYufz5Kqzsx1Vk7yaF72ITwVxt9SuQeGhAMfPlUbWO4ES8DSY2Jf46f+lgKzAQWEjlzVmuxQYVr8F7cfK6iFVw9SzgRY/nOSvq16Fqzi2SyRpTtW7Vz3EfTASruZhba6v09QV28/R/VN6cJZUvRkTEu1bYy5BIN+OtePrRCYsmNdYB3wYqqLw5y+3YveYYUj/zOgfbvO9nUcc/wAYTP096RCJS3+VQtfRCGd4GExsArRMWUfLtxEpNzKfys8Fl2IqeK7CyIdnmhcOfjJTJD2BijsduYMNC2BJBL85MXDgp8yW2K1RF1PH/xpJSPJvMxGs5VZfJ9I3jPP2ifv0u2pRFsk8PKs8u3A/82eM5siGHbQMuxoo3R7oWW+aSicu5Reqb06n8sn4bVe9LapMN+ewzbFbm0qjjo7FZGKl+/ph1OJZIH2I7PHvZTVtEJFHaULXclddn+lOJXXsxk+zGBhCjnwW+i00eKkx6RFKjVH+hS91Fv8nejveaLxcnKJZU2wVcCjwddfxS4C9AkyTFsQ+baRRpIN5mgban6kPFX+oSlEiais5hX+D97WO25LDwi5F/RB1PxYsREfEuOp+tw/vs4mzJZ5uxAbp/Rx3/CTCP1K2SmoHVp420Cpsl7rU0jYhIokR/fxzEe07Klu+Pfdi97x+ijl8I/J3MXdadlTSgmPmib8i8PnAWAMMTFEs62INNh45+o/Md4K8kr85a9OBfC7wVWR9G1f+2/69OEYmkp7rmsKbAdQmKJR2ky4sREfGurvmsDTA0QbGkg+3Y/deiqOPXYA+KyZ5JMwVbeh3pE+wh9dMkxyIiEin6+6NBjGO19Y8u45DJDmCbscyJOn4e8CyVV2hKCmlAMfNF13kpAE7z0D8IHJW4cNLCfmzHvseijp+PzfxJRsHzp4FNUcfuxG2W4lFYjaFIr1N16ZBINojOYa2AEz30n05mb2IQy16qfzHyNzJ3AxqRbBedz7rgrSbivWTfTOSvsFpYz0QdHwIswOrEJkMpcEfUsXXYLMrVSYpBRKQ6sWq3nhPjWHUmEHtDz0x2EJvV/kDU8bOA58j8msNZQQOKmW85Vevq3enY90fAuMSGkzYOYjv3Re+YdC62+6DfBWt3AlOjjnUDZmJFd6uTB/yaqoO8k0h9EXMRP7yNzSyOFP3QV53h2C7I2Sj8YuR3Uce/jb0YaZH0iESkNkupvCt7LrZRnoufY7tYZqPdwA+ounpjELajp98zr+/EdpqOtBEbTPzQ52uLiLhYC2yIOjaRmp8bwy4FAgmPKD2EsJq3M6OOn4bNfm+f7ICkMu3ynPn2YwVKfxhxbCi2e93t2EyXaIVAMXAbdrN7ABuAy7a34oewqd+7qTzjrzfwPFbX8DMfr/8wcAs2QyFsJDa7aBxWXyjSscCvqLrj7QvYrCSRbLQbm7nyg4hj12E/m5OIvUN7M+zh8FbsRmsvlsuybeOSg1j5gz3Yjs9h52LLPb5D1TySSE2BS2r4/U5Rv86n5uWab2MvwUSy1efAEuBbEcfGHD4+g9j1FFthM61vPPzrr8jOWch7sfzwGHBlxPGBWN3pQfiz8dxNwOSoYyHsHu3Uw594/Anv9TFFRKoTwspbRb4o/w7wG2xAbVeMPo2x5/kANq5zCLtnzLbyOCHsz7mLygOnPbDn5Iuw8hViGgCX1/D7J8U49gNsQlQsHwHL6hqUJF4r7Icj8tMtznP1wIqXRp9vPfBL7Gbqh8BYbLbL5qh2kw63jTw2qJZr9olxPa8zXnNjnOP0Wvo8FNV+ruO1psW41vvAMR5j9qoPNmASfe2d2HLGqcDd2Bv6WP8NN1F1xy+RdHAMVf+9dojzXL2wFxvR51uLLQH8CXA1lsN+D2yNajcO20018tiFtVzz/Kj2XjeCAXs54zWPz41q/6DDdXKAX8S41ltYzTW/dI9xzbp8inyMVaQuTqHqv9d4B/XOxx7qos/3MTbD4ga+WSHyFLAjqt3wGH171XLNy6Pax7O5SIcY161tOdn/RrWf4nCdBsBvY1zrJfyZef2rGNdKxMfLRnsikr1iPc/2ifNcHbFBs1jPgw9iE2Wuwl5U/ebw8ch2dwPvRR27ppZrdotxvXjqE26POscFtbSPfjZ33SugKEa8q4GuniN2MyDG9dJ9NUEBif2+c3lWkRRI5IAiwE9jnM/l8xvsYTXbBxTBZmVGX+8j/K838T1sANHrf5tN1P73IZIqiRxQBLs5iieHzT7cP5sHFMOmxrjecvx7MaIBRakvEjmgCFAW43wunzJswC36eDYNKILd/z0Y43pLgSO9Bl4LDSiKiJ8SOaAINlgV66VUbZ+nsO+PbB9QBFsBGP13tA67b000DSjW8qyiGorZ41fAtVQ/VTXabqxez43YP5T6oBybLh355+2CTZU+wcfr/g3oi7epws8CZ2KbsYjUB/dhMxFdB/Z2YjcUo32LKP3cgb0YidQN+BfZV4hbJJOVYjMQY5VsiGUbVve5xKd40s0h4GbgnqjjZ2AladomPSIRkfTwBLYx3zbH9vuw75yrqD9lGH6JTaaKrFncHnumj7eMhcRJNRRTZw9WTyfSljqe8zGsWP8o4L+w9fGRg8Z7sLcWC7HNSiLfYD+A1csKq61I9Xqqxu91YDIU4xy11TT8B/YGJMzrev6Z2J87eifs72HJya/B1TeBs7H/Ltdgs6NaRrXZiG0Y89vD/yuSzr6k6s/vjjqe81GsltZoYDDQk8rFqHcD72K7qP+aysWr76XybqFrarnWJ1SO/0Ac8e7Hex7/G/azHvYfj9ecjMXeM+r49/lmxk+ibKbqn68uvP5ZRZIlXOMw0r46nC+ElSn4Ezb7+ntUnb28C7s3+H/AHOCLiL7RsWyq5XorovrEk4t3xLhurJpdkRZg95Vh//JwvRAwHou9c9TvfQ/7O0mEv2NlMhItnu8MEck+sXL2+jqe88/Y4NjNWG2707DZh2F7sdz5V+yZflXE7/2GyrPL363lWluoGn/0Zoku7qXyfgy11TR8gcr3+O9V17Aav8a+u6N3wr4E+zMnanB1NVX/ft5P0Ln9coAk3r+77BokmasQWzrSBHvwdn3TIcnRFqsXdAh7cPdzcwWRTHQElsMKsJuz7TU3FxFJW02Bo4CGWH3Yr1IbjoiIZIgm2P1wITb5pq6TkERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERCRrNEh1ACIpUgjcBPwE6AS8B+xLZUAiIh40BUYAw4AOWA7bn9KIRES+0QzLUdcDx2A56kAqAxIRkYzQELgW+ClwErAc2J3SiEREDssBhgJrgFDEZz02wKhBdhFJZ7nYTdZGKuewdVgOy01daCIi1eaotYeP56QuNBERSXMDgHep/P2xFZgANEphXCIinAm8SOUEFf15DeiXqgBFRGpwNvASNeewV4C+qQpQROq1bwOvU3OOehk4J1UBiohIWuoG/JWavz9WYBODRESS6hjgMeAQNSep8OcQ8D/AsakIVkQkSkfgCdxz2EHgt0C7VAQrIvVOJ+CPuOWncI76DdAmBbGKiEj6aAnch5Xtcf0O+Ss2ACki4quGwBhgB+4JKvKzEygFCpIct4gIQBNsiceXxJfDvsJyWOMkxy0i9UMTLMfsom45SsvYRETql3B5jM+I7/tjH/Ar4MhkBy4i9cNg4CPiS1DRn09R3R8RSa7BwCoSk8M+wXKYiEgihOtRryYxOWolWsYmIlJfXAC8SWK+PzZjE4i0D4KIJMRpwPMkJkFFfxYBvZL2JxGR+qg3sAR/clgFcHLy/igikoXOBv6NPznq70DP5P1RREQkiboAf8Kf74/XsTq+ypLurgAAIABJREFUIiJxOQp4GDiAY+K5+OKLQ0899VTokksu8ZKsDmDTq49K2p9MROqDtsCjWG0xp3w0aNCg0FNPPRW66KKLvOSw/cD9QOuk/clEJBu0A+biIUddeumloaeeeip0/vnne8lR+7B6Wi2T9QcTERFfHQFMA/bg+F3Qp0+f0JNPPhm68sorQ7m5uV6+Q57C6vqKiDjJB24CPscx0XTt2jX02GOPhdavX//1549//GOoR48eXpLVl6juj4jUXT62VGMbjvnnhBNOCD3++OOVctiTTz4Z6t69u5cctgWrz9gwaX9SEclE4Ry1Hcf8cvLJJ4f+9Kc/VclR3bp185KjwsvY8pL2JxURkUQKl8dYg2Pub9euXei+++4LrVu37uvvj7///e+hs88+28v3x17sxVTTpP1JRSQjDQDexjG5NG/ePHTnnXeG1qxZU+kmN/xZu3Zt6L777gu1bt3aS8LS9vUiEq8BwLs45psWLVqEgsFg6NNPP42Zw9asWRO66667Qq1atfKSw5YD30vin1lEMsdg4EMc80nLli1rzVHBYDDUrFkzLznqfeCSJP6ZRUSk7s4EXsQx1xcUFIRuvvnm0MqVK2N+f6xfvz40b968UIcOHbx8f6zDJh7lJu+PLSKZ4ARsOrNTMsnNzQ0NGTIk9Pbbb1eboCI/77//fujmm28O5efne0lYqk0mIq66AX/FMb/k5+eHrrnmmtA777zjlMPee++90PDhw0MNGjTwmsNUu0xEALoDf8NDjho+fHho+fLlTjnq3XffjSdHPQ10TeLfgYiIeNceKw/mXB5j4MCBoVdeecXp++Ojjz4K3XnnnaHCwkIv3x+vAH2T91dQv2jXWskkRwA/B4pwXGp83nnnEQwG6dGjh+eLffTRR5SWlvLPf/7Ttct+4LfAncAXni8oItmuJbbM+FYclxr379+fsrIyunfv7vliK1eupKSkhEWLFrl22Q88BASw5Y0iUr+0AkqAkTguNe7fvz/BYJBu3bp5vtg777xDIBDgP//5j2uXcI4qBnZ4vqCIiPilITACKMdxqfEpp5xCeXk5Z599tueLbdiwgWnTprFgwQJCoZBLlxAwHxtL+MTzBaVaGlCUTJALXAPcBbRx6dC+fXsmTJjA0KF1X428ePFiJk2axMqVK127bAGC2MYHB+scgIhkunAOm4njhk6dO3emqKiIwYMH1/niFRUVBAIB1qxZ49plM3ZDqBwmUj/kATcAk3HMUV26dKG0tJQBAwbU+eIVFRUUFxfzySfOz3gbsDrWvwEO1TkAERGpi8FYzcLOLo1btWrF2LFjGTZsGA0aNKjThZctW0YgEGDZsmWuXXZi9+PTsU1ipI40oCjprg+WoPq4NG7SpAkjRoxg1KhRNGqUuP1S9u/fz7x585g5cyY7dji/FH8fm4n094QFIiKZ5gLgXuBUl8aFhYX87Gc/Y/To0TRsmLj9UsI57K677uKrr75y7bYMGAssTlggIpJuLsRy1CkujZs1a8bo0aO56aabyM/PT1gQe/bs4dFHH+W+++7zkqOWYjlqScICERERVz2AXwDfcWmcn5/Ptddey+23307TponbL+XQoUMsWLCAyZMn8/nnn7t2+xSYBPwuYYHUUxpQlHR1LDAVm9VT67/TnJwcBg0aRElJCe3bt/ctqK1bt3LPPfcwd+5cDh50nrizENup8GPfAhORdNMBmAL82KVxbm4ul19+OcXFxRx1lNMEobh89tlnzJo1i8cff5xDh5wn9iwERgOrfQtMRJLteOw+y2kpRzhHBQIBjjzySN+C2rhxI1OnTo1nGdtt2E6iIiLir3B5jJsBpymG/fv3Z/LkyZxwwgm+BbVz504efvhhZs+ezb59+1y7PY+9mHrLt8CynAYUJd00wR5cJ2E1E2vVq1cvysvL6d27t6+BRXr77bcJBAK8/PLLrl32AQ9jf64vfQtMRFKtEHuwnQA0dulwxhlnEAwGOeOMM3wNLNKbb75JcXExr732mmuXXcBsbEmk8/QhEUk74RzlXI+6b9++BINBevZM3r5Nb7zxBsXFxSxdutS1yy7gbmAGsNu3wERE6q98YBj2wtzpzVLXrl0pLS3loosu8jWwSKtWrWL69Ok8/fTTrl0OAb/H6itu8i2wLKUBRUkng7EH1uNcGrdp04bx48dz9dVXk5ubmt3gKyoqmDRpEp9++qlrl/VAGar7I5JtcoAhwCxsdmKt2rVrR1FREUOGDCEnJ/lfx6FQiIULFxIMBlm3bp1rt3XAHcBj2MwgEckMOdiM6RlAW5cOiaxHHY9QKMT8+fOZMmUKmzY5P+OtxTbHU44SEUmcAVh5jJNcGjdv3pxRo0YlvDyGF0uWLCEQCLB8+XLXLlux78hfYJOBxIEGFCUdnIHVSezn0rhx48YMHz6cMWPGcMQRTpMYfbV7927mzJnDvffey86dO127vYYtg/63f5GJSJKchd1k9XVpXFBQwA033MDYsWMpLCz0NzIHu3bt4qGHHuL+++9n7969rt1ewXKY8/asIpIyZ2P3Wee4NC4oKGDkyJEJr0cdrzhz1AvYMrY3/ItMRCTrnYDNSPRUHqOkpITWrVv7G5mDAwcO8MQTTzB9+nS2bNni2u0DYBzwN/8iyx4aUJRUaoft0jccx/oLAwcOpLy8nI4dO/oZV1zqUPdH29eLZKb2WA2Zn2A7Oddq4MCBTJkyhWOPPdbXwOKxfv16pk+fzvz58127hJeI3AZ85ltgIhKvY4BpeKxHHQgEOOaYY3wPzqvVq1czbdq0eJaxKUeJiHhzBPaM6lweo1+/fpSVldGjRw9fA4vHtm3bmDVrltd9EJ7FXp6/519kmU8DipIK+cBIIAg0c+lw0kknUV5ezjnnOL1cT6nXX3+dQCDgpe6Ptq8XySwNgRFAOeC0Td0pp5xCeXk5Z599tq+BJcKLL75IIBDg/fffd+0SzmHTAOfpQyLimwLgFjzUoz7ttNMIBoOcddZZvgaWCEuWLKGkpMRLjtqG3WPdi3KUiEhNcrGXUHcBbVw6dOrUiYkTJzJ48GBfA0uElStXUlJSwqJFi1y77AceAgLAdr/iymQaUJRkG4zVJejq0rhFixaMGzeOYcOG0aCB0yTGtKDt60Wy1mBs6WBnl8bhWq8//OEPMzKHlZeX88UXX7h2W4nVLvujf5GJSC0GA78EOrk0Tod61PEIL2ObMWMGmzdvdu22AhiP7VwvIiKVfRt78dLLpXGTJk0YMWJE2pTH8KKiooJAIMCaNWtcu2zGJhLcDzhPcawPNKAoydING0j8rkvj/Px8rr32Wm677TaaNXOaxJiWwnV/tH29SMbrhd1kfdulcTiH3X777TRt6jSJMS3t2LGD2bNn88gjj7B//37Xbv/Ectg7/kUmIlFOx1529HdpnC05avv27cycOZN58+Zx4MAB127PYjnqXf8iExHJGMcCU/FQHuOKK65g0qRJHH300b4H55f9+/czb9487r77br788kvXbsuw74/F/kWWWTSgKH5ridVJHAnkuXTo378/wWCQbt26+RlXUmn7epGM1Qqrk3gzHmq9lpWV0alTJz/jSqqPP/6Y0tJSnn32WdcuB4A52IxF5ymOIuJZa2wplqccFQwGOe6443wNLJk++ugjSkpKeO6551y7hJexlWBLokVE6psmwO2HPwUuHXr16kV5eTm9e/f2NbBk+uyzz5g1axaPP/44hw4dcu22EBgNrPYtsAyhAUXxSx5wAzAZOMqlQ5cuXSgpKWHgwIG+BpZK2r5eJGOEa72WAi1cOnTt2pWysjIuvPBCP+NKqcWLF1NcXMyKFStcu2zB6uU+gA0yikhihHNUGdDcpcPxxx9PWVkZF1xwga+BpVJFRQUlJSWsXr3atUs4R2kZm4jUFznAEOBuwOnNUps2bbjjjjsYMmQIOTnZOYT05ptvUlxczGuvvebaZTdWYmQy8JVvgaW57PzXIKl2IbY08BSXxs2aNWP06NHceOONNGzY0N/I0oC2rxdJewOwHHaSS+PmzZszfvx4rr/+evLynCZiZ7TwEpGZM2eyY8cO127LgVuBZ/yLTKTeGIAtb+7p0jhcj7q+5SiPy9jewHbz/Jd/kYmIpFxv7B63n0vjxo0bM3z4cMaMGcMRRzjt8ZXRQqEQCxcuJBgMsm7dOtdu64A7gMeAkG/BpSkNKEoiHY/VXxjq0jg3N5fLL7+c4uJijjrKaRJjVglvXx9H3R9tXy/ijxOAe4BBLo3z8vK46qqrmDBhAq1bt/Y3sjS0detW7rnnHubOncvBg84TexZiOexj/yITyVonYjnq+y6NwzmqqKiIVq1a+RtZGgovY/vDH/7gNUfdAqzyLzIRkaRrh626GY6H8hjl5eV07NjRz7jS0u7du3nwwQe5//772bt3r2u3V7B73P/4F1n60YCiJEIhcBswAWjs0uHcc88lGAxy0klOE4Cy2ocffkhJSQnPP/+8axdtXy+SWC2AIqzIstM2df369aOsrIwePXr4GlgmeOeddyguLubll1927bIPeBgoBpynOIrUY+EcdSvgtJSjX79+BINBunfv7mtgmeDtt9+muLiYV155xbVLeBnbFMB5iqOISBoKl8cIAk47nZ588skEg0HOOeccXwPLBOvXr2f69OnMnz/ftUsI+B+sLuVG3wJLIxpQlLrIAX6M1fhr69KhXbt2FBUVZXX9hXhp+3qRpMvFdrS7C2jj0qFTp05MnDiRwYMH+xpYJqqoqGDSpEl8+umnrl02YG/Lf4NtRCUilYVz1N2A01aanTt3pqioSDkqhoqKCu68807Wrl3r2mU9VqNSOUpEMtFgrA5/V5fGLVu25NZbb2XYsGE0aOA0ibHe+Pe//00gEOC995wXCe4EZgLTAOcpjplIIzoSr7Ow+j3nujQuKChg5MiR3HzzzTRu7DSJsV7S9vUiSfNtrIZML5fGTZo0YcSIEYwaNYpGjZwmMdZLe/bs4dFHH+Xee+9l586drt1ew3LYi/5FJpJxLsBy1KkujcM5avTo0fWiHnW8du/ezZw5c7zmqFexHPVv/yITEUmY7lh5jO+6NM7Pz+faa6/ltttuo1kzp0mM9dKhQ4dYsGAB5eXlfPHFF67dPsTqK/7Rv8hSSwOK4tUx2Ej7NTj8+8nJyWHQoEEUFxdz7LHH+h5cttD29SK+ORar9eqcw6644gomTZrE0Uc7TRASYOPGjUydOpUFCxYQCjnVpw4B84GfA5/4GpxIeuuALbX9sUvj+l6POl4bNmxg2rRp8eSo8YDzNGwRkSRqia38GAk47cDVv39/gsEg3bp18zOurLJjxw5mz57NI488wv79+127/RMrW/K2f5GlhgYUxVUBVqT6TqCpS4dTTz2VYDDI2Wef7Wtg2ezNN98kEAjw6quvunbR9vUisTXB6pncjuWzWvXq1Yvy8nJ69+7ta2DZ7PXXXycQCLB06VLXLruw5Z3TgT2+BSaSfsI5yrke9emnn04wGFSOqoNly5YRCARYtmyZa5fwMjblKBFJF3nADdjzn9ObpS5dulBSUsLAgQN9DSybffzxx5SWlvLss8+6djkAzMHGU5ynOKY7DSiKi8HY8ubOLo3btGnD+PHjufrqq8nNzfU3snpA29eL1EkOMAQbpDrOpUPbtm2ZOHGiar0mSCgUYv78+UyZMoVNmza5dvsUmAT8zr/IRNJCOEfNBJy20lSOSqzwMrbJkyfz+eefu3ZTjhKRdHAhVh7jFJfGzZo1Y/To0dx4440qj5Egixcvpri4mBUrVrh22YJtkvMANsiY0XQXIjU5HUtQ33JpHK6/cPvtt9O0qdMkRvFA29eLeNYbexlynkvjxo0bM3z4cMaMGcMRRxzhb2T10K5du3jooYeYPXs2+/btc+22CKtd9qZvgYmkzplYjurr0rigoIAbbriBsWPHUlhY6G9k9dDOnTt5+OGHveao57Ec9ZZ/kYmIVHE8VsJnqEvjcHmMQCDAkUce6W9k9VB4H4SZM2eyY8cO127LsWXQz/gXmf80oCixtAYCwM2A0xZPAwcOpKysjE6dOvkZl6Dt60UctMNqyPwE2yW1VgMHDqS8vJyOHZ0mCEkdrF69mmnTpvH000+7djkE/B6rr+g8xVEkjbUHSvCYoyZPnkyHDh18DUxg1apVTJ8+PZ4cNR5wnuIoIhKHQuA2PJTH6Nu3L8FgkJ49e/oamMDWrVu55557mDt3LgcPHnTtthCbAPSxf5H5RwOKEikfK+JaBjR36XD88cdTWlrKhRde6GtgUpW2rxepIpzDgoDTNnUnn3wywWCQc845x9fApKolS5ZQUlLC+++/79plG1a37BeA8/QhkTTSEBgBlONYj/qUU04hGAzSp08fXwOTqhYvXkxJSQnLly937bIVmIFylIgkXg62WdcMoK1Lh3bt2lFUVKTyGCnwzjvvEAgE+M9/nBcJ7gMeBooB5ymO6UD/siRsALa8+SSXxi1atGDcuHFcf/315OU5bSIlPtD29SJfG4w9xHV1adyyZUtuvfVWhg0bRoMGThOxxQcHDhzgiSeeYMaMGWzevNm12wpgHPBX/yITSbjB2H1WF5fGylHpYf/+/Tz55JNMnz6dLVu2uHb7AMtRf/MvMhGpR87CymOc69K4oKCAkSNHMmrUKBo1auRvZFKjiooKiouL+eSTT1y7bMBWWf0Gm/2e9jSgKCcC9wDfd2mcl5fHVVddxYQJE2jdurW/kYkzbV8v9Vh3LId916VxuNbrbbfdRrNmTpMYJQm2b9/OzJkzmTdvHgcOONenfharXfauf5GJ1FkP7GXHd1waK0elp23btjFr1iyvy9iexZaxOS8lERGJcAy2suwaHMZtcnJyGDRoEMXFxRx77LG+Bydu9uzZw6OPPsp9993HV1995dptKfb98aJ/kSWGBhTrrxZAETag5LTFU79+/SgrK6NHjx6+Bibxq8P29ZNQ3R/JLK2wGmQjAadp0v379ycYDNKtWzdfA5P4ffjhh5SWlvLcc8+5dtkPPITV/d3uW2Ai3oVzlHM96v79+1NeXs6JJ57oa2ASv5UrV1JSUsKiRYtcuyhHiYhXBcAtwJ04lsc49dRTKS8v56yzzvI1MInfxo0bmTp1KgsWLCAUCrl0CQHzsZqZa3wNrg40oFj/5GJvOe4Gjnbp0KlTJyZOnMjgwYN9DUwSZ/HixQQCAT744APXLlm1fb1ktTzgBmAycJRLhy5dulBaWsqAAQN8DUwSp6KigpKSElavXu3aZTNWl+5+wHn6kIgPwjlqCuC0lWbXrl0pLS3loosu8jUwSZyKigoCgQBr1jg/4ylHiYiLwcAvgU4ujdu0acP48eO5+uqryc112uNLUuyNN96guLiYpUuXunbZhY3dTAf2+BZYnDSgWL+cj9XvOc2lcZMmTRgxYgSjR4+mYUOnSYySRurz9vWStS7EctgpLo2bNWvG6NGjuemmm8jPz/c3Mkm4cA67++67+fLLL127vY4tg/6Xf5GJVGsAtrz5ZJfGzZs3Z9SoUcpRGSqco+666y4vy9iWYTlqsX+RiUgGOh27x/2WS+NweYzbb7+dpk2dJjFKGgmFQsyfP58pU6awadMm125rsVmrj2GzF9OCBhTrhw7Ym/IfuzTOycnhiiuuYNKkSRx9tNMkRkljddi+fizwkX+RiTg7HpgKDHVpnJuby+WXX04gEODII50mCEka++yzz5g1axaPP/44hw4516deiC0XWuVfZCJfOwG7z/KUo0pKSlSPOgvUIUeNBlb7FpiIZILWWEkE5/IYAwcOJBgMctxxx/kamPhv165dPPTQQ9x///3s3bvXtdsi7Dn9Td8C80ADitmtCXA7MAFo7NLh9NNPJxgM0rt3b18Dk+SLY/v6cN2fjNu+XrJGIVY3pAhw2qaub9++BINBevbs6WtgknxvvfUWxcXFvPrqq65ddmPLhqYAzlMcRTw4Avg5HnLUeeedRzAYVD3qLPTmm29SXFzMa6+95tplFzAbK+HhPMVRRLJCPlYHvAxo7tLh+OOPp6ysjAsuuMDXwCT5Vq9ezbRp03j66adduxwCfo/dgzhPcfSDBhSzUw4wBJgJdHTp0LZtWyZOnMiQIUPIydE/i2xWH7avl4yXg82ongG0denQvn17JkyYwNChThOEJEOFQiEWLlxIeXk5a9eude22DriDNFsiIhktXI/6LqCNSwflqPohnKOCwSDr1q1z7aYcJVK/DADuA5zefrdo0YJx48Zx/fXXk5fntA+hZKglS5ZQUlLC+++/79plG1Zb8V7AeYpjImnkKPucif2DOs+lcePGjRk+fDhjx46lsLDQ38gkbdRh+/qxwBL/IhPhbOwm6xyXxgUFBYwcOZJRo0bRqJHTBCHJArt37+bBBx/kgQceYM8e5/rUrwJjgJf8i0zqgT5Yjurj0jhcj1o5qn6JcxnbK1iOcl5KIiIZ5UTgHuD7Lo3z8vK46qqrKCoqolWrVv5GJmnjwIEDPPHEE8yYMYPNmze7dlsBjMfKaSSVBhSzRztsFtlPsDfntRo4cCCTJ0+mQ4cOfsYlaSxbt6+XjHQMMA2b9VPrd1NOTg6DBg0iEAhwzDHH+B6cpKcNGzYwbdo0rznsf7ByIBt9DU6yzbFYLVdPOaqkpIT27dv7Hpykp/Xr1zN9+nTmz5/v2iW8jO024DPfAhORZGqBlca4FXDa6bRfv36UlZWpPEY9tn37dmbOnMm8efM4cOCAa7dnsQlA7/oXWWUaUMx8DYERQBBo5tLh5JNPpry8nD59nF6uSz1Qh+3rZ2B1ykTiVYBtnjEJq0dWq9NOO41gMMhZZ53la2CSOV566SUCgQDvvut8/7QTKwsyHXCe4ij1UhNs8wznHNWrVy+CwSBnnnmmr4FJ5njxxRcJBAJelrGFc9Q0UrSMTUTqLFwe427AaafTTp06MXHiRAYPHuxrYJI5PvzwQ0pLS3nuuedcu4T3QQgA230L7DANKGa2wdjy5i4ujVu2bMmtt97KsGHDaNDAaRMpqUeyaft6yRiDsU0zOrk0btOmDePHj+fqq68mN9dpIrbUI4cOHWLBggVMnjyZzz//3LXbh1jtsj/6F5lksMHYphlOW2kqR0lNwjmqvLycL774wrXbSuw+SzlKJLOcjz2nn+bSOFweY/To0TRs6DSJUeqZiooKSkpKWL16tWuXzUA5cD9w0K+4NKCYmboDvwAucWmcn5/Ptddey2233UazZk6TGKUei7PuzwvY9Oo3/ItMssjpWA2y/i6Nwzns9ttvp2nTpv5GJhlvx44dzJ49m1//+tfs27fPtdtz2FKkt/yLTDLIGViO6ufSOJyjJkyYwBFHOE1ilHps+/bt3H///TzyyCPs37/ftds/sfusd/yLTEQSoAMwBdtcsFY5OTlcccUVTJo0iaOPdprEKPXY/v37mTdvHnfffTdffvmla7fXse+Pf/kRkwYUM0sroATbYt5pi6f+/ftTXl7OiSee6Gtgkn3qsH296v5IdVpj0+9vBpymSQ8cOJBgMMhxxzlNEBL52qpVqygtLaWiosK1ywFgDra01XmKo2SVI4FiPOao8vJyOnbs6Gtgkn0+/vhjSktLefbZZ127hHPUnYDzFEcRSYomWH3mCUBjlw6nn346wWCQ3r17+xqYZJ/PPvuMWbNm8Yc//IGDB50nHy7EykytSmQsGlDMDHnADdjbjiNdOnTp0oXS0lIGDBjga2CS/TJx+3pJO/nYi5AyoLlLh+OPP56ysjIuuOACXwOT7Ld48WICgQAffPCBa5et2L/VB7AHeMl+4RzlXI/6hBNOoKysjPPPP9/PuKQeWLx4McXFxaxYscK1yxbs36pylEjq5QBDsJqnTm+W2rZty8SJExkyZAg5ORqOkfi99dZbBAIBXnnlFdcuu7FyU1MA5ymONdG/4PR3ETYwc7JL42bNmjF69Ghuuukm8vPz/Y1M6o1M275e0soAbOlgT5fGLVq0YNy4cVx//fXk5TlNxBapVXiJyMyZM9mxY4drtw+wZdD/519kkgYGYDfXTltphnOU6lFLIsWZo5ZjOeoZ/yITkRqcid3j9nVp3LhxY4YPH87YsWMpLCz0NzKpN0KhEAsXLqS8vJy1a9e6dlsPTCQB+yBoQDF9HQ9MBYa6NM7NzeXyyy8nEAhw5JFOkxhFPMuU7eslLZwI3AN836VxXl4eV111FUVFRbRq1crfyKTe2rZtG7NmzWLu3Llel4iMBT7yLzJJgW5YjvqeS2PVo5Zk2Lp1K/fcc088OWoM8LF/kYlIhPZYGbKfYDs512rgwIFMnjyZDh06+BqY1F+7d+/mwQcf5IEHHmDPnj2u3V7Fvj9eive6GlBMP4VYDboioJFLh/POO49gMEiPHk4v10Xq7KOPPqKkpCSe7etLsCXRkr1aYPnrVsBpm7p+/foRDAbp3r27r4GJhK1cuZKSkhIWLVrk2iWcw4oB5+lDkpZaAqV4rEcdDAbp1q2bn3GJfO2dd96huLiYl19+2bXLPuBhlKNE/NQQGIGH8hinnHIKwWCQPn36+BqYSNiGDRuYNm0aCxYsIBRymnwYAv4HqwG60ev1NKCYPnKBa4C7gDYuHdq3b8+ECRMYOtRpEqNIwsWxfX247o+v29dLSoRz2N2A0zZ1nTt3pqioiMGDB/samEh1KioqKC4u5pNPPnHt8gUwGeWwTBSuRz0ZOMqlQ+fOnSktLWXgwIG+BiZSnYqKCiZNmsSnn37q2mUDNmD+G2yzPBFJjMFYGbIuLo1btmzJrbfeqvIYkjIvvfQSgUCAd991XiS4E6sFOh1wnuKoAcX0cDZWf+Ecl8YFBQWMHDmSUaNG0aiR0yRGEd/EuX39G9j0al+2r5ekuwC7yTrVpXGTJk0YMWIEo0ePpmFDp0mMIr4J57C77rqLr776yrXbMiyHLfEvMkmgC4Ff4JijwvWob7zxRuUoSbk9e/aRDbpQAAAgAElEQVTw6KOPcu+997Jz507Xbq9hpRpe9C8ykXqhB/b98R2XxiqPIenk0KFDLFiwgMmTJ/P555+7dvsEm+3+O5fGGlBMrWOAadisnlr/W+Tk5DBo0CACgQDHHHOM78GJeJFO29dL0nTAdgn7sUvjcK3X4uJijjrKaYKQSNKEc9jjjz/OoUPOE3sWAqOANf5FJnXQFbvP8lSPWjlK0tHGjRuZOnWq12Vs84GfYw+IIuKuFVaq6WbAaYph//79KS8v58QTT/Q1MBGvdu7cycMPP8zs2bPZt2+fa7fnsBJWb9XUSAOKqdEEGA1MAo5w6XDaaadRXl7OmWee6WtgInX19ttvU1xcnNLt68V3TbA6GxOAxi4dTj/9dILBIL179/Y1MJG6euONNwgEArz22muuXXYBs7GltM5THMVX4XrUzjnq3HPPJRgMctJJJ/kamEhdvf766wQCAZYuXeraZRdWjsTTMjaReipcHmMK4LTTadeuXSktLeWiiy7yNTCRulq1ahXTp0/n6aefdu1yCPg9MB6IOcVRA4rJNxgbPOnk0rhNmzaMHz+eq6++mtxcp02kRNJCRUUFd955p9ft68tQ3Z90lgMMweprdHTp0LZtWyZOnMiQIUPIydFXjmSGUCjEwoULKSsrY/369a7d1gJ3Ao9hM4Mk+XKwGdMzgLYuHdq1a0dRUZFylGSUUCjE/PnzmTJlCps2bXLt9ik2mcFpGZtIPXQRVsLnZJfGzZs3Z9SoUdx0003k5+f7G5lIAi1evJhAIMAHH3zg2mUrdm/1C2wTsK/pzil5zsASVH+XxuH6CxMmTOCII5wmMYqknd27dzNnzhyvdX9exer+/Nu/yCQOZ2K1Xvu6NC4oKOCGG25g7NixFBYW+huZiE927drFQw89xP3338/evXtdu72M1Vd03p5VEuIsLEed69I4XI/65ptvpnFjp0mMImknnKM8LmNbhN1nvelbYCKZ5QRsRqKn8hiBQIAjj3SaxCiSdvbv38+TTz7J9OnT2bJli2u3D4BxwN/CBzSg6L82wFTgemwX1Fp9//vfp7i4mI4dnSYAiaS9tWvXUl5e7mV6dQgrKD4McN6aSnzhudbrf/3XfzFp0iTat2/ve3AiybB69WqCwSDPPPOMa5cQ8B/su3+FX3EJAMdib81/iGOOuuyyy5g0aRJt2zpNYhRJe6tWraK0tJSKigrXLiHsxe11wEe+BSaS3ppjm0+MBpx24OrXrx9lZWX06NHD18BEkmXz5s3MmDHD6z4I7wE/AxZrQNE/DbEZCpMApy2eevbsSTAYpG9fpwlAIhknju3rDwGXAM53yJIwjbF6GROxemS1OvXUUykvL+ess87yNTCRVFmyZAmBQIDly5e7djkInI92g/ZDAbbZxAQcc1SvXr0oLy9XLVfJWi+88AIlJSWsWOH8HuMgcB6aUS31Sy7f1Ek82qXDcccdRyAQ4Lvf/a6vgYmkyrvvvksgEOCll15y7RICfqoBRX9citUYO8GlcatWrZgwYQJXX301DRo4bSIlkrEOHjzIH/7wB2bMmMHmzZtduqzFdhOW5LkCK+De2aXx0UcfTVFREf/93/+tWq+S9Q4cOMBjjz3GzJkz2bp1q0uXj4DjfQ6rvvlv4C7gOJfGbdq0oaioiKFDhypHSdY7cOAA8+bNY+bMmWzfvt2lywqgm89hiaSL/lh5jNNdGhcWFjJmzBhuuukmGjZ0msQoktEWLlxIeXk5n376qUvzrzSgmFg9sUKVF7s0zs/P5/rrr2f8+PE0a+Y0iVEka2zZsoVLL72Ujz/+uLam+3FchiB1dhpW6/V8l8b5+fnceOONjBkzhqZNm/oamEi62bRpE5deeimffPJJbU33YLPppO5Ox3LUt1waN2zYkJtuuolbbrlF9ail3vnss88YNGgQ69atq63pLhxn+YpksI7Yy/KhOJbHGDp0KBMnTqRNmza+ByeSTnbv3s2VV17Ja6+9VmtbvaZNjFbYzs1v4jiYeMEFF/DPf/6TsrIyDSZKvfP8889z2WWXuQwmAhzwOx7hSOBhYCmOg4kXX3wxL7zwApMmTdJgotQ7FRUVXHbZZS6DiWAvRaRujgYewWrrOg0mXnLJJSxatIg77rhDg4lS7zzzzDNcdtllLoOJoBwl2a0JUAYsx2a31zqY2Lt3bxYuXMi9996rwUSpd5YuXcqQIUOcBhNBA4p1lQeMxJYKjD786xp16dKF3/3ud/z+97/n+OO1Akrql48//pjrrruOH/3oR6xcufLr482aNePSSy+trpvTeh2JSz620+NK4KdArTUXTjzxRJ544gnmzp1Lp06dfA5PJL2sWLGCH/7wh1x33XWsWrXq6+PNmzevKYc51XaQmPKx3QRXADficN/avXt3nnrqKebMmaMcJfXO8uXLufLKK7nhhhtYvXr118dbtGjBoEGDquu2KRmxiSRZDrZZ1wdAAIeVAm3btmX27Nn87//+L6ef7rQiWiRrbNy4kVtuuYVLL72U119//evjjRs35gc/+EG1/TSgGL+LgGXAA0Dr2ho3a9aMQCDA888/z4ABA3wPTiSd7Nixg2AwyAUXXFBpB8Lc3FyGDh3KkiVLuOiii6rrvi8pQdY/lwBvYWUaWtTWuEWLFkyePJlnn32Wb33LaYKQSNbYvn07xcXFDBgwgBdeeOHr43l5eVxzzTUsWbKE8847r7rue5MSZPb5PvA2MAvbibNGLVu2ZOrUqfzjH/+gX79+vgcnkk62bt3KnXfeycUXX8zixYu/Ph6Zo84999zquitHSbY5E1gMPA4cW1vjRo0aMWbMGJYsWcIVV1xBTo6qwkn9sXfvXn75y1/Sr18/5s+fTygU+vr3Bg4cyKJFi7jmmmuq7V/rjDqpogO2I9SPXRrn5uZy+eWXU1xczFFHHeVvZCJp5tChQyxYsIDJkyfz+eefV/q9vn37EgwG6dmzZ4qiq7dOwHLYUJfG4RxWUlJC69a1vjsRySrhHFZeXs4XX3xR6ff69etHWVkZPXr0SFF0WetEbBCx2ulUkfLy8rjqqquYMGGCcpTUOwcOHOCJJ56IudFdv379CAaDdO/ePUXRiSTdkUAxcDMOq27ABkzKy8vp2LGjr4GJpKOKigoCgQBr1qypdPzkk08mGAxyzjnnALB27dpqz6EBRXeFwG3ABKCxS4czzjiDYDDIGWec4WtgIulo2bJllJSUsHTp0krH27Vrx8SJE/UGMPmOAH4OFAGNXDqcd955BINBDZhIvfTiiy8SCAR4//33Kx3v1KkTEydOZPDgwSmKLGu1wPLTWBxzlAZ1pT5bsmQJJSUlVXJU586dKSoqUo6S+iQfK0MWBJw2JzjhhBMoKyvj/PPP9zMukbS0cuVKSkpKWLRoUaXjLVu2ZNy4cVx//fU0aOA0Jq8BRQc5wBBgJrY7VK3atWtHUVERQ4YM0YCJ1DsbNmxg2rRpLFiwoNKU6YKCAkaOHMmoUaNo1MjpWVESIxe4BrgLcKos3b59eyZMmMDQoU6TGEWyyvr165k+fTrz58+vdLxJkyaMGDFCOSzxwjnqbmzzlVppUFfqs9WrVzNt2jSefvrpSscLCwv52c9+xujRo2nYsGGKohNJugHY5qhOb5ZatGjBuHHjGDZsmPOAiUi22LZtG7NmzWLu3LkcPHjw6+P5+flcd911/PznP/e8YbAGFGt2FnAv0NelcUFBATfccANjx46lsLDQ38hE0szu3buZM2cO9957Lzt37vz6eE5ODoMGDaK4uJhjj621jIkkVh/gvsP/WysNmEh9tmvX/2fvzgOirPM/gL9nAA9EVNRA877vI0+U4dLBUvEKtAylXSvaSKhmM1ucUWekXIoKyt2llfZHWbsK1RZaq6OCgFdmXuWRRyhymgLmQQ7O8/vj8RkZGJgBZ+Y7M8/n9d8+z3fgXUufmfk+3+/newt///vf8cEHH+D33++3FJNIJIiIiEBCQgIeesii+S5iuWDwn7NGWzJYqFE0YULEqLEaJZVK8fjjj2PVqlXUXomIyWAA7wCYaclgDw8PLFq0CCtXroSPj49tkxHiYIT2GOvXr8e1a9eM7slkMqjVagwePLhFP5smFE3rDmA1gGdg4cE1crkciYmJNGFCREmr1WLVqlUoKioyuj5q1ChoNBpMmDCBUTLR6gHgDfCrfswukxYmfVevXo3u3bvbPBwhjoTjOGzduhVqtRrFxcVG98aMGQONRoNx48YxSueyml2jhAkTmtQlYsNxHLKyspCYmIiKCuMDmceOHQu1Wk01iohJJ/AtyF4GYNGTpQedMCHEmRUUFEClUuH06dNG1/v164fVq1dDLpc/0M+nCUVjrQD8CYAGQHtLXjBy5EhoNBpMnDjRpsEIcUQnTpyASqXCwYMHja77+vpCoVBg8eLFkErpMHk78gSwHMAq8D0TzRozZgzUajXGjx9v02CEOKJjx45BqVTi+++/N7ru5+eHv/zlL9Tr1fo8AaxAM/pR04QJEbOjR49CqVRSP2pC7rfHeBuARUtxqZ8oEbNffvkF69evb9Aew9vbG8uXL8dzzz0HDw+PB/49NKF4Xzj4rYF9LRns4+ODl156ifovEFG6du0a3n333Ub7L7z66qto396iOXliPeEA3gfQ25LBNOlLxKy8vBzJycn47LPPoNfrDdfbtGmDZcuWIT4+Hl5eFs3JE8sI/ajfgoU1ys/PD6+//jr1oyaiVFZWhjfeeMNkP2pqr0REKBTAuwBGWTKY+okSMbt58yb+8Y9/4P3338edO3cM14X2GEqlEl26dLHa76MJRb6B67sAZlgy2MPDA0uXLsWKFStowoSIjk6nQ0ZGBt566y389ttvRvfkcjnUajV697bouyKxnkfAPwwJsGSwUMNee+01mjAhoiPUsKSkJNy4ccPonlwuh0ajQa9eFp2/Riw3DnyNmmrJYGFSlyZMiBjV1NQgPT0dKSkpJmvUunXr0LNnT0bpCLG7XgDWAVhiyWCpVIoFCxZAqVRSP1EiOnq9Hp9//jnWrVuHK1euGN2bMmUK1Go1hg0bZvXfK+YJRR/wfRJjAVi0xFAmk2HdunUYOHCgTYMR4ojy8/OxatUqnD171uj6gAEDsHbtWoSEhDBKJlpdACjRjBpGEyZEzLRaLVQqFS5evGh0fcSIEVCr1Zg8eTKjZC6rG4A1aGY/apowIWKl1WqhVCpx6dIlo+sjR46EWq3GpEkWna9GiCtoB+BVNKM9hr+/P9RqNYYPH27TYIQ4oh9++AEqlQo//PCD0XV7tMcQ44SiB4A/AEgE/4XcrP79+2PNmjWYNm2aTYMR4ojOnz+PNWvWYNeuXUbXO3bsCIVCgejoaLi7i7GUMOMB4AUAagDelrxg+PDhUKvV8Pf3t2kwQhzR2bNnsXr1auTm5hpd79SpE1555RU8/fTT1LrEuoR+1BbXKJrUJWL2448/QqVS4cCBA0bXfXx88PLLL1ONImIiAb8a8a8A/Cx5Qbdu3bBy5Upqj0FEqbS0FG+++abJ9hgvvPACXnzxRbRu3dqmGcQ2CzAdwHsALHp00aFDBygUCjz99NM0YUJEp7q6Gh988AE+/PBD6HQ6w3V3d3c88cQTWLlyJXx8fBgmFKVw8C0a+lsyuGPHjnjllVeo1ysRpaqqKiQnJzfa6/XPf/4zvL0tmu8ilgsH/zmrnyWDO3XqhJdffplqFBGlyspKvPPOO9SPmhDeBPDtMSx6+i1MmMTGxqJNG4sWMRLiMm7fvo2PPvoI7733Hm7evGm4LpFIMHv2bKhUKjz88MN2ySKWWbKBAN4BMNuSwcKEyWuvvYbOnTvbNhkhDkbov6BWq3H16lWjewEBAVi7di2GDh3KKJ1oDQY/kfiYJYOFPomvvvoqTZgQ0dHpdNi8eTPWr1+Pa9euGd2TyWRQq9UYPHgwo3Quawj4GvWoJYOpRhExE3q5vv3227h+/brRPWqvRESoO4D14E9wNrvEUJgwUSqV6NGjh83DEeJotFotEhIScPnyZaPro0aNgkajwYQJE+yax9UnFDsCWAngJQAWrfWkCRMiZnv37oVKpcKpU6eMrvfp0wevv/46wsPDGSUTrU7ge5C9AAvrNU2YEDHLz8/H6tWrcfr0aaPr/fr1w5o1azB9+nRGyVyW0I+6WTVKo9Fg0KBBNg1GiCPKz8+HSqXCmTNnjK5TeyUiQm0BxAFIAGDRUtxRo0ZBrVZj4sSJNg1GiCM6ceIElEolvvvuO6Prvr6+UCgUWLx4MaRSi1pWW5UrTyj+HcAy8P3GzOrTpw9Wr16NGTMsOuyZEJdSWFgItVqN//3vf0bXPT098ac//QnLly9Hq1atGKUTrf8D8BQsrNP9+/fH2rVrERoaatNQhDii8+fPY+3atdi5c6fRdW9vbyxfvhzPPfccPDws+jhALPcJgCdgYY0aOHAg1q5di+DgYJuGIsQRnTt3DqtXr0ZOTo7R9Q4dOuDFF1+kGkXERgXgdVh44Iqvry9WrlyJyMhIJhMmhLBUUVGBN998E5mZmdDr9YbrjtIew1UnFD8Cf/CKWV5eXoiPj8ezzz5LEyZEdG7cuIHU1FR8+OGHuHPnjuG6RCJBREQEEhIS8NBDDzFMKFpbAERaMtDb29vQJ5G+jBCxuX79Ot5991189NFHRr1epVIpHn/8cSiVSnTpYtH5a6R5vgQwz5KBQj/q6OhoqlFEdKqrqw19Ek3VKJVKRe2ViNj8BcBaSwa2atUKzz77LOLj4+Hl5WXjWIQ4ljt37mDjxo147733cOPGDaN7crkcarUavXv3ZpTuPledUFxsboBUKkVkZCRef/11mjAhoqPX65GZmYn169ejvLzc6N7YsWOhVqsxbtw4RukIgPnmBri5ueHJJ5+kXq9ElPR6Pf7973/jr3/9K3799Veje1OmTIFarcawYcMYpRMFs/0v3NzcEBUVhVdffZUO8CKic/fuXXz66adISkpq0Mt16tSpUKvV1F6JiNXLlgx69NFHoVKp0KdPHxvHIcTxbN++HWvXrkVhYaHR9QEDBmDt2rUICQlhE8wEV51QNLvUcOjQoVi+fDlNJhLROXz4MJRKJY4ePWp03c/PD3/5y1/w+OOPQyIx2xOZ2JbZ2jxq1CjExsbSZCIRnQMHDkClUuHHH380ut69e3esXLkSERERjJKJhhSA2SOZx4wZgz/96U80mUhEp7F+1FSjCAEAmF1q2LNnT7z00ks0mUhE58yZM1CpVMjPzze63rFjR8NuD3d3x5rCc9UmBHfNDfjpp58QEhICtVrd4IQ1QlxRaWkpXnzxRcyZM8doMrFNmzaIjY1Ffn4+IiIiaDLRSRw5cgRBQUF44403cPPmTdZxCLG5y5cv4/nnn8eCBQuMJhPbtm0LhUKBvXv30hd1+7DoTeLw4cMICgrC+vXrcevWLVtnIoS5S5cu4dlnn0VkZKTRZKKnpyfVKELuM/uGUFRUhJkzZ+KVV15BRUWFPTIRwlRVVRUSEhIgl8uNJhPd3d0RFRWFgoICLFu2zOEmEwHXnVC8Y34IoNPp8I9//AMBAQH49NNPjZpcEuIqampq8N5770Emk+GLL74Ax3GGe3K5HHv27EFCQgLatWvHMCWphzM/hO+t8cEHHyAgIABbtmyhGkZc0q1bt/DWW28hMDAQX3/9teG6RCJBeHg48vLyoFAo0Lp1a4YpiSm///47UlNTMXXqVGRlZRm9/xDiKm7evIn169cjKCgI27ZtM1ynGkWISb+aH8K3NvnPf/4DmUyGv/3tb0Y9SAlxFbW1tfjXv/6FKVOm4F//+hdqa2sN9wICArBjxw4kJSU59G4PV51QbNYn1l9//RWvvvoqHn30URw4cMBWmQixO61Wi+DgYCQlJRmtEBk5ciS+/PJLZGRkoGfPngwTEmsoLy/HSy+9hJkzZ+K7775jHYcQqxFq2LvvvouamhrD9dGjR+O///0v0tLS8PDDDzNMSCxRXl6OuLg4zJw5E4cOHWIdhxCr4DgO2dnZCA4ORmpqKn7//XfDvTFjxuDrr79GWloaunfvzjAlIQ6nWU+/f/vtN6xbtw5BQUHIzs62VSZC7K6goAAzZsxAQkICqqqqDNf79OmDtLQ0bNmyBUOGDGGY0DKuOqHYIj/++CMWLFiA6OhoXLp0iXUcQlrsp59+Mvm33KlTJ2g0GnzzzTeYNGkSw4TEFo4fP4758+cjJiYGly9fZh2HkBY7ceIE5s2bh+joaKO/ZV9fXyQlJWHbtm2YMGECw4SkJY4dO4Z58+YhJiYGxcXFrOMQ0mKN/S0LNWrr1q10uB0hVlRYWIiYmBgsXLiwQX9SQpxJY3/LQnuM3NxchIebPfvOYYhtQvGkJYOEFRGJiYkNjugmxJFVVVVBqVQ2WG3r4eGBZ555Bvv378eyZcvg5ma2nz5xTGZrmLBiIigoCMnJyUarughxdOXl5VixYkWD1bZCDcvLy0NUVBSkUrF9fHEaP5kbINSowMBAJCcnG63qIsTRCTVq1qxZRqtt6/ajphpFSIucsGSQsKprxYoVuHr1qq0zEWI1t27dQnJyMkJCQoxW20qlUkRGRmLfvn1QKBRo1crs+cIORWzvdq8BWAjgormBNTU12LBhA2QyGTIzM6nvD3FoOp0OGzduxOTJk5Geno67d++fSySTyaDVaqFWq+Ht7c0wJbGC5QCiAZSZG3j79m0kJydj6tSpVMOIwxNqWGBgIDZt2mRUw+RyOfLy8qBWq9G+fXuGKYkFXkALaxQhjqx+jarbs1gulyM3NxcJCQnw8jJ7gC0hxLS/AZDDggdTtbW12LRpEwICArBx40ajvnOEOBqO45CZmYkpU6Y0eJA6duxYfPXVV0hJScFDDz3EMGXLiW1CkQOQCWAYgLUAbpt7QXl5OeLj4zFr1iwcPnzY1vkIabb8/HyEhYVBpVIZnVjev39/fPzxx9i8eTMGDRrEMCGxIg7AxwAGgK9hZpcflpaWIj4+HhEREfjpJ7Of0QixO61Wi6CgIKhUKvz222+G6wMGDMCnn36KjIwM9O7dm2FC0gz1a5TZ5YclJSWGGnXypEUbSQixK61Wi8DAwAY1avjw4fj888+RkZGBXr16MUxIiMvYCWAsgJcAVJkZi+rqaqhUKoSGhmL37t02D0dIcx09ehRz5sxBfHy80Ynlfn5+SE1NdYn2GGKbUBTcArAGwCAAn8CCQ1yEP4a4uDg6vp44hAsXLiA6OhqLFi3CmTNnDNc7dOiAhIQE7N69G9OnT2eYkNjQTfA1bAT4hyRm7d+/HzNmzEBcXByuXLliy2yEWOT8+fOIiopCdHQ0CgsLDdc7duwIjUaD3bt3IyQkhF1A8iCaXaP27duHsLAwxMXF4ddfLToElBCbOnfuHJ566ilER0fj4sX7m5uEGvW///0P/v7+DBMS4pJ0AFIA9AeQCuBu08P5/1ZNfZ4ghBXhMLr6i9LqtseIiIiARCJhmNI6xDqhKLgMYCkAfwAHzQ3mOA5ZWVkml6sSYi/Xr19HYmIiQkNDodVqDdeF/gv5+fmIjY2Fh4cHw5TETs6Db+MwDcBxc4P1ej2ysrIgk8mwYcMG3Llzx+YBCamvuroaSqUSISEhRisK3N3dERUVhYKCAixbtgzu7u4MUxIrOQe+Rk2HBf2xhBoVEBCADRs2QKfT2TwgIfUJ/ahDQ0ORk5NjuC70cj1w4AD1oybE9q4BiAcwHkCeJS8QdjwolUqj1cSE2EvdtnlZWVlGLafkcjn27NmDhIQEtGvXjmFK6xLVhGL79u0b+3ZyEMAU8H1/ys39nMYaahJiS3q9HpmZmSYng6ZOnQqtVouUlBR06dKFYUpiS+7u7o09xtoNfotINACzyw+FSemQkBCjSWlCbKluz6P09HSjnkcBAQHYsWMHkpKS4OPjwzAleRBN1KhdAB4BEINm1qidO3daMyIhjWqqRslkMuzYsYP6URNiIz169GjsP6yjAIIAzAHwi7mfo9PpkJ6ebrInMyG21NjBviNHjsSXX36JjIwM9OzZk2FC2xDVhOJjjz02pInbejSz7w8dX0/sRdiuGh8fb7RdtXv37khNTUVmZiaGDh3KMCGxhwULFjTVDFOoYYMB/BWA2eWHv/zyi8lt84RYW2OnMvbt2xdpaWnYsmULhgxp6i2aOIMFCxYMaOJ2LYAPAQwBv43NbBf9CxcuYOnSpVSjiM0VFBQgLCwMK1aswLVr1wzX+/Xrh4yMDGzevBmDBw9mmJAQ1zZu3DhzHwKyAQwHsBKA2eWHdU9k/+6776wRkRCTfvzxRyxYsADR0dG4dOmS4XqnTp2g0WjwzTffYNKkSQwT2paoJhSHDh06xoJhN8D3/RkJC/v+FBQUQC6XIy4ujo6vJ1ZVWlqKuLi4BgdqeHp6QqFQYO/evYiIiGCYkNjTmDFjxlswrBL8h61RAL6x5OcKB/vU/yJFyINq7MGbUMNycnIQHh7OMCGxpnHjxk2wYJiwjW0kgP9Z8nOFGqVUKo0OHyPkQf3yyy+GGnX69GnDdW9vb0M/arlczjAhIeLQq1cvS1ZG3Ab/0HwI+AdU+qaHA8ePH8f8+fMRExODy5cvP2BKQu6rrKyEUqnEY489hgMHDhiuC+0x9u/fL4r2GKKaUPT19X2kGcPPgu/7Y9Hx9dT3h1jT7du3kZycjKlTpxr1X5BIJAgPD8eePXugUCjQunVrxkmJPfn5+TXnGLAzAGaBr2Fml1DrdDrDVq+NGzfSFhHyQBprDSL0et2/fz8UCgVatWrFMCWxtm7dulny0ENwGsBj4LexXTA3WNjG5u/vTzWKPDBzNUroR001ihD76Nq16zCO4yw9oaIEfAuNyQD2mxvMcRyys7MRFBSE5ORk1NTUPEhUInI6nQ4bN26Ev78/0tPTjT6PyGQyaLVaUbXHENWEopeX18CSkpLmNpgTjq+PAWD22MHq6mrDgRm7du1qSUwiYk294brwpWwAACAASURBVI0ePRpfffUV0tLS8PDDDzNMSVhp3779iIqKCq9mvmwngNEAXgJgdmlPVVUVVCoVQkNDkZub24KURMw4jkNmZqbJw8vGjh2Lr776CikpKejatSvDlMRW2rVrN7qsrKy5ncazAQyFhTWqsrISKpWqwYoAQiwh9KP29/dHcnKyUT9qf39/bN++nWoUIQy0atXKu7y8fEQzX3YIwFTwi4CKzA2uu2AjMzPT6MAMQiwh7JhQqVRGOyb69++PTz75BJs3b8agQU11qHI9oppQBCCRSCShLXidDvyy6sGw8Pj68+fPY8mSJVi0aBHOnj3bgl9JxOb48eOYN29egyX5vr6+SEpKwrZt2zB+fHMWfxAX5K7X64Nb8DodgBQA/WFhDTt79iwWL17coB8IIY05evQo5syZg/j4eFRUVBiu+/n5ITU1FVu3bsW4cc1ZZEucjVQq9dDr9bIWvPQO+Bpl8Ta2xnoWEdKYI0eOYO7cuQ36UXfr1g2pqanIysrC8OHDGSYkRNw4jgtrycvAtykbCv4cBLPLD0tLSxEfH4/w8HD88MMPLfiVRGwuXLhgsu98hw4dDO0xpk2bxjAhO2KbUATHcQ/SCKVu35/tlrwgPz8f06dPp+PrSaOEpsEzZ87EoUOHDNeF/gv5+fmIioqCVCq6/1yJCXq9/kFq2K/ga9hEAAWWvECr1UImk0GpVBqdWEaIoKysDHFxcZg1axYOHz5suN62bVvExsYiPz8fERERkEgs3clEnNyD1KhS8DtCJgLYa8kLGjtVkRCBUKNmz57doEbV7UdNNYoQth7we/pN8OcgDALwiSUv+OGHHzBnzhzExcUZPWQgRHD9+nXD7lOtVmu4Xr89hoeHB8OUbIlxhuJRK/yMU/d+TrOOr6e+P6Quof9CYGAgNm3aBL3+/oIMuVyOvLw8qNVqeHk1d4crcXEteXpb3w8AZOBr2EVzg4UaJpPJGvytEvGqqanBhg0bEBgYaNTrFeBrWG5uLhISEtCuXXN3wBInZ40adRh8jVoIC2pU3b9F2sZGBLdv38aGDRsgk8ma7Efdpk0bxkkJIfcEFRUVtX3An1EEYCmAUADHzQ0WzkEQWrXUbYNAxEtojyGcj1H372Lq1KnQarVISUlBly7N7abnesQ4odijpKTE3LH0lsoGvz3nJVhwfP21a9egUqkwc+ZMOr5e5LRaLYKCgqBSqYxWrg4cOBCfffYZMjIy0Lt3b4YJiQMbUlpa2sdKPysbwDDwp0KbXdojrKadPXs2vv/+eytFIM6osVVhI0eOxJdffomMjAz07NmTYULC0IjLly/3sMLPEbaxDQO/je22uReUlZUhPj6+wWpZIj51a9TNmzcN10eNGoX//ve/SEtLQ48e1vgzJYRYURupVBpgpZ+VA/4chGgAZpcf3rx50+RBTUR89u/fj7CwMMTHx+PXX+8fodG9e3ekpqYiMzMTQ4dacii5OIhxQhGwztNzQbP7/pw4cQLz5s1DdHQ0iorM9o8lLuTcuXOIiopCdHQ0CgsLDdc7duwIjUaD3bt3Izg4mFk+4hw4jptuxR93C8Bfwfee+QT8l/gmHT16FHPnzkVMTAyKi4utGIU4usb61nXq1AkajQbffPMNJk2axDAhcQRubm7WrlFrcH8bm0U1StjGVrefJ3F9J06cwPz58xt8xhb6UX/zzTeYMGECw4SEEDMeZNtzfXoAH4M/B+Gv4L+3N+mXX35BTEwMFi1ahNOnT1sxCnF0paWliIuLQ0REBE6ePGm47unpadQegxgT5YTiA/ZnaIxwfP0kAPsseUFjT0+J66muroZSqURoaCh2795tuO7h4YGoqCgUFBRg2bJlcHNzY5iSOAsb1bDL4LeI+AM4aEEGoxPJ657mS1xPZWUllEplg5N1hV6v+/fvpxpGDGxco0IAHLMgg9E2NqpRrk2oUTNnzsTBg/ffwoQalZeXR/2oCXECEonEmgt/BJXgd+OMAvCNJS/Iz8/HjBkzsGLFCly7ds0GkYijEE7/njJlSpPtMVq3bs04qWMS5buqRCIJOXv2rK3+Ir4HEAC+74/ZYweF/i7U98c11dbWYtOmTQgICEB6ejpqa2sN92QyGbZv346kpCT4+PgwTEmcjUQikXMcZ6uZm4MApoDfIlJubvCtW7eQnJyMqVOnIjMz00aRCCtCr1d/f3+kp6cb9QCWyWTQarVQq9Xw9vZmmJI4oDCO42z1GXMPgEfA1yizyw+FGkXb2FxTUzVKLpdjz549UKvVaN++PcOUhJBmGHXlypVuNvrZZwDMAr8K8pS5wTqdzvA9js5BcD1NLY4YPXo0vvrqK6SlpeHhhx9mmNLxiXJCEUA7Ly8vfxv+/Pp9f+j4ehEqKCgwPNm6evWq4Xrfvn2RlpaGzZs3Y8gQa7XzJCLTqaysbJwNf76wRWQA+BpmdmlPSUkJ4uPjERkZiVOnzH5GI04gPz8fYWFhUKlUuH79uuF6//798cknn2Dz5s0YNGgQw4TEgXUpLS0dY8OfX38bm9kaVVhYiJiYGCxcuJBqlIvIz8+HXC5vUKMGDBiATZs2ISMjA3369GEXkBDSEhKdTmfNthmm7AQwGvw5CNXmBldVVUGlUiE0NBS5ubk2jkbs4fjx45g3bx5iYmJw+fJlw3WhPca2bdswfvx4hgmdh1gnFG21Hac+Or5ehBr70tKuXTsoFArk5OQgPDycYULiCjiOs8WWkPpugK9hI8E/JDFr7969kMvliIuLM5pIJ87jwoULiI6OxqJFi3DmzBnD9Q4dOiAhIQG7d+/GtGnTGCYkTsIeNaoK97exbbXkBY097CPO4/z581iyZAkWLVqEn3/+2XC9Q4cOhn7UoaGhDBMSQh6QPb6n68Cfg9AfQCoAs8sPz549i8WLFzfoI02ch3DA5MyZM3Ho0CHDdaE9Rn5+PrXHaCYx/5uyxwddAR1fLwLCtqrg4GCjbVVSqRSRkZHYt28fFAoFWrVqxTAlcSH2+LAlOAu+jcN0AD+aGyzUsICAAGzYsAE6nc7mAcmDu379OhITExESEgKtVmu4LtSwgoICxMbGwsPDg2FK4izs9OBW8DOAcPB18Sdzg+u2I9m4caNROxLiuKqrq5GYmIjQ0FDs2rXLcN3d3d2oH7W7uzvDlIQQKwjjOE5ip991FUA8gIkA8i15gVarhUwmg1KpxI0bN2wajliH0B4jMDAQmzZtgl5//xxduVyO/Px8qNVqeHl5MUzpnMQ8ofhIaWlpVzv/zrrH15vt+0PH1zsHjuOQmZlpcgL4kUcewddff42UlBR07WrvPzfi4qZcvXrV3o3rdoGvYTEAfjU3uLEvf8Sx6PV6ZGZmmpwAnjp1KrRaLVJSUtC5c2eGKYmzkUgkARUVFfb+ZL4TfI2yaBtbdXW1YRtb3QPTiGMRapRMJmtQowICAgz9qKlGEeIyfIuLi0fZ+Xf+ACAQwBwAheYG63Q6pKenQyaTNZigIo5Fq9UiMDAQKpUKv/32m+H6wIED8dlnnyEjIwO9evVimNC5iXlCUarX61ns2RL6/gxBM4+vX7hwIR1f72COHDmCOXPmID4+HhUV9+eIu3XrhtTUVGRnZ+ORRx5hmJC4MPeamppgBr+3FsCH4HuXWbRFpLHtaYS9ffv2ISwsDPHx8fj11/tzxN27d0dqaioyMzMxdOhQhgmJE2t19+7dQAa/t9nb2M6dO4eoqChER0ejsLDQxvFIcwhtNOrXqD59+iAtLQ1btmyhGkWIC3Jzc7PnbsK6sgEMB99Ow+zyQ2EL7axZs/D999/bPByx3Llz5/DUU08hOjoaFy9eNFzv2LGjoT1GcHAwu4AuQswTipBKpfbcjlNfs4+vLygoQFhYGB1f7wDKysoQFxeH2bNn4/Dhw4brbdu2RWxsLPLy8hAREQGJxF6r9YkYMa5h18BvERkJYLslLxAa6CuVSqMG+sT+SkpKEBcXh8jISJw8edJw3dPTEwqFAnv37kVERATDhMQV2Hnbc33CNrYJAPIseYFWq0VQUBCUSqXRKgZif3VrVN1+1EKNys3NpX7UhLgwxu8ft8Av/BkK/hwEztwLjh07hrlz5yImJgbFxcW2zkeaUFVVBaVSidDQUOTk5Biue3h4GLXHcHNzY5jSdYh6QpHjuBmsM8D4+PqTZsY26PtDx9fbV01NDTZs2ACZTIasrCxw3P33F7lcjj179iAhIQHt2rVjmJKIhZ0OZjHnFIBHwW8RuWBusLBFxN/fn2oYA7dv30ZycjKmTp1qVMMkEgnCw8ORl5cHhUKB1q1bM05KXIQj1KgjAILA16hfzA0WapTQZ4lqlH0J/aiFGiWQSCTUj5oQcZGVlJR4Ms5wGfw5CJMBHDA3mOM4ZGdnIygoCMnJyfj9999tHpDcV3eeJD093ag/skwmw44dO5CUlAQfHx+GKV2PqCcUATxcWlo6jHWIe3YCGAM6vt5hCSsXEhMTcfPmTcP1kSNH4r///S8yMjLQo0cPhgmJCA0qKyvryzrEPdngn+S+BMDs0p7KykqoVCrMnDkTBw8etHk4sRM+5AYGBjb4kDtmzBh89dVXSEtLQ/fu3RmmJC5oWHFxcU/WIe6pu43NbI2qu43tu+++s3k4sWvqi/jYsWMN/agfeughhikJIXbUBoCMdYh7vgMwFfw5COXmBtd9MJKZmWnzcITfyTljxowGOzn79u2LtLQ0bN68GYMHD2aY0HWJfULRUVb4CB7o+Pq6vQGI9fz4449YsGABoqOjUVRUZLju4+MDjUaDb775BhMnTmSYkIiZXq9nuSWkvjvga9gQ8H0WzXaoPnHiBObPn9/gvy9iPcePH8e8efMabMPx9fVFUlIStm7divHjxzNMSFycI9Wo2+C3sQ2BhdvYjh8/jvnz5yMmJgaXL1+2dT5ROnr0qMmtgn5+fkhNTcXWrVsxbtw4hgkJIYw40vuHcA7CAABrAZhdflhSUoL4+PgGrRuI9RQWFhrOmqj777hdu3ZQKBTIycmh9hg2JvoJRThWoRK06Pj6wMBAOr7eiiorK6FUKvHYY4/hwIH7q9w9PDzwzDPPYP/+/dR/gTgCR6xhJeBPgp4EYJ8lL9BqtQgODm6wApi0nLDCaubMmTh06JDhulDD8vPzERUVBamUPgoQ22Hc67UxJeC3sU0CsN/c4Pqr52pqamweUAyEGjV79myjwwzatGmD2NhY5OfnUz9qQsTNkRb+CG4AWAO+h7hFyw+Fw6Xi4uKMDpciLSesAg0ODkZ2drbhulQqpfYYdkbfIoDgs2fPOmqzKDq+ngGdToeNGzfC398f6enpRv2TZDIZdu7cCbVajfbt2zNMSYjBdI7jHHVW+3sAAQAWArhkbvDt27cNPUozMzONepQSywk1TOgBV/e9QC6XIz8/H2q1Gl5eXgxTErHgOE7OcZyjft48hPvb2MrMDa7bg5RqVMsJNcrU51XqR00IqWPEpUuXHLUXy1nwn2+nA/jR3GC9Xo+srCzIZDJs2LABOp3O5gFdEcdxyMzMxJQpU5CcnIw7d+4Y7j3yyCOG9hhdu3ZlmFJcHPUDnj15tm/ffirrEGZkAxgGOr7e5oRTaFUqldEptP3798cnn3yCzZs3Y+DAgQwTEtJAx/Ly8gmsQzSBA/8Edyj4LSJml/aUlZUhPj6+wSnqxDxhtbpKpTI6pXbgwIH47LPPkJGRgV69ejFMSESoc2lp6SOsQzSBg/E2NrM1qrS0FPHx8YiIiMBPP/1k63wuRavVQiaTQaVSGe2oGTFiBL744gtkZGSgZ09HabtJCGFM4uHh4Yir3OvaBWAs+J05ZpcfVldXIzExEaGhodi1a5fNw7mSI0eOYM6cOYiPj0dFRYXherdu3ZCamors7Gw88ogjf9xwTTShCIfrQdaYZvf9oePrLXfhwgUsXboUixYtws8//2y43qFDB2g0GuTk5GDatGkMExLSOAfrBduYW+C3iAwCX8PMOnLkCObOnYu4uDhcuXLFltmc3rlz5/DUU0816KfbsWNHaDQa7N69G8HBwewCErFzhhp1E3yNGgELt7Ht378fM2bMoBplgbo9vy9dur9gvVOnTtBoNPj2228xefJkhgkJIY6I4zhn+J5eC753+GBYeA7C+fPnsWTJkgbfPUlDZWVliIuLa7DQoG3btlAoFNi7dy+1x2CIJhR5zvBBV1CMFhxfb+pkTwJcv34diYmJCAkJwc6dOw3X3d3dERUVhYKCAixbtgzu7u4MUxLSNCf5sCUoAl/DQgEcMzdY2CLi7+/fYGsDAaqqqqBUKhEaGoqcnBzDdaFP4oEDB6jXK3EEzlSjzoPfxjYNwHFzg+tvY6MaZaxujcrNzTVcp37UhBALzXDgthn1XQN/DsJIAP+z5AXC7jilUmm0O44ANTU1hlZIWVlZhjYjEokE4eHh2LNnDxQKBdq0acM4qbg5y3+ctja2rKzsIdYhmuk7AFPQwr4/YqfX65GZmYmAgIAGfSwCAgKwfft2JCUloXPnzgxTEmKxydeuXevAOkQz5QB4BHwNqzAz1tB8OSQkxKj5sljV1tZi06ZNCAgIQHp6Ompraw33ZDIZduzYAbVaDW9vb4YpCTGYUlFR4WxNO3eD38YWDcDs8sO6DyipRvF9EuvWqPr9qLVaLdUoQoglupSUlIxmHaKZTgF4DPw5CBfMDRbOQfD398fGjRuN6qVYabVaBAUFNTiscdSoUfjyyy+RlpaGHj16MExIBDShyJPo9frprEO0QP2+PxYfXx8REYGTJ0/aOp9D2rdvH8LCwhAfH2900lafPn2QlpaGLVu2YOjQoQwTEtJs7jU1NSGsQ7SAHnwNGwy+pYPZpT2//PILYmJisHDhQpw+fdrW+RxSQUEBwsLCsGLFCly7ds1wvW/fvsjIyMDmzZsxePBghgkJaaCVXq8PZh2iBVpcoxYtWoQzZ87YOp9Dys/PN1mj+vXrh48//hibN2/GoEGDGCYkhDgZZ9pNWFc2+B7iLwEwu/ywsrISKpUKM2fOxMGDB20ezhGdOHEC8+fPR3R0NIqKigzXfX19kZSUhG3btmHixIkME5L6aELxHifbMlhfs/v+CJNqYjq+vqSkBHFxcQ0mUz09PaFQKJCTk4Pw8HCGCQlpOSevYVXgD50aCWCbJS9obFLNlRUWFpqcTPX29kZCQgJycnIglzvznwFxZU7Sr7oxleBr1CgA31jygsYm1VxZY5OpdWvU9OnO+PyeEMKSVCp15vePOwBSwE8sfgj+QVWTGptUc2WVlZVQKpUNJlOF9hh5eXmIioqi9hgOiCYU75FKpWEcxzl7J89zuH98/Qlzg4W+P6a2/bqSutu9s7KyDNclEgkiIyOxb98+KBQKtG7dmmFKQh6MVCp11qe3df0MYDb4fmtml1DX3fa7ceNGo22/rkTY7h0cHGy0lVIqlSIyMhL5+fmIjY1Fq1atGKYkxCxXqFFnAMwCX6NOmRtcd9uvK29ju3nzpsmWFEKNKigoQGxsLDw8PBimJIQ4K47jZGVlZe1Y53hAJeBPgp4EYK8lL2hs268r0el02LhxI/z9/Ru0x5DL5dizZw/UajXat2/PMCVpCk0o3sNxXPfy8vLhrHNYyS7wvcksOr6+sYNJnF1TB9KMGTMGX3/9NVJSUvDQQ87WPpOQhjiOG1BeXt6PdQ4r2QlgDPgtItXmBldVVUGlUjU4mMTZCb1ep0yZ0uBAGn9/f2zfvh0pKSno2rUrw5SEWGxISUlJL9YhrGQngNGwcBtb3RpV92ASZ9dUjZoyZQp27NiBlJQUdOnShWFKQogLaMVxXCDrEFbyPQAZ+EVAl8yMNTqYJDMz03AwiSsQDqRRqVRGB9IMGDAAmzZtQkZGBvr06cMuILEITSjWodfrXeHpuaD+8fVml+5cuHABS5cudYnj648dO4a5c+ciJiYGxcXFhuu+vr5ITU3Ftm3bMG7cOIYJCbG+u3fvulIN04HfItIffA0zu7Tn3LlzeOqppxAdHY2LFy/aOp9NHTlyBHPnzkV8fDwqKu6fWdOtWzekpqYiKysLw4e7yjMwIiKirlFnz57F4sWLER0djUuXzH6PdGj79+/HjBkzEB8fjytX7p9Z0717d0ONGjZsGMOEhBBX4uStferjwLcpGwr+HIQacy8oKytDfHw8Zs+ejcOHD9s6n02dP38eS5YsaTDn0KFDB2g0GuzevRuhoaEME5LmoAlFY65UqASiOr6+vLwcK1aswKxZs/D9998brrdp0waxsbHIz89HREQEJBJn391OiEmuWMOugq9hEwDkW/ICrVaLwMBAKJVK/PbbbzYNZ21lZWWIi4tr8IGxbdu2UCgU2Lt3L9Uw4rRc7Auh4FfwNWoigAJLXqDVaiGTyaBUKnHjxg2bhrO20tJSQz/qn376yXC9fo0ihBArc6UHUoJb4M9BGATgE0tecOTIEcyZMwdxcXFGD5ydQXV1NRITExEaGopdu3YZrru7uyMqKgoFBQVYtmwZ3N3dGaYkzUUTisaCioqK2rIOYSOn4cLH1wv9FwIDA7Fp0ybo9ff73crlcuTm5iIhIQFeXl4MUxJic6Ecx7nqu/ARAIHga1ihucFCDTNVExxR3S0tWVlZhi0tEokE4eHh2LNnDxQKBdq0acM4KSEtJ5FI5BzHuWpH9R/Ab2NrVo2SyWROUaPq96OuX6Py8vKoHzUhxJaGFxcX92QdwkaKACwFEALgmLnBHMchKyvLZLsJRyS0x5DJZA3ObQgICMD27duRlJSEzp07M0xJWoomFI21lUqlU1mHsLEWHV//2GOPOezx9cJqJJVKZbQaacSIEfjiiy+QkZGBXr1cpW0TIU3qWFJSMpF1CBvLBjAM/ImrZpf21F21fOjQIZuHa4nGmm6PGjUKX375JdLS0tCjRw+GCQmxmk5lZWWu3m8kG8BwNLNGzZ4922hnhaMQ+lEHBQUhOTkZNTX3d+aNHj0aX331FdLS0vDwww8zTEkIEQlXPyY+F/w5CNEAzC4/bOzQPkeyd+9eyOVyxMfH49df7x/t0KdPH6SlpWHLli0YOnQow4TkQdGEYj1Ofiy9pYTj64fAwuPrf/zxR4c7vr5uL6K6/dI6deoEjUaDb7/9FpMnT2aYkBAmXHFLSH23AfwVfA37BHwvmiYdO3YM8+bNa9BXlaUTJ06YrKu+vr5ISkrCN998g4kTXX1+mIgNx3FiqFG3wNeoobCwRh09etRk72eWjh8/jvnz5yMmJgaXL182XBdq1LZt2zB+/HiGCQkhYiKRSMTwPV0P4GPw5yD8Ffz39iYVFhYiJiYGCxcuxKlTp2ydzyIlJSWIi4tDZGSkUSZPT08oFArk5OQgPDycYUJiLTShWI9IPugKSsGfBD0RTnR8fVVVFZRKZYPTEj08PPDMM89g//79WLZsGdzcXHVXFSGNE8mHLUEx+C0ikwEcMDe4qZPf7amyshJKpRIzZ840Wvkt1LC8vDxERUVBKqW3aOKSxFSjLoOvUf4AzG7zqL8akFWNqruy+7vvvjNcpxpFCGFMznGcWApPFfiV7iMBbLPkBQUFBZgxYwZWrFiBa9eu2TRcY4RVk0J7DIFEIkFkZCT27dtH7TFcjFj+g2yO0VeuXOnGOoSdHYYTHF9fW1uLTZs2ISAgAOnp6UZ9HWUyGXbs2AG1Wg1vb2+75CHEQU26ePFiJ9Yh7Ow7AFPAbxEpMze4bi+wzMxMm4cTCL1e/f39G9QwuVyOPXv2QK1Wo3379nbLRAgDU65evSq2N+qDuF+jys0NrvuFjEWNEnrP1q9ReXl5VKMIISx1KS0tHcs6hJ39DGA2+IdxJ80Nrvt9eePGjaitrbV5QKDpB2JjxozB119/jZSUFDz00EN2yUPshyYUG5LodLpprEMw4NDH1xcUFCAsLKzBE5d+/fohIyMDmzdvxuDBg22agRAn4ebh4RHCOgQDHPgtIgPA1zCzS3tKSkoQHx+PiIgInDxp9jPaA8nPz4dcLodKpcL16/fb1w4YMACbNm1CRkYG+vTpY9MMhDgI95qammDWIRgQtrE1u0bV3zJmC8IOlPr9qAcOHIjPPvsMGRkZ6N27t00zEEKIBcS0m7CunQDGgD8Hodrc4KqqKqhUKoSGhiInJ8emwY4dO2ayZYefnx9SU1Oxbds2jBvn6u2TxYsmFE0T03ac+oTj6wfCwr4/tjy+/pdffjH0hDh9+rThure3NxISErB7927I5WL+v4sQk8T8H8VN8DVsBPiHJGbt27cPYWFhiIuLM2oYbQ3nz5/HkiVLsGjRIvz888+G6x06dIBGo8Hu3bsRGhpq1d9JiKMTSb/qxtwAX6NGwsIaJTS1t0WNOnfuHKKiohAdHY3CwkLD9Y4dOxpqVHBwsFV/JyGEPAAxv3/owJ+D0B9AKoC7TQ/na/xTTz3V4MwBa6jbHqPuoWJt2rRBbGws8vLyEBERAYlEYtXfSxwLTSiaFsZxnNj/8oW+P6FgcHz9zZs3kZycjJCQEKNTq6RSKSIjI1FQUIDY2Fi0atXqgX4PIS7qUdYBHMA58G0cpgE4YW6wXq9HVlYWAgICsGHDBuh0ugf65dXV1UhMTERoaCh27dpluO7u7o6oqCgUFBRg2bJlcHd3f6DfQ4gzElm/6sacBV+jpgP40dxgoUbJZDKr1SihH/Xu3bsN1+vXKOpHTQhxMFMrKiq8WIdg7CqAeAATAORZ8gKtVovAwEAolUqjVegtIbTHkMlk2LRpE/T6++e7yuVy5ObmIiEhAV5eYv+/SRxoQtE0v8uXL49kHcJB5MKOx9fr9XpkZmaanJj09/fHjh07kJKSgi5dujT7ZxMiIn2KiooGsA7hIHaDr2ExAK6YG3z9+nUkJiYiJCQEO3fubPYvE2qYqS/9AQEB2L59O5KSktC5c+dm/2xCXMigsrKyvqxDOIhdAMaCr1Fmlx829rDCUvX7UdftrxUQEIAdO3YgKSkJVadNaQAAIABJREFUPj4+zf7ZhBBiB63u3r0bxDqEgzgCIAjAHACF5gbrdDqkp6cb+uTWnQi0lDAxqVKpcOPGDcP1ESNG4IsvvkBGRgZ69erV7J9LnBdNKDbC3d2dnp7fV//4erN9f1pyfP2RI0cwd+5cxMfH48qV+9/7u3XrhtTUVGRlZWHYsGEt+ycgRGSohhmpBfAhgCHgt4iY7VB94cIFLF26FIsWLcKZM2cs+iXCtsT4+HijbYl9+vRBWloatmzZgqFDh7bsn4AQF6PX68W8ba0+oUYNhoXb2Bprp9CUuieAXr161XC9b9++hho1ZMiQlv0TEEKInXAcR+8fxrIBDAN/KrTZ5YfCVuWZM2fi0KFDFv2Cs2fPYvHixQ22Tnfq1AkajQbffvstJk+e3ML4xJnRhGIjqFCZJBxfPwrAVkte0NiH17pKS0sRFxfX4HCXtm3bQqFQYN++fdR/gZBmohpm0jXwW0RGAvjWkhfk5+cjLCwMSqXS6DCVukpKShAXF9fg4ARPT08oFArk5uYiPDzcCvEJcSlUoxqqW6O2W/IC4cCnpmpUYw9527VrB4VCgZycHKpRhBBnQg/NG7oNfuHPUFh4DsLx48cxb948xMTE4PLlyybHVFVVGdpj5ObmGq57eHjgmWeewf79+6k9hsjRhGLjAouKitqyDuGgfgYQDv7LwE/mBjd2fP3t27exYcMGBAYGIisrCxzH1z2JRILw8HDs2bMHCoUCrVu3tuE/CiEuK5TjOA/WIRzUaQAzwW8ROW9usLBFxN/fHxs3bsTdu/ziIaHFw9SpU5GVlWUYL5FIEBkZiX379kGhUFCvV0JMm8ZxHH0DMe0U+F64cwBcMDfYXI1qrB811ShCiJMaWlxc3JN1CAdVDP4chEkA9psbzHEcsrOzERQUhOTkZPz+O78RUafTGbXHEN5XAEAmk2HHjh1Qq9Xw9va20T8GcRbUDb5xbaRSaQAALesgDmwn+N5kywEoAXRoanB1dTVUKhX+/e9/IyIiAunp6SgpKTEaM2rUKGg0GkyYMMFmoQkRCe+SkpKJAPayDuLAssHX+JcB/AVAk92jKysroVKpkJmZiblz5+Kf//wnysvLjcaMGTMGGo0G48aNs1loQlxEp/Ly8vEADrIO4sCEGqUA8DqAdk0NFmpUVlYW5syZgw8//BAVFcbtr8eOHQu1Wk01ihDi7OQAPmIdwoEdAhAA4GkAbwDwbWrw7du3kZycjMzMTDz99NP47LPPcO7cOaMx/fr1w5o1azB9+nRbZSZOiCYUmyYHTSiacwdAMvil1esALIOZla+nTp2CRqMxuubr6wuFQoHFixdDKqWFs4RYiRw0oWhODYA3AWSA/8C1FECT/RVOnDiBEyeMD4728/PDX/7yFzz++OPUnoEQC9077ZkmFJtWAyARwP8BWA/gKZipUcePH8fx48eNrnXr1g2vv/461ShCiEuQSqU0oWieHvy/oywAq8C31GhySfqlS5egVquNrnl7e2P58uV47rnn4OFBm5+IMZq5aYJEIqH+DJarAPAcgPGw8Ph6gN8auHTpUuTl5SEqKkp0k4l37tzB3/72Nzz55JN48803jU6EJeRBSaVSqmGWKwH/FHcCmjEJK5FI8NxzzyEvL0+UvV5ramrw/vvv44knnkBycrLRlhhCzKFer81SDGAJgIkA9ln6IolEgpiYGNHWqNu3byMlJQVPPPEE3nnnHapRhLgIjuPkHMeJ64tjy10HsALAcACZzXnhrFmzUFBQgNjYWNFNJt69exeffvopnnrqKSQkJBidak3uoxWKTRt15cqVbl27di1lHcSJCMfXhwNIAdC3qcEcx2HYsGFo3769PbI5lG+//RZqtdpwUtaePXvQvn17vPjii4yTEVfBcdzEoqIin549e15jncWJHAYgAxAB4C0AvZsazHEchg8fDi+vJndLuxyh545Go0FxcTEAIC8vDx07dsSyZcsYpyNOxP/atWsdfHx8qlkHcSLfg9/GFgHgbQC9mhrMcRxGjRqFdu2a3C3tcjiOw1dffYV169YZ2uvk5eXBx8cHTz/9NNtwhBBr6FxaWvoI+JpILHMOwEIAoQDeA38AWJP69++PLl262DqXw9m3bx9UKhVOnjxpuKbX6/Hmm28yTOWYaFa/aRKdTkdNAlomG/xTkNUAbjU18NKlS3YJ5ChOnTqFhQsXYtmyZYbJREH9bZSEPCA3Nze3ENYhnBAH/gnucPBbDWuaGiy2GnbixAksWLAAzz//vGEyse49QprB/fbt28GsQzihujXqTZipUfU/a7g64eTSF154oUGvbqpRhLgU2onTMrvBn4MQB6DJRQdie/8oKirCc889h4iICKPJRIDePxpDE4rm0XaclrsNQA1gEPgeiyYJpzu7uqqqKiiVSsyYMQMFBQUmx4jl3wWxK6phLXcTfM+ZgaAahsrKSiiVSsycORMHD5pueyeWfxfEqqhGtdwN8AdKNfk5S6/X2y0QS0KNmjVrFg4dOmRyDNUoQlwKvX+0XC2A9wEMAJAKvt9iA2KpmcKhNIGBgdi6davJMWL5d9FctOXZvDCO4yQSiYT+glpOOL6+P4ApjLPYXW1tLTIyMvD222+jupp2dRG7m8E6gAu4DL6GjQAwlnEWu9PpdEhPT8d7772H69evs45DXAz1q7aKIvA1ajSAUYyz2J1Op8M///lPpKSk4LfffmMdhxBiP1MqKiq8HnroIWpu13KV4A9r8QO/HVpUOI7DF198gcTERJSVlbGO45RoQtE83+Li4lEAjrEO4gJE18dtz549WL16NX7++WeT96VSqWhWDhBm+hQVFQ3s2bPnWdZBXEAl6wD2ptVqsXbtWly4cMHkfaphxAoGlpeX9/P19TX9R0aao4p1AHvbsWMH1qxZg8LCQpP3qUYR4tJa6fX6YACml5SR5rjKOoC9HTlyBCqVCocPHzZ5n94/LENbni3g5uZGT89JsxQWFiImJgZPPvmkycnEtm3bIjY2Fs8//zyDdERs3N3dqYaRZrlw4QKWLl2K6Ohok5OJnp6eUCgU+OMf/8ggHXE1d+/epW1rpFnOnz+PJUuW4OmnnzY5mSjUqOjoaPuHI4TYjV6vp/cP0izl5eVYsWIFwsPDTU4muru7IyoqCgkJCQzSOR+aULQAx3FUqIhFbt26heTkZAQHByM7O9vkGLlcjtzcXCQkJMDT09POCYkYUQ0jlrp+/ToSExMREhKCnTt3NrgvkUgQHh6OPXv2QKFQoE2bNgxSEhdENYpYpLq6GomJiQgNDcWuXbsa3JdIJIiIiMC+ffuoRhEiDvTQnFhEp9Nh48aNCAwMxKZNm0yuPgwICMCOHTuQlJQEHx8fBimdD215toyspKTEs3v37k2eVkzEi+M4ZGVlITExERUVFSbHjBw5Emq1GpMmTbJzOkIQynGch0Qi0bEOQhyTXq/H559/Do1Gg19//dXkmNGjR0Oj0WD8+PF2TkdEYBrHce4SiaSWdRDimIQapVarcfWq6Z15Y8aMgUajwbhx4+ycjhDC0JDS0tI+3bp1K2QdhDgurVYLlUrV6KnVffv2xcqVKxEeHm7nZM6PJhQt0waADMB21kGI4zHXf6FTp054+eWX8Yc//AFubm52TkcIAKB9aWnpZAD5rIMQx7Nv3z6oVCqcPHnS5H1fX18oFAosXrwYUiltbCA20bG4uHgCgP2sgxDHs3fvXqhUKpw6dcrkfT8/P7z++uuIiIiARCKxczpCCGscx00HsJF1DuJ4zp07h9WrVyMnJ8fk/Xbt2uH555/H8uXL0apVKzuncw00oWg5OWhCkdRRVlaGN954A59//rnJY+Q9PDywdOlSvPrqq/D29maQkBAjctCEIqmjpKQE69evR1ZWlsn7Qg177bXX4OXlZed0RGzu9aumCUViYK5GtWnTBsuWLUN8fDzVKEJE7F5rH5pQJAZVVVVITk5GRkYGamsbbn6QSqVYsGABlEolunbtyiCh66AJRctRfwYCAKipqUF6ejree+893Lx50+QYmUwGjUaDQYMG2TkdIY0KA6BiHYKwd/v2bfztb3/DBx98gN9//93kGLlcDrVajd69e9s5HRGre18I17LOQdi7desW/v73v5utURqNBr169bJzOkKIo5FIJHKO49wkEsld1lkIW7W1tfjPf/6D9evX49q1aybHjB07Fmq1mtpjWAlNKFpu5OXLl3v06NHjMusghB2tVotVq1ahqKjI5P3+/ftjzZo1mDZtmp2TEWLW+KKiIp+ePXuafnclLo/jOGzduhVqtRrFxcUmxwwcOBBr165FcHCwfcMRAky+ePFip969e1eyDkLYEGrU2rVrUVJSYnLMiBEjoFarMXnyZDunI4Q4sE5lZWXjAHzHOghhp6CgAKtXr260PUa3bt2wcuVKao9hZTSh2Axubm7TAGSwzkHs78SJE1CpVDh48KDJ+x06dMCLL76I5557Dh4eHnZOR4hF3Nzd3acByGQdhNjfsWPHoFKpcOjQIZP3O3bsiFdeeYV6vRKW3Dw8PIIBfMk6CLG/o0ePQqVS4fvvvzd5n/pRE0KawnFcGGhCUZQKCwvx5ptvIjs72+T9tm3b4o9//CNeeukltGvXzs7pXB9NKDbDve04NKEoIpWVlXjnnXfwf//3f7h7t+EqeqH/wurVq9G5c2cGCQmx3L0aRhOKIlJeXo7k5GR89tln0Ov1De67u7vjiSeewMqVK+Hj48MgISFG5KAJRVExV6OoHzUhxEJyAOtYhyD2I7THeP/993Hnzh2TY+RyOdatW4eePXvaOZ140IRi88zgOE4qkUgafuIhLkWn0yEjIwNvv/02rl+/bnLM1KlToVarMXToUDunI6TFHmMdgNiHUMPeeust/PbbbybHyGQyrF27FkOGDLFzOkIa9SjrAMQ+hBqVlJSEGzdumBwjk8mgVqsxePBgO6cjhDihKVevXvXu3Lmz6S9uxGVwHIesrCwkJiaioqLC5JiRI0dCrVZj0qRJdk4nPjSh2DxdSkpKRgM4wjoIsZ38/HwolUr8/PPPJu93794dr732GiIjI+2cjJAH1qO4uHjwww8/fIZ1EGI7Wq0WKpUKFy9eNHm/b9++WLlyJcLDw+2cjBCz+paXl/f39fU9zzoIsR2tVgulUolLly6ZvN+vXz+sXr0acrnczskIIU7MvaamJhjA16yDENs5cuQIVCoVDh8+bPI+tcewP5pQbL4w0ISiS7pw4QLWrFmDnTt3mrzv6emJP/3pT3jxxRfRunVrO6cjxGrCANCEogs6d+4cVq9ejZycHJP327Vrh+effx7Lly9Hq1at7JyOEMvo9fowAH9nnYNY308//QSVSoX9+/ebvO/t7Y3ly5fj2WefpRpFCGk2qVQqB00ouqSysjK88cYb+Pzzz8FxXIP71B6DHZpQbKZ7heqvrHMQ66mursYHH3yADz/8EDqdrsF9iUSC2bNnY/Xq1ejevTuDhIRYz70a9j7rHMR6qqqqkJycjIyMDNTW1ja4L/R6VSqV6Nq1K4OEhFjuXq9XmlB0IUKNMtePWqVSoUuXLgwSEkJcwb2DWYgLqampQXp6Ot577z3cvHnT5BiZTIZ169Zh4MCBdk5HAJpQbDaO42RlZWXt/Pz8TP9FE6dx9+5dbNq0CUlJSaisrDQ5Zty4cdBoNBgzZoyd0xFiGxzHhZ49e7b1wIEDf2edhTwYnU6Hjz/+GG+//Taqq6tNjpk8eTLUajVGjBhh53SEtNg0juM8JBJJwyd8xKnodDr861//wjvvvNNoP+opU6ZArVZj2LBhdk5HCHFBg8rKyvr6+fn9wjoIeTAcx+Hrr7+GRqNBSUmJyTGDBw/G2rVrERgYaOd0pC6aUGy+VhzHBQL4lnUQ0nKVlZVYvHgxjh07ZvK+n58fVq1ahfnz50Mikdg5HSE21c7Ly2sygD2sg5CWu3LlCp588kmcPHnS5P0ePXpg1apVmDNnjp2TEfLAvEtKSiYC2Ms6CGm58vJyPPnkkzh9+rTJ+7169YJSqcSsWbPsnIwQ4sr0er0cwIesc5CW+/333/GHP/wBubm5Ju937NgRf/7zn7F06VK4u9N0Fmv0/0AL3NuOQxOKTuzjjz82OZnYpk0bPP/883jxxRfh6enJIBkhtnevhtGEohP76KOPTE4mtm3bFrGxsXjhhRfQpk0bBskIsQo5aELRqf3zn/80OZno6emJ5cuX4/nnn6d+1IQQW6AJRSeXnZ1tcjLR3d0dS5YswZ///Gd06tTJ/sGISTSh2DLUn8HJmTpifvbs2VAqlejZsyeDRITYVRiAVaxDkJarX8MkEgnmzZuHVatWoVu3boxSEWIdUqk0DMAa1jlIy125csXof0skEixYsAAJCQnw8/NjlIoQIgLTOY5zk0gkDRu2Eqdg6nt6QEAA1Go1hgwZwiARaYqUdQAnNby4uJhmnVzIokWL8OGHH9JkIhGLcaWlpXQ6hwuJjo7Ghg0baDKRuASO4yYWFRX5sM5BrGfZsmV4//33aTKREGJrHcvLyyewDkGsJyAgAFu2bKHJRAdFE4otN511AGI9bdu2ZR2BEHuS6vX6UNYhiPXQ9mbiYtzc3NxCWIcg1kM1ihBiL3Tas2uh7+mOjSYUW0gikchZZyCEkJaiGkYIcXBUowghhDTbvV7hhBA7oAnFlpNzHEf//gghzmoG6wCEENIEqlGEEEJaYvK1a9c6sA5BiBjQhFjLdSktLR3LOgQhhLRQj5KSkqGsQxBCSCP6FBUVDWQdghBCiNNxr6mpobYZhNgBTSg+GOrPQAhxZlTDCCEOy93dnWoUIYSQZqNtz4TYB00oPhgqVIQQZ0Y1jBDisOgLISGEkJaQSqX0QIoQO6AJxQcztaKiwot1CEIIaaHgs2fPtmYdghBCGhHKcZwH6xCEEEKcC8dxA8rLy/uxzkGIq6MJxQfT6u7du0GsQxBCSAu18/LymsI6BCGENKJ9aWnpZNYhCCGEOJ+7d+/SKkVCbIwmFB8QbcchhDgzqmGEEAdHNYoQQkhL0PsHITZGE4oPjp58EEKcGdUwQogjoxpFCCGkJaZT2wxCbIsmFB/c0JKSkl6sQxBCSAuNLSsre4h1CEIIacT4oqIiH9YhCCGEOB3vkpKSCaxDEOLKaELRCmjLICHEiUnv3r07jXUIQghphJu7uzvVKEIIIS1Bq9wJsSGaULQCqVRKE4qEEKdFNYwQ4sjowS0hhJCWkEgk9P5BiA3RhKIVcBw3neM4+ndJCHFKHMeFcRwnYZ2DEEIaQStMCCGEtMSkixcvdmIdghBXRZNg1tG5rKxsHOsQhBDSQg+XlZUNYx2CEEIa0bu4uHgw6xCEEEKcjpuHh0cI6xCEuCqaULQSjuPo6TkhxGlRDSOEODiqUYQQQlqCtj0TYiM0oWg9VKgIIc6Mahgh5P/Zu/fwKMpDf+Df2U0ggRBuQgIh3IOCXERArpFL2GhbaHtQjmhbRfHK5QBygFDZ2VuAIMSq3Kwe+YltERXaKrT1GKXaBEFFRfEeuZnL7gYIEIFEkuz8/jDxWDObhJ3NvDO738/z9B/eSd7v06d9s/udmfc1LO71SkREIbpRdACiSMVCMXzGnT59OlF0CCKiEE0sLCxsLToEEZEaRVGmcI0iIqIQ9C4qKuovOgRRJGKhGD6xVVVVE0WHICIKUZv4+PgJokMQEQXRNiEhYYzoEEREZD4xMTHcNoOoBbBQDCO+jkNEZma1WrmGEZFhKYrCNYqIiC4b/34QtQwWimHEQw2IyMy4hhGRwXGNIiKiUGQoihIrOgRRpGGhGF5X+ny+PqJDEBGF6JqysrJk0SGIiIIY4fV6u4gOQUREptPO6/WOFh2CKNKwUAyzQCAwVXQGIqIQSTU1NRmiQxARBWEJBAJTRIcgIiLz4WvPROHHQjH8uFARkZlxDSMiw5IkiWsUERGFgttmEIUZC8Xwm6ooilV0CCKiEN2gKIokOgQRURA3iA5ARETmI0nSqKKiok6icxBFEhaK4dfR7/ePFB2CiChEyX6/f7DoEEREQfQoLS0dKDoEERGZjjUmJobbZhCFEQvFFsCTUonIzLiGEZHBcY0iIqLLxn0UicKLhWIL4EJFRGbGNYyIDI5rFBERhYLbZhCFEQvFljG2vLy8vegQREQhmlhUVBQvOgQRURCTCgsLW4sOQUREptOruLh4gOgQRJGChWLLiKmsrJwkOgQRUYjiLBbLBNEhiIiCaJuQkDBOdAgiIjIfSZK4bQZRmLBQbDl8HYeIzIxrGBEZFrdmICKiUFgsFv79IAoTFoothHc+iMjMuIYRkcFxjSIiosumKMpkRVFiRecgigQsFFtOmt/v7ys6BBFRiIaePHmym+gQRERBDPf5fF1FhyAiItNp5/V6x4oOQRQJWCi2oNraWj5OTURmJVVXV08VHYKIKAhLbW1thugQRERkSvyeThQGLBRbFhcqIjIzrmFEZFjcB4uIiELEbTOIwoCFYsvKUBQlRnQIIqIQZSqKIokOQUSkRlEUrlFERBSKEcXFxZ1FhyAyOxaKLatDSUnJKNEhiIhClFRSUjJUdAgioiBSfD7fINEhiIjIdKxWq5XbZhBpxEKxhVmtVj5OTUSmxTWMiIxMURSuUUREdNkUReG2GUQasVBsYVyoiMjMuIYRkcFxjSIiolDcKDoAkdmxUGx5o8vLy9uLDkFEFKL00tLSNqJDEBEFMbGwsLC16BBERGQ6PUpLS68SHYLIzFgotryYqqqqyaJDEBGFKA7ABNEhiIiCaNOuXbvxokMQEZH58E0cIm1YKOqACxURmRnXMCIyskAgwDWKiIgum8Vi4d8PIg1YKOrAYrFww3AiMi2uYURkcFyjiIjosimKMoXbZhCFjoWiDhRF6e/3+/uKzkFEFApFUYacPHmym+gcRERBDPf5fF1FhyAiQ3sPwPEf/OdAM38u8Uc/dxzAjmb+7FCVn81p5s+SPtomJCSMER2CyKxYKOqktraWd8+JyKykmpoavhJCREYlBQKBqaJDEJGh9QTQ6wf/SW3mz1l+9HO9ADT3JmtrlZ+9ovmRSQ/c2ocodCwU9cOFiohMix+2iMjIuEYREVGI+OAPUYhYKOpnqqIosaJDEBGFyKYoiiQ6BBGRGkmSbuQaRUREIRjh9Xq7iA5BZEYsFPWTWFpaOkp0CCKiECWVlJQMEx2CiCiIZL/ff7XoEEREZDqWQCAwRXQIIjNioagvPk5NRKYlSRLXMCIyrEAgwDWKiII5/aP/lDfz5wIqP3u2mT9brfKz3zQ/MulFkiRum0EUghjRAaJJ3ULlFJ2DiCgUdWvYw6JzEBEFYQPwiOgQRGRIV4X4cxUI/SCVQxp+lvR1g+gARGbEJxT1NfrEiRMdRYcgIgpRus/nays6BBFREBOLioriRYcgIiLT6VFaWjpQdAgis2GhqC9rbGzsZNEhiIhC1DoQCKSLDkFEFES8xWIZLzoEERGZErfNILpMLBT1x/0ZiMjMuIYRkWFZLBauUUREFAr+/SC6TCwU9Xej6ABERBrw7i0RGZaiKFyjiIgoFJMKCwtbiw5BZCYsFPXXu6ioqL/oEEREIRpcXFzcQ3QIIqIghp08ebKb6BBERGQ6bRMSEsaJDkFkJiwUBYiJieHdcyIyLavVOlV0BiKiIKTq6uoM0SGIiMh8FEXha89El4GFogBcqIjIzLiGEZHBcY0iIqJQ8MEfosvAQlGMDEVRYkWHICIKUaaiKPz7QURGlakoiiQ6BBERmc5wn8/XVXQIIrPgF0Ix2nm93tGiQxARhegKr9d7jegQRERBJBcXFw8RHYKIiEzHUltby20ziJqJhaIgfGWQiEyOr4QQkWFxv2oiIgqFxWLh93SiZmKhKA4/6BKRafGmCBEZGdcoIiIKhaIo3DaDqJlYKAoiSdKooqKiTqJzEBGFQpKkCWVlZQmicxARBXF9UVFRvOgQRERkOik+n2+Q6BBEZsBCURxrTEzMFNEhiIhC1Kq2tvZ60SGIiIKIs1qt6aJDEBGR+SiKwrcJiZqBhaJAfB2HiMyMaxgRGRnXKCIiChH/fhA1AwtFsW4QHYCISAPevSUiw7JYLFyjiIgoFBMLCwtbiw5BZHQsFMXqVVxcPEB0CCKiEA0qKSlJFR2CiEiNoihDTp482U10DiIiMp028fHxE0SHIDI6FoqCSZLEu+dEZGZ8JYSIjEqqqanhGkVERJfNarXy7wdRE1goCmaxWLhQEZFpcQ0jIiPjPopERBQKHsxC1DQWioIpijJZUZRY0TmIiEKhKIpNURT+LSEio7IpiiKJDkFERKZzTVlZWbLoEERGxi+B4rXzer1jRYcgIgpRZ6/Xe63oEEREQSSVlJQMEx2CiIhMR6qpqckQHYLIyFgoGgNfxyEiM+MrIURkWNyvmoiIQsTv6USNYKFoDPygS0Rmxg9bRGRYkiRxjSIiolDcwG0ziIJjoWgMI0tLS68QHYKIKETjysrKEkSHICIKIt3n87UVHYKIiEwn2e/3DxYdgsioWCgag0WSpCmiQxARhahVIBCYJDoEEVEQrQOBQLroEEREZD487ZkoOBaKBqEoCl/HISLTCgQCXMOIyMi4RhER0WXj93Si4FgoGseNogMQEWnAu7dEZGRco4iIKBQTi4qK4kWHIDIiForG0aO0tPQq0SGIiEJ0ldfr7S06BBFREIOLi4t7iA5BRESmE2exWCaIDkFkRCwUjYV3z4nItBRFmSo6AxFRMFarlWsUERGFgq89E6lgoWgg3J+BiMyMaxgRGRnXKCIiCoUkSXzwh0gFC0UDkSRpcmFhYWvROYiIQiFJkk1RFKvoHEREQWQqisLPvkREdLmGnjx5spvoEERGww9VxtI2ISFhrOgQREQh6ujz+UaIDkFEFMQVXq/3GtEhiIjIdKTq6mpum0H0IywUDYav4xCRmSmKwldCiMjIuEYREVEo+D2d6EfKQmQmAAAgAElEQVRYKBoPP+gSkZnxwxYRGRZv3BIRUYgyFUWRRIcgMhIWisZzrdfr7SI6BBFRiMadPn06UXQIIiI1kiRNKCsrSxCdg4iITCeppKRkqOgQREbCQtF4LIFAIEN0CCKiEMVUVVVNEh2CiCiIVrW1tdeLDkFEROZjtVr5NiHRD7BQNCCLxcLXcYjItLiGEZGR8bVnIiIKBf9+EP07FooGpCjKDaIzEBGFigezEJHBcY0iIqJQpJeWlrYRHYLIKFgoGlOK1+sdJDoEEVGIBvh8vj6iQxARBTGopKQkVXQIIiIynTgA6aJDEBkFC0WD4hM+RGRmgUCAr4QQkZFxjSIiolDw7wdRHRaKxsWFiojMjGsYERkW93olIqIQ8cEfojosFI1rUmFhYWvRIYiIQjRVURSr6BBERGoURbEpisLPwUREdLkGf/31191FhyAyAn6QMq427dq1Gy86BBFRiDr4/f5RokMQEQXR2ev1Xis6BBERmY4UGxvLp9yJwELR0LgHGRGZGfeCJSKD4xpFRESXTVEUfk8nAgtFo+MHXSIyLX7YIiKD4xpFREShuIHbZhCxUDS64T6fr6voEEREIRpTXl7eXnQIIqIgxpWVlSWIDkFERKZzRWlp6TDRIYhEY6FobFIgEJgqOgS1jEOHDuHvf/+76BhELSmmqqpqsugQ1DIOHjyIV199VXQMIi1aBQKBSaJDUMt45513kJeXJzoGEUUuvk0YoY4cOYIXXnhBdAxTYKFocHxlMPL4/X4sXrwY06ZNw6effvpvY7GxsYJSEbUMrmGRx+v1Yt68efjFL36BL7/88t/GuIaR2XC/6shTWlqKBx54AP/xH/+Br7766t/GWrVqJSgVEUUai8XCvx8RpqKiAk6nE1OmTMH+/fv/bYyfcdXFiA5AjbNYLJmKokiSJCmis5A2ly5dwlNPPYXHHnsM58+fV73mpz/9qc6piFqWxWLh3dsIUVVVhS1btmDTpk24ePFig3FJkriGkRlxjYoQlZWV2Lx5MzZv3ozKysoG4xaLBT/5yU8EJCOiSKQoSrrP52ubnJx8QXQW0qa2thbPPfcc1q5di9OnT6te87Of/UznVObAJxQNTlGU7n6//2rROUibV155BZMmTcKqVatUy8Q+ffrgj3/8IxcqijiKovT3+/19RecgbV5++WVcf/31WLdunWqZmJaWhueffx5TpkwRkI5Ik6tKS0t7ig5BoVMUBS+99BLS09ORm5urWiYOGDAAzz//PCZOnCggIRFFqFaKolwvOgRps3//ftx4441YtmyZapmYlJSEDRs24J577hGQzvj4hKIJBAKBTAAfi85Bl++rr76C0+nE3r17VcfbtGmDBx54AAsWLOBrOBSxamtrMwE8IToHXb6PP/4YsizjwIEDquOJiYlYsGAB7r33Xr4KQmaWCeB/RIegy3f48GHIsoy3335bdbx9+/aYP38+1ygiahF1W/v8Q3QOunxerxdr1qzBrl27oCgNXwaNjY3F7bffjmXLlqFdu3YCEpoDC0VzsAF4RHQIar5z585h/fr12LZtG2pqahqMS5KEm266CStXrkTXrjzImyKeDSwUTeXMmTN45JFH8Mwzz6C2trbBuMViwYwZMyDLMq644goBCYnCp+4LIQtFE2nuGuVwONC5c2cBCYkoSnDbDJOp3x5j06ZNqKqqUr3GZrPB7XajV69eOqczHxaK5jCxqKgoPjU1teE7HGQoNTU12LFjR6P7LwwfPhxutxsjRozQOR2RMFMURYmRJKlhu06GUl1djW3btmH9+vWoqKhQvWbcuHFwu90YNGiQzumIWoYkSTZFUaySJDVspshQmrNGjR8/Hm63GwMHDtQ5HRFFoatLSkpSU1JSikQHocYpioI9e/bA4/GguLhY9Zr+/fvD5XJh8uTJOqczLxaK5hBvsVjGA3hNdBAKrqCgAA6HA5999pnqeHJyMlasWIGbb74ZkiTpnI5IqA6lpaXXAXhLdBAKLj8/H7Is44svvlAd7969O5YvX46ZM2fqnIyoxXX0+XwjALwjOggFl5+fD7vd3uB0+Xpco4hIkKkA/p/oEBTcRx99BLvdjnfffVd1vEOHDnjwwQcxe/ZsxMSwIrsc/G/LJOqOpWehaEDHjx/HmjVrsHv3btXxuLg4zJkzB4sWLULbtm11TkdkGJlgoWhIR48ehcvlQl5enup4fHw85s6di/nz56N169Y6pyPSh6IomWChaEhHjhyB0+nE66+/rjpevx811ygiEkGSJBtYKBqS3+9Hbm4utm/fjkAg0GA8JiYGs2bNQlZWFjp16iQgofmxUDSJug+6y0XnoP9z8eJFbNmyBRs2bMClS5dUr7HZbMjOzkZqaqrO6YiMpe7DllN0Dvo/FRUV2LBhA5566inVNUySJEybNg2yLCMlJUVAQiJd2QBkiw5B/+fcuXPYuHEjnnzySVRXVzcYr1+jHA4HunfvLiAhEREAwKYoikWSpIaNFQlRvz3GunXr8M0336heM2HCBLhcLm6PoRELRfMYdvLkyW5dunTxig4S7RRFwc6dO7Fq1SqUlZWpXjNkyBC43W6MHj1a53REhjX6xIkTHXv16nVGdJBoFwgEsGvXLng8Hpw6dUr1mmHDhsHtdmPUqFE6pyMSZtzp06cTO3furL4xH+mmOWvUNddcA4/Hw/2oicgIrvB6vcMBvCc6CAF5eXlwOBw4fvy46njv3r2xYsUKTJ8+Xd9gEYqFonlI1dXVGQD+KDpINDt06BDsdjvee0/970XHjh2xePFi3HnnnbBarTqnIzI0a2xs7GQAfxYdJJq99dZbkGUZn376qep4UlISlixZgttuuw0Wi0XndERCxVRVVU0C8LLoINFs3759kGU56H7USUlJ+O1vf8v9qInIaDLBQlGor776Ck6nE3v37lUdr98eY8GCBWjVqpXO6SIXC0VzsYGFohA+nw+rV6/Grl27oChKg/HY2FjcfvvtWLp0KRITEwUkJDIFG1goCuH1erFmzZom17Bly5ahXbt2AhISiVe3XzULRQFKS0uRk5ODnTt3qo7X70e9cOFCJCQk6JyOiKhJNgBrRIeIRmfPnkVubi62bduGmpqaBuMWiwUzZszAypUr0bVrVwEJIxsLRXPJVBRFkiSp4bdBahFVVVV4+umn8eijj+LChQuq16Snp8Pj8WDAgAE6pyMynRtFB4g2lZWV2Lx5MzZu3Ihvv/1W9RqbzQa3241evXrpnI7IWOr2qyYd1e9H3dQa5fF40LNnT53TERE12/iysrKErl27nhcdJFrU1NRgx44dWLt2LU6fPq16zfDhw+F2u7k9RgtioWguyX6/fzCAw6KDRIO8vDysXLkSRUVFquP9+vWD0+lERkaGzsmITKu33+/vl5SUdER0kEinKAr27NkDj8eD4uJi1WvS0tLgdDoxefJkndMRGdYAn8/XJzk5+ZjoIJGufo1yu90oKSlRvebqq6+Gx+PBmDFjdE5HRHTZWtXW1l4P4O+ig0SDgoICOByOoNtjJCcnY8WKFdweQwfcIMlkePe85X388ceYMWMG7rjjDtUysX379njooYewd+9elomNyMvLw/Tp0zF58mS89NJLouOQQQQCAa5hLeyjjz7CL3/5S9x3332qZWKHDh3gdruxd+9elomN+Nvf/oaf/vSnmDJlCv7xj3+IjkM6CQQCU0VniHSHDh3CL37xC9x3332qZWLHjh3hdrvxyiuvsExsxO7du/GTn/wEGRkZePXVV0XHIYp6iqLYRGeIdMePH8d9992H//zP/1QtE+Pj4zFv3jzk5+dj5syZLBODeOeddzBz5kykp6fj6aef1vS7+ISiydQtVLmic0SiM2fO4JFHHsEzzzyD2traBuP1+y/IsowrrrhCQEJzKCwshCzLePPNN7//t//6r//ChAkT0LlzZ4HJyAjq1rAtonNEIr/fj9zcXGzfvh2BQKDBeExMDGbNmoWsrCx06tRJQEJz+OyzzyDLMvbt2/f9v82bNw8ffvgh95eMDjYAT4kOEYmaWqO4H3XzfPLJJ5BlGfv37//+3+bOnYsPP/wQbdu2FZiMKOrxpnkLqd8eY8OGDbh06ZLqNTabDdnZ2UhNTdU5nXmUlpbC4/Hg5Zdf/n5PdbvdjnHjxmHgwIEh/U4WiuYzsaioKD41NbVSdJBIUlBQgD//+c+oqKhQHZ8wYQJcLlfI/0eLBufOncP69evx7LPPorq6+t/GqqurUVxczEKRACBDUZRYSZKqm76Ummvv3r34wx/+EHSv10mTJsHlciEtLU3nZOZRXl6Ohx9+GH/6058a3FSqqqqC1+tloRgdpiqKYpUkqeGdRQpZXl4etm7diosXL6qOZ2RkwOl0ol+/fjonM4/Tp09j7dq1eO655xqsURcvXoTf70ffvn0FpSMiAINKSkpSU1JS1PfLopB89tlnGDt2LE6ePKk6PnToUHg8HowaNUrnZOZRv6f65s2bUVnZsEY6duwYC8UoEmexWCYAyBMdJJJ89dVXqv/evXt3LF++HDNnztQ5kXkEAgHs2rULHo8Hp06dCnqd2smyFJUSS0tLrwOwr8krqdm+/PJL1X/v06cPsrKyMH36dJ0TmUf9pt45OTkoLy8Peh3XsKjR0e/3jwTwtuggkeSLL75Q/fe+ffvC4XDAZuObgsFUV1dj27ZtWL9+fdAb3wDXKCKDsAHYKjpEJAm2F3jHjh2xePFi3HnnnbBarTqnMo+mzoUAtP39YKFoTjawUGxRbdu2xcKFC3HvvfeiVatWouMY1r59+yDLctANcYmCsIGFYotKTEzEokWLMGfOHMTGxoqOY1gFBQWQZRmff/656ChkIHX7VbNQbEGJiYlYsmQJZs+ezTWqEfn5+ZBlOWghS0TGYrFYWCi2sNjYWNxzzz1YuHAh3xxpxOHDhyHLMt5+u2U/zrBQNCFJkjIBLBOdIxJJkoRp06ZBlmWkpKSIjmNYJ06cgMfjwd//rn6QWVxcHC5duqS6RxKRxWLJBOAUnSMS1e/1arfb0aVLF9FxDOvo0aNwuVzIy1O/N9emTZugr2ZS5Kvb69UjOkck4n7UzXPkyBE4HA7s3btXdZxrFJExKYpiUxTFIkkSvwS1gPT0dHg8HgwYMEB0FMM6efIkcnJy8PzzzwfdU91isQTdi/Jy8ZRncxp68uTJbqJDmFnHjh0b/NuIESOwZ88e/P73v2eZGMTFixeRm5uLSZMmBS0TbTYb3njjDcTFxemcjsxCUZTrioqKeCqIBmpr2OjRo/HKK6/g8ccfZ5kYxIULF5Cbm4spU6YELRPr1zCeDBjVxpaXl7cXHcLMOnTo0ODfxo0bh1dffRWPP/44y8QgKioqsGrVKmRkZKiWiZIkYfr06UGLRiISrrPX671WdAgzU/uMO2DAAOzYsQPPP/88y8Qgqqur8T//8z9IT0/Hc889p1omjh8/Hv/7v/+LXr16hW1eFormJFVXV08VHcLMfv3rX6N3794AgOTkZGzYsAEvv/wyhg8fLjaYQSmKgt27d2PixInIzc3Ft99+2+CatLQ0bN++Hdu2bUPPnj0FpCQTsVqt1smiQ5jZHXfcgR49egAAevTogSeeeAJ//vOfMXjwYMHJjCkQCODFF1/EuHHjkJubq3pXdsiQIfjrX/+Kbdu2ff/fLUWtmMrKykmiQ5jZnXfeiW7dvrv33bNnTzz55JPYuXMnBg0aJDiZMdWvUenp6di0aZPqGjV06FD89a9/5Y1vIuPjac8aTJ8+HUOHDgXw3c2p7OxsvPbaa7j++usFJzOu/Px82Gw2yLKsutdu9+7d8dhjj+HFF18M+yGzfOXZvGwA/iA6hFklJyfjzTffxJEjR9CvXz/u39OIDz/8EHa7HQcPHlQd79ChAx588EFuiEuXywZgl+gQZpWamop9+/bhyJEj6N+/P2Ji+Oc8mA8++ACyLOO9995THU9KSsKSJUtw6623cg2jH7IBeEl0CLPq3bs3Dhw4gCNHjiAtLY3/32rE/v37IcsyPvnkE9Xx+jXqtttug8XCZ0GITMAGYLXoEGaVkJCAv//97ygsLESvXr341lsjjhw5AqfTiddff111vE2bNnjggQcwf/58tG7dukUy8BuIeWUqiiJJksQj3UIUGxuLq666SnQMw/L7/cjNzcX27dtVH5mOjY3F7bffjqVLlyIxMVFAQjK5G0QHMDuuYY3z+XxYvXo1du3apXp6Xf0atmzZMm7qTQ3U7VdNGnCNapzX68WaNWu4RhFFnnFlZWUJXbt2PS86iFlZLBZceeWVomMY1rlz57Bx40Y8+eSTqK6ubjBefy6Ew+FA9+7dWzQLC0XzSiopKRkK4EPRQSiyVFdXY9u2bXj44Ydx/rz638H09HS43W4u9KRF76KiorTU1NRC0UEoslRWVmLr1q149NFHceHCBdVrbDYbXC7X91tfEKlI8/v9fZOSko6KDkKRpbKyEps3b8amTZtQVVWleo3NZoPb7Q7rPldEpJtWgUBgEoA9ooNQZAkEAti1axc8Hg9OnTqles0111wDj8eDESNG6JKJhaKJWa3WTLBQpDDKy8uDLMs4ceKE6nifPn3gdDphs9l0TkaRKCYmJhMAC0UKm7y8PKxcuRJFRUWq4/369YPL5cKUKVN0TkZmVFtbawPwe9E5KDIoioI9e/bA4/GguLhY9Zr+/fvD5XJh8mRuM0xkZoFAwAYWihRG+/btgyzL+Oyzz1THRW2PwULRxBRFsQFYJzoHmV9hYSEcDgfeeOMN1fHExEQsWLAA99xzD1q1aqVvOIpYdWvYJtE5yPwOHz4MWZbx9ttvq463b98eS5YswezZs7nfJF0OFooUFh999BHsdjveffdd1fH6/ai5RhFFDG6bQWFRWlqKnJwc7Ny5U3U8Li4Oc+bMwcKFC5GQkKBzOhaKZpdeWlrapnv37hdFByFzOnv2LHJzc/HMM8+gtra2wbjFYsGMGTNgt9vRpUsXAQkpwk1RFCVWkqSGm38QNcOZM2fwyCOPBF3DYmJiMGvWLCxfvhydO3cWkJBMLkNRlBhJkmpEByFzamo/6vo1KisrC506dRKQkIhayFVer7d3t27djosOQuZ08eJFbNmyBRs3bsS3336reo3NZoPH40HPnj11Tvd/WCiaWxyAdAD/KzoImUtNTQ127NiBnJwclJeXq14zduxYuN1uXH311TqnoyjSzuv1jgGQLzoImUv9Xq/r169HRUWF6jUTJkyAy+XCwIEDdU5HEaRDSUnJKAD7RQchc6lfo9atW4dvvvlG9RquUUSRTVGUqQD+R3QOMpf67THcbjdKSkpUr7n66qvhdrsxduxYndM1xELR/GxgoUiXIT8/Hw6HA59//rnqeLdu3ZCVlYWbb74ZkiTpnI6ikA0sFOky5Ofnw26348svv1Qd7927N1asWIHp06frnIwiUd1+1SwUqdny8vLgcDhw/Phx1XGuUUTRoW5rHxaK1Gwffvgh7HY7Dh48qDpevz3GnXfeCavVqnM6dSwUzY/7M1CzHD16FE6nE6+99prqeJs2bTB//nzcf//9iIuL0zRXRUWF6uuHRCoyAciiQ5DxffHFF3A4HPjXv/6lOp6QkICFCxeGZa/Xs2fPavp5ihx1XwhdonOQ8X3++eeQZRkFBQWq4+3atcOiRYtw9913IzY2VtNcXKOIjE+SJJuiKFZJkviliBrl8/mwatUq/PnPf4aiKA3GY2Njcdddd2Hx4sVITEzUNNe3336LyspKTb/jh/Q7/oVaypDi4uIeokOQcVVUVMDtdmPy5MmqZaIkSZgxYwYKCgqwaNEiTWViIBDAn/70J0yYMCHoXg9EPzKyqKiIG0dRUGfPnsXKlSths9lUy0SLxYJbbrkFBQUFmDdvnqYysaamBs888wzGjx+v+oGOotKYEydOdBQdgozrzJkz+O1vf4vMzEzVMtFiseDWW29FQUEBHnjgAU1lYk1NDbZu3Yr09HQtkYlIHx19Pt8I0SHIuL799ls89thjmDBhAnbt2qX62TMjIwN79+6Fw+HQXCbu2bMH119/PYqLizX9nh/iE4oRwGq1ZgDYJjoHGUsgEMBzzz2HtWvX4tSpU6rXXHPNNfB4PBgxQvvfugMHDkCWZXz88ccNxqxWK7p166Z5DopI1piYmAwAL4oOQsZSU1ODP/7xj1i3bh3OnDmjes3IkSPh8XgwbNgwzfMVFBRAlmXV7SBiY2ORlJSkeQ4yJWtsbOwkAH8RHYSMpaamBs8++yzWr18f9InB6667Dh6PB0OGDNE837/+9S/Isqy63UOrVq14eB6RASmKkgngHdE5yHj27NkDj8eDoqIi1fF+/frB5XJhypQpmuf69NNPIcsy3nrrLdXxHj1Cfz6NhWIEqHsdh4Uifa+xcg8AkpKSkJWVhZkzZ8Ji0fagcnFxMbKzs/Hyyy+rjrdq1QoOh4NfximoujWMhSJ9r7FyD/hur9eVK1fil7/8pea9Xo8fPw63241XXnlFdTwuLg7Z2dno0KGDpnnI1GxgoUg/0Fi5BwApKSmw2+2YPn16WNYop9OJV199VXU8Pj4eq1ev1vzkChG1CBuAbNEhyDiaKvcSExO/3ydR6/YYp0+fxsMPP4zt27erbkdmtVoxb948TTfmWShGhhsURbFIkhQQHYTE8nq9WLNmTdBHpmNjY3H77bdj2bJlaNeunaa5KisrsXXrVjz66KO4cOGC6jU2mw0ulwu9e/fWNBdFvJ+IDkDGUFpaipycHOzcuVN1PC4uDnPmzMHChQuRkJCgaa6LFy9iy5Yt2LhxY9AtGmw2GzweD3r27KlpLjK9G0UHIGM4fvw41qxZg927d6uO169RixYtQtu2bTXNVb9GbdiwAZcuXVK9xmazITs7G6mpqZrmIqIWM+706dOJnTt3rhAdhMQ6e/YscnNz8cwzz6iWexaLBTNmzIDdbtf8xHl1dTWef/555OTkoLy8XPWasWPHwu124+qrr9Y0FwvFyHBFaWnpMAAfiA5CYuhd7uXl5eGhhx4Kuv9C//794XQ6w/KINkWFHiUlJVempKR8IToIiaFnuacoCvbs2QOXy4XS0lLVawYPHgy3240xY8ZomosiRh+/398vKSnpiOggJIae5Z6iKNi5cydWrVqFsrIy1WuGDBkCt9uN0aNHa5qLiFpcTFVV1SQA6q9yUcTTs9wDgPz8fDgcjkbf8snKysLNN9+s+Ql6gIViJMkEC8WopGe5d/jwYdjtdrzzjvpWIO3bt8eSJUswe/ZsxMRweaHLkgmAhWKU0bvcO3ToEGRZxsGDB1XHO3bsiMWLF+POO++E1WrVPB9FjkAgkAlgi+gcpC+9y71Dhw7BbrfjvffeUx3nGkVkPhaLxQYWilFJz3Lv2LFjyMnJCfoEfXx8PObOnYt58+ZpOoT1x/iNP0LULVRrRecg/ehZ7pWXl+N3v/td0Ee0Y2JiMGvWLCxfvhydO3fWNBdFp7o1bIPoHKQfPcs9v9+P3NxcbN++HYFAw91B6reDWLp0KfchI1V1e72yUIwiepZ7Pp8Pq1evbnLLGq5RROZTdzALRRE9y70LFy7giSeeCPoEvSRJmDZtGux2u6bDV4JhoRghFEVJ9/l8bZOTk9Xfd6WIoWe5V11djW3btmHdunX45ptvVK+ZMGECXC4XBg4cqGkuim6KokwpLCxsnZaWpv6+K0UMPcu9+jXs4Ycfxvnz51WvSU9Ph9vtxpVXXqlpLop4GYqixEqSVC06CLUsPcu9qqoqPP30041uWZOeng6Px4MBAwZomouIhBng8/n6JCcnHxMdhFqWnuVeIBDArl27kJ2djZMnT6peM3ToULjdblx33XWa5moMC8XI0UpRlOsB/EN0EGoZepd7+fn5WLlyJQoLC1XHe/fujRUrVmD69Oma5yIC0DYhIWEMgDdFB6GWoXe5l5eXB7vdjq+//lp1vG/fvnA4HLDZbJrnoqiQWFpaeh2AfaKDUMvQu9zLy8vDypUrUVRUpDrer18/OJ1OZGRkaJ6LiMQKBAI2AE+KzkEtQ+9y7/3334csy3j//fdVx5OSkrBkyRLcdtttsFgsmudrDAvFCFL3Og4LxQikZ7l35MgROJ1OvP7666rjbdq0wQMPPID58+ejdevWmucjqle3hrFQjEB6lnuffPIJZFnG/v37VccTExOxYMEC3HPPPWjVqpXm+Siq2MBCMSLpWe59/PHHkGUZBw4cUB1v37495s+fj3vvvRexsbGa5yMiQ2ChGKH0LPe8Xi/WrFnT5BP0y5YtQ7t27TTN1VwsFCML92eIMM0t9xYsWKD5i/G5c+ewfv16bNu2DTU1NQ3GJUnCTTfdhJUrV6Jr166a5iIKIhPAStEhKHyaW+6F44vz2bNnkZubG3Q7CIvFghkzZkCWZVxxxRWa5qLoZLFYMgE4Reeg8NGz3Dtz5gweeeQRrlFE0WmqoihWSZIa/p+fTEnPcq+yshJbt25t9Al6m80Gl8uF3r17a5rrcrFQjCxXl5SUpKakpKjfXiXTOHfuHDZu3Ignn3wS1dUNt2sKZ7lXU1ODHTt2YO3atTh9+rTqNddccw08Hg9GjBihaS6iJozwer1dunXrpv6uAJmGnuVe/avU69evR0VFheo148aNg9vtxqBBgzTNRdFNUZTrioqKOqWmppaLzkLa6FnuNWeNGj9+PNxuN/ejJopcHfx+/ygA6ncvyDT0Lvfy8vLw0EMPobi4WHW8f//+cDqdmDJliua5QsFCMfJMBfD/RIeg0Ohd7hUUFMDhcOCzzz5THU9OTsaKFSvCcpQ9UTNYAoHAFADPiw5CodG73MvPz4csy/jiiy9Ux7t164asrCyuYRQuVqvVOhnALtFBKDR6l3v5+fmw2+348ssvVce7d++O5cuXY+bMmZrnIiJjqzvtmYWiielZ7h0+fBh2ux3vvPOO6nj79u2xZMkSzJ49GzEx4iZV9gUAACAASURBVGo9FooRRpIkG1gompKe5d7x48exZs2aoEfZx8XFYc6cOVi4cCESEhI0zUV0OerWMBaKJtRUuVf/xTkca9ixY8fgdDqRl5enOh4fH4+5c+dyr1dqCTawUDQlPcu9o0ePwul04rXXXlMd537URNGnbq9wt+gcdPmaKvc6dOiABx98MCzlnt/vR25uLp577jnVJ+hjYmIwa9YsLF++HJ07d9Y0VziwUIw8NkVRLJIkBUQHoeZpbrm3aNEitG3bVtNcFy9exJYtW7Bx40Z8++23qtfYbDZkZ2cjNTVV01yBQABvvPEGKioqcOONNyIuLk7T76OocYPoAHR59Cz3KioqsGHDBjz11FO4dOlSg3FJkjBt2jTIsoyUlBRNc9XW1mLv3r2orKzEDTfcwC/9VI9rlMnoWe7Vr1GNbVnTEmvUjTfeyEOmiIxvTHl5eftOnTqdEx2EmkfPcq/+Cfp169bhm2++Ub1mwoQJcLlcYXmCfv/+/SgpKYHNZkP79u1D/j0sFCPPFV6vdziA90QHocbpWe4pioKdO3di1apVKCsrU71m8ODBcLvdGDNmjKa5AODgwYOQZRmHDh0CAAwfPhy7d+9u8WPrKSL0KC0tHdi9e3f1R3XJMPQs9wKBAHbt2oXs7GycPKm+xebQoUPh8XgwatQoTXMB333IkmUZn3zyCQBg7Nix2LlzJ1+bJgDoXVRUlJaamlooOgg1Ts9yr36N8ng8OHXqlOo1w4YNg8fjwciRIzXNBQD79u2DLMvfv9UyYcIEvPDCC5p/LxG1qJiqqqrJAP4qOgg1Tu9yLy8vDw6HA8ePH1cd7927N1asWIHp06drnuuLL76ALMvIz88HAPTq1QuvvfZayA8usVCMTJlgoWhYepd7hw4dgt1ux3vvqf9PomPHjli8eDHuvPNOWK1WTXN5vV5kZ2fjr3/967+ddvXBBx/giy++4Gbj1FyZAFgoGpTocu/HkpKSsGTJEtx2222ab1oUFRUhOzu7wRPj+/fvx4kTJ3Q/OY+MKSYmJhMAC0WD0rvce+uttyDLMj799FPV8XCuUV9//TU8Hg/+9re//du/FxQUoLi4GD169ND0+4moZdW99sxC0cD0LPeOHDkCh8OBvXv3qo7XP0G/YMECzU+hnz17FuvWrcMf/vAH1NTUfP/vJ06cwIEDB5CRkRHS72WhGJlsANaIDkEN6Vnu+f1+rFq1qsmj7JcuXYrExERNc1VVVeHpp5/GY489hvPnz6teE+wpTCIVNgCPiQ5BDelZ7nm9XqxZs6bJNWzZsmVo166dprkqKyuxefNmbNq0CVVVVarXcA2jenVfCDeJzkEN6VnulZaWIicnBzt37lQdr1+jli9frnk/6vo1qrG3WrhGERmfxWLJFJ2B1OlZ7p07dw7r16/Htm3b/q3cqydJEm666SasXLkSXbt21TRXcw59DfbZtzlYKEam8WVlZQldu3ZVb3ZId0Yr99LT0+F2u3HllVdqmgsAdu/eDY/HE/S0K6IQTCosLGydlpbGb0cGYbRyz2azwe12o1evXprmUhQFf/nLX5CdnQ2fz6fpd1FUmaIoSqwkSQ3foyUhjFbuhXON2rlzJ1avXg2/36/pdxGReIqi9Pf7/X2TkpKOis5C3zFauTd8+HC43W6MGDFC01xA0wcmhgMLxcjUqra2diKAvzV5JbWo5pZ7Ho8HAwYM0DxfXl4e7HY7vv76a9Xxvn37wul0YurUqZrn+vjjjyHLMg4cOKD5dxH9SNuEhIRxAP4pOki007vc27NnT6M3KPr37w+Xy4XJkydrmgsAPvroI9jtdrz77ruafxdFnXZer3cMgHzRQaJdc8s9j8eDnj17apqrfo1yu90oKSlRvSYtLQ0ulwuTJk3SNBcAfPjhh7Db7Th48KDm30VExlFbW5sJ4AnROaKd3uVeQUEBHA7H93vf/lhycjJWrFiBm2++WfOe3U0d+hpOLBQjVN3rOCwUBTJSuZeYmIgFCxbg3nvvRWxsrKa5Tp06hbVr1+K5555DINDwMHGr1Ypf/epXeP755/n6DYWsbg1joSiI0cq9Dh064MEHH8Ts2bMRE6Pto4vf70dOTg5efPFF1TUsJiYGd9xxB7Zu3ar6NCZRHRtYKApjtHKvfo3Sc8uap59+WtM8RCSMDSwUhTJSuRcXF4c5c+Zg0aJFIR+MUu/8+fN47LHHGj0wcfr06Xj33Xfh9Xo1zVWPhWLk4v4MguhZ7p05cwaPPPIInnnmGdWj7C0WC2bMmAFZlnHFFVdomqv+tKv169ejoqJC9Zpx48bB7XZj0KBBQV87ImqmTAC/FR0iGuld7uXm5mL79u1By71Zs2YhKysLnTp10jTX5Z7Yt3XrVk3zUcTLBCCLDhGN9C73GlujYmNjccstt+i2RqWnp8PlciEtLY2FIpF5TeW2GWLoWe5dvHgRW7ZsafIJ+uzsbKSmpmqa63IPfZ04caKm+X6IhWLkGlhaWtqze/fu6o/HUdgZudzTqqn9F7p3747ly5dj5syZmuciqjPc5/N1TU5OVv+rSGFn5HJPKz1P7KOoMbKoqKhTampquegg0cKo5d5VV12laS7guzVKlmWcOHFCdbxPnz7Iysr6fo1S+5xJRKaRWFpaOgrAW6KDRAsjl3ta6XnoqxoWihGs7pVB3r5sYZFc7h09ehQulwt5eXmq4/Hx8Zg7dy7mz5+P1q1ba56P6AcstbW1GQCeEx0k0jW33HO73WH74qxXuffVV1/B6XTqcmIfRR1rTExMBoAXRQeJdM0t98J12NzllntaFBYWwul04p//VN/ho23btrj//vu5RhFFnkywUGxxzS33PB4PRo8erXk+Pcs9n8+H1atX63Loa2NYKEYwi8XCQrGFRWq5V1FRgQ0bNjS6/8K0adMgyzJSUlI0zUUUTN0axkKxBUVquafniX0Uvepu3LJQbEF6l3sOhwNvvPGG6ng4y72zZ88iNze3ybda7HY7unTpomkuIjIeSZJsAJyic0SySC339D70tSksFCOYoihTFUWxSJLU8L0Q0iRSy71AIIBdu3bB4/Hg1KlTqtcMGzYMbrcbo0aN0jQXUVMURclUFEWSJIknY4RZpJZ7ep/YR1GP+1W3kEgt9+rXqJycHJSXq78tf+2118LtduPaa6/VNBcRGdroEydOdOzVq9cZ0UEiTSSXe3oe+tpcLBQjW2efzzcCgPrO+nTZIrnc279/P+x2Oz799FPV8aSkJCxZsgS33XYbLBaL5vmImiHF5/MNAvCJ6CCRoqlyr/6LsxnLPT1P7COq06ukpOTKlJQU9dcU6LJFcrlXUFAAWZbx+eefq45369YNWVlZXKOIooM1NjZ2MoA/iw4SKSK53NPz0NfLxUIxwimKkgkWipo1t9zzeDwYOXKk5vneeustyLKsS7nn9XqxZs2aJu/iLFu2DO3atdM0F9HlqlvDWChqFMnlnp4n9hGpyATAQlGjSC73jh07hpycnKBrVHx8PO666y6uUUTRxwYWimERqeWenoe+hoqFYuSzAVglOoSZ6fnknp7lXmVlJTZv3tzkaVdutxu9evXSNBeRBjYAvxMdwswitdyrP7Fvw4YNqk+MA+E7sY8omLq9XjeIzmFmRiv35s6di3nz5iEuLk7TXBcuXMATTzwRdI2qf6vFbrejR48emuYiIlO6UXQAs4vUck/vQ1+1YKEY+cadPn06sXPnzur/S6SgIrXcUxQFe/bsgcfjQXFxseo1/fv3h8vlwuTJkzXNRRQGEwsLC1unpaWp/x+DgorUcq85J/YNGTIEbrc7LCf2ETVGUZQpXKNCE6nlXv1bLdnZ2Th58qTqNUOGDIHH48F1112naS4iMrXeRUVF/VNTU78SHcRsIrnc0/PQ13BgoRj5YquqqiYCUP+0Rg0YrdxLS0uD0+kMS7n3wQcfQJbloKddderUCcuWLcOvfvUrzaddEYVJm/j4+AkAXhcdxCwiudx79913Ybfb8dFHH6mOd+nSBVlZWbjlllu41yvppW1CQsIYAG+KDmIWRiv3hg4dCrfbHZZy7+2334Ysyzh8+LDqeFJSErKysjBz5kyuUUSEmJiYTAAsFJupOeXe+PHj4XK5TFfuffXVV3A4HPjnP/+pOt62bVssWLAA9913n+ZDX8OJhWIUqHsdh4ViE5pb7rlcLkyaNEnzfB999BHsdjvefVd9i8sOHTrgwQcfDMtR9n6/H2vWrMGLL74Y9GnLO+64A0uWLEH79u01zXXp0iX8/ve/R1VVlabfQ1TParXawEKxSXqXe03doOjYsSMWL14cljWstLQU2dnZeOmll4KuYffccw8WLlyo+YnxqqoqbN68WXUeIjWKotjAQrFJepd777//PhwOR9A1qn7LmltvvVXzGlVSUgKPx4Pdu3errh2tWrX6fo1KSEjQNFdlZSU2bdqk6XcQkTHU/f3YLDqHGehZ7h09ehQulwt5eXmq4/VP0M+fP19zuVdRUfH9YWTV1dUNxiVJws0334zf/va3SEpK0jRXbW0ttm/fHrTrCAULxShQd6gBNULvci83Nxfbt29HIBBoMB4TE4NZs2YhKysLnTp10jRXfbn3+OOP48KFC6rXTJo0CS6XC2lpaZrmAoB//OMfcLvdOHHiRIOxVq1aaf79FJ3q1rAs0TmM7NChQ7Db7bqUez6fD6tXr25yO4ilS5ciMTFR01z15d6mTZtQWVmpeo3NZoPT6USfPn00zaUoCnbv3g2Px4OSkpIG41zDqBGZAFaKDmFkTd2ACGe5p/eWNZs2bcLmzZuD3ki98cYbIcsyevfurWkuRVHw0ksvITs7G6WlpQ3G9T7Zk4jCIkNRlFhJkho2SQRA/3Jvw4YNePLJJ4OWe9OmTYMsy0hJSdE0V3259/DDDwc9MDGch5E1duirls+4LBSjw5U+n69PcnLyMdFBjEbPcq/+Ee1169bhm2++Ub1mwoQJcLvduOqqqzTNBTRe7gHfnXblcDhgs9k0z/XZZ5/B4XCgoKBAdTwtLS0shSVFrWvKysqSu3bt6hMdxGj0LveefvppPProo0FvUKSnp8Pj8WDAgAGa5mqq3AOAAQMGwOVyYeLEiZrmAoDDhw9DlmW8/fbbquODBw/m4VTUmBFer7dLt27d1B+7i2J6l3tbt25tdI2y2WxwuVwtXu4BwFVXXQWXy4X09HRNcwFN3/geNmwYD58iMqd2Xq93NAD1L1FRrL7ce+qppxrdHiMc5V79E/QejwenTp1SvWbYsGHweDwYOXKkprmAxss94LubbA899BBuuukmzYeRFRUVwePxYM+eParjXbt21fRWAAvFKBEIBKYCeEp0DqPQu9zLy8uDLMtBy70+ffogKysL06dP1zxXU+VeYmIiFi5ciLvvvjssp12tW7cOf/jDH4JuiDtr1iw89NBDvHNOWkg1NTUZAP4kOohR6FnuAd+tYStXrkRRUZHqeL9+/eB0OpGRkaF5rqbKvfbt2+O///u/cccddyAmRtvHmJMnT2Lt2rXYsWOH6k0lq9WKX//611ixYgX3O6PGWAKBwBQAz4sOYhR6lntA02tU//794XQ6MWXKFM1zNeetlqVLl+I3v/mN5jWqrKwMOTk5eOGFF4Le+P7Nb36D5cuXa/7SSURi1L32zEKxjhHLvSVLluC2227T/FmwqXKvdevWuO+++7BgwYKwHJi4YcMGPPHEE0HPhfjZz34Gl8ulacszForRwwYWigD0Lfeas7nq/fffjwULFmh+ne7s2bPIzc3Ftm3bUFNT02C8/rQru92OLl26aJqrpqYGO3bswNq1a4M+oj18+HC43W6MGDFC01xEdWxgoQhA33Lv448/hizLOHDggOp4+/btMX/+fNx7771huUFhpBP7xo8fD7fbjYEDB2qai6KDJEk2sFAEoG+515wbEEuWLMHs2bM1l3tNrVH1b7UsX74cnTt31jRXc9aoCRMmwOVycY0iMr9MAA7RIYxAz3KvtLQUOTk5TT5Bv3z58rDsfWu0Q1/DdS4EC8XoMVVRFKskSQ0/AUUJlnvhKfcKCgrgcDjw2WefqY4nJydjxYoVuPnmm3m3nMLpBkVRJEmSovakDJZ74Sn38vPzYbfb8eWXX6qOh3NTb4oqN4gOIJqe5V55eTl+97vfRWS5l5+fj5UrV6KwsFB1vHfv3lixYkVYbnwTkXiSJI0qKirqlJqaWi46iyjN3R6D5V7j9DwXoh4LxejR0e/3jwSg/ikvgoko93JyclBerv43wazl3vHjx7FmzRrs3q1+YHh8fDzuuusuLFq0SPMj2kQqkv1+/2AAh0UH0RvLvfCd2Od0OvHaa6+pjrdp0wYPPPBAWDb1pqjUo7S0dGD37t3V/yBHMBFP7jW1ZY0Zy70jR47A6XTi9ddfVx3nGkUUsawxMTFTAOwUHURvIso9t9sddH9us5Z7ep4L0eB3h/W3kaHVnZQaNYViJD+5p2e5d/HiRWzZsgUbNmxQ3RAX+G6hz87O5obg1KLq1rCoKRRZ7oXni7OeJ/ZR1MsEEDWFYiQ/uadnuXfu3Dls3Lix0TXqpptuwsqVK9G1a1dNcxGRMdXtoxg1hWIkP7kXyYe+qmGhGEXqFiqP6Bx6aKrc69atG7KysljuNUJRFOzcuROrVq1CWVmZ6jVDhgyB2+3G6NGjNc1F1Bx1a1iu6Bx6YLlnvhP7iPDdXq+PiQ6hB5Z72su9+jXK7XYHvfF9zTXXwOPxcD9qosgXNdtmsNwz36GvjWGhGF3GlpeXt+/UqdM50UFaCsu98JR7H3zwAWRZxnvvvac63rFjRyxevDis+y8QNcPEoqKi+NTU1ErRQVoKyz3zndhH9AOTCgsLW6elpam/txUBWO6Fp9zbt28fZFnmftREVK9XcXHxgB49eqjfSY4ALPfMd+hrc7BQjC4xlZWVkwC8JDpIuLHcC0+55/P5sHr16iY3xF26dCkSExM1zUUUgjiLxTIBQJ7oIOHGci+8J/bt3Kn+1lA4N/UmUtE2ISFhHAD1T/kmxnIvPOVeU2tUXFwc5syZg4ULF3KNIooykiRlAoi4QpHlnvkOfb0cLBSjjw0RVCiy3AtPuVdVVYWnn34ajz76KC5cuKB6TXp6OjweDwYMGKBpLiKNbIigQpHlnvlO7CNqTN3WDBFTKLLcC0+5V3/ju6k1yuPxoGfPnprmIiJzslgsNgAbRecIJ5Z7+hz6eu2118LlcgnZHoOFYpSpu/MRMQ4dOoSFCxeqjnXq1AmLFi1iudeEvLw8rFy5EkVFRarj/fr1g9PpREZGhua5iLSqW8OWic4RLgcOHAi6hrHca5reJ/YRNUMmgN+KDhEu+/btC7pGsdxrWv0a5XK5UFpaqnrN4MGD4Xa7MWbMGE1zEZG5KYoyWVGUWEmSGj4GbkJlZWW44447VMdY7jVPQUEBZFnG559/rjoeznMhQsVCMfqk+f3+vklJSUdFB2kprVq1wt13342FCxeiXbt2mn5X/RfjzZs3o7JSfdu2zMxMOJ1O9O7dW9NcgL7l3uHDhyHLMt5+W/3g7/bt22P+/Pm49957ERsbq3k+ojAZevLkyW5dunTxig7SUlq3bv39h6w2bdpo+l0XLlzA448/jieffDLoF+dp06bBbreHZTsIPcu9Dz/8EHa7HQcPHlQdD+em3kSXYbjP5+uanJys/tpEBIiLi8PcuXMxb948xMfHa/pd58+fx2OPPYannnoq6JY1P//5z7Fy5Ur06NFD01x6l3uHDh2C3W7nftRE1FztvF7vWAD/Eh2kpVgsFtx6661Yvnw5rrjiCk2/q7q6Gs8++yzWr1+Pc+fUj4gYPXo0PB4PBg8erGkuIHIPfdWKhWIUqq2ttQH4vegcLaFVq1Z44403NJd7iqLg5ZdfhsfjCfqh88orr4TL5cL111+vaS5A33LvzJkzeOSRR/DMM8+gtra2wXj9XRyHw4HOnTtrmouoBUjV1dVTAfxBdJCWkJCQgNdffz1se72uXr0afr9f9ZpBgwbB7XZj3LhxmuYCviv3ZFk2xIl9sbGxuOWWW8KyqTdRCCy1tbUZAJ4THaQlJCYm4vXXXw/LXq4vvvgicnJygq5R4S73ZFkOegMinOWe3+/HqlWruB81EYXChgguFP/yl79g1KhRmn/PG2+8AYfDgcLCQtXxlJQU2O12/PznP9c8V6Qe+houLBSjU8QWirGxsZrLxEgt9+o3xF2/fj0qKipUrxk/fjzcbjcGDhyoaS4AePXVV/H444/j/PnzWLRoEX75y1+G+qt6ADipOZC58EjHxtkQoYViXFyc5g8Iej65p2e515xNvdPT0+F2u3HllVdqmgsA9uzZg82bN6Oqqgr//d//jZ/+9Keh/qr+iL41LKrV7YMVkYVifHy85jJRzyf3mrNGhXvLmsceewznz59XvSaca9TLL7+MLVu24NKlS1i2bBluuOGGUH/VQHCNIv10FB3A4DIB2EWHaClpaWmafj5Sy736/YqbOhfC4/Hguuuu0zQXALz99ttYv349vF4vZs+ejbvvvjvk38VCMTplKIoSI0lSw00Golgkl3v5+fmw2+348kv1g8O6d++O5cuXY+bMmZrn+vLLL+FwOPDmm29+/28LFy5Eenp6qP+9WQBoeyaeIk2moiiSJEkNH/2IYkYs91wul+lO7Pv0008hyzLeeuut7/9t/vz5OHToUKiFgxVcw6KKoihco1To+eRe/Rr18MMP61Lu5eXlwW634+uvv1Yd79u3L5xOJ6ZOnap5ro8//hiyLOPAgQPf/9vcuXPx0UcfhfoFmmsUkXGMKC4u7tyjRw/1U7CilJ7lntEOfQ3nuRAlJSXweDzYvXv393+HZVnG+PHjQ+4cWChGpw4lJSWjAOwXHcQIIrncO3LkCJxOJ15//XXV8TZt2uCBBx7A/Pnz0bp1a01znT17FuvXr8ezzz7bYEPc6upqFBcX8xVqCpekkpKSoQA+FB3ECPR+ck/Pcq+wsBAOhwNvvPGG6ng4N/UuLy/H2rVrsX379gY3laqqquDz+fh6IjVXis/nGwTgE9FBjEDvJ/f0LPc++eQT2O32fyv3figxMRELFiwIy1stp06dwtq1a/Hcc881uGlUWVkJv9+Pvn37apqDiISzWq3WDAAviA5iBHo/uadnudfcQ1+XLVsWlnMhNm3a9P2bNz927NgxFop0eaxWayZYKOpe7rlcLrz22muq4+Es986dO4eNGzfiySefRHV1w4PCJEnCtGnT4HA40L17d01z1S/0Ho8Hp06dCnqd2kJJFKq6NSzqC0W9yz2n04l//vOfquMtcWJfU0+Mh+PEvurqajz//PONntgHcA2jy6MoSiZYKOpe7smyjP371T/ehrPca+4aJctyWA4eaOrGN8A1iihSKIpiAwvFiC336m+yPfroo7hw4YLqNenp6cjOztb8ijjQ9KGvgLa/HywUo1TdQuUSnUMUPZ/cM1q5d80118Dj8YTlKPt9+/ZBluWgp12FiR/ALS05gQH9E9xHsVF1a9g60TlE0fPJPT3LvZqaGuzYsaPRcu/aa6+F2+3Gtddeq2ku4LubSg6HA59//rnm39WIIgC/ackJdGYBsFd0CBOwAfid6BCi6PnkntHKvXHjxsHtdmPQoEGa5gK+W6NkWcYXX3yh+Xc14hiAO1tyAqIfeBZAT9EhDO5G0QFEiuZyr1+/fnA6ncjIyNA8V1PnQoQLC8XoNbq8vLx9p06d1M9Yj1BGLPfcbjdGjhypaS6g6XIvKSkJS5YswW233QaLxaJprhMnTsDtduMf//iH6nhcXBwuXbqkuo9bCL4F8GaTV1G0SS8qKopPTU2tFB1ET5Fc7hUUFECW5aDlXrdu3ZCVlYWbb74ZkqStbz969CicTmejT4xfvHhR0xw/cBGRtYZpewwgekwsLCxsnZaW9q3oIHqK5nIvnG+1fPXVV3A4HEGfCA/zGnUBkbVGkbGF7X+4EaxHSUnJlSkpKS16J8FoorncC+ehr2VlZcjJycELL7yg+l08JiYGFosl6F6Ul4uFYvSKqaqqmgzgr6KD6MFoT+6Fs9wrLS1FTk4Odu7cqToeFxeHOXPmYOHChUhISNA0V/2GuBs3bsS336p/R7LZbPB4PJgyZUo4P+wS/Vic1WpNB/Cq6CB6iORy79ixY8jJyWn0xL65c+di3rx5iIuL0zTXhQsX8MQTTwTd1Lv+ppLdbsfo0aP5CiFp0aZdu3bjESVPc0ZyuXf06FG4XC7k5eWpjtevUeF4q6WiogIbNmzAU0891ega9dBDD2HMmDGa5iIiQ8sEEDWFYqSWe0Y79HXChAlwuVy4//77UVhYqGm+eiwUo1jdK4MRXygaqdyrf0R7+fLlupZ7PXtqe7NAURTs2bMHbrcbJSUlqtcMHjwYbrebH3BJN3VrWMQXikYr9+666y4sWrQo1NNEv3c55V6PHj00zVV/Uyk7OxsnT55UvWbo0KFwu91h2dSbCAACgYANUVAo6lnuHTt2DE6n01DlnizLSElJ0TRXc258Dxs2DB6PByNHjlT9YkpEkcNisdgAbBCdo6Wx3HPpcuhr7969sWLFirDsqf5jLBSjmMViyRSdoSUZ9ck9Pcq9q6++Gh6PJyzl3qFDhyDLMg4ePKg63rFjRyxevDgsG+ISXY66NWyp6BwtxahP7pmt3Hv//fchyzLef/991fFw3lQi+pFMACtEh2gpRnxyT89yz+12Y9SoUZrmAoC33noLsizj008/VR3nGkUUfRRFmRLJ22YYrdwbP3483G636co9Pc+FCIaFYhRTFKW/3+/vm5SUdFR0lnAyYrnndrsxduxYTXMBwIcffgi73R603OvQoQMefPDBsJR7fr8fubm52L59u+r+C/VPWy5duhSJif+fvTMPiKpe//972BQX3BVE01Rccim1VGRxHTTXstTqmtxbmeXCYBZiOjPMjCiaVOaSlXavZddMkKehigAAIABJREFU+nVv2v3eGndQTA33XHDB2F1QTIQE5/z+OB4vyRnmDGfmLMPz+tPPOXyegnnmnPfned5PgKi9CKImMAzT8+rVq0EtWrTIlzsWV0Li3ly8+OKLonNYfn4+lixZIompN0HYoXdBQUHLwMDAK3IH4krkEPeqy1GuFPfS09Oh1+slEfcoRxEEUQ31GzRoMAAe5m9aXl6OdevWKaZyLzg4GHFxcS6poFfa0NfnnnsOCxcuRMuWLUXt5QgSFGs59+7diwKwVu44XMUff/yBsLAwFBYW8q6TuOcY7hRn2bJluH37Nu81ERERMJvN6NKli6i9CEIkmoqKCi3YiYEewa1btxAaGirJIKcjR47AYDDgl19+4V1Xq7hXWlqKzz//vFpTb61WC5PJhPbt24vaiyAcoLHZbMMB/FPuQFxFcXExwsLCcP36dd51V3q5pqenw2Aw4NSpU7zrahX3SktLsWbNGocH32azGe3atRO1F0EQ6uW+tY9HCYpPP/008vLyeNfat28Pg8GAkSPFD7n2VHGPO2Qzm812v4ddORdCCCQoElp4kKBYUVHBKyaSuCcMq9UKvV6P3377jXe9Q4cOMBqN0Gq1ovciCFdw/2HLYwTFu3fv8oqJrhT3CgoKsHjxYo8U96xWKxYsWICcnBze9U6dOiEhIQFDhw4VvRdBCOF+jvIYQbGsrAxlZWVV/l3t4t7q1at5/7sA14l7XFeLxWKxm6NCQkJgMpkwePBgUXsRBOERRAFYKHcQroRPTFS7uKeUoa+BgYGYP3++SzzVnYEERWI4wzC+Go2m6ifOA/D19cUrr7yCOXPmkLhXDZmZmTAajdi9ezfvekBAAGbPno1p06bBz89P9H4E4UK0DMNoNBqNR47j9fPzw7Rp01zi9erJ4t6JEyeg1+tx8OBB3vVGjRph7ty5+Otf/wofH3r0IaRDo9GM9OQcVadOHbz++uuIiYkRPahJaeJep06dYDKZMGTIEFF7AcDx48eh1+tx6NAh3nVXHnwTBOEx9M3Pz28RFBTE7/egcry8vDBx4kTEx8ejVatWon6W0sS9Vq1a4d1333WJuCflXIiaQE/VREBeXt5TAPbLHYircbW4ZzAYcPnyZd71Rx99FAkJCaoT927evInk5GSHhrgGgwHNmzcXtRdBuIlWubm5jwM4KncgrsbV4t7ChQuRnZ3Nu96xY0eYTCbViXtFRUX44IMP7OYwHx8fvPDCC5g3b55oU2+CqCGBhYWF3QGclDsQV+Pp4p4rcpSjrhYuR8XHx6Np06ai9iIIwuPwstlsQwFsljsQV0PinmOknAshBhIUCYAtp1aloNiqVStoNJo/tcS48sVYieKeXq9HixYtRO1VXl6OzZs3IykpCUVFRbzXhIaGwmKx4LHHHhO1F0G4G41GEwWVCoqBgYFV/q1r164wmUyIiIgQ/fNPnDgBg8GAn3/+mXddreIeVzH+3nvv4ffff+e9xpWm3gQhBpvNFgWVCop8Oapbt24wmUwIDw8X/fM9VdwTmqPMZjO6du0qai+CIDwXjUajhUoFxcaNG8Pf3x+lpaUP/i0oKAgLFizAs88+S+KeHbhDNpPJZNdvskePHjCbzRgwYICovVwBCYoEl6gS5I6jJrRu3Rrz5s3D+++/j4YNG2L27Nn429/+Bl9fX1E/15PFvdTUVBgMBpw9e5Z3PSgoCPHx8ZL7LxBETbmfw5bJHUdN6NChA2JjY7F69Wo0btwYsbGxePnll0W/ON+4cQPvv/++R4p7qampWLhwITIzM3nX27dvj/nz52Ps2LGi9yIIF6EF8L7cQdSEkJAQzJ49G2vXrkWTJk0wZ84cTJkyxe1+1GoW94R0tcTHx1OOIghCCCPkDqCm+Pn5YfHixdDr9QCAadOmYebMmahXr56onyuHuGc2m5Gbm8t7jSvFvaNHj8JgMNgd+sp9DyvJHoMERQIA+l++fLlJu3btbsgdSE2IiYnB9OnT4ePjI/qDVVFRga+//tqhuGc2m9G9e3dRewHSintCpl3Nnj0bb7zxhmhD3Fu3bvGKGAThJiIKCgrqBwYG8hsDKpy4uDjodDqX5DDuxXn58uW4desW7zVqFffOnj0Lg8GA1NRU3vWGDRtCp9Nh2rRpLjlUIggXMig7O9u/bdu2pY4vVR7z58/HnDlz4OfnJ3rgiieLe6dPn4bRaERaWhrvekBAAGJjY/Hqq69SjiIIQiht8vLyurVu3Zq/n1fhTJ48GRMmTAAA0XlPiLjXvXt3WCwW1Yl7BQUFWLRoEb777ju7w8heffVVxMbGip4LUVZW9qeqUbGQoEgAgLevr+8QAP9P7kBqilgBDGBfjI1GI86cOcO77kpx79KlS0hKSsLWrVt51/39/TFjxgzMnDkTdevWFbXXrVu38MEHH+Dzzz+3O+1qwoQJWLBgAW9rkzPcu3cPmzZtwtKlS+2eGBGEG6hjs9kiAPxX7kBqiqtymF6vx7lz53jXXSnuCTmgcNXEvps3b+K9997Dl19+iYqKiirrXl5emDRpEuLj40VP7KuoqMCXX36J9957j/eBjiBqiL+Xl1cYgO1yB1JTxD6LAKy4ZzQakZWVxbvuyhx1/vx5GI1G7Nq1i3edy1GzZ88WbVlz48YNLFu2DBs3brTb1cJVW4r1o66oqHhwaEQQRK0hCoAqBUVAvJAIAMeOHYNer7cr7rlysJWjCnpfX19MnToV77zzjkvEvbVr12LVqlW4c+cO7zXDhw9HQkICOnToIGovANi6dSsWLVpk16+4JpCgSHBooWJBUQxSinslJSVYu3YtVq5cibt371ZZ12g0GDNmDPR6Pdq0aSNqr8ri3vXr13mv6d27N8xms0sMcdPT02EwGHDq1Kkqa97e3ggKChK9B0FUgxYqFhTFIKW4V1xcjFWrVuHTTz+1e0Dx3HPPYeHChS4V9+xV4zz11FOwWCzo1auXqL2A6ivGfX19RR+4ELUbLy8vLVQsKIrh/PnzSEhIwM6dO3nXXSnucZY1GzZssHsA4SrLmsriXnFxMe81/fv3h8ViQY8ePUTtBQB79uyB0WjkPTTy8/MT/d9DEIRi0QJYIXcQciCluMdV0C9btgy3b9/mvcaVQ185cc/ewERXDiM7deoUDAYD0tPTedfF6A4kKBIcI+UOQGqkFPe4UfaLFi3C1atXea/p1asXLBYLnnrqKVF7AdWLewA7zGb+/PmYOHGi6GrLnJwcWCwWu4Ksn58fjEYjWrVqJWofgnBAlNwBSI3U4t7XX39d7QGFKyf2ObKDaN26NRYuXIjx48eLzmFZWVkwmUz48ccfedfr1q2LxMRENGrUSNQ+RO2GYZgoAPPkjkNKiouLsXz5csnEPUeWNa48RK1O3AOA4OBg6PV6jB071iVdLQkJCbBarbzr/v7+WLx4seiXaYIgFMvgzMzMOiEhIbWm/Utqcc9qtUKv1+O3337jXe/QoQOMRiO0Wq3ovRyJewEBAQ8GJoqt7rx+/TqWLl2KTZs28VbQe3t7Y9asWXj88cdrvAcJigRH++zs7E5t27Y9L3cg7kaouGc2m9GvXz/R+wkR9+bOnYuXXnpJtDdRfn4+lixZgm+//dau/8LUqVMRFxeHhg0bitqrtLQUa9aswerVq1FWVsZ7jVarhdlsRrt27UTtRRAC6JGTk9OmTZs2rqvhVyhcDjObzZKIe2lpaTAajTh9mr/bJjAwEPPnz3eJHURWVhaWLFli94CCm9gXGxuL+vXri9pLqKn3okWL0LZtW1F7EQSAx69evRrUokWLfLkDcTdCDiBcKe4pKUf5+/vjlVdecWmOsnfwDVCOIohaQv0GDRoMBMDv4eBhOPK+daW4l5mZCaPRiN27d/OuBwQEYPbs2Zg2bZrLKugdDX01GAyi7TGEeKoPHDgQZrNZ9NBXEhSJB/j4+EQB8GhBMSMjAwaDARkZGbzrJO45hjPEtVgsdv0XXFmiTRBC8fb2Hg7gH3LH4U727dsHg8GgiBdnTtzT6XRo0KCBqL2kFPcYhkFKSgoSExNx5coV3mtcObGPIO6jKS8vHwZgo9yBuBMS96TJUT179oTZbEb//v1F7UUQhDpgGEYLDxcUSdwTL+4B0g59BUhQJCpxP1GtkTsOd6BEcc9kMqF9+/ai9pJa3Dt+/DgMBgMOHjzIu84Z4v71r3+Fjw+lF0Ja7uewf8gdhzvIy8tDUlISUlJSeNflEPcsFgseeeQRUXtJLe4dPXoUer0ev/zyC++6Kyf2EQQPWniooEjinmvEvSNHjsBgMFCOIgjiYaIAvCt3EO5AqLjnCnsMTxb3hNhjzJgxwyWe6pWhN36iMsMYhvHVaDRVzbhUSmlpKT7//HN8+OGHKCkp4b2GxD3HcIa49vwXfHx88MILL2DevHlo1qyZqL0IQgRRDMN4aTSaqq7NKoXEPde8OBcWFiIxMdHhoZIrTL0JohqiGIbRaDQajxkhXpvFvaZNmyI2NtYlOaqgoACLFy+mHEUQhD16FxQUtAwMDORPfiqkvLwcmzdvrtb7NjQ0FBaLhcS9arh16xZWrlyJzz77zO1zIfggQZGoTMP8/Pz+ANLkDsQVWK1WLFiwoFpxLyEhAUOHDhW9lxLFvfj4eDRt2lTUXtwpznvvvYfff/+d95rw8HCYTCZ069ZN1F4E4QKa5+fnPwGA39NARXAHFCaTCXl5ebzXkLjnmLKyMqxfvx4rVqyo1tTbYrGgc+fOovYiCAEE5uTk9ARwXO5AxKI0cc+VOUqouOeKrhYuR1V38B0REYFFixYhJCRE1F4EQagar3v37g0DsEnuQFxBamoqjEYjzpw5w7vu6eKewWBAcHCwqL2kHvpqDxIUiT9xv2VQ1YLiiRMnoNfr7Yp7jRo1ejA5SU2Ve1KLe1arFUajEVlZWbzr7du3x/z58zF27FjRexGEC4mCygXFo0ePwmAw4PDhw7zrJO4JQ8jEvoSEBAwfPlz0XgQhlPt+1aoWFJUo7rkyR0kl7lmtVixcuBDZ2dm86x07dkRCQgKGDRsmei+CINSPl5eXFioXFC9duoSkpKRq7TFmzJiBmTNnom7duqL2krJyT2pxT8qhr44gQZF4mCgARrmDqAlFRUX44IMP7PovkLgnjPPnzyMhIQE7d+7kXa9Xrx7efPNNzJ49W7QhLkG4mvuHIklyx1ETuAOKf/7zn7DZqnZtyyHumc1mdOnSRdRegLTi3smTJ2EwGHDgwAHedc7U+/XXX4evr6/o/QjCGe7nqOVyx1ETlCjuufIAQipx78SJEzAYDPj555951xs1aoRZs2ZRjiII4k8wDKNa24ySkhKsXbvWrj0GiXvCkHIuhFBIUCT+hEajeSo7O7tp27Zt+Y0MFAiJe64R94qLi7F8+XJs2LABFRUVVdY1Gg2ee+45LFy4EC1bthS1F0G4C41GE37lypUGLVu25FfJFAiXw5YtW0binghu3LiB999/X5KJfQQhgsjs7Gz/tm3blsodiFBI3HONuCc0RxmNRvKjJgiCj+CCgoLHAPArVwqExD1ph76azWa0a9dO1F7OQoIi8TDePj4+QwHwjxJVGHl5eXj++eerFfcSEhIQFRUleq8zZ87AYDAgLY2/I7xhw4bQ6XSYNm2a6IdOKcW9iooKfP3111i6dCmuX7/Oe03v3r1hNpvRt29fUXsRhAT43bt3LxLAf+QORAhZWVmYPHmy3RdnVw5yciTucXYQ0dHRqhL3pJ7YRxAiqevt7R0B4Ce5AxHCpUuXMGnSJOTm5vKud+7cGSaTCYMGDRK9lxA/6rfffhtTp04VbVkjpbgnJEeFhYXBbDaTHzVBENXCMEwUVCIolpSU4Nlnn8XJkyd511u1aoX58+dj4sSJon0Ss7OzsWjRIrut1HXq1MHrr7+OmJgY1K9fX9ReUop7Ug99rQkkKBJVuN+OowpBsbCwkFdMdKW4d+PGDSxfvhxffvklr7jn5eWFyZMnIz4+XvQoe6nFvbS0NBiNRpw+fZp3PTAwEPPnz3eJIS5BSMX9HKYKQTEvL49XTGzUqNGDQU5ic9i1a9ewdOlSbNq0ibeV2tvbG3/5y18QFxfnskFOUol7jib2tW7dGvPmzcPEiRNF70UQruJ+jlKFoJiTk8MrJrpS3Lt69SqSkpKwefNm3hzl4+ODl19+GW+//TaaNGkiai+pxb3U1FTo9XqcO3eOd51yFEEQTqIF8IHcQQihpKSEV0z08/PD66+/Dp1OJ1rcu3PnDlatWoW1a9faFfdGjRoFvV6vOnHv+PHj0Ov1OHToEO+6K4e+ioEERYKPEXIHUFM0Gs0Dcc8VlXtffPEFli9fjps3b/Je069fP5jNZvTq1UvUXoC04l5WVhaWLFli9xSnbt26ePXVVxEbGys60ROEDIgvSZYJLy8vTJkyxWXi3ueff44PPvhAshdnqcS9ixcvwmQySTKxjyBcjZeXVxSAd+SOoyZ4e3vj5ZdfxjvvvOMSce+zzz7DihUrqrWsMZvN6Nq1q6i9AGnFvQsXLiAhIQE7duzgXecsayhHEQThJIMyMzPrhISE/CF3IDVh5MiRMBqNLhH3vvvuOyxatAgFBQW813Tr1g0mkwnh4eGi9gKkFfcceapzcyHi4+NFvyu4AhIUCT7a5eTkdG7Tpg3/E5eCqVevHt5//33RP2fv3r0wGo3Vvhjr9XqMGzdOVeLenTt38PHHH2PVqlX44w/+7yGtVotFixahbdu2ovYiCBl5LDc3t21wcDB/H7GCadq0KZKSxM+U2b59O0wmEy5cuMC7/sgjj0Cv12P06NGi95JS3BM6sc9gMCA4OFjUXgThLhiG6Xn16tWgFi1a5Msdi7M0b94cixcvFv1zrFYrEhIScOnSJd719u3bw2AwYOTIkaL3klLcKy4uxqpVq/Dpp5+ivLy8yjqXo4xGI1q3bi1qL4IgaiX1/P39wwHwJzSF8/7776Nx48aifsbRo0eh1+vxyy+/8K43adIEcXFxmDJlCry9vUXtJaW4J/VcCFdBgiLBi0ajiQKgOkFRLJ4q7jEMg5SUFCQmJuLKlSu81/Ts2RNmsxn9+/cXtRdBKAQtgM/lDkJqPFXc40y9LRYLrl27xnvN448/DovFgieffFLUXgQhAZqKigotgC/kDkRqPFXcE5KjnnjiCVgsFvKjJghCFN7e3lqoVFAUgxLFPVdV0Es59NXVkKBI8OLl5aUFsEruOKTCk8U9Iac4c+bMwd/+9jfRpzgEoRTu57BaIyh6sri3f/9+GAwG/Prrr7zrrpzYRxBScd9HsdYIip4s7u3btw8Gg8GuZQ3lKIIgXMn9wSzxcschFVJX7kkp7p0/fx4JCQnYuXMn7zp3yDZ79mz4+fmJ3s8dkKBI8MIwzBCGYXw1Gk3Vpz4PwpPFvYKCAixevNjhKPt33nkHAQEBovYiCKXBMIyWYRgvjUZT9QjTg/BkcS8/Px9LlixxmMPi4uLQsGFDUXsRhAxoGYbRaDSaqn/cHoQSxb13333XJX7UeXl5SEpKQkoK/xxDrqtFp9OhQYMGovYiCIKoxBNXrlwJbNmyJb95oAfhqeJecXExli9fjg0bNvAOfdVoNHjuueewcOFC0XMh3A0JioQ9Gubn54cC2Ct3IO7CU8W9srIyrF+/HitWrMDt27d5r4mIiIDFYkHnzp1F7UUQCqZZfn5+HwCH5Q7EXXiquFdaWoo1a9Y4rBg3m82iTb0JQkZa5ebmPg7gqNyBuAspK/ekFPeEdrVYLBY88sgjovYiCILgQVNRUTEMwFdyB+IuPFXcq6iowNdff42lS5fi+vXrvNf07t0bZrNZNfYYJCgS1aGFBwqKnizuWa1W6PV6/Pbbb7zrHTt2hNFoxPDhw0XvRRAqIAoeKCh6qrjHMAy2bdsGi8WCnJwc3mtCQkKQkJCAIUOGiNqLIJTAfb9qjxMUPVXc43KU2WxGbm4u7zXdu3eH2WxGaGioqL0IgiAcoIUHCoqeLO6lpaXBaDTaPWQLDAzE/PnzXVJBLyUkKBLVEQVAL3cQrkKJ4l5CQgKGDRsmeq+TJ0/CYDDgwIEDvOuNGjXCrFmz8Prrr8PX11f0fgShErQAxI8jVQhKFPdMJhMGDx4sai8AOH78OPR6PQ4dOsS73rhxY7z11lvk9Up4FBqNRgtgmdxxuAolinsWiwUDBgwQtRcAHDt2DHq9HocP859RUY4iCEJiRniSbYYni3tSDn2VAxIUiep4Mi8vr3nr1q35TW9UhNVqxcKFC5Gdnc27rlZx78aNG3j//ffxj3/8A/fu3auy7uXlhQkTJsBgMKB58+ai9iIIFTLwypUrDVq2bMl/gqAShLw4q1Xck3JiH0EokIiCgoL6gYGBJXIHIgZPFvcc5SjyoyYIQiYCCwsLewA4IXcgYvFUcY87ZFu5ciXvwETAdUNf5YQERaI6vDQazVAA38gdSE3xVHGPm3a1fPly3Lp1i/easLAwmM1ml0y7kgJ7U7sIQgR+NpttMIBtcgdSUzxV3BM6sc9sNqNr166i9pIKymFEDahjs9kiAPxX7kBqiqeKe1yOWrZsWbVdLWazGV26dBG1l1TYe14kCEKd3J/2rFpB0VPFPamHvkpBdc+4JCgS1cIwjBYqFBQ9WdxLTU2FwWDA2bNneddbt26NefPmYeLEiaL3koLKvyuCcDU2m00LFQqKnizuWa1WGAwGXL58mXf90UcfRXx8vEsm9klB5d8VQdQALVQoKHqyuOcoR3Xo0AFGoxFarVb0XlJAOYogPJP77+nJcsfhLJ4s7kk59FUKKv+u7EGCIuGIkXIH4Aw2mw0ff/wxVqxYYVfcCw8Ph8lkUp24d/HiRSQkJGD79u2869y0q1mzZqFOnTqi93M35eXl+Oyzz7BixQpHlT1VFWGCEE6U3AE4Q0VFBVauXImPPvoIJSX8XZBDhgxBQkICQkJCRO8npbh3/vx5GI1G7Nq1i3e9fv36eOONN1wysU8K/vjjD3z66afV/q7uQzmMqA5V5ah79+5hxYoVWLlyJe7cucN7zbBhw5CQkICOHTuK3k9KcS8zMxNGoxG7d+/mXQ8ICMDs2bMxbdo0VeSosrIyrF27FqtWrbL7u7oP5SiCUCeDsrOz/du2bVsqdyBC2bx5Mz7++GO74l6vXr1gNpvRr18/0XtJKe5JOfRVCmw2GzZv3oykpCRcvXq1ukvvkaBIOKJNXl5e19atW5+ROxAhlJaWwmKx8K6pVdy7desWVq5ciU8//RTl5eVV1jUaDcaMGQODwYDg4GBRe0mF1WpFQkICLl26JOTyU+6Oh/Bouubn57cPCgrKkjsQIdy8eRNLlizhXVOruHfz5k0kJyfbndjHVYzr9Xq0aNFC1F5S8Z///Adms9nu0K2HoBxGVEePnJycNm3atOGffqQwrl27hqVLl/KuqVXc43KUo64WNeWorVu3VjtU6yEoRxGEOqnr5eUVDsAqdyBCMZlMvP+uVnGPG/r64Ycf2j1cduXQVyk4ePAg9Ho9TpwQ1E1/igRFQghRAFQhKPJRv359xMTE4PXXX1eVuGez2fDtt9/CYrHg2jX+uTiPP/44LBYLnnzySVF7ScW5c+dgNBqxZ88eobf8DsDgxpCIWgDDMMMBrJM7jpoSEBCA2NhYvPrqq6K9XqUU97iJfUlJSSgqKuK9xpUT+6Tg9OnTMBqNSEtLE3rLTQD8T88EcR9vb+/hAP4hdxw1JSAg4IFPoqtylBTiXnl5+YMKDHs5KjQ0FGazGd27dxe1l1ScOnUKBoMB6enpQm8pAsB/Ek8QhBrQQkWC4sP4+vpi2rRp0Ol0aNiwoaifxYl7K1asqNYew1XinpRDX6UgLy8PFosF33//Pa8Qy8NdAPNIUCQcct+f4SO543AWNYt7+/fvh8FgwK+//sq73qpVK8ydOxcvvfQSvLy8RO/nboqLi7F8+XJ88cUXvEKsHX4EoAPA309OEAK5n8NUJyhKLe716dMHJpPJJeKeo4l9QUFBiI+Pd8nEPikoKirCe++9h40bN/KKHHbYCmAOgAvui4zwBO7nqH/IHYezqFncS01NhdFoxJkz/OflastR169fx9KlS7Fp0yZnctS/ALwFQFC7CEEQykOj0UQBiJM7jpqgVnFPyqGvUlBaWoo1a9ZgzZo1KC0V3D3/M4DZAA6RoEg4RKPRDMnMzKwTEhLyh9yxPIy9D2nfvn1hNpvRu3dv0XtIKe7l5eUhKSkJKSkpvOtcifa8efPQoEEDUXtJgRAhlodMAAsAbHFfZERtQqPRaBmG8dZoNIrzibKXw/r37w+LxYIePXqI3kNKcc/RxD5/f3+88sorLpnYJwVChFgezoF9Sf/BfZERHkYUwzBeGo2m6nQTmfHx4X9VCA0NhcViwWOPPSZ6DynFvUuXLiEpKanaHDVjxgzMnDkTdevWFbWXFAgZDMjDWbCHHf/nvsgIgpCIXlevXg1q0aJFvtyBPIy9Z9zOnTvDZDJh0KBBoveQUtyTcuirVDgSYnnIA9t5sw6ADaChLIQw6jdo0CAUwG65A3mYzp07o127dg/MugMDA7FgwQJMmDBB9EOnlOIedzKwatUq/PEHv26r1WphNpvRrl07UXtJxb59+2AwGOyKGDzcBjupbAkAxYnXhKppUlBQ0BfAQbkDeZgePXogKCgI+fnsc2BwcDD0ej3GjRsn+mdLKe5JObFPKtLS0mAwGOyKHDzcALAUwAdg20AIQijN8/PznwCQIXcgD9OrVy+0atUKhYWFAIC2bdtCr9djzJgxon+2lOJeSUkJ1q5dazdHcV0ter0ebdq0EbWXVDgaDMjDDbAvgqsBVPW8IAhCjWjKy8uHA/hS7kAepkmTJujbt++DoSiNGzfG22+/jalTp9o9rBKKlOKekIObsLAwmM1mlwx9lYITJ07AYDDg559/FnrLXQBrAegB/Ol/AgmKhCDut+PsljuOh/Hz88O//vUvbNq0CQEBAXgFYVJBAAAgAElEQVThhRdQr149UT9TSnGPYRhs27YNZrMZubm5vNeEhITAZDJh8ODBovaSCkdCLA82AF8BeAdAodsCI2o1DMNEQYGCor+/P77//nts3rwZzZo1w+TJk0W/OEsp7jEMg5SUFCQmJtqd2NezZ0+YzWb0799f1F5S4Ujk4IHLYW8D4P+fQBCOiYICBcX69etj69at+Oabb9C8eXNMmjRJVeIe1ymxaNEiu5MqXTlVVAouXrwIk8kEq1WwbVoFgM8BLARQ7bhOgiBUiRYKFBQB4KuvvsLGjRsBAC+++CKaNGki6udJLe6lpqZCr9fj3LlzvOuuHPoqBY6EWDtsA2tDdpFvkQRFQihRYNtQFUerVq0QGxsr+udILe4dO3YMBoMBhw4d4l1v3LjxA5NzsdOupIATMaoTYnk4CDZB8depE4Tr0AJYJHcQfAQHB+Ott94S/XOkFveOHDkCg8Hw4OT5YZo2bYrY2FjV5bDqhFgedgGIBXDcfZERtYH7B7dJcsfBR5s2bVySo6QW9zIyMmAwGJCRwa/Tqs2PmhsM+NlnnzmTo3aCzVGCxnUSBKFKohiG0Wg0GkGTNKQkICAAM2bMcMnPklLcu3jxIhISErB9+3be9Xr16uHNN9/ErFmzRA99lYIa2mOcBmuP8WN1F5GgSAilT35+fougoCCPPNmUUtwrLCxEcnIy/vnPf8Jmq2qX5Ovri8mTJyM+Ph5NmzYVtZcUCBFiecgF8C7Y0zTFffkRHsnA69evBzRr1kzwt6iakFLcKygowOLFi/Htt9/yToHj7CDi4uJET+yTAiEiBw/ZYKt9vnBfZERtQqPRhF+5cqVBy5Yt+UdTqhwpxb38/HwsWbKktueo82Cfs8iPmiA8n1a5ubm9AByTOxB3IKW4xx3cfPrpp7yDRF059FUqHAmxPBQBMANYBcBhGSMJioRQvGw22zAAX8sdiCuRUtzjTgbee+89/P7777zXREREwGQyoWvXrqL2kopjx45Br9fj8OHDQm+5A2Al2Eoxj3xpIhSLT1lZ2WAA38sdiCuRUtwrKyvD+vXr8eGHH6KkpIT3moiICCxatAghISGi9pIKR0IsDyUAloOtJCtzW2BEbcTv3r17kQD+I3cgrkRKca+0tBSff/55tTlKq9XCZDKhffv2ovaSivT0dBgMBpw6dUroLZSjCKIW4u3tHQUPExSlFPeEDBJ9/PHHYbFY8OSTT4raSyouXLiAhIQE7NixQ+gtnD3GAgCCp6mSoEgIxsvLSwsPERSlFvesVisMBsOD4TEP8+ijjyI+Ph5jx44VvZcUOBJi7bAN7Hj5LLcFRhDVcD+HeYSgKLW452gKXMeOHZGQkIBhw4aJ3ksKHAmxPDAAUsD6JP7m1uCIWsv9tmePEBSlFPe4TgmLxYKcnBzeazp16oSEhAQMHTpU1F5S4UiI5YEBsBFAHIACtwZHEITiuP/98Z7ccbgCqcW9/fv3w2Aw4Ndff+VdV5s9RnFxMVatWmVXiLXDDrD2GCed3Y8ERUIwDMOMkDsGVyCluHf+/HkYjUbs2rWLd71+/fp44403MHv2bPj5+Ynez91wQuyyZctw+7bgAsMMsAkq1X2REYRj7g9mUT1SinuOpsA1atQIs2bNwuuvvw5fX1/R+7kbISIHD4fBer3ud19kBAGA9atWPVarFQsWLJBE3Dtx4gT0ej0OHuSfucVZ1vz1r38VPVVUCrjBgKtXr0ZZmeACw0Ngc1S6+yIjCELhROTl5dVr3br1HbkDEYOU4p6jQaJcBf28efPQoEEDUXtJgRAhlodMsBWJNbbHUP43K6EkgvPz8x8LCgri/4QrHCnFvZs3byI5ORkbNmxARUVFlXVulL1er0eLFi1E7SUVjoRYHq4DsECg/wJBSEDngoKCRwMDAy/JHUhNkFLcczQFjsthRqMRzZo1E7WXVDgSYnnIA2ACsA7sJGeCcDeP5ebmtg0ODhb8R6okpBT3uE6JTZs28eYoHx8fvPDCC5g3b54qcpSQKkseyI+aIAiOugAi4GCAhlKRUtzjDm6qGySq1WphsVjwyCOPiNpLKvbt2weDwYDTp08LveU2gGQASwAInqbKBwmKhFPcr/BRlaAopbhXUVGBr7/+GklJSSgqKuK9pk+fPjCbzejTp4+ovaQiMzMTRqMRu3fvFnpLOYCPARgAFLsrLoKoCTabTQvgU7njcAYpxT0hU+DCwsJgNpvRrVs3UXtJhSMhloe7ANaCHbrC74lBEO5DC9bDSDUUFRXhgw8+sJujXCnuCbGsCQ8Ph8lkUk2OOn78OPR6vd3BgDyUAvgIQCIoRxEE8T+0UJmgKKW4J2SQaEhICEwmEwYPHixqL6lwJMTyYAPwFYB3ABS6IgYSFAln0QL4UO4ghCC1uJeWlgaDwYAzZ87wrgcFBSE+Ph7PP/88NBqN6P3cDSfE2ntBsMN2ADFgx8wThBJRjaAotbjnaApc69atMW/ePEycOFH0XlLgSIi1wzawrYMX3RcZQdjnvterKgRFqcU9q9UKo9GIrKws3vX27dtj/vz5tcGPOgaAKivtCYJwK6qxzZBa3HM0SJSroP/b3/4Gb29v0fu5mzt37uDjjz+uVojl4Wewz7iCT9iFQIIi4SyDMzMz64SEhIgqjXU3Uop7ly5dQlJSErZu3cq77u/vj1deeQWxsbGoX7++qL2koLy8HJs3b65WiOXhLIC34CFm8oRHM5xhGG+NRqPoNnwpxT1HU+Dq1auHN998E7NmzUKdOnVE7+duhAixPJwGMAcqO9knPA+GYbQMw3hpNBpFt9lLKe5duHABRqMRO3fu5F3ncpTa/KirE2J5OALWj3qv+yIjCELl9Pjtt99aP/LII3lyB1Idx44dg8FgsFuV7Upxz9HBja+vLyZPnoz4+Hg0bdpU1F5SIESI5SEHrE+iW+wxSFAknKVew4YNwwDwP9XJjJTiXklJCdauXYuVK1fi7t27vNdotVokJiaiTZs2ovaSitTUVBiNRrtCLA83ACwF8AHYNkGCUDqNCwsLnwJwQO5A+JBS3HM0BU6j0WDMmDEwGo1o3bq1qL2kwpEQy0MRADPI65VQDs3y8/P7gB0GpDikFPeKi4uxfPlyu5Y1Go0Gzz33HBYuXIiWLVuK2ksqHAmxPJAfNUEQQtH4+vpqAWyQOxA+pBT3hBzcREREwGQyoWvXrqL2kgpHVZY83AGwEsAisJ6JboEERcJp7nuQKUpQ5Mp+pRD3uAlKixYtwtWrV3mv6dmzJywWC/r16ydqL6lwJMTywPkvzAXA/z+BIBTKfS9YRQmKUop7QqbAPfHEE7BYLOjbt6+ovaTCkRDLQzmAv4M9sRU8Co8gJCIKChMUpRT3OMuapUuX4vr167zX9O7dG2azWTU56vz580hISLArxPJAftQEQTgNwzCKExSFintmsxldunQRvZ+jQaKPPvoo4uPja4M9xiwAgqep1pRaJSimpqYiMjJSFe0QCicKwHy5gwCkF/eOHDkCg8GAX375hXe9adOmiI2NVY3/gpAqSx52gW27Oe6+yAg+9u7di379+ome4Fvbuf+wZZY7DkB6cc/RFLhWrVph7ty5eOmll+Dl5SV6P3fjSIi1w3aw7c0n3RdZ7WTPnj3o27ev6Am+BLQAFssdBCC9uJeWlgaj0Wg3RwUGBmL+/Pmq86O2J8TaYTvY56xT7ouMIJTFgQMH8Nxzz6nCHkrhjFCSbYaU4p6jQaL169fHG2+8oTp7jGXLluH2bcEFhhlgfRLT3BfZn6lVT3yfffYZrFarqgybFUrvgoKCloGBgVfkDuTYsWPQ6XS8a9yL8Ysvviha3CsoKMDixYvx7bffgmGqWg9wo+zj4uLQsGFDUXtJgRAhlodssFNPv3BfZER1rFy5Ej/88AOMRiO0Wq3c4aiZAUVFRY2aNm0qe9XHgQMHqs1h7777rktenB1Ngatbty5effVV6HQ6NGjQQNReUsDlMLPZbFfk4CETbEXiFvdFVrv58MMP8f333yMhIQHDhw+XOxw1M/DKlSsNWrZs6bYWJaGkp6cjLi6Od82V4l5WVhaWLFlit1OCy1Fq8aMWIsTycA6sH/UP7ouMIJTJv/71L6Snp6vqUFOhNM/Ly3scrO+qrFy5cgXR0dG8a64U9xwNEvXy8sKECROg1+vRokULUXtJhdVqhV6vx2+//Sb0lmtgW5slt8fwVEGxFADv00ZWVhamT5+Or776CiaTySVltbUQjc1mGw7gn3IHwoefnx+mTZvmkhfj0tJSrF69GmvWrEFZWRnvNSNGjIDRaET79u1F7SUVGRkZMBgMyMjIEHpLCYDlAJIA8P9PIFxNKYB6fAsXL15EdHQ0hg8fDqPRiI4dO0ocmkfgU1ZWNgTAv+QOhI+6devizTffxMyZM1GvHu+fgWBKSkrw0Ucf4ZNPPrFbhTx27Fjo9XrVeL06qrLk4TaAZABLACh6oJhKsIH9/8hr4nnx4kVMnToVWq0WCQkJePTRR6WNzjPws9lsg8G2LCkOf39/zJgxAzNmzIC/v7+on3X79m18+OGHWLduHW+O0mg0D3JUcHCwqL2kwlGVJQ83wT5jkR81URsotbdQWFiIuLg4bNq0SVWWBgokCgoQFPnw9vbGiy++iLi4ODRv3lzUz+Iq+JKTk1FczF8jMGDAAFgsFnTv3l3UXlLhqMqSB84eQw9A8CRCV+KpguJPAF6q7oK9e/dCq9Xi5ZdfxjvvvIPGjRtLFJpncL9lUHGCop+fH3bv3i1a3GMYBv/+97+xaNEi5OXxD8rq0qULzGYzIiIiRO0lFfn5+ViyZIndKkseGAApYH0Ss90aHPEwPwF4proLtm/fjj179uCVV17BnDlzEBAQIFFonsH9HKY4QbFBgwbYuXOnaHGPYRhs2bIFS5YsQWFhIe813bt3h9lsRmhoqKi9pMJRlSUPnNfrOwD4/ycQNYEBYAUwprqLrFYrdu/e/eCATw3V+0rivl+14gTFgIAA7NixQ7S4Z7PZHuSoK1f4G1569uwJs9mM/v37i9pLKhxVWfLA5ai3Acje9UMQEmEF0Lu6C44cOYJx48ZhwoQJWLBgAQIDAyUKzTPw8vLSgh2aqTi+++47PPnkk6J/zq5du5CQkIDMzEze9TZt2kCv16umK9VRlaUdtgOIASD49ModeGot8VwAxxxdVFFRgb///e8ICwvD3//+d2e8TWo9Xl5eUQzDKM68xtfXV7SYeOLECUyYMAEzZszgFRMbNWoEs9kMq9WqCjGRq7KMjIxESkqKUDHxEIAwAJNAYqIcCPpyKC8vxyeffILw8HB89dVXzhj11nq8vLyi5I6Bj7p164oWE48dO4bx48cjNjaWV0xs3LgxzGYz/vvf/6pCTLxz5w6Sk5MRFhbmjJj4M4CBAKaCxER3MAvAWUcXlZeXY82aNQgPD8emTZsoRzmHInOUv7+/aDHx6NGjGD9+PObMmcMrJjZp0gRmsxn/+c9/VCEmcjlq8ODBzoiJuwH0AZujSEwkahOLwP79VwvDMPj2228RHh6OFStW2O0UI6rCMExEQUGBIr0hOnXqJOr+S5cuYfr06fjLX/7CKyb6+/tj7ty52Lt3ryrExPLycmzcuBHh4eFYv369UDHxLIDRYP2WZRUTAc8VFAsAPAXW0Pimo4tv3LiBBQsWYMiQIc5MX6vVMAzTurCwUB21wwK5ceMG9Ho9Ro0ahZ9//rnKuo+PD6ZMmYK0tDS89tprqjCdt1qtGDRoEBITE1FSUiLkljwA0wEMAJDu1uCI6sgG8DjYHOawfP3atWt45513MGLECBw4oKjhxYqFYZhOhYWFHeSOw5VwrUKjR4/G4cNVB8T6+vri1VdfxYEDB/Daa68pfnAUwzDYunUrIiMjkZycjD/+ENStnAMgGkAoWFGRcA+XAfSCwBx19epVzJ07FyNHjuT9fiV46ZqXl/eI3EG4koKCAsTExGD06NG8w+24HJWenq6aHLVlyxYMHDgQycnJQofbZYPNUUMgoPiBIDyQ3wEMBfs5KHB08Z07d7B06VKEhYVhy5YtQgsjajt+DMNEyh2EKykpKUFycjKGDBnCe3DD2WPs2bMHc+fORd26dWWI0jlSU1MRFRWFuLg4FBUVCbnlBoB4sM9f/3FrcE7gqYIiwPaTrwDQEcBHEGBOeeHCBUyZMgXR0dHIyspyc3jqx2azKfL03FnKy8uxbt06hIaG2j0ZCA8Px48//ohly5ahWbNmMkTpHCdOnMAzzzyD6Oho5OTkCLmlFGxpfFcAn4JtwyHkhcth3O/EYQ47deoUJkyYgOjoaGdMfGst9+7d86gcFhERgY0bN/JWgUVEROCnn36CxWJRRXs8V8E0ffp0u7YTD3EHbA7rBnZwFL1xuJ+7+HOOcvi9cfLkSTz77LOIjo5GdjYVvwvAI3JUWVmZw06JiIgIWK1W1eQoriVTp9PZbdl+iDsATAA6g4bbEQQD9nPQCeznwmH5YX5+PnQ6HZ5//nmcOkUD0B1x39pH9XD2GNUd3PTq1QvfffcdPvnkE1X4gXNVlpMnT8bZsw6bPQD2+epLAF3APusqymvXkwVFjiKwo7OfBLBHyA1cVZder8fvv//u1uBUjuoTVWpqKrRaLQwGA27dqlpk0b59e3zyySf45ptv0K1bNxkidA6uQmnUqFE4ePCg0Nu2AegO9sSD/uCVRz7YqtF+ANKE3GC1WjF48GAkJibi9m3Zh4QqGdXnMKvVisjISBgMBt7fdYcOHbBhwwZs3rxZFUPIuBw2ZswY3ipLO2wD8BjYHEZ/8NJTOUftE3JDDarnayWe8ELo6PuoQ4cO+OKLL7B582Z07txZhgidg6uyHDNmDG+VJQ8M2Mny3QAkgIbbEURlSsB+LnqA/Zw4JD09HSNGjEBMTAyuXr3qztjUjuoPpDIyMjB+/HjodDre33WrVq2wbNky/PDDD+jXr58METqHoypLO+wE6zk6FYAi/+Brg6DIcRTAYADjAFxydHF5eTnWr1+PyMhIbNy40RlzzNrEoOzsbHHj/WTiwoULePnllzF58mScO3euynq9evUwd+5c7Nq1SzX+C+vWrXP27/UogEEAxkLAZ4KQnQwAkWB9LS87upirCImIiKAWEfsMZRhG+d4FPGRmZuKll15CdHQ0Ll+u+ucQEBCABQsWYOfOndBqla9JCKmy5CEDQATYHObwM0G4nV/A/j4mAXBYIk05yjEajUbLMIyy+37tcPLkyWor5rkctWvXLgwfPlyGCJ2j8t+rE37Uh+HEZ4IgajEXwH5OhgE47uhim82GlJQUREREYPXq1ULtBmob3XNzc9vKHURNyM/PR0xMDMaOHVutPcbevXsxZcoUxdtjCKmy5MGpz4Sc1CZBkWMr2PacWAioxqphxVdtwd/LyytM7iCcobi4GImJiRg6dCh27NhRZV2j0eD555/H/v37MXfuXNSpU0eGKJ2Dq/QwGAxCK2qLwP79Pwlgr1uDI1wNV+kguBqrsLAQOp3OrmdVLadxXl6e8o80K3Hz5k3o9XoMHToUu3fvrrLu5eWF559/HqmpqZg5cyb8/PykD9JJuAFX9qoseXC6apeQjMrVWILa2AoKCqDT6Zyp+KpNNCkoKOgrdxDOwPlRP/3007yevlyOSktLw8yZM+Hr6ytDlM5Rg4paLkf1h8CqXYIgALDVWH3Bfn4cVmPdunULiYmJGDJkCKxWq9uDUyHKP62phJBBolqtFnv27IHFYkHDhg1liNI5uIpae1WWPJSAfX4SXLUrN7VRUARq4PtTA0+6WsH9sfSKhzsZCA8Px+rVq1FeXl7lmieeeALff/89PvroI7Rs2VKGKJ2jBp6f5WD9RDuC/funslv1Utkv7ksI8Is7evQoxo0b54wnXW1BFS0hQqbAhYaG4scff8RHH32EFi1ayBClc5w6dQrPPfecM56fXA4T7CtKyMYdsG1snSEwR3GedDExMUI96WoFDMOoJkc58qMOCwvDTz/9hI8++gjNmzeXIUrnqIHn5138OUeRHzVBOE8F2M9PF7CfpwpHN1y6dAnR0dHOeNLVCjQajSre04E/22PwHdx06tQJGzduxIYNG9C+fXvpA3QSrsrSCc9PBuzzUieozB6jtgqKHJUn2u4XcgP5/vwZNTzo7tu3D1qtFjqdDtevX6+yHhgYiBUrVuCHH35A377KLwQoLi6GXq93dir5drD+CzoImHxOqIYcsJ4agiba1nBqrkejhoet1NRUjBgxwu4UuKCgIKxYsQIpKSno3r27DBE6B1dlOXLkSKSnCx4mvw2sgK6DgKnChGLIBpujhkLARFuGYZCSkuJsW5Cno4ocFRUVZdePunXr1lixYgW2bNmCxx57TIYInaNylaUTU8kpRxGEa7kB9vPUAwIn2nK5SK/X8+aiWoiWYRhF6z0nTpyo9uCmUaNGMJvN2LlzJ4YOHSpDhM5RWlqK5ORkhIWFOWOPcQhAGNjnJYeTz5WGov/AJOQQgHCwfeoOjyArl+OS7w8ev3r1apDcQfCRl5eHmJgYTJw4EadPn66yXrduXcycORN79+7FxIkTodFoZIhSOBUVFX+qUKqocHhgBwDnwPqLaQHQSDTP5WcAAwFEAyh0dPGdO3cefNlt2aKKanp30v/y5ctN5A6Cj8pT4M6cOVNl3d/fH3PnzsW+fftUkcO4CqYBAwbYrWDi4SyAUWDz2AW3Bki4k90A+oDNUQ7LD7kcNXjwYGeMyz2VgdevX1fk2OOLFy9i6tSpdquCHs5RSkdIlSUPZwA8DTZHXXRrgARROzkLYDTYd5mqL3QPwc1BGDBgANatW1fb5yA0z8/P7y13EHwUFRVBr9dj1KhRvAc3Pj4+mDJlCtLS0vDaa6/Bx0fZludc0cagQYOQnJyMsjJBBYZ5YJ+L+gMQfMKuNEhQ/B9O+/5w4+vHjh2LjIwMd8enVDTl5eXD5A6iMpXFkpSUFN5rtFotdu/ejQULFqBBgwYSR+g8aWlpDyqU+KosebgJ1mOvF9hTc8LzsQH4AmypvAmAw/LDvLw86HQ6u6J7LcHb19d3iNxBVMbRFDiNRoOxY8diz549mDt3LurWrStDlM7hqIKJhxtgvV57APg/twZHSAWXo7qAtWxwWH6YlZWF6dOnY9KkSbU5R/mUlZUNljuIylT2Ldu+fXuVdS5H7d27VzV+1KmpqdBqtc7kKM6PuieA/7o1OIIgALbb6nGwnzuHH9KbN2/CYDDY9ZyuRSiqm1DIwU14eDh+/PFHLFu2DM2aNZMhSuc4fvw4nn32WUyfPl2oNV4p2OegrmCfi1RdnUaCYlW48fWc749DMjIyHvj+1NLx9Yppx/njjz8QFhZmt52zR48e+H//7/9hw4YNeOSRR2SI0Dlq8DJlA/t32xVsoqKe1trHbbA5rCcEmvlytgAxMTFCBWtPQzE57NatWwgNDbXb7tm7d298//33+OSTT9CmTRsZInSOGvgaVfZOWgEB3kmE6uAOvHpC4IFXDQ7VPAol+VUXFxdj4MCBdv2o+/Tpg61bt+KTTz5BcHCwDBE6R+Uqy3Pnzgm5hXIUQchHOdjPXUew/ooOyw8zMzPx0ksvOePX7Gko5vsDAJ5++mm7g0Tbt2+Pv//97/jmm2/QrVs3GaJzDm547+jRo50Z3rsNQHewz0GCpqkqHRIU7VPZ90fw+Ppa6vsTxTCMInrtKioqUFhYteOzSZMmMJvN+L//+z8MGDBAhsicg6uytFehZIc9YCejTYWAtlfC48kEa+OgBXDS0cVcDqtucJEHM0LuADju3r2La9euVfn3Vq1aYdmyZdi6dasqvF5rOHlxJ9i2WEHTHQnV45QlB2f7ERERgXXr1gm1/fAIGIZRzAthWVkZr5crl6O+//579OnTR4bInMNRlaUddoD1o54OoGqiJghCKq6B9VfsByBNyA1WqxURERHQ6/W4ffu2W4NTGGFXrlxRTDse32DIevXqYe7cudi1axdGjFDMI7lduCrLyMhIbNy4UWhb/REAg8A+91xya4ASQ4KiY3aBfXiIhoAXHEetah5KYGFhYQ+5g+DD19cXb7zxBtLT0/Haa6/B29tb7pCqhWEYbNmy5YEwLXBoRg7Yv88hAI66NUBCjWzH/0Qahy9AxcXFSExMxNChQ7Fjxw63B6cQHi0sLOwodxB8+Pn5YdasWUhLS8OUKVPg5aXsr22bzYYtW7YgIiICq1evFnq4dh6s+D0MwAm3BkgoEW5oWCyAYkcXV25jc2IwmdrpUlBQ8KjcQfBRp04dxMTEYN++farKUU4ennEHdMMh4ICOIAjJyAAQAWAcgMuOLub8FSMiIrBx40bYbLViELvfvXv3IuUOgg8vLy9MnjwZ+/fvV409Bjeg116VJQ/XwT7fPAVgr1uDkwllf+srB6d9fxyZ6XsaSpz2HBERgZ9++gkGgwEBAYr0M/8TR48exbhx46DT6XDlikPPegC4A9YrrzM8wH+BcCvl+F+LlqAWkQsXLuDll1/G5MmTkZmZ6e74ZMdmsykuh3Fer++++y7q168vdzgOSU9Px4gRI6DT6YTaf5SAzWGC2/MJj8XpNrbz589jypQpiI6ORlZWlpvDkx+bzTZc7hgehstR8fHxqFevntzhOGTfvn2IioqCTqfjrQTngXIUQaiDrQAeA9tG6rD8kGtVHTNmDA4fPuz24ORGSVXuHE888QT+/e9/44MPPkDLli3lDschNXjmKAf7PNMR7PONx04HIkHROW7gf4MuBI+v53x/+FpEPAW5ElVgYGCVyaadOnXCV199hc2bN6NLly5yhOUUBQUFiImJwejRo/HLL78IuYUbIPQYWK+8UjeGR3gWRWBbRHoC+FHIDampqRg+fDj0er3QkzhVIlcOCwoKqvJv3bp1wzfffIMNGzagffv20gflJPn5+YiJicHzzz+PU6cEDZNnwHq9dgKbwwSNwiNqBdfB5qYB3LoAACAASURBVCjBJ/lctYCn5yjI5IMVGBhY5d+6deuGLVu2YMOGDWjXrp0MUTlHXl4eYmJiMHHiRPz6669CbuH8qDuCzVHkR00QyucO2MKfbmA/vw4LLY4ePYrx48dj+vTpvK24HoQsh+aNGzeGv7//n/4tKCgIa9aswQ8//KAKC5/i4mLo9XpnuyK4zgsdBHReqB0SFGtG5fH1Dp9MysvLsXHjRoSHh3vy+PpB2dnZ/o4vcy1BQUGIj49HnTp10KxZM5hMJuzYsQNDhihqaCsvZWVlWL16NSIjI5GSkgKGEVRg+AuASLCtNw5L+wnCDqcBjATbInLR0cVci0hoaKgn57BhDMP4Sr3po48+ijlz5sDPzw8tW7bE4sWL8eOPPyI8PFzqUJymtLQUycnJCAsLcyaHHQIQBtbrtcCtARJqhvMaGgcBXkNcjuL8jDy0jW04wzCS+7aEhIQgJiYGvr6+aNWqFZKSkvDTTz8hLCxM6lCc5uEcJZCD+F+OIj9qglAfOWA/v6EAfnZ0McMw2Lp1KyIjI52xm1Ibj+Xm5raVelM/Pz8sXrwYDRo0QMOGDfHWW28hLS0NzzzzTJWCIKXB+TaHh4dj/fr1Qn2bnfKG9hSU/ZtUB74AZoBtiWgk5IaQkBCYTCYMHjzYnXFJDsMwUcHBwdW5728FMObhf3zzzTeh1+tF7X337l14e3sr3iORw2q1Qq/XOzNtLB/sKfk6sCfnBOEq/AC8CcACoKGQG3r27Amz2Yz+/fu7NTCpYRgmPDg4eF81l+wAO6jrT7z11lt4++23Re39xx9/wNfXV/H+YwD78L1t2zZYLBbk5OQIvS0XwLsQWDVAEJXwBxADYAEE5qhevXrBbDajX79+bg1Mary8vAYEBgZW94K8B+yh4594++238dZbb4naW405ymw2Izc3V+htlKMIwvPwAjAFwDIArYTc0Lp1a8ybNw8TJ050a2BSwzDMq8HBwZ9Xc8kasO8Df2LcuHFYu3atqL05r1pfX8nP7WtEWloajEYjTp8+LfSWmwCSAHyIWljRrvynAuUjanz95cseVWQmmz+Dn5+fKsTEkydPYsKECYiOjhYqJnL+C13BeuCRmEi4mrtgc5jgv7ETJ07g2WefRXR0NLKzs90dn5TIlsPq1Kmjihf148eP45lnnsH06dOFioml+F8LEnm9EjWh8t+QILHn+PHjePbZZ535O1UFcvpVqyVHHTt27EELo0AxkWuT7ArKUQThaXBzEDqBLf5xKPbk5eVBp9Nh4sSJzghKisfLy0u2Z1xfX19ViIlZWVmYPn06Jk2aJPR3z9ljcHM2ap2YCJCg6Eo4359+AFKF3GC1WhEZGekx4+s1Go3ihhoohRs3bkCv1+Ppp5/GgQMHhN62DewLlA7ALbcFRxAseWAnQfcHsF/IDVarFYMHD0ZiYiJKSkrcGpwUeHl5UQ6zA2dgPmrUKBw6dEjobdsAdAfrPezR5naEJOSCbWPrDyDd0cVcG9ugQYOQnJyMsjL1W3Uq0VhfKXA5avTo0c4MWaico9T/IE4QhD1ug+30Ejxgad++fdBqtYiJicH169fdGZskMAyjZRiGtB8e7ty5g+TkZAwZMgRbt24VettuAH3APpcImqbqqdAflevJANtuMg5AlqOLPWx8fa+rV69WnTBQiykvL8e6desQGhqK9evXC/WeOwNgFFgPhgtuDZAgqnIYQDhYn06HZbSlpaUPvEC3bNki1EdPkTAM0y87O7up3HEoCS6HOelNx/nfjYUA/zuCcBLOhzMaAnw4K/voqT1HAQgtKioSZK9TW+BylJPP0dyz+lgIeFYnCMJjyAT7fKsFcNLRxTabDSkpKQgPD8fq1asftO6qlGb5+fl95A5CSTAMgy1btmDgwIHO+GfmgH3+GArgmFsDVAkkKLqPrXDi1LOGJ6tKQ1NeXj5c7iCUQmpqKqKiomAwGHDrlqACwyIAsWBPz/7PrcERRPVUniRugoApvPn5+dDpdBg7dqzQaeVKxNvb21v5E50kgpueazAYhE7PvQ42hwme0EsQNYTBn9vYBOcoJ6aRKxGf0tLSwXIHoRS4Th+DwSC004fLUYK7iQiC8Ei4KbzTAVxzdHFxcTESExMxdOhQ7Nixw+3BuRHqxLnP0aNHMW7cOOh0Oly5IqjA8A7Y540QkD3GnyBB0b1U9mUR5PtTA+8XpVHr23EuXryI6OhoTJ48GWfPnhVySwVY77quYL3sBI2RIggJKAHbItIZbA5zSEZGBsaPH4+YmBhcvXrVnbG5i1qfw86fP48pU6YgOjoaWVlZQm7hvF47gs1hHjkGnFAkXI4S3MaWnp6OESNGUI5SMTXwIqccRRDEw3DvX10gcA7ChQsX8PLLL2Py5Mk4d+6cu+NzB7X++6OgoAAxMTEYPXq00AKIykUWCRBwgFnbIEFRGjjfnwEAHBroPez7o7Lx9VEMw9TK6eG3bt1CYmIihgwZAqu1umHXf2InWP+F6QBU+WZD1AqyweawoQCOO7qYaxHhWgju3r3r9gBdyAi5A5CLmzdvQq/XY+jQodi5c6fQ27hTfh2AYrcFRxDVcx5sG9swACccXczlqIiICKxevVpVOao2+1VXzlG7d+8Wett2AE+AchRBEPwUgc0PPQH8KOSG1NRUaLVa6PV6oV1oSmHglStXGsgdhByUlZU9sGhKSUkRan/yC4AIsM8XHjVJ15WQoCgtB/E/359CRxdzBqGc749KaJWbm9tL7iCkxGazYcuWLc76azj18kMQCmEXWPEoGgIMiEtKSmpiciw37bOzs0PkDkJKKioqsHHjRkRERGD9+vWoqBBUJH0OwBiwp92q7R8lPA6nDum4g8ChQ4c6cxAoNyGFhYUd5A5CSrgcFR4e7owf9VkAo8HmqF/dGiBBEJ7AaQAjwc5BuOjoYm4OQmhoKNatWyc0L8mNn81mGyx3EFLDWfgkJiYKtcfIB/sc0Q/APrcG5wGQoCg93Pj6jvDQ8fXe3t615vR8//79iIqKgk6nw7VrDi04ALY9ywSgBwS2ZxGEwuByWFewlg4OS3suXbqE6dOnY9KkSThz5oy74xONj49PrclhaWlpGDFiBOLi4oROMbwJ1hu4J4Af3BocQdSMh9vYHCrkNbAqkZV79+7Vmra1tLQ0REVFIS4uDkVFRUJuuQE2R/UC8B+3BkcQhCeyFUA3sH6rDg2kb9y4AYPBgFGjRuHnn392e3Bisdlsteb74+TJk5gwYQKio6ORnZ0t5Ja7YJ8buoJ9jlD1tFypIEFRPpz2/ak8vl6geCULDMN4fKLKy8tDTEwMJk6ciF9/FXTwzYD1oOsE9veuqj52guDB6Ze2GrwYykJtyGFZWVkPRF6BB1U2sDmsCwQKyQQhMzfAtrH1gMBBZ9wwNRW0sXl8jqrBQRTlKIIgXMVdsH6rgoWlEydO4Nlnn3VGvJILjz80v3HjBvR6PZ5++mkcOODQbY5jG1ghWQdA0Q8ASoMERfnhxtcPhxPj6znfH4WOr4/Iy8urJ3cQ7qC0tPRBG7oT/gsHAQwE60FX4NYACUJ6nGorq9y6puAWkaEMw/jKHYQ74Kw0Bg8e7Ewb+m6wbaRTIaDVnSAUxlkAo8C2sV1wdDHXxjZgwAAl56hhDMP4yB2EO6ihVQZnxzEV5EdNEITryAPb+tofwH4hN1itVgwePBiJiYkoKSlxa3A1pGt+fn57uYNwB+Xl5Vi3bh1CQ0Odscc4A+BpAGMhoNWdqAoJisphBzxnfH1dsAamHgM3KCcyMtKZQTm5YL3mBA3jIQiVwxnfx0KA8f3NmzdhMBicNdeXiob5+fkD5A7ClTAMgy1btjg7KCcbbA4bAuCYWwMkCPdTuY3NYfUBl6NGjhzpTIWDVDTOzc19Su4gXAnnR13DHCVoYBhBEEQNOQwgHGwR0G+OLi4tLcXq1asRERGBLVu2CC1AkQyGYYbLHYOr4QblGAwGoR0GRWCfB3oC+K9bg/NwSFBUFk77/ih4fL3HtOMcP34czzzzDKZPn47c3Fwht5SCbbfpCtZrTlnfIgThPsrBtoh0BJvDHB4NZmZm4qWXXkJ0dDQuX1bUADWPyWFHjhzBuHHjoNPpcOWKoALDO2C9XjuDzWEE4SlwOYprY3OYo06dOvXAg+m33xy+R0qGJ/lVZ2RkPMhRV68KKjDk/KgpRxEEIRUMWJuybmDzT5mjGwoKCqDT6TBmzBj88ssv7o5PMJ5k7XPx4kVMnTrVGS2kst6yAgL0FqJ6SFBUJpXH1wtSzBU4vl71D7qFhYWIi4vDqFGjcOjQIaG3bQPwGFhvOUFjpAjCA7kONof1A5Aq5Aar1YrIyEjo9Xr8/rtDD2wpUH0OKygoQExMjDMPspUflhMg4GGZIFRK5QmOaUJuqNzGJnBKpFvxhBfC/Px8xMTEYOzYscjIyBByC+UogiDk5g7Y/NMZrG+rQ44cOYLx48cjJiZG6KGJW9FoNFqGYbzljkMMt27dQmJiIoYMGYLt27cLvW0HWAsfQR2hhDBIUFQ2XE+/GsfX98zJyWkjZwA1hfNfiIyMxMaNG2GzCRrwdARAJFj/hSx3xkcQKiID7OdiHAR8Lrgc5uRnz108mZ2d3VTOAGpKWVnZg1YbJ7xeD4O1qhDUzkMQHkIG2L/7cQAclkhX/mwpoI1twOXLl5vIGUBN4doBIyMjnclRh/C/lkNFTzwgCKJWkA3Wt1WQ5QI3ByE0NNQZWwd30aSgoKCvnAHUFM4eIzw83Jl5Eufxv5kVJ9waYC2EBEV14JTvj1LG13t7ew+TbfMawlVJGQwGoVVS18H+Xp6CwEosgqiFbIUTlbtcdfDo0aNx+PBhtwdnB28fHx9V5rBBgwY5YwbOVWr1B7DPrcERhHJxOkfpdDqMHj1azjY2b19f38FybV5TapCjuKEIAyBwKAJBEISEcEOhoiFgcB03HM/JwVMuh2EY1XXi7N+/H1FRUdDpdLh2TVCBIWeP0QNsdTvhBkhQVA+qG1+vpnac8+fP4y9/+YszPm7lYD3iOoL9vShyDCRBKIjK3qJfQoC36LFjxzB+/Hhn/Etdippy2MmTJ53N93fB5jDB3ykE4eHcAZujukFgjjp69CjGjRuH6dOnIy8vz93x8aGaHHXixAk888wziI6ORk5OjpBbKEcRBKEWbGD9XLuA/R5xWH546dIlTJ8+HZMmTcKZM2fcHR8fqvn+yMvLQ0xMDJ5//nn8+uuvQm5hwH6PdwLbni5omipRM0hQVB9OV5PU4DTYVYxgGEbRf2M3b96EXq/H0KFDsWvXLqG3cdNsdRAwzZYgiD+RC7ZFRND08xpOWHcVij+9vXHjBvR6PZ5++mlnKtK3gRVNdBBQ9U4QtYwcsDkqFIDDD5XMOWqklJvVhKKiIuj1eowaNQoHDx4Uets2sEKiDoAiTHUJgiAEcBNspXtPAD8IuSEtLQ1RUVGIi4tDUVGRW4N7iIHXr18PkHJDZyktLUVycjLCwsKQkpIi9LaDAAaC/R4vcFtwxAMULfYQ1eKU35VMvj/N8/LyHpdiI2epqKjAxo0bER4ejvXr16OiQtCAp3MAxoA90RF0PEIQhF24L/xoCPjCr/xQsWWLZF0L7XJzc/8/e3ceJmdRLmz87klCgEAIQUBABI4cliggokAEAkGWA7KoB5MYILIpCpJwEJAtMzVJWAMoIJsGkB0CR/0OKCiLqKAICrKFJSJL2JcQIiF7v98fbwYD6Zp+e++euX/XNZcXU/VWPTNOqmeernpq43pNVoquWq9Dhw7lsssuy1ozt6su795kqMsr9XJ/4d9r1OvFOncdY6vzGrXB66+//ql6TVaKMteoJ0mTpHsDz9U0QEmqnZL+Zlz679IpU6Zk/bu0Un3nzZu3Uz0mKlWZb9S9TPp6nWnDgqrHhGJra4Xr65tuh08Z7wSV/G6TpEwS0iMiG5KuYUV/Y3jllVcYN25cKcceKtV0a9gf//hHdt11V9rb25k9O9MGw5mktV43A26vaXBSz9J1jK3kNerrX/86Tz75ZK3jI5/PN+Uatcsuu5RSj3rpNeo3NQ1Okuqn61Tb0WQ41TZr1iza29tLPTlXtra2tqY79lxGuaOlSypdRYZyJaouE4o9Q1nX1++zzz6MHTuWN94oWj+2bM20UD3//POl1qrIk34/M9fDkFSWOaRrWOaiyV2FmceOHZu1MHNZmmkN++c//8mYMWMYOXIkzzzzTJZHFpHWHtuYtNZrXd7ylnqg90jXqM3IuEbdd9997LrrrowdO5a33367ZoE1U63XZ599lgMPPJCRI0cyffr0LI9Yj1pST7eQdH37FOl6V3SdK6O2f1ma6WKWMi9kvJUSLlRTbZhQ7Fm6rq8fDjxSrHOSJNx888188YtfrNn19UmS7PDaa68NqPrAJeg6hrTTTjuVcptW141dY8hwY5ekqvgHaRmHXYDHinXO5/PcfPPNbL/99lx44YUsXLiw6gElSbLz9OnT+1d94BLMnj2bU089leHDh3PnnXdmfewu0jXscKB2GVepd5lOukbtCjxerHM91ijgS0mS9KvFwFm9++67nHrqqey8887cddddWR+7k3SNGkd6EkSSerK3Sde7LwB/zPLAHXfcwbBhwxg/fnzW3d6l2ui1117boBYDZ9VVHmPYsGFcc8015POZ7t96CBhGWh7j+VrGp+JMKPZM9wCfo8Tr60tMuGW1XJIkw6o9aBb5fJ6bbrqJoUOHlpIwnUH6fdsZeLSmAUqKuYt0DcuUDCsz4ZbVgJVWWmnbag+aRdcaVmIyoivhsQsZEh6SynInJaxRZSbcshr4yiuvbF3tQbNYuu5XiWvU3qRJ2SdqGqAkNZ+HSZNh+5AhGbZw4UIuu+yyUhNumeXz+Ybtcu9KmJZQHuNt0uPjW5MxKavaM6HYc5V8ff3SR4KrWfenEcdxHn74Yfbdd1/GjRvHm2++meWR90nrI21E+n2T1FhLH9c9nwzHdcs4EpxJI9awruOS48aNy3qkew7pGpb5SKakiizkw2tU0WNsZRwJzqrua9S9997L7rvvzvHHH5/1SPfS9ahvrWlwktT8bqGE47pLHwl+8MEHqxlH3V8/pk+fzujRo0s50m15jCZmQrHnK+v6+q5fEqt0fX3d6jO89tprjB07tpRLZ5a+2CaQ4WIbSXU1k/SISOYLRbouLRk/fnzWS0uKqdsa9sorrzB27NhSLnToqvX6KdI1LNNVeJKqZuk1KtOFIl2XllTrGFtbW1vd1qgy3nzuWqM2IX2D2zVKklJLXyhyNRkuFHnkkUf4yle+UsqlJcXskiRJn2oMVMysWbMYP348O++8M/fcc0/Wx7outhlHhottVH8mFHuPpa+vL3rEpMrX13/65ZdfXreSAYqZO3cuF154ITvssAM333wzSZLpgqe/AtuTHg98sZbxSarYU8AepEdE/lmsc9cRkaFDhzJlyhQWL67ozcytXn311dUrGaCYuXPncs4557Dddttx8803Z33sAWA70lqvr9csOElZPAn8Fw1Yo5Ik2XrGjBmDyx4gg67yOMOHDy+lPM7vga1wjZKk7rxMuk5uC9xfrHOSJNxyyy0MGzaMc845h/nzK3qfZtDrr7/+hUoGKGbpvMJll12W9fXuaeDLpLmLabWMT5Uxodj7dBXBrvf19btU8nB37rjjDnbaaSdOPfVU5syZk+WRV0jrHm0D/KlWcUmqiVtIdxQfDRTdfvjOO+/Q3t7OHnvswf33F/0dLaYtn8/vXO7D3Snzl8KXSWu9ZvrFU1JdLb1GFd1+OHPmTNrb29lzzz35y1/+Uu6cffr06TO83Ie7kyQJN9100wcX+GVco14iXaOGA3+vRVyS1AM9AHyRdP18rVjnpd+Mvumm8qvd1PK253vvvZfddtutlJOP75Certwc+HWt4lL1mFDsnep+fX0ul6t6fYbHHnuMr371q3zzm99kxowZWR5ZQPr1bkJa96i6VW0l1csC0jUs87/lxx9/nK997WulrBcfUos17JFHHmHfffct5djK+/z7aMxVZDgaI6khSl6jyvid5qOqvkb9/e9/Z5999mHcuHG88UbRO/5g2XrUrlGSVJqEdP3ckHQ9LfouziuvvMK4cePYb7/9mDat9M18tagV/txzz31QHuOpp57K8shHy2Nkuk1VjWdCsXdb+vr6P2R5oILr63ft06dProwYl/HOO+8wfvz4Ut/Nv5V0x8A4MuwYkNQSXiXdbbw1cF+WB+644w523HHHUnY0d9m9jPgKWrqw9l//+tesj90KfJqMxbslNYWST0SUceqiS1XXqLFjx/LlL3+51HrUQ0hruc6tViyS1EvNIV1PP0PGy/b+9Kc/sdtuuzF27NisF/p12XbNNddcrvQQlzVnzpxyymP8jvQE5Rgg07tXah4mFAXp9fU7ktb9ea5Y5zKvr//Y0KFDB1YS5MKFC5kyZQpDhw4tpf5CV02jvclQ00hSS/obsANpPdSiW6jnzZv3Qc3Vm266KWvN1U9sscUWAyoJsmsN22GHHUpZOx8ChpGuYc9XMr+khimpZnNXXehhw4aVskatP2TIkBUqCXLptbGEetR/I12jMq2/kqSS/IN0ff0S8Fixzvl8nptvvpntt9+eCy+8kIULF2aZo+/ee++9TiVB5vP5D5XHWLAg0wbDGaTHu3cGHq1kfjWOCUUt7Rb+vQOm6C6+rl02e+65Z6br63fdddeyLzXourW1vb09662tM0nrF2W+dVFSS1t6h0wnGW5sf+211xg3blzmXTi77bZb2ZcedO3ubm9v5733Mm0wfJt0Ddsa+GO580pqGiWvUa+++irjxo1jr732yrRG7b777quWG9zSOyMzrlFL7xC/t9x5JUmZ3A18jnTdfbNY59mzZ3PqqacyfPhw7rzzzqKDDxs27BPlBvbQQw+x7777Mm7cON58s2hokO6+XLo8hlqYCUV9VNf19ZuS8fr6Rx999IPr61966aVov2233bbkhOKzzz7LgQceyMiRI3nmmWeyPLKItF7RxqT1iyq62lVSy3mf9IjIf5JxDeuqEzZ27Nhu64R98YtfLDmhOH36dEaPHl1K/dmFpLVeP4VrmNQTdR1j24h0jSrq4YcfZt9992Xs2LHd/rG23XbblZxQXLq+7IsvFt08Cf9eo6xHLUn11fV37iak6/CiYg/885//ZMyYMYwcOZKnn3462u+zn/3suqUG8+qrrzJ27Fj23nvvcstjFH1jTVLr+wJp3Z8ky8cKK6yQfP/730+ee+655JVXXvnQx4wZMxYPGDBgmWe++93vLtP3ySefTI488sikX79+meZd8nEHaZ0JSeqyE+kto5nWkRVXXDH5/ve/nzz//PPLrEvPPffcouWWW26ZZ4455phl+k6bNi059NBDkz59+pS6hg2pz7dFUpMYDjxCxnViwIAB0TXq2WefXVTo96Zjjz12mb5PPPFEOWvULaRvdkiSGm8T0puQM63h/fr1Sw499NDkqaeeWuY14ZVXXknWW2+9ZZ7ZZ599Cr3WJCeffHJS6O/6bj4eJL3BWlIvlCMtkvoqGReNtdZaKznvvPOSl19++UML0C677NJtQvGll15KzjvvvORjH/tYKQvUM8DX6/OtkNSC2kjXsNfJuK6sv/76yaWXXrrML1HbbbddtwnFF198MTnrrLOSwYMHl7KGPQXsWZ9vhaQmVPIatcEGGxRco7bZZptuE4ovvPBCMmHChGTgwIGlrFFPAnvU51shSSrR3qS1FjOt6auuumoyYcKEZMaMGR96/RgzZkzRhOKVV16ZrLvuuqW8frwMfBtPxkoCBvDv2/syLSJDhw5N7rzzzg8WoQkTJkQTijfddFOy6aablrJA/WtJPP3r8LVLan2DgDNIj1hkWme233775K677vpgDTvxxBOjCcUbb7wx2WSTTUpZw2YCPwCqcrOepJa3KukaNZ8S1qi77777gzXquOOOiyYUb7zxxmTjjTcudY0aB/Sty1cvSSpXP9L1+l0yrvGf+cxnkp///OcfvH5MmTIlmlD8zW9+U/ANq24+5pOW7lm5Ll+9pJayITCVjAtKW1tbst9++yWPPvpo8vvf/36Z9r333jvZY489SlmgFpPWj1ijPl+upB5mI9Kje5nWnL59+yYHHHBA8thjjyW33377Mu1f+9rXCu6+7uZjIXAhsFp9vlxJLWZj4FeUuEY9/vjjya233rpM+3777ZcMHz681DXqfKDsi6gkSQ2xFnAp6d/Lmdb8XXfdNbn//vuTp59+eplyY9tvv30yatSopK2trZTXkJuA9evz5UpqZV1XvGdaXAYOHJicfPLJydprr13KgvTRj/uBber09Unq2XYBHifj+rPKKqsknZ2dpZZk+OjH3cDmdfr6JLW2XYAnyLi+DBo0KAkhJIMGDapkjboL2KxOX58kqTa2Au4l49q//PLLJ0ceeWSy5ZZbVvL6MQ3YvU5fn6Qeoi9pXYQ3yLjYrLzyyuUsUDNI6wvl6vR1Seoduo6IzKK2a9iLpGuYJJWi5DVqpZVWKmeNmo71qCWpJ8mRruvPU9vXj7dJX6f61OfLktQTrUZ6hG8h5b+rUehjDtAOrFC/L0VSL7QGaSmFzEdEMn7MBk7AWq+SKrMmMIXqr1HvAsdjLVdJ6qkGAJMo4R6EjB8LgHNJa5RLUlV8BriT6ixStwDr1Td8Sb3clsDvqXz9ypPWml23vuFL6uFKOsbWzUceuAr4eH3DlyQ1yPqk9Q2r8Xf6HcCn6xq9pF7lq5Rwff1HPv4GbF//kCXpAyMo4YjIRz4eAL5Y94gl9RY5YBRpKYVy16ihdY9aktQMdgL+TnmvH89geQxJddKf9KjfbLItUK8CBwNtjQhWkj5iBdKSC3PItoa9BOyPtV4l1ceKQCD7GvUi8A1coySpt+sDHE72exDeAY4hresrSXW1FnAF6fGaQgvUAuAMYOVGBShJ3fgEcC3xI9G+zgAAIABJREFUNWweMJG0Ro0k1dsngRvofo0KpAlISZK6DAJ+CCyi8OvHYuBSYPVGBShJXYaS3gK19CL1D2DDRgYlSRntyLI3rT5JWpNGkhrtSyx7KuRx0oSjJEkxm7BsGY3Xgc81MihJKuQI4Epgv0YHIkklagPGAj8D9m1sKJK0jDbgaNI1au/GhiJJajGjSf9OP6zRgUiSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJKnJ5RodgHqpQBvwMWAlAPoxhxWYzTHMbWhckpTFVPowjdVwDZPUSIGBpL9PASwAZhOY3cCIJEmt6gxWYR6rLfkvX1NUlAlF1Udgc2BPYBtgC+ATQL8CPd8BHgUeJccdrMyd/oEuqeEmsCUJe5KwNbA56RrWt0DPmcAjpOvYb4G7CcyrX6CSeqxTWYtF7EXCdsCWwIbAigV6zgeeAB4D7qUft3Ayr9cxUklSswusDewFH7ymfIrCrynzgGmkf5/fS8ItBN6oX6BqZiYUVTvnsgKz+RbwHWDTMkd5H/g/4IcEHqhabJJUzGQGMIfDgcOBjcoc5T3gF8CPCDxUtdgk9R6d7E3C94BdgLYyRsgDfyLHj0n4XwKLqhugJKlF5AjsDRwFfIny8kF54D7gxwzhfxnB4moGqNZiQlG1ERgFnA2sU8VRLydwaBXHk6TCAmOAM4C1qjjqjwkcVcXxJPVk6emOi4EvVnHUF4CNCCyo4piSpGYX+Czpa8q2VRz1eYawoUnF3qvQcS2pfIEVgSnAN2ow+gY1GFOS/i2wEnAl8LUajO4aJimbTo4iYTLQv8ojr8dA+lR5TElSMwscDZwJLFflkdfnHdrAhGJvZUJR1XM6qzKf20jrJEpSazmN1VnAb0jryEhSI+QInEvC0Y0ORJLU8nIEzgNPyKg2yqnDIi1rMgOYz68xmSipFQUGmkyU1HCBM8BkoiSpCgJnYzJRNeQORVXHHC4iez2G+cBvyXEbCU/SxpvkWUwbq5GwxpJbVHdYMp7HciTVwxSyJxPnAbeT43ZyPAW8RY48i1kNWIN07doB2BrfuJOUVScjSTi+hCceAH4FPEAbr5NjNotZjRyrAZ8hYRgwDBhYi3AlSU2sk/1JOKaEJ/5CbslrSsLrpBcLDibHaiRsRvq77Y7AyjWIVi3KhKIqF/gKMCZj7+uBkwg8302fXwAwiXVZxOHAt0j/SJek6guMBr6esfeVwCkEXuqmz8+XjLs+6S33hwGrVRChpJ4usAYJl2Ts/TA5vk8HvyvQ9uyS/70NmMxkBvA+o5fcEr15VWKVJDW3wMdJuChj74do4xja+X03fW4DzlrymnIACUcCm1UeqFqdtzyrMpfSj1d5muKXDSRLfvn9YclzBAYCAfgMgd1KD1KSIgLLA/+g+I30i8lxFB1cXPIcaX3ZCcAnCexbRpSSerrApcC3M/T8PwYyimOYW+IMOQIHA6czkPXLeF6S1CoClwGHZOj5C2A0gXkljt+2ZPzTWYu1OZyFpQepnsCEoiqTbqW+pmi/HO10MLGiuU5jNU7i7YrGkKSlBQ4Dflq0X45j6eCciuZyDZNUSODjwPMUv9H5XmA4gUUVzDUImE0gX/YYkqTmFVgbeI7iNzr/niF8iREV3NB8OqtyIrOApOwx1NI88qzKJByWodef2JTTKp7LP8QlVV+WNewuOji34plcwyQVkuNAkqLJxH/RlwM4pYJkIkBgVkXPS5Ka3RiKJxPfpS8HVpRMBDiRdyp6Xi3PYvEqX2AN0uKsxXRWvFhJUrVNYl3Si1OKCfjOq6RaSfjvDL0u5xReqHkskqRWl+U1ZQqnMKPmkajHM6Go8uXYjuK3MD9D4I56hCNJJVnEDhQv/fEIgXvrEY6kXmgyA4Ctivbrw4W1D0aS1NLOZGVgy6L9fE1RlZhQVPkSPp+h1124s0dSc8qyht1Z8ygk9V5z+SzFSxA9z3im1yMcSVILm8uWFN/w8w/G81w9wlHPZ0JRlfiPoj1y/LkOcUhSOVzDJDVWkmEdwnVIkpSJrymqKxOKqsQ6RXsk1vuR1LRcwyQ1VpJhHYIXax6HJKn15XxNUX2ZUFQlBmToM7PmUUhSeVzDJDWa65AkqToSX1NUXyYUVYliNX+gD/PrEIcklaP4GtbXNUxSTfUr2iPnOiRJysTXFNWVCUVVYl7RHotZpQ5xSFI5iq9hi1zDJNVU8XUocR2SJGUyt2gPX1NURSYUVYl3ivbIsVod4pCkchRfw9pcwyTVUC7DOoTrkCQpk1kZ+viaoqoxoahKFL+sIGGLOsQhSeUovoblXcMk1VC2i582r3kckqTWl/M1RfVlQlGVeDJDn6E1j0KSypFzDZPUcNMy9PkCl2aoiyVJ6t3aMr2mbMNU+tQ8FvUKJhRVifsz9NmN09xWLakpZVnD9uJMVq55JJJ6p8B04O0ivQbwGvvUIxxJUgtbzNMUP/a8Mk+yVz3CUc9nQlHlG8KDwJtFeq3IQr5dj3AkqSSr8ifg3SK9BjKPQ+oRjqReKQFuz9Dr6NqHIklqaYE8vqaojkwoqnwjWAzcXLRfwkkENqx9QJJUgrHMB35RtF9CIPDJ2gckqZe6IUOf7Qm+uSFJKiKX6TVlJwJjah6LejwTiqpMHy4gfXe9OysBN3A6q5Y9z2msRieHlv28JBV2QYY+g4AbKjr6HFiDwEFlPy+pJ/s18I8M/c4j8PmyZwn0JfA9zqd/2WNIkprbptwKPJeh54+ZwJZlzxPoSyfjCPQtewy1PBOKqsx4ngSuzdBzK+bzByayQUnjn8sKdHIkC3iGhP3LilGSYgIPAT/P0HMoc7mHSaxb0viTGUDgaOBpYL8yIpTU06VH1Doy9FwJ+B2h5NpXOQK7AX8FLmCRv/9LUo+VniIMGXquTJ576GSPEmfI0cnuwEMk/Ii1yJUco3oM/89X5QJrA48BgzP0ng9cSB9+wnieLtjjUvrxKlsB/w0cstS4vyOwcxUilqR/m8R6LOJRYGCG3nOB84DLCJEdRYHlgM8DXwcOIt3hCPCrMhIBknqHHIE7gC9l7P8r4CyGcN+SPx6XNZGNWczuwHeATT/4/EBW5BjmVhivJKl55QjcDeyUsf8tpK8pf46+pgQ2IcfuJHwX2PiDz6/FchzOwgrjVYsyoajq6GRvEn5JabtenwWeBN4CFgGrAWsAWwIrFuhvQlFSbQRGkNYxK+V1cTrpzsM3gTwfXsNWKNDfhKKkuFNZi4U8DKxZwlPvkO48fAOYQ/rGyOrAZ6LjmFCUpJ5vEuuwiIdIfzfNaibwN+B14H3S15Q1SF9TCo9jQrFXM6Go6gkcAVxYwxlMKEqqncBY0t2HtWJCUVL3ApsD90AFdaeLMaEoSb3DBLYgzz38+7RM9ZlQ7NWsoaLqCVwEHAouKJJaUOB84HDSHdOSVH+BR2ljR+DFRociSWpx7TwC7AjMaHQo6plMKKq6ApfTxnDS48yS1FoCPwF2BV5odCiSeql2HgO2Ib39WZKk8gUeBbYFbm90KOp5TCiq+tq5jwFsQY5TgFlVGvVe4KwqjSVJcYF7SGvFdAKzqzTqPcC5VRpLUk8XeI3AXuTYD3iqSqO+QI5jmc38Ko0nSWoFgVcI7AmMhMjFqKV7nhzHcLgne3ozayiqtiYzgPcZTcIIYBiwXAlP/wP4JXAjgb/WJD5J6s6ZrMxc9ie9sXkHoF8JTz9NuobdQODvtQhPUi8QaCPHriSMAf4LGFzC0zOBX5HjFyTcQvAPP0nq1QJtwG7wwWtKKTV73yZ9Tfk5m3Jr9EZo9RomFFU/kxnAHLYEPgt8ElibNMG4PPAv4F3gJXI8QcIjBJ5vWKyS9FFpcnFLcmxBwnrAWqQJxuVJdzLOJscM4PEla5g10CRV11T68BRDyLMVsAHp71MDSNeheaS3Pr9FjmnkeJw8T5hElCQVFOgLDCHHViSsD6wHrEih15SExxjCEyYRJUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS6iDX6AAkSSpTf6BvDcd/H0hK6N8GrFCjWAAWAgtqOL6k0vUlXYtqZT6wqMRnVqR2v+Pngbk1GluSejtfUyRJkurgV6QJv1p9rF1iPF+qcTznlBiPpNo7hNr+uz+qjJjeqWE8z5cRjyQpm29T29eUI8qI6V81jOcfZcSjJtLW6AAkSZIkSZIktY5aHhWTJKleXqH6x4FLPRIyl+rv3hkArF7lMSXVxrukuwOrPWapXgBmVTGGHLBeFceTJBVXi9eU2WU88zywUhVj8DWlB+kL/HcNx58F3FXD8SX1HHtSu/pz84FbazS2msNXgAcbHMOfgA2qPOaBwFVVHlNSbVwCnNDoIIDPVnm8FYE5VR5TktS9HwOnNDoIYLMqjzeQ8t4sUxPqC9xcw/H/DmxZw/El9Rw/pfSadVm9hbu8JEmSJEmqCmsoSpIkSZIkScps6RqKc4Erqzz+jCqPJ6nnugoYVOUxv1Pl8SRJkiRJ6vWWTii+B3y3UYFI6vVOrMGYJhQlSZIkSaoyjzxLkiRJkiRJysyEoiRJkiRJkqTM+hbvUkeTWI9F3Ry77sNljGd61eYLfAXYtmBbjn+RcDqBfNXmK1dgBPC5gm053qaDs4GkSnMtB5wM9I/0uJvAb6syVyUCKwInEfsZbuM22vl9FefbGvhapDUBziQwq2rzlWsCO5Dny5HWRQzgdI5jTtXmC4wldjNzjifpqHpdVkmSJEmS1GDNlVA8hRcIfALYv2D7YvbkXLbhGOZWPNcENiPPdcAKBdsTDmyKZGLqfuBiYPAyLQnQyQI6OK9Kc50FjIu0zWA5JldpnsoE3qeTOSScVrA9z7eYxOc4hReqMNdgYCqwXqRHcyQTAVbgIeZwCTCkYPsc1gEOrspcgYMg+nM3j1wkWS9JkiRJklpaMx55/g7wdKRtM2ZzdsUzBFYiz1RiyUT4CYFrKp6nWgIvkuMgYrsQEyYTqpC86eTLwNhI6yJgFCfxdsXzVEsHZwC3RFoHs4irCRUnzXPAFcSTiQ8A7RXOUT3HMYc2RgDvR3ocRGBMxfMENgLO76bHkbTzSMXzSJIkSZKkptN8CcXAe8AIiO5CPILA6ApnuQjYJNL2BPA/FY5ffR3cAlwYae0H3LBkJ115JrEuCVeSJtAKOZHAn8oevzYSluNQ4OVI+w5AqGiGTo4F9om0vgOMJLCgojmqrZ0nyEUTwwAXMZFNyx4/sDzpjs2VIz1uJHB52eNLkiRJkqSm1nwJRYDAo+T4QTc9LlmyQ6qcsQ8DDoy0zgFGEKK7uxprMMcCD0Va1wMuLWvcQF8WcT2wWqTHbQTOKWvsWjuJN4HRwOJIjxMJ7FbW2IGtSZgUaU2AQwg8X9bYtdbBZcDVkdYBLGbqkjqU5bgA2CLS9g/g22WOK0mSJEmSWkBzJhQBOrgA+HmkdWXgWs6PXhxS2AQ+TbzmG8D3CEwracx6Gst8+jACeDfSYz86u7nUJu40YLtI28vAGKp16UstBP4ATIi0tgFXEyIXh8THHATcACwX6XEegV+WNGb9HQE8FWn7DPDDkkdMLwg6LNI6nzZGEJhd8riSJEmSJKllNG9CMXUo8Fyk7fPM5IzMI01mwJK6ibFdWTcQ+Flp4TXAeJ4lx7ei7Qk/ZAJbZh6vkz2AYyOteWAMgbdKirExJgF3RNrWAK5jKn0yjpUDLgc2iLT/jcGcUGJ89Rd4b0k9xVj5gG/TGbkAqfB4GwI/7abHMbTzcAkRSpIkSZKkFtTcCcXALNoYCdEadePo5KuZxprDj4ndfAvTWaGFjml2cBPx4839yTOVwMCi40xiHRKuIl43sYPA3WVGWV/pjdwHAK9GeuzINE7ONFYnYyH6c/UeMJqxzC85xkZo5zHgmGh7wiVMZOOi46S7gW+E6M/V/xK4qJwQJUmSJElSa2nuhCJAOw8CJ0ZacyRcTmD9bscIjAIOirTOA0bwA/5VbogNcjREd4MV20kGgTYWcRXwsUiP3zGE08sPrwECb9B9PcUOOvlSt2NMYCsSzuymx+EEnikzwsYIXAJcF2ldicVM5dzojeepmZwLfC7S+iLWTZQkSZIkqddo/oQiQOCHEK1XN4j0VtnCte4m8p/AT6Jj5ziawN8rDbHuAvPow0iI1qsbQSeHdjPCBGDnSNsb9GN/RkQTc80rcA9EE6FtJFxL4OMFW89kZfJcB9HanBcToom5Znc48HSkbXNmc1b0ycB+pPUYC1lIG6MIzKwwPkmSJEmS1CJaI6EICf05BKI36m4NTFzms4HlWcxU0ktcCrmJjjJvRm4G45lOrpudYQk/ZkKB23g7GQ7RGoB5chzAydGjw62gA7gr0rYmcC2hwM/+XC6B6O3hjzOQ71cnvAYIvAeMIN2RW8j3luzk/ehzn6S728Nz/IB2/lyNECVJkiRJUmtolYQinMg7wEhgYaTHcQT2+cjnzgM+G+n/LMt3c7lJq+jgRtILRApZnjxTOXOphOqprEnCtRC9oORUOqKXm7SGQJ5+7A+8FumxM3D8hz6T3o49OtJ/Dn0YwTHRy01aQ+BR4Afd9LiYiUtdRHMp/Uhvuh4c6f9rOvhR9QKUJEmSJEmtoHUSigCBB8gxPtKaA65YsqMKOvk68bpuC2ljf07g3RpE2QhHAo9E2jZiLucBad3EhVwNrBXp+0fSo9Ct72ReBw4mvam6kIkEtgdgApuRcE43ox3BeJ6scoSNETgf+HmkdRCLlyof8CpnAUMjfV8CvgkkVY9RkiRJkiQ1tdZKKAJ0cBbwf5HWwcA1TGRjkm4vJTmWdv5S/eAaJDCPNvYH3o/0OJjAGOAUYNdIn5nAAQQW1SLEhgjcDkyOtPYFrmcS65FnKkQvJbmCwFU1ia9xDgWei7R9ATidTr4MjIv0WQR8g8BbtQhOkiRJkiQ1t9ZLKELCchwGvBxp34HFPAisEmn/JYELahNaA7XzBDm+102Pi4H2SFsCHEjgxeoH1nCnAPdF2j7BIh4DNom0T2MAR9UmrAYKzKKNbwALIj3+h4TrSXf9LitHO4F7axWeJEmSJElqbq2YUISTeHNJQiS2my52CcuMJcnInnlMs4MrILqbbkXidRMnE/h1bYJqsHTH5SiI7qaL/azMo43RHMec2gTWYO38hRwnRVpzxL8vd5NwZo2ikiRJkiRJLaA1E4oA7fwR6CzhiTSxdBJv1yii5jCAI6Cken8PQLQuZc8Qyqr3dxTt0bqUPUMH5wL/r4QnXgf2J0TrUkqSJEmSpF6gdROKqdOA32bqmeMkAn+qbThNIN1RN4J4PcWlzaIPowjRo689R7oD84cZe08lMKWW4TSJhP4cDDyfoW+etMZm7OZsSZIkSZLUS7R2QjGQpx9joGiS49d0cHY9QmoKgcfJcUyRXgk5DmF89HKOnmctTiDdkdmd6azAYfUIpymcyDu0cQDx8gFdJhK4sx4hSZIkSZKk5tbaCUWAhaxMWh8wLscUemrdxJiENYv0eImE2+oSS7N4lf7AoCK9buAH/Kse4TSNPKsRr68JabLx8jpFI0mSJEmSmlxrJxTPpz9wAzCw234JFxP4eF1iagaBYcRvdO6yLvSiXZupi4CNivQ5gcC29QimKQQ+QZosLHyjc6ovcA2BvvUJSpIkSZIkNbPWTijO5Cxgqww91wR+RmjxrzeL01gduI7ud5x1OZLAqBpH1BwChwAHZujZD7iGM1ilxhE1XpogvAFYLUPvHSiepJYkSZIkSb1A6ybYAnsBR5XwxO7kOK5W4TSJHAuYAqxTwjMXM5ENahVQUwgMAS4o4YlPMY+f1iqcJjIR2K6E/ifTya61CkaSJEmSJLWG1kwoTmJd4Gd0f0xzWQmTmFBSAqW1BI4D9inxqUEs5kYCy9UipIYLLE+6Y7P7OpvL+jqdfKsGETWHwM7A8SU+1UbC1b2qfIAkSZIkSVpG6yUUA31ZxPXEj2neCvwo0taXPNdzWqYjnq0lsDXpjrNCEuCbwAuR9i8Ak2oRVhO4ANgi0jYNODT6ZML5TIg+27pOZU3gWuL//k8G7o60rQlcx9RMR+olSZIkSVIP1HoJRTiV+DHNGSzHQazF8cCfI33WZUEZuxubWWAQaS282C7DyQSuAkYBCyN9jiWUvLuxuQVGAIdFWufRxmgClwNXRvosT56pnMnKtQmwAQJtLOQaiO4y/B1DOJO+jAHeivQZzpMl726UJEmSJEk9RGslFAP/BRwbaV1EG9/gJN7mcBaSJs9mRvruRSffq0mMjXE5ROsgPgCMByBwPzk6I/1ywBUEPln98BogsCF0WwfxKNp5BIABHAk8Gem3EXM5r8rRNVI7sEuk7XVgNCNYzCm8TI4xpLtbl5UwoUeXD5AkSZIkSVGtk1BMj2leQXfHNNu574P/CrwIHB4dL2Eygc9VM8SGCIwFvhppnUUfRhFY8MFnEk4H7oj0Hwxc3fLHWc+nP3AjMDDSYyqBKR/813HMAUYAcyP9D6Yz0w3RzW0COwKnRFrzwAEEXvvgMx3cBpwb6d+XPDf0yPIBkiRJkiSpW62RUEyPaV5L/Jjm7cDZBZ67Gbgk8kx/0sRSLOnU/AKbA2d20+NQxvPcR55JE0fwauSZYUyjvToBNshMzoZosvhZKHDZSuBx4JjomAkXE9ikGuE1xGmsTp7rIJosnkTgzmU+uxYnEi8f8AkWcCU9qXyAJEmSJEkqqjUSitABfCnS9jpw8JJEWSH/AzwcafsU3R+LbV6BlYCpwPKRHhcQ+Hnk2TeA0cDiyLOnEKLHYptbYC/gyEjrfGAEgdmRZy8hvRG6kAHAVM5lhYpjrL8cC7gMWDvS/geGMKFgS/HyAV+mk7GVhyhJkiRJklpF30YHUNQEdiTPyZHWPDn2p2OpY5ofFZjHREaymL9Bwcs1RhC440NHYFvDJcDGkbbHGMgPun06cA+BM6Dg97YNuIbAZz90BLbZTWJdFnW7Y+54Ag8VGeVw4PPARgXaNmM2k6HF6m8GfgDsHWmdCRzIiGhyOS0f0Mm3Sbi5YHtaPuAvBO6vOFapfNcRL1tQqp8RP+6fxfnATlWJBAZVaRxJtXcIsGeVxnqpwrH2ASZVKRZPIkhS/X0LqnZp6vMVjvU1IFQlktbZ1KYMmjuhGFijyDHNiXRwV9FxxjOdwLeB6yM9LmACD35wSUezS7+W/SOt7wEjOCbDH9ZD6GAaQ4GdC7SuCVxHYJdudn82j0BfFnEDaR3IQn5F4IIM47xHYH/gPgrfmn0kgXsJ3FB+sHUU2Boiuw/TC1cOXlJvtHsd/C+Bi4HvFmjtB1zDGWzFCbxbdqxSZTas4lhrVfj8BsBm1QhEUktZfclHNaxU4fODcR2SpFa2xpKPaoidaszK1xQV1LzZ4UAbcDXdH9OcWMJ4NwBXRVqXJ891BFYsLcgGmMCngR920+O7BJ7KNFa6K+2bwFuRHsOB40uKr3FOB74YaZvBcnyT2I3FHxX4KzlO6KbHxUyM3qrdPE5nVdLLafpFepxD4P8yjze4SPmAeS1aPkCSJEmSJJUkx7+TLG9SvQx45QInAadGWt+kL1tyCi+XNOZkBjCHB4FNIz0uI3BYSWPWUxr/A8CQSI/y4g/sCdxK4SMti2hjpw/doN1sOtmDhF9R3fhzBH4B7BtpfxDY/kM3aDeX3JIaml+JtJcXf2BD4CEKlw+AHN+mo6kSi13r21tUb9eImscgKn/HtZA5wL8qeL5Z45JUfSsAq9Rg3EXE3/DNolZxLSb9m0GSVH297TWl0rjUYM2ZUJzANuT5I4V3ViXk2JcObilr7MBngAcgernGgQSuKWvsWgtcARwUaZ0GfIHA+2WOfQ7xW45nsBxbchJvlzV2LU1iHRbxd+BjkR4nLqkVWbrTWZX5PAysF+kxmdCkOzg7GUfCjyKts+jD55a5ATyrwCji5QPm0ca2TVQ+wISiJEmSJElV1nxHnk9nVfLdHtOcXHYyESDwOPHEGaTHWWOXnTROmsQ5KNI6jzZGl51MBFiLE4A/R1rXZUG3l500RqCNRVxFPJl4N3BW2eOfyDu0MRJYGOlxLKFqhXKrZwJbkXBmNz2+W3YyEbrKB/ws0ro8eaZyZmQHoyRJkiRJannNllDMMZ8riO8IewAYX/EsgUtIbwQtZCUWM5VzozsY628i/wn8pJseR1W8I+xwFgKjSG/9LeTLBI6qaI7qCxS+UAbgdWD/ii+Uaecv5OiMtOaAKwh8sqI5qimwEnmuBfpHelxYlQtlBvA94MlI60bMje6OlCRJkiRJLa65EoqB/yFes24WfRhVtZp1K/Ad4JlI6+bM7naHV/0ElmcxNxKrWQdTCUyp0lwvAod30+NsJrBNVeaqVGAn4KRIax44gMBrVZkr4XTgt5HWwcDVTI3eRF5vl0B0h+1jDOS4qsxyHHOAERDdFXsInRxYlbkkSZIkSVJTaZ6EYuDzpDf1FpbjkIqOaX7UD/gXsD9EE5RH0clXqzZf+X4IbBlpexb4VlVnC9xMmpQqpB95riUwsKpzliqwBukO01gSbxKBO6s4Xx44EHg10mMY02iv2nzl6uRw0p/pQtIE4DHMrdp8gcfJdVM+IOFxDdyAAAAgAElEQVRiAptUbT5JkiRJktQU+jY6gKW8RRtfLNiSZz4dPF71GQN/JbAZbdEba9+r+pylCLTRxhSI7EDM8zKB2VWfdzBHM6ubXY/5Jvi5aWPvaNsm/L3q8wXeILA1bawZ6VHZ0epqyHEvOT5fsC3POwT+WfU5O7iUCTxA7M2JfIP/DUmSJEmSpJpIlny80ehAJKnKuta3NxsdiCRJkiRJPUXzHHmWJEmSJEmS1PRMKEqSJEmSJEnKzISiJEmSJEmSpMxMKEqSJEmSJEnKzISiJEmSJEmSpMxMKEqSJEmSJEnKzISiJEmSJEmSpMxMKEqSJEmSJEnKzISiJEmSJEmSpMxMKEqSJEmSJEnKzISiJEmSJEmSpMz6NjqADwmsD3wn2t6HyxjP9KrN18m+JAwt2JbjXyScTiBftfnK1clIErYs2JbjbTo4G0iqMldgOeBkoH+kx90EfluVuSoRWBE4ifjP8K8J/KGK820NfC3SmgBnEphVtfnKNYEdyPPlSOsiBnA6xzGnavN1chQJ6xRsy/EkHVxZtbkkSZIkSVJTaLaE4vMEPgHsX7B9MXtyLttwDHMrnmsCm5HnemCFgu0JBzZFMhEg4c/ARcDgAm3QyQI6OK9Ks50JHB1pm8FyTK7SPJUJvE8nc0g4LdLjWwS2JPBixXOdzqrMZyqwXqRHcyQTAVbgIeZwCTCkYPsc1gYOqcpcgYNIOD/SOo8c21ZlHkmSJEmS1FSa8cjzd4CnI22bMZuzK54hsBJ5phJLJsJPCVxT8TzVEniRHAcR24WYMJlQheRNJ18GxkVaFwGjOIm3K56nWhLOBH4TaR0MXEOoOGmeYz5XEE8mPgC0VzhH9RzHHNoYAbwf6XEwgTEVzxPYCKLJRMjxPdp5pOJ5JEmSJElS02m+hGLgPWAEMC/S4wg6+UaFs1wEbBJpe4L4Dr3G6eAW0rgL6QdcyxmsUvb4k1iXhCuBXMH2HCcR+FPZ49dCIM9yHAi8EumxA9BR0RydHAvsG2mdBYwksKCiOaqtnSeIJ4YBLmIim5Y9fmB5YCqwcqTHVDq4rOzxJUmSJElSU2u+hCJA4FFyHB9tT7iYwH+UNXYnhwIHRlrnACMI0d1djTWY7wMPRVr/g3lMKWvcQF8WcT2wWqTHbUvqNDafk3iTNkYDi6M9AruVNXZgaxImRVoTchxC4Pmyxq61wBTg6kjrABYzdUkdynJcAGwRafsH8K0yx5UkSZIkSS2gOROKAB1cAPw80roKcOOSC0Sym8Cnu6n5BvA9AtNKGrOexjKfPowA3o302I9OvlvGyKcC20XaXgbGUK1LX2qhnd8DEyKtbcDVBNYuaczAIOAGiP6MnU8HvyhpzPo7Angq0vYZ4NySRwyMAA6LtM4n3bE5u+RxJUmSJElSy2jehGLqUOC5SNvnSS8QyeZcViDPdRDdlXUDgZ+VFF0jjOdZct3sAEv4IRMiN0IX0skewLGR1jwwhsBbJcXYGJOAOyJtawDXMpU+GcfKAZcDG0Ta/8ZgflBifPUXeG9JPcXYJUaH0xm5AKnweBsCP+2mxzGE6A5aSZIkSZLUQzR3QjEwizZGQrRG3TgCX8k01mwuBDaPtE5nBb5dRoSN0cFNwE8irf3JM5XAwKLjTGIdEq4i/nPQQeDuMqOsr0CefhwIvBrpsRPTODnTWJ2MBb4aaX0PGM1Y5pceZAO08xg5vh9tT7iEiWxcdJzz6Q/cCNGfq/8lRGt8SpIkSZKkHqS5E4oA7TwInBhpTXeSBdbvdozAKODgSOs82hjJD/hX2TE2xjjg4UjbhsQTjqlAG4u4CvhYpMc9DOH08sNrgJN5nRz7E6+n2EEnX+p2jAlsteT26JjDCTxTbogN0cHFwHWR1pVYzFTOjd54nprJucDnIq0vQgsl5CVJkiRJUkWaP6EIEPgh8MtI66p0V09xIv9Jd8m1HEfTHk3MNa/APPowEqL16kYuuYAmphPYOdL2Bv0YzYhoYq55dfA7iCZC20i4lsDHC7YGVlpyLL5/5PlLCNHEXLM7HHg60rY5s7tJonby36T1GAtZSBujCMysMD5JkiRJktQiWiOhCAn9OQSiN+puDUxc5rOB5VnMjcDKkeduooNLqxJhI4xnOrludoYl/JgJBW7j7WQ48V2feXIcwMnRo8OtoAOiR7XXBK4gFPzZvxTYKPLc4wzkmGoE1xCB94ARwLxIj6MIfK3Ac58k6Xa36wm08+cqRChJkiRJklpEqyQU4UTeoY1RwMJIj+MI7PORz/0IoheUPMvy3Vxu0io6uBG4ItK6PHmmcuZSCdXAGiRcC9ELSk6jI3q5SWsI5IH9gdciPf4LOP5Dn0lvxx4d6T+HPozgmOjlJq0h8Ch0e5nMZUxc6iKaS+lHetP14Ej/Xy/ZPSxJkiRJknqR1kkoArTzF3KMj7TmSHeefRKATr5OesyzkIXAAZzAu9UPsiGOAB6JtG3EXM4DWLIr7xpgrUjfP5IehW59gddI62bmIz0mEtgegAlsRsI53Yx2BON5ssoRNkbgfODnkdZBLF6qfMCrnAUMjfR9CfgmkFQ9RkmSJEmS1NRy/Dsh8CawRgNjySpH4JewzG7ELn+kD99iMX8BVomMcDQdS5JsPcUEPk2eB4AVIz2+CaxPPGE4E9iSwIs1iK5xAmcQ35X3En3ZnkXcDmwS6XMFgUNqE1yDBAYBD8FSuxE/7Bxy/I6EW0jXiI9aBAwncG+tQqyirvXtLWD1RgYiSZIkSVJP0YoJRTiN1VnAw8A6kR6zgYGRtv9H4Kv0xJ1VnRxMwuWR1jnA8hQ+6pyQY286+FXtgmuQQF/gHmC7SI/uflaeZABf4Djm1CK0hprANuT5I9CvQGsCvEes9miOk+homRvATShKkiRJklRlrXXkuctJvEla725RpEcsQTSD5TiUnphMBOjgCuCqSOsA4nUTz+6RyUSAwCJgFGlCqZDYz8o82vhGj0wmQlf5gNjFPDniFxn9jk05q0ZRSZIkSZKkFtCaCUWAwB8ord7fItr4Bifxdq1CagoDOAJKqvf3IHBKjaJpDqGMen85xtIerUvZM3RwLvD/SnjidWA0I1hco4gkSZIkSVILaN2EYuo04LcZ+55MO/fVMpimkO6oGwG8n6H3LPowksCCGkfVeIFfQ+YbiafSwU9rGU6TSOjPwcDzGfrmgQOWXHYjSZIkSZJ6sdZOKAby9GMMFE1y3EZgcj1CagqBx8lxTJFeCTkOYTzP1SWmZrAWJwAPFOn1D+BbdYimOZzIO7RxAPHyAV0mErizHiFJkiRJkqTm1toJRYCFrEz8ZuNUjp/SU+smxiSsWaTHSyTcVpdYmsWr9AcGFel1PYHZ9QinaeRZjXh9TUiTjbHLfiRJkiRJUi/T2gnF8+kP3ED8Yo1UwsUEPl6XmJpBYBjQXqTXutCLdm2mLgI2KtLnBCawTT2CaQqBT5AmC3Pd9OoLXM3UbpOOkiRJkiSpl2jthOJMzgK2ytBzTeAKQot/vVmcxurAdXS/46zL9wiMqnFEzSFwCHBghp79yHMtZ7BKrUNquEBf0oT8ahl6D2Na0SS1JEmSJEnqBVo3wRbYCziqhCf+Czi2RtE0ixwLmAKsU8IzFzORDWoVUFMIDAEuKOGJTzGvV1zKMhHYroT+pxDYpVbBSJIkSZKk1tCaCcVJrAv8jO6PaRZyKhNKSqC0lsBxwD4lPjWIxdxIYLlahNRwgeVJd2x2X2dzWV+nswdfzhLYGTi+xKfagGt6VfkASZIkSZK0jNZLKAb6sojriR/TvBX4UaStL3mu57RMRzxbS2Br0h1nhSTAN4EXIu1fACbVIqwmcAGwRaRtGnBo9MmE85kQfbZ1ncqawLXE//2fDNwdaVsTuM56ipIkSZIk9V6tl1CEU4kf05zBchzEWhwP/DnSZ10WlLW7sXkFBpHWwovtMpxM4CpgFLAw0udYQsm7G5tbYARwWKR1Hm2MJnA5cGWkz/LkmcqZrFybABsg0MZCroHoLsPfMYQz6csY4K1In+FM47jaBChJkiRJkppdayUUQ7d1EBfRxjc4ibc5nIWkybOZkb570cn3ahJjY1wO0TqIDwDjAQjcT47OSL8c6cU1n6x+eA0Q2BC6rYN4FO08AsAAjgSejPTbiLnRHa+tqB2idRBfB0YzgsWcwsvkGEO6u7WQiT26fIAkSZIkSYpqnYTiqUtuau7umGY7933wX4EXgcOj4yVMJvC5aobYEIGxwFcjrbPowygCCz74TMLpwB2R/oOBq1v+OOv59AduBAZGekwlMOWD/zqOOcAIYG6k/yF0ZrohurlNYEfglEhrHjiAwGsffKaD24BzI/37kueGHlk+QJIkSZIkdas1EorpMc1riR/TvB04u8BzNwOXRJ5Jk04hmnRqfoHNgTO76XEo43nuI8+kiSN4NfLMMKYt2dHYqmZyNkSTxc9CgctWAo8Dx0THTLiIwCbVCK8hTmN18lwH0WTxJAJ3LvPZtTiRePmAT7CAK+lJ5QMkSZIkSVJRrZFQhA7gS5G214GDlyTKCvkf4OFIW7Fjsc0rsBIw9f+3d+fhcpflwce/M9kOBhCigIhYrFQRCr5YxbW01r6treDW1xMgBAnIKqQIBEKSc+aZc5IABkGDkCAEEMh2tHrRVq3LK1akLrhDwdcFKkuRHQKRrDPvH3OoAeaeM9s585uT7+e6/MPc9+95brmG/HH7PM8N9AQZl5L4QvDtQ8BRwNbg2z5SeC022xKHAR8NohuBXhLrgm+XU5kIXU3ln/fF7NByjWMvxyZWAC8P4t9mfwaqRkZ+PuA9FJndeomSJEmSJKlbZL+hWLmmOT+Ilsgx4znXNJ8vsYEJTAeeCjJ6KdaY9Jtdy4HXBrHb2Jlza36d+BZwQRDNAzeQwhOh2bSQvaHmiblzSPx4hFVOAn4ZxA5kHUuaLa9jEucChwfRx4CZ9IbN5crzATlODONlljDAm1uqUZIkSZIkdY1sNxQTu49wTXOQAv93xHX6+BXUbIh8mgFe31SNnZA4EZgRRJ8GejkzfA/wD/anAHwziO4BrCRl/DfyrMREtrCGyjuQ1XyJxKV1rPM0lX+2m4KMj5I4orkiOyBxCASnDysDV2YNvzdaW4F/ApYF0UmUWMkFvLi5IiVJkiRJUjfJbrOo0si6ntrXNAcbWG8NcF0Q7aHEKhIvaqzIDhjgAOCSGhmnkPhFXWtVTqV9GHgkyPgrcsxprMCOOR94WxC7l8l8mHhi8XMlfkiOuTUyljEYTtXOjvPZlcpwmklBxidI/HPd602r+XzAq9nQpc8HSJIkSZKkhmS3oQhzgb8JYg8zkaNqXtOsZiqnAncG0f2BTzW03lhbwlRKDEHY+FxB4oaG1kzcBzWabWUWMsDbG1pzrBX5O+CsILqFPEcyj0cbWrPAJ4Ebg+gubGUtickNrTm2cmzkamCfIH4r8VMC1c0efoMyfj7gQxSrDLyRJEmSJEnjSjYbipX32FIQLZPjeBZwf8PrzmE9lYZIdB34IySObnjdsbKeT1NpfFZzBzQ5HCPxZeJTjxMpsZrFvKSptUfbQvaizHXE7yb20c8tTaxcZgqzgN8G8TcBC5tYd2xUBqW8P4g+wQSmk8Jr3bHEr6n9fMDSrno+QJIkSZIkNSx7DcXz2ZVSzWuaSyjwL02vn7gdOLNGxjIGw2EnnVN5t+/YILqBPEeR+H3T6+/JXOC7QXRvNtUcdtIZiTxbuA54aZDxTeDjTa9/Ho+TZzqwOcg4m8R7m15/tAzwZ5S5sEbGKfRxd9PrV54PuDaI9lBiiAvZqen1JUmSJElSpmWtoZhjI9cAfxTEfwD0tbxLYjmwKojuyFaGuJgdWt6nXQb5E+AzNTJOp5+ftbTHSWwGjqAy9bea95A4vaU92i8BfxXEHgRmkCi1tEM/3ydHMYjmgGtIvLKlPdopsSMlVgJTgozLhhuCrZnKacTPB7yGZ/hky3tIkiRJkqRMylZDMfEx4H1B9AkmcERT1zSr2YGTgV8G0YNYV/OE19hJ9LCVtRCe+BoicVWb9roHOKlGxkXD19E7L/GXwLwgWgKOJvG7tuxV5nzga0F0GnA9Q+Ek8rG2HMITtrexc5uG7Pzh+YDoVOxxFJnZlr0kSZIkSVKmZKehmHgjlUm91eU4rqVrms93Lk8BMyBsUJ5OkQ+0bb/mXQIcHMR+A20egpH4PJWmVDWTKLGSxM5t3bNRid2pnDCNmngLSXyjjfuVgJnAA0HGodxBf9v2a1aRk6j8pqupNADPDN8PbVzidnI1ng8os4zEfm3bT5IkSZIkZcLEThewjUfI87aqkRIbKXB723dM/JDEgeSD0385nm77no1I5MlzFQQnEEvcT2Jd2/edxhk8UePUYykDv5s8h4ex/fhp2/dLPETiEPLsEWS0drW6HXJ8hxxvrBor8TiJu9q+Z4ErGOAHRP/nRKnD/w5JkiRJkqRRUR7+z0OdLkSS2uzZv98e7nQhkiRJkiSNF9m58ixJkiRJkiQp82woSpIkSZIkSaqbDUVJkiRJkiRJdbOhKEmSJEmSJKluNhQlSZIkSZIk1c2GoiRJkiRJkqS62VCUJEmSJEmSVDcbipIkSZIkSZLqZkNRkiRJkiRJUt1sKEqSJEmSJEmqmw1FSZIkSZIkSXWb2OkCniOxD3ByGJ/ACvr4Vdv2K/I+yry1aizHU5Q5n0Spbfs1q8h0yhxcNZbjUQpcBJTbsldiMjAfmBJkfJPE19qyVysSLwLmEf+Gv0zi223c7xDgg0G0DFxI4om27desAf6cEu8JoluYyvnMYX3b9ityOmX2qhrLcScFPtu2vSRJkiRJUiZkraH4XyReAcyoGt/K33Mxb+ZMnml5rwEOpMRqYIeq8TIzM9FMBCjzXeByYFqVGBTZRIFPtWm3C4Ezgti9TGZJm/ZpTeL3FFlPmcVBxgkkDiZxT8t7nc+ubGQI+KMgIxvNRIAd+DHrWQ7sXzW+npcDx7Vlr8SxlFkaRDeQ4y1t2UeSJEmSJGVKFq88nwz8vyB2IOu4qOUdEjtSYoiomQhXkrih5X3aJXEPOY4lOoVYZgmpDc2bIu8B/jGIbgGOYB6PtrxPu5S5EPhqEJ0G3EBquWmeYyPXEDcTfwD0t7hH+8xhPXl6gd8HGbNIHNPyPonXQNhMhByn0c/PWt5HkiRJkiRlTvYaiomngV5gQ5BxKkWObHGXy4H9gth/Ep/Q65wC/0Kl7momASu5gBc3vf5C9qbMZ4Fc1XiOeST+o+n1R0OixGRmAv8dZPw5UGhpjyJnA+8Lok8A00lsammPduvnP4kbwwCXM8jrml4/0QMMATsFGUMUWNH0+pIkSZIkKdOy11AESPycHOeE8TLLSPxxU2sXOR6YGUTXA72k8HRXZ03jLODHQfSP2cBVTa2bmMgWVgMvCTK+MvxOY/bM42HyHAVsDTMSf9PU2olDKLMwiJbJcRyJ/2pq7dGWuAq4PohOZStDw+9QNuNS4PVB7NfACU2uK0mSJEmSukA2G4oABS4FvhBEXwysHR4gUr8BDqjx5hvAaSTuaGjNsTSbjUygF1gXZPwfipzSxMqLgLcHsfuBY2jX0JfR0M+/k2MwiOaB60m8vKE1E7sAayD8jS2lwBcbWnPsnQr8Ioj9KXBxwysmeoGPBNGNVE5sRr9PSZIkSZI0DmS3oVhxPHB3EHsjlQEi9bmYHSixCsJTWWtIXNtQdZ3Qx2+odQKszCUMBBOhqynyd8DZQbQEHEPikUZK7Igyg8DXg+juwEqGmFDnajngauBVQfxHTOPcBisce4mnh99TjIYYnUQxGIBUfb19gStrZJxJCk/QSpIkSZKkcSLbDcXEE+SZDuEbdf9I4v11rbWOy4CDguiv2IETm6iwMxJDwGeC6BRKDJHYecR1FrIXZa4j/h0USHyzySrHVqLEJGYCDwQZf8kdzK9rrSKzgQ8E0aeBo5jNxsaL7IB+biPHWWG8zHIGee2I6yxlCrAWwt/VP5HCNz4lSZIkSdI4ku2GIkA/twLnBdHKSbLEPjXXSBwBzAqiG8gznXN5qukaO+MfgZ8EsX2JG44ViTxbuA54aZDxLfbn/ObL64D5PEiOGcTvKRYo8q6aawzwZ8PToyMnkfhlsyV2RIFlwKoguiNbGeLicOJ5xWNcDLwhiN4DXdSQlyRJkiRJLcl+QxEgcQlwYxDdlVrvKQ7yJ9RqruU4g/6wMZddiQ1MYDqEjdDpwwNoIkXgr4LYQ0ziKHrDxlx2FbgJwkZonjIrSbysajSx4/C1+CnB98tJYWMu606CsBF6EOtqNFGL/AOV9xir2UyeI0g81mJ9kiRJkiSpS3RHQxHKTGEWhBN1D4EqQzkSPWxlLbBT8N3nKHBFWyrshD5+Ra2TYWU+zUCVabxF3kl86rNEjqOZH14d7gYFCK9q7wFcQ6r6278CeE3w3e3szJntKK4jKu8pHgXhVe3TSXywynevpFzztOtc+vluO0qUJEmSJEndoVsainAej5PnCGBzkDGHxHuf92efhHBAyW/oqTHcpFsk1gDXBNEeSgxx4TYN1cTulFkJ4YCSxRTC4SbdIVECZgC/CzLeDZzznD+pTMc+KshfzwR6OTMcbtId+vkRz//f/VwrGNxmEM0VTKIy6XpakP/l4dPDkiRJkiRpO9I9DUWAfr4P9AfRHJWTZ68EoMiHqFzzrGYzcDRzebLtNXbGqcDPg9hreIZPAQyfyrsB2DPIvZnKVejul/gdlXczS0HGIIl3ADDAgZT5RI3VTqWPO9tcYWcklgJfDKK7sHWb5wMe4OPAW4Pc+4APA+W21yhJkiRJkjItxx8aAg8Du3ewlnrlSNwIHB7Eb2YCJ7CV7wMvDlY4g8Jwk228GOAASvwAeFGQ8WFgH+KG4WPAwSTuGYXqOidxIfGpvPuYyDvYwr8B+wU515A4bnSK65DELsCPYZvTiM/1CXLcRJl/ofJ3xPNtAd5J4jujVWIbPfv32yPAbp0sRJIkSZKk8aIbG4qwmN3YxE+AvYKMdcDOQexGEh9gPJ6sqjS+VgTR9UAP1a86l8lxOAW+NGq1dUpiIvDvwNuCjFq/lTuZypuYw/pRqa2TBngzJW4GJlWJloGnid4ezTGPQtdMALehKEmSJElSm3XXlednzeNhKu/dbQkyogbRvUzmeMZjMxEgcTVwXRCdSvxu4kXjspkIkNgCTKfSUKom+q1sIM+R47KZCJXnA3LhYJ4c8SCjm3gdHx+lqiRJkiRJUhfozoYiQOLb5Bho4Ist5DmSeTw6ajVlwVROhYbe+7sVWDBK1WRDauK9vxyz6edno1ZTFhS4GLixgS8eBI6il62jVJEkSZIkSeoC3dtQBCizCOqeSDyffm4ZzXIyoXKirhfqmkj8BBOYTmLTKFfVeYkvU5n6XY8hClw5muVkRJkpzAJ+W0duCTh6eNiNJEmSJEnajnV3QzFRYhIzqZycquUrJJaMRUmZkLidHB8bIatMjuPo4+4xqSkb5gI/GCHn18AJY1BLNpzH4+SZQfx8wLMGSXxjLEqSJEmSJEnZ1t0NRYASOwI71MzJcSXj9d3E2EgDdu6jzFfGpJLsmEw0+fsPVpNYNxbFZEaZacTva0Kl2Xj1GFUjSZIkSZIyrrsbilcwia2sJB6sUVFmGYmXjU1RGZA4lDKFEbL2hu3o1GbF5cBrR8iZywBvHotiMiHxCspcQ2UQS2QicD1DNZuOkiRJkiRpO9HdDcUHuAjqav7sAVxD6vL/vfVITAOup/aJs2edRuKIUa4oG4rMAmbWkTmJEiu5YMSTjN0vMRFYA7ykjuxDuYP+Ua5IkiRJkiR1ge5tsCUOA05v4It3A2ePUjVZkQOuAV7ZwDfLGORVo1RPNiReQ5lPNfDFq9mwXQxlGQDe3kD+AhJ/PVrFSJIkSZKk7tCdDcWF7A1cS+1rmtUsYqChBkp3ScwB3tvgV7uwlbUkJo9GSR2X6AGGgJ0a/PJDFMfxcJYi7wTOafCrPHDDdvV8gCRJkiRJeoHuaygmJrKF1cTXNP8V+GQQm0iJ1Syu64pnd0kcAgwG0TI5jgV+G8TfBCwcjbIyYCnw+iD2S3KcGH5ZZikD4bfdaxF7UGYV0bX4HAuAbwZf7wGs2i6eD5AkSZIkSVV1Y1NgEfE1zXuZzLHsyTnA94KcvdnU1OnG7ErsQuUtvOiU4UUU+Cx5ZlKZ2FvN2aSGTzdmW6IXwlOGG8jTS4ErgeuCnB5KDHFhw6cbsyuRZzM3QHjK8CZexwVM5BjgkSCnmdONkiRJkiRpnOiuhmKq+Q7iFvIcyTwe5SQ2AzOAJ4Pcw0h8dFRq7IyrIXwH8VZgAQD93AwUg7wccBUL2avt1XXCIK+GGu8g5phNPz8DYCqnAncGma/hmfDEa/fJ0QfhO4gPMokZ9LKVBdxPjmOAcpA7OK6fD5AkSZIkSaHuaSguGp7UHNWcYwH93PI//z1xF/CRGiteROIN7SyxIxKzgQ8E0SeYwHQSm7b5s8XA14P83djCKobqmhCdXUuZwlaGgJ2DjM8Nn0ysmMN6oBd4Jsg/jmJdE6KzLXEoZfqCaIkcM5nPA//zJwW+AlwS5I/f5wMkSZIkSVJN3dFQrFzTXEl8TfOrlFlS5bvPA1cE30wB1pLCplP2JQ4CLqyRcTx93P28b0rA0bBN4+i5DuWOsOnUHR5jCYTN4t/QU+UadOJ24MxwzTKXk9ivLfV1wmJ2gxrvJsIiClUazXsyF/hu8M3ebOKzjKfnAyRJkiRJ0oi6o6EIBeBdQexB4NjhRlk1ZwA/DWL7UutabJYldqQyvbgnyPg0iS8E3z5EjhnA1uDbPlJ4LTbbEocBpwXRzeSZwdzgKnxiOZWmWzWVf94Xs0PrRY65HJtYAeF19puBgaqRyvMBRwCPBd++h8TpLVcoSZIkSZK6RvYbigP8BTA/iFZO2yV+F36f2MAEeoGngoxeihzfWpEdsRx4bTt7kMAAABazSURBVBC7jZ1HGJpR4Cbi04154AZSeCI0mxayN9QYuJNjDv18v+YaO3Ay8MsgeiDr+HgLFXZGkXOAw4Po41T+HYqG9UDiHuCkGjtcxABvbr5ASZIkSZLUTbLdUFzMbpRqXtMcJPGNEdfp41fA7DBe5tPD14e7Q5ETqAydqeZpoJczw/cAt1UAvhPE9gCuJWX8N/KsxES2sAbCN/2+RIGlI65zLk9R+We7Kcg4jcQHmyuyAxKHUA5OH0KZHLOGG4YjrfN5YFkQnUSJlV39fIAkSZIkSapbdptFiTybuB54eZDxbfZnsIH1rgWuC6I9wCoSL2qoxk4Y4ADKNaYO5ziVxC/qWqtyKu1I4JEg42/JMafhGjtjMfC2IHYfk/kw8cTi50r8EDivRsYKBsOp2tmR2AVYC0wOMj5BgRvrXm8aHwN+EkRrT9WWJEmSJEnjRnYbijnOBf42iD7MRI6iN3wDsLqpnArcGUQPAD7V0HpjbQlTKTEEYePzagpc39CaifugRrOtzEIGeHtDa461In8HnB1Et5DnCObxaENrJi6BsNm2C1tZSwobdVmQA64G9gnitxI/JVDdbDYygenUfj7ghQNvJEmSJEnSuJLNhuIAb6ZMMYiWgY+wgPsbXncO64FeCK8Df4TE0Q2vO1bWcymwfxC9A5ocjpH4MoSnHidSYjWLw6vEnZV4GWWuIZ403Ec/tzSxcpkpzAJ+G8TfBCxsYt2xUWQ28IEg+gQTmE4Kr3XHKs8HnBjGyyxlgNc3vK4kSZIkSeoa2Wsons+ulFgDTAoylpD456bXT9xOjrNqZCxjMBx20jlFpgOzgugG8hxF4vdNr78n5wLfDaJ7s6nGsJNOqbzvuJLKe4/V3MT+LGl6/fN4nMqE481Bxtkk3tv0+qMlcRBlLgjjOU6lj7tbWH8N8Nkg2kOJIS5kp6bXlyRJkiRJmZa1hmKOjSNe0+xreZcCy4DVQXRHtjJEoqflfdolsS9lPlMj43T6+VlLe5zEZuBo4Mkg4zCKnNbSHu2XgL8KYg9CE9fiX7jD98iFp2VzwFUsZK+W9minxI7AEIS/38sphL/9+k3lo8TPB7yGZ2q88ylJkiRJkrpathqKRc4A3h9Em7+mWU0PpwB3BdGDgAvbsk+rljKFSoMomqA7ROKqtuyVuAv4SBgvs4TEG9qyV6sG+AtgXhAtkWMmid+1Za8y5wNfD6K7sYVVDIWTyMfacghP2N7GzuFbk40Z+fmA4ygysy17SZIkSZKkTMlOQzHxxprXNOH4lq5pPt9cngSmQ9ignE0xfINu7DzGJcDBQfQ30OYhGInPA1cE0UpzM4XNzbGR2J0SqyBs4i2kEDYAm9mvROX05gNBxqHc0YaTs61KnAjMCKKVBuCZYQOwmf1uB84M42UuJ7Ff2/aTJEmSJEmZMLHTBWzjEfK8LYhtop/b2r5j4ockDiQfvPeW4+m279mIRJ48K4AVVeMl7iexbhR2PoM8V4bRUgZ+N/kabxfux0/bvl/iIRKHkA/eayy1eLW6HfLcAryxaqzE48MnUNsrsZwBvk/0f06UOvzvkCRJkiRJGhXl4f881OlCJKnNnv377eFOFyJJkiRJ0niRnSvPkiRJkiRJkjLPhqIkSZIkSZKkutlQlCRJkiRJklQ3G4qSJEmSJEmS6mZDUZIkSZIkSVLdbChKkiRJkiRJqpsNRUmSJEmSJEl1s6EoSZIkSZIkqW42FCVJkiRJkiTVzYaiJEmSJEmSpLrZUJQkSZIkSZJUt4mdLuA5EvsAJ9fIuIrEr9u2X5H3UeatVWM5nqLM+SRKbduvWUWmU+bgqrEcj1LgIqDclr0Sk4F5QE+Q8U0SX2vLXq1IvIhKndFv+Mskvt22/QZ4EyX+IYiWgQtJPNG2/ZqVOBT4+yC6BVhM4vdt26/I6ZTZK4j+gsS1bdtLkiRJkiRlQtYaiv9FYm/gqCDj77mYN3Mmz7Rhrz+lzGpgh6rxMjMz0UwEKPNd4HJgWpUYJDaSWNqm3S4APhbE7mUyS9q0T2sSvx9ujC0KMk4gcTCJe1re63x2ZSOfA/4oyPh4JpqJAFP5EetZBuwfZOwJHN+WvRJHUA5/dxvI85a27CNJkiRJkjIli1eeTwL+XxA7kHVtaGgtYSowRNRMrJyEvKHlfdolcQ85TqyRcRGpDc2bIu8BzgiiW8hzJPN4tOV92ucC4KtBbBpwPanlpnmOjVxD3Ez8AdDX4h7tM4f15OmF8BTicSSOaXmfQf4E+EyNjNPp52ct7yNJkiRJkjInew3FxNPkmQFsDDI+SpEjW9qjcoLrdUH0P4F/bGn90VDgn4DLgugk4AYu4MVNr594BWU+C+SCjPn0c0vT64+GRInJzAT+O8g4FOhvcY+zgPcF0SeYwBEkNrW0R7v185/kwsYwwOUMhr//kSV62MoQsFOQMUTiqqbXlyRJkiRJmZa9hiJAPz8CzgnjZS4n8cdNrZ04DpgZRDcAR7X1jbl2msZZwI+D6KvZwJVNrVs5xbcGeEmQ8W/ARU2tPdrm8TB5jgK2BhnzKfK/m1p7gDcRX6mGHMfRx91NrT3aClwJ4SnbqWxliIvDE7ojWQr8ryD2a+CEJteVJEmSJEldIJsNRWD4TcAvBNFdgLXDA0TqN8ABwKVhPMepJH7e0JpjaTYbgenAuiDjQ6SaQ20iC4G3B7HfAbMy855kNf38OzkGg2ieMjewiD0bWjOxCyXWQvgbW0qBLza05tg7BfhFEPtT1nFxwysmeokbhpXfZwp/n5IkSZIkaRzIbkOx4ngIT4C9kcobevVJ9FBiJfCiIGMtBa5prLwOSCOeALuEgWAidPX13g3MCaIlYAaJ39VfYIeUGQS+EUR3ZzOrGGJCAyuuAF4VxH4OnNtIeR1ReT6gF8IhRidTZEYD6+0LNU7B5jiLFJ6glSRJkiRJ40S2G4qJJ8gzHcI36s4g8f46V7sMeH0Q+zXUHHqSLYkh4sZODyWGSOw84jqL2AO4huh3kCOR+GazZY6pRIlJHA08EGT8JXcyr861ZgMfDKJPM4FeEhuaqHLs9XMbcHYYL7OcQV474jpLmQKshfB39S8UuLyZEiVJkiRJUnfJdkMRoJ9byYWNoBxwNYl9aq5RZDpwXBDdQJ7eLrymORv4aRDbl9oTeCGRZzMrgZcFGd/idSxuvrwOmM+D5JhB9J5imUSRd9VcI3EQcGEYz3EyfeEU8mxKXA6sCqI7spUhEj0113iMTwBvCKL3AMcC5WZLlCRJkiRJ3SP7DUWAAhcDNwbRXYG1XMGkqtHEvpRrNtc+Rj8/abHCsZfYwAR6gaeCjOnDA2jiFQibaw8BM+gNB51kV4GbiK/C5ymzkhQ0URM7AkMQNteuoMDK1ovsgB04GfhlEK3dRC3yD8BHg+hm8hxB4rHWCpQkSZIkSd2iOxqKUGYKs4DfBvFDeKDKUI7Kqash4muanyexvD0ldkAfv6L2Ve3LGKhyzTvxlxCe+iwBM0n8d8v1dU4/hFe1K9e8U9Xf/nIIr//eDpzZhto641yeGp6GvTHImE2qcs078cqaDfkc59HPd9tTpCRJkiRJ6gbd0lCE83h8+D3FzUHGORQ5/Hl/dgmEA0ruooePtK2+TkmsAa4Noj2UWEXaZhBNYncq11+jASXnk/haW2sca4kSEzkGeCTIeDe55w2iqUzHjgaUrB9+N/H3baxy7PXzI3I1h8msYHCbQTSVU79rgGlB/peHTw9LkiRJkqTtSPc0FAH6+T6V02fV5CizgoXsBUCRDwEnB7mbgRnM5cn2F9kBO3MqlcnD1ewPXAowfCrvBmDPIPdmKlehu98C7ifHMVROXL5QmYUM8HYAEn8KNRtjp9LHnW2vsRMKLAW+GER3YStrSUwG4AEuBN4a5N4HfBjfTZQkSZIkabuT4w8NgYeB3TtYS71yJG6EF5xGfNa3gROAHwAvDlY4gwKfGp3yOmSAAyjxA9jmNOK2Ks21fSgzEKzwOBM5mAXhtfLulLgQOCeI3sdE3sEWvgK8Lsi5lsSs0SmuQxK7AD+GbU4jPtdFwE3Av1L5O+L5tgDvJPGd0SmwrZ79++0RYLdOFiJJkiRJ0njRjQ1FWMxubOKnwMuDjHXE7ybeSOIDjMeTVZUhLCuC6Hoqw0aqXXUuk+NwCnxp1GrrlCuYxAN8C3hbkFHrt3InU3kTc1g/KrV1UuItVJrv1YYZlYGngZ2Cr+eTumYCuA1FSZIkSZLarLuuPD9rHg8DR0I4hThqEN3LZI5nPDYTARJXA9cH0anE7yZ+Ylw2EwFOYjMTOQJ4NMiIfisbgKPGZTMRIPE94sE8OeJm4k3sX2MitCRJkiRJGve6s6EIkPg2OYoNfLGFPEcyL2wsjQ9TOQUaeu/vVmD+KFWTDQu4l1yD7/3lmE3ip6NXVAYkPgHc2MAXDzKJGfSGjXxJkiRJkrQd6N6GIkCZRcDX68yeTz+3jGY5mVA5UdcLPFNH9hNMYDqJTaNcVedVTmB+ss7sIQpcOZrlZESZKcyCut7NLAFHM58HRrkmSZIkSZKUcd3dUEyUgGOAB0fI/Dcqgya2D4nbgTPryDyePu4e7XIyZC6VE5m1/JrKUJ/tw3k8DhxNZdBKLQtJfGMMKpIkSZIkSRnX3Q1FgAlMpTJsJJbjM8PNx+3JS0eI38u0cfpuYmwy8ZuJz1pNYt1YFJMZOXYlfl8TKs3GaNiPJEmSJEnaznR3Q/EKJrGVG4AX18wrs4zEy8amqAwY4M+BwghZe/PYdnRqs+Iy4LUj5JxD4g1jUUwmJF5BmaupDGKJTASuZ6hm01GSJEmSJG0nuruh+ABLgLfUkbkHcA2py//31iMxjRI3UGkCjeQ0Eh8c7ZIyocgsKtfjRzIFGCKNeJKx+yUmAqsZ+TQrwKHcQd8oVyRJkiRJkrpA9zbYirwHmN3AF+8mx1mjVU5G5IBrgFc28M0KBnnVKNWTDYnXUOZTDXzxatguhrIMAO9oIL+PxF+PVjGSJEmSJKk7dGdDcSF7U+az1L6m+UJlFpN42+gUlQFFzgbe2+BXu7CVNSQmj0ZJHZfoAYaAnRr8spfER0ahomwo8k7gnAa/ygM3bFfPB0iSJEmSpBfovoZiYiJbWA28JMj4V+CTQWwisIbF4bfda4A3UWZhEC2T41jgt0H8EGBwVOrqvKXA64PYL8lxYo1vL2Ug/LZ7LWIPyqwiGsSSYwHwzeDrPYBrt4vnAyRJkiRJUlXd2BRYCLw9iN3LZI5lT84Bvhfk7M0mrqXR041ZltiFEmshPGV4EQU+S56ZVCb2VjOHIoePToEdUuRDwAlBdAN5eilwJXBdkNNDiVUkXjQ6BXZAIs9mboDwlOFNvI4LmMgxwCNBzt+SY87oFChJkiRJkrKuuxqKiXdD2MjYQp4jmcejnMRmYAbwZJB7GImPjkqNnbECwncQbwUWANDPzUAxyMtRZgUL2av95XXAIK+mXOMdxByz6ednAEzlVODOIHN/Kqccx4sFEL6D+CCTmEEvW1nA/eQ4BihXzSyzkIGwsS9JkiRJksax7mkoLhqe1BzVnGMB/dzyP/89cRfUfAPvIhJvaGeJHVHkdAgnNT/BBKaT2LTNny0Gvh7k78YWVjEUXIXtFkuZwlbWAi8OMj43fDKxYg7rgV7gmSD/eBJHt7fIDkgcCvQH0RI5ZjKfB/7nTwp8BbgkyJ9IidXj8vkASZIkSZJUU3c0FCvXNFcSX9P8KmWWVPnu88AVwTdTgLUkdm5PkR2QOIgyF9bIOIU+7n7eNyXgaNimcfRch3IHfW2qsDMe4+PAnwXR39BT5Rp04vYRpoAvI7FfO8rriMXsBjXeTYRFFKo0mvdkLvDd4Jvx93yAJEmSJEkaUXc0FCunqt4VxB4Ejh1ulFVzBvDTILYv1LgWm2WJHalML94hyLiMxJrg24fIMQPYGnzbRzH8551ticOA04PoZvLMYG5wFb7AMmB18G3ln/fF4T/vLMuxiasgvM5+MzBQNVJ5PuAI4LHg28MoclrLFUqSJEmSpK6R/YbiAH/Bs28AvlDltF3id+H3iQ1MoBd4KsjoJXFca0V2xDLgtUHsNnYeYWhGgZsgPN2Yp8xKUngiNJsWsjfUODGXYw79fL/mGj2cAtwVRA9kXc0TodmUmAO8N4g+zkRmksJhPZC4BzgpjJdZMi6eD5AkSZIkSXXJdkNxMbtRqnlNc5DEN0Zcp49fAbNrZFxG4qAmKuyMIidA+Kbf00AvZ4bvAW6rAHwniFXerEwZ/408KzGRLayG8E2/L1GoY7hK5fTidHjOu5PbOp0UvlmZPYlDgMEgWibHLBbw2zrW+TywPIhOAYa6+vkASZIkSZJUtyw3i3Js4mrg5UH82+wfNkpeKHEtcF0Q7QFWkXhRQxV2wgAHUOaTYTzHqSR+UddalVNpRwKPBBnvBs5utMQOWQTh1OH7mMyHiSYWP1/ih8B5NTJWMBhO1c6OxC7AGmBykHExBW5sYMWPAT8JYq+mW58PkCRJkiRJDcluQ7HIXOCwIPoYMJPe8A3A6qZyKnBnED0AajTqsuBidhg+sRk1Pq+mwPUNrZm4D2o22xYxEDbqsiHVbHxuIc8RzOPRBte8BMJm2y5sZQ0pbNRlxdUQNj5vBeY1tFrl+YDp1H4+oNZkdUmSJEmSNA5ks6E4wJspUwyiZWDW8LtujZnDeqAXwuvAJ1BkRsPrjpV1XAbh1exfsgNnNLVu4svAp4LoREqsZnF4lbizFg1fzY5+yzn66eeWJlYuM4VZEF4HrnWVuPMSs4EPBNEnmcB0UnitO1Z5PuDEGhmXMsDrG15XkiRJkiR1jew1FM9nV0qsASYFGReR+Oem10/cTq1rvGWWMxgOO+mcItOBWUF0A3l6OTc8OTayPTkH+F4Q3ZtNNYaddEoiz2ZWQjg85iZex8ebXv88HifPTAgHlsyhyOFNrz9aKu+BxsNjcpxCH3e3sP4aaj0fUOqS5wMkSZIkSVJTstZQzLGRq4F9gvitxBOf65e4HFgdRHdkK0Mkelrep10S+1LmM2E8x2z6+VlLe5zEZmAG8GSQcRhFTmtpj/YrAO8KYg8yiRkNX4t/vn5uhvC0bI4yK1jIXi3t0U6JHYEhCH+/l1MIf/v1q/18wP5QxwAcSZIkSZLUlbLVUCxyBvD+IPpE09c0q+nhFAhPadU+4TWWlg5P0CWcoPs5Cm0ahpG4C2q8gVdmCYk3tGWvVg3wF8D8IFoix0zm80CbdlsMfD2I7cYWVjEUTiIfa8shPGF7Ozu3acjOyM8HHE8KJ5FLkiRJkqQulp2GYuKNlLmgRkZr1zSfby5Pkmc6hA3K0ymGb9CNnce4BDg4iP6GHk5o636JzwNXBNEpwFpS2NwcG4ndh4fTRE28RRTCBmAz+5WAoyFsUB7KHfS1bb9mJU6E8A3Q9UyglzPDBmAz+91OjrNqZCwjsV/b9pMkSZIkSZkwsdMFbOMR8rwtiG2in9vavmM/t5I4kDw7VY3neLrtezYikSfPCmBF1XiJ+5kbXlFuxRnka5x6LGXgd5PnvWGs1OL172oSD5E4hDx7BHu2drW6HfLcAryxaqzE4/RxV9v3LLCMAb5H9H9OlDr875AkSZIkSRoV5eH/PNTpQiSpzZ79++3hThciSZIkSdJ4kZ0rz5IkSZIkSZIyz4aiJEmSJEmSpLpt+xbeS2nvtef3A//RxvUkjX+HE70ZKkmSJEmSMmHbhmIO2K2Na09u41qStg89tPfvIUmSJEmS1GZeeZYkSZIkSZJUt/8PJeTxVxevXWcAAAAASUVORK5CYII=" + } + }, + "cell_type": "markdown", + "id": "99554811", + "metadata": {}, + "source": [ + "
\n", + "\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "075ee09d", + "metadata": {}, + "source": [ "The implementation of the parallel function is given in the following code snipped:" ] }, { "cell_type": "code", "execution_count": null, - "id": "544466a6", + "id": "37863d46", "metadata": {}, "outputs": [], "source": [ @@ -720,7 +741,7 @@ }, { "cell_type": "markdown", - "id": "ce656413", + "id": "c6cdae12", "metadata": {}, "source": [ "In the following cells, we discuss the implementation of the helper functions `distribute_input`, `floyd_iterations!`, and `collect_result!`." @@ -728,7 +749,7 @@ }, { "cell_type": "markdown", - "id": "7beadf8e", + "id": "627378c3", "metadata": {}, "source": [ "### Distributing the input matrix\n", @@ -737,10 +758,25 @@ "send the pieces to all other ranks. This is done in the function below. We start by communicating the problem size N to all ranks (at the start only rank 0 knows the problem size). This is trivially done with an `MPI.Bcast!`. Once all ranks know the problem size, they can allocate space for their local part of `C` , called `myC` in the code. After this, rank 0 sends the pieces to all other ranks. We do it here with `MPI.Send` and `MPI.Recv!`. This can also be done with `MPI.Scatter!`, but it is more challenging since we are using a row partition and Julia stores the matrices in column major order. Note that this algorithm can also be implemented using a column-wise matrix partition. In this case, using `MPI.Scatter!` would provably be the best option.\n" ] }, + { + "attachments": { + "g5958.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSkAAATJCAYAAAA7PJMlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAACAASURBVHic7N15eJTlof7x70wSdgFxAXFDLSouVQ9WRQhbCbYq2ipUjwdBxZ/WDaypqEcTIJFqtWkLlVo90IpaTy3QcyxqjwYECWrdagWVKlWxyC4oKGvIvL8/RiOEQN6EzLxJ5vu5rvkj7zzPzA0ql94+C0iSJEmSJEmK2hFAUOXVKdJEaZQddQBJkiRJkiRJTcKBwKnAKcA+Vd77C/D87iZaUkqSJEmSJEmqrXbAiUD3HV7dgNhuxn+KJaUkSZIkSZKkevIdkisj6028Pj9MkiRJkiRJUpNX7wsfLSklSZIkSZIk1Zc1wLzaTnK7tyRJkiRJkqS6WA+8Bby+w+sd4CBgWW0+yJJSkiRJkiRJUm28BHQBPqqvD7SklCRJkiRJklQba7981RtLSkmSJEmSJNW31kCzHX7eCmyqMuYIoD9wHLA/ybtTVgIPAov38NnZwDeBE4Gjv5zbDvgC+BRYCrwA/B2oqGP+fdi5N9sMbKkyphswADgG2A/4HFhNcpXhHHb99aZDc6BVNc8/TXcQSZIkSZIkKWqPAMEOr/t2eO9UYFaV93d8fb+az+sAXAk8DWzYw9wdX58AY7+cW1vzqnzW6B3eO62a96u+1gO3kSwNwzqims/pVIv5RwHvVZlfTvL3Ld06s+uv5ZYIckiSJEmSJCmD7a6kvAnYzp4Lvguq+bxNNczZ02s50KOW+XdXUt4YIv+Or9lAm5DfuTcl5enAqipzPwfODjm/vtW6pIynIZQkSZIkSZJ0LVACZNUwrrq+KmcP49cD60huKa/OQSS3X/esKWANrgB+Qc35d9Qf+O1efm9NzgOeAw7c4dlKoC/JlaeSJEmSJElSRqq6knIOyTMdv/p5IfBjklunDwO6kiz0fgHkVfN55Xy9KvLXwGDgG0CsyrjDgeHAX9l1Jd9HwL4h81ddSTljh/wJ4I/A90gWoNkkz+A8DZi0Q9YdX+eE+M66rKS8ll1Xdi768rOi5HZvSZIkSZIkRa5qSfnVK0Fy63RtViMCzAUGEX5XcIzk1uyKKt9/R8j5uztzci3Qp4a5ZwPbqsz7vxDfWZuSMgbcXc34+SQv8YmaJaUkSZIkSVItHUL1NyKr7nZXUuanOUdBle//mJ1v7d6d6krKrSQv/Qnjp1XmVrDzduzqhC0pmwOPVTN2OtAiZL5Us6SUJEmSJEkK6UKSW2O/KqDup+YiSeFUV1K+QPrvR2kGrKiSo3uIedWVlONq8b2HsOsqzpousQlTUrYnuXW+6rhf0rDunrGklCRJkiRJqkE3kttvq1vp9wUwluRqNdVddSXl4IiyPFQlx7Uh5lQtKbcAB9TyexdW+YzbahhfU0l5GPBWlfcrSN6Y3tB4u7ckSZIkSdJudAAmkCyPztrNmNbAmC/HDElTrkywFZgZ0Xd/WOXn4+vwGa8Ca2o55+0qP9e25NzRycBL7Jx9C3Ax8PO9+NwGI8wefEmSJEmSpMYsB7gcGA/sH3JOV5I3OM8meQHLW6mJljHeIllU1pc2wDeBE0lurW795as6J1X5OewN3zt6ow5z1lX5uV0dPgNgIMnzJvep8tnfA8rq+JkNjiWlJEmSJElqygYAvwBOqOP8b5MsqH4L3A58Uk+5Mk3V1Yx1dTbw/4DvUvct+e3rMGdtHeZsqvJzyzp8xuUkz8LM2eHZEpK/D4vq8HkNltu9JUmSJElSU3QM8BRQSt0Lyq9kA1eRLIWuAbL28vMy0fq9nH8Ayb+eT5FcQbg3Z4bWZe7mOswJ6jCnqp+wc0H5d+BMmlhBCa6klCRJkiRJTUt7oAC4gZ3Lnd069dRTeffdd/n8889rGro/8Gvgh8CPgOf2Imem2bIXcw8keaP1cbt5fwXwMcki9AugvMr7x5DcGt4U7A+0JflrliRJkiRJUgMTB4YBK6n+1u5dXp07dw4mTJgQLF++PHj77beDESNGBFlZWaHmfvmaCRyZvl9io1L1du/79uKz/sCuv/fzgB8Q7jKa0VXmzg4xp+rt3qNrnRrurfIZj9UwvrrbvccDiSrPVrD3q4NTrda3e0uSJEmSJDV2fUieGxmqXGzVqlWQn58ffPjhh8Hy5ct3ej377LPBGWecUZuicivJG8Pbpu+X2yjUV0l5Mrv+nv8EiNXiM+6sMr8xlZSdgCuBiirP1wD/VodM6VLrktIzKSVJkiRJUmN1CPAwya3AJ9c0OBaLMWjQIObNm0d+fj7Nm+96NOEJJ5zAn/70J6ZOncqhhx4aJkMzYCTwD5LnVtq11K8Lqvy8ALiD2p33eGD9xYnEZJKrhLfv8Gx/kmXrGZEkSgH/wZEkSZIkSY1NK2As8B5wKSFW1Z188sn8+c9/5oEHHqBz5841fkFeXh7PP/88t99+O23atAmT6SDgAeAVoFeYCQrlW1V+nkFy+3NtnFpPWaL0e+AiYNsOz9oDz5JcSdzoWVJKkiRJkqTGIgYMAd4BxgAta5rQsWNHJkyYwFNPPUX37t1r9WUtWrTguuuuY968eQwePJhYLNQO4+4ktwr/ETi8Vl+o6lRdBfmvWs4/iKZzac6fSK4s3fESon2Ap4GBkSSqR5aUkiRJkiSpMegOlBGy/PuqYCwrK2PIkCFhC8ZqderUiYkTJ9am6NyxTB1LiDJVu5Vd5ecWtZz/QyCrnrI0BE8B5wIbd3jWCvgzMCiSRPXEklKSJEmSJDVkO26j7hlmQl5eHnPnzq3NVu1QvtoyPmHCBA48MNQxh61Irvh8j+SZgnVvSjPXmio/n16Lud8A8usxS0MxG/gOsGGHZ81JboUfEkmiemBJKUmSJEmSGqIcYBS1uJBmx0tvDjvssJSEisViDBkyhBdffHG3l+9U4xBgKiEv+NFOXq3y88Uky8eaHEiytGtd74kahvnAAGDdDs9ygP8meU5ro1N1yawkSZIkSVLUBgG/AI4KM3jfffflRz/6EZdffjlZWenZ2duqVSvy8/O58MILueuuu5g5c2aYaX2A10legnIzsCqVGZuI/wFu3eHnFsBfSJ7NuHA3cwYAv+Hrv3++AOpvSW3D8SrQn+TlOV8t7c0CHiJ5xMCDKf7+09j90Qv7VvPsRPaw0tOSUpIkSZIkNRTHkiwnvxNmcE5ODsOGDePmm2+mbdu2qU22G126dOGBBx7g0ksvZcyYMSxatKimKXGSK92+D5QAdwFbUxyzMXsFeJLkOYxf+QbwBsmyci6wguSKyS7Ad4FTdhj7AcnVhbenPmok3gT6ArOAr66tj5MsaVsCE1L43ddTu1Wb//Hlq1pu95YkSZIkSVHrQLJMWUjIgjI3N5dnn32W4uLiyArKHfXq1YtnnnmGe+65h/322y/MlDYkz6tcSCM+RzBNRgBLqjzLIllc/ozkytQHgf9k54JyJXA2sD71ESO1COgNfLTDsxjwS3ZehdqgWVJKkiRJkqSoZJM8b/JdYCQhdnweeeSRPPzwwzz++OMcc8wxqc5XK9nZ2QwdOpT58+czYsQIsrNDbWDtSvLG8lLghJQGbLxWA7nAC7WYM4fkduR3U5Ko4XmfZFH5zyrP7wLGpT9O7XmrlCRJkiRJisK3SW7tPjHM4LZt23LDDTdw1VVXkZOTk9pk9eT9999n7NixzJ49O+yUcuB3JLcmf5KyYOlxETuvanwJeGIvPzMOnE9yZWVvYJ8d3guA5cDzwMMkz2kMvnyvN8kVlV95H/ivGr7rhyS3j3/lL19+dm2c/eV3f+VNklvPd6cDMLrKs/HA57X4zoNIFv5VO7+pJFdc1qeqf433iiWlJEmSJElKp28APyHkFud4PM4FF1xAYWEh+++/f2qTpUhZWRl33HEHixcvDjtlHVAE3AdUpCxY45YFHEDygpYNJC8h2h5pIu0VS0pJkiRJkpQOrUneaH0r0DzMhDPPPJOioiKOO+64lAZLh/LycqZOncq9997L55+HXhi3CPgR8EzqkkkNgyWlJEmSJElKpTgwFLgH6BhmQufOnbnlllsYMqTp3Sezbt06fvGLX/DQQw9RURF6keSTwCiSN1VLTZIlpSRJkiRJSpXTSN7afUaYwS1btuTaa6/l+uuvp3nzUIstG62FCxdSWFjIyy+/HHbKNuA3wB3U7oxCqVGwpJQkSZIkSfXtYJK3Cg8lRPcQi8U499xzKSws5OCDD055uIaktLSUO+64g6VLl4adspzkbc2TgUTKgklpZkkpSZIkSZLqSyvgBpKr/dqEmXDSSSdRXFzMqaeemtJgDdnmzZv57W9/yy9/+Us2btwYdtprJLeAv5i6ZFL6WFJKkiRJkqT6MAiYCHQJM7hjx47k5+dzySWXEI/HUxqssVi5ciU/+clPmDFjBkEQhJkSANOBHwP/Smk4KcUsKSVJkiRJ0t74N+CXQG6YwTk5OQwbNoxbbrmFNm1CLbbMOG+88QaFhYW8/vrrYadsAu4F7ga2pCyYlEJZUQeQJEmSJEmN0v4kz538L0KunszLy+Phhx/m+9//Ps2aNUtltkbtoIMO4uKLL+bwww/nb3/7W5gt4DlAX2A4sBZ4M8URpXrnSkpJkiRJklQbOcC1QBHQNsyErl27Mm7cOPr27ZvKXE3Spk2buP/++/nVr37Ftm3bwk6bC9yIZaUaEUtKSZIkSZIU1gCS5052CzO4ffv23HTTTVx++eVkZbmZc28sWbKEu+66i5kzZ4adkgB+T/K8ytUpCybVE0tKSZIkSZJUk2OAnwNnhxmck5PDRRddxK233kqHDh1SmyzDzJ8/nzFjxrBo0aKwUz4jeVblL4DQSzGldLOklCRJkiRJu7MvcAvwIyDUIZK5ubmMGzeOY489NqXBMtn27dv5wx/+wE9/+lPWrl0bdtp7QD7wZOqSSXVnSSlJkiRJkqrKBq4A7gQOCDPhiCOO4NZbb2XQoEEpDaavffbZZ5SUlDB16lS2b98edtoskudVvp26ZFLtWVJKkiRJkqQd9Se5NfibYQa3bt2aH/7wh9xwww3e2B2Rf/7zn4wdO5bnnnsu7JRy4H6gEFifsmBSLVhSSpIkSZIkgG8APwGGhBkcj8e54IILKCgo4IADQi22VIqVlpYyZswYlixZEnbKWqAYuA+oSFUuKQxLSkmSJEmSMltr4GaSZ0+2CDOhR48eFBUVcfzxx6c0mGqvvLycqVOncu+99/L555+HnfYGyS3g81KXTNozS0pJkiRJkjJTDLgU+CnQKcyEgw46iFtvvZXBgwcTi1kpNGSrVq2ipKSExx57jEQiEXbak8BI4MPUJZOq558okiRJkiRlnm8BE4AeYQa3bNmSa6+9luuuu44WLUIttlQDsWDBAgoLC3nllVfCTtkMTATGA6GXYkp7y5JSkiRJkqTMcTBwFzCUEJ1ALBbj3HPPpaCggEMOOSTl4ZQaQRDw5JNPUlxczMcffxx22nJgHDAZCL0UU6orS0pJkiRJkpq+liS38d4O7BNmwje/+U2Kioo47bTTUhpM6bN582Z+/etfM2nSJLZs2RJ22qskz6t8MXXJJEtKSZIkSZKaukEkt+92CTO4Y8eO5Ofnc8kllxCPx1MaTNFYsWIFd911FzNmzCAIgjBTAmA6kA8sTWk4ZSxLSkmSJEmSmqZTgF8CvcMMzsnJYdiwYYwePZp99gm12FKN3N/+9jcKCwv529/+FnbKRuBnwN1A6KWYUhiWlJIkSZIkNS37AYXAdUBWmAl5eXmMGzeOLl26pDKXGqBEIsGMGTO48847WbNmTdhpS4E7gIdTl0yZxpJSkiRJkqSmIQe4luRlJ+3CTPjGN77BuHHj6NevX0qDqeHbuHEjv/nNb/jVr37Ftm3bwk6bQ/K8ygWpS6ZMYUkpSZIkSVLjNwCYABwXZnD79u256aabuOyyy8jOzk5tMjUqH374IXfffTczZ84MOyUB/B74MbA6ZcHU5FlSSpIkSZLUeB0N/Bw4J8zg7OxsLr74Ym699VY6dOiQ2mRq1MrKyhgzZgz/+Mc/wk75FPgp8Asg9FJM6SuWlJIkSZIkNT77ArcAPwKahZnQq1cvxo0bR7du3VIaTE3H9u3b+cMf/sDdd9/NunXrwk57F7gJeDp1ydQUWVJKkiRJktR4xIGhwL3AgWEmdOnShdtuu41BgwalNJiars8++4ySkhIeeughKioqwk6bBYwC3kldMjUllpSSJEmSJDUO/YBfAt8MM7hVq1Zcc8013HDDDTRrFmqxpbRHixcvZsyYMcydOzfslHLgfpK3za9PVS41DZaUkiRJkiQ1bIcC44FLwwyOx+NccMEFFBQUcMABB6Q2mTJSaWkphYWFfPTRR2GnrAWKgfuA0EsxlVksKSVJkiRJaphaAzeTPHuyRZgJp5xyCkVFRXTv3j2lwaTy8nKmTp3Kvffey+effx522hskt4CXpS6ZGitLSkmSJEmSGpYYMBj4GXBYmAmdOnXitttuY/DgwcRi/qe+0mfVqlWUlJTw2GOPkUgkwk57ErgBWJKyYGp0/JNLkiRJkqSG41skz508M8zgli1bcsUVV3DjjTfSunXr1CaT9uDNN9+ksLCQV199NeyUzcBE4E7gi5QFU6NhSSlJkiRJUvQ6A2OAK0ne4F2jvLw87rzzTg499NCUBpPCCoKAJ598kqKiIpYtWxZ22jLgP4FHgCBl4dTgWVJKkiRJkhSdZsA1JC8V2SfMhBNPPJGioiJOP/30lAaT6mrz5s38+te/5r777mPr1q1hp71K8rzKl1KXTA2ZJaUkSZIkSdEYBEwAjggzuEOHDtx4441cfvnlZGVlpTaZVA+WL1/O3XffzYwZMwiCUIskA+BRYDSwMqXh1OBYUkqSJEmSlF4nkzx3sk+YwTk5OQwbNozRo0ezzz6hFltKDcqLL75IYWEh77zzTtgpG0leHHU3sCVlwdSgWFJKkiRJkpQeHUieO3kdEGopZG5uLnfeeSddu3ZNaTAp1RKJBDNmzKC4uJhPPvkk7LT3Sf4z8/vUJVNDYUkpSZIkSVJq5QA3AAVA+zATjjnmGIqKisjNzU1pMCnd1q9fz89//nMeeughysvLw05bDeQC76UumaJmSSlJkiRJUuqcDfwcOCbM4Pbt23PzzTdz6aWXkp2dndpkUoT++c9/MmbMGObMmRN2yifAASmMpIhZUkqSJEmSVP+OJVlOfjfM4OzsbC699FJuvvlm2rcPtdhSahJmzZrF2LFj+eCDD8IMPwlYkOJIioj/W0aSJEmSpPrTHigErie5zbtGubm5FBUVccwxoRZbSk3KvvvuS7t27cIO3y+VWRQtS0pJkiRJkvZeFnAlUEzILaldunRhzJgxnHXWWSkNJjVEK1euZPz48fzpT38iCILK582bN2fr1q27m7Y6LeEUiXjUASRJkiRJauT6Aq8DvyFEQdmmTRvuuOMO5s6da0GpjLN161YmTJhAr169mDFjxk4FZV5eHk888USE6RQlV1JKkiRJklQ3hwA/AYYS4s6HWCzGhRdeyB133MGBBx6Y8nBSQ1NaWkphYSEfffTRTs9POOEEioqKOOOMM1i7dm1E6RQ1S0pJkiRJkmqnFTAauAVoEWbCySefTHFxMd27d09pMKkhWrx4MWPGjGHu3Lk7Pd9333256aabuOyyy8jKyoomnBoMS0pJkiRJksKJAYOBnwGHhZnQqVMnbrvtNgYPHkwsVuNiS6lJ+eyzzygpKeGhhx6ioqKi8nlOTg7Dhw/nxz/+MW3bto0woRoSS0pJkiRJkmp2KvBLoGeYwS1atGDEiBGMGjWKNm3apDaZ1MCUl5fz+OOPc/fdd7Nu3bqd3vM2e+2OJaUkSZIkSbt3EDCW5M3doS6fzcvL48477+TQQw9NZS6pQSorK6OwsJB33313p+dHHnkkY8eOZcCAARElU0NnSSlJkiRJ0q6aAdcARUCo/ag7Xv4hZZoPP/yQsWPHUlpautPztm3bcsMNN3DVVVeRk5MTUTo1BpaUkiRJkiTtbBDJrd1Hhhm877778qMf/YjLL7/cyz+UcTZs2MCvfvUr/uu//ott27ZVPo/H41x44YUUFBSw//77R5hQjYUlpSRJkiRJSd2AnwPfCTM4JyeHYcOGcfPNN3v5hzJOIpFgxowZ3HnnnaxZs2an93r27Mm4ceM47rjjIkqnxsiSUpIkSZKU6ToAY4DrgFBLIXNzcykuLuboo49OaTCpIXrppZcoLCzk7bff3ul5586dufXWWxk8eHBEydSYWVJKkiRJkjJVNnAFMB4ItR/Vyz+UyVasWMFdd93FjBkzCIKg8nnLli259tpruf7662nevHmECdWYWVJKkiRJkjLRt0meO3lCmMHt2rXj+uuv9/IPZaTNmzfz61//mkmTJrFly5bK57FYjHPPPZfCwkIOPvjgCBOqKbCklCRJkiRlkq4kV04OCTM4Ho9zwQUXUFhY6OUfyjhBEPDkk09SXFzMxx9/vNN7J510EsXFxZx66qkRpVNTY0kpSZIkScoEbYAfA7cCofaj9uzZk6KiIrp165bSYFJDtGDBAgoKCnj11Vd3et6xY0fy8/O55JJLiMfjEaVTU2RJKUmSJElqyrKAYpKX4oS6grtz587ccsstDBkSarGl1KSsWrWKkpISHnvsMRKJROXznJwchg8fzujRo2nTpk2ECdVUWVJKkiRJkpqq/YHFQPswg1u3bs2oUaO46qqraNasWWqTSQ3M1q1befDBB5k4cSIbN27c6b28vDyKioo4/PDDI0qnTGBJKUmSJElqqqYRoqCMx+MMHjyY2267jY4dO6YhltSwPP300xQXF/PRRx/t9Lxr166MGzeOvn37RhNMGcWSUpIkSZLUVJ1c04ADDzyQ3/3ud5xyyinpyCM1KIsWLWLMmDHMnz9/p+ft27cnPz+fyy67jKysrIjSKdN4wqkkSZIkqanaXtOA1atXM378eN5555105JEahHXr1nHbbbcxcODAnQrKnJwchg4dyvz58xkxYoQFpdLKklKSJEmS1FStDDPoxRdf5KyzzuKWW25h7dq1qc4kRaa8vJwpU6bQs2dPpk6dSkVFReV7ubm5PPvss9xzzz106NAhwpTKVJaUkiRJkqSm6ouwAysqKnjkkUfo2bMnDz74IOXl5anMJaXd3LlzGTBgAAUFBaxfv77y+RFHHMHUqVN5/PHHOeaYYyJMqExnSSlJkiRJ0pc2bNjA2LFj6du3LzNnzow6jrTXPvzwQ66++mouueQSFi9eXPm8bdu23H777cyZM4e8vLwIE0pJlpSSJEmSpEyTqGnAV8XORRddxLvvvpuOTFK92rRpEyUlJfTr12+nwj0ejzNkyBDKysq47rrraNasWYQppa9ZUkqSJEmSMs0vgafDDCwrK2PgwIGMHj2adevWpTiWtPcSiQTTpk2jR48elJSUsG3btsr3evTowTPPPMOECRM44IADIkwp7cqSUpIkSZKUadYA5wB5wKKaBpeXl/Poo4/Sq1cvJk+evNNlI1JD8sYbb3D++eczatQo1qxZU/n8oIMOYuLEiUyfPp3jjz8+woTS7llSSpIkSZIy1SzgJOBGYENNgz/77DMKCwvp378/c+fOTXU2KbQVK1YwcuRIzj33XF5//fXK5y1btiQ/P58XXniBwYMHE4vFIkwp7ZklpSRJkiQpk5UDE4CjgIlAjcskFy9ezCWXXMLw4cP56KOPUp1P2q3NmzczadIkevfuzfTp0wmCAIBYLMagQYN4/vnnyc/Pp0WLFhEnlWpmSSlJkiRJyiht2rSp7qaQT4BRwGnA/DCfU1paSu/evSkoKOCLL76oz4hSjUpLS+nbty/jx49n48aNlc+/+c1v8r//+7888MADHHLIIREmlGrHklKSJEmSlFFOOOGEI/bw9t+AXOA8YElNn1VeXs6UKVPIzc3l0UcfJZGo8eJwaa8sXLiQ733vewwfPpylS5dWPu/YsSP33HMPTz/9NN/61rciTCjVjSWlJEmSJCmjdOnSpWuIYTOB44FbgRqXSa5atYrRo0dzzjnn8Nprr+1tRGkX69ato6CggLPPPptXXnml8nlOTg5XXnkl8+bNY+jQocTjVj1qnPw7V5IkSZKUUTp16hSmpATYBPwU6AY8AgQ1TXjzzTc5//zzufrqq1m2bNlepJSSysvLmTx5Mj169GDKlCk73S6fl5fHvHnzKCoqYp999okwpbT3LCklSZIkSRmlVatWBy5btuzQWkz5GBgGnAH8tabBQRAwc+ZMevfuTUlJCVu3bq1rVGW4srIyBgwYQGFhIZ9//nnl82984xv8/ve/Z+rUqRx++OERJpTqjyWlJEmSJCkT5dVhzitAT2A4sKqmwZs3b6akpISePXsybdq0OnydMtX777/PpZdeykUXXcTixYsrn7dv357i4mKee+45+vXrF2FCqf5ZUkqSJEmSMk48Hq9LSQmQAB4GjgLGATUuk1y+fDmjRo1i8ODBvPPOO3X8WmWC9evXU1BQQL9+/Zg9e3bl8+zsbIYOHcr8+fMZMWIE2dnZEaaUUsOSUpIkSZKUcYIgyAuCYG/+m3gjMBY4EQi1TPLFF19k4MCBjBw5kk8++WQvvlpNzfbt23n00Ufp1asXU6ZMYfv27ZXv9erVi2effZZ77rmHDh06RJhSSi1LSkmSJElSJtpvxYoV/1YPn7MY+AEwAHirpsGJRILp06fTq1cvJk2aRHl5eT1EUGM2f/58zjrrLEaPHs3atWsrnx9xxBE88MAD/PGPf+TYY4+NMKGUHpaUkiRJkqRMNbAeP2s2cApwNVDjMskNGzYwfvx4+vXrx6xZs+oxhhqLJUuWcPXVV/ODH/yARYsWVT5v1aoV+fn5zJkzh0GDBkWYUEovS0pJkiRJUqaq67mUu7MdeBA4Bpj45c979MEHHzBs2DAuuugi3n333XqOo4Zo06ZNlJSU0K9fP2bOnFn5PB6PM2TIEF566SXy8/Np1qxZhCml9LOklCRJkiRlqjNXr17dJgWfuw4YRfK8yv8LiWr4sAAAIABJREFUM6GsrIyBAwdSUFDAhg0bUhBJUQuCgGnTpnHmmWdSUlLC1q1f37l0yimn8MQTTzBhwgQOOOCACFNK0bGklCRJkiRlqmaJRKJvCj//H8B3gfOAD2oaXF5ezpQpU+jRoweTJ0+moqIihdGUTn//+98577zzGDVqFKtXr6583qlTJyZOnMiTTz5J9+7dI0woRc+SUpIkSZKUsRKJRH1v+a7OTKAbcCNQ4zLJTz/9lMLCQr773e/y17/+NeXhlDorV65k5MiRnHPOObz++uuVz1u2bMl1111HWVkZgwcPJhaLRZhSahgsKSVJkiRJmaw+L8/Zk23ABOBYkudWJmqa8NZbb3HBBRcwfPhw/vWvf6U6n+rRli1bmDRpEr1792b69OkEQVD5Xl5eHnPnzuX222+ndevWEaaUGhZLSkmSJElSJjt2xYoVXdL4fStI3gB+GvBCmAmlpaX07duX8ePH88UXX6Q0nPZeaWkpffr02eWv14knnsj//M//MHXqVA499NAIE0oNkyWlJEmSJCmjBUEwIIKvfR3IBX4AfFTT4K9W5uXm5jJt2rSdVuapYdhx5evSpUsrn3fo0IHi4mKefvppTj/99AgTSg2bJaUkSZIkKaMFQZCOcymr/WpgGnAcMA7YXNOEVatWMWrUqF3OOFR0Pv30UwoKCnY5QzQnJ4crr7ySl156iREjRpCVlRVhSqnhs6SUJEmSJGW0WCyWFwRBlA3SJmAscDTwCMnyco++ui165MiRO90WrfQpLy9n8uTJ9OjRgylTpux0G3tubi6zZs2iqKiIffbZJ8KUUuNhSSlJkiRJynT7rly5snvUIYCPgWFAP+DvNQ0OgoDp06dz5plnUlJSwtatW1MeUEllZWXk5eVRWFjIhg1fX9h+1FFH8cgjj/D444/TtWvXCBNKjY8lpSRJkiQp4wVBkK5bvsN4HugODAdW1TR406ZNlJSU0KtXL6ZNm5bycJnsgw8+YNiwYVx00UW89957lc/btWtHcXExc+bM4dvf/naECaXGy5JSkiRJkiSI6lzK3UkADwPHAj8FalwmuWzZMkaNGsWQIUNYtGhRqvNllPXr1zN+/Hj69evHrFmzKp9nZ2czdOhQ5s+fz4gRI8jOzo4wpdS4WVJKkiRJkgRnrl27tm3UIarxGXArcCLJS3Zq9MILL5CXl8fIkSNZu3ZtSsM1dYlEgmnTppGbm8ukSZMoLy+vfK9Xr14888wz3HPPPey3334RppSaBktKSZIkSZIge8uWLX2jDrEHi4EfkFzx+XZNgxOJBNOnT6dXr167lGsK56uyd9SoUXzyySeVz7t06cIDDzzAH//4R7p16xZhQqlpsaSUJEmSJAmIx+MNbct3dWYBpwBXA5/UMLZym3L//v2ZPXt2ysM1BcuXL2fkyJG7bJtv1aoV+fn5zJkzh0GDBkWYUGqaLCklSZIkSaLBXZ6zJ+XAg8AxwESgoqYJ77//PpdeeukuF77oa19dQNSzZ0+mT59e+TwWizFkyBBefPFF8vPzad68eYQppabLklKSJEmSpKSjV65ceUTUIWphHTCK5HmVz4SZUFZWRl5eHgUFBWzYsCGl4RqLIAiYOXMmffr0oaSkhK1bv76j6OSTT+bPf/4zEyZM4MADD4wwpdT0WVJKkiRJkvSlRCLRGLZ8V7UI+A5wHvBBTYPLy8uZMmUKPXr0YPLkyVRU1LgQs8n6+9//zvnnn8/VV1/NsmXLKp936tSJiRMn8tRTT9G9e/cIE0qZw5JSkiRJkqSvNcaS8iszgW7AjcDnNQ3+9NNPKSws5Oyzz+bll19OebiGZNWqVYwePZpzzz2X1157rfJ5ixYtuO6665g3bx6DBw8mFotFmFLKLJaUkiRJkiR9bUAQBFlRh9gL24AJwLEkz61M1DRh4cKFfP/732f48OEsXbo01fkiVV5ezuTJk8nNzeXRRx8lkfj6tycvL4/nn3+e22+/nTZt2kSYUspMlpSSJEmSJH2t/apVq74VdYh6sJzkDeCnAy+GmVBaWkqfPn0YP348GzduTGm4KJSWlpKbm0thYSFffPFF5fMTTjiBP/3pT0ydOpVDDz00woRSZrOklCRJkiRpB0EQnBV1hnr0GtAL+AHwr5oGb9myhUmTJpGbm8u0adMIgiDlAVNt8eLFXHLJJQwfPpx//evr34J9992X4uJi/vKXv3DGGWdEmFASWFJKkiRJkrSTIAga87mU1QmAaSTPqxwHbKlpwsqVKxk1ahTnnnsur7/+eqrzpcRnn31GQUEB/fv3Z+7cuZXPc3JyuPLKK3nppZcYMWIEWVmNeXe/1HRYUkqSJEmStLPT161b1y7qECmwCRgLHA08EmbCG2+8wXnnncfIkSNZvXp1KrPVm6/OnTzjjDOYMmXKTreX5+bmUlpaSlFREW3bto0wpaSqLCklSZIkSdpZ9pYtW/pHHSKFlgLDgH7AmzUNDoKA6dOnc+aZZ1JSUsK2bdtSHrCuysrKGDhwIIWFhWzYsKHy+ZFHHsnDDz/M448/ztFHHx1hQkm7Y0kpSZIkSdKumtqW7+rMBf4NGA7UuExy06ZNlJSU0LdvX2bOnJnqbLXywQcfMHz4cC666CLefffdyuft2rXj9ttvZ86cOQwYMCDChJJqYkkpSZIkSdKuvhN1gDRJAA8DxwA/BWpcJrlkyRKuvvpqfvCDH7Bo0aJU59ujDRs2MH78ePr3709paWnl83g8zpAhQygrK+O6664jJycnwpSSwrCklCRJkiRpV0esWrXqqKhDpNFnwK3AicBTYSbMnz+fs846i9GjR7N27dqUhqsqkUgwbdo0evXqxaRJk3bagt6zZ09KS0uZMGEC+++/f1pzSao7S0pJkiRJkqqRSCQGRp0hAu8B55Lc7v52TYO3b9/Oo48+Sq9evZg8eTLbt29PecAXX3yRgQMHMmrUKD755JPK5507d2bixIlMmzaNbt26pTyHpPplSSlJkiRJUjWCIMiEcyl3ZxZwCnAjsL6mwevXr6ewsJD+/fvz3HPPpSTQihUrGDlyJEOGDOGdd96pfN6qVSvy8/N54YUXGDx4cEq+W1LqWVJKkiRJklS9bwdBkMmHGZYDE4CjgIlARU0T/vnPfzJ06FCGDx/OkiVL6iXE5s2bKSkp4cwzz2T69OkEQQBALBZj0KBBPP/88+Tn59O8efN6+T5J0bCklCRJkiSpem2XL19+WtQhGoC1wCjgW8C8MBNKS0vp06cPBQUFfP7553X60iAImDlzJn369KGkpIStW7dWvnfSSSfxxBNP8MADD3DwwQfX6fMlNSyWlJIkSZIk7V4mb/mu6g2gD3Ae8GFNg8vLy5kyZQq9e/fm0UcfpaKixoWYlRYsWMD3vvc9rr76aj7++OPK5x07duSee+7hqaee4tRTT63DL0FSQ2VJKUmSJEnSbsTj8Uy8PKcmM4HjSd4GXuMyyVWrVjF69GjOOeccXnnllVBjzz77bF599dXK5zk5OVx55ZWUlZUxdOhQ4nHrDKmp8Z9qSZIkSZJ2IwiC05YuXdoh6hwN0Gbgp8CxwCNAUNOEBQsW8P3vf3+X1ZGQXHU5efLkylWXiUSi8r28vDzKysooKiqiTZs29furkNRgWFJKkiRJkrR7WVlZWf2iDtGALQeGAacDL9U0eMdzJsePH8/GjRspLS2ld+/eFBYW7nR+ZdeuXXnssceYOnUqhx12WOp+BZIahOyoA0iSJEmS1MDlATOiDtHAvQr0AoYDPwE67Wnw5s2bmTRpElOmTGHLli07vde+fXvy8/O57LLLyMrKSllgSQ2LKyklSZIkSdqzs6IO0EgkgN8BR5PcCr51z8PZqaD86tzJv/71r4wYMSLjCsrt27fz6quvsnjx4qijSJGwpJQkSZIkac+6LF26tGvUIRqRz0leqtOV5HmVoVxxxRUUFRXRtm3blAVrqObNm8eAAQM4//zz6du3L7/97W+jjiSlnSWlJEmSJEk1yM7O9pbv2ltK8rzKPOCtmga/8847KQ/U0Hz44YdcdtllXHzxxbz33ntA8tzO3/zmNxEnk9LPklKSJEmSpBoEQZAXdYZGbBZwEsnzKtfsblDVsymbsk2bNlFSUkK/fv149tlnd3l/48aNEaSSomVJKUmSJElSzfoHQZATdYhGLAE8DBwDzIs4S2QSiQT//d//TY8ePSgpKWHbtm1RR5IaDEtKSZIkSZJqts+KFSvOiDpEE/ApsOvSwQzwxhtvcP7555Ofn8+aNbtdUCplLEtKSZIkSZLCccu3am358uVcc801nHvuubz++uu7vJ+Tk0Nenn9rSZaUkiRJkiSF4+U5Cm3Lli1MmjSJPn368MQTTxAEwS5jcnNzKS0t5dprr40godSwWFJKkiRJkhTOqUuXLu0QdQg1fKWlpfTp04fx48dXewnOUUcdxSOPPMLjjz/O0UcfHUFCqeHJjjqAJEmSJEmNRFZ2dva3gWlRB1HDtHDhQgoLC3n55Zerfb9du3Zcf/31XHXVVeTkeA+TtCNLSkmSJEmSQgqCIA9LSlXx6aef8vOf/5yHHnqIioqKXd6Px+NccMEFjBkzhv322y+ChFLDZ0kpSZIkSVJ4nkupSuXl5UydOpWf/exnbNiwodoxPXv2pKioiG7duqU5ndS4WFJKkiRJkhTe4cuWLTvm4IMPfjfqIIpWWVkZBQUFvPfee9W+f/DBBzN69GiGDBmS5mRS42RJKUmSJElS7QwELCkz1Pvvv8/YsWOZPXt2te+3atWKa665huuvv57mzZunOZ3UeFlSSpIkSZJUC/F4PA/4VdQ5lF7r16/nvvvu48EHH6S8vHyX92OxGBdeeCF33HEHBx54YAQJpcbNklKSJEmSpFoIgqD/4sWLm3ft2nVr1FmUeolEghkzZlBUVMTatWurHXPyySdTXFxM9+7d05xOajosKSVJkiRJqp3Wbdq0OQN4PuogSq358+czZswYFi1aVO37nTp14rbbbmPw4MHEYrE0p5OaFktKSZIkSZJqKQiCPCwpm6wlS5Zw1113MXPmzGrfb9GiBSNGjGDUqFG0adMmzemkpsmSUpIkSZKk2hsI3BF1CNWvTZs2cf/993PfffexdWv1u/nz8vIoLi7msMMOS3M6qWmzpJQkSZIkqfa6r1ix4oCDDjpoTdRBtPeCIGD69OmMHz+e1atXVzvmhBNOoKioiDPOOCPN6aTMYEkpSZIkSVLtxROJRH/g8aiDaO8sWLCAW265hTfffLPa9/fff39uueUW/v3f/514PJ7mdFLmsKSUJEmSJKkOYrFYHpaUjdrKlSu58MIL2bhx4y7v5eTkMGLECG688Ubatm0bQTops1hSSpIkSZJUN2dFHUB75/XXX6+2oMzLy2PMmDEceeSREaSSMpMlpSRJkiRJdXPI8uXLu3Xu3HlR1EFUNxUVFTv93K5dO+6//3769u0bTSApg3mYgiRJkiRJdTcw6gCqP507d7aglCJiSSlJkiRJUt3lRR1AkpoCS0pJkiRJkuqu7+LFi5tHHUKSGjtLSkmSJEmS6q51mzZtzow6hCQ1dpaUkiRJkiTthSAIPJdSkvaSJaUkSZIkSXvHklKS9pIlpSRJkiRJe+eUlStXHhh1CElqzCwpJUmSJEnaO7FEIjEg6hCS1JhZUkqSJEmStJeCIMiLOoMkNWaWlJIkSZIk7aV4PD4wCIJY1DkkqbGypJQkSZIkaS8FQdB51apVx0edQ5IaK0tKSZIkSZLqQSKR8JZvSaojS0pJkiRJkuqH51JKUh1ZUkqSJEmSVD/6LF26tGXUISSpMbKklCRJkiSpfrSMx+M9ow4hSY2RJaUkSZIkSfUkHo+75VuS6sCSUpIkSZKkehIEgZfnSFIdWFJKkiRJklR/TlqzZs1BUYeQpMbGklKSJEmSpPoTKy8v/3bUISSpsbGklCRJkiSpfnkupSTVkiWlJEmSJEn1a2AQBLGoQ0hSY2JJKUmSJElS/er08ccfnxh1CElqTCwpJUmSJEmqZ9nZ2d7yLUm1YEkpSZIkSVI9C4LAcyklqRYsKSVJkiRJqn+9ly5d2jLqEJLUWFhSSpIkSZJU/1pkZWXlRh1CkhoLS0pJkiRJklLALd+SFJ4lpSRJkiRJKRCPx708R5JCsqSUJEmSJCkFgiA4cc2aNQdFnUOSGgNLSkmSJEmSUiO2fft2t3xLUgiWlJIkSZIkpYjnUkpSOJaUkiRJkiSlTl4QBLGoQ0hSQ2dJKUmSJElS6nRctmzZSVGHkKSGzpJSkiRJkqQUisVi3vItSTWwpJQkSZIkKYVisZjnUkpSDSwpJUmSJElKrdyVK1e2jjqEJDVklpSSJEmSJKVW80QikRt1CElqyCwpJUmSJElKPbd8S9IeWFJKkiRJkpR6Xp4jSXtgSSlJkiRJUuqd8PHHHx8SdQhJaqgsKSVJkiRJSoOsrKwBUWeQpIbKklKSJEmSpDQIgsBzKSVpNywpJUmSJElKj4FBEPjf4ZJUDf9wlCRJkiQpPfZfsWLFyVGHkKSGyJJSkiRJkqT08ZZvSaqGJaUkSZIkSWniuZSSVD1LSkmSJEmS0iQWi/VavXp1m6hzSFJDY0kpSZIkSVL6NKuoqOgddQhJamgsKSVJkiRJSiO3fEvSriwpJUmSJElKLy/PkaQqLCklSZIkSUqv45YvX35Y1CEkqSGxpJQkSZIkKc3c8i1JO7OklCRJkiQpzeLxuCWlJO3AklKSJEmSpDQLgmBAEAT+N7kkfck/ECVJkiRJSr/9Vq5c2T3qEJLUUFhSSpIkSZIUgSAIvOVbkr5kSSlJkiRJUjQ8l1KSvmRJKUmSJElSNM5cu3Zt26hDSFJDYEkpSZIkSVI0crZs2dIn6hCS1BBYUkqSJEmSFJF4PO6Wb0nCklKSJEmSpMh4eY4kJVlSSpIkSZIUnWNWrlx5RNQhJClqlpSSJEmSJEUokUgMiDqDJEXNklKSJEmSpGh5LqWkjGdJKUmSJElStAYEQZAVdQhJipIlpSRJkiRJ0dp31apVp0YdQpKiZEkpSZIkSVLEvOVbUqazpJQkSZIkKWJBEHgupaSMZkkpSZIkSVL0eqxbt65d1CEkKSqWlJIkSZIkRS978+bNfaMOIUlRsaSUJEmSJKlhcMu3pIxlSSlJkiRJUgMQi8W8PEdSxrKklCRJkhqA4c+9ffyw2W/dEnUOSZHqumrVqiOjDiFJUbCklCRJkiI0rPTtwy6b9dYkgsSrsSAoGv7Mgt5RZ5IUnYqKCrd8S8pI2VEHkCRJkjLRsNnvHhxjaz4krgwCmhN8+UZ2fCzQP8JokqKVBzwQdQhJSjdXUkqSJElpNGzWy/tdNmvh+Djb3iaIXUdA850GBEHPK+a8MyCieJKi9+0gCFxQJCnj+AefJEmSlAZD5rzdplUi8cMYjA4C2lWunKxGRUVFMUEwm1hsD6MkNVHtly1b9i3gpaiDSFI6WVJKkiRJKXTVzNdabWnV8opYRcWtEDsgZOv4b5fPWnje7+CJ1KaT1BBlZWUNxJJSUoZxu7ckSZKUAle99lrOsNlvXrmtZfN3YkGiBGIH1GZ+IhYbO3Zs4L+vSxkoCAIvz5GUcfyXHkmSJKkejR0bxIeXvnXh1vXNF8SC+KQADqrjRx23pOfCi+s1nKTG4vR169a1izqEJKWTJaUkSZJUH4IgNvy5hed8mPvWK8SCxwg4cq8/MhYbO+SPbzerj3iSGpXsLVu29I86hCSlkyWlJEmStJcun/12/8uee/slEvyJgBPr8aMPb71vxfB6/DxJjYdbviVlFEtKSZIkqY4un73wzOHPLSxNBIm/BEFwSkq+JBa7/aqZr7VKyWdLasi+E3UASUonb/eWJEmSaumyWW99KyD4z0TA2YS8rruuAjhoW8vm/w+YkNpvktTAHLFq1aqjOnbs+H7UQSQpHVxJKUmSJIV0aenCbsNnL3gMgjLg7LR9cSw2+j+e/mvbtH2fpAYhkUgMjDqDJKWLKyklSZLSrxNwOnAycOSXP7cFcoAvgA3AamAhsAB4GdgUSVIBcNmcRV2oKB8bxLiIIBZP8eLJXQRBsH9289Y3AOPT/NWSIhQEQR5wf9Q5JCkdLCklSZLSY19gOHAJcCoQq8XczUApMAN4HNha7+m0RxXl2/fPiscuJqjVX7d6FYNRw2a9/JuHB5y+NqoMktLu20EQ5MRisfKog0hSqrndW5IkKbVaA+OAfwG/AL5F7QpKgJbAecBUYAlwcz3mUwiPDDzxtQCejjJDENAuTquboswgKe3aLl++/LSoQ0hSOlhSSpIkpU4P4E2gEGhTT5/ZCRhVT5+lWkhUJAqJkYg0RIzrrnj2H50jzSAp3fKiDiBJ6WBJKUmSlBr/AcwBjoo6iOrHI2ed9BYwPcoMQUDLRLx8dJQZJKVXPB738hxJGcGSUpIkqf5dCjwMNI86iPZsyB/fbjZs9ptXDp+1cDpBUOM2/Ip4fFwMtqcj2+4EcOWlz795RJQZJKVPEASnLV26tEPUOSQp1SwpJUmS6ldf4HeE//esAHgNmAL8hOTW8AnAY8CiFOQTMHZsEB9e+taFrTskFsSC+CRg0GVzFn63pnmP9jv+n8R5JA0R9yQna3vWbRFnkJQ+WVlZWf2iDiFJqWZJKUmSVH/aA78HskKM3USylOxM8jKdK4HbgWLgRpLbxY8DDgRGAK+nIG/mCYLY8NK3Lvwwd+GbxILHAvh6RWIQKx47Nqjx349jWYwnFu0N6wHB0MvmLDg2ygyS0spzKSU1eZaUkiSpvhwLnEOybLsEOIVwZR1ANsmi7j+Aq4ALgNO/fN6YjCVZOtbkH8AJJEvJlTWMXQP8FjgVyAX+thf5Mtrls9/uf9lzb79ELPj/7N15fFTV2cDx37mTsAVcEEVRBBdUIAFFFGWTkASUglYQrAskLJUqVWqxWIyEkJiCCr5uuFCUBKgtRKq+WBSysYptUQxJBEVFRUFFNmVP5p73j5u8hpnJ3FkzWZ7v58NHZu655zxCSGaeOed5XkOry1yva03szj6lt9nNs/CGuF2gF4QnSh9pHJjG9IjGIISoTYMjHYAQQoRbfXvhL4QQQojwuwZ40cv1r4ARlb+PAn4H3Iu168/VHmAe8BRwzMP1s4CHgXGVv3d1EFgKzKycqyY3AHO9XP9vZYy+ag4UAtE1XD8JJGLthqxyLtafhZ3tQF9gnx/xVNmA9fdjm0gTvxhbUNLbVMw0TbO/3VilmDGgqOifa+LjvdadNE5UzDKbRo9B0yp0kfpJ6xFj8j6asyjpyi0Ri0EIUVs67tq1q1P79u13RDoQIYQIF0lSCiGEEMJVK+BqL9dbVv63PVbdxL5exp4HPAbcAdwMfFHt2k1ANtZx5pqcAUysvP9WrMShJ+9VrlXTLsYrgSzgGy9rVXcTcJ2X68s5NUEJ8FvsG+WcAH5DYAnKKiawLIj7G42U/NJrNPoRUzME7ds9Gi7tUHHWaKy6ojVaOKTH3uSCrS+CilinbQ1KGUY6cEukYhBC1J6oqKhBgCQpG6h9+4J5aSBEwyDHvYUQQggRiHOxdvV5S1BW1xUoAs6ufDwC+F+8JyirOw1YiXXk2ZNy4CUv9zuAsT6uBTDK5vqrAdwD1g7VYj/iEAEYnVfSOblg62ug1wND/J5AqdT7V+6w7cyuDOdcFPsDiTFktLoxedVW2x2iQogGYVCkAxChd+DAAaZNm8bEiRMjHYoQESdJSiGEEEL4qxnwFnChn/ddCLwAdANy8P9ER1Os3W01HcGeD16bmYzHt9c+LYChXq5/C6xyee58rBqT3pjA8z6sLwI0vuDjDin5pfMMgw/QaoQGFeBU7X9qcmKC3aDs+KsOKvQzAa4ROlFGeqRDEEKEn9Y6Xmtd089AUc+Ul5fzyiuv0Lt3b3JycnA6nadcv/BCf19mCVH/SZJSCCGEEP7qAFwb4L0jsBJ8MQHeHwsMq+Ha93g/Bt0B33ah/Arv8eUATpfnevkw7xbgcx/GCT+NKfjk/OSCrU9V4CzV6Alonxs21UzpaePe2m5bb/KI4Xge9N6g1wvSyLzNp0c6BiFE2LXas2fP9ZEOQgRv7dq1JCYmMn36dA4dOuR2vX379syePTsCkQkRWZKkFEIIIUSwPsbaWbke69i1NwrrqHh1e4B/YSUvD/uwXoqXa8/a3PtbH+b3dmxb47lW4eU+zLvJhzHCD3es2NwmJb8ky+BkGVpNQtMkZJNrznbGVNg2W8qN73pYKfV4yNb1iy5DqztzEmIH5ib1dH+XK4RoiJIiHYAI3JdffsnEiRO544472LHDvbxo8+bNmTRpEoWFhXTv3j0CEQoRWZKkFEIIIUSg9gADsepN/hroD/TA96Yw5Vgdt9tjHa++EbgU+5qNfaj5GO9mvCcDh+GeJK2uJd5rGK4DPvPwfAcv91Qp9WGM8MG4t7a3Si4oeahJi2bbNDykNc3Ds5KecufbW8+0HWb8+Fd8b8oUCp9oGH/RhrieOUmxy2txXSFE5Eldynro6NGjzJ07lwEDBrBixQqPY5KSklizZg2pqanExAR64ESI+k2SlEIIIYQIhBOro3CRy/OlWHUnffEnrGY31Y9Ofw/8wea+1nivh+ltN2U03ndiDsWqSVkTTw1zwGrsY+eAD2OEF6NXFcckF5Q8ZLYs34EmC619+XMPxhlNmqvJdoOy4+OPA38JcywAu7QyJ33l+LHHosS4JenpyqyFNYUQdcvV33zzzVmRDkL4xjRNcnNzuf7665k7dy4nT550GxMXF8cbb7xBTk4O7du3j0CUQtQdkqQUQgghRCCWAP+t4doGH+7/AphXw7V12B/7buvl2nJgt5frE6h5J6a3o94/Aa/XcM2XnXxyHDdAI5eVNRlTUDzBcBgfo8nSGvvdjSGi4YHRGz+z7UJ/dP+2bJT+NCxBKPaiSFWOH2MXJXRfsCY+viIs6wgh6gOHw+FIiHQQwt5MBNABAAAgAElEQVSWLVu45ZZbmDx5Mnv3upcubt26NRkZGaxcuZJevXwpbS1EwydJSiGEEEIE4jUv17wlCKvkAjUlWkzgO5v7z/ByrRxrh2ZNLsE6pu6qFXCTl/v+ARyt4Zr71gh33nZoihqMyS+Nb9Ha/FhpYx7ej+qHhybGOHZsqt2w3FGjnEobWSFdW7EfRWrToycuy0mIm1O5Y1MI0chpraUuZR22Z88eHnjgAYYOHcoHH3zgdj06Oprx48ezadMmJkyYgMMRfK83IRoKSVIKIYQQIhD/9nLtZx/ut2siY9ct2W7n4svACS/XPTXQuRlo5uWemo56g28Nf2pt91/D4vhWwXmRjUH9dkJR8QV2ozpu6LoM2Br0anBYwRxlVHTOSYibM39Yz5qS40KIxunGSAcg3B07dox58+bRv39/Xn/9dbTWbmP69etHfn4+mZmZtGrVKgJRClG3SZJSCCGEEP76Ee9Hl3/yYQ73lpanCrbW3g/AUi/Xfw20cXnO21HvMrwnZn1pmnKxD2OEi0WJnT/VyuvfZS3QzcpN4xG7UenpylRKZQS8jOKkQi1wNm/eOTsxLjU7/qqDgUyTnq6NezZvjg44DiFEXXfB7t27r4h0EOIXeXl5DBgwgKysLI4cOeJ2/ZJLLmHx4sUsXbqUTp06RSBCIeoHSVIKIYQQwl92OyV92fVlV5+xqY+xeOOtgU5TILna49OBwV7Ge9tFCfC5D/H09mGM8CAKx0yUT0fqwyllTP62y+wGZSfErlBKeUtoe1KuUAsczujLsxNjJy3uc+kPAcbI2IKygV/2K3vv5MGm9wU6hxB1hAM4H+hR+XtxKunyXQeUlJTw61//muTkZHbt2uV2/fTTTycjI4OioiISEqSUqBB2JEkphBBCCH+FIlnk7Sh2qHwAvOflevUGOrdQc2L0JLDYZq2amghVdx1y5NvNuLe22553eyWhy1egsmshnJppHIqKVF+GKlS6T3MqTJRejqJ7dmLspFcHXeFLPVePkldv6ZNcUJpvavMdrfVVKDX1rpXvh7v7uRDBaAl0waoFPBF4DFiE1TxtJ3AMa5f6B8DsCMVYZ0ldysjav38/06dPZ8iQIfznP/9xux4VFcXdd9/Nhg0bmDBhAlFRURGIUoj6R/6lCCGEEKIhe46adzBeAfTDekPs7aj329jXyPwE2IP32onNsRKjT9rM1SiMzivpbBh6ulOXdx65bFnP3FGjnN7GK0NlaVPfjY5gAyLFqDH5JXMXJcZ5rTu5MKFrYXJeyRoUA2oepQu1Vg8vSuwWVA3LMQUfXau0YxowhGr1z7TWbaKaxtwPhLaZjxC+MbAaXXUE2gMXVv63Y7Xft/ZjPrtmao2OUip+x44dTTt16lQbH/qJSuXl5eTk5PDkk0/y88+eD5b07duXmTNn0rlz51qOToj6T5KUoqG6ATin2uNSYFuEYhFCCBE5y4FvsY4MevJboATwtiPF7qg3WDU0/wlMshk3BcjGPunZYI0v+LiDU5tTtdJj0coB0KL1Fb8B/ubtvuz4rt+l5G99WaMerJVAPdEYCtKA2+yGKqUeBb1e/7Jbt2qSQgwezRnYzb3lqx/G5pd1MZXzUaXVcPc1KmOAyWPy//3SosRe+4JZSwgPWnBqwvHCyl8dKv97PtAkRGu9AjwVorkakpiWLVteD6yJdCCNRV5eHjNmzODLL7/0eL1jx45MmzaNYcOG1W5gQjQgkqQUDdV0IMHl8WMRiiVQZwPXAO2wXugdxdql8wXWscLyyIUmhBD1RjnwEpBZw/URwBZqfjP9LfCuj2u9DNxHDQmjSm2xkp63EFxzoIuxfh7UG2MKPjnf0OWPOLUzRUMUpzQ9VTNGLivLzR3V1WspAZNjTyoVMx6tI3mMedjoVcW9Fg/u7rXuZHZi7H+T80veAYYAoHhfGczIju+2JpjFq5K8pjLHopXDvXfsL7TmdIMWfwR8OqYuRDVnYn2faYe1Q/xil8cX4f17Xai8CfwO8Pal3mhVHvleE+k4GrrPP/+cGTNmUFhY6PF6ixYtuPfee/n9739P06ahKKndMG3ZsoVt27bRp08fOnToEOlwRB0lSUoh6p7+WG8mEqm5buwhYCEwC6uDrRBCiJrNBx7Fc83J5ng/DrsI8HoMuZoSrKPhdlsohgL/AEbjf23OM4CZWEnOjn7eGxF3rNjcpmnzpg/CyUna+vP2pEOL1s4UrL+rGi1K7LUvJX/rsxr1aMgD9YPhUOlYdfS80jBDQVvDUDMXDoxdFcyaE4qKL6hwOqZ5TvJ6oZg0bvX2ecHUuxQN1vVAV345hl39WHaodkEGIw/4DVAR6UDqsEHIhxBhc+jQIebMmUNOTg4VFe5fhkopRowYwaOPPso555zjYQYBsGvXLjIzM3n77bcBaNmyJatWreKiiy6KcGSiLpIkpRB1RxOsTrT3YP/J9OnAH4AUYAywIqyRCSFE/fYDVlIwuYbrzWp4XmN9IOSPKVhvGu22UowELgemAr4krzoB9wJjsRKV3/oZV60b99b2Vs6W5RNBPay1Ps0+qaZS71mxecn8YT29doc/4nD8TwvTnIjm7NBF6y81MKWoZEB2fNwab6Mqa1cG1dW9Kslb7lS/B13T12qNtKa5aZRPxXrdIESVeMDztrC64X1gOLXTZK0+67Fnz56zzzvvvEZbQiQcKioqWLhwIU8++SQHDx70OOaaa64hMzOTbt261XJ09cfRo0d57rnneOmllzhx4pd/yocPH+bdd9/l3nvvjWB0oq6SJKUQdUMTrFpmv/LzvjOwjsGMBl4LdVBCCNGAPEfNScqarAd2+HnPDuChyvXsdMM6Sv4JsBL4CKtW5TGso5ZtgSuxmvt0pnaOVgZt9KriGCPKuNek/CE0Z/pxSvPcky2a3QM87W1QbnzXw8n5Jf8D/CXYWIOhTR5D634oFZZjqG5J3iBOu2qYMHpt8TOLb+i+M4Qhivrta6wPcOri9q9SrNfEhyMdSD1gmKaZgPVBnAiRHTt2kJrqeYPqueeey7Rp07jttttQql78WK51WmvefvttMjMz+eabbzyOqZ60FKI6SVIKUTc8iXuCshz4O5CLVXcsButIziSgZ7VxBtZOnx1YtSqFEEK4+wDYCPTx4x5fGuZ48jxWAvK3Po6/vPJXvTZyWVmT5mdVjFHamI7m3ABTan+6a+X7r/5tyHU/eRukHD/O086zJoGqqSFS+GmuSSkquSnbSjCHTBBJXm+iHRWOaVinNYQA+Bzr+04qMBmIjmw4/+8LYDCwP9KB1BeGYSQhScqwa968Offddx/33XcfzZvXVLlEbNmyhbS0ND74IKjecKIRq6nenRCi9vQE7nd5bh/WMZxkrPpmH2MlILOxmun8mVPftTTB6nwo/6aFEKJmvuxurPIT8HoQa91L4EnOeiU9XRvJeaUjYlqbW5U25gHnBjqX1rpNVNMY15+JbrLj448rUz0R6Doho1VmeroOyc/ekcvKmowpKJ5gOIyP0WRpzZmhmLeKRt+dUrT1ilDOKeq9g8CfsGpTlkU4FrAaRA4CpH6qH7TWgyMdQ0OXlJTEmjVrmDJliiQoa/D9998zdepUhg0bJglKERRJaAgRebM49QifE6sT6EYv9zwOPOPyXBxwe2hDE0KIBuWf+F7LcSlwJIi1nMB4rKPfXjtW11taq+S80hE7+5VsRenXtNXtNxQeHLvyQ9t6k0cOGq+C/jJEa/pP8TNav7nv2s+C2oEWyiSvVxqHNkkLy9yivvsA6AUsi2AMB7B2UH4ewRjqq/P37NnTJdJB1GcOh8Pj83Fxcbz55pvk5OTQvn37Wo6qfjhx4gTPPfccffv2ZcmSJZim6TZmwIABXHXVVRGITtRHkqQUIrL6YnXxru454D8+3JuKVU+ouhnUk5plQggRAeXAiz6ODdUuyLlYO+DXhGi+Kv8O8Xx+GVtQNjClsGwTSr+GVp1COrmmldkk+kG7Ybmjup5USj0W0rV9oTipUAvMZs27ZCd2y3xuSKfACmuFL8lbI6XV8DF5H8k7ReHJEaxO2k9GYO2jwM1ASQTWbhC01oMiHUN9duWVV9Ks2S99yc4++2zmzp3LO++8w7XXXhvByOq2vLw8BgwYwKxZszhyxP1z3YsuuoiXX36Z1157jfPOOy8CEYr6SJKUQkTWb1wem9g0DKjmKPCSy3OXA/LmQwghajYfOG4z5mOszrKhshWrhEci8AZWsjQQPwILgO7AiNCE5p/k1Vv6JBeU5pvafEdrHbafN0px37jV29vZjTuyb9trSrEtXHG4KFeoBQ5n9OXZibGTFve59IdAJxpbUDYwubD0/bAkeb3QoJRhpNfWeqLe0cBUoDZLKZwEbgU21OKaDVFSpAOoz84//3xyc3O5/fbbefjhh9mwYQN33HEHhiHpEk8+++wz7rrrLpKTk/nqq6/crsfExDBlyhSKiooYNmxYBCIU9Zk0zqn72gFDqz12YtUerBKN9UblZqzahu2BZli1tP4G3FfDvNGV4/sDPbC6hl4AnF55/QBWXcTNWC8aXsfqOOqvy4AB1R4fwjpCV6UpcAfWi5OrgPOxEnU/YjWCeQerKcx3AawdjLMrY6pOY/05HAjRGgpw/a6dD7h/p6/ZQuAxTv3A4dfAh8GFJoRo5LYDE71cP2hzf4XN/WDftfUvWN+La/KRzf012YvVYCDFy5hw1ZIsqPx1GtYbyt5YP/s6Yv38a1Jt7AGsWEsqf63B+nnsDFNsXo0p+OhapR3TgCHosDSzPoXWNHca5Q9jNfSoUe6oUc6UwpIMNH8PWzAKE/QboKZnJ8QGfRQ1Ob/kbVObkUsoaHVj8uotfXIGXeWtrIxo3KYBlwLDw7yOE7gbWB3mdRqDATt27GjaqVOAO7sFV199NVdffXWkw6jTDh48yNy5c8nJyaGiosLtumEYDB8+nOnTp3P22bZVW4TwSJKUdd9lwMvVHp/glyTlEGAe1psbV6cBHTw83xOrmP+t4LUg+1mVvy4D7gTmAH8FHsX+jWV1vTk1/k/5JUl5U+U11wIfBlY9pnOBfsAjwHR832EYrE5YydFLqj1XjvWGO1QJSrBqSF7o8lyBn3N8B5RidZGtMhSk5pQQIii7sXYcBsoZ5P1g7TgMl3epOUlZDiwO49pgfZC4vPJXdQrr5/ehMK/vs7H5ZV1M5XxUaTVc1345kfGj1xY/vfiG7ju9DcqOj30jubD0v2iuCX0IulBr9fCixG5bQzWjUnqD1iqyu54c0ZnAwIjGIOoyEyt5uAYI11lXjfWeJDdM8zc2LVq1atUHKIx0IKLhqaio4B//+AezZ89m//79Hsf06NGDjIwMevToUcvRiYZG9i/XXw8AK/CcoKzi6e93PDAO7wlKT1pg7WZ4z2ZNX03C6lrtSwXilsD/YDWYCbfrsf4fqycof8ba8bgwxGt18/DcewHM43o8pivyAYQQQnjjbXfQ20DAx3iDpKlDCcrk/JLxpjI/QKsREUhQAkQb5Uaq7SiltKFUZmiX1oUYundOYrebFiXGhSxBCeCs0M+BjtTXmEXrPuOKPnatiS1EdcewGn+5b5cKjT9jbYAQIWKaEdyhLRqsDRs2MGjQIKZOneoxQXneeefxzDPPsGLFCklQipCQJGX99GusXYXV//6qjmavxdqtWI5vbyg0Vhe9t7B2aD6FtbvxLaydNK7isJKjLQKMHawdoM/wS/wmVlfBt7A+TX0Pz/W6/lx5b7jcirWTsU215/YANwCrwrBeZw/PBVIw3PWeJpyaZBVCCPGLbnhPUr5QW4HUdUY0qwm8fmZoKO5MKdp6hd2whQNjV2GwLgTrvW8YUYNyErvdlDOw2wdBz+fB4sHdjyilarPmn0dOpzMTraXZnvDkQqz3A4WE54Pv2dRu3cvGQprniJDZuXMnEydOZNSoUWzfvt3tevPmzZk0aRLr1q1j5MiRKCU/TkRoSJKy/nFgNUup+i7wNtbuv3OwuocOwGqe0g5r96EnTuBNrGMcrbFqzvwamABMAX5X+fgCrEL/rh1EY4GsAONvg1Ur04H1Ce1jQFusY+i/BkYBfYDz8HxU8GnCs5vjfqwEafNqz23D+rPdEob1AFzfdB0isB00rh2+Pc0thBCNXWusn3vvUPOb7jL8L7vRYC28IW4X6AURDULj0KaPJUwqKtIDXUYpStHqzpyEuBsWDuy8NtB5xq4taT8yb/PpduNanWg2H/gm0HVCpMfY/JKbIxyDqFvaY20k+BS4h/AkKP+KVcpJhN5V33333TmRDkLUb0eOHGHu3LnEx8ezYsUKj2OSkpJYu3YtqampxMTE1HKEoqGTJGX9E4WV1NPAH7GOIb+PtRuxuh/xvPtvJVYC61asZKG35gcaqxZNH2CRy7Xf4v+RcbDeJJ6BVdsxAavW5I8exu3DqgH5nMvznbB2NoaKgVVv81msxGmV9Vj/3/40sfGX61F3T8lGX3i6z7XWpRBCNDb3APsrfx3H+rmyGOtDvJo8ivWzT1QyTlTMQvFzJGNQWg0fvbqkp924ykYw/jbg2I5Wd2YPjO2ZkxTrWiPUZ3es2NwmJb8kyyxXpS1Usz/ajX9uSKcTWM2hIspUKn3ksmUO+5GigTsHa3fjp1glpZqGaZ1crDqU8n02PJRpmlLGQQTENE1yc3Pp3bs3c+fO5eTJk25j4uLiePPNN8nJyeGCCy6IQJSiMZAkZf01j5p3SnqzAvjMz3ucWLssq+/zjsHakRIIjdWwYJMPY6fhnsR07YgdqKbA37F2j1a3DOu4RCib5HjS0uWxXbfcmniK03VuIYRobJphfZh2Jr694X4X65RBozB6VXHMuMLS7nbjFg7psRf0i7URU000KMOhp/sy1lDmDOVbAmSXVuako/u39chJil2OUgElTca9tb1VckHJQ01aNNum4SHQzVD6/tEbP7PdzXR0/7ZslP40kHVDqEvMmVfcHuEYROScjZWc/BJ4GOv7Zriswnrv4AzjGo2e1lrqUgq/ffjhh9x8881MnjyZvXv3ul1v27YtTzzxBCtXruTaa8PVS0sIiyQp66eDWMm72lSOtduwun4BzrUa+F8fxx4BXnd5LhQVec+sjGOUy/NPAXdg7boJN9dE4rEA5/F0nyQphRDCd7uA5EgHURtGLitrMqageILhMD52mnr5/St32CZwleGci8JzO8/aotWNyau29rcbtjCh+4d4SzYr9qJIPe1ks66LErovyB01KqCEyehVxTHJBSUPmS3Ld6DJQuvTfomVGOPYsal2c+SOGuVU2gi0fE7IaKXSRy4raxLpOEStasOpycnmXkdbgkkubgJGAO5bs0RIKaVu1FJrVvjom2++4Xe/+x1Dhw7lww8/dLvepEkTJk2axPr167n77rtxOGTjvQg/SVLWT38HDkdg3fUuj3sFOM/Lfo533XEZbL3FjsBGoPqbHRP4A9auStej8+HiWsAj0MSoJCmFECJw27HqOUe223KYpadrIzmvdERMa3Or0sY84Fyg/U9NTkywuzc7/qqDCv1M+KO0EWWk+zLMJCpNuXUkVvtQpB7d93OnnIS4OZXHrf1WLcm7DU2W1jWVvlG/nVBUbHsWruOGrsuAkHYPD0CHmDOdjSJJLzgLSMdqmvkwvjXCNLGOafchsETlVuBXWBsPRPid+/3333eNdBCibjt27Bhz5syhf//+/O//et47dOONN7JmzRpSU1Np2TLwt5Zaa9566y3+85//BDyHaFwkSVk/5UVo3e9dHl+A/19DGvzuvvmFy+Mz/Ly/uh5Y3cOrd9Y+jrWjsrbfgLkWIw/0E2pP94Wj0LkQQjQkXwB/Bq7C/edMw6G1Ss4rHbGzX8lWlH5Nw0WnXFd62ri3treym8ZZoZ8DHdlErtZ9UvJLbI8yLkrs/CnwDwAFhxXMOaqPd85JiJuTO6p3QKcWBhQVRY3JL7m7RWtnSWWSt61NsM3KTcO2OUh6ujKVUhmBxBRSSqXes2KzLwkrUT+15pfk5AzgNK+jLVXJyc5Yr5P/DfzXz3U/B24k/CWURDWmaUqXb+GR1po33niDvn378tRTT3H8uPsemSuuuIKlS5fy6quv0rFjx6DW27p1K7feeiv33nsvP/54agW3Jk1kA7/wTBIZ9dNHIZrHwNpNmIjVsfsKrB14MfiWCDSwXuT4U0vxIFbzAn/85PK4GVZ9MX93QdyEVW+y+kdB+4BbsHZW1rbDnPoi0ZejNp54ui8SO22FEKIueQfY4+H5A8AnWEe8G7SxBWUDzcLSWSiupKbTf5qznTEV9wJPeJtr8eDuR1IKSp7QmjlhCNVnGjLQOt+2hqQjKhNnxfcmR+cuSuzl7+uO/5eero2dfcpuxTRnAp3Ar1OUKWPytz1dmTStUXZC7IrkgpL30VwXaJzB0nDeyeZNf0vtf2ArwqsVcB/WBzK+fshvAsuxmlt+4nItH3z+Ot2NVePd0/dhEV5JWCWshPh/xcXFTJ8+nc2bN3u8fuaZZ/LQQw8xevRooqKCSxPt3buX2bNns3TpUkzT/ZBiixYtGDx4cFBriIZLkpT1k+uORn9FYXXW+zPeu5z64nT8S1IG8klquYfnovAvSXkL1ifH1b/md2IlLl1fgNUW10RioMXKJUkphBDudlT+anSSV2/pgyN6pqlNH2tH6ynj3y1b8MqNXb3WnWx1otn8n5oc/wPWSYpI6ZFSUHJLtk2To+z4zl8CtjsZvRlbUDZwJ6Wz0F6SvN5oHIqKVHyod6q1SlfodwMIM3SUmnrXyvcX/m3Ida4fDov6pyUwCetIdw0lCdxo4F/Ao0BxDWM8Zzfc7QcG05B3qddtN+zatat5+/btA613LxqQH374gVmzZpGbm+sxYRgVFcWYMWN46KGHOOOMYA4sQnl5OX/961955pln+Pnnnz2O6du3L1lZWVxyySVBrSUaLjnuXf9UAEeDuP8srF2DzxJ8ghLA3+q5FfZDwqInpyYoTwAJRC5BCe61eQIt9uHpmJ7nnwpCCCEarDEFH12bkl/yLkZUIVr709zujIooPdluUGUdx78EHmFoaEXmyGXLwla9P3n1lj4pBaUFpjbfQXNlUJMpRo3JL+lmN2xRYmwRmjVBrRUkrXWbqKYx90cyBhG0GGAy1jHr2fiWoNTA28DVwDBqTlAClPow32GsGpS+jBXh0dwwjD6RDkJEVnl5OQsWLKBfv3417mjs27cvq1at4rHHHgs6Qbl+/XqSkpJ47LHHPCYo27VrxzPPPMOyZcvo1KlTUGuJhk12UtY/wXTWa4p1TMP1BbeJ9ULi38DXWDs1Pe2OjAEWBrF+JP3EqUerm2L9vwwjcgm9vS6PA92Z4uk+17mFEEI0UGPzy7qYyvmo0mq49vM88v9T+v7RGz+bt7jPpV7rTh7dvy27xVlX/AGtLgtonVDQ6rIWra/4DfC3UE47elVxL4fDmKkhXmvvp8l9pjEUpAG32Q01NakOxYaA/w6DoTBBv+HQ/L3W1xahEANMwDolda4f9+VX3vOBj+O/wXrfUNNGlxPAcOB9P2IQYWAYRhLW369ohPLy8pgxYwZffvmlx+sdO3Zk2rRpDBs2LOi1Pv/8c9LT0ykoKPB4vUWLFtx77738/ve/p2nTpkGvJxo+SVI2Lg/hnqB8DevF8+c+3H9OyCOqPf8DdALurPbcDcBqrCPf/hxZD5XtWLV6qrQlsFqbF9YwtxBCiAZsfMHHHZzanGoqcyxaOYJKq2lijGPHpmK9VqhR7qhRzjH5JY8pWBTMcsFSqOkjly37R+6oUcF8eAuEKMnr3bDRq4p7LR7c/d/eBi0eFLc5Ob9kJdYutFqhQGt4R5k6LTupW0ltrStCpilWOYF04Dw/7svHKofgbyOcE7jXVK/iBEYTuQafohqt9SCs4/6iEfnss89IT0+nsLDQ4/WqhOH9998fdOOaQ4cO8fzzzzN//nzKy92rsymlGDp0KDNmzKBdu1Ac4BSNhSQpGw8DcD3CswD4rR9z+FrTpi6qwHrhdAwYX+3564ACrLo5P3q4L5y2uTxWwKVAmZ/zuO6X10iSUgghGqwJRcUXVDgd05zamaIhihBt+gP12wlFxU8viO/+jbdRF2+Izd3Zt3QK0D1UK/tDKTZpHGnBJihTirZ1xOn8U0iSvDYMh0rH+lDUK9NpphlRxk3o2ijJpAuV0qnZCd0/DP9aIsSaAClY9db9efefj1Vz0mvC3MZR3JOUGpiI1Q1c1A3d9+7de97ZZ58tjYsagUOHDjFnzhxycnKoqHCvrqaUYsSIETz66KOcc05w+45M02T58uVkZGSwb5/nvnRXXnklmZmZXH311UGtJRonSVI2Htdi7dSrUgGk+jlHh9CFExEmVlL2GPD7as/3AIqwupwH25TIH65JSoDe+J+kdK058xXu9S6FEELUc3es2NymafOmD5Y71e9BB9pszQvdrNw0HsHqBlyj9HRljskvyVBWB+BaoxSl2lR/yU6MDWrdqiQvzooQJ3m9UQNTikoGZMfHrfE2avHg7qXJBSWvA6PCFkllkjcnocu6cK0hwqYqOTkd/8oEbcRKTq4JQQzRHp6bCrwSgrlF6Kjy8vIEYEmkAxHhU1FRwT/+8Q8ef/zxGhOGV111FRkZGSFJGG7cuJG0tDS2bfP0Nhbatm3LI488wm233YZStV+5RDQMkqRsPFzbZ20DvNad8uD6EMUSSRprR+lRrBdUVWKBtViJSq87SELofax6mNUb3/QF/urHHE2xEtDVyTEbIYRoQMa9tb2Vs2X5RFAPa61PI7xZtZQx+dueXpTY+VNvgxYlxr2dXFDyPprrwhlMpe1olZGd0PWfKBXw/3z4k7zeaZPH0Lqf3f+D0zBmRjnN4TrEr9NDleQVEREN3IG1c/JiP+7biFXWyfPZz8DEuDyeBcwJ4fwidJKQJGWDtWHDBmbMmFFjwvDcc89l2rRpIUkY7t69m9mzZ/P66697vBYUkhgAACAASURBVN6sWTPGjx/P5MmTadky0F6wQlgkSdl4nO3y+ICf9yvC+Kl+BDyMlahMr/bc5ViJygTgy1qI4QTwLjCy2nO/xnrx5+tOyOFAC5fn3gw+NCGEEJE2elVxjBFl3GtS/hCaM8OcnLRoHIqKVKw6d96HapWu0O+GLRbF1xrz8WP7PlkY7NHu9HRt7Gxeuk7DJbXy5+iJ5prkotIhOfAvb8OWxHf9LKWwZDEmY0O0ckiSvCIiDGAE8BeskkC+2oSVPFwR4njOAqon+F/G/5NZovYM0lorJf/uG5Qvv/ySWbNmsWKF53/eVQnDP/zhD8TEuH6m4J+jR4/y4osv8vzzz3PihOe2CUlJSWRmZnLhhZ7aJAjhv1qodyPqiGMuj/0tRvEroEuIYqkrZnLqbkqwPp1eB9RW11LXhOJpWJ+U++p3Lo8PYdXYFEIIUU+NXFbWZExB8QTDYWxDk6V1LdeEVowak1/SzW7YosTYInRIjo+60HtRpJ52olnsooTuC0LRHCc9XZlK8WwooguG0mSkp2vb19/KQRbK70Z6LpPwtVbmpKP7t/XISYpdLgnKesXA+hB7G7AM3xOU7wM3Y5UPCnWCEuD8ar9filUaQr6u6q5zv/nmm7hIByFC4+jRo8ydO5f4+PgaE5RJSUmsXbuW1NTUoBKUWmtWrFhB//79mTt3rscEZWxsLP/85z/JycmRBKUIKUlSNh6uR5gvx/dE3JnAi6ENp854Euv4d/UXWO2xdlR2rYX1Xwd2ujyXBbTx4d67gP4uzz2L/93BhRBC1CEtztJTlTbmcWot6dqjMQzFDF+GmppUFbIkhdqHIvXo/sOdchLi5jw3pFNIf541Of3EK8r9Z26t0prYnX1Kb7Mbt/CGuF2gFwS0iNK7tTKmBJvkHffW9lbJeaUjAopBBKoqOfkxVnLS19fqW7FOPIUrOVllB7ASyAbGYNV7F3VYVFTUoEjHIIKjtSY3N5fevXvXmDCMi4vjjTfeICcnh/bt2we13kcffcTNN9/MxIkT2b17t9v1M888k4yMDN555x2uu642Kr6IxkaSlI3HBqxmOVUU8AKei19Xdw5WJ0B/inPXN89jNdSp/iL+XKzi4leFee2TWDs6qzsH64Wpa+fE6npjxV3dPmBu6EITQggRCVofeRGlfopsDAwdvaq4l924xYPiNmsraREwBYcVzDmqj3fOSYibkzuqt+vpj5CY37NnudbqL+GY2x9KMWNAUZFtySXjRMUsFD/7MbOV5N13uMuihK7PB5rkrdrJ64wpL1NK/21M3kfhfi0krNflw4APsV4DXu7jfaVYyckrsTprh3tX4zGs01VjsV7DijpOa50U6RhE4LZs2cLNN9/M5MmT+eEH93YSVQnDlStX0quX7Y9sr77//nseeOABfvWrX/HBBx+4XY+Ojmb8+PFs2rSJCRMm4HA4glpPiJpIkrLxOIS1a6+6BKxC2td4GH8G1lHiUqzu12B9SttQvYL1iXD1RG4brKPTwX3Ht7cE63hOdfFY9YRGcWoiuS1W0fR8rL+j6h7F+nsWQghRjy1K7LUPeCbScRgOle7LONNppqEC2FGlOIrS81STZldkJ8al5ib1DOhnWHq6NpILSu9IKSo7127s0QMf/00pPHcZqCUaLu1QcdZou3ELh/TYC9r2JEuokrz3bN4cPSa/5O4WrZ0lVTt5NShlGOmBzCd8UpWc/AD4X6C7j/eVYb1G7EbtJCdF/dV/9+7drvXrRR333Xff8cADDzB06NCwJwyPHz/OvHnz6NevH6+//jpau3876devH6tXryYzM5PTTvO2j0aI4EmSsnF5FHDdmdEX+A+wCyvxtRL4CKvz94v80nDneyClVqKMnNeA2zn1k+Ezsbplux6rDiVn5bquR/K7YNX7OYp1PO174DusZj/NXca+CrwUxhiFEELUoqOGehr03shGoQamFJUMsBu1eHD3Utw/CPWmXKEWOKMdXXISuv1xYf9OAf9/ji0oG7izX+kmtM7WTnOa3fjcUaOcKDICXS9klEq9f+WOprbDDOdcFPs9XwxhkjevdMTJg00/UvAKqI6nDNDqxuRVW8P5OqixSgT+i5Wc9HW36jasplbdkeSk8E0zoF+kgxC+8TVhmJeXF5KEYV5eHgMGDCArK4vDhw+7Xb/44otZtGgRS5cu5fLLfd3g7VlZWRl33303sbGxTJs2Dacz6HLTooGSJGXj8jlWMuyoh2sXYO2svAnrhU/13XvfAIOonY7XkfZP4FZObTTUCngHCOdxia+BAVg1iFxFAR2pudnRC8A9YYlKCCFESI3J33p9SmHJcLtxufFdD2MYkS/hYZKF1spumNMwZqpTTyO4U5govdyB7padGDtpSf8uewINK3n1lj4pBaUFpjbfQXNl5dPjR68tvsju3uz42DdQ/DfQtUOk/U9NTkywG5Qdf9VBhXbdVRvaJG/f0vdR+jXtrTlLlOymDKFErA0CecDVPt6zE5gIxAGLOLVEkRB25Mh3PZCXl8cNN9xAVlYWR44ccbt+ySWXsHjxYpYuXcpllwXX47W0tJThw4eTnJzM119/7Xb9tNNOIzU1laKiIhITE4Naa9++fUydOpUbb7yRwsJC9u/fT05OTo3Nf4SQJGXj8y5wHdZRYjvlWIWxe9Cwj3q7WgkMBar/dGiB9Un30DCu+zlwLfA44P5RlrtPgFuASciLVSGEqNPG5pd1SS7Y+pqBKtKmev6ule/bbn9Qau+LoL+tjfhqojU9k4tKh9iNWxLf9TMMFnu6VtlYZ6Uy9bU5Cd3ufDWx2xeBxjN6VXGvlPySdzGiCrXWfV0uRxsVxiO2kyilDaUyA40hZJSeNu6t7a3shjkr9HOgfwhlkndsQdnAlIKSjaY238GXI8Za9xlX9HFw71RFX6zGjHl4LrXkyZdYycnLgPnI6z0RGGmeU4eVlpZy6623kpyczK5du9yun3766aSmplJYWEhCQkJQax04cIDp06dz00038f77rtXGwDAMbrvtNjZs2MCkSZOIjrZrX1Gz8vJy5s+fT58+fViyZInbzsmvvvoq4LlFw2ZbtFtE3L+BS6o9DsWxjhKsxivXAzdifYp7VuW1H4DdWEe+V1T+vsohl1jAOibuzXJgXbXH5QHE+5mHdT3tBq1uNKceifZ8VKpmhcBFWLsoqwskfn8cAf4MzMZKiPYDOmE10TGxjnuXAquw/lzlmI8QQtRhKUXbOuJ0/slU5li0cljftPVZUU1bPgA85u3e7Pj442Pytz6u4NnaiLUmSpORnq7fSU9XXutOKgdZWnMnmmrHmHWhUjo1O6H7h8HEkFxY1hXtTFVaDddWHb+a3JVStHVudny37d7mWzgwdlVyYck6zLCWc/FOc7YzpuJe4AlvwxYP7n5kbGHpBKfp2LkosfOnwSw5elVxL8MwMkxtDvD3XqfTmYnWBSglrz380xfIwKo37quvgL9glfPxvkNZCHuxX3/9dbsLL7zQvVWziJgDBw7w1FNPkZ2d7fHos2EYDB8+nLS0NNq0aRPUWuXl5eTk5DBnzhx++slzX77evXuTkZFBly5dgloLoKCggPT0dD7//PMax3g6yi4ESJKyPjgGBLzjwMYmfNtRWcUMIJafK38FozyAdQPeXVDN3spfkXAQq6HOkgitL4QQIggTioovqHA6puGsSNEQ5fqRktL6wbErP3zZao5Ss2ZnnHz1xKGmf0BzcTjj9UZrYnf2Kb0Nq+twjRbeELcruWDrAlCTlGKTxpGWk9Blnbd77IzJ33aZUhV/Rpt3oJVh+5ZG49AmacCdtpNXVKRjRBUGE1/w9JTx75YteOXGrl4/TF04MHZVMKtUJXnRakQQ0/RIKSi5JRveDCaWRqQPVnJyoB/37ALmYtUZD6g7uxAeqOjo6CQgJ9KBCN8Shn369CEjI4POnTsHvd769etJS0vjk08+8Xi9Xbt2PPzww4wcOTLotb744gtmzpxJXl5e0HOJxkuOewshhBBChMgdKza3SckvySp3Oso0eoKu4QNhDS3NJtEP2s03v2fPcq3JCn2k/lGKGQOKimw/3DabtZjtcDh+lZ0QNyCYBOWEouILUvJL5xlUbEFzF9r316xKq+GjV5f0tBuXM+iqjVhHbyPpjIooPTlck48rLL48uaDkVbS5OcgEJQAaNWPksmWBt5FtHK7HOo20Ad8TlN8Af8A61v0MkqAUIaa1lrqUdcD69etJSkoiLS3NY4KyXbt2PPPMM+Tm5gadoPziiy9ITk7m9ttv95igbN68OVOmTGHjxo1BJyh/+ukn0tPTiY+P95igVErRqpVtdRMhAElSCiGEEEIEbfy7Za1T8rdOb9Ki2TYND4FuZn+XmjSm4JPz7UYd27/t70qxLRRxBkrDpR0qzhptN25xn0t/eDW+S36g64xd+eHZviR5vdGgDIee7stYQ5lpKtKlU5S+f/TGz2pqjheQsWtL2qfkl84zTeNDf5O8Nrq0aH3Fb0I0V0NzHVZy8j18r2H+A1aZn6rk5PHwhCYEg7XW8t4/Qj7//HNGjx7N7bffzqefulftaNGiRUgThllZWV4ThsOGDWPdunVMmTKFpk2bepjFN6ZpkpubS79+/Zg/fz7l5e6V0bp168abb75Jv37SZF74Rr5RCSGEEEIEaPSq4pjkgpKHKqLMbRr1KFrbNsT5hW6m1MmpdqNyR41ymjAzmDhDQqnU+1fuCPzdjBdVSV6zabQfSV4vtLoxedVW23qTC61amZE9vqyJUcePjw3FVFVJXrNclQaa5LWnZoxcVtYk9PPWW92wSiH4k5z8ESs52RGrYeKxsEQmxC/a7N69275JlgipQ4cOkZWVxcCBAykoKHC7Ho6EYd++fZk3b57HhGH37t156623ePnllzn/fNvPSL3atGkTgwYNYvLkyezd6165pm3btjzxxBOsXLmSa67xtVeYEFKTUgghhBDCbyOXlTVpflbFGKWNNDRtA57IZPzotcVPL76h+05vwxYNjH0zubD0v2ifuwKHQ/ufmpyYAMwL1YSjVxXHGFHGvRXa/BOoM0K6pzHKSMeH47YmUWkGFcPCk9CzofhaYz5+bN8nC4OZZvy7Za2dUc5JplKT0bQK8+bQDi1aO1Owuk03ZrFAGnAb3ps5Vfcj1r+fpwDPxeiECJ9BwJZIB9EYmKbJ8uXLyczM5Mcff/Q45sorryQzM5Orr7466PXee+890tLS+Pjjjz1eb9u2LVOmTOHOO+/EMILbp7Znzx5mzZrF8uXLPTa/iY6OZsyYMUydOlWOeIuASJJSCCGEEMJH92zeHH38YNPbFc7paKNjCKaMNsqNVGCC11FKaZVfMlPD2yFYMwh6Alq/EGyH55Aleb3Ruk9KfklSdmKc17qTixI7f5qSX/IP4O6wxOGR/lYrx1Onn2jy1+eGdAq4/mBYk7xeqdR7VmxeMn9Yz6O1tWId0hWYgX/Jyf3Ac0hyUkSQYRhJWDt3RRht3LiRtLQ0tm3zXKWlbdu2PPLII9x2220o5eu3EM92797N7Nmzef311z1er0oYPvzww7Rs2TKotY4dO8YLL7zAvHnzOH7cc2WKpKQkMjIy6NChQ1BricZNkpRCCCGEEDbS07Wxs0/ZrScP6gwFl/qem/CB4s7ReSVzFyfFea07mZ0Yl5ecv3UdKNtjzKGm4DDw0hF94olgEpRhSPJ6pSEDrfPtYnYoR0YFzlFownyMWe1D6aeO7js8L3dU74CP+NZKkte7c0+2aHYP8HQE1o6UzsA0rM7xvjYP+hl4AZgNHAxTXEL4RGvd77vvvos599xzj0Q6lobILmHYrFkzxo8fz+TJk0OWMHz++ec5ccLz51yhShhqrXn77bfJzMzkm2++8Tjm0ksvZebMmcTHxwe1lhAgSUohhBBCCK/GFpQN3KlLZwPdw7JRTeMwFGnAHbZjTWc6RlRhOMLwSHEU9EIV3XzWwv6d3ItO+SisSV7veqQUlNySbVN38pWELl+lFJQs1DAxHEH8kuQ9/kRuYs9Dwc4Xc7bZWzuNkB27D9Cfxr21/ZVXb7ni5wjHEW4XYdWPHI/vycnDWMe6HwcOhCkuIfzVRGvdH3gn0oE0JEePHuXFF1+0TRhmZmZy4YUXBrVWVcIwIyODb7/91uOYTp06MXPmTAYMGBDUWgBbt25l+vTp/Pe///V4/YwzzuCPf/wjKSkpREVJakmEhnwlCSGEEEJ4kLx6Sx/liM4wtdk33GspuDUlv/Sa7MRYz+8EKuUMumpjcn7JKmBwmEMqV6icimjjsSX9u+wJZqKwJ3ltaEXmyGXLVuSOGuX0OtAw/oJpjkbTImSLhyjJ6yo7Pm5Ncl7JGhQDQjWnv7TWbZwtyx8AsiIVQ5h1xNo5OQ7f3zNVJSefwDriLUSdorVOQpKUIeFLwjA2NpaMjAyuu+66oNcrLi5m+vTpbN682eP1qoTh2LFjcTh8/TzFs++//565c+fy2muvYZqm2/WoqCh+85vf8Oc//5nWrVsHtZYQriRJKYQQQghRzehVxb0cDmOmhnhPReHDQYMCPR242Xasds4wlGOQDsd2RIUJ+g2H5tFXE+O+CHa6kcuWOUxtPg1cHoLoAqPVZS1aX/Eb4G/ehmXHd/0uJX/ryxr1YAhWLVeoHAyVmR3f9bsQzOfG1KQ6FBvC8nXguwfHrvxw/sIhPUKWgK0DOgCP4F9y8gjwCvAX4PswxSVEKAyKdAANwUcffURaWlqNCcMzzzyTBx98sFYShtHR0dx+++0hSRiWl5eTk5PDk08+yc8/e94k37dvXzIyMrjiiiuCWkuImgTX2kkIIYQQooEYV1jaPSV/65uGw1inIRKFlQaPyfvIdtfmoqQrt2h4I5QLK6sd9Epl6mtzErrd+Wpit6ATlAC5o0Y5dZ3YaadmjFxWZltv0uTYkygVeGMThYnSyx3obtmJsZPClaAEWDwobrOGleGa3yeaVmaT6FAkdeuC9sAzwCfAPfiWoDyB1eW8EzAZSVCKuq/rt99+2z7SQdRX33//PVOnTmXo0KEeE5TR0dGMHz+eTZs2MWHChKASlOXl5SxYsID+/fuzZMkSjwnKfv36sWrVKp544omgE5R5eXn079+ftLQ0jwnKiy66iJdffplly5ZJglKElSQphRBCCCGACs2NGnVTJGNQRlSGT+NMR5qCitCsqguVMnvnJMbdmp3UrSQ0c/5iUULsMqA41PP6qUOL1s4Uu0GLEnvtU9p81t/JQ5nkTV69pc+Ygq2zfBlrOs00a/dr5CjFfeNWb28XyRiCdAFWcvJT4AGgqQ/3nMRKTl6MVcc0qJIIQtSyxEgHUN8cP36cefPm0a9fP68Jw9WrV5OZmclpp50W1Hq+JgyXLl0adMLws88+46677iI5OZmvvvrK7XpMTAxTpkyhqKiIYcOGBbWWEL6QJKUQQgghBKArnM+D/iGyQeg+KfklSXbDsgd12aHh78EspRSbUI6knMRuNy1M6P5hMHPZLKQ1+JR8DS+Ves+Kzbb1Jo84HP8D2o/jy7rQ1M7rg03yJheWdU0u2PoaRlSh0uqPKUUlA+zuWTy4eynguZVsLdGa5k6j/OFIxhCgc7C6blclJ5v5cI9rcnJ32KITIkyUUrY/Y8Qv8vLyGDBgAFlZWRw+fNjt+sUXX0xOTg5Lly7l8suDq2yyY8cO7rzzzlpJGO7fv59p06YRHx9PUVGR23XDMLjrrrvYtGkTU6ZMoUkT28MINaqoqODAAekhJnwjSUohhBBCCGDx4O5HtHI8Huk4NGSgtW2dQa2NDBQn/Z1fKTZjMDw7IW5ATkKXdYFFCeMLPu6QUlA6/+6iskvtxi5KjHsbxfuBrhUi555s0eweu0G58V0PKxxP+TDfezh1Uk5it5sWJV25JdCgxhUWX55cUPIq2tyMViOqntcmj/nydeA0jJmh21UbsPGj1xZfFOEYfNUGKzn5JfAw0NyHe8qBxUBnrOSk5y4ZQtQPSVpryQPYKCsrY/jw4SQnJ/P111+7XT/ttNNITU2lqKiIpKTg8r4HDx5k+vTpDBw4kDVr1rhdNwyD2267jffeey/ohGHVMfI+ffqQk5OD0+neU65Xr168++67PPnkk7Rp0ybgtQDWrl1LYmIimzZtOuV5pSJZTlnUZfLNSQghhBCi0rF9zAf9ZYTD6JFSUHKL3aBFSV2/RvGqr5MqxTa0ujN7YGzfnIFx/wo0uLErPzw7Jb8kq0KbW7XWyVGmmebT+tp8NNA1Q+hPd6183/4cnuOHF0B7TkQp/ovB8JzEuPicwd0CTvKOXVvSPiW/dJ5pGh+iuQvt8rpcc01KUYlt+YEl8V0/w2BxoHGESLRRYTwS4RjsnAWkA5/jf3KyCzAGCEmtViEirM2ePXuuinQQddWBAweYPn06N954I++/7/7ZWlXCcMOGDUyaNIno6OiA1yovL2fJkiX07duXV155xWPC8Prrr2fVqlU8++yznH322QGvBbBmzRoSExNJS0vj0KFDbtcvuOACXnrpJd544w1iY2ODWmvnzp0kJydzxx138Omnn7pdv/DCC4OaXzRckqQUQgghRIM2sqisZUp+ySMphSV/shubO6rrSa1V5HdTKjIHFBXZNu5QypiF4qj3QXytlTnpyL5tV+ckxS5HqYBalo9/t6x1Sv7W6WbT6G0aHgLdDEDDyHGFpd3t7s9O7L4ezZpA1g4VrXWbqKYx99uNy46PP65M9UT156qSvDkDY/uFIslrlqtSjZ6gvTVo0SozPd1+x5NykIXiRKAxhchdKUVb62I3hdb8kpycAfhSLM4EcoGuWMnJz8IVnBARIl2+XVTtMLz++utrTBj27t2b1atX8+yzzwa9w3D9+vUMHjyYqVOnsn//frfr5513Hs888wyvv/46Xbt2DWqtL774guTkZO6880527Njhdr158+Y89NBDrFu3jptvvjmotX7++Wcee+wxBgwYQF5entt1pRR33HGH1LcUNZIkpRBCCCEapJHLypqMKSie0MJpfqxhhtZMG73xs3Ps7jt2YFsOVoffyNHqsgudbX5jNyw7vut3Gv1SDZN8q5Ux5bQTzWIXJXRfkDtqlPs7Lh+MXlUck1xQ8lBFlLlNox5F0+rUZTBMrX3aTWlqUiubzETSg2NXfmi7HaVJ6xOvKNgZ2iRvSZbZNPrT6kleb7Qm9st+JSPsxi28IW4X6AWBxBUyGoc28enroJa0wtoxWZWcPN2He6qSk12AUYD7u3khGgapS1nN+vXrGTRoEGlpafz0009u19u1a/f/CcMuXboEtdbOnTuZOHEit99+O9u3b3e73rx5c6ZMmcLGjRsZOXJkUMeijxw5wty5cxk4cKDHhCFAUlISa9eu5Y9//CPNmvlSmtczrTW5ubn069ePF154gfLycrcxcXFx/POf/2Tu3LlERdl+DisaKUlSCiGEEKJBuWfz5ugx+SV3t2jtLFHamAe0BUAT4zh21LbBR+6oUU4NWeGO046CtJHLyuwLT+ljc1Cq2rsqtQ9F6tH9h7suSuj6/HNDOgW0w64qyWs4jG1osoAzagxBMzQlr/g6uzkXD4rbrGFlIPGEjKaV2ST6Qbth83v2LK9wGEObnn6iSzBJ3pFFZS1/SfLyEBrb5j2nxqvSfdlVa5yomIXCvQ1sLVJaDR+9uqRnJGMAWmIlJ7/Cqj1Z49dtNSbwNtADKzkZ2Q8phAi/Pj/88EPLSAcRaVU7DG+//XY++cT9n71rwjAYVQnD+Ph4VqxY4XZdKcWwYcNYu3YtU6ZMCSphaJomubm59O7dm7lz53LypHv56ri4ON58801ycnK44IILAl4LYMuWLdx8881MnjyZH35w7z945plnkpGRwcqVK+nVq1dQa4mGT5KUQgghhGgQ0tO1kZxXOuLkwaYfKXgFVEfXMVqpe1KKtrk972pRQuwyoDjkQfqnQ/PWzrF2gxYl9toHPKPgsII5R/XxzjkJcXNyR/U+Fsii92zeHD2moHhCi7Ocn5yS5LWjjHRfhplOMw2FGUhsoaIU941bvb2d3bgl8V0/m9+zp/t2EB/8spPXaZvk9UbDpR3Ns+62G7dwSI+9oF8MZI1Q0aAMh54eoeVdk5Nn+nCPxkpO9gSGEfl/80LUliZOp/OGSAcRKT/99BNZWVk17jCsShiuW7eOKVOm0LRp04DX8iVh2K1bN9544w1efvnloBOGH374IbfccguTJ09m7969btfbtm3LE088wcqVK7n22muDWuu7777jgQceYOjQoXzwwQdu16Ojoxk/fjybNm1iwoQJOByOoNYTjYMkKYUQQghR740tKBu4s2/p+yj9moaau01rmmBW2O6mRCmtISOUMQZCoR65Z8Vm2513Rw31tKPC6JSdGJeam9TTvRq+D05J8mpjHlrZJvGq0xCfUlQywG7c4sHdS5V1pDZitKa50yi3/zoIgHuSV9mWGLCjtXr0/pU7bN8llx/jKeBgsOsFRXP12HU7guvu4J8YYDJW3cjZWDUofZHPL8nJgLuzC1Ffaa0b3ZHvqoRh3759mTdvnseEYffu3XnzzTd5+eWXOf/884Nab9OmTQwePLhWEoZ79uzhgQceYNiwYV4ThuvWrePuu+8OKmF47Ngx5s2bR79+/Xj99dfR2r0KSr9+/cjPzyczM5PTTvOlFLAQFklSCiGEEKLeSl69pU9KQWmBqc13ANvmLQAakscVFl9uN25RYtzbKNxbe9auc0/ENJtoNyg3vuvhV27s6l5530c+J3ntmGShtW0BrQrDyFBQEfA6oTF+9Nrii0I1WVWS98TBpsWBJHlttP+52YnxdoNeG9rtgFL6f0K4ru8UPyuYU3HyaJeF/Tu5vxsPvabAPVh1I5/G1x2/VnLyGqyafB+GJzQh6oVG1TznvffeY9CgQUyePJkff/zR7XpVwvBf//oX11xzTVBrVSUMb7vtNsrKytyuuyYMDSPwtExVfhxRMwAAIABJREFUwrB///41Jgyr6k5mZmbSqlUrD7P4Li8vjwEDBpCVlcWRI0fcrl9yySUsXryYpUuX0qlTp6DWEo2TVCsVQgghRL0zelVxL8MwMlAM8PSC3CuNw8RIxera65XS5qMaIz/AMEPD5E93rXz/lb8Nuc69mn+QxhaUDdSYmaY2Q1JHUGt6JheVDskBr92vl8R3/SyloGQRmnGhWDcgCtNR7ugF7Ax2qrEFZQN36tLHgW7BB+aZ1vqRcW9tX/zqLVd4rTvprNDPGQ4mhWIHp08UR5TmxZPH9JzXhnY7UAsrNgFSsJrh+JMIzgdSgf+EISYh6qPOu3fvvrBdu3ZfRzqQcNq9ezezZ89m+fLlHhN40dHRjBkzhqlTpwadwDt27BgvvPAC8+bN4/jx4x7HJCUlMXPmTDp27BjUWmAlDFNTU/nmm288Xv8/9s49rqoq/f/vtQEvaGlqZTaVmZaGqJVNmqBy08m0mhT6jikHhZ99J0ydaKwGRYQYy8lKy/raaHHQnFGyxjRLuamgdrELAlHZRWsqndLM8gacvX5/bGmsczh7c/Y5ILrer9e8XuV61nqeGNx7r8961vP07NmTzMxMoqOjbfuqqKggIyODN9980+N4hw4dmDp1KlOmTCEkJMS2P8XZixIpFQqFQqFQtBgcxVVhSFe6kOJ2CT63vJQQP7m4csFz0X291qDLje1fmlRYUSIhyldf9pGdg1u3nwY85K8V60VeXerD/bVmPUKSlZkpX8vMFF7rTmqukGw9qPYPUtLW3zF4RaCDfFkPlunLh/W3JVBOKqqK1qX+kC716/wVXoNIzne1q/sjMN+b2fKR/Y8kFVXMl5JHAxqPoEZIkYcmsnOjwvYF1JdBvTiZATTmDuY2YBaw2f8hKRQtm5NXvpc1dxyBoF4wfOqppzhxwnP/uLi4OLKysrjsssts+ZJSsn79erKzs5tMMJw9ezZvveX5zKVDhw6kpaWRlJRku4v2999/z2OPPUZubi4ul3v/OE3TuP3225kzZw6dO3e25UuhACVSKhTe0AAHcC/Gx/A7wFygrDmDUigUirORxMLqK4WoewCp/wEptEbmTroj0XRkBjDWzFQXrgwhg0rturSFlH65M1Uv8iKF6X+3r0hJ38+HVI4DVnuze25E76+TCnctAzE1ULGcigAphXxJypDMvNg+H9tZK6mgfJAUIkuXehM3npBp49fv+rtZxuI5J9o8e7jV8RmAvQ4MnvCjyGuREOAPGJmTPRoxbxuGoFkciKAUijMBTdPOOJGyXjDMysriq6++8mjTq1cv5s6dy/Dhw23727VrFxkZGQ0Khh07duTee+/1i2B48OBBHn/88QYFw+DgYP7nf/6H+++/37ZgWFtbi9Pp5NFHH+XwYc8XOSIiIpg7dy59+vSx5UuhOBUlUioUnvktsBAYdMqfxZ7833rgHmBP04elUCgUZxcpJeW/qXMFPQh1SVL697tFSkYnFZQPyo3r77XuZF7MgLeSiirWS8lof/q3yHZcco5zZL+tdhaZXFx+lUtq99eLvP4KriGEYM7wkpKXNkdFea07KWrqHpatQxxI7N2xM0UW61L/S17sAFsNUiYWVPTRBPNl89Vy6xjSRpuBIdg1yJOjep1wFFb8FXjaX47rRV7hCp6TO+Lq3f5a1wv14uRsGlcndTvGz6d5yzQoFC0AKWWslFITwnvme0vitttu4+233/Y41qlTJ2bOnMmdd95pu9P0/v37efjhh8nPz0fX3X98wcHBOBwO7rvvPjp06GDLV71g+Le//Y0ff/Rc8cOfgmFpaSmzZs1i927Pj/ru3bvz4IMPMmbMGNu+FIpfo0RKheKXXAzMAybQ8DXC0UAMsAjj6t1PTROaQqFQnD1M2vDu+bJVyIxal5gKsk2g/Egt6CGMAyjvdkLLAH0UsomaDgreRjDPGR3utbajGZO2VFwia8UDui6TaMLvPgk9L6vrPBF43pvd86Ou/TapcNfTEhGQTtv4SeStJ1jT20qpxdnO5LWDkPdM3PbJ4uVDev7Hm9nRg9W5oZ17z0CKK+079Y/IaxENI8M5B2hMBvEbwF+BdYEISqE4Q+m8b9++6wDPql4L5P3333f7s5CQEJKSkkhLS7PdabqmpoZnn32WRYsW8dNPnreBw4YNY+7cuVx5pf3Hb0FBAXPmzGHPnj0ex/0pGH766adkZmZSVFTkcTw0NJQ//vGPTJ06ldatW9v2p1B4QomUCoVBKDAT+PPJfzajLXA/MP7kvFVAs+5ZFAqF4kwg+fWqTq5gV6ouxHQjuy7Aj1YpI5NKKobnRoVv9mbmjA6rSiqqyJdwRyDDEYJqqYtsZ0zYSwjh8398/OrtbUM7nfOwXsdkkK38GaNlhEi/Z8PulU+O6uW5GFg9Qa7H0IP/H5JO/vPtH5H31zwf0//dpMKKfwG/9+e6jULSTjt67M8Y3ywNkp+Q4EoqrMyRSKcNb9sFekZubP+mKHdQL05mA1c1Yt4ujEPj/EAEpVCc6UgpR3AGiZS/ZtiwYWRnZ9OzZ2MSsj3z2muvkZWVxd69ez2OX3755WRmZhIXF2fb16effsqcOXMoLvZcsaJeMLznnnto1crea/6HH37gqaee4tlnn6W2ttZtXAjB2LFjmTVrFhdc0DQ92RRnL02TDaBQnN6MAaowrgZZEShP5RLgH8CbwGA/x6VQKBRnDRM3lrdzFFXcVxesV0vErMBf/z0FnRykNG3CU6dpWQK8Xl+2wV4p9NQjB6qvc8b1XWNHoATIjx98HMF1SJpHoDS45HCrEylmRrlR1xwSyIX+cCgE1Ugx3hndN9LfAmU9OsEZAfw9sIYQU1JKyk3rTXYvC1sNeG0O1YCDt9C43RkbHtUEAqWG8S32LkYdU6sCZQWQAAxACZQKhR3sK2qnMbNmzbItUFZXV5OQkEBycrJHgfKcc85h1qxZbN682bZA+cMPPzB79myioqI8CpRCCMaNG8f27dtJS0uzJVDquk5+fj4REREsXrzYo0A5YMAAXnnlFRYtWmRboHznnXdYunRpg1mhCgUokVJxdnMdUAq8AnS3udb1GA11lgFdba6lUCgUZxVJRbuStGDtIyQ5QMem9i8lAxOLKm82s1sRFfYJgjw/e/9KCi3t3Jo24Xkx/ZfmJyS4V8L3BUPkzPLLWrbikA9OXvuhqeDsqpNPgvR6fdkEv4q83jjZdOefgVrfGrJNra79xcwqM1PosnG/Bx8gxXhnTNjQQIm8pyAwxMmdGN9i/S3Oq8IQJ/tjiJPqJotCYY8bDxw4YO8O9BnKoUOHmD17NiNHjqSszL13qqZpjBs3jtLSUu6++25CQkJ89lVXV8eKFSuIiIhg2bJl1NW5n4Vdc801fhMMy8rKiIuLY/r06Rw4cMBtvGvXrixcuJBXX32V6667zpavvXv3kpKSwpgxY8jIyCAuLo7PPvvM1pqKMxclUirORi4ElgJvARFWJnTtakl31IDJwEcYV8CbM3tFoVAoWgy6pDWS85szBk0wNzNTmn4Xaa6QbCE4ZtefEOI7BOlHD/4UlhcT9pTplWgfcMaEbwLpl1qMPiM5v6593d1mZstH9j8ihJjvgwO/iLzxJVXtHUUV9zkKKjZayaoNEkFZCGp88eVHkhILq00LnuXFhq9H4LU5FCdF3qMHqwcGWuQ9SSz/FSevsTjnA8CBEicVCn8Tcvz48WHNHcTpRL1gGBkZ6VUwXLt2rd8Ew5EjRzJz5kyvguH69ettC4Z79uzhrrvuIiEhgerqarfxNm3akJqaytatW4mPj0cI01digxw5coR58+YxfPhwNmzY8Is/37hxo8/rKs5slEipOJsIAaZjiIjJWPj979WrFy+88AI7d+5k4cKFdOnSxYqfc4FHME76423Eq1AoFGcFbTrWPIegWY/UpaTvZxGVps/s50b0/hopl/nsSPCjgEdrT/zUxxkT/mh+wo0+CZ5WBFUAdFemL+v7EyHlvcmvV5nWmzxyQFsCco+lNf0k8savrmqVWFSeEupyVSPJQTA8qajiVrN5y2Ku3itMmgIFHEmQoC7dkqkUmQ2MfCWFnro36Lur/ZrJ2zCxGLXvCoBrLc75EEOc7AfkAYGOUaE469A07Yy+8t0YTkfBsLS01LZgePToURYsWEBUVBTr1nnuLxYXF8fmzZtJT0+nffv2PvuSUrJu3TqGDx/Ok08+yYkT7q9oT3+mUIASKRVnD7HA+8ATQAcz444dO5KVlUVxcTFRUVFomkZ8fDxlZWWkpqZarf3RE6O2UhEQbid4hUKhOJN5duDAWmlc9W5WNMgYXlJi2lRQ1NQ9jODHRi0uOCrg0dpjsldubHj6C6MGHfYlxsxMqTkKKsfuiaisSCqsvN7M3jnimm1Ac6crdKwLltPNjPITwmqkFI94NfKTyDtl586QxKLylHad9I+F1BaD+DkNRgqyrfweoGl/RXDUF/9+Q5CQWFjRz8wsL7ZvCZLNP087KfKKoANX58X0X7o5KirQNTZjMep3FwADLc7ZA9yF8Q2lxEmFIoCcbJ5zVmMmGLZt27bJBcMtW7aQnp5Ou3btfPYlpSQ/P58bb7yRBQsWeBQH+/bty0svvYTT6eTSSy/12RcYdSdHjx7NXXfdxVdffWVrLcXZiRIpFWc6VwGvYnwUX21mHBwczIQJEygrKyMlJYWgoKBfjJ977rmkp6dTXFzcmKLI0RjF4JdA815nVCgUiubgng27W5vZHDtY/Q8hcN8VNCESel5a1yXRzO75Udd+K6R82tKighqBWCo0rU9ubHj6ytH9vvc1vklFVdGfR1S+iZArJfSUyNlW5knpmiOa+2qskPdM3PaJ6X24Y99XOzFuPPxqvn9F3hOHWpcLqS2WcJGbkRRXXubqbNrFPTcqbJ+QcokvcfgNiSYgw4qpLkn/tcibGxV1PMARRgAlGN9hv7U4Zy+GONkLeJbmblKkUJwdXLVv377LmzuI5qBeMBw+fLilDMNAC4bh4eG8/PLLOJ1OLrnkEp99Abz//vvccsstTJ8+nf/8x73s83nnnUdWVhavvfYagwYNsuVr//79zJw5k1tvvZX33nvP1lqKsxslUirOVM4DHgZ2AaOsTIiIiGDTpk3Mnz+fTp2830rr0aMHTqeTVatWcdVVlppQBgNTMDZe00/+u0KhUJzRTNxYfoOjoGLjj62P/83MNj8hwaXD3KaIyxtCk7PjV29va2oY5HoMwcGGF0JHyDV6sN4vN7Zvam5U2D5fY5pUVBXtKKzYrkv9NYwrr/WMdGzcNdRsfl7cgPckvOyrf78gaacdOzbTzCw/IcElOSWr1l8ir5TCUVxxc73IC1zhfYKYE7+6yvTahM6xvyGET4KpHxkzcWP5DWZGy0eE79Tr9MvsiLyNIALjJkkpMNzinC+AGRgHzEqcVCiaGF3XY5s7hqbk14JhTY17meHmEAw3bNjADTeYPtK9sm/fPqZNm8bNN9/MO++84zYeEhJCcnIyO3bs8JiY0xhOnDjBwoULGTJkCCtWrEDXdTebmJgYrr3WaoUPxdmOEikVZxoakIghBt6PheY1l19+OUuWLGH16tX07t27Uc4iIyPZtGkTWVlZnHuupaZ452FcOa/EoniqUCgULQ1HcVWYo2jXSi1I24pguJRMnly4q4fZvLzovv9C8HZTxNggUnRr27lDsplZbtQ1hyTiiV//uQCJkGukDO7vjOk3fvmw/p/7GkpSQfkgR+GuTSfFSc+Fr4K1TCtrCT0oQzS36COYklJS/hszsx5lffOFEO/5VeQtqtyGzkv8UuT1xmWhnVxJZkZ5sTccEFJf5Gts/kILaqjm5C9ZPrL/kQCHciOwDkOcjLY450v+K04uBFShMoWieThr6lK+9957Z6RgePz4cRYvXszQoUN58cUXkdL9EkX9/jU7O9vq/rVBCgoKGDZsGI888ghHj7pXP6lP7Fm+fLnVRrQKhRIpFWcUUcB7gBML16rbtWtHWloaJSUljBkzxmenISEhpKSk8MYbb5CcnGz1xXLqNfQ+PjtXKBSK04jJxeVXOYoqnkPqO5Fi7ClDITrCvMGH0VE4K2ABWkSgPzB57YfnmNnJOtdTIE/Z3chiXboGO2P6jc+L7fOxr/7rRV4ptC0gvHdclXJIUmGF6cYyd8TVuyX8w9eY/IKkda2u/cXMLDNT6K06HI9sEpHXKyJ9yrqdoWZWR4KCHgf5rQ8h+hERnVRSMbwZAxiEIU5uA0ZbnPMf4AHgSgxxMtBXzxUKhXdipZS+K2QtgHrBcPTo0U0mGEZGRnoVDAsKCvwmGA4fPpycnBx++uknt/EePXqQl5fXmJuADbJ7927Gjx+Pw+Hgiy++cBv3sUSaQgEokVJxZnApRkH1YixkSGiaxrhx49i+fTtpaWlWm+CY0rFjR7Kzs3n99dcZPHiw1WmxQDnGx7m9N5NCoVA0E5O2VFySVFi5WNe1d5HciXT/vpCCP0wsqDA9lHHGhG8CuTUwkVpEcn5d+7q7zcyWj+x/RIqgR4DtuGScM7bfTXlxA3wuxORF5DUJlyykNK3gL6WWhcD9PlvTkpRYWH2lmdGzAwfW+upg4sbyvpZFXu90PdGuzV1mRvlRYT8Jgh6z4cc/6ORY+T3wM/0wmgTuwLo4+S2GONkdeAQlTioUpwvn7d+/32pjqxbFsWPHLAmGhYWFfs0wzMnJ4cgR9wT2K664guXLl7Nq1SquvNL0leiVyspKbr/9dlPBsKSkhNhYezf6Dx06xOzZs4mOjmbz5s1u4/X77NLS0sY0m1UofoESKRUtmXZAJsbV7olWJlx77bW88sorLFq0iPPPD0wPm7CwMNasWdOY7mghwDTgU4x6lWf0CaZCoThzmLTh3fOTCity9FpRKZEp0lu9XUlQkGCOlXU1ISzZBRIh5b3Jr1d5L1AM9Ci9+mlnbHiUc2Q/n4VVKyKvCdcmFVXcamaUFxf2BYLnfAzTP0iCBHXmWbU+kFSyq7ejaNfKoCCtUSKvV3T+fOeGN0x3q0cO/vCMgG/84tN39k1+5aP2TeQrHEOcfB+ItzjnO34pTvrUmV2hUASOM7HL96uvvkpkZGSDguFVV13FP//5T1atWkWvXr1s+aqsrOT3v/89DoeDL7/80m28Q4cOP2cYxsTE2PL1/fffM3v2bG666SbeeOMNt/F6wbCsrIzU1FRCQkJ89lVbW8uKFSuIiIhg2bJluFwuN5vBgwezcePGgO6zFWcHSqRUtEQERt3JT4A5QBuzCRdddBELFy5k3bp1TVa0Ny4ujtLSUrKysmjf3tKeoQtGvcq3gMiABqdQKBQ2SH69qlNS4a7ZeuuQagn3gTR9Dp/ktqTCyuvNjJ6PCd8ObLQXpW06uoJdM8yMMjOFe4V4i/ws8tZRZSrymiAF2cNLSkznC6HNQ+BeOKopESRMLq7s76/l6kVeqYt3kWKsNL4T/ITsHNy6/TQzq/yEG4+h87D//DaK7QI9NjcmfOxzt/b+McC+wjDEyXIMcdLKz/oARlOsKzDEyeb9/VMoFA0ipTzj7uY+8cQTfP31125/Xi8Ybtq0iaFDTXvQeeVUwfDNN990G/91hqFdwXDp0qUMHjy4QcFwyJAhbNq0iUWLFtGlSxeffQGUlpYyYsQIZs6cycGD7v0C6/fZL774ImFhYbZ8KRSgOgwrWh7XY1yNtnSfum3btkyePJkZM2bQrl27wEbmgfp6lWPGjGHBggWsXLnSY8ezX3EtsBVYD9wD7AlwmAqFQmGJiRvL22nB2h/rpP5nEB1xvy3lFUM8khmAaSFgIWW61EScD1mFfkMKMXXitk+eWj6kp3tVfRskv17VyRWsp+mCu5GENvbn6BEprrzU1eV/gBXezHKjwvYlFu36P4G41w9efULAB7W1LqvCdoNM2rr7fFlzfIZexz0gW/vl5+gBIeWfJm14d8nzo671WneyVacTy2oOtZ4h4fLAROIW2VuaEHOejwkrbgJnV2NkQY7H+o2PH4GngXnADwGKS6FQ+JfBBw8e7NCpU6cz9u9scHAwEydO5L777uO8886ztVZtbS1Op5NHH32Uw4cPe7QZMmQIWVlZ9Oljvw1BaWkpGRkZfPTRRx7Hu3Xrxv333098vNUE94b5/PPPyczMpKCgwON427Ztufvuu0lNTaVNG9uvdIXiZ1QmpaKl0A2j7uSbWBAohRCMGTOGLVu2kJ6e3iwC5alceOGFzJ8/n/Xr1zNwoOVSL6OBKuBhoKmubykUCoUb8aurWiUWladoQeJDJDlARxvLjXAUfWCaspAb168Cyb9s+LGPpF3QsaP3+2u5+JKq9o6iivvqgnUjA1Vi2pSlMQjIiF9dZV4ASh57FCE876YCy14p9NQjB6p/u3xkf/dUE4skFr7ZOamwIkfWHt998ufY2p9B/hoJ7fVWIX8ys3t24MBaBDmBjOUkHyDFeGdM2NAmECh7Y3x/7cIorWNFoPwRI2PyUgxh84wVOxSKM5DgY8eODW/uIAJFREQEGzduJCcnx7ZAWVpaSlxcHBkZGR4Fym7durFw4ULy8/NtC5SfffYZiYmJ3HHHHR4FytDQUNLS0ti2bZttgfLw4cPk5OQQFRXlUaA8dZ+dlpamBEqF31GZlIrTnbYY9RrTAdNOqwD9+vUjKyuL3/72twENzBcGDBjA2rVrWb9+PVlZWXz11VdmU0KB+4E7MX4GyyFQuSIKhULxS6bs3Bly/IcQh8CVjtS6+W1h6ZoLRJmZiSA5V+riVmRz1eqV36KL3XZXiV9d1apt57pE4XLNAXGBPyJrgMvadnJNApZ4M8qLveGAo6hyITA7gLGcgvxKiqDHjh3g2fyEcJ8b98SXVLUP1fX/FTBTSjo07dtQpE7e9OFTz43o7X5n8BSOHKhe2a5znzQpsZ8y485eKfT5xw589Hx+QoL7/T7/0h14EJiM9f3CT8BiDIHy+8CEpVAomoARwNrmDsJXQkJCqK39Ze+17t27M2fOHEaOHGl7/U8//ZS5c+dSWFjocTw0NJQ//vGPTJ06ldat7Z2hHT58mCeffJJnn33W7b8JDMFw9OjRZGRkcPHFF9vypes6a9as4aGHHuLbbz1fHOjXrx/Z2dlcf71p5R6FwmdUJqXidGYM/80kNBUo67MVX3311dNSoKzn16dPFl9evwGcwBvAoIAGqFAoznoyM6XmKKgce+JQ63IhtcVI4T+B0uDGScWVpjuF3Kh+HyJZ6Wff5gh+FPBoXc3Rq3NHhP+fr8tM2bkzJLGoPCW0s+sjIbXFARYoARCIv0xZt9M0Q/OoJp4A6fX6su1YhPgOQfrRgz+F5cWEPZWfEOazQJlYVHVTqEt+jCRHSjr4M05ryDau4FrTrNr8hAQXgiw/O/+3FHrq3qDvrs6L6b80wALlZRgi925gCtYEyiPAIqAnRuakEigVihaMpmktunnOTTfd9PM/t2/fnvT0dDZv3mxboPzhhx/IyckhOjrao0BZv8fbunVrY/Z4HtF1nfz8fCIiIli8eLFHgbJ///6sXbuWJUuW2BYod+zYwciRI5k+fbpHgbJ+n71hwwYlUCoCjsqkVJyOXIPRQMZSBeOQkBASExOZOXMm55xjKdnytKA+Lf8Pf/gDDz/8MC+++KKVab8FtgEvAH8G9gcyRoVCcfYxqagq+nNZ+QjQL5B+pGQuUm5CCK/5cFJqWULTEwJ9pRcAwVEhebrmmHx05eh+PgstmZlS+3xI1e9PHJLZwmgW0pR0PdGuzV3A496M8qPCfnIUVy5Al/5v9iL4UUiW1J746ZEXRg3yy7VyXWN3sEt2aNarBDrJE7eUP7F8WP/PvZnlRvV92VFc+TYSWzs5IcR3Evm40L57yhkVddzOWha4FEgD7gLLf9eOAksxak7uC1BcCoWiiZFS9ty/f3+PCy+88LPmjsUXFixYwA033MDhw4cZN24cF1xg73ywPsMwOzub7777zqPNgAEDyMrKakxZrwbZtm0bc+bM4YMPPvA4fuGFF5KWlsb48ePRNHs5Z19++SXZ2dmsX7/e43jr1q2ZMmUK06ZNa/byaYqzByVSKk4nOgMZQCoWi7LHxcUxd+5cunfvHsi4Akq3bt1YtGgRd9xxBxkZGVRXV5tN0TDqQt0OPIqxOTgR4DAVCsUZzqSiqmhd6g/pUr+uKfxJKa9JKqn8fS685M0uLy7sC0dxxfNI/jdgwQhqhBR5aCI7NyrMltiS/HpVpz0hlcUE5rqvJYTkvjs3vLHMTCAU4ttnJJ3vAWEvBePnBTkiJM/YFXk9sSIq7JOkooo8JJP9uW4jCdHqtL8A/8+rlRBSK67M1qV8xScvARB5vXAJcB9G1qTVwmI1QC6QCXwTkKgUCkWz4nK5RgA+3yRoTlq1asWECRP8sta2bdu87s/8KRh+/fXXXhNX6hNz7r//ftq3t9eu4OjRozz11FM888wznDjheRs5atQoZs+ezWWXXWbLl5SSl19+mbfeesvWOoqzB3XdW3E6EAJMBz7FqD9pKlD27NmTFStW4HQ6W7RAeSpDhgyhoKCAhQsX0qVLFytT2gFzgArAfgs3hUJxVpJUUD7IUbhrky7114AmESjrkVJmDS8pMT0wFUKbh+Co3wMQ6Ai5Rg/W++XG9k21K1ACLPtd2EFk82aVSSm7BLduP83MLjcq6rg06gfaQ1AjEEuFpl2dGxue7m+Bsh7NFZItBMcCsXYjuHNiQYWpAP18dN+NaGxt1MqCIwIerT0me+XGhqcHWKC8AKOczscY315WBMoa4FmgB0bGpRIoFYozl7jmDqA5+frrr5k2bRrx8fEeBco2bdqQmppKaWkpEyZMsCVQHj16lAULFjBkyJAGBcq4uDi2bt1Kdna2LYFSSsmaNWuIiIjgiSee8ChQ9unTh9WrV7N06VLbAuX777/PLbfcwtSpU92yUFu1Mu/zpzg7USKlormJBd7DuN5tWmOqQ4cOZGVlUVxcTHRojYLfAAAgAElEQVR0dMCDa2o0TSM+Pp7S0lJSU1MJCQmxMq0XsBooBPoGNECFQnFG4SiuWCiFtgXEsGYJQIpe3fUufzAzy40K2yeRfsvoECARco1wBfVzxvQbb3Z9t7G4dGaJZm5yJqT806Stu883s2vTseY5BL5d6fOjyDtx2yem9/GeG9H7a6Rc5qsPvyAJ0gQZlmzr6jIt2Z0UeUMkfQIp8p7kfAxxcg9GYz4r4mQtRuO+PhjipGnXP4VC0eKJllKedbcurQqGmzdvJj093bZguG7dOoYNG8aCBQs8Coa9evVi5cqVOJ1O24Lhe++9xy233MI999zDvn3ur+tOnToxb948Nm3aREREhC1f+/fv509/+hOjR4/mnXfecRtv164dv/vd72z5UJy5KJFS0VxcCawHCoAwM+Pg4GAmTJhAWVkZKSkpBAef2e/MDh06kJ6eTnFxMbGxsVanxWAIvksAS6mYCoXiLMfFtuYOQUJG/Ooq0+P0umPMBw75wWOxLl2DnTH9xueOuNp2525PLB8RvhPBq4FY2yoS2rtqj91rZvfswIG1UpLTmLX9KfLWZ/IGHTtWYimrtqbuYQQ/+urPHwj4fVJhpWm9SeeIa7ZhfOc0tE4dghfqRd6lseGBrDPdhV+Kk20tzDlVnEwEH8VshULREun49ddfn76dSP2MFcEwLCyMl156CafTyaWXXmrLX3l5Obfeeit33XUXX33lfu7TsWPHnxNzhg8fbsvX/v37mTFjRoOCYUhICCkpKWzbtg2Hw0FQkKWqax6pqanhqaeeIjIyklWrVqHrupvNsGHDeP311+nRo4fPfhRnNkqkVDQ1HTE+kiuAm61MiIiIYOPGjcyfP5/OnTsHNLjTjSuuuIK8vDxWrVrFlVdeaWVKMEZdqY8wrtCf2WquQqGwhTO2bz5Q3qxBSC5t11E3rTO4cnS/7xHiSRuetuOScc7YfjflxQ14z9dFkkqqu1uxk0LLQOD+dd6ECKndnVj0kWm9yWMHq/8hBKYFkQ38I/JO3Fje11G0a2V9Jq+EnpfWdUk0m/f8qGu/FVI+7atffyBBSORsK7aa0DN+nVVbL/KiBw1wxoRP9ncm76/ojFE78lMMcdK08zugA/kYh8iJJ+cqFIqzjxbd5dsq77//vlfB8LzzziMrK4vXX3+dQYMG2fK1f/9+Zs6cyc0338zOnTvdxkNCQn6RmGNHMKytrWXp0qUMHTqU1atXI6X7BY/6fXZWVhYdOpheavRKQUEBw4cP569//Ss//fST23j37t1ZsmQJ//jHP7jiiqbuKahoSSiRUtFUaBgfuh9hfCSbZs3UP8hWr15Nnz7N1n/gtCAyMpKCggKysrI499xzrUzphHGFvgJQufQKhcIzQkg05jZ3GFLjwSnrdpqKJ0c18QTIbxu1uOBtNG53xoZHOUf2a1yNwFOYtKXikqTCysW46qqSSiqGm9k7o8OqhCH0NCOyjRA1M82s8hMSXDqmvwfbBXqsfZF3V29H0a6VQUHaTqQYe+qY0OTs+NXbzTP8glyPITjoawx+YqRj466hZkbPx/R/VwrW/vdPZDG6NiiQmbwnOQfje+tTjPrVVj4e6sXJPkACEMj4FArFaY4Q4oyuS1kvGI4ePbpBwTA5OZkdO3b4TTCMjIxkxYoVHjMMIyMj2bRpE/Pnz6dTp04++wJDMBw6dCgZGRn8+KP75YPLL7/853127969bfn65JNPmDBhAg6Hgz179riNh4aGkpaWxubNmxkzZowtX4qzAyVSKpqC4cC7gBOjULtX1IPMM/Wp+Dt27CA5Odnqi7I38BqwDqPQvUKhOEtILHyz84StH1xkZueMDn8VwRtNEZMXuta0bWvavTs/KuwnNG2BlQWFoBopxjuj+0Y6o8N9vno9acO75ycVVuTodVRJZIqEYHRykFKYza3TtCwBdb769gs6yRO3lF9uZpYX3fdfCN52HxFvaUK7yRkbHpUb27/U1zASC6ouTSqsXCx18S5SjJXg/vOTolvbzh2SzdbKjbrmkEQ84WssfiNYy7RiputkSikLpXBFOmP73ZQ7Iuz9AEZVL05+gXFzxUpqzKmZkwkYzXQUCoXihr17957X3EH4m8YIhtnZ2VYTRBrkVMHQU4bh5ZdfjtPpZNWqVVx11VW2fH3yySfceeedOBwO9u7d6zberl070tLSKCkpsb3PPnToELNnzyY6Opri4mK3cSEE48aNY/v27aSlpalGOQrLKJFSEUguAfKAEqC/mbF6kFnjvPPOIzs7m9dee60xVw5GA9XAQqxlUygUihZKfElVe0dRxX2C0A+Cal3zrcwRUp8V6LjMkMj77tzwhunzSYhvnwHprXHHXin01CMHqq9zxvVdgxA+NbBJfr2qU1JhRY7eOuRjCfchaf1zrJKBiUWVpiVLVkSFfYIgzxf/fiREq9XSTa2Mn1PWKX/yAVKMd8aEDX0+Jsx992GRSVt3n59UWJEjNL1SIlOQeD1hE+gPTF774Tlm68o611Mg/+NrXH5ByiFJhRWmmUbL48Kr8+L63ZwXM+CtAEbTHkOc3IshTna0MEdi1Ae/DkOc/DBg0SkUipZIUEhISFRzB+FPCgoKiIyMbFAw7NGjh98Ew927dzN+/PgGBcNzzz2X9PR0SkpKiIuzl7R6qmBYUlLiNq5pmt/22XV1daxYsYLIyEiWLVtGXZ37Wew111zDK6+8wqJFi7jgAtMcJYXiFyiRUhEIQjHqH30MTLQyQT3IGk/fvn1/Lt58ySWXWJnSCpiGsQmZgvr7r1CcUcSvrmqVWFSeEupyVWM0QukoJPGTiytND4mMDDnpsxDlH2TnkFah082scqOijkt4xMP8r6TQ0o4e1PrmxfRfmp+Q4PIlinqRty5Yrz4pTnq8hi6QWZmZ0vQ5qrlCsoXgmC+x+A3B+IkFFaZ1U5wx4ZuEEE4kEy8v62tL5E0sfLNzUmFFjqw9vvvXIq9XJOfXta+728xs+cj+R6QI8vB70LRIyLKSVRtA2mHUoP4EQ5y0mvVUCAwExgCBzOxUKBQtmzPiyndVVRVjx47F4XDwxRdfuI3XC4bFxcV+FQw3b97sNl4vGJaWlpKamuoXwTAiIqJBwfDaa69l7dq1LFq0iPPPP99nXwBlZWWMHDmSmTNncuDAAbfxrl27snDhQtavX891111ny5fi7EU11VD4EwGMAx4FLLU869q1Kw8++CDjxo1DiOb8xm+5xMXF/XyStXDhQo+ngr/iIowO4FOAGUBZoGNUKBSBY8rOnSHHfwhxCFzpSK3bqWMShEuXc4DbTRfSmCV0tnm8httkiBmTtu7+v+eH9vJad7JNx5rnTvzQegaSHkKI7yTy8aMHflqcn3Cjz2Jg/OqqVm071yUKl2sOCAunZSLss4jKeGCVN6vnRvT+Oqlw1zIQU32NzTaSIE2QAfzBzDQ3pu8UO67iS6rah+r6/wqYKSUd8EHiFFLem/x61d+X/S7Ma93JYwd4NrSTvAdEd5+C9Q/XJhVV3JoL/2piv6HA/wMeALo2Yl4h8CDgXoBNoVAo3GnRte0PHTrEggULyM3NxeVyP7vUNI3bb7+djIwMunTpYstXbW0tq1at4uGHH+bgQc+vr8GDB5OVlUVYWJgtX2AIhhkZGXz4oeck+IsuuogHHnjAL/vsPXv2MG/ePNatW+dxvE2bNiQnJzNjxgzatWtny5dCoTKpFP5iIIbYtRoLAmWbNm1ITU2ltLSU+Ph4JVDapP7nuXXr1sa8iK4DtmL8f3ZZQANUKBR+JzNTao6CyrEnDrUuF1JbjBTdGjC9Oamg3LQ2hDO63zvSuPrZbEhoL2uOpZnZPTtwYC26mCWEnHNEE1c5Y8If9VWgnLJzZ0hiUXlKu076x0Jqi60JlAYaZAwvKTE98BU1dQ8jcK9c34QI+H1SYeX1gVr/ng27W5+aySulpVqIDdGxLliaZtXmJ4TVSCmaP5tSkG3l98BPtMI4ZPwEo0GeVYGyEPgtRlaUEigVCoVVun/55Zc9mzuIxlJfd3LQoEEsW7bMo0B54403smnTJhYtWmRboCwtLWXEiBHMnDnTo0B50UUXsXDhQl588UXbAuXnn3/OXXfdRUJCgkeBsm3btj/vC+3us48ePcqCBQsYPnx4gwJlXFwcW7ZsIT09XQmUCr+gREqFXbphZOW9CdxoZYJ6kAWOrl27smjRIl599VWrKfYCiAc+wLiib95VVaFQNDuTiqqiP4+ofBMhVwJXmNlLLeghSwtr2hwE7hXkmxCJ9sfEoo8uNrNzxvVdkxvT7+H8qDDT9HFP/FrklUaWeSNjpeeldV0SzeyeH3Xtt0LKp32J019IEBI529/r1ou8P7Y6/lFjRV6vCHnPxG2fmK71RfB3eQjZjF2o5X+Q2v81gaN6cfIzjO8uq7+v2zAaGMaBp8ZICoVC4Z3g4OARzR1DY6gXDDMyMjh8+LDbeLdu3X4WDK+++mpbvj7//HMcDgd33HEHH330kdt427ZtSUtLY9u2bX4TDKOiogIuGEopyc/P58Ybb2TBggXU1NS42YSHh/Pyyy83pvSYQmEJJVIqfKUVRg0ky/UN1YOs6RgwYACvvPIKCxcutFrjMxSYg1FHNJFmve6pUCgaYlJRVbSjsGK7LvXXgH6WJ0oZmVhYaVr83hkdVoVktZ0Y7SPbaNTcH7jlpXAUV9zcGJHXG0KTs+NXbzc/4AlyPYbA6/XlJmCkY+Ouof5YyB8ir1ck7YKOHTX9PdgcFVUnpcj2q28rCH4U8GhdzdEwZ2zfxZujogLVxT0E471cjSFOmgr4J9kGRAMRwJbAhKZQKM4GpJQtqi7lhAkTLAmGdjh8+DA5OTlERUVRUFDgNi6EYMyYMWzZsoW0tDTatGnjsy9d18nPz2fw4MFeBcN//etfOJ1OfvOb3/jsC+C9997jlltuYfr06fznP+796c477zyysrLYsGEDN9xwgy1fCoUnlEip8IUxGB/LTwCmHTjVg6x5EEIQHx//cxe31q0t9Sz4DeDE6Mg+IKABKhQKyyQVlA9yFO7adFKc9KkSuSbkQ5YafAiygFpffPgLKZk8uXBXD3+vO6moKtpRVLkNnZdojMjrDSm6te3cIdnMLDfqmkMS8YRffPqCoEYgloYECfedW2OoF3kjK9/yh8jr1ZUQU5JKqrub2eXF9F0NlAcqjl8gOCLg0dpjsldubHj6C6MGuafp+IdTxUknYPXvw3YgFkOcdG/xqlAoFI0nRkoZ0txB+IoQ4hedrS3uiTzicrlYsWIFQ4YMYfHixR4Fw/qGsEuWLPGLYHjrrbcyffp0vv3WvVx3p06dft5n//a3v7Xla9++fUybNo3Ro0fzzjvvuI2HhISQnJzMjh07SElJISgoyJY/haIhVOMcRWPoAzwOjLRiHBISQmJiIn/+858599xzAxuZokFCQ0NJS0tj7NixXgse/4phwDvAC8Cfgf2BjFGhUHhm4sbyvlqw+IuUYqzdtaRkYGJR5c15JnUnnTHhnzqKKvKQmApvASRER6SDf2JIKigfJIXI0qU+zB/r/RqB/sDktR86n7u1t9e6k7LO9ZQIElP9diXaUmzUScEqoQVn5Ub12WNnrUlFVdF6UWUOcK1/ojNB0gq97n7gj17thJCysCJLwJqAxSKoEVLkBUuZtTQ2PJDvRA0YC+QAvRoxbwcwD7D0klcoFIpGcM4333xzAy202ebf//53Ro0aZXudHTt2kJGRQVVVlcfxCy+8kAcffNAv/Ra++eYb5s2bx5o1a5DSvQNd/T575syZnHOOac6QV44fP86yZct44oknOHLkiEebyMhIsrOzufLKK235UiisoDIpFVboBCwEKrAoUEZGRlJQUEB2drYSKE8TunfvzpIlS1i9ejV9+vSxMkUDJmJc6b8f8P3YUaFQNIrJxeVXOYp2rQwK0nbiB4GyHoHMysyUpu9+V0hQthD43CnbPrJYl66n7K4ycWN5X0fRrpVSaFtABESgBEByfl37urvNzJaP7H9EiqAmafQiQCLkGvSgAc6Y8Ml2BMrEwl2DT8nkbRqB8iQSHJOLy68ys8uLDV+P4I0AhFCL4AWhBYfnxvZNDaBAqWHUiK7GaGhnVaAsBxIw6oIrgVKhUASElnbl+1Quu8xef9BvvvmGadOmMW7cOI8CZX2G4datW0lISLAlUB47dozFixczdOhQXnzxRY8CZX3dyezsbNsCZUFBAcOGDSMnJ8ejQHnFFVewfPlyVq1apQRKRZOhMikV3ggBJmGc5ltqeXbFFVeQmZlJTExMQANT+E5ERAQbN27kn//8J4888ggHDhwwm9IReBgjoykdyA90jArF2cqkLRWXyFrxgK7LJCDY/dPULiLss4jKeGCVN6sVQ6/+xlFYsRS4x+8heGe7QM/Ije1fameRpJJdvaVOhpDidimbpsaukPLe5Ner/r7sd2Fe604eO8CzoZ3kPSC6By4aWYwe9KBzRNj7dldKKq68W+rycX9E5ROSIBfaLIxDM68Iqc+SaIV+8SvQQb7s0oIyVkSFfeKXNT1TnzmZBfRuxLwKIBt4EfD/o0KhUCh+yQiM+vVnDceOHePpp59m8eLFHD9+3KNNXFwcWVlZtoVQMATDWbNm8eWXX3ocv+KKK5g7dy7R0dG2fVVUVJCRkcGbb77pcbxDhw5MnTqVKVOmEBLSYm/6K1ooKpNS0RCxwHsYRdpNBcoOHTqQnp5OcXGxEihbAMHBwUyYMIGysjKSk5MJDrZ0XtELI7ujAAgLaIAKxVnGpA3vnp9UWJGj11ElkSkygIeIGmRM2bnT9Iuz5tiJhxF4vb7sP8RbaNzujA2PsiNQJhZUXZpUWLlY6uJdpBgrm7YJWEdXsGuGmVF+QliNlCJQ2ZTbBXqsM7bfTbl+ECgBEOIlBEf9spbvjJtcXNnfzCg3tn+p8EsdRlksXNpgZ0y/8QEUKAVGje93MN6tVgXKSozMyf4Yh4ZKoFQoFAFHCHH9l19+2am542gKpJSsW7eOYcOGsWDBAo8CZc+ePXnhhRdwOp22BcqKigp+//vf43A4PAqUHTp0ICsri5KSEtsC5ffff8/s2bMZNWqUR4FS0zTGjRtHWVkZqampSqBUNAtKpFT8mkYJUepB1rLp0KED2dnZlJSUNEZcbpSArVAoGib59apOSYUVOXrrkI8l3IcMfFkFCT2Pf9/aNCvtH2MGfifA9pVrbwhBNVKMd8aEDXVGh79qZ63Jmz7sJjS9UiJTkDRLNXcpxNSJ2z4xrTd57PtqJ2Cvgc0vEG9JxO/siryeyI0K2yeR/+fPNRuNRNOlzLBi6tKZJXwX7rZL6Yrxq8jrmVhgJ/AK1pvUfQA4UOKkQqFoHoKCg4Ptp/Cd5uzatYvbbruNu+66i3//+99u4x07diQrK4vi4mKioqJs+Tp48KBXwfDUpJKUlBSrSSUeqa2tZenSpQwePJhly5bhcrncbCIiIigoKGDRokV07tzZZ18KhV2USKmop/5KbwVGTSRThgwZoh5kZwin1hvp1ctSGawQYArGJns6NI8goFC0VOJLqto7iiruqwvWq0+Kk6FN6V9ocnb86u1tzeyO6CceR+D1+rKP7JVCTz1yoPo6Z1zfNQhhW3B5bkTvr5HYEjptI2kXdOzo/WZm+QkJLmmUUrHLB/Uib15s38B1cpbHHkWIQHWxthaCZHRSQfkgM7vlI8J3Ihr3eyCEeLNe5M2LGxDIxhCxwNsYB8FWa3tWY4iT/YA8QA9MaAqFQuGdllyX0oz9+/czc+ZMRo0axdtvv+023hyC4caNG5k/f77tfXZpaSlxcXFkZGRw+LD7q9yHvgUKRUBRIqVCAxJpRHOUiy++mIULF5Kfn68eZGcYkZGRFBYWkpWVZbUQcyfgCRrRVEmhUEDbOtcqJDkYB0RNjxTd2nU+J8XMLD9u4A9I4cd6hPIrKfTUvUHfXZ0X039pfkKC+5e5DYQelCGgzp9rNhYpxJSkkuruZnZ5MX1XYzQ98YW9UuipRw9WD7Qj8v5h3c4uiYW7BpvZ5cXecACjgV6zIrWghyzZCS3DqClpygdIMT43OmxYQEVeQ5x8C0OcHGhxzufAXUA4hjjp178rCoVC4QNn3Ld+vWA4dOhQVqxYga67vzoiIiLYtGkT8+fPp1MnezfeS0tLiY2NJSMjgx9/dK+o40/B8NNPP2XixInccccdfPzxx27joaGhpKWlUVJSwpgxY2z5Uij8iRIpz26GYdRCcgIXmhnXP8jKysqIj7eUbKlogYSEhJCSksKOHTtITk4mKMhSkmQf4HWMzqI9AhqgQnEGoAnxRHPHAOKByWs/ND2N0F2uxYCtjsZCiO8QpIugA1fnxfRfujkqKiBCYu6Iq3dLwcpArG0ZSSv0OtNsSoSQ0miW0hj+7Q+Rtz6Tt3Vo6w8E4p9T1u00zeQ9qoknQH7riz+/IWVkUknFcDMzZ3RYlfDW5E3IjyUk2xV5LRABbMYQJ6+3OGcPhjh5JfAsSpxUKBSnD5f9+9//PmNaPBcUFDB06NAGBcPLL7/8Z8Gwd+/G9DVz51TBcPfu3W7j/hQMf/jhB3JycoiOjqaoqMhtXAjBuHHj2L59O2lpabRuHfBKQwpFo1Ai5dnJbzBO5UuwUAtJPcjOTjp16kR2djYbNmzghhtusDptNMbVtIWApVRMheJsJDc2vADk1uaMQUrZRW9fk2pmt3xk/yPgY6MXwY8CHq098VMfZ0z4o7lRUZ7bY5oQv7qqlaOo8g9IadoIR+paNoITvvjxFxIck4vLrzKzy4sNX4/gDTO7/4q834XZEXmnrNsZmlhUNTXU5foQSY6UdAC6nmjX5i6zuflRYT+haQt88etXdHKs/B7UaVqWh6xaQ+TVDlyTFxu+wt+ZvKcQARQDpRgHwlb4AkOc7IUhTjZrRrBCoVB4QggxorljsMsnn3zCnXfeicPhYO/evW7j/hYMZ8+eTVRUVMAFQ13Xyc/PJyIigsWLF1NbW+tmM2DAAF555RUWLVrEBReYltBWKJoFJVKeXYQCmcDHwEQsdD1VDzJFeHg4L7/8Mk6nk0suucTKlFbANIwSAlNQzxmFwiOaEHOaOwYQ9ya/XmV6d+noQfF3kHusL8sRAY/WHpO9cmPD018YNcineoaZmVJzFFSODe2slyNlbmJx5W1mc/Liwr5A8rwv/vyGJEiXWroVUyH1WQ0P+kfknbJzZ0hiUXlKTdvWHwipLwBx/i8MdP5854Y3zjWNVXz7DMivfInBX0jJQEdJ5SgzuxVRYZ8gyANA8K0/RF4L3AgUYoiTVjsqfAnM4L+Zk0qcVCgUpy2aprXYupSHDh1i9uzZREdHU1LiXuGjviHsjh07SEtLo1WrVj77qqurY8WKFURERLBs2TLq6twf7f7cZ2/bto24uDimT5/OgQMH3Ma7du3KwoULefXVV7nuuuts+WoKfvjhBx577LHmDkPRTCjx4OxAYDTD+QCYA5g2S2hpDzJF4ImLi2Pz5s2kp6fTrl07K1O6YXQAfxNj46ZQnBU4iipGJBXsCjezez4mfDuwsQlCahAp6eAKds0ws8tPCKsRgnmmCwpqBGKp0LSrc2PD01eO7ve9j4EJR3HFzZ9HVr6FkCuRRhkJgcwaXlJiWq1eBGnzEBz1ybe/kCRMLq7sb2aWG9u/VBg3G/6Ln0XeEz+03iWktljCRQ0E2zm4dftpprFGRR2X4FtWrR8RkqzMTGn6DRus6TkI0vU6/So7Iq8FBmGUO9kGxFic8x/gAQxxciE0b/avQqFQWEFKGSWlDGnuOBqDFcHwmmuuYe3atSxatIjzzz/fwyrWKSsrY+TIkcycOTPgguFXX33FtGnTiI+Pp7q62m28TZs2pKamsnXrVuLj4xHCNEepWanPBo2MjOT555v3vFnRfPjelkrRUrgO4+N3iBXjNm3akJyczPTp02nfvn1gI1O0ONq2bUtqaipjx47lr3/9K2vWrEFK01JeA4Ey4EXgPowrbQrFGUdSQfkgKUQWkmFSiAKM8gdeEVKmS03EIZvv0FAKMXXitk+eWj6k53+82R058OHy0E59/gS4F2YS6CBf1oNl+vJh/T+3E8+koqpovagyB0/dj6W48lJXl/8BVnhbIzcqbJ+jsOIZIM1OLHaQIHQpM4CxZrYunVlBGmVSUCukyAuWMmtpbLjvdUClFI6SylGfy8q5SMKxUHFRSPmnSVt3L3l+aC+vdSfbdKx57sQPrWfUC8fNgZT0/SyiMh5Y5c1uaVT/fwOPBjCU/kA6xkGwVb4FFgCLgGOBCEqhUCgCyDnffPPNYKBZS9Y0hsTERL791vOr7eKLL2b27NmMGTPGtoC3Z88e5s2bx7p16zyO1++zZ8yYYTXho0GOHj3KM888w1NPPcWJE57PuOLi4sjOzubSSy+15aup2LZtGxkZGR7FVg/4dgiuaBGoTMozl4swstjewqJAeWqmnBIoFd7o2rUrixYtYv369VZPAOuzeasxSg60CWB4CkWTMnFjeV9H0a6VUmhbQNTXn4tzFH0w1Gxubly/CpAvBzhE70jaBR07atroJT8hwSWE/EV3ZQESIdcIV1A/Z0y/8XYEysTCXYMdhbsKdKm/hieB8r8+M+JXV5newao9Lv8GHPI1Hn8gJaOTCsoHmdktHxG+E8GMEE3vkxvbN9WOQDmpqCraUVS5HZ2XkJhm9P4cK7R31R6718zu2YEDa6XRmb5Z0SDDSlZtgAgHVgPvYV2g/A4jc7I7RjaqEigVCkVLpUVd+fYkUNYnXmzevJlbbrnFlkB59OhRFixYQFRUVIMCZVxcHFu2bGnMjTSPSCnJz8/nxhtvZMGCBR4Fyr59+/LSSy/hdDpbhED5xRdfkJKS0mA2qAdKgK8DHJaiGVEi5ZlHK2A6jagH2NIeZIrTh/qrEQsXLrR6NSIUo+TAx0BiQINTKAJMUsmu3o6iXSuDgrSdSOGeLelXrjUAACAASURBVCddc62sI1zBczw0+GhSpBBTkkqqu5vZ5UaHv4jg/ZOzitG1Qc6YfuNzR1zt3qrSIvUir0BsBmEq7AKXteuoTzYzWjm63/cI8aSvcfkLqQU9ZG4FuTHh/3cy888nrIq83hBSuzux6KOLzeyOHaz+hxBY2kkECgk9L63r0tTvkb4Y4mQ5hjhpZVd7AJgLXIEhTjZvGQKFQqGwT4ttniOE4LbbbqOsrKzJBMNG1vZvkPfff59bbrmF6dOn85//uF9+Oe+888jKyuK1115j0CDT89Fm58iRI8ybN49hw4axYcMGq9O2AuMDGJbiNECJlGcWYzAy1Z4ATAvgt7QHmeL0RNM04uPjG1tk+hLAiXESZlqzTaE4nZi0peKSpMLKxVIX7yLFWNmwUHHjpOLKkWbr5Y64ercUrPRzmI1D0gpZ94CpnRBS6Pp0KVyRzth+N+WOCHvfV5emIq+3cDUenLJuZ6iZ3VFNPAHS6/XlgCNlZFJJxfBALT9xU8VAR2HFy40Qeb0g2whRM9PMKj8hwYWUmfZ82UdoPBi/enVQE7i6GsijceLkQf4rTmYCPtUVVSgUitOQgV9//XWX5g6isfTv359//etfPP3001x0UQMlmi3SGMHwhhtusOVr3759TJs2jZtvvpl33nnHbTwkJITk5GR27NhBSkoKQUFN8Vr0HSkl69atY/jw4Tz55JMNXlf/FV8BDmA4sC+Q8SmaHyVSnhn0Bl4DXgHzGlEt7UGmaBmEhoaSlpbG5s2bGTNmjNVpw4F3MTZ/qn284rRm0tbd5ycVVuTodVRJZAoS04enLmWOlQYfUteyEc3bOENKEicXl19lZpcb1/+NvJgBb/nqJ7Gg6lKLIq83uta0bfu/Zkb5UWE/CaEFsiahNXRykNKv1eonFlT0cRTtWhmkUQaYdru2jE7yxC3ll5uZ5caEr0Xwtt/8NhpZHCTEuPyEBFcAnfTBeD/tAiZi7bv5R4yMyXpx8odABadQKBTNhCaEiG7uIBri4ot/eSHgggsu4PHHH+fVV1/l+uuvt7V2UwqGx48fZ/HixQwdOpQXX3zRYx+AyMhINm3aRHZ2Nueea5qj1OyUl5dz6623ctddd/HVV19ZmXIM453aG+N9bKHKtqKlo0TKlk0njKY4FcDvrExoaQ8yRcuje/fuLFmyhNWrV9O7t3t/DQ9oGJu/j4D7MUoWKBSnDYmFb3ZOKqzIkbXHd0u4D0lry5Ml4XuGVt5mZpYXF/YFkuZtYygJckltVqCWn7zpw26Ool2PCU2vtCryekMi77tzwxumL7IjBw4vQchmrV0kJQMnlXxoM8vRoF7k1TTesSHyeiNEq9XSTa2EkECWn31bYbuUrhhnbL+bnovuWx4gH5dj1PWuwHg/Wfld/QljI3UZRu3JZq2HqlAoFIFESnna1qWcP38+F110Eeeccw6pqamUlZVxxx13oGm+Sx9WBcOCggK/7LMLCgoYPnw4OTk5/PTTT27jPXr0IC8vj1WrVnHVVabny83O/v37mTlzJjfffDM7d+60Om09xk2GBzDesYqzhNO7B72iIYKByUAOYCnVvkePHmRmZhIbGxvQwBSKU6mrq+Of//wnDz/8MAcPHrQ67WPgXuDVwEWmUJgTX1LVPlTX/1fATCnp4PNCQu7eqx0YsDkqymvdyaSSqq5S16uRmF5jDhQCpKaJG/wp/iQWvtlZI/ReBKlS0tZf6wII5EO5sf2yzewchbumQLPVp/wAKR5yxoa9dFLY84nEoo8uFpxIA5HSKKHcFwQuXee65XHhpnUnHYW7CuxfM7cQkhBvosmM3KjwzQF00x14EOMby2pTniPAMoxvMvc7fwqF4nRgB+BW2+ovf/kLU6dObYZwzgj+3a1bN3tFFiEdcKvbfP3117N27VqbS/uPgoICZs2axZdffulx/IorriAzM5OYmBjbviorK8nIyOCNN97wOH7uuedyzz33MGXKFEJCQmz7CzS1tbU4nU7mz5/vUWxtgHeBGUBp4CJTnM6oTMqWRwxGN8klWBAozz33XNLT0ykpKVECpaLJCQ4OZsKECZSVlZGcnExwsKU935UYJ2cFQFhAA1QoPHDPht2tE4vKU0JdrmokObYESgApenXXu/zBzCw3Kmwfkmds+bKJBOHSudsfa8WXVLV3FFXcp4nQagn3+VugNBAzJm3dbdq1q3XHmucRfOZ//96Qe6TQU48erB7ojOu7xleBsj6TV6OmCilSAy5QAkiCNEGGFVNNiDkBDqYKKcbnxvQdGkCB8lKM76rdGE0HrbysjgKLgJ4YDQuVQKlQKM4mfvP1119bujLVUqmsrOT222/H4XB4FCg7dOhAeno6xcXFtgXK77//ntmzZ3PTTTd5FCg1TWPcuHGUlZWRmpraIgTKgoIChg4dSkZGhlWB8gCGOPlblEB5VqNEypZDL4yOkoUY3SW90hIfZIozl44dO5KdnU1xcTFRUVFWp8ViCPILwaZIpFBYYMrOnSGJReUpP7Y6/pGQ2mIQfquTKiHjng27TcWl2uPyb0Lwvb/8NgYhxHcI0kXQt9PtrDNl3c7QxKKqqaEu14d+EXm9IKG9rDmWZmb37MCBtUhpqcu2H/i3FHrq3qADYXkx/Zf6WjOxaUTehhHw+6TCStPiXc/HhG8HNvo/APmxhOTLy8INkTcwXILxjvkY6+JkDfAs/xUnVQF/hUJxttJiu3x7w6pgWFpaanufXVtby9KlSxk8eDDLli3D5XL/ZLjxxhvZtGkTixYtokuX079f0e7duxk/fjwOh4O9/5+9Ow+MqjobP/49E8IuLmjdWpe6AWGCC1qBJJCViiBaCbRUMyC8pG1qYosv2mJiAFOXkrbAm7bYoBmI9CeJKy7VbEhYtGJZkrAUBRTZBNlJIMs9vz8uQZYk92aWTEKez1/vO3POuU8RZuY+95zn+fJLO1NqMB/63YD5nezPWtOiDbB7lEUETjfgfzFrMdjaPTFw4ECmT59Onz59/BqYEM1144038sorr1BQUEBaWpqdL65gIBn4OTAD+D/ki0v4WHq6dmwdVPHAiYN6hoIb/FKRW3PNkU7HxwN/b2rYwuGhB1xFZXPA3i42X1CKA2idVXPi2KxXht3tcQfiSatWBR8/FOyq1o6nlDaubKmKMhrHLxOKNs2ZH31LkxXYr1/m/OfW8PLfoHH6Iw6l1D6N/rNy7Ps/d2TkcW/X62rox9CkBqpCvFnrUqcBlp3QlNZTtUPFon3y8PtrrYxnv3Lsz7EqkeCF72GWFUkBOtucUw3kYHbsDmiNUyGEaA1O1qWcHeg4fKX+aPLMmTM5fLjhn0ODBg1i+vTp9O7d2+vrlZaWkpaWxqZNmxp8/6qrruKJJ54gPj7e62u1hIMHD5KZmUlOTk6DydZGFGJ+F6/3X2SirZGdlK2XA0gAvgCexkaC8qqrrmLWrFnk5+dLglK0arGxsSxdupTp06dzwQUX2JnSE/gL8Cng99pnop3QWrmKy+7dGl7+b5ReiPkE14+X43eTFq+yrDdZ6XDMAr3Xn7EAoDimYGZ1le6dExM6w9MEZXq6drgKyh88cajTOqUdWRqu9HWoTdOdHVQ/YTUqPV0Zyh+7KRX7FfqZmhNHe7ujnTNzfJCgBKg0js9BYbuYr5/EuT5YZ/mZmxMbWobmTa+upNhr7uTdFzI/ul+2nxKUlwHPAdswG7XZSVDWYO6cvAFIRBKUQggBgFIqcvNm61MibUFpaSmxsbGkpaU1mKCsv8/Oy8vzOkG5ZcsWEhISGDNmTIMJyi5dujB58mSWL1/eJhKUNTU15ObmEhYW1uhu0AZsAu4FYpEEpTiLJClbp7uA5YAbuNxqcFv7IBMCIDg4mIkTJ7J06VIeeughux33bgM+AhZjdl8VwiPjiyqiXEXlKzB43V876xpwxYkunX5pNSgvMuSoUo6ZfotCUa1Q2cGa3jkxzqkLh4d6dbz8q7Cy65TS89H80FchNpfWPPLwR2stPxNyYkLfBPVvn1z0ZJJXOWq9SvI2Ji+2/yGN+osv1/RIB0e6nWHKCEpT0PzE4skkb9DRYJ8mec9yKWcmJ+0cna8BFgC9MZOTX/shLiGEaMu6de/efUCgg/DG6QnD//73v+e837VrV5/dZx8+fJiMjAwiIyMpLCw8532lFCNGjGDp0qVMnjyZTp1af/63tLSUuLg4pkyZYrdJ6gHME6KhwHt+DU60WZKkbF2+D8wHPqaBDnRna4sfZEKc7fLLL+eFF17gvffe4847Lcuf1RsOVGDedNraiikEQELhugGuwnUFhjbeB25v6esrxf+OK1l9keVAx96/g27y+LIHalC8ohwdnDkxfZOyY5x7fLHoSzGhW7TC7Yu1vBAcVON4ys5AhZ7u1ZXOSvLmRN520Kv1mqBr6/4P8Ml/J8+D0INcRWWWdcdy4vps1vBP2+ueleR9aWSvI17F2bCeQDrmqZQnAMudzIAB5AF9+O5EixBCiAacPPLd5hw6dMhWwvCjjz7y+j7bMAzy8vIICwsjKyuLmpqac8b069ePt956i7lz53L11Vd7fK2WsnXrVhITExvdDdoAA/PB3y3A85glVIRokCQpW4eumDWO/gs8jI1CXnfccQfvvPNOm/kgE8JKaGgob775JnPmzOGKK66wM6UL5k3nPsx/P0JYUpAKKmAlA7TmYuqCHrUad3I32XM+uajCQOnX6oIct7qjnY/kRPbe5pN1T1MXHDRDKap8vW5zaMXYcQXrLHfF5sQ4C0Av9eASPkvyjiteN8xVUJ5gNW7B0H7HQD3v6XV8RjMNrS1/m2jtmI7iRJODWibJewnfJSefBnrYmFOfnOwNjAY+90NcQghxvmlTzXPqE4bh4eGNJgxvvfVWnyUMV6xYQVxcHCkpKezbt++c9+s3a7z77rv079/fq2u1hNN3gy5evNjutBLM03AJgP/LGYk2T5KUgaWAnwEbMZskWB4/uuKKK5gzZw5vv/02t912m7/jE6JFKaV48MEHWbZsGSkpKXafWnbE/Pdj2eFXCBykKghUL5KT1GPjl26+zGpUp4uqX0axxbtr6WJV5xjgjg4dmxsZ4rekS25En11ak+2v9W3ROFBqqp2hDqWetr2uD5O844vKBrqKywq0od5QDj1zwr8qLrGaU7lf/QO0x9f0kdsTisvvtxo0PzbkKxQvN/K2X3bynuUCzIdX9clJO53lT985ORrzgbEQQgh7bt+1a5flb5rWYPny5cTGxlomDN955x2vE4Y7d+4kOTmZUaNGsX79uSUXg4ODmTBhAqWlpc0pexUwZyd3q6ttbYT8CnABUcA6vwYoziut+1/D+a0/UAosBH5gNbhTp06kpKSwbNkyHnzwQZRqma6pQgRC165deeKJJ1i6dCnDhw+3O+23/oxJnB/cUaGfabTtR7/+oKG7rq6yTKq/2L9/DZ43elmhdV20Oyb0npy4kDUersH4woo+44rKZg8pKelgNba66sRzKPxxZLc57k8oWnOX1aCXo50rgA+sl9PFQUrd7W2Sd1xh+Z2uwrI3DE0Jhtn8S2surOtQ95jV3LzRIdVoH+2q9YJCT7fz90Apx7MoKk+b6PedvEB3zOTkl5g7kK1LKpgPK94B7sBMTto6ryaEEOIMDsMwogMdRFPqE4bx8fFs2LDhnPc7d+5MUlKSTxKGVVVVZGZmMmjQIPLz8xscU99AdMaMGXTv3t3ja7WUlStXMnToUFJSUti719ZGyGOYp9xuwSxlJ0SzSJKy5V0BvAR8AgyyM2H48OEsXbqUJ554gq5d7ZRTEuL88IMf/ICHHnqIyy+37B8FUptS2OQg6GkURiBj0Dh+mVC0yfIM0fXLnP9EUWZ/ZfVvjfqxO8YZOT/21mWexpdQUHHNuMLyLEMZq7Qm8dq6S11Wc/45ov8+tMry9Jq+oEEpHZRmZ6zSemoTfw9OJXlfiuq71tN4Hi4o6+0qWrcQdCkw7Jx4lfr1w8s//57VOpUHNs4n0Ek0rW6+pu7Sn1oNy4kM2a3Rfz85ySdJ3iZ0A1Iwj2Y/B1xsY87pyckRgMdJfCGEEOBwOFplXcrKykpbCcMlS5YwdepUrxKGWmsWL15MREQEmZmZnDhxbuWTm266iYULF+J2u7n22ms9vlZL2bVr16ndoBUVFXamaMy6kzdillzxRyM80Q5IkrLldMJ8yv9fYDw2/uz79OlDfn4+L774Ij/4geVmSyHOK9u2bWPcuHH89Kc/Zc+e704FduzYsbEph1okMNHmvRwTsl5p/Wpgo9CdFTVPWo1KT1eGsrebcj1ajXVHh0TMj+lb4mlUj3y48SpX0bo/KYdRrtET0QSBWcszftEKy5Iklfr4n1DYau/oR7GuovWWdUdzYkPLQL9x+mtKqU9UEEN9leR1OPgMrR7UjdWa1nQLqqp8wmq9vNGj69B4uqvWZxSkxS+qaPRD+BRdNdMwGORtkrcJXfkuOfkXwNaTLKAQuBMzObnaD3EJIdqQurq6QIdwXtBaDw10DKerTxgOHjy40YRhSEgIr7/+Om63m2uuucar661du5aRI0eSmJjIjh3n9jy86KKLmD59OsXFxQwZMsSra7WEs3eDam2rStKnmBuwEoDdfg1QnPfkzHDLGAnMxHyqYKlnz55MmTKFsWPHEhQU5N/IhGhljhw5wqxZs/jHP/5xRjFrh8PBgw8+yPe//33+/Oc/NzR1FebNpxCWxpVsuE4btWVorBMu/lMThA59KSbUsu6kq7C8FHQDx5j1Nq30H6u+3fRy3ujRHt9tJRR+0tNB19+iSNK64frISvF4TrRzjo1Yp4Ce4WksPrLCHeOMtBo07sP1N+GoW6PRm9CODHds39e8uWhC0aarFScmg5qIxl4rUEW1cnRwWh6D1lq5iso/Afp5E6O3NDp5fkzo3ABdviMwDnOHxpXNmFcI/B7zJkoI0f6sBO4++8Xg4GASEhKYMmUKF1wgB3K8oZQKufLKK88tvti0qXDuA7g777yTt956y+NYRowYwWeffdbge5deeilTpkzhZz/7mdf32bt37+YPf/gDr732WoOJvODgYMaPH89vf/tbevSw078tsLTWvPPOO8yYMYOvv/7a7rSdwO8wd1AGuOa7OF/ITkr/ugV4F3gTGwnK4OBgHnroIT766CMefvhhSVCKdkVrfaog81//+tczEpS33347b7/9NrNmzaJbt26NLtEigYrzQk5k721Kq0DXyQmuU+opOwMVevpZL32tlZH0ZdC3IfOj+2V7mqCML6no7ioqe9yhum7Q8HhjCcqTUTz5yFsbLe/ijLq6LMAfTVGaY+D44nLLnR05cX02gxrijnbe4U2CMqHwk57jCssyHFRXoFWS7QQlgKYjRq3lbkqU0jiY5mmMvqJQv5+0eFVL157pCEwCtgJzsZ+gXA4MBmKRBKUQ7VmDvxFramqYN28eERERLFq0yO6OMdGA1rSbct26c3u0BAcHk5iYyLJly3jooYe8us8+ceIEs2bNIiwsrNGdhlFRURQVFZGent4mEpTr1q3j/vvvJzEx0W6Csgp4HuiFWXdS/vEIn5EkpX9cDMwCymmgBlVDwsPD+fDDD3nhhRe45BLLZp9CnFdWr17NfffdR0pKCt98882p16+88kpmz57N4sWLuf322wMYoTgf1XZ0PKMUVQEO42fjCtY5rQblxDgLQC9VSu1DMVUF7QuZH90ve0lkZK0nF520eFXXhKKKX3etq9uIJkNr6y7IWutLje7VSVbjFgztdwzU857E5UuG1hnp6dryd05OTN9PUcqjH9fNS/I2ToPrkeK1t1iNc0c530XxsSfX8KErTnTrnNhC1wrGTE5+gZmcvMrmvOWY3UTDgKX+CU0I0YZ80dSbe/bs4bHHHmP48OGN7sATllplXUqAyMhIiouLefrpp71OGL7zzjtERETw/PPPU1lZec77N9xwAwsWLCA3N5cbb7R1iDKg9uzZw5QpUxg2bBiffmr7Wd47QAjwJAS8YaI4D0mS0rc6YP6Y3gQkn/z/m3T99dczd+5cXn31VW65xfL+RIjzyu7du0lOTj7nR2GXLl1ISkpi6dKljBo1SrrZC7/IjeizSxv8I6BBaBzaYW83pdZBE+pq6252Rztn5kRGelSMfNKqVcEJRWsnVnfptF5pIxPUZc1bQf12wr8qLJ+kVe5X/wC9zZMYfUbj3BZRfr8/lvYkydskTVCddtj6e+BQHWw1BvIrQ4/28xWCMetabcBMTn7f5rzlQAxmctLj2qxCiPPOn8D6oWT9Q/NHH32U3bulrF4zDd68ebP9UwQt6Pe//z033HCDV2usX7+eUaNGMWnSJLZv337O+z169CA9PZ3i4mKio1t1s3PA3EWcnZ1NREQEubm5GIatfpKrMU8njMA82SCEX0iS0neigP9g/pi2vOnr0aMHU6dOpaSkhBEjRvg9OCFak+PHj5OVlUV4ePg5xyRiY2P56KOPmDp1alNHu4XwierjJ55HBfYpsNKMTCha00C9yTPNjw35ytyl2Hzp6drhKih/8MShTuuUdmTp5tXzO0VrLqzrUPeY1bi80SHVaJ7z5Bq+pLWePqSkxPKBoV31Sd4TXTpt8CzJ2ziliX+kuNyy3uTLUb0/UoFKwCn2ntzJa1nv00MOIB5YD7gBu3eVK4H7MJOTRf4JTQjRhq0GIgDLbZJaa1577TXCwsL4y1/+wvHj0qDYpq5dunQJC3QQvnbw4EFSU1MZOnQoK1asOOd9h8PBqFGjKC0tZdKkSQQHBwcgyuYpKCggIiKCtLQ0jhyx9RP4W+AxzNr/cjpB+J0kKb13I7AI80ex5ZG90z/IkpKSmupULMR5qaCggMGDB5ORkcGxY9/lW5xOJ2+++SZut5vvf9/uphkhvPPPEf33abBsBuNPGpTSQf7ZHae1chWX3bs1vPzfKL0QzQ+9XlKpX08sLLPspvxlh28XoPRmb6/nHXXFD/VlId6ucnaSF7jCB8GdQYOqM/TTdsbWGTylWrL+k2K/Qj8TdDS4tzc7eZtQn5zcgPmbyu4ZuU8wk5MDgcU+jkkIcX6pb7Dowkb34crKSl544QUGDRpEXl6e1Ku0ISgoqNUe+W6umpoacnNzCQsLY968eQ12gh8wYAAffPABs2fP5rLLfPbM0m8+//xzfv7zn+Nyufjyyy/tTKkBZmM+MJwFeNygUYjmkCSl57phdpcsw/xhbamtfZAJ4UtlZWU88MADuFyuM45JXH755bzwwgu899573HWX5WYyIXyuyjjxFxT7AxxGrKtofYQvFxxfVBHlKipfgcHraOuHaLZputUobdnoZUlkZC2GOrvhT8tQVCtUdrAm5KWovms9Xkdr5Soof3BreNlaXyV5Ldw7rmDtOR1oz7YgzrkKxbt+jgUUxxTMVI7a3jkxoTNeGtnL17uOT985uQi42ea8dcBoYACSnBRC2Kcxm3zcCEwDLB+47Nq1i5SUFEaNGkVFRYW/42vTtNZxgY7BF0pLS4mLi2PKlCns33/uz8Mrr7ySWbNmkZ+fT0iI189B/a5+N2hUVBQlJbYPYhQCtwEpwCG/BSdEAyRJ2XwKs07S58DTQGerCW3tg0wIXzpw4ACpqakMGzaMTz755NTrwcHBTJw4kaVLl3rdZU8Ib+TF9j8EZAY0CIWBNiyTU3YkFK4b4CpcV2Bo433ATx2n1P+MK9lwndUod0zfPMDzJGHz1aB4RTk6OHNi+iZlxzg97jI+vqgialxxxUozOansJs+8ph1Bz9gapxxpKGwVkWq2k0leo3OXXjkxzqk5kbcd9PkVzJpWn2EmJ+0W5S7HTE7eCuQh3USFEJ45hrnZxIn5WWJp5cqVDB06lOTkZPbu3evP2NqyW7/55hufnzRoKVu3biUxMZExY8awadOmc97v0qULkydPZvny5cTHx7f6mvm1tbVn7AatrbXVa/G/wHDMRkiSlRcB4bM6Te3EnZhbnQfYGdylSxd+9atfkZSUROfOlrlMIc4rNTU1uN1uZs6cyeHDh894LzY2lmnTpnHdddcFJjghzlL57ZGsrj27J6GV3e7BPqSLVV3Q73LiQtZ4s8q4gnVO7eB3aPWgryJrlKYjuvZJ4BdNjlNKU1w2DYPX/RqPwgD9Rp0jKC03MuRzb5ZKKFgTphxBGYaPksbNpnV4QmF55PyYvk1ud3BHhVS4CssWAT/14dVrFMrtqOuQ8VJcr50+XLeewrz5mYa5Q8OuCuAFIBf8lJgVQrRHn2M++IgC/gyENjXYMAzy8/N5//33+cUvfsGjjz4qpbvOpGpra6OBVwIdSHMcPnyYOXPm8I9//IPq6upz3ldKMXz4cFJTU9tMSaply5aRlpbGxo0b7U45CDyH+e/g3D8EIVqQ7KS052rMowGfYCNBqZRixIgRfPTRR0yePFkSlKLdKS0tJTY2lrS0tDMSlDfeeCO5ubm43W5JUIpWJW/0wCqlHH9s4cuu0Lou2h0Teo83CcpxJet6uYrWLUSpT1skQXmS1iQ8UrzWcgecO8r5LoqP/RhJcZBSd7ujQ8d6m6AEcDg69EcTmARlfQxKP4PW1ls0FNMxa0Z5R2Gg9Gso+uXE9E3yU4IyBvgUeBv7CcoNmPXj+mH+DpMEpRDCH4qBO4BEwHKb5LFjx8jMzCQyMpLFi6XixFnaTF1KwzDIy8sjPDycrKysBhOUoaGhvPnmm8ydO7dNJCjrd4OOHj3aboLSABZgnmh4HklQilZAdlI2rQuQDDwFdLczITQ0lBkzZnDnnXf6NTAhWqMvvviC9PR0iorObK564YUX8vjjj+NyuejQQT52ROt0bJ/K7nqJkQLqOn9eRyn1iaF52mqnnJVHPtx4VV1QbYY29E/ROFr83KsmqA7HU8DDVkOVNp7SOAp9HECxYajUBXGhq3y6rGPv36nrmQzqap+u2wxa0z+hqPze+fBOU+Pc0c4vXEVl89FM8OJqxVqrJ+bHDYBMJQAAIABJREFUhK7zfI0mxQB/wDyNYtdWzB0d85BC/UKIllELvIh5/PsJ4DdAk9sk6xNCubm5TJs2jV69erVAmK3eUK21Ukq16nIcK1euJC0trdE6o5dffjmTJ09m7NixOBytf19XZWUlf/vb35gzZ06DydZGLMHs2t2SZXmEsNT6/8UFzgjMQu7PYSNBeXrzD0lQivbm0KFDZGRkEBUVdUaCskOHDjz00EMsW7aMCRMmSIJStGp5o0OqleJZP15iPVqNzYkKGextghLACK4zQN+PDtx3udLEP1Jc3s9qXE5Mv1IFXv9vBjPJq4IY6o4JvWdBnNO3CUrgZOfq53y9bnMp9PT0dG3537YuOGiGUlQ1/wq62DAY5I4JvWd+jNMfCcow4COgAPsJym2YO5luxkwWSIJSCNHSDgBPYh79fs/OhNLSUoYOHdpoo5V25oo9e/b0DXQQjdm1axfJycmNNkIKDg5mwoQJp2rmt/YEZf1u0AEDBpCZmWk3Qbkd85RCJJKgFK1Q6/5XFxi3AUsxjyNdZzW4rX2QCeFL9V+MYWFhZGVlUVPz3anDsLAwPvjgA1544QV69uwZwCiFsO/YtxsXALYL+Nijt2llJFXu39DfHdv3NXy0uyAnMmQ3mr/5Yi1PaVB1hn7aztg6g6eUV41OdAVajc2J7huRE+lc4vk61jpdVP0yii3+vIY1FbIlrDzealRuRJ9dWpNtf1k+9meSFzM5WQyUAnY71n+JmZy8CTM5aau6vxBC+NEm4F7M48sbrAbX1NScalKSnZ1NXV37fcbSGrt8V1VVkZmZyaBBg8jPz0frc3+OxMbGsnTpUmbMmMEFF1wQgCibZ/Xq1YwcOZKUlBS7zZwqMWtC34xZQkWIVkkyat/pidkU51Mg3M6EtvZBJoQvLV++nNjYWFJSUvj2229PvX7dddcxd+5cFi1aRO/evQMYoRDNlzd6dJ1S2lZ3ZRu+1spI+jLo25D50f2y80aP9vkdS81x/UelOODrdZvp3nEFay1rOC6Ic67SFseXG7FJw4TrlznNJK+HfrZ41aXjCssyEorKLJOqL/bvX4P22d8DjzkgbdKqVcFW46qrTjyH4kjTo8wkrzvaOdhPSd5BQCFmcjLS5pztmEfNbkGSk0KI1qkQsy7uY8Bhi7EcPHiQtLQ0oqKiWLJkib9ja5W01q2qLuXbb7/NoEGDyMzM5Pjx4+e837t3bxYtWoTb7ebaa68NQITNs3v3bpKTkxk+fDifffaZnSkas4xBb8yu9uf+IQjRikiSEjoDz2LWP0oGgqwm3Hjjjbzyyitt5oNMCF/auXMnycnJxMfHs2HDdw+Wu3btyuTJk1myZAkjRowIYIRCeCcnypmPwuNGNkqpfSimqqB9IfOj+2UviYz0W+Jl4fDQAxrm+Gt9u7QjyF5Cz+F42uzEbct2M8m77/b5Mc7c9HTlUdOUR97aeIGrqOzxjl07b9DwuNLqtwlFmyzrTV6/zPlPFGWeXNNXNNx4/EAny5qf/xzRfx9aZTXytk+SvE0YACwGlgHRNud8jXnDfzPmA+ITfohLCCF8pQbzs+oGYDY2SlFs3ryZsWPH4nK5+PLLL/0dX2szePv27V0CHUS9OXPmsHv37nNev+iii5g+fToffPABYWFhAYiseaqqqsjKyiI8PLzR3aANWIV5wmE08JVfAxTCR9p7kjIaOIhZd8RyK+Qll1zCs88+S0lJCZGRdjcJCHF+OHr0KBkZGQwcOJD8/PxTryuliI+PZ8WKFUyePJmOHZusMS5E66eUVkpPa/489iv0MzUnjvZ2Rztnnqxt2GyTVq0KTihaO3FcUfnHkxav6mo1vtLhmAXa1jkfv9E6PKGw3PKL0R0VUoFmUZODFHtPJnn7epPknbR4VVdXUdnjRveazWgy0LrHyWA7O6h+wmp+eroyVCvYTakcOjV+0QrLm71KffxPKE4vhuaTJG8TfoSZnFwBDLc5Zy/mb6765KTs5hBCtCX7gBTgLsxd45YKCgqIiIggNTWVo0eP+jW4VqSzw+FotVm/+nJtK1euZOLEiW2iZn5BQQFDhgwhIyODY8eO2ZmyE7OMyo8wv6eFaDPae5LyLaCT1aD6D7Lly5fjcrkICrLcbCnEecMwDF599VXCw8PJyso6oyDzbbfdxttvv82sWbP43ve+F8AohfCtnKjQ91DK1g0IimMKZipHbe+cmNAZrwy72/I4WEPS07XDVVD+4IlDndYp7cjSWt92okunX1rNy4sMOaqUY6Yn1/Qlh9LPoLWyHKiYjrkr5ezX9yv0M0FHg71K8sYvquiYULR24okunTagydCai88eozWPPFK47odWa+XEhL4J6t+exOEzWl3VrecFE62G5cX2P4RWf65P8vao7uyvnbyhwCJgJfaTk/swk5PXAs+DJ41+hBCi1fgPZs3d+zAbfjWppqaGefPmER4eTm5uLobh62dGrVKrOvJdr75m/owZM7jwwgsDHY6lsrIyHnjgAVwuF9u3b7czpRpzt28vzDIq7eIvmzi/tOck5R1AN6tBgwYNorCwsM18kAnhS6tWrWL48OH85je/Yc+ePadev+KKK5g9ezbvvPMOd9xxRwAjFMJ/tFGb3uQARbVCZQdreufEOKfmRN520LMLaeUqLrt3a3j5v1F6IZpTyTOl+N9xJasvslzDsffvoHd4dH0f0Zr+CUXl91qNc0c7v0CdVrD9rCTvSyN7WdRWbFh9krfbJcY6pR1ZwBVNDA82UFPtrKvQ0z2Jx7fUk4+8tdHyxEfl/sNzOlWeuNkd7Zw5Z9hNvj5C3RczObkGiAesE9LwLWaR/huQ5KQQ4vyzGAjBfAhjuU1yz549TJkyhXvvvZdVq/zRt6z1UEoFrHlOQ6e6rr/+etxuN4sWLaJXr14BiKp59u/fT2pqKsOGDeOTTz6xO+0dzLqTKWBVp1qI1qs9Jylt7ev+/PPP+c9//tNenngJAcCuXbtISkpi5MiRrFnzXWm+zp07k5SURGlpKaNGjUIpO/eoQrRN82NvXQa6qIG3alC8ohwdnDkxfZOyY5x7Ghhjy/iiiihXUfkKDF5H4zz7fa25mLqgR63WObnr8DlP4/AVhZ6enq4tf1vUBQfNUIpDCpVtdO7Sy+skb0H5g1vDy9ah9EIN19uapvjZwwVllt29cmKcBaCXehSbj2itLzW6VydZjcsbPbDqxRH9K318+RDMLqBrsZ+c3M93ycl0bDSbEEKINqoS8yFML2ABZpOSJq1du5aRI0eSmJjIjh0Bfb7oT6F79+69MhAXHjZs2Kn/u0ePHqSmprJkyRJiY1vl5s4z1NTUkJ2dzYABA5g3b57dLvEbgB8DI4Atfg1QiBbQnjMMvTD/QdvSr18/ZsyYQf/+/f0YkhCBdfz4cf72t7+RlZVFZeWZ97mxsbE888wz/OAHPwhQdKa//vWvPPNMg2XiPsWsESSEz7iK192hDLVcgzIbvug36hxBabmRIZ97s+74orKBhmIaBhFWYxUcVR0793o54qYm605OWrUq+MShTutO34kZCBoS5sc4X7Ua9/AHa7stGNrPVmGlxowvqojS6D9orW/zZL6CN3JinD+1vk7ZQENT4sk1fEUpDgXVOHrN+3HIfuvRPtEb+B0wFhtNBU86AvwVM2HuWdJZCCHatrswa+7ebWdwly5d+NWvfsWvf/1rOnWyrELW1iRcddVVC5p4fypwzo/6O++8k7feesvji9bU1PD6669z7Ngx7rvvPi699FKP12pJpaWlPPXUU2zevNnulP3AdOD/sNHMSYi2oj3vpGyW+ideSUlJ7Nq1K9DhCOFzb7/9NhEREfzxj388I0HpdDp54403cLvdAU9QCtHS3FGhn2n0YtDFQUrd7Y4OHetNgnJcYfmdrsKyNwxNiZ0EJYCG7kZ11eNW417s37+GVtDoxQFpk1atCrYa502CcnxR2UBXcVmBoY33PU1QnnT/uMLyO60GvRztXAF84MV1vKY1F9Z1qHusBS51PTAXKAMexl6C8ijmTqJrMY89SoJSCNFe/RsYBLiAc1tKn6WqqorMzEwGDRpEXl6e34NrYQHZuhgcHMyYMWN45JFH2kSC8osvvuDhhx9mzJgxdhOUNZj1Jm/BTIhLglKcVyRJ2Qxaa9544w3CwsKa01lLiFatvLycn/zkJ/ziF7/g66+/PvX6xRdfzIwZM3jvvff40Y9+FMAIhQisThdVj3XHhN7zUlTftZ6u8XBBWW9X0bqFoEuBYZYTzuH4RULRpqutRl2/zPlPFGUehOgzGm48cbBTgj/W9iTJ2xQNSqPT7IxVhiNN2TjG5zeKOpSyrk/queswk5P/BSZhLzl5jDOTkwf8FZwQQrQhBmaZjBsxS19Y1gjeuXMnKSkpjBo1ivXr1/s7vpYSp+001GunDh06RGpqKpGRkRQVNVRdqEGFwG2Ynbv3+S04IQJIkpQeqKqqIisri4iICPLy8tA6cPcsQnjqwIEDpKamcs899/Dxxx+fej04OJiJEyeycuVKJkyYIN3sRbv3Yv/+53aitimhoOKacYXlWQ4Hn6HVg9rjMiu6s6LmSatR6enKUK1gN6WC1PhFK7r4aj3vk7xNinMVrbdMeObEhazRSr/u42vbpIu15u6caGeyHxa/FjM5uRkzOWmnZvcxzO6hN2AmJ1vqCLoQQrQlxzDr8vYFbG2TXLFiBXFxcSQnJ7NvX5vPQV2+Y8eO0EAH0drU1taSm5tLWFgY8+bNo7a21s60zcBozN2pFX4NUIgAkyRlwzKB41aDdu3aRUpKCsOHD+ezzz5rgbCE8F5TBZnDw8MpKChg+vTp9OjRI4BRCtG2JRRtutpVtO5PymGUa/REtO2afo3Tevwjhess603mRDvfUoqAtg3VSm3pfvkFXp+xmlC0/lrfJHkt6Lppdoapug5PK7B1N+EbuhiHHuiOCb1nfoxznY8X/wHmMbFN2E9OnsA8YnYTZvdQj5tGCSFEO/I5ZoIpBqxPOxiGQX5+PmFhYWRlZVFT4/Gz0oALCgoKWJfv1mjZsmUMHTqUKVOm8O2339qZchDzYaATm4luIdo6SVI2bCZwM2aHNkurV69m5MiRJCcns3dvk30NhAio0tJS4uLiSEtL4/Dh75qt3nDDDSxYsIBXX32Vm2++OYARCtG2JRR+0nNcYVmGg+oKtEpC48sq+MF1Sj1lOUopjSbdh9dtBl2BVmPd0X2jXh7s3O7pKvVJ3lrqfJfkbdrA8cXlQ60G5cT12awVC/0cCyg+djg6xLljQu9xR4X6+ino9zGTk/8FksHW39FqzOTkDzGPmElxbiGEaL4i4HbMz1HLm8bDhw+TkZFBZGQkBQUFfg/OH7TWrb+ldgvYtm0biYmJjB49mg0bbPXuNTBzEb0wy6pYlgwQ4nwhScrGbQcSgCjAcvdC/ROvAQMGkJmZSXV1td8DFMKuLVu2kJCQwJgxY9i0adOp1y+88EKmTp1KcXEx0dHRAYxQiLYtvqSiu6uo7HGH6rpBw+Na47Ojzmf52biCdU6rQTkxzgLQS/0UQ0M2aZhw/TJnf3ds39c8XeRni1ddelaSt6Mvg2yK1kzDRu0sbThmoPxzs6AU5WaS1zn45ajeH/l4+cswu27XJyc725hzdnJyp49jEkKI9qYW83O1F2bZDMvd+Vu2bMHlcp3zO76NCN+5c2fXQAcRKJWVlWRmZhIZGcnixYvtTvsIuAMzFyEnFkS7I0lKayWYxWldwDdWgz38IBLCL05/AltYWHjqdYfDQXx8PMuWLSMpKYngYMtGvEKIBkxavKprQlHFr7vW1W1Ek6E1F/r1ghqHdtjYTQk4lHrar7GYtmtlJH0ZtO/2+THO3PR0ZXi6UEJRxa87dem0yc9J3kZprW8bV1L+gNW4+bEhX6F52ceX34RWY3Oi+nqV5G3EpZjJyS+BJ8DWn20N5g6O3pjJyR0+jkkIIdq7/ZhlM5zA+3Ym1J+ISk1NPeNEVCvXGQgPdBAtTWtNXl4eAwcOJDMzkxMnbD3b/Boz5xAJrPFrgEK0YpKktKe+Q1v9dmvLbZJbt249taV748aN/o5PiDMYhkFeXl6DtWwGDRpEQUEBs2bNomfPngGMUoi2K35RRceEorUTT3TptEFpIxPUZS12cc39CUVr7rIa9nK0cwVK/8svMSj2opiqgvb1nR/dL3tJZKTXdRqVUXdMQ3dfhOcprfX0ISUllrUZVZDjWRSVPrjkqSSvO7bvayjly058PTEbNnxB85OTfTB3cGzxYTxCCCHOtRGzIdx9mJ/XTaqpqWHevHkMGDCA7OzsM2rLt2Lt6sj3mjVruO+++0hJSeGbbyz3OAFUYnaBvxkz5yBdeUW7JknK5jmAWbg2FHjXzoRly5YRFxfHlClT2L9fml8K/6vvCpiSknJGV8CrrrqK2bNnk5eXR+/evQMYoRBt2/iitbd3vcRYr7QjC7giIEEYDlu7JJXBUyg83t147oLsV+hngo4G93ZHO2fmREZaNpmzq/LAxvmYTVwCR6ubrjMu/ZnVsJzIkN1o/ubxdU4meXtUdw7xVZL3NJfwXXLyacBOFzQDsyB/CGZy8nMfxiOEEMLaYszd648BltskDxw4QFpaGvfccw8ff/yx34PzUrtonrN7926Sk5O599577TbV1ZjfvX0wv7er/BieEG2GJCkb8Mwzz1h1T90EDMd8KrTear3a2lpyc3MJCwsjOzub2toWbAwq2o2dO3eSnJzMqFGjWL/+u7+WXbt2ZfLkySxfvpxRo0YFMEIhzg9HjZovUHQLZAxKqRhX0foIq3E5saFloN/w/oIcUzBTOWp758SEznhpZK8jXq95lrzRo+vQPOPrdZtLQ9qj7222bCZTc1z/USkONGtxxX4UUztVnrjZHe2cOWfYTb6sbXkB5o7J+uSkndID9cnJPpidZzf7MB4hhBDNU4PZ2KwXZt1Ky4eM5eXl/OQnP8HlcvHVV1/5Oz5P9f3qq6+uCnQQ/nL8+HGysrIIDw8nPz8frW1thPwM8xj8aMxyLEKIkyRJ2YA777xzsM2hhcCtmE+8DlkNPnjwIGlpaURFRVFSUuJNiEKcUlVVRWZmJoMGDSI/P//U60opRowYwdKlS5k8eTKdOvmyybAQ7VdebP9DSvGnQMeBrptmZ5iq6/C0slGYv+HJVCtUttG5S6+cGOfUnMjbDnqyTHq6dsSXVFge5XbH9M0D1npyDZ/RXHOkw/HxVsMWDg89oGGOnSUVHK1P8rqjnTNfHNHfF0fF63XHTE5+iVl78iIbcwzgHcwus6MJ9A5WIYQQp9uFWQ/4LmC5nQkFBQUMGTKEjIwMjh496tfgPKCCg4PPyyPfBQUFDB48mIyMDI4dO2ZnSrP/2wrR3kiSsgEXXXSR5e6U09Q/8boBs0ObZWGQzz//nJ///Oe4XC6+/FIenAjPaK1ZvHgxERER5xRkvvXWW3n77beZO3cuV1113j64FCJgju078n8oHehOxwPHF5cPtRqUE9dns1YsbObaNQqVHVQXfEtOTN+kBYNutFVUqSHjiyqitoVXrOimjZmWg5XSOLCVfPUn7eB3kxavsuxGWulwzAK9t9EBJ5O8dV269PYmyduIbpyZnLzYxhyNmZzsD4wg0AlhIYQQTWnWbrvTd/Tl5eXZ3dHXIrTW51WS8vQdrNu3b7czpRozV2B7l6wQ7ZUkKRvQsWPHMK11c9sdf4vZoe1OYKmdCQUFBURERJCamsqRIz4/OSfOY2vXrmXkyJEkJiayY8d3TVcvv/xyZs+ezbvvvssdd9wRwAiFOL/ljR5YpZTjj4GOw9A6Iz1dW36Xa8MxA4X10WKFgdKvoeiXE9M36aW4Xh4nYl0frh7kKiovNLTxvtb6Nq1JeKR47S1W89xRzndRBLrA1hUnunT6pdWgvMiQo0o5Gkq+1ihUdl1w0M3eJnkb0A3z98YXmMnJS2zOK8T8jTICWO3DeIQQQvjP6XULp2GjbuGePXtISUlpTm3EljBUa+vfK63dgQMHSE1NbW4t0Hcw642mYKPeqBDtXZv/oPAHpVT3Xbt23e3h9NXAYMwObdusBtd3aIuIiCA3NxfDkIcqonF79uxhypQp3HvvvaxaterU6507dyYpKYnS0lJGjRqFUiqAUQrRPhzbp7IVbA1oEBrn1kEVD1gNmx8b8hWaly0WK9aaH7mjQ8e6o52WHUYbk1C05i5XYdkbODoUo3X4abEG1WnHU3bWUNqwNc6flOJ/x5Wstj467dj7d9Dm06Kzkry5EX12+TCkTsAkzLqRfwEutzmvPjkZi7krRwghRNtTidlc5WZgATY6QNd3mU5MTGTnzkAf/uDSnTt39gt0EJ6qqakhOzubAQMGMG/ePLtd1TcC92A+HNzi1wCFOI9IkrJx3m5JX4z5xOtJwLIwSH3yadiwYXz66adeXlqcb+q/GMPDw89JZsfGxrJkyRKmTp1K9+6WJd+EED6SNzqk2sB4NtBx4DCmDSkp6WA1TAU5nkXRQC1EXWwYDHLHhN4zP8a5ztMwHi4o6+0qWrfQoYOWAsMajEET/0hxueVNSk5Mv1IFAS3erDUXUxf0qNW4nMjI41rpPyh4wzC43dskbwM6YiYntwBzgSttzisEfoT5e2aVxVghhBBtw9dAAhAJrLEa3FR5qABok12+S0tLiY2NJS0tjcOHbW2E3I/Zs8IJ/MuvwQlxHpIkZeN88SFaBTyPWXvC1hOvdevWcf/995OYmMjXX3/tgxBEW1dfFiAtLe2MQth9+/bl9ddfx+12c8011wQwQiHar6r9m3Ixn5QHjlY3XVt72VirYTmRIbvR/O3UC4qPVRBD3TGh9yyIc3qcxJpQtP7acYXlWQ4Hn6HVgxoa3cqtQdUZ+mk769YZPKVsfG/6l3ps/NLNl1mNmh/dLzsnxvnTBbHODT68+NnJSbsFhpdj3rzGAv/2YTxCCCFaj4+AOwAXsMdqcGVl5alGm3l5eX4PriEOh6NN1aX84osvSEhIYMyYMfz3v/+1M6UWs97kLZg9KzxrWihEOydJysb13759u906T1Z2YD7x+hGw0mpw/ROvwYMHk5mZyfHjx30UhmhLNm/ezNixY89psHTxxRczY8YM3n//fe6+29OqBEIIX8gbPbpOY8wIdBw4dOqj723uZDWsQ61jJuilDoe6zx3tHJwT6Vzi6SUTijZdPa6wPKtO163X6IlogmxOvXdcwVrLD68Fcc5V2qzjFDAauuvqqsktfNlgzN8MGzCTk1fbnLcciAbCgCV+iUwIIURrYgDzgRsx61VabpPcuXMnKSkpxMfHs2GDL5+rWdNah+/evbtbi17UA4cOHSIjI4OoqCgKCwvtTisCbsPs3L3Pb8EJ0Q5IkrJxQR06dIj28ZqfAoMwn3jtthpcVVV1xhOv1tShTfjPwYMHSU1NJSoqiiVLlpx6PTg4mIkTJ7Jy5UomTJhAUJDdfIAQwp/mR4e+hrI+cuVXmmuOdDo+3mrYvB+H7HfHhMa+HNX3A08v9bPFqy4dV1iWoXTNeo2eqMHyqPnZtCPoGVsDHY6nUYHtgKlx/DKhaJPdRKE36pOT6wE38EOb81Zg1sEOA4r9E5oQQohW7ChmvUonZpMdS8uXLyc2Npbk5GT27WuxnFpHrXVES12suQzDIC8vj/DwcLKysqipqbEzbTNm9/UYoNyvAQrRTkiSsglaa39sSdec+cTLcpvkrl27SElJYdSoUVRUVPghJNEa1NTUkJubS1hY2DkFmcPDw/nwww+ZPn06PXr0CGCUQohzKKU1jvRAh6E1v5u0eFVXf63/yFsbL3AVlT3esWvnDRoeB93Z48W0Dk8oLI+0GuaOCqlAs8jj6/iE7qyoedKPF3AA8UAFZnLyRpvzPsZMTg7CrIMthBCifatPmMViI2FmGAb5+fnNTcp5xU/3116rT9qmpKTYTdoew7yXt50YFkLYI0nKpt3jx7WP0cwnXitXrmTo0KEkJyezd+9eP4YmWlppaSlDhw5lypQp7N+//9TrP/zhD5k/fz6vvvoqt9xySwAjFEI0ZX50yPsoVRrgMK440aXTL3296MMfrO3mKip73OhesxlNBlr75EmJQ+ln0LrR+pWnKKYD/r9zapTepjTL/bBwfXJyPbAIuMnmvHWYN6EDkOSkEEKIcxUCt2Pz6PHpx5uLior8HVurap6zc+dOkpOTm3P83cDsNXED5r18QDsRCXE+kiRl076/Y8cOf2eGPse82YgGyqwGn/3Eq7q62s/hCX/aunUriYmJjBkzho0bv+u90aNHD6ZOnUpJSQkxMTEBjFAIYZc2atMDHYNS/O+4ktUX+WKt+EUVHROK1k50BDnWo8nQmot9sW49remfUFR+r9U4d7TzCxTzfXltWxR7UUztUd0lNCem7//z4coOYATwH8zkpN3fGWWYvxduRXZtCCGEaFoN3zVxmQ3UNT3cbBTz8MMPN6dRjCdCduzY8QN/LW7X6Y2E8vPz7U77N+bphQRsNCsSQnhGkpTWWuppTzHfPfGy3CZ5+PBhMjIyiIyMZPFi2UjR1jT238/hcBAfH8+yZctISkoiODg4gFEKIZpjfuyty7TWtius+5ziCFpnHaOjV90k09O1w1VQ/mC3S4x1SjuygCt8FOE5FHp6erq2/C1SFxw0Qymq/BXHmdS3KKZWfnvkJne0c+acYTf5apeEwkxOrgLeBvrZnFeBmZzsh5mclALVQggh7NoPpGCe3rNVj7q0tJTY2FhSU1M5fPiwP2IK2A6MsxvUnjhh6yv+a8yeEndjlloRQviRJCktOByOlqybUcuZT7wsbzRP34m3adMmf8cnvHR2QebTd8IOHDiQDz/8kFmzZnHppZcGMEohhKdUEGmqpZNIimqFyjY6d+mTExM6Iy8y5KhH62itXAXlD24NL1uH0gs1XO/jSBugQraFVYy2GpUb0WeX1mT7NRI4qmBmpT7e2x0Q5kDBAAAgAElEQVTtnJk3eqAvk6IxmM3z3sbs/mnHesybIklOCiGE8NYG4MeYtYy3WA2uqalh3rx5DBgwgOzs7DNq5XtLKRWQupRr1qxh5MiRJCYmsmPHDjtTKoHngd6YPSXke1iIFiBJSgta66jNmzd3auHLHsB84tUXeM/OhNLSUuLi4s6paShaj/qaoikpKWfUFL3qqquYPXs2+fn59OnTJ4ARCiG85Y4K/UyjW2p7e41CZQfVBd+SE9M3acGgG7/xdKHxRRVRruLyj1F6IVrZrY3oExqdNmnVKstt49VVJ55DccTnAShOKFR2XZcuvXNinFPzYvsf8uHq9cnJAuAOm3O2YJ6qCMW8KfLdnaEQQoj2bjFm0u0xwHKb5IEDB0hLS2PYsGF88sknvoohVmvrUxS+smfPHqZMmcLw4cNZtWqV3WnvACHAk5jd04UQLUSSlNa6de/e/e4AXXsTcC9mhzbLSr6nd4f29RMv4bldu3aRnJx8Tnf2Ll26MHnyZJYvX86oUaMCGKEQwpccBD2NwvDbBRQGSr+Gol9OTN+kl+J67fRmuXGFZfMMbbyP5lZfhdhMN5w42CnBatA/R/Tfh1ZZPrxujUJl1wUHeZ3kbUAM8AlmcrK/zTnbMJOTt2CeqpAvcSGEEP5QDczCTFa+CNa/WcrKynjggQdwuVxs377d2+tfumvXLrunCjxWU1NDdnY24eHh5ObmYhi2fpr9BwjHLM+yzZ/xCSEaJklKG7TWAdmSfppCzONetp54HTx4kLS0NKKioliyZIm/YxONqKqqOqMgs9bmCQGlFCNGjGDp0qVMnjyZTp1aeqOuEMKfXo4JWa+0ftU/q+tirfmROzp0rDva+YUvVlRav+2LdbyKAVLjF63oYjWuUh//EwrvjgucleTNjeizy6v1zhQGlGAmJ++yOedLzOTkTZg3i17VFBVCCCFs2on5/fMjYLmdCQUFBQwePJiMjAyOHTvmzbX92vehoKCA8PBw0tLSOHrU1kbIfZj32ncBy/wZmxCiaZKktKelmuc0pQbzidcN2OzQtnnzZsaOHYvL5eLLL7/0d3zipLMLMh8/fvzUe/369eOtt95i7ty5XH311QGMUgjhV0HB6SiqrQfapYtx6IHumNB75sc41/luXXg5NvQtUP/25ZrNpeHKbj0vmGg1Li+2/yG0+rMn1zhZK/Q9Xyd5TwoDioBSYIjNOV9h3hDV75yU5KQQQohAWIW5e3A05ndTk44fP05WVhbh4eHk5eWd2ojRTH65v66oqOAnP/kJLpeLr76y/J8C5j32bMx77FnIKQYhAk6SlPbcsWvXrssCHcRJ+zDrVd6FeTNkqaCggIiICFJTU+0+SRIeWrduHffffz+JiYl8/fXXp16//PLLeeGFF3j33Xfp39/uyT8hRFuVE9l7G0q5vV5I8bHD0SHOHRN6jzsq9DMfhNagoCDHNH+tbZ968pG3Nl5gNcqoq8sC9jRvbV2sHXqQO8b5gI+TvAMx63uVAlE253zNd8nJWYCvuocLIYQQntKYTdp6A9OA400Ph927d5OSksLw4cP57LNm/0QZ+L3vfa9j88Ns2MGDB0lNTeXHP/4xH39suwF3/WnFFGycVhRCtAxJUtrjMAzD7s1HS/kPEIHZoW2b1eD6Dm3NrMkhbKovyDxs2DA+/fTTU68HBwczceJESktLeeihh3A45J+cEO1FXQdHhlJ41CFaKcrRaqw72jn45ajeH3kaw/iPyn4wrmTDdVbjXorsUwja4+v4gtb6UqN7dZLVuAVD+x0D9bydNZVipZ+SvHdjJieXA8NtzvkGswD/TZjJScsbQCGEEKKFVQLpwM3AAjsTVq9ezX333UdycjLffGO7vHPHMWPGXO9ZiN+przt59913M2/ePLs9GZrV90EI0bIkY2KTUirQdSkbs5hmdB6rT6bde++9zeluJhpR/8UYERFxTvI3NjaWpUuXMn36dLp37x7AKIUQgZAb0WeXoXmxmdM2odXYnKi+/d2xfV/z9No/W7zq0nGFZRlGjSrXRt0LduY4lEr39Hq+o3474V8Vl1iNqtyv/gF6W6OrnEzy5kQ7h3iT5G1AKLAIWIH95ORezO/o64DnkeSkEEKI1m87kABEAmutBmutyc/PZ+DAgWRmZlJdbV3xJiws7EZvAiwtLSUuLo60tDQOH7a1EfIA5kmGvsB73lxbCOE/kqS0b2igA2hCJeaNTy/MJ16WhUHWrl3LyJEjSUxMZMeOHf6O77xUf4w+LS2NI0eOnHr9pptuYuHChbjdbq699toARiiECLSaqhMvoDhiPZLtWhlJXwbtu90d2/c1lPKowNMjb228wFVU9njHrp03aHgcdGe0HplQtMayicvL0c4VKP0vT67rK1pzYW1w3W+sxuWNDqlG81wDb230RZK3AU7M5OQaIB5QNubs48zkpEe7aoUQQogAWgLcDrgwTwQ0qbKykszMTIYMGcLixYubHNunTx+PkpRbtmzB5XIxZswYNm3aZGdKLWbt5/oyK1IDWohWTJKU9n1/586dvQMdhIUdmE+87gYsi3HUN3iJiIggMzOTEyekLJYdn3/+OT//+c/PaUh00UUXMWPGDIqLixkyZEjgAhRCtBr/HNF/n4Y5jQ5Q7EUxtUd155D50f2yl0RGevTD+eEP1nZzFZU9bnSv2YwmA617nDHAcDxtZx1l8BSKANcDUUkTC8sutxpVeWDjfMwjW6D4SisjqXL/Bq+SvA0IwUxOrsV+cvJbzHpeN2AmJyt9FIsQQggRCAYwHzPJ9zxYNwbctm0biYmJjB49mg0bGj5R3bNnz8ua00j08OHDZGRkEBUVRUFBgd1pxZhJ1kTMkw1CiFZOkpTN0xq6fNvxb2AQ5hMvy+YCVVVVZGZmMmjQIPLy8vweXFtVX5A5KiqKkpKSU68HBwfz0EMPsWzZMiZMmEBQUFAAoxRCtDZVxom/oNh/5qvqWxRTK789cpM72jlzzrCbPHpKFL+oomNC0dqJjiDHBjQZWnNxQ+OUUjHjizcMtlovJza0DPQbnsTiM5puNUo/YTUsb/ToOuXQT4J+tNOFJ/rMj+6XnTd6tK+6cvbBvCFrTnLyCObN2w2Y9bykCL8QQojzyUHMEwJO4B07E5YtW8bQoUOZMmUK33777TnvDx5s+dMEwzDIy8sjLCyMrKwsW0fJgc8xu5VHA2V2JgghWgdJUjZPa61L2ZD6J143YO7osLwB3rlzJykpKYwaNYr169f7O742o7a2ltzcXMLCwpg3bx61td9tdAoPD+eDDz7ghRde4JJLLMuoCSHaobzY/oeU4k8ACo4qmFmpj/d2Rztn5o0e6NER4CElJR0SCsse6npJXZnSjizAcuehYdSm21lb1XV4WgX8KJT6HzsNf3KiQt9zx4S++GL//jU+uvAPgbnAOuBhwM5Tp6OYyclrMG/eDvkoFiGEEKI1+i8wAvPeuMJq8On3UtnZ2WfcS0VERDQ5d8WKFcTFxZGSksK+ffvsxHYM897XidmtXAjRxkiSsnmGbN68uVOgg2imY5g7Omx/UNd/GSQnJ9v9Mjhvnf70b//+7zZCXX/99cydO5dXX32VXr16BTBCIURb0PHYiSzQGQaVN+fEOKfmxfb3LJGltXIVlD94rdFzjYJ5oK5rxuyB4worfmw1KCeuz2atWOhRfL6i6YiufbIFr3gdZnJyEzAJz5KTB/0VnBBCCNEKFQK3YTajsfxdc+jQIdLS0oiKiqK4uBgwd1I2dApt586dJCcnEx8fb3fzjMbszXAj5r2vNKkToo2yc3zpfNULaLBAxpo1a/je977X4CSHwxF9xRVXFPszMD+LBv6C2dXMUo8ePXj00UeZNGkSwcHB/o2sFdm2bRvPPvvsOQWf6/88/ud//oeOHTsGKLr27a9//SvPPPNMQ299Clg2BxGirRpfVBFlYDyL5laPF1GUXV/a9670dNVk3cmEgoprlMMoRxO4B3OKuiBl3PZSVD9bVfE9dC3we+ARoIPNOceAecAfsFFSRQghhGgHegJpQBL2HvQRGxvLtGnTSEpKYvXq1ade79GjBydOnGhOv4TlQArwWfNCFkK0RrKTspkMw2hLR74bUoT5xCsRs/Nok+oLFEdGRlJYWOj34AKtsY50DoeD+Ph4SktLSUpKkgSlEKLFuD5cPchVVF5oaON9rxKUABrn1kEVD1gNmx8b8pXSvOTVtbylCaozHL/30+rXYHb4rN85aSdBWQnMxtylkYIkKIUQQoh632J+N94JLLUzoaCggMGDB6P1mb3uDh8+bDdBuQOzB0M4kqAU4rwhScrmayvNc5pSC7yI2aFtNjZqj23ZsoWEhATGjBnDpk3+3NQSGPUFmQcMGEBmZuYZBZkHDBjABx98wKxZs7jssssCGKUQoj1JKFpz17jCsn/h6FCM1uE+W9hhTBtSUmKZlOsAz6IC1JlaYaD0a0HoaT5e+ft8l5xMBls7RasxvzNvwrwB2+3jmIQQQojzxWpgMHAfsNVqcE1NDWvWrGnuNaowy630wuzBoJseLoRoSyRJ2Xy37d69u+Gz4G3PfswbLifwLzsTSktLiYuLIzU1lcOHz4/GpatXr2bkyJGkpKSwd+/eU69feeWVzJ49m/z8fEJCQgIYoRCiPRlfWNHHVbRuoUMHLdUQ6fMLaHXTtbWXjbUalh3j3KM0f/X59ZugzBuN95Sh73JHh459KSZ0i4+W/h7wHLAZMznZ2cac+uTkDzFPH+z0USxCCCHE+W4xEIJ5BPyYD9d9B+iDWQv6qA/XFUK0EpKkbD5lGEZMoIPwsY3APZhPvCxvCGtqapg3bx4DBgwgOzuburo6vwfoD7t37yY5OZnhw4fz2WffnRDo0qULkydPZvny5YwaNQql2nPpViFES5lQtP7acYXlWYYyVqHVg9qfdaMdOvXR92w0gguq/aNSHPBbHGfQxUoZA90xzgdyYkPLfLToZZjJyW3AE9hLTtZgFt/vjZmc3OGjWIQQQoj2pAqYgbnjcSHe7XhcDURgdhXf5nVkQohWS5KUHtBat/W6lI1ZjHlT9hhguU3ywIEDpKWlcc899/Dxxx/7PThfqaqqIisri/DwcPLz80/VQVFKMWLECD766CMmT55M58527mWFEMI7E0vWfn9cYXlWna5br9ET0fYKzntFc82RTsfHWw3LibztoIY5/gxFKVaigmLdMaH3vBzd7z//n707D4+yuvs//j6ThCVhE0FcUHBBWQyo4AKCBSHaWrFqCT61SBCo+hSVSrAuFMVQWkUShIq/0roQVFoC1g31URGQ1VZtlbCIqFVBEXFHEQiZ8/vjJBJCkvueyczck+Tzui4uzcw59/1FIZn5zDnnG6PLtuHAcLKpjzkVw8nh+PjQTkRERDxtBX4J9MU1uozEduBXQC9gRYzrEpEkpJAyCqFQ6DxrbX1dXrcXd15XZ9w2txo7wAKsW7eOSy+9lJycHD788MN411crL774Iv3792fKlCl8993+nQfdu3fniSeeYPbs2bRv3z7ACkWkofjF06+1GbG4eEpJacp6ix1t/XeXjglrueWqp19L9xq3KxSaAXaH17hIGcM6rLl8zsDM/oUDu/o6ZN+HQ4FJwLu4cNLz94f7ObcAty1teNlcERERia3VwFnAlcA2j7F7gWnAicD9+HhPKiL1g0LKKFhrj9y+fXt9P6RwG26b2xnAKj8TKgaA336bXEeEFBcXc8kll5CTk8OWLVt+eLxdu3ZMnTqVZ599ltNPPz3ACkWkoWnUtNHDFsaDDWrZ9uF70hv/2mvQggHdvjUmNC2G930Lay6fc+7JvQqzTn4sRtdsjgsl3wVuB1r4mFMeTnYBhuLOqxQREZH4CQNzcA1cC6h6C/gK4GTgRnzs7hOR+kUhZZTC4XB96PLtx+tAP9wbuA+8Bu/evfuHrdQLFiz4YSt1UL744gsmTpzIBRdcwD//+c8fHk9LS2P06NEsX76cYcOGEQrpr4KIJJa14SlB12Bg/OWL1h7iOTC048+47Vq1udmH1oTH7Ppi42mFWSc/hjGx+AHRDBdOfojb3t3Sx5yKKyeHAm/HoA4RERHxbyeQC5yN+zm8F9iBO3bsHPTBoUiDpWQmevX1XMqqWNwbuq7AHbhDkGu0fft2xo4dy09/+tMDmtIkSklJCffffz+9e/fmgQceOKC5T1ZWFsuXLycvL4/mzZsnvDYREYC5WaesBPtSkDVYyyFpTbjOa9ycAQN2G2vvjOomxn5sTSi3xZ4mJ88d2OP+BUOHxqLbWuVwspWPORbXFbQnLpx8KwZ1iIiISPTW4FZVNgYOwx07JiINmELK6P1oy5Ytfg7ir0924c76OhHXXMBzFcwbb7zBRRddxPXXX8+nn34a5/KcFStWMGjQIG677TZ27tz5w+MnnHACjz76KIWFhXTo0CEhtYiI1CjERFO7bpe1ZjBjr1y+ua3XuEaH7J2DiaSZjPkcw4Rdn3/bde7Abvf+6YJOe2pTZ5kMYCzwDi6c9F4F6izGHbo/GHgjBnWIiIiIiEiMKaSMXtNQKHR20EUEZCuuucAAfLzZs9aycOFC+vTpQ35+Pnv2xOJ96sHeffddrrjiCi677DI2b96/Q6BVq1ZMnjyZJUuWMGDAgLjcW0QkGoXndn/dYp8OsgYLzcJ7vx/vNe4vvXqVmLCd7DXOwLcGpu2yu7sUDsyctmBoH8/V9z6ksz+cvAdo53PeYuB03O6HWHUOFxERERGROFBIWQuhUKghbfmuysu4bXM5wHavwbt27SI/P5+zzz6bBQsWxKyIr7/+mokTJzJgwABeemn/zsnU1FSGDRvGypUrGTVqFKmpCW2cKyLiS4iU2zFBd60MXTP8pU1HeY3quCrz78DaKp807MLYWaZRk85zBmVOWJDV6+sYFNYIuAp3NtU9wOE+5y0GzsSFk6/FoA4REREREYkzhZS1YK1tKM1zahIG5gKdgbsAz2WSH3/8MWPHjiU7O5uNGzdGfeN9+/bxyCOP0LdvXx544AH27dv3w3N9+/bl+eefZ+rUqbRu3Trqe4iIxNtDg7ptMNbOD7YK28RQcrPXqEmTTDhk7e8rPVxiMPeXpqV0LRzYfdxD53TaEYOCysPJ94DZwJE+560C+uPCyX/FoA4REREREUkQhZS102PHjh1HBF1EkvgKuBnIxDXZ8bRq1SqysrK4/vrr+fzzzyO62cqVKzn//PP57W9/e8Dcjh07Mnv2bIqKiujSpUtE1xQRCUxK2iQMewOtwdorRy5ee5zXsIeyuj8J5l8Ywhj7WAq2+5xBJ4955Jyu22JQRRruOJGNuHDSc3VnmVXAuUBf3Cp/ERERERGpYxRS1o4pKSkZGHQRSWYzrmtqFrDea3A4HGbhwoX07duXWbNmUVJSUuP4999/n6uvvpqhQ4cesAozPT2d3Nxcli1bxuDBg2v5WxARSaw5A7q8jzGFAZeRVmrM7/wMNGFzXYoJn1I4sPvlDw7qHkEznervzf5wshDwDEvLrAYG4cLJpTGoQ0REREREAqKQsvYa+rmU1VkMnApcDXzmNfjrr79mypQpnHvuuQecK1mu/DzLAQMG8PTT+3tMhEIhsrOzWbNmDbm5uTRq1CiGvwURkcQpTQ1NMYZYNJmpjV8MX1zc3WvQnPO6vfHguT02xeB+ISAb96FWIXC8z3mvABcBZwMH/9AQEREREZE6RyFl7Z1nrTVBF5GkSoC/ACcBM4FSrwkVO3S//fbbWGtZsGBBlZ3BTz31VJ588klmzJhB27Zt4/abEBFJhEfO6botbPlLoEVYQsbnaspaKg8nNwJFQCef897ErdbvDQTaFV1ERERERGJLIWXtHb5169bMoItIcl8AY3GdwH2dFbZixQqysrI4++yzGTt2LJ9++ukPzx1++OHMnDmTRYsW0bNnz/hULCISgJLv90zFsDPQIqz92fCX3jgjTlevuHKyCDjR57xiXDh5Kj7PPRYRERERkbpFIWUMpKamqsu3P2/iuq5mA+97DS4pKeH99/cPa9q0KWPGjGHFihUMGTIEYxrWAtZwOMxHH32EtTboUkQkTv42uNdnFv4UdB3GpA6P9SWBwcDruHCys89563DhZA9cOKlvgCIiIiIi9ZRCyhiw1upcysgsxG0B/w34WzGUmprKU089xYQJE8jIyIhrccno6aefpnfv3px++ukMGjSIL774IuiSRCROvg/vuQdDMH/JDR9aEx6z67MNY2N41UHAa8BTwCk+52wAclA4KSIiIiLSYCikjI1ztmzZ0jToIuqYvcAMoAvwCB5vQPft28e7776biLqSyvr16/n5z3/O1VdfzZYtWwDYuHEj8+bNC7gyEYmXBVm9vjaGgsTe1X5kTSi3xZ4mJ88d2OP+BUOHep4h7MMg4FXgReA0n3M24sLJ7sBcIByDOkREREREpA5IDbqAeqJJSkpKP+CFoAupgz4CrsAFljOAPtUN3Lkz2GPaEunLL7+koKCAOXPmUFp6cFaglZQi9dt3n+28N/3QZr/GmiPjeyfzOcYW7Pr821kLhvaJVWfxQcAUIJJzLf8L3Ak8gI8mayIiIiIiUv9oJWWMaMt3rb0G9MWdPbYv4FoCU1JSwuzZs+nduzcPPPBAlQGliNR/LjA0U+N1fQPfGpi2y+7uUjgwc1qMAsq+wDLcykm/AeUHwNW4Bjp/QQGliIiIiEiDpZWUMRIKhc4Dbgy6jjrO4s4e+yNwfMC1JNyKFSu47bbb2LRpU9CliEgS2PV56IGM1uGxFo6N2UUNu8A+ZNKa/vGhczrtiNFV+wJ5wIAI5nwIFAB/BvbEqA4REREREanDtJIyRqy1mTt27Dgi6DrqiQZ1Btk777zDsGHDuOyyy6oMKDMyMujQoUMAlYlIkBYM7bY3TPiPMbpcicHcX5qW0rVwYPdxMQoo+wCLgRX4Dyi34JqmnYg74kMBpYiIiIiIAAopY8ns27dPW77Ft2+++YYpU6YwaNAglixZctDzxhgGDx7MsmXL6NOn2qM6RaQe+/6LTY8Ab0V9AUMYYx9LwXafM+jkMY+c03VbDMo6C3gaWAUM9DnnU+BmFE6KiIiIiEg1tN07hsrOpZwbdB2S3MLhMI899hiTJ0/ms88+q3JMjx49yMvL4/TTT09wdSKSTBYMHVo6fPGbkw2hRyOZZ8BaeM6E7W1zsroXx6icHsAEIDuCOTuAfGAmEKvGPCIiIiIiUg8ppIytLGutMcbYoAuR5LR69Wpuu+02NmzYUOXz7dq1Izc3l8svv5xQSAudRQTmDuz+WM6SdTdiOcXfDLvEGDthzsAe/45RCZnARGAIYHzO+QyYBvwJ2BWjOkREREREpB5TSBlb7T766KMewBtBFyLJ5eOPP+bOO+9k4cKFVT6flpbG8OHD+e1vf0vz5s0TXJ2IJDVjrH1p/SRD+AmPkasptbcXnt99eYzufDJwG5GFk58D9+Ka4nwTozpERERERKQBUEgZY8aY81BIKWW+//577rvvPu6991727Kn6CLasrCzy8vLUHEdEqjV3YLfncl5atwJr+1V+zhhes4Y/FJ6b+UyMbtcVd37kL/F/dvUXuFWT04GvY1SHiIiIiIg0IAopY8wYkwVMDboOCZa1lkWLFpGXl8dHH31U5ZhOnTpxxx130L9//8QWJyJ1kg3vm2RMykvlXxvDRhs2k+cM7PYPYnPMSBfgFuByIMXnnJ3AfcCdwFcxqEFERERERBooHXoXe/0++eSTjKCLkOC8+eabXHzxxVx99dVVBpStWrUiLy+PJUuWKKAUEd/mZp2yEuxLGD60Jjzmu8839izMOvmxGASUxwKzgWLgCvwFlN8CdwEdcKsuFVCKiIiIiEitaCVl7DUOh8P9gP8LuhBJrO3bt5Ofn8+8efMIh8MHPZ+WlsZll13GzTffTOvWrQOoUETqunDT9BFNG3/15V969SqJweU6ALcCI/H/euA74AHgD8D2GNQgIiIiIiICKKSMlywUUjYYJSUlFBYWcvfdd7Nz584qx/Tr14877riDzp07J7g6EalPHj77hE9jcJljgFzgaqCxzzm7gPuBPwKfxKAGERERERGRAyikjI/zgi5AEuPFF1/ktttu44MPPqjy+WOPPZabb76ZwYMHJ7gyEZGDHA2MJ7Jwci8wB5gEbItLVSIiIiIiIiikjJeTt27d2r59+/Zbgy5E4mPz5s3cfvvtLFu2rMrnMzIyuOaaa7juuuto1KhRYosTETnQYcA4YCzQxOec8nDyDuDj+JQlIiIiIiKyn0LKOElJSRmEe4Mn9chXX31Ffn4+c+bMobS09KDnQ6EQl156KRMnTqRt27YBVCgi8oO2uG3d1wNNfc4pAR4CJgP6oE1ERERERBJGIWWcWGuzUEhZb5SUlDB//nzuvPNOvvjiiyrH9O7dm7y8PLp165bg6kREDtAGt637OiDd55wS4O+4lZPvxqkuERERERGRaimkjJ/zrLUhY8zBbZ6lTnn55ZeZOHEi77zzTpXPt2/fnokTJ+rcSREJ2qG4YPIGoIXPOWHgMVyX76q/yYmIiIiIiCSAQsr4abNt27ZTgH8HXYhE76mnnuKaa66p8rn09HSuvfZarrnmGpo08XvMm4hIzLXGben+DdDS55zycPJ3wNtxqktERERERMQ3hZTxdR4KKeu0J5544qDHjDFccsklTJgwgSOOOCKAqkREAGgO/Bq4GWjlc055ODkR2BSnukRERERERCKmkDKOys6lvDPoOiR6e/fuPeDrrl27ctddd9GzZ8+AKhIRoRkwBrgJOMTnHAs8gwsn34hTXSIiIiIiIlFTSBlHxpi+n376abPDDjvs26BrkdgYMmSIAkoRCUoGMBq4BWjnc055OHk7WtkvIiIiIhK0q4DsCl+vAPICqiXpKKSMr0alpaXnAM8GXYiIiNRZ6cCvcNu6D49g3uKyOa/HoygREREREYlYJ2BQha+/DkVqWjoAACAASURBVKqQCBigB3B22T+74nZ0NQF2AV/hzrlfDbwIfBjtjRRSxpm19jwUUoqISOQaASOASUAkB+AuxnXrfjX2JYmIiIiISAMQAvoDlwMX4P1+pC8wEigFFgGTiWKxhELK+Dsv6AJERKROKQ8nbweOjGDeKmAC8HIcahIRERERkYbhOGAZcHQUc1OAnwE/Bf4A3IFr3ulLKIobSmS6fPzxx8cEXYSIiCS9NNwZNe8Cs/EfUK4CzsV9eqmAUkREREREauMQogsoK0oFbgPux20X90UhZQKUdfkWERGpShowHNiICyfb+5y3CneeTV9gaXxKExERERERYSvwF+AK3JmUbXDhY0ugN/B74PMq5l0JjPV7E4WUCRAKhRRSiohIZSFcZ78NQCFwvM95a4CLcOHkS/EpTUREREREGrgwsBD4CdARuBp4BLe4ojyQ/AZ4BZgIdAFeqOI6dwDt/NxQIWUCWGsHWWv131pERGB/OLkRKAJO8Dnvn7hwsg/wdHxKExERERGRBi4MLAC64963/B+uIY6XHbjzKF+p9HgL4Jd+bqzgLDEO/eSTT3oGXYSIiASq4srJIuBEn/PWAkNx2ygUToqIiIiISDz9B/f+Y30Uc3cD/1vF4xf5mazu3glirT0PeDXoOkREJOEMcCGQB5wSwbx1ZXMWAjYOdYmIiIiIxFsa0A04Frei7lvgv8C/fc49vmxuM6Ap8GXZr/Vl/4y3DFy362OAVmX3fB+38ECq9gbuvczJFR47yc9EhZSJkwVMCboIERFJmPJwchJwWgTz1gNTcee9hGNfloiIiIhIrWUAT1R6bDTwQdm/ZwI3AhcDzSuN+xg4qoprhoAfAT8u++epQKNq7h/GvW5eCNwLfBFZ+RyHa1pZ0WDcSkBwiwtuLXusSRXztwJzcK/bd0Z479o4FfgjkFLhsV3Ab3Dhb7LYwIEhZVvc/98a398opEycPp9//nmLQw899JugCxERkbgbBNwJRHLUx8ayOY/i78wXEREREZGgpOJe81aUgfug/g7gFqrPnEwVj2Xhmkke4fP+IVwQWh6G3gDc73MuuOC0cv0pZbXdDkyg5sysPfA7XPfq84lua3SkzsedFVkx9P0MF6QmU0AJB4eRe6t47CA6kzJx0nbv3v2joIsQEZG4GgT8C3gR/wHlf3Gd8jKBuSigFBEREZG66z5cp+eaAr6qsqjj8B9QVtYM+CvuA//augcXUvpd1HcUsAy3HTyeRuLOp68YUL6La6pZuVFNMjiu0tfb/EzSSsoECoVCWajpgYhIfdQX+D1uW4pf7+O2ajwI7ItDTSIiIiIiiTQCuKbC19uARbgdQ98AbYCuuNfONdkHrMB9+P8G8CnwNW6l42G4rdiX4rY+V3QT8BpuC3g0RgLXV/h6NfAsLgz8CmiHe73/Cw7cAt4G+DNwQZT3rUn5ys7bKz3+L9wKyk/jcM/aOoqDF2ys9jNRIWUClTXPERGR+qMvrrnNgAjmfAD8AYWTIiIiIlK/jCv75x7ceY5/AkqqGFfVGY8Am4B84DFqPmNyEW6BwEW4Ld5tKzw3q+z53VXM81JQ9s8tQA6wtIoxhbh+I88BnSo8/hNcMPd6FPetThru3MwrKz3+NC4o/S6G94qlqznwzEyAJ/1M1HbvxDrpk08+OTboIkREpNbOBhbjPuH1G1BuwR1ofRLwFxRQioiIiEj9koJ7jXsJLvCrKqCEqgPEhbhVln/FfxOcp4CBHNi45jDgf3zOrywV95q9D1UHlOXexa1i3FPp8Zwo71uV5riwtXJA+Wfcf99kDSg74c4IrehtDm6yVCWFlAkWDocrH8wqIiJ1R2/cJ5crcS+I/PgUuBk4EZjBwS9mRERERETqi2m4VYaR+hwfjVWqUIw7QqmiaENKgCtwnbu9bAL+VumxWPUhORJYDlTcjWtxq1P/l+Q9wz4Vt7K18krZW/G5QEMhZeJlBV2AiIhE7ExcOLkauNDnnB24cLIjcBfRbTkREREREakrdhGb5jWReqTS12dQdQdxL8uAlyMY/3ilr7tQ/VZ2v7oBa3DnbpbbCwzn4DA22UwHzqn0WBFu+74vCikTb5C1tvLefBERSU7dcT9Y1+A/nPwMF052wIWT38enNBERERGRpPI0rsFNom3BNeYpdwgQzVF7RRGOf6PS12m45jrR6o/bsVWxU/jXuIY8lYPYZPMr4NpKj/0XuCqSi6hxTuIdsn379l7AP4MuREREqnUycBswBP+fwn4O3Is7f+cbj7EiIiIiIvXNK3G4ZlPcOYdtgQygcTXjKh+p1BZ4L8J7RVr/J1U81grXKDNSl+Maa1b8/W0FfgqsjeJ6iZQN/L9Kj30N/JwIQ2uFlAEo6/KtkFJEJPl0A24Cfon/3QZf4DoXTieYT45FRERERJLBhhhdpycutLsAF1BGsxu1VRRzqgoda7K37FejCo81i+K+N+G2cldcHLEO1zHcz/mYQboIeJQD/x/twu1C+0+kF1NIGQBrbRYwOeg6RETkB12AW3Avhvy+CNoJ3Ic7d+erONUlIiIiIlJX1PY18THAPbju1bWVEcWcnd5DDlK52U+kZ2H+BLfisKIlwKUk/wKI83Fb5NMqPLYH9/9vZTQXVEgZjN5ffPFFy9atWyf7HzgRkfruWNz5kaPwH05+C8zCnTf5ZZzqEhERERGpa76rxdyuwGLgCJ/32VvpsZYcuBMqmsY5Noo5tZVexWNzSf6AcgCucVDF7en7gF8AL0R7UYWUwUj9/vvv+wNPBl2IiEgD1RG3cnIk/n8Wfoc7c3Iqbou3iIiIiIjsF23Ilw48w8EB5UZgPrAa14RlK7C7mmv8F/cav65Zh/t9H1rhsQdwgetDgVTk7WzgKdx5oeVKgREc3PE8Igopg5OFQkoRkUTrANxK5OHkA8AfgO1xqktEREREpKHK5cCAMQyMxe1e8ht8RrO9Oxlswh059SL7O4On4N5/NMUdL5VMTscFyhXP3gwDo3FnU9aK36YAEmPGmPOCrkFEpAE5GpiBexFwFf4Cyj3AX3CHdY9FAaWIiIiISDxcXunrGbgdTH4DyhBwSEwrSqxioD/wUYXHDO6/QW4QBVXjNOB53Nb6cha4BpgTixsopAxOp+3btx8XdBEiIvXcYbjGNm8D13PgmSnV2YsLJ48Drga2xa06EREREZGG7Uigc6XH/l+E1+hM3d8p/BZwDvB+hccMMA34XRAFVdIDd9ZkxTDYAtcCf43VTRRSBqi0tDQr6BpEROqptrhw8n3gJqCJjzmVw8mP41WciIiIiIgAB59DuRd4J8JrnBOjWoL2Hu73srnS45NxR08F5WTcdvRDKz0+jhhvR1dIGSyFlCIisdUGF05+gAsnm9Y8HIAS4GGgCy6c/Kjm4SIiIiIiEiPNK329j8gb8IyOUS3JYAsuqFxf6fFbgOlE17W8Nrrguq63rfT4TcA9sb6ZQspgDbTW1vUlySIiyeBQYBLwLpGHk12B4bhPLkVEREREJHG+qPR1OnBMBPOHAD1jV05S+AR3RuV/Kj3+G9xW+ERleScBS9jf0Kfc74Cp8bihQspgtfroo49OD7oIEZE6rDX7w8nbgRY+5oSBBUA3XDgZ6XYSqafeGD6tb/EVBb2CrkNEREQCcRT+PuiW2HoPt8W7ol/5nNuJyM+vrCs+A84FXqn0+NXAQ7gO4PF0AvAScHilx/OAKfG6qULKgKWkpKjLt4hI5JrjVkyWh5Mtax4O7A8nuwJDOfisF2nALNakGHMPIbtqbU7+c29ecfeZQdckIiIiCXEJsAHYCnyJO2Ov8tZWiZ9vgRWVHrsJ+JnHvH7ActxxTxD5FvG64CvgPNzvs6LhwDwgLU73PRa3gvKoSo//GbfF+5Aof3nuJFZIGTBrrc6lFBHxrxnuRcsHuLMnW/mYY4FFwGm4cHJT3KqTOmvd8OkXA5kABs4NhULLi3MKlm68suBHAZcmIiIi8dEZeA74B+7cPYDGwP/iVvdNKvta4q/y1uE04HFgPnAh0AF3vFMX4Bdlz73M/lV+zwEfJqTSxNsJ/ATXWbuiocBC4vNndDBwdBWPX4Pbnh/tL89t+Qopg3fWBx98cIj3MBGRBi2DA8NJP983y8PJnrgftG/GrTqp0yzWYLi1imf67AvbF4pzCpYWj5jeP+GFiYiISDy0BmYAxcCPqxnTDLdbpxjITlBdDdkLwIOVHjO4IO5p4H3c9ucNuBWEF7O/gcwG4Arq50rKcruAi3D/LSq6CHiSenRMgULK4KWkpaX1D7oIEZEklQGMxW3rvhP3otKPxcDpuHCy8oHTIgcoHpH/M7Ddqx9h+2DDzxfnFCxdNzx/QOIqExERkRhKBa7C7aq5Hh9bT3FnHhYBLwInx680wa1gLYxwzlJcg5nPY15N8tkD/Bx3fFVF5wPP4oL1Ok+dpZNDFm65soiIOI2BHNw2myMimLcYuBV4NQ41ST1ksWadLbjJ5+g+1vB/xTkFq0MhM7nbQzcsiW91IiIiEiMDcWfpRRs0DgL+jWtYMgG3qq+hKwVer/TY97W43l5gBC4buQWo7nxwC7wGzAQeZf8KynUcGFZ+6XG/XRxcf9h/uT/4D9Cowtffeoz/qNJ934vgXiW47e6fAWdUeLw58Edc9+/SCK5XnU85+L9NLHznNUAhZXKobom5iEhD0wj34uR24MgI5i3GvWD8VxxqknpsQ07BYNx5pRGwfcJh+1xxTsFqMNMyC294Ji7FiYiISG11Agpw5xrWVhpuJeYlwETgfmITCNVV3wK94nDdJ8t+HY4L4o7AbWfejgv4NpX9e2WDI7zPZmJTf58Ix99T9itapcCvazHfj7+X/Uo4bfdODsdu3779+KCLEBEJUCPci773gNn4DyhXAQNwK9IVUErEwpibo59t+0D4H8U5BUuLc6b/NHZViYiISC21BO7Gra7zFVD27NmTZs187Zhti+ty/Dpuq7HExyfAU7j3BvcAf8N1ua4qoJR6QiFlkgiHw+cFXYOISADSgOHARtwLkKN8zluF27bTF1gWl8qk3isenn8hWM8ug97KwsoRBcsUVoqIiAQqhHttuQkYz4HbcKt05JFHMmPGDJ5++mleeeUVRo0aRUpKip979cCdifg0cFwtahaRMgopk4S1NivoGkREEqg8nNyAOyDb7wu71bgudn0BnQcotRPilphez9rebmVl/ssKK0VERBLuDNwH2YVAO6/BTZs2JTc3l1WrVpGd7Rp4t27dmsmTJ/Pss89y5pnVHYl4kAtxH7jPwJ0NKCJRUkiZPAZaa9OCLkJEJM5CQDawHvcC8gSf817BhZNn4z6tFqmVtSPyL8DG5RwlgLPKwsp/rcvJ/7nFmjjdR0RERNxOnLm414tneQ02xjB48GCWL19Obm4ujRs3PmhMZmYmjz/+OIWFhRx99NF+amiE6xj+Fu4II2UtIlHQX5zk0eLjjz8+w3uYiEidVB5ObgCKcIeY+7EWGIo7kFrhpMSMsebWBNymh4V563KmK6wUERGJvXTgJlwweAXg+XO2R48ePPnkk8yePZujjvI+ZSgrK4tly5YxYcIEMjIy/NR0JO4Io38SeUMVkQZPIWVy0ZZvEalvDK7T3r9x4eRJPucV48LJU4AFgI1LddIgrR9R8GOwpyfujra7CysLXlVYKSIiEhODcTtz7gQ8u920a9eOqVOn8swzz9CrV2QbKZo2bcqYMWNYsWIFQ4YMwRhfP8Z7AStxr3+PieiGIg2YQsokEgqF1DxHROqL8nDydVxXvh4+563HhZM9UDgpcWKtnRDQrTMtzFufU7B8af9JqQHVICIiUpedhuvw/BTQ0WtwWloao0aNYsWKFQwbNoxQKPoI5PDDD2fmzJksWrSInj199d0zuJ1EG4FJQJOoby7SQCikTCLW2jO2bNnSOug6RERqaRDwKu7F46k+52wAclA4KXFWnFNwnnUH6wfGGtYPWDZpX5A1iIiI1DFtcI1p/gX08zMhKyuL5cuXM3nyZJo181xs6dupp57Kk08+yYwZM2jbtq2fKenA7cDbuMaRIlINhZTJJSUlJWVA0EWIiERpEO6F44uAr4+XgfeAq4HuuAPPS+NTmohj4OaASygJl4bvCrgGERGRuiINGAu8i2tMk+I1oVOnTsybN4/CwkI6dOgQl6JCoRDZ2dmsWbOG3NxcGjVq5Gfa0bjGkUvxv8tIpEFRSJl8dC6liNQ1g3CHg78I+D3n731cOHkS8BcUTkoCbBg5fZDFnh1kDcaYeT0evvG/QdYgIgcwwBHAibgP2LoC7fFxxp2IxN0g4E3gHqCF1+BWrVqRl5fHkiVL6N+/f7xrAyA9PZ3c3FyWLVvG4MGD/U7rjzuvfS5wWLxqE6mLFFImn/ODLkBExKe+uE+CX8T/9tkPcOFkJ1w4qS2vkjDhsL0l4BJKQ6Tc7TXotatmp60dMe1iO2mSXqeJxN5hwEjgYdw5yLuBj4FNwGtlj20BdgIfAouA23CN3EQkMU4CnsG9xuziNTgtLY1hw4axcuVKRo8eTUqK52LLmOvYsSOzZ8+mqKiILl08SwaXxVyB+95zE+BrKaZIfacXv8mn49atW08MuggRkRqcDbwErMB9EuzHh8Bv2L9yUuGkJNT6K6efa63tG2wVZl7XOWM3e41qtPfbXxpr5q/7b4v/FA/PH1aUXZT4d1si9U9/4AlcIPkAMAy3arKmYOBo4KfAHcB/cLsAbgF0hrxIfByCO3dyHXCBnwn9+vXjhRdeYOrUqbRuHfxfzb59+/L8889HUk8rXIfyYtz3G5EGTSFlEjLGqMu3iCSjPsDTwErgXJ9ztrI/nJwB7IlPaSI1s+HwrQGXUJpq7VSvQUXZRSkGbnRf2c4YHuiSsXX9m8OnjVZHcJGodASexa38/xk+zrOrQQfgD7gP3jJrXZmIlEsFrsKtKry+7OsaHXvsscyePZv58+dz0kknxbu+iKSmpv6wsnPUqFGkpvr68X0ibuX2i0C3uBYoksQUUiahUCikcylFJJmchQsnVwEX+pzzKa5BSSdcOLk7PqWJeCseMb2/9dkJNH7M37vMzX3ba9RJTT8chuWEAx609tiQMbMO7dBcYaVIZIbgzrP7SYyvm4GP8/FExJdzgdeB2YBnq+wWLVowYcIEli5dGskZkIFo1aoVkydPZsmSJQwY4Ls/7iDcyu0ZQMu4FSeSpBRSJiFr7QBrbVrQdYhIg9cdKAJW4z+c3IELJzsCd6FwUpKBtRMCrqA01do7vQYVZRelGGNurO55Ax1Dxsxq06HFBoWVIp6uB+ajMFEkWZ2Ae535Eu41Z41CoRBDhgxhxYoVjBkzxm837aRwwgkn8Oijj1JYWEjHjh39TEnDfQ97F9fZXMe+SIOhkDI5Nd+2bVvvoIsQkQYrE/ei8Q0gG9f51MtnuDO7jseFk9/HrTqRCGzIueccsOcEWYM1psjPKsouGR9ebtzqY68rdigPK9cPL7h283UzG8eiTpF6ZDSuG7De64gknwxgEu4Mxmw/E3r37s3zzz/PzJkzadvWc7Fl0srKyuLll18mLy+P5s2b+5lyKO572atAoK9lRBJFP7iTl7Z8i0iidcOFk2/iP5z8nP3h5CRcN1SRpLGPfRMDLqHUhkJ/9BpUlF2UYq35bWSXth3Cxubv/qZkncJKkR+cCczC388wcB/I3QEMxP0cPAJ3jnIfIAe4H3gv9mWKNDgGGA68A9wONPGacMQRRzBjxgwWLlxIt27145jGtLQ0Ro8ezfLlyxk2bBihkK9I5lTgZdzxS8fGtUCRgCmkTF5qniMiidIVmEtk4eRO3IrJ8nDym3gVJxKt4ivz+xhMsCsPjFnY48HfbPIa1jn9w/8x7tD8aBxTFlauXz+84NqlIyZ5vvETqacaAYXU3LG73LvAxbg3/5OAJcAG4BPgbWAN7mfjr3DbUrNw3cFtrIsWaQBOx51tXggc7jW4adOm5ObmsmrVKrKzszHG72cOdUe7du2YOnUqzz77LKeffrrfaRcC63HdwH0txRSpa3SWUfLquXXr1kPbt2//edCFiEi91QiYA1yG/w+tvsZtO5le9u8iySvM7UFXELLc5TWoKLsoBbbcHIP7HR02Nr+Nbf6b9cML7vk09M39A+ZM0rmwdVMPan6dvoEDj9U4CrdCqRvuTGCALcBK3Ar5HR73OxPX+boHcBjwHbAd+Cdu5c5mj/lp1HymXBjXCCISx1BzE42PcIFiRb/GrYL08k/cm/3PfNZigcVlv3oD9/qcJ9LQHQX8ERiGjw/BjTFceOGFTJw4kfbt28e9uGTQvXt3nnjiCRYtWsTkyZPZunWr15SmwE3AFcAtwMPowxOpRxRSJq+UlJSUgbgXliIi8bAXOAR/AeW3uO1zdwFfxrMokVgoHn53d6B/wGU81q1w3HqvQV3TPxxqMdGuoqxKeVh5w/rhBdO//p4H+iwYp3Ni65bFQJsanj8Ft/q9JfAn4HKqbqzwP7jv21OBPwD7Kj3fAxe49a3mPkOBu4FHgPFUH3buw71R7lJDzacRWVBZhAtPq/MjDgwp04BxPq77PnA+0X/QtgY4Ax9bVUUasKa4xi8T8Lnir3v37uTl5XHGGWfEtbBkZIxh8ODBDBo0iPvuu49Zs2axe7fnZ4xH4lamXotrrrMm3nWKJIK2eycxa63OpRSRePsdNX/6+h0wE7fV7WYUUEodkTn3xrXWhvsDzwZSgMGGw2HPjt520qRQmOo7etdS+7Cx+c3Sebs4J3/86uyCpnG6jwSjG/Bv3Gqamjq/ZuDOXHyKA4O1HOBfVB9QlgvhVmmuwK1urIrFe3Xhrzyer6gDLgiszuayeio6Dzja47oWt6KrtjsBSnE/H0XkYIOJYEtyxW3PDTGgrKjiNvchQ4b43eZevpW+CO/vgSJJTyFlcvtx0AWISL33OvBMFY/vYn84ORa37U+kTuk+98Y1mYW5l4QNPyLBYaW1/KPHwzeu8xq37r3m2caFTXFjsIcBU5ql280KK+uNw3F/po+LYM5PcN/XwW3tfhB/ZzeWOwn4O9UHonOBr2qYfzkuMPXD63zkhzj4A7ZLfVx3Me7NvIjEXnlzl6fw0dwlLS2NUaNGRdpApkE44ogjmDlzZiQNgwzu++ZG3Bm7WuktdZa+EyS39h9//HHnoIsQkXrvdva/2dsL/AXohAsnK5/3JVLn9JiT+0pmYe4l4XD4HOBZTJzPbjJYjPHs6G0nTQpZw01xraUC4873m9I8nc3FOfnjX7tqUnqi7i0x9yDVr2qsya+A0bit2dG8D+gNjKrmuW9x4WF1WuK2j/tR07hS3BbHyvr5uO59Pu8vIv4dCswAXgV8NavLysri5ZdfZvLkyTRvrv4v1enduzfPP/88M2bMoG3bmo7o/UEG7nX927gV8CJ1jkLK5Kcu3yISb/8GFuLCyeOAq4GPA61IJA56PHzjPzMLcy8hHD7DwmNxDCuf6D5nXLHXoLXvtbw03qsoq2bbAlMa7WmxaUPOPcF2P5doHVmLuX+ldl1hf13Dc7NwTXKq42fL93FArxqe/z8O/hnVErfyvyZhYJmP+4uIP2m4D7TfxZ0/WdOxEwCccMIJPProoxQWFtKxY8c4l1c/hEIhsrOzWb16Nbm5uTRq5GsB/NG4D3OWUHNTM5Gko5AyyelcShFJkKG4cPKjoAsRibfMuTeu7V6Ye7nFnB7zsNJgCYf/4DXMYk0oZG+J2X2jEIIWlFqvrs2S3L4BpgE/By7BNdGp3BynJmHgUdw5jRfiVuB84zGnB9UHgu9S9REi5XoDJ3tc32ur94NVPHasxxxw2yBr2o4uIv4NAt4A7sF9SFCjVq1akZeXx5IlSxgwYEDci6uPMjIyyM3NZenSpQwePNjvtAG4hmVzcbspRJKeQsokZ4wZsHnz5sZB1yEiIlLfdJ8zrjjWYaWxPJU598a1XuPW5xRcirVeYU1cWcJ/7frIDduCrEFqZRuuY/aNwD+AJ3CrmW72OX8fcBEuoHwUFy7m4cJKr78LNa10/JPHXK/VlDVt9d4BLKricT8rS7f4GCMiNTsR93fwRaCr1+DU1FSGDRvGypUrGT16NKmpqXEvsL479thjmT17NvPnz6dzZ18nw4VwDdY2ATcR2VnEIgmnkDL5ZTRr1qx30EWIiIjUV+VhZbg03AvMo9S8XbV6BhvG3uU1zGKNhUBXURrM7rSUxgVB1iC1NhK3crGyB/AOGQGmUvWqxxXAGo+5XWp4bjGwoYbnhwHVNW86ARe8Vudh3NnJlfk5X/VLH2NEpGqH4Lp1FwM/9TOhb9++PP/880ydOpXWrVvHtbiGqF+/fpH+9y3/f7gWuCCuxYnUgkLKOkBbvkVERGpWPPzu7utypv2iKLvI80ys6vR4+MZ1mYXjRoYw5WFlaUQXsCzqXjj+da9h64ZPvxjIjLLMmAgTfqDzg9d5nj37xvCCM94aeZe6GiSf/+DOZqzKV3ivGtwHTK/hea8/x4fU8JwF7q3h+da47elV8WqsU9VWb3Bn43nZ42OMiBwohGvA8hY+V+F17NiR2bNnU1RURJcuNX2eIbWVlpb2w0rVUaNGkZLi6yXQSbgPqHythhVJNIWUdYOa54iIiNTEhO6wmDmd07dseHP4tNFL+0+Kek9Zt8Jx6zMLx40MhWxkYWXY3Ok1xGINhlujrS1G9jRKaTzNa9DSEZOapIRs0b7S1PeKRxRM+c+I6a0SUZz4UtWW54q8zl58Bfishuc/9ZjvdQbdXI8aqtvyXVNI+U9gfTXP7fKoB0B/fkUiU36eYSFwmNfg9PR0cnNzWbZsWSRnJkoMtGrVismTJ7NkyRL69+/vd1r5uaIz8HGuqEiiKKSsG07btm2bDroVERGpwvoR00/B8BMAAx1Dxsw6tEPz9bUOKx8avyGzcNxIwqGePsLKZzIfHvea1zWLr5x+EdhgO20a86CfVZRtaPkrLEdYaIG141OtXEHTwwAAIABJREFUfad4RMGUtZf/saZVdJIYXueeejW/edPjea+Q02u5zndUv+oRoB9Q+TC1k3BNeapT0/X8NMQ51McYEXGdoefiszN0KBRiyJAhrFmzJpLu0xIHnTp1Yt68eRQWFtKhQwc/U9JwZxm/i+vUHvVuFJFYUUhZN4TC4fDAoIsQERFJRmHsROyBnX3Lw8o2HVrUemVl5sM3bMwsHDfSGntatWFl2Pjq6G3C3BRtHTGyp1GYu70GLR0xqYm14XEHPmqbY+14k9Z4s8LKwHk1PPIKKb1C6likDLOo/nxXA4yu9Fh2DdfaBfy9huff91FPd/TeR6QmGcAk4G1coxVPp556Kk8++SQzZ86kbVutqUkWWVlZLF++nLy8PJo1a+ZnyqG4Tu3/wn2IJBIY/aCuI0KhkM6lFBERqWTdyPweYGs4xN92cGFl843rhxdcu/m6mY2jvVf3OePfyiwcNzIcDnczxtyPMfsArOE5P6so14+YfiHYntHePzbMQyfNHfeR16i2tuUoU23H5LKwslHjd4pHFExZP6pAHRESz2t7c4nH8zs9no/Fapr3qHlbeg5Q8e9jTVu9F1Jz8LrF43lw2xm7eYwRaYgM7kOCDcDtQBOvCYcffjgzZsxg0aJF9OwZ8I81qVJaWhqjR49mxYoVDBs2jFDIV/RzGrAceBroGM/6RKqjkLKOsNaeH3QNIiIiySZcan5XeRVlNY4JG5u/+5uSdbUNK3s8fON/T54zbkwKKaeAeTSEneJnnsXeHO09Y6QkZFPyvQZtvm5m4zDh8Z5Xs7YZ1o4Pl7J5bc60gneuuNvzzDKJmeg60O8XWVOo6P2phufaABeX/XsXam4mVdNWb3D/PV71Uc8vfYwRaUh6ASuBIuAYr8FNmzZlzJgxrFixguzsbIzx8+NXgtSuXTumTp3KM888Q69evfxOuxAXWt8J+FqKKRIrCinrjqO2bdum7lsiEi8XA8cGXYRIJNbnFHQz2AsjnFYeVq5fP7zg2qUjJnmuGKlO1zljN2cWjht58pzxnuFIcc70n2Lx/e4gHgzmoW5zx37oNW73NyUjq19FWQVrmxnMmO9TUjauzZlWUDz6nna1KlTqk5eovtkN7G+gU9MqyndwK3u8PONjzK/QG24RcN/jZ+MaUvXxMyErK4tly5YxYcIEMjIy4lqcxF6PHj148sknmT17NkcddZSfKU1xHd3fwnV4VyItCaGQsg6x1qrLt4jEw6G4zo2bcAelHx9sOSL+hOE2on8tc3TY2Pw2tnmtw0pfTDjojt4lodSwZ0fvzdfNbGzhxqjuUBZWUlKqsFLKWeDeGp4/FziBmkPKh8qu42UhsM9jTGtguo9ridRXjXANUt4CrsLHz9DMzEwef/xxCgsLOfroo+Ndn8SRMYbBgwezfPlycnNzadzY16aSo3DvE14BzoprgSIopKxrdC6liMTDeKAFrsPfFcBG3Kfr7YMsSqQm66+c1hXsRTG4VPuwsfmH2habi3Pyx6/OLmgag2seYP3w6T8JfBWlMYVdHxj/gde43Tv3XmncG5LayKgYVq4fMevwWl5P6raHgS+rec4ABUB1u4VKcW+O/dgC/MPHuNEc3LQnEga3bVw7nKSuGYwLJ+8BmnsNbt26NXl5eTz77LOceeaZcS9OEqdp06bk5uayatUqhgwZ4nfaGcBq3IIG/VyXuFFIWbf037x5c9RnaImIVKENMKbSY2m4T9ffxYWV/rd9iiRIOByaSAxfxxjsYcCUZuk25mGlNTa6lYmxUxJKCU/1GvTaVbPTsCY3hvfNMJgxYbtn49qcaQUbhk0/IobXlrrjO2o+U3JwDc89D3g2eqpgEt5NgwD+AvwOSI3g2uC2xb4MPAKou73UFV2A/wOewsfRPmlpaYwaNYo1a9YwevRoUlJi0UdLktGRRx7JzJkzWbhwIV27+vrcxeAWNLyD+36rbEJiTiFl3ZLevHnzs4MuQkTqlZuo/tP0Rriw8r+4sFIBgySF4iumdwF7sffIyBloS4Ww8rWrJqXX9po2ZHMsdpbB7I5BidGY62cVZaM9O6/ER+OEyNl0gxlTmhLetG5Eway3Rv5JH3w0PLOIrlmPV8OcyjYCd/sYZ4DJwFrcqshWNYw9Cfhf4N/AKqBfhDWJBKU1MAMoBnw1Ye3Xrx+LFy9m8uTJNG/uudhS6ok+ffrwwgsvMGPGDNq0aeNnSgauE/w6XGd4kZhRSFnHhMNhbfkWkVhphgshvZSHlZuBqbjVlyKBMSnh3xHn1zDlYWXjPS3erm1YmflQ7pbuhePHlaaldrPYWRi+j2GpXkpSTcjXKkpDyLujd+00ttaOLiktUVjZ8PwXWBThnB3A01HcaxKuW7EfXXCrIncAr+NqfBh4ouwan+C2x94HnBpFLSJBSMOdO/kucD3guRTy+OOP5+GHH2b+/Pl06tQp3vVJEgqFQmRnZ7Ny5UrGjBlDWlqan2kn4DrDvwRkxrVAaTAUUtY9ap4jIrHyLdAdt+3Nq9kAuE9NbwTex30yr6YYknBrR0zrbC2XJu6O9oewcu2I/Imv/HJmi2iv1OP+67d2Lxw/rmlp+ESMmZaQsNLwSJc5N7zvNSxt984csB3iXg8AtlHFsHLT8ILanoEpdcOfIhz/CLA3ivuU4LaQvxHBnFTgNOCnwDDgZ8DZ6Oec1D2DgP/gzp2saYUwAC1btmTChAksWbKEgQMHxr04SX4tWrRgwoQJLF26lEGDBvmddi5utfls3Ie8IlFTSFn3nPrJJ58cFnQRIlJvfABcDZyICyv9bMfLwH0y/w5wJzqXSxLIWDOBQF6/2LbG8rv01JINte1afcLDN36aOWfchCYmrVOcw8rS0D7j2dH7tatmp4VM6LdxqqEGLqzca+zGtTkFkxN/f0mwl3Dbq/2aU4t7fQUMxJ0fKdIQnIhbefwi0M1rcGpqKsOGDYt01Zw0IMcddxxz585l/vz5nHTSSX6mpOJ2Xm3CreSN9MxfEUAhZV1kwuGw7480RER8+i8urMzEbXXzE1Y2w51p+QEurPT8xF6kNtaOmNYZ8N2GMh4MrM+8/zfbY3GtTg9dv+OAsBKzKxbXLWeMeaTbI+Pe8RrXePe3VyRuFWXVJWBsNCvmpO65z+e4V4ks0KzKF7hz+KYS3XmYInVBK9xrsLXAhX4m9O3bl+eff56pU6dy6KGHxrU4qfv69evHCy+8QF5eHi1a+NpMcghuJW8x8JO4Fif1kkLKOshaq3MpRSReNgLDcdvAHwbCPuY0x4WV7+LOAmsZr+KkYTPW3ELAr10sdkqsr1keVpaEdp8Yw7CyNESKZwOR166anUbIBLCKcj8D37B3771B1iAJ8zDwpY9xkTbMqc4e3M+nXsCzgI3BNT8BJlL7EFWkNkK412tv4f6Me3ZZ7tixI7Nnz6aoqIguXbrEuz6pR9LS0hg9ejRr1qxh1KhRfju+d8Z9330aOD6uBUq9opCyDjLG/Nhaa4KuQ0TqtQ24F789gAX4e2PXGtfprzysjPrsPpHK1g8rOAFjAl1FabHLuxeOXx6v65/20K07MueMm7Bnb7iTNfzewDfRX83M6zpn7GavUY32fvtLrD02+vvUnrXc233eLX6CK6n7dgEP+Bjztxjf9w3ceZNdcSsrN0Y4/ytgHjAU6Aj8HtgZw/pEIvEj3Pl/hfg4NzU9PZ3c3FyWLl3K4MGD416c1F+HHHIIkydP5rnnnuOss87yO+1C3PfcGei9gfigkLJuOnz79u2eZ42IiMTAOtybskjCykPZH1beBETdFVmknE2xE7A20PONUkn1dW7i2hH5I17LvjPqFcW9/jb+s+5zcifv3mu7WMPvMebrCC9RmmqtZ0fvouyiFOOaYQXGwDehNOPZUOW17DtbvnnF3YGGqQnWFjA1/HrTY/7FHvO9tl3f7TF/WKS/oQpmUfP2638Akf6Z96t81VlX4Ahcg50bgOm4c5mLcGdhzgQmA/+DO9+vLfBL3M/BPXGqTcRLe2AusBT3uqxGxhiGDBnC6tWryc3NpXFjz8WWIr6cfPLJ/OMf/6CwsJBjjjnGz5Q03Hn2b+HOrfS1FFMaJoWUdVQ4HFaXbxFJpGJcWHkq7k2aH21w5yS9j3tT2DQulUm9V5wz9XhrzNBgqzCruxb+xnMV5cYrC35kLLMbpzd6t3hEwZS1l/8x6sZS5WHlrvDuCMNK8/cuc3Pf9hrVNX3LL7GcEG19sWHv6/bAuC+8RjXKSLs+FAptWJuTP2/DiBmdElGZxI1XyBerrd5ePgEW4c5OG4c7l/ky4Epc04fbgPm4nQX7ElSTSFXScTtUNgNX4D4oqNEpp5zCU089xcyZMznsMPVclfjIyspi2bJlTJgwgWbNmvmZcgSuA/i/gL5xLU7qLIWUdZfOpRSRILyJCyt7497c+dGWA8PKJnGpTOovk3Jr0KsoMeYOP8P2hfmd+zfbHGvHm7TGm4tHFExZP6qgdbS3PnPurZ8fEFa6rafVKU219k6vaxZlF6WEIdCzKDHm270h77MoX8u+s6XBjAFCBn5eavetXZuTP2/j8PwTE1ClxN7VVL+KZjOwLHGliCQ1A2TjgvLb8fH66fDDD2fGjBk888wz9OzZM971idCkSRPGjBnDihUrGDJkCMb4OpXuNGAF7rzKIBv3SRJSSFl3/WjLli1alSQiQXkFt03ubOAln3MOw4WVb+NWqWjfkXhaO3L6cWD+J9AijFmTOeeGZV7Diq/M7wP2nAMfdWFluJSYhZXf7UvrBEygirDSGlPkZxVll6ZbfmEg0BWJ1nLfaQ/dusNrXOP0tGuxtuKK1JCBn+8zvLk2J3/emyPvOSmOZUpsnYLbXl2dWcSmuY1IXdcTF+IU4SPEKQ+Kli9fTnZ2tt+gSCRm2rVrx8yZMyMNyC/EhfB3Ar6WYkr9p5Cy7moaCoXODroIEWnwVgODgH64M5L8OBq3vU5hpXgypTbwVZQhY/L8jLNhJlX/pG1WHlauzZlW8M4Vd0e9/+6sR6//JrMwd1payr4TgAkYU950ptSGQn/0ml+UXZRiDTdFe/8Y+W5faPdMr0Gv/HJmC+Daap4OGfh5qLT0jbU5+fPWjpjWObYlSi00wa0Ay8ad63g98BCwiuobJ3xWNkakIau4HdbXe70ottyKxE35UQOzZ8/myCOP9DMlHbfTaiOuaacS9gZOIWUdFgqFtOVbRJLFSuBcXFj5ss85x+DCyk24Q7SD3c4rSWftyOnHYfhFwGW80u2hG5Z4DVo7/O7exnVcrZm1zQxmzPcpKRvX5kwrKB59j2dn1up0fvCmnZmFudP2YTobzGQM9/d48DebPOdlbL3MQLBbpY35f35WUWaklowBvFafhgz83Fjzn+Kc/MfXj5h+SmyKlFpohVsBVoTr1D0DGEHNjdQmU6uO9iJ1WiPcB7fljUU836dH0bxEJCGMMQwePJjly5dH0rSpPa5j/RrgzLgWKElNIWUdZq1V8xwRSTYrgf64c3P/5XNOB9yqgbdRxz+pIBS2Nwe9ijIlJeSro7cJhW6P6MJlYSUlpRvX5kwrWD9i1uFRFQicOueGr04uHPf7zDm513uNLcouSjHW3hztvWLkuyYm9R6vQeuzJzUzptpVlFUJAReEbXhNcU7+428Mzz81+hIlwVbg3XFcpL4ajFtFdg/VrzT+wSGHHEJeXh7PPfccZ511VtyLE4lWeno6ubm5rFq1iiFDhviddiZup9ZcIOoPcqXuUkhZt/XYsWPHEUEXISJShcW4FxlZwGs+5xyLCyuLcds9FFY2YOuHzzjG2mBXURpj/tn1wRsWe417c0T+WVgGRHmbDIMZE7a7N9Q2rPSja8bWbCDoMxz/3Omh6z1XUdqmzcdYS5sorh8CLkgJsaY4J//xN6+cfloU15DE2YzbEq4O2tLQdAaeA54CjvManJaWxqhRo1izZg2jR48mJUUvk6RuOPLII5k5cyYLFiygS5cufqaEcJ3s38F1ttfRUA2IQsq6zZSUlAwMuggRkRosBk7HhZX/9jmnC267x1pcWKmfVQ1QOLTvVrCNgqzBWn7vZ5yx5rYY3K4srNyzcW3OtIINw6bH/ENIO2lSKGxtsB294bsmobTpXoPevOLuDGvMdbW6k8UAF4RseHVxTv7ja3OmqdVt8lkEnAN8HHQhIgnUGncEQjHwYz8T+vXrx4svvsjkyZNp0cJzsaVIUjr77LN58cUXmTFjBm3a+PoMshmus/064PK4FidJQ2/86j6dSykidcFioBdwEfCGzzldcWHlm7jmCzpIu4F4LfvOlmCyg63CvJpZOO4Fr1FvXnH3mQYbww8MbbrBjClNCW9aN6Jg1lsj/+Tr1Hk/1r7X8lID3WJ1vWhY+KufVZShlJRfg20bo5sa4AKDWb02J/+54isKesXkulKTMPBlFb8+Bl4F/gT0xm1z/SSgGkUSLQ137uQ7uGZSnseZdOrUiXnz5jF//nxOPDHYo4RFYiEUCpGdnc3y5csZOXIkqam+TvU5AXgU2AYcH9cCJXAKKeu+86y1euMuInWBBZ4GegJDcYfD+3EyrvmCwsoGoteCm78Op6b2sNhZGL4PooaQ8beKMhRKmRinEhpba0eXlJbELqy0+54LWZNLQKGQwexOMU38raK0dmx8auBcQnaVwsq4+xS3Wqzyr6OAM3ABzSuBVSeSeOfjXsfcAxziNbhly5b8f/buPS7KMu8f+Oe6hwEENc9aWWlpHjhp2qYIiqzo5qHWAn02kUHh0XZpQRnCkuBhUcqUGQJj96cryiC1KZalqZsYqOCpNIURD2nmKU+lKQgiMPf1++MWRAe8b+bADTPX+/V6/mGuua/vs2Uyn/le1zcpKQk7duyAn5+ftWtjmBbXqVMnLF68GHl5eRg9erTUt/UC+7vD5rGQsu3rdfHiRQ+5i2AYhmkGHkAuhI6uaRAG5kjhASGsPAwhrGRsmNeqyIueuphoZ6LsD0JSWjKsJIQcHpw1/xuxdcUzl70EUCufaKCODcPKkyHaJ019ktfatyvcsqM/vutUPoijRA2Cy5asVAyl/Aq3rAjRgJTjFG8SwDJdlE1oGFYeDU150Zp7MQxj156H8AXtfyFcZ/NICoUCKpUKe/bsQXh4OJRKpdULZBg5DRgwAJ999hmysrLQp08fKW/pBqGBgbFRLKS0AQ4ODmzKN8MwbVFdWDkIQlh5SuL7vCCElfsgHBVkbFj/NZG/emRFx7VkWMmDJhEQKraO47j3rF3LfUJYWU1wQq/Sri6euayvqU8avjKx0i07+mPnDsoBPKURLRFWEpAqBa+Q1kUJOt/a9dQhgD+lpKhEpdkmhM4MwzAW8RiAFAj3Tk6W8gYfHx9s374dH3zwAbp06WLV4himtenRowe6du0qdblVv8hk5MVCShtAKWUhJcMwbVnDzkoVgJ8kvm8EhImYewCwIWI2ri6srCF3hbASpNJKWx3xyIreJrboXvedDH//UkeAzuA4RYlepQ0z50n9l0fe9cqOWcVVlD/PUxpBrTi8hIL/9+Cc+aJhqELB/a+1uygbQwB/juN261WazeZ0qzIMY/c4AOEQTomoAYgOgHvmmWewatUqrF+/XurkY4axGVevXsW8efMwefJkHDp0qP7nIl3E16xeGCMbFlLaBt9Lly65yF0EYz01NTVyl8AwLaEGQDaEzkoVgDMS3+cNYTBPEYCx1imNaS1eWLNQCCu5qucpwWIClFl0A4pFUrooeUpasIuyEYQqKXipQ6geyS03sdorO2aVorJ8wL2w8hdLPLcOAalSKpy0YusKQhOdKUWLdVE2hoIMKXcu+13OGhiGabN8ARwE8G8APcQWu7q64t1338XOnTsxceJEqxfHMK1JdXU1Pv74Y/j4+GD9+vXgeb7+tYCAAGzatEnG6hg5sZDSNjhD+EuRsTFXrlxBZGQkPv/8c7lLYZiW1DCsnAvpgckoAPkQwsox1imNaS1eWLPwV88s9aKqajrIgmFlsXt29BaxRUdCNEMJwQQL7Gc6iq89dTGHxBdK1yCsHGjJsJIHnzlw9d9FuzS7oeNcCJfiy4YQpAxfmWitLl2GYWxTbwi/t+wCMFRsMSEEU6ZMwc6dO/H3v/8dTk5OVi+QYVqTvLw8+Pn54f3330dFRUX9z+um2et0OvTu3VvGChk5sZDSdlj54n6mJVVVVSE1NRU+Pj7YsGEDKH2wqacZ93UwTFtWDWAlgGchhJVSj6KOArATQB6EKbKMDRv+n5jfGoaVIOSWqc/igMVSuigVBAmgMk+Z58kSaz26YVgJijBI72puzF1HhVOK2KKC0ERntOBdlI0hBL9xFWWZctbAMEyb4gJgAYDjAGYC4n8veHl54auvvsKKFSvw5JPsZgnGvpw+fRozZsyASqXC2bNn63/eqVMnLFq0CPn5+WyaPcNCShvC7qW0EZs2bcLo0aOxbNkyVFYaN3O4ubnhjTfekKEyhpFNXVjZH8A8AKLTge8ZB+AAhLByuHVKYyzhxOzlT5SEauJL3vigs6nPqAsrK/kqk8JKCpQO7lv+tdi60tDUISB42dQ6LWSLx9rog2KLSlQpw0qDtf1M3cQtN7HaI1udc9epvacQVhKp98XeR8hqaV2Uj/0vKB43qVBLoSTFLTfxttgyc4YWMQxjM6YAOAZgCYD2Yot79uyJpUuXYsuWLRg+nP1KwtiXmzdvIj4+Hv7+/igoKKj/uVKpRHBwMIqKihAWFgaFQiFjlUxrwUJK2+F+/vz5J+QugjHd0aNH8dprr+HNN9/ExYsXjV7v2LEj4uLisHXrVnTubPLneIZpyyoBpAHoByGsvCrxfeMAfA8hrHzBOqUx5qg2VL9NKN4jjk6n9aHa5NIwrcljTV/KXnj9gbASuCnpjYQmkcREXmwZDxrfCroo3xdbQkEJAbecV1B9iUrzafHsjwaYut3wlXNrhLDS1auZYeVdRx7LxBYJd1Hy0abWZwmE4DdSWfZvsXWnZy7rwXGKH/QqbYFelTqpJWpjGKZVeQFAIYTBfc+ILVYqlQgLC0NhYSGCg4PBcezjN2M/amtrkZOTAx8fH2RmZqK2trb+NV9fX3zzzTdYunQpm2bPPID9V9J2EKVSyY58t0G///474uPj8fLLL2P//v1Gr3Mch8DAQBQVFSEiIkJs0hnD2IMK3A8r3wEgdcjFOAgX2m8GMMQ6pTHNpQ//qCchmAUAoLQ9KI3hDThVokrRnp65THTwQFPqwsqKWmV/AHF4ZFhJjnn0uS16Q/vR2RovgMoaTFGCbVK6KEtDUycDdBgAjgCvcwbDEYuHlQSnH/0OsmZAdrTovZbd6WNhBJD1i1ZKiVZKF+UdQmIA6gJQb4D/Qh+q3cnCSoaxC90g/O7xHQAfKW8ICAhAYWEhFi1ahPbtRZstGcamFBUVYcKECYiNjcWNGzfqf963b1+sWLEC69atw8CBA2WskGmtWEhpQyilLKRsQ2pqarBq1SqMHDkSmZmZMBgMRmu8vb2xfft2pKeno1u3bjJUyTCt2m0AHwJ4GkJYKaVjjgCYDOAQgPUA2G9HMqO1hlhQtHvwh7Q9AYm4o1AcL1GlaPXhH/U09fkjPoks89CpU5SK2n4A4kCIcahN+EWSuigN5D25uyg50GQp6yjoOw+/tS6s1Ks0G4XA1TR1YaV7n3IPArxBgVONLKvhqEIj9qxTf0934sHHmFqLJRCQ60pFzUqxdQf/ktINHBf2wA8pHQnwX+hVml0srGQYm6QEEAXgJwCRAETPozYc/vH0009buz6GaVXOnj2LuXPnYtq0aTh+/Hj9z11dXaFWq1FQUIApU6bIWCHT2rGQ0rZMoJSyf6ZtQGFhIcaPH4+EhASUlRkPpH3iiSeQlpaGDRs2YPDgwTJUyDBtysNhpZS7CDkAQQBKIYSVz1utOqZJ+vCPehJKZje54F5YiRqD2WHlwNULyj106hQlV1PXWSl8rU9w3L3P7S/F3l+q0roR0Mmm7m8Z9Bv3rJjvxVbpVamTQJu8h5UDMJEasF+v0mwsDU01uauYJCby7jr15x59yz3vhZU/1r8GssYtO+q82DOqympmy95FSZA6cPWCcrF1jk4kBpQ21Q41AuC/OBqq3a1XpU6ioPJeCcAwjCVMgTAU5yMAHcUWd+rUCUlJSWz4B2OXKisrodFo4Ofnh82bN9f/nOM4BAUFYe/evVCr1XB0dJSxSqYtYIGWbel26dIlkzsjGOs7c+YMQkJCMH36dJw8edLo9Xbt2kGtVmPPnj0ICgqSoUKGadPKIYSVzwH4BwDjbwCM1YWVxyGElf2tVh1jrMZw7+isKNeGYWVpaEYvU7esCysrapUDACQSkHhpd1EiAXL/3sRJnOhN+IVSngZgIg9+v16l2XgkRDPU1LLqwsoTlU8NoaCzKVBKqEL0LsrSoERHAPLeRQlyXcnV/D+xdQf/ktKNgPyv2DpK6UsA/8VRVep3R1Wa11lYyTBt0gAAWyHcO/mc2OKGwz/Cw8PZ8A/GrvA8j9zcXHh7e0Oj0aC6urr+tZEjR+Kbb75BWloaunfvLmOVTFviIHcBjMWNB3BY7iKYB5WVlWH58uVYuXIlampqjF4nhGDy5MlISEjAk08+KUOFDGNTrgNIBPAxgLcghCAdRN5TF1b+GcBnEELO5k8yZiQ7PXNZjzsg4QBtzttcCUgET+/OKlGlrHEwKJYNzpl/2ZT9R3wSWQbgAylrS2elDOZ5+oop+1gOyfNYE71XbFVpSOrLPOWlj44Vjq9PVHB4Wa/SbOM5bpHXmvk/mFLhtNxpBgCf3Ps/Ubxr+9mgkPcsJKVpUroonRxJ9CO6KBt7sCcFPj2qSi05Cs0SN130FwSkWf+yMwzT4jpD+P3hb5D4OdnX1xdJSUkYMMDk634Zps06fPgwEhIScOjQoQd+/vjjj+Pdd9/F66+/DkLYd3VM87BOShvDcRy7l7IVqftmycfHBxkZGY0GlF563QpoAAAgAElEQVReXvjqq6+wYsUKFlAyjGX9BuHDxnMQOizvSHiPEsBMCJ2V2QCetVZx9q6S49QSuygbQV0ISIRBwZ88GqrNOBac+rhlq3sQz3PxkPl3plrUSgpUeULjTNrgXljJUX6vXqXZWKJKGWbScyQ6OGeFEpSorbmHBDdrOG6F2KIDIe93Bcgc07aoCyu137POSoZptRwAzAFwEsK9k6IB5bPPPgudTod169axgJKxO1euXEFkZCQmT578QEDZ8FRgYGAgCygZk7CQ0sZQSn2vXLniKncdDLBnzx6MHz8eUVFR+O2334xe79mzJ5YuXYotW7Zg+HDpTS8MwzTbrxDuquwDIayskvCehmHlCgDsGwQLOviXlG6EkHALPMqJUhpuUNAfj4ZqM07MXm7xuw31M1MHAfTPln5uc1CQb4fqYveIrTs666MJAH3R3M0ATCQge0tUmm36mVqr/AXleLd8FiBzFyXw0dCs+aIDt1yI03yAinVji/GgwKdHQ1MP6kM0wTQxkf0OzjCtgz+AHyD8XS96HrVjx46Ii4tDfn4+AgJYbwhjX+7cuYOMjAz4+vpiw4YNoFQ4IEAIwZQpU7Br1y6o1Wo4OzvLXCnTlrFfkGyPI6V0tNxF2LNLly4hMjISQUFBOHbsmNHrSqUSYWFhKCwsRHBwMDiO/TFkmBZyDUJY2R9AOqSFlY4QuivOQPgAI+uAD1vhqOTUzTs6K4Y6UkrDaww1J4+GajNOhmgtFyoraCRk/n3JgFppE715/uGJ3mYhgD84uqdEpdl2NDTFvPCzgYNzVigJOFkneoOQW7WE+5fYsntdlG9abF9K3UGQqf+5w0F9iCZ4fdB6dnkdw8ijH4S7qL8F4CG2mOM4BAYGorCwEBEREWz4B2N38vLy4Ofnh+TkZFRUVNT/3NPTE19++SVWrFiB3r17y1ghYytYOmKDKKXsaz0Z1E00GzVqFDZs2NDomoCAAOzevRuLFi1C+/YW/HzOMExzXAQQBeFi/HQAdyW8py6sPAUgDYDJg1vs3YGQ97sSAtEBJKYRwspqghN6lXZ18cxlfc19onMHh3k8pREgMOnuS7MRFEjpotSHpgQA1Ns6JcCfUlJUotJsOxKi/YO5zxu2ck4tQOYD5JD4aiuhNE1KF2U7zinKAl2URgjgBoLMQS4XWVjJMC3LFcJVMHoId1GLqhv+kZ6ezoZ/MHZHr9dj6tSpUKlUuHDhQv3P604Fbt26FS++aLHvMRmGhZQ2arzcBdgTSik2b96MMWPGQKPR4O5d47yjf//++PTTT6HT6fDMM8/IUCXDMI04j/th5UoAtRLe4wLhvqrTEMLKnlarzka5cM7R1gh9HkQdATqD4xQlepV2dcnsVJPvFu2/PPKuV3bMKucOygE8pREUuGTJSsXwIJK6KAnl3rV2LQTwVxBaWKLSbCueuewl059DqIdu/hYPXbQ3x3Evg+CgJesUL4DcojXV/xRbdjg0tROhmGvdYuhgEGQOcr1wiIWVDGNVHIBkCF9U/h8A0fOojz/+ONLS0rBhwwa4ublZuz6GaVVu3LiB+Ph4TJw4EQcOHKj/uVKpRHh4OHbv3s1OBTJWwf6Nsk1uv/zyy1NyF2EPiouL8eqrr2Lu3Ln45ZdfjF7v1KkTkpKSkJ+fDz8/v5YvsI0oLS1FSUmJ3GUw9uscgLkQjoFLDStdcT+sXAJhIigj4kDI+11h9dCnISGsJAa+RK/Srtarlj5n6pPqwkpFZXldWGn8H30Lo8Aur6zoQrF1pSrNHynoKGvXU4cA/hzH7dartAXHZ2nHmPMstzXz8z2y1KNaMqykoMs9P333d7F1DuDnAejUAiUBFINYWMkwVtMFwjC9hZDwZ9rFxQULFizA3r17ERQUxIZ/MHaluroa//znPzFy5EhkZmbCYDDUvxYQEIBdu3YhKSkJHTpY+ftmxm6xkNJ2jZO7AFt29epVxMbGYtKkSTh40PgzlVKpRHBwMIqKihAeHg6Fgn3WaMzJkycxffp0BAQE4E9/+hMWLFggd0mMfTsLIays66w0PHK1oD2ABRC6MpegpQKNNqodcZ5n/S7KRikBOgNQFJeELBtpzoPcchOr74WVA60fVtLFklaBmDbR22zUu5an2/WqlE3mhmoPhJUg31uqwocRoAzV1R+LrSt544POAPmbtepoUl1Y6XLhsF6VOqnF92cY25QLCV8mEkLw+uuvo6ioCFFRUXBycmqB0him9di+fTv8/PywePFilJeX1/+8X79++OSTT6DT6dCnTx/5CmTsAgspbRQhhN1LaQW1tbVYtWoVfH19kZOTA57njdb4+vpi+/btWLp0Kbp06SJDla3fzZs3ERcXh4CAABQW3m8SysnJQVlZmYyVMQwAYUjOXACeANbCtLDyMatV10aVhmm7EOCvMpdx4fr5CosEYA3DSlCEQfj3xoLIXk9dzG6xVUdDNGNbsouycdy1abnTpPw5EeW2Zn6+hy7ah+O4lwnwnSWe2RCl+FhKFyWUTn8HpXL+OR5AQXvIuD/D2JIXxBb06NEDmzZtwvLly9GrF7t2mrEvJ0+exP/8z/8gNDQUZ8+erf95p06dsGjRIuTn52Ps2LHyFcjYFRZS2q4ASin752thH374IRISEnD79m2j15577jnk5ORg3bp1GDBggAzVtX61tbXIycmBr68v1qxZg9raB0/VUkofmBbHMDI7BiAEgBeELgwq4T0dIISVP0G4mL+jtYpra2gtb5UBJM1BgA/G7kyUcpxfMrfcxGqPbHXOXaf2npYMKx04JEpaSCBTF2U9gwOlSy39ULc18/PddWrfWhj8KahoWCsFAco4JVkutu5g0JLHCEHLd1E+6IKisuwTmWtgGFsh+iXKtWvX8OGHH+L48eMtUQ/DtAoNG0d2777/V62DgwOCg4NRWFiIsLAwODg4yFglY29YiGW7ul2+fHmo3EXYmoZ3ctTp2LEjEhMTkZ+fD39/fxmqahsKCwsREBCA2NhYXL9+Xe5yGKY5SgFMQ/PCyq4QLuavCyvt+uKew6GpnSjIm7IWQcjPv54r/9Rajx++cm7Ng2El+cnkhxGyb9Ca6F1iy47P0o6hgK/J+1gE+WxQtvpHaz19qC52j6cuJkAIKyH6v8mj0X+6ZUbfEFvl7OL4d1Aq8z2z5AO33MRqeWtgGJtxWcqioqIiTJgwAQsXLsTvv4s3XDNMW1VbW4s1a9bA29vbqHHEx8cH33zzDZYuXYquXbvKWCVjr1hIadvYlG8r4jgOgYGBKCwsxJw5c6BUKuUuqVU6e/Ys5s6di+nTp+PkyZNyl8Mw5tBDCCuHQHpY2Q33w8oFANpZrbpWzIHnoyDzfZ0UdImULkq9Sht2PETzvKn73A8rXb1AEQaC0819BuHpP6Ssq+XxXvMrtCiDA6VLxBatD1qvKFGljDZnIyGsVI+vhcEfwM5mP4CQ29Wc+F2U+2ekd6QEb5lQoiVd4CrL1ootOhya2ungnBXslw+GEWd8BKoJtbW1yMrKgre3NzIzM41O/TBMW1dYWIjx48cjLi4ON2/erP95nz59sGLFCqxfvx6DBg2SsULG3rGQ0raxeynN1NQ0P29vb2zfvh3p6eno3r17C1fVNty+fRuLFy+Gn58fNm/ebPQ6IQTjx7McnWmTSiCEld4Avpb4nu4Q7qo8CyGsdLZKZa3QwaAlj0H+o7PnFRXiXZQls1OfBUF6LUFxiUrzaUloykBTN6wPKx3bDwFFGAVOSXzrfvdsdYHYIv0sjTdAzQr+zEUJWS+li3JQuwt/ISB5+lDtTnOHwQzVxe7x0Kkn1MLgDwLR/53qa6X45wtrFv4qts5VWfuW3F2UlOBDKV2UDuCXON29fbw0RPtWQWii3fw3hWFawq1btxAfHw8/Pz/s2LFD7nIYxmwNG0dOnDhR/3MXFxeo1Wrs3LkTU6ZMkbFChhGwkNK2jbp27Vp7uYtoyx7+Fumpp57CypUrsWHDBgwePFimqlo3Silyc3Ph4+ODf/7zn6iuNv6c5e7ujs8//xzLl4teDcYwrdl+AFMAjIL0sLIHhLDyFIAo2EFY6eiqjITcU88pJB2d5Xj6Dih1AMAR4HVCyWG9SrPx6GyNl6lb14WVHn3LPQnwBgUeGepxQJKU51Je4p2V1sMrKJaJLVoftF5BCRYAACgdCfBf6FWaXXpV6iQK2vg3gRIM1cXu8chS/+leZ+VWkeUVtVxVutgzS4MS2xPQCFNrspCL7Toos8UW6WdpngIlMwA8xROq6UY7HGVhJcM0m/EEzIecOXMGISEhmD59On780Wo3WzCM1VRWVkKj0WDs2LEPNI5wHIegoCDs3bsXarUajo6OMlbJMPexkNK2ORoMhjFyF9GWzZ8/H7NmzcKwYcOwcOFC7N69G5MnT5a7rFbryJEjeOWVVxAVFYVr164Zvd65c2ckJSVh27ZtGDFihAwVMoxV7IUQVvoAyJf4nt4APgJwEkJY6WSd0uR1MGjJYwRE7tDnAnenPEdsUWlI2tOU4i8P/ZgDMJEasF+v0mwsDU0dYmoRJDGRd9epP/foW+5FgDcg/LN/cA0hB9x06m/FnlUSsmwkAeT9+52QXDdddKnYsoGuF6cT4OHj8yMA/oujKu2BoyrN62aHlTr1VHAYi6bDSkldlAbXjm9Rim6m1mIJlGJp/+WRd0UX8ngXoA0/UdaFlaUsrGQYyT4C8F8pC+vuVo+Pj0dZWZmVy2IY89U1jnh7e0Oj0eDu3ft/tQwdOhRfffUV0tLS0KNHDxmrZBhjLKS0cZRSduTbDO3atUNycjI2b96Mt956C05ONpkjmO3KlSuIjIzEpEmTcOjQIaPXlUolwsLCsG/fPoSHh0OhUMhQJcNY3R4Af4QwyGSnxPc8jfth5RwANjU+0clFKfvRWZ7SJVK6KHmuduFDoU9DHICJPPj9epVm45EQjcmD6erCSve+5UMeDisp+EWSnsFx/2fq/hbCcxQfii1aH7ReQSh95xFLvCjw6VFV6nfmhpUea9R7PXTqqZTyfngwrKxw5pRpYu8vDUpsT6i8d1FS4Jd2jymzxNbpZ2meAsjMJl7uzROq6Uo7ntKrNDF7g7R2eQ8uw0j0K4CXAbwC4IzY4pqaGmRmZmLkyJFYtWpVowM1GaY1aKpxpFevXkhPT8fXX3+NYcOGyVghwzSNhZS2j136x1hNVVUVMjIyMHr0aGzYsAGUGs8R8fX1RV5eHhYtWoSOHTvKUCXDtLgiAGMh3Av8ncT3PANgBYRj4DYRVu6fkd4RkH0AyUWHO7dFj86WhqQ9fe/o7KNREAATFRz26VWajcWzUl8wtbAHwkpCVAD5xCMrJk/sfcWhmhGgGGvqvhbyuZQuysGuF4MADBB/HPUUwkrt9+aGlZ7Zb+/z0Kmn8gRjAGwFIf/qvyZStIuSurT/G0BlvWSaECKpi5LwWPCIQF1YA9oDQHJ7F8rCSoYRtxnAIADzAIi2Sf7+++9ISEjAyy+/jP3791u9OIaRqqnGkXbt2iEiIgKFhYUIDAxscu4Cw7QGLKS0fYMuXbr0tNxFMLYnLy8PY8aMQXJyMm7fNh6a+NxzzyE7Oxvr1q3D88+bPCiXYdqyHQBeghBWfi/xPX0ghJV1nZVttu3Y1aEmAkAXOWugoJIGkPCc4eGjs2IPJgAmcpTfq1dpNpaoUkxuRyCJibx7VvRnHrro2ZLWU5Jg6l4WQUB5nhed6E0TEzme0thmPt2DAp8eDU09aG5Y6ZWl3u+hU089XtFb9H+v4pnLXCm4SFP3spAr5RXQiS0qDk/vTYEQqQ8lwtCu+rDy4JxEF7OqZBjbVQ0gDcBAACsh4b7Ko0eP4rXXXoNKpcL58+etXR/DNOlRjSMBAQHYuXMn4uLi4OrqKmOVDCMNCyntADvyzVhSw1/ILly4YPT6Y489hri4OOTn52PcuHEyVMgwrc4OAH+AEFYa34fQuGchhJUlEAKJNhVWlgYltidE/i7Kdh0dRUMfYQAJgk3a4V5YSUD2lqg02/QztcNNeo5ExTOXvURA/2jNPcRQii+81r59VGzd0Z87BhLAzcRN3CnwqV6lPaQP0QTTxESTf1+dljtN9Dwmx3F/bQVdlB9650bfEVvH1dbEwoQ7bOvCSqe7HX9kYSXDCFxcXBr7cuoygLkQ/t7eI+U5eXl58PPza/KLe4axpqb+/fPw8MDGjRuh0+nw1FNPyVghwzQPCyntAMdxLKRkzPb7778jPj6+yaMtHMchMDAQhYWFiIiIgFKplKFKhmnVdgB4EcLdV4clvmcwAB2AYgBBANrE+RzarkOE3ANIQOgySUdnKXmnWV2UTT0H8AdH95SoNNuOhqa8aO7zGsNxinhrPFcyAgpCPhBbRhMTOdRN9DZrO7iBIFP/c4eD+hBN8Pqg9RYP64UuSsyz9HOb6WpZBdaILToZon0SFKHmbUXrw8qSUE38vWsZGMYueXp69n3Ey4cg3DE9DcA5sWc17GTLzc1t9AokhrGkpjp5O3fujEWLFmHr1q146aWXZKyQYUzDQko7QCkdTyltU104TOtRU1ODVatWYeTIkcjMzGz0kvBRo0YhLy8P6enp6NZN3lyCYVo5CuHuq+EQwspiie9zA7AebSCspKCEJ5gubw34xbmDo2joUxye3ptS6UdnpSCAP6WkqESl2XYkRPsHSz1XGNYj88kISr7yzIrWiy0rOfPYa6DU3VLb1oWVg1wuWjysdFBwc+91GcqGo2SplC7KakJN6qJsHO1OKN5rr6w5XhKqiT8YtOQxyzyXYdqOvn379hNZQgHkQvjC8B8AqsSeeeXKFURFRTU5TJJhzNVU44hSqUR4eDj27duHsLAwNqiUabNYSGkfOl+5csXky/0Z+1VYWIiAgAAkJCSgrMz4HvEnnngCaWlpyM3NxaBBg2SokGHaLB5CWPkChC6Nk49eXs8DQlh5BK00rCQgVFFZPoKnNIICl+SpAZK6KBU1taIDSMyowV9BaKFepS04pvpotLnPG5KtPsxx3MsgOGiJ+pqNgIIaksWWUVDCEf5RE73NQAeDIHOQ64VDlgoreZ7fQUE2gUCutqert+4gU2xRaWhGLxCoLL05pehGKN5zdnFkYSVjd3r06NFf4tJKAIkA+gNYC4j/96JuunJkZOQD05UZxlSPahzx9fXFjh07kJSUxAaVMm0eCyntBKWUTflmJDt16hTeeOMNTJ8+HT/++KPR666urli4cCH27t2LoKAgGSpkGJvB436XxjQI072l8IQQVu4FMMU6pZnOLTex2is7ZpWisnzAvbDylxbc/kp5JckSWyQMIKEWD32MUW8DDHl6lbbg+CztGHOe5LZmfr5HlnqUHGElodjkkf12idi6o6GaqRDCdOuhGCSElRdLi0NSwgv8Eh1MfZRH9tslnrroII6SYQD5BIDoHZYWRbhlUrooDbRqASisNqGbgnZtGFYeDk3tZK29GKa1cHV17fnLL78057K+ixDuiR4LCSchKKXYsGEDvL29odFocPeu6HdnDNOophpHnnvuOaxduxbr1q1D//5SM3eGad1YSGk/2L2UjKhbt24hPj4e48aNw86dO41e5zgO06ZNQ1FREd566y04OpregGQwGLBhwwYzqmUYm1IXVroBUAE4LfF9IwBsgnC5f2sOKwe2VFhJwEk6OsvV1L4Nix2dlYJ61/J0u16lLdCHpvqZ86QHwkoQqZPjTUdAedAPxZZRUALKvWv1euo3pH05QjK6PtPB7LDSTRdd6qGLns1xdHhLhZUU5Npdx1uiXZT68I96EoJZ1q5HqEkIK5WUP6UP1SazsJKxA6ZMedwF4SSECsBVscWVlZXQaDQYO3YsNm/ebMJ2jL06c+YMQkJCjBpHGg4q/eMfZZ2nxzAWx0JK++F9/fp11vvNNMpgMECn08Hb2xuZmZmoqakxWjNs2DBs3rwZH330EXr27GnWfnv37sWECRMQFxdn9Bq7P4WxczUAsiF0VqoAnJH4Pm8IYWURAH/rlGa6hmElKMIg/f+v5rpaVklXiy06MXv5EwTmDiAxFfUG5b/RqzRp5j7Jbc38fA9dtA/HcS8TQg5YorpGUXztqYsRvVxNPyv1FYB6Wq2OJhCgD0dIRrc+HYqLZy4za0qA25qYYx666NngOat3VhKClOErEyvF1tFaQ6w1uygb3RPoCEpjHEBP6FWauFN/T2/BQJ9hWg4hxNRGDh7C39cDAXwIQLRN8uzZs5g7dy6mTZuG48ePm7gtYw/KysqQnJyMsWPHYseOHfU/5zgOQUFBKCoqYoNKGZvFQkr7oayqqjLrmBljm4qKijB+/Hi8++67+P33341e79WrF5YvX45NmzZh6NChZu11/vx5zJkzB4GBgTh27JjR6wMHDkT37rLOL2CY1qIurBwEYC6kdyCOAvAthLDSzyqVmcEtN7HaI1udc9epvacQVpKfLLqBxKOzNXxNLAV1tujezUQ5km+pZ7mtmZ/vnhU9uhYGfyp0+FgWT5aILaGghPDUSndRSkTxlDNRXLTEozzWzj9uzbCSEPzGVZRJ66KkZLYl924WSjuDIKhf1xvG314yjG0IoJSa85n4JoB3IFzD8rWUNxQVFWHChAmIjY3F9evXzdiasTU8zyM3Nxc+Pj7IyMh4oHHEx8cHeXl5SEtLQ9euXWWskmGsi4WUdoTjOHbkm6l37tw5hIeHN/ltrrOzM+bNm4eioiK8/vrrIMT0+RyVlZX48MMPMWbMGHz9deO/v02aNAn/+c9/zNqHYWxQNYCVAJ6FEFZKHUQzCkABgDwAFpswbSnDV86tEcJKVy9QhIFIPt7eJKlHZ0tDM3oBNNTc/cxDjnk8U2bxM39DdbF7PHXq8bUw+APYaaHHbvVYGy16/+UxlXYKhOOPclozIDvaolcK1IWVPM+7EUJWgZBaizyYkhS33MTboutqDDEAdbHInibieW4xSUzk5ayBYayo2+XLl837Fl7wI4RrVwIAlIotrq2tRU5OTqNhFGOf9uzZg/HjxyMqKgq//fZb/c/79OmDFStWYP369WxQKWMXWEhpR9jwHAa4fy+On58ftm7d2uiagIAA7Ny5E7GxsXBxMf2zEaUUmzdvxpgxY5CWltboheH9+/fHJ598gn//+99mHyNnGBv2cFh5WeL7xgE4ACGsfNE6pZmuPqx0bD/E3LBS6tFZA73T4kdnjVAkWTP0GaqL3eOhU0+ohcEfBAXmPIsQ+r6UdTyIvF2UINUcddBY6+lea9/+2T0rOsIBxOywkhD8RirL/i227vTMZT0AEm7qPpZBTng+e+sLeWtgGKuz5GekHQCGApgHocvykW7duoXk5GT4+/vj22+/tWAZTFtx6dIlREZGIigo6IGTZi4uLlCr1SgoKMCUKa3u2nGGsRoWUtqXAVeuXOkrdxGMPBoGhk1NGHRzc8Pnn38OnU6Hp59+2qz9iouL8ec//xlz587FL78YN7Z06tQJSUlJyM/Px9ixY83ai2HsyF0IYWV/CB+ARC/sv2ccgO8ghJXDrFOa6erCSvc+5R4EeINKn3IOoJlHZ4mMR2cBAOSY+7NlX4mt0s9MHaQPTTHrBMRQXewejyz1n+4dA2/28XIK/Nc9K0Z0MI8+RDMZoPL+e0XoGrfsqPNiy0pnpQwuDUo0eerboKz5Z80NKyklWildlJUcp5a7ixJAspRAvXjmMteWKIZhrMTSp81qAKQBeA5AOiRcF/HTTz9h5syZmD59Ok6datZfgUwbVdc4MmrUqAeGiRJCEBQUhL1790KtVsPJiV0JzNgXFlLaGZ7nTZlgx7RxxcXFePXVV0UDw//+978YOXKkWXtdvXoVsbGxmDRpEr7/3vizrYODA4KDg1FUVITw8HA2KIdhTFOB+x+A3gFwQ+L7xgH4HsBmCJ0erQpJTOTdderPPfqWe94LK38UfxeacXS29m3ZuygJv0hK6EM4/h+g5Gu9SvPdUZXmdQpq8l0Y946Bv3zvGHjjLfSN4ClJlrSQQ8tN9G5cjUJBRbsoT/093cnAk695lw7HSkO0bxWEJpp8L2ldWKlQ8IMJIasghBKiCMh1paJmpdi6g39J6UaI/F2U7n3LNoit0s9MHaTguLMlqhStPvwjdiSCaYtGXbt2rb0VnnsDQBQADwDfSHlDYWEhxo0bh/j4eJSXl1uhJEZuj2ocGTJkCDZt2oS0tDT06NFDxioZRj4spLQ/7F5KO9IwMDx40PhKMaVSibCwMOzfv9/swLCmpgarVq3C6NGjkZOTA543/gzu4+OD7du3Y+nSpejSpYvJezEMU68CwlTRZyCElcbTr4wRAJMBHIQQVnpZrToTNQgrvQjwBoCTTa5t1tFZLsyihTYXwXH3Pre/FFtWOitlMBXuNgMALwp8elSVapGw0kOnngoOYyEeVm4fkh39ndgzS0I1E0Ex3NSaLIEAWYMzY86Jrasqr51FgCcBPMUTqulGO5SWhmjf2hukNTm4HpwZc849KzqCow6DKWgGRCb8UoLUgasXiCYPjkpODUqtEZpIRgg+kBSoK/j3KNCRgESgxnC8RJWiFe5+ZZg2w9FgMFhzwOhxAH8C8AqAn8UW19TUIDMzEyNHjsSqVatgMFh0bhcjo6YaR3r16oX09HRs2bIFw4a1ugMvDNOiWEhpf8ZRSlnrmo2rCwx9fX2bDAx9fX2xfft2LFq0CB07djRrv7y8PIwePRoJCQmNfuvbt2/f+gufBw4caNZeDMM06jYeDCtF78GC8DvAZAA/AFgPYIDVqjNRXVjp3rd8iBBWkhMPr5F6dPYOIW1mAAlPSQKMfkejnkJYqf3e3LDSY416r4dOPZVS3g9NhJW1MIhO9AYAQslCU+uwkBoF4VLEFpUGJTqCUvVDP+7NE6pp74If9SpNjDlhpVt21HlPXUw0Rx3cKWgGAal6eA0Bua7kav6f2LMOhLzflRD8r6m1WATB6V/PindRloSmDBf+jn0AACAASURBVKQUrzX4kSsBieBp1bESVYr2WHDq41askmEshlLaEo0cmwEMhHBdi+iXFTdu3EBCQgImTpyIAwcOWL04xnqaahxxdnZGREQEdu/ejcDAQDZAlGHAQkp71Pnq1auydjww1pWXlwdfX18kJCTg9m3jz+3PPvssdDod1q1bhwEDzMskTp06hRkzZkClUuHcOeMmFldXV3bhM8O0rHIIYeVzAP4B4JaE93AAggAcgxBW9rdadSa6H1aWDQW41wAUA807OgtO5i5KiQNISmelDAbFq49Y4mGpsNIz++19Hjr1VJ5gDICtIKAAQCl2DNXF7hGtNVT7J4DKPZApe1DW/LNiiwztOswC0OhlywS0B4Dk9i70lKXCSspR47CS0jQpXZQunHM0QDuYWoMlUJDksTsTRe/bJJTEofHPE64EJMKg4E8eDdVmsLCSaQNaasBoNYTrWgZCuGNa9IsrvV6PqVOnQqVS4cKFC9auj7GgRzWO1A0qjYuLQ/v2sjbOM0yrwkJKO8SmfNumU6dO4Y033oBKpcL588azAzp27Ii4uDjk5+cjIMC8L4tv3ryJ+Ph4+Pv7o6DAeHAsx3EIDAysv/DZ0dHkGQUMw5jmBoBE3A8ryyS8py6sLAWQDaCftYozFUlM5D1087e49y0fQQmCKeEXSDo660Ri5D46C4kDSAw8eQ/Sfj8TwsrQ1IP6EE0wTUw0+Xc6ryz1fg+deipv4McA9BuAXyzlfTzFAlP3tJAaB8ItFVt0cM4KJSHk4S5KIwToDiC5gwtO6VWamINzEk3uvPVYo77gqYuJNigd3O4dA79aw3ErxN53IOT9rqCYa+q+lkF+un62bL3YqpLQlIEAAkWWOVFKw+vCyhOzlz9hmRoZxuIGXbp0ybypkc1zCcBcAC8B2CvlDXl5efDz80NycjIqKiqsWhxjvqYaR9zd3fHFF19YZFApw9giFlLaoRY6zsC0kIaB4c6dO41erwsMi4qKEBERYVZgWFtbi5ycHPj4+CAzM7PRO3JeeOEFbNq0Cenp6ejevbvJezEMYxHXcT+s/BDAHQnvUQKYCaGzMhvAs9YqzlQkMZH3zFLnemTFrBVbe/AvKd0IiOxHZ49X9v5cbJl+ZuogAkxt1rMpdQdBpv7nDgf1IZrg9UHrTb7SxWvt2wc8dDGveGa/vU+0VpV2PEC9Td3LIghypHRROlbfDgXoM9IfTLsDSHa62/HHklBN/P4Z6SbfieK1KvKipy4m+jdS/vzQrPmi1zC0I87z5O6iBKXvS+yifBfSP0s4UUrDaww1J4+GajNOhmifNK9IhrE8mT4jHQTgA2AaAOMug4fcuXMHGRkZ8PX1RW5uLiilVi+QaZ6mGkc6d+6MRYsWYdu2bRgxYoSMFTJM68ZCSvs08saNG4/JXQRjnrrjAyNGjGgyMPT29sb27duRnp6Obt26mbVfUVERxo8fj9jYWNy4YTxI+PHHH0daWho2b96MF154way9GIaxuN8g3FX5DJofVh4HsALCwJE2x8mRRMvdRUlAFk3LnSY++YDjmzo6K2EPuIEgc5DLRbPDSon7vWPN50tQwxv4D8UWHZyzQgmKGNO2oN0JxXvtlTXHzQ0rx2YlGt1R+bDSMG0XAvzV1D0s5Mxv58s/E1tUGqztB0LEuigbQR0ppeHVBCdYWMm0NhzHydXIQQHkAhgM4fSD6H8vrly5gqioKEyePBmHDh2ydn2MBE01jiiVSoSHh2Pfvn0ICwsza1Apw9gDFlLaJ4eqqqqxchfBmK6wsBDjx49HQkICysqMT3HWBYa5ubkYPHiwWXv9/PPPmDt3LqZNm4YTJ4xmVqBdu3b1Fz4HBQWxC58ZpnX7FUK41AdCWCn6QQiAI4A5AM5ACCvbzHHNAyHvdwXIHFmLaMYAEgCvm78hHQyCzEGuFw5ZK6w8Njt1HAUdZennNgcB+cRr7duiU3Kd7laEEOHfd5NRim4Nw8qDQUus8kUvreWj5O6iJMAHUrooqYLGgVIH03e6H1bqVdrVJbNTW13HNmN/KKXjZR4wWgHh9MPzAERPCgDA4cOH8eqrryIyMhLXrl2zZm1ME2pqapo8aVY3qDQpKcnsQaUMYy9YSGmn2JHvtunMmTNQqVSYPn06Tp48afR6u3btoFarsXfvXrMDw4qKCmg0GowdOxabN282ep0QgilTpmDXrl2Ii4uDq6uryXsxDNPirkEIK58HkA7groT3PBxWtvpBGC5cuzfkDn2o1KOz4BbCkr+XUQyyVljJG6i8E70JqeUVRFIXJQWNtdS2dWGls4ujxcPKw6GpnSjIm5Z6nkkI+fnXc+Wfii3Tq5Y+RwmZZplNqSNAZxADX8LCSqYV6HzlypXWcBzoAoAQAP4ASsQW8zyPDRs2wNvbGxqNBtXV1VYvkBHUNY48fNLs2WefRXZ2tkUGlTKMvWEhpZ3iOI4Nz2lDysrKkJycDH9/f+Tl5Rm9XhcY7t69G2q1Gk5OTibvxfM8cnNzH/mLjqenJzZu3IgVK1agd+/eJu8FAAcOHIBKpcLMmTOh1+vNehbDMM12AUAUgAEQpoyKhmkAnCCElacgTCjtabXqzOSRNX85x3EvA+R7eSogP10/d3ud2KrSYG0/UGrC0VkJ6sPKi6XFISnhBX6JZnS/CQjHvwWQTwCIH2G3Bko/9Vw9/4zYMse7FcHmdlE2uj1o14Zh5eHQ1E7mPlNRXUUokAWhk0oWFHSJlEAdRLHQvC7KRikbhpV61dLnLPx8hpGklQ0YLQAwFIAKwpeLj1RZWQmNRgM/P79GGwwYy/n5558bbRypG1RaUFCAcePGyVghw7RdLKS0U5TSflevXmXfVrdydYGhr68vMjIyGg0Mvby88OWXX2LFihV48knzrnb64Ycf8MorryAqKgq//vqr0es9e/bE0qVLsWXLFvzhD38wa69ffvkFb775Jl577TXk5eXh22+/RUhICGprpWQkDMNY2DkIU0b7Q3pY6QogEsBPAJYA6GK16szgtmZ+vocu2ofjuJcJ8F2Lbi6xi9LggPcAWPeIIaV9OUIyuj7Tweyw0m1NzDEPXfRsjqPDZQgrDQriIDrRe33QegUh1MS7KKWpCyuVlD+lD9UmmxNWen767u+eOvWCu9X0eUqwmADGd7lY13lFhXgXpdDpSP7HinUoAToDUBTrVdrVpcHaflbci2Ea05pCSgDgIQyxGwDhmhbRNsmzZ8/WX9V0/Phxa9dnV+oaR8aOHftA4wjHcQgKCqofVKpUKmWskmHaNhZS2jGDwdDa/hJmGti3bx/Gjx8vKTB88cUXzdrr8uXLiIyMxJQpU/DDDz8Yva5UKhEWFobdu3cjODjYrAuf79y5g5SUFPj6+mLTpk0PTCW8evUqrl+/bvKzGYYx21kIYeXzEMJKKeGTK4AFEILOJQA6W6s4c7itmZ/vrlP71sLgT0F3t8CWkgaQ6FVLnyNAUAvUAwAgQB9Lh5XguWEtFlYS/GdwVtQpsWUD2p0PBkWLBFwU6AhKYxwoPa0P1SaXvPGByX8Ghv8n5jfPLPWiqmo6iBIsBiG3LFlrkyg+cMtNFA0/iIF/1wpdlI1RAnQGr6BH9Crt6mOhaf1bYE+GAQDv69evt8bLA29CuKbFA8AWKW8oKirChAkTEBsby36/NtOjGkdGjRqF7du3Iy0tzexBpQzDsJDS3rF7KVuhusAwMDAQx44dM3r94cCQ40z/Y3znzh1kZGRg9OjR2LBhwwOBYZ2AgADs2rULixYtQocO5l3tlpeXBz8/P2i1WlRVNT6vg+d5s/ZgGMYifoYQVnpAuLxfSvjUHg+GlWYfgbWGobrYPZ66mAAhrMQua+0jdQAJ4GDmABLT1IWV3Z7poD81K727Oc/yWDv/uIcuejbP826EkFUgxFot8QYHHqJ3URb4JTpwhFtgpRoegXYApTFE6XiiNFQTbc6T6sLKSr5KCCuFgMJaLnB3ynPEFpXMTn0WhLxhxToaowToDAMMR/Qq7arimcv6tvD+jP1xqKqq8pO7iEf4EcBkCJ/jjD8oPKS2thY5OTnw9fXFqlWr2IklE+zbtw8TJkwwahx54oknkJ6ebpFBpQzD3MdCSvvmT2X4YMQ07s6dO9BoNPD29n5kYLh7926zA0NKKTZv3owxY8YgOTkZFRXGV2D169cPOTk50Ol06NOnj8l7AUBxcTFeffVVqFQqXLhwwaxnMQzToo5DuLzfC0JYKeVbhA4QwsqfIEwptcokZHMJYaV6fC0M/gB2WvThEgeQCKEPplt07+Yi5Gr/NZHG7fom8Fr79s/uWdERvMHgbo2wkgDrBmWrfxRb161P+78AVM47DTsZLBTSv5S98LpnlnoR50CsFlbylC6R0kXJ8fQdOQJ1ABD2pTM5BWHHvxmr4ziuLTRy7AAwBMA8AKId1zdv3kRCQgL8/f2Rn59v9eJsQcPGkdLS0vqfu7i4QK1WY8+ePQgMtM510gxjz1hIad86Xbp0ybyLBRmzNQwMNRoN7t41HrLbr18/fPLJJ9DpdHjmmWfM2q+kpARTp07F3LlzcfHiRaPXH3vsMSQlJSE/Px/+/v5m7XXt2jVER0dj0qRJ+P5747kV5nSBMgzTokpxP6zMBWD8LYqxLgD+D/fDytZ4fA5DdbF7PHTqCbUw+IOgwBLPlDqAhBioNQaQNAvh6T8s/cy6sNIBxJKdlQaDQrFEbNH6oPUKSonFJnqbqKKW3F1uyQe6ZUbf8MxSL1IqavsBiAMhv1vo0Rcd7tzOFltUGpL2NKX4i4X2NAkBvvPIijGeHsgwFtbKhuc8Sg2EAXbPAUiHhFMPp0+fRnBwMFQqFc6ePWvl8tqmusaRUaNGPdA4UjeodNeuXWYPKmUYpmksIWDayl/CNqmkpAR//vOfmwwMO3XqVB8Yjh071qy9rl69itjYWEyaNAnffWc8O8LBwQHBwcEoKipCeHg4HBxM/9xcU1ODVatWwdfXF5999lmjR7h9fHzwxRdfmLwHwzCyOApgGoTuDalhZVfcDysXAGhnterMMFQXu8cjS/2ne52VW814lPQBJETe0AfAfvdstUWC2cYMypp/1j0rOkKh4AdbIKzM9Vo976TYooEu5/+HCHeqyumfL6xZaJHu1IcNXL2g3EOnTlFyNf1hgbCSgn4opYuS52oXAtTRnL3MxikWy7o/Y0+ev3LlSlu6WuA6gCgALwKQdOdyXl4exowZg/j4eJSXl1u1uLbi4caRhldTeXl54auvvrLIoFKGYR6NhZR2jhDSFo4z2Jy6wHDixImNdhhaIzAcPXo0cnJyYDAYf8nq4+ODb775BkuXLkXXrl1N3gsACgsLMW7cOCQkJDT6S0+fPn2wYsUKrF+/HoMGDTJrL4ZhZFMCIawcCeBrie/pBuGuynNo7WGlTj0VHMbClLBS4gASWY/O1tUAJElZVzJL++qpv6eb3DIyODPmXF1YSUEzABgfGXg0ngORNNEbIO+YVqXFVDhzyjSxRaVBie1/mPW+yXeBGoWVwA0THnOxXUdHndgi/SzNU6BkhgnPt6Qf3NZEbRdbdHDOCjZSl7EInufb4mekwwDGAHgFwt3Sj1RTU4PMzMz6zwj2fC98U40jDQeVDh8+XMYKGcZ+sJCSeencuXOtchKrLXo4MGyqw3D79u1YunQpunTpYtZ+dd+StkRg+NNPP2HmzJmYPn06Tp0yHrxad39LQUEBpkyZYtZeDMO0GgcATAHgDelhZXcIYeVZCGGls1UqM5PHGvVeD516KqW8H6SHlZIGkAhHZ2lLDyB5ACHkgJtO/a3YupKQZSMJT9ffKas9rVdpYvYGaU0Olwdnxpzz1MVEc9TBvZlh5QY3XXSp2KLBLuentYIuyv8n5Y5Pg2vHt5S808kSVYq2NDSjl6mb1YWVXGV5f44SNQW5JvnNhC7rvzxS/J8Bj3fl7qLkKJdEQEQ7t53u3v5Cr9JsPBKiGdoSdTE2rS2GlHU2A3CDMA1ctE2yYfNEY6etbFlTjSNKpRLh4eEoLCw0e1ApwzDNw/60MQqlUmneOWJGkry8PIwePbrJwLBv3771geHAgQPN2kvsvpm6wHDnzp1mB4a3bt1CcnIy/P398e23xp93CSEIDAzE3r172f0tDGO79kEIK30AiAZf9/SAEFb+COGYWqv8j4Nn9tv7PHTqqTzBGIiElVIHkFBiiAMga8cXBb9I0kLCJQAAAe0BILm9Cz1lbljplh113lMXEw0ObhQ0g4BUPWI5z/O86ETv9UHrFRTkXVNrspAKZ06ZKraoNCixPaF4C4ArAYngadWPR0O1GceCUx83dWO33MTbbtnRHysqywZxlKgBXBV5y5XyCk5aFyXITFPrsgRCyOHB2fP+K7aueOaylyBcYzRRwWGfXqXZWDwr9QXrV8jYqHGUUoXcRZjhDoAPAQyCMPhONOQXu7feljyqcaRuUGlSUhLat28vY5UMY59YSMkAbfubwlbv9OnTmDFjBlQqFc6dO2f0uqurq8U6DG/duoX4+PgmJ/c9HBg6OpreGFFbW4ucnBz4+PggIyMDNTU1RmuGDBmCTZs2IT09HT169DB5L4Zh2ow9AMYB8AUkD6F5CsBHAE4CmANA1iPQTfHKUu/30Kmn8jw/GsBWEKMPfNIHkACydlEC+ME9S71DbFFxqGYEAR6YoEaETtj6sPLgnEQXU4vwWKO+4KmLiaYcdW8qrCQEX3itffuo2LMGtbsQCGCAqbVYAiVYKaWLkrq0/xtAGx71dqKUhhsU/MmjodqME7OXP2FqDXVhJc/zYmHlEu/c6DtizyM8FsjdRUkpWSSli5LjuPfuvwkEwESO8nv1Ks3GElXKMGvWyNikTlevXn1R7iIs4BcIg+9egvCF4iM96l5GW9FU40j//v3x6aefWmRQKcMwpmMhJQMAf5K7AFt08+bN+sCwoMD4szrHcVYJDDMzM1FbazybYOjQoRYLDIuKijBhwgTExsbi+vXrRq/36tULaWlp2LJlC4YNY58LGMYOFUEIt3wB7JL4nmcArABwCq05rFz79gEPnXoqeP4PFPi8LqyUPoDEIPvRWcIpEqWEPoRHfJOv3Qsrne52/NFSYaVB6eBGQTNAcOfeJpQHEZ3oTRMTOUqwwNT9LYNUuhh4rdiq4pnLXCm4yCZedqKUhtcYaswOK73Wvl3xUFh5pcHLV8orSZZoreHpvakQbsjpiLtunuh1C8WzUl8AaeRL93thJQHZW6LSbNPP1LJL5RjJ2tCUbym+BzAKgAoP/vegUQ0nXOfm5tZPuG7Lmmoc6dSpExYtWoT8/Hz4+fnJVyDDMABYSMkI+ly4cKGf3EXYCimB4QsvvFAfGHbvbvK9+QCkB4Zff/212YHh2bNnMXfuXEybNg3Hjx83et3Z2RkRERHYvXs3goKCQAgxaz+GYdq8IgB+EDr2jaeENa4PhLDyRwhhZas8bueR/XaJp079BqV0FIBs6QNIENwC5T2KpAEkxTOXvUQIxok/jtaHlSWhmvj9M9I7mlqY16rIi566mGhHnriBkH8Riv94ZkXrxd6nP9vhdSLcvyYbCrqy39q3Re+D5Djurw91UTb2NMeGYeXJEK3Jo2QbhJWDOUrUILhMwC2V0kXJ1dbEQu5rGCgkdVESnv+/e4Fk02sAf3B0T4lKs+1oaIotdMgxVkYptbXTZhRANoB+AP4BQLRN8vLly4iKikJgYCBKS0WvBm6VmmocUSqV9YNKw8LCoFC0yl83GMbutMouBablOTg4jAdwWu462rqioiIkJCTgxIkTjb7++OOP45133kFgYKDZAd7Zs2fxwQcfYPPmzY2+7uzsjLCwMMybNw+urq5m7VVZWYl//etf+Pjjj3H3buN37AcEBGDx4sV46qmnzNqLYRibtOPe/42DcA+llG9M+kIIK+fde88nAAzWKtBUnrqYQwD+V8paQsk7tI0MIHng6KwktDuheK+9subNklDN/6usUaaN+CSyzJQaB2RH/wLhn7v4rqDkKFLfkXDdmtUQkCqFgXwktk7oosQ86X/7U0dKEV5NSIhepc2lCrLYc/X8M6bU6LX27QoAHx+ck7j6Macuon+OSkMzelF6V0Vl/N8VQLF7dvQWQP3IRUdCNEMJwQSppRLAn1LiX6LS5POU/N+Q7Gj7mhTCNMeIGzduPNalS5dbchdiYRUAEgHkAHgfQJDYG/bt24cJEybgtddeQ3x8vNlNFi2htrYWn332GZYsWYIbN2488Jqvry+SkpIwYICst4QwDNMI1knJALDJbwpb1M8//1zfYdhYQNmuXTuLdRhWVlZCo9HAz8+vyYAyICAAu3btQlxcnFkBJaUUubm58Pb2hkajaTSgdHd3xxdffAGdTscCSoZhxOwA8CKAVwD8IPE9gwDoABRDOHraJn93KQ5P702pvEdnJQ8gaerorASUotu9sPJ4Sagm/mDQksdMeY5UpSrta6DU3Zp7iKGgKwfnzL8sts5Bwc29d0y+uTs4AnQGMfAlepV2dcns1GdNqRMAhq9MrJQy0ZunVe9SUGdT97EEDlgsJVBXECSIdVE2hgD+CkIL9SptwTHVR6NNq5KxcQ5VVVW2PGD0NIBpAP4IoERsMc/z2LBhQ/3ngupq0RtOZFNUVITx48cjNjb2gYCyb9++0Ol0WLduHQsoGaaVapO/6DNW8UdKqayTRtuiiooKaDQajB07tsUDw8Z+MfDw8MDGjRstEhgeOXIEr7zyCqKionDtmvEJts6dOyMpKQnbtm3DiBEjzNqLYRi7QgFsBjAcQlh5ROL73HA/rAwCmh9KyElRU9tmBpBIOTorvpcQVjq7OFotrKSghAKyTvQWuig50bsoD85JdDFQRJu5nbJhWKlXLX3OzOc1qjQ0oxcIVNZ4tlQUKB3ct/xrsXWloalDQPCymbt5G2DI06u0BcdnaceY9yzG1thJI0c+hBMOcwGIDv+S8vlHLk01jnTs2BFxcXEoKChAQIA9/CNlmLaLhZRMnQ6XL19+Se4i2gqe5yUFhl9++SV0Oh169+5t1n6HDx+WFBhu3boVL71k3j/Gy5cv429/+xsmTZqEQ4cOGb2uVCrx17/+Ffv27UN4eLhZ97c0NhGcYRi7URdWDoPQyXFS4vvcAayHEG62ibCyNEzbhRI6U84aCCGHpQwgqT86ayEUtGvDsPJwaGonSz37aEjqnwF4WOp5puAJXSWli9K5usMc07ooG6UE6AxAUaxXaVeXBmsteq+4gVYtAEU7Sz6z2QhNIomJvNgyHjTe3ED9Pupdy9PtepW2QB+a6meZZzJtHcdxtjQ851FqAawEMADAhwBE2yTrAsHp06c3edVVS6k7afZwcMpxHIKCglBYWIiIiAizBpUyDNMyWEjJ1LOTbwrN9sMPP+DVV19FVFQUfv3V+MvGnj17YunSpdi6dSv+8Ic/mLXXlStXEBkZicmTJzcZGIaFhVkkMKyqqkJGRgbGjBmDL7/8stEpfr6+vsjLy0N8fDw6djR5NgIAIC8vDxMnTjTrGQzD2AQeQC6AwRDCyh8lvs8TQli5D8AU65RmGW6Z0Tc4Qr0BIue9msnWPDorpi6sVFL+lD5Um2yJsPJuDV9ICRaDEFnuiyMgVY6co0ZsXUFoojOVeMdmMykBOoNX0CN6lXb1sdC0/hZ5KkExgAsWeZZJ+5OjHn1ubxJb9v/Zu/e4qMr8D+Cf5wwoeK20TDMvpSWXATW7gIBIopWZl0Q3NQYvxe5SsDBIJmEEYaUOhsW2tBoMkv3Ey7qalmKIgGibqdw000zTVDTTwDvMeX5/jKPmDJ7jnBmGy/f9eu3rtet5znke25SZz/k+z7dims4b4CNtvwDuCy5uLNekbqkI1TXnrb5EBs55n6qqKquPWGiCzgKYBePPWMkXWwBQVFR0vYnnrWc/2pupcMTHx8escMTHxwcbN25EWlpakzhDkxBiRCEluVlLeVNolRMnTiAyMhKjRo26bWBYWFiIKVOm2CQw9Pf3x8qVK28bGCYnJysKDDnnWLt2Lfz9/ZGSkoLz58+bjenbty+WLVuG5cuX45FHHrF6LgCorKzEiy++CI1Gg19++eVP15ydndGxo12PLyOENF6msNINxrBSbjO3JwGsBVCCRhxWemTG7lXrY6ZBFB5zQFhZ6pEVLbl1dk+oboDyrbO3x4EO4DzWifOD5WGpKWWT3rvb2mcN+iL2N68sbfJF8bKbI8JKEfyzfp+9flxqXGfe/lVwdLXjUpwBPtnA68rKNLpl+0J1in5Qe2Vps660bucGjukA+8lWi5RPTJFVRWlgb9kjUL+B+3KGr8s1qVvKNQvtEIaSpsJgMLTE70j7AYwEEAxgn9Tg2tpa5OTkwM/PD4sXL4bBYP8fcbt377ZYONK1a1csWrQIK1euhIeHh93XQQixLQopyXWMscePHj16j6PX0dhcunQJ6enpCAgIqDcwNJ07mZycjPbt2yuaLy8vD0OGDEFKSgouXLhgdv3hhx/G0qVLbRIYlpeXY9y4cfjrX/+KX3/91ex6x44dkZycjM2bNyMwMFDRXGfOnEFcXByeeeYZbN++3ey6SqXC7Nmz0aZNG0XzEEKavJsrKzUA5IYkPjCGlcUwNgFolNRLo/ep9THTRFH0YIwtBmN19p6TC0xuFaUNt85K4e3BeSxzbn2gPCw1pXJ6qtWfP57Mnn3mT2ElcM6GC63PldacLZAatCUs0QVM8VmUcgkMeLGOoVRpWDno0/BadbY250rrtt7gmA4m+6WBMgz7PHudXyM1rFKT6sHAn2+IJQHcFxBXU1jZorXk3WabAXjDWA0u+SLo3LlzmDNnDoKCglBQUGCXBZkKR27daebq6gqtVott27Zh/PjxihqVEkIch0JKcjOVk5NTkKMX0ZhIBYZ9+vRBTk4O9Ho9evXqpWiu8vJyjB07FhqNBkePmu+y6tixI+Lj45Gfn4+nn1b2/fvs2bNISEjAyAdP8gAAIABJREFUc889h2+//dbsuiAIGD9+PIqKijB9+nQ4O1vfU6m2thaLFy/G4MGDkZOTY/HNqq+vLzZu3Ijw8HCr5yGENDu1ALJhrKwMB3BM5n2DYfxSVQyg0W7V9F4682fPrJgIJzA7h5Vsr7pntWRng2sNSBxwBocxrOR1fH9FWOpflDzJFFZeqHPuCyAe9g0rMx/NjjF/u3eLe3nH6XauorTEFFbuqdDoMg++PP8+ax90Paxs1a5/Q4SVoii8K+8sSsxBg3+PuRZWhqUWUFjZ4gxr4Q1GawGkAXgYwCLI2Alw4MABTJo0CRqNBkeOHLHJIuorHGGMYdSoUdi6dSu0Wi1cXFxsMh8hxDEopCR/QudSGpWXl2PMmDHQaDQ4dsz8e3HHjh2RlJSE/Px8BAUpy3XlBobFxcWIiIiwSWDo4+ODJUuWWAwMBw8ejLy8PCxatAidO3e2ei7AeEbN8OHDMWfOHFRXV5td79q1K9LS0rBixQq4u7srmosQ0mzVwniY/8MwhpWS22uvGQxjx9JiAI22Y69bVvRhu4aVHPIakHDRzltnb48DHQDRJluLn/o8slqt1y5wVtX1ARAPxs7a4rk3sKsCd5J1FqUIMda2c98RFcBG1DmLl5Q+yBRWevaqUTNgEgcO2GKBf8Z+8Hroj9VSoyqnLnAH+Au2n18mzn0A/jeHzU8cocPx48cfd/QiGoEzAKIAPAGgSM4NeXl5CAgIQEJCAmpqaqyeOC8vD4GBgWaFI15eXlizZg0yMjIUNyolhDQOFFKSW9mso2dT9Pvvv18PDP/3v/+ZXXdycsKUKVNQXFyMGTNmwMnJyeq57jQw7NSpk9VzAcbAMDg4uN7AsFu3btcDQzc3N0VzHTp0CBqNBhMnTsT+/eYNe03bMUpKShASEkLbMQghclyFMazsDWNYKdlR+ZrBAAoA5AFotF8yTWGlSiW62y6sZHs9H6r+r9Soimk6bzA00NZZyzjwtWdW7He2fGa/z96oUeu1C5yFWmNlpa3CSsYzPbKjfpEadi86TGNAN5vMaSUOntrvszesTwZuwRITRU+9dpW6d43XtbBSbqMrOeSdRSkKCXDwd5g61L3nyPmJQ7TEcynrswtAAIAXAByWGlxbW4slS5YgICAAOTk5EEXJP+bX3Vw4cvNOs5sblT7+eKP90U4IsQKFlORWPY8dO6bsoMMmSE5g6Ofnh40bN2LevHlNLjAMDQ3FxIkT8eOP5t8l2rRpc/38lpCQEEVzVVdXIyUlBUFBQcjLyzO7btqOUVhYCK1Wi9atWyuajxDSIpnCyj4wnpF1UuZ9wwD8D8aw8jH7LE059yWxRzyzYiIEUeXGwdMBXLH2WQxc1tZZGBDvyCpKABA5S7HXs01hpXCh2lhZCShpP1urUnHJKsoDry9qLXLuyCpKMLAzzqq6DLs8+0ZY6c2ASTA22VDwQBzcd7H7Kqlh5S8vdAP4GEVzKcTBvhmgj9vmyDWQhscYo91m5tYB8ICxG7h5581bVFVVIS4uDiNHjsTOnTtvO7a+whFnZ2fMmDHjeqNSQaA4g5Dmhv5UEzOMsRb1ptB07uScOXMsbkPo1asXMjIykJubqzgw/Omnn/Dyyy83aGA4dOhQbN682ez6ree3KAkMRVHEihUr4Ofnh/T0dFy9etVsjLe39/XtGA888IDVcxFCyDUXYTwjyxRWVsm8bxiA72D8cjXQPktTziM76hcvfWyMwJ08rQorGfZ59K75j9SwyqkL3Lnju6Jv6p8dY7594RaVmlQPJecreqxIPK/WaxcIF2v6CpxpOdipO30GA7Lcl8RKHrB2uaZuKgMc/MNO/FBOFeWuqXPvtXYGU1jp2bumvzGsZD9Y9Ryw5AkrJkiec8dU4ltw8PcXkYtz5Yzj4LRNpHl58siRI3c7ehGN0EUAHwDoB2ApAMkmbaWlpRg9ejTCw8PNGnfernAkODgYhYWFSEpKUtyolBDSeFFIScwIgtAi3hT+9NNPmDJlCjQaDQ4fPmx23RQYFhQUYNQoZd/f/vjjj+sVht98843ZdVtWGN4aGNbW1pqN8fb2xn//+1+bBIYlJSUYPnw4oqKi8Ntvv5ldN23HWL9+PW3HIITYwwXcCCtnAZCzpZcBeB7AThjDyv52W51CprASAjw4eDoDuyznPi536yxnDmhA8md1MLwvZ5wIZFwShIMVYanpe6cstLoZjceKxPMe2TEfqy5WuwmcaSE/4K5VMUGyo3dlSGIrcK61dn028ruTyvCJ1KBvQ+d2aiW23luu0f2nTLPA6grjG2Fl9QBAGAdgj/ybcfD04eqVUsPKwhb04xzjrF2jTTBs6Z8dWyw1bO+0hcMqNKnfVWh0L1JY2WyonJ2dG20ztkbgVwChAJ4CsENqMOcc69atQ0BAAHQ6Ha5cuYKioiIMGzbMrHCkT58++Pzzz6HX69GzZ0/7/Q4IIY0ChZTEDOd8aHPuYPfHH38gISEBQ4cORX5+vtl1xhjGjx+PkpISaLVatGrVyuq55ASG/fv3x9q1a5GRkYFu3ZQdXbVt2zYEBwfLCgwHDRqkaK4TJ04gMjISISEh2Lt3r9l1Z2dnTJ8+nbZjEEIaynkYqzl6whhWyunsbAorvweQC+BRu61OIXWm9qiXPjbG4OwkI6xkP6h71Uhuna2cusAdHKNtuc47xTk2y9k6WxmW+gzAHwfQmnM+w6AS91eEpab/MO0jq39wmsJKURTlhpXZblnRh6Wea3BtPxVAD2vXZQucsTQ5VZRtBJcYY9MiPMfASso0uq/KX061+gMCS0wU1fro9Z69a3wAYRxjbLfkWsFShhYkSp7ByjiLh6OrKCHvWAJR5G8CUHNgWUXYwp3lobopPDGRPgg1fS2ikEOh/8F4FvQrkPEC6NKlS9DpdPDw8MDEiRNx4MCNnlx33XUXkpOTkZ+fj6FDKR8mpKWgH5bEkvYnTpzwcfQibK2urg45OTnw8/PDkiVLUFdn/nl4wIABWLt2LRYtWoT77rN6RxmAPweGZ86cMbvepUsXpKWlYf369XjsMWXHox0/fvx6YLhv3z6z66bAsKioSHFgaPow4evri5UrV4Jz810dpu0YycnJtB2DENLQamAMKx8G8A6AP2TcIwAIAbAXxrCy0Z7N7L048piXPjbGRTT0BWMLwGDeuZnzuXKqKA0ic/zWWXBZDUhEjjdu+aXWnPMZtYba/RVhqen7Q1Ot3hbgvXTmhVvCSkvnnNY6MWGe1LN2vprhzBhzdBXlOQPYv6QGfRs6txM4wm/+NQYEQeDbbBVWemRFS4SV7Kczh6tzpZ5XOSW1D4AXrV2PLXBgq3dWjGRH48qpC4M45343buSeYFhS/nP7neWhuim5Ibkquy6U2NMzjl5AEyECWAzji78FMJ4lfVsXL168/t9vblQ6ffp0RY1KmyKDwYDvv/8eP/30k6OXQohDUEhJ6tOs3hQeOHAAwcHBiIuLsxgYduvWDZ988gm+/PJLxYHh4cOHMW3atHoDQxcXF0RHR18/d1JJZ+uLFy9Cp9Nh8ODBWLnS8k6p4OBgFBUVITk5Ge3atbN6LkvbMm5F2zEIIY3I7wAScSOsNO9SZs4UVu6DMazsY6/FKdVn6cxT6qyYeBfm/OewkuHgvksPSm6dLX95oRsDxtp9obfBgXw5W2fLNanDAe5bz1Nacc5nXGX4wVZh5ZXWNcawkt3UQZ4hR04VZaur58MA7tgfgIylDciKlqwkdmUu/wC4xTeJN4eVFWELrD6rhYHxm8NKGLsC38D5XDlVlKKKJwBwcLjH35U1ShRnW/p1BniAYYlbm2MUVjZdvY4ePdpofy40Qn8AmAljc50Vcm+aMWMG5s2bh3vuucduC2usiouLMXz4cIwaNQoBAQHIzMx09JIIaXAUUpL6NKvmORUVFdi/37zxpKurK7RaLYqKijB69GhFgeH58+cxd+5cBAYG4uuvv7Y45oUXXkBhYSFmzpyJNm3aWD2XKTAcMmRIvYFh3759sWzZMuj1evTooWzXWVlZGcaMGWPxgGvAuB0jKSmJtmMQQhqjM7gRVn4A4yH/Um6urMy+dm+j1Dcz8rQ6KyZeVSe4cYaPRVF4W04DEgiiw7fOcsZkNSBhxu37Uk+7HlaWa1I/K5u28CFr1zXo08SLHtkxH7u0d35U5DwCwFGhjkmeRbnz1QxncDi0ozcY+6MO7J9Swyqnp97DgL9JPg4I4pwVl2l0X+0JTX3C6mVdCyvVeq2PIAjPAux7AId++6Xm/yTXOiW1Dxgbb+3ctsFKvPSxhVKjysMWBnLA//ajuDsYlri1Pfo9hZVNj5OTU7P6jtRADgKYAGMlqnkFxy0qKyvtvqDG5siRI5g+fTomTJhwvciFc45//UuyKJ6QZqdl1U6TOzHo+PHjnbt162Z+sGEzERwcjHfffRcPPvigoudwzvHll1/inXfewfHjxy2O8fT0RFJSEp566ilFcwHGjngJCQnYuXOnxet33XUXYmJiMHXqVKhUyj73VlVVQafTYdmyZRBF852DTk5O+Mtf/oJZs2a1yLedhJAm5TcYwy4dAC2ASACuEvc4A3gZwF8AZAJIBnDMjmu0mntO9AkYf1+SysIW9AN37NZZAAVyts7unbZwmMEgDpb/WN4KwGRm4BPKNam5QF2KWh9n1Z65vh9FXgGwODckN1NO8Nv6yoVQAL2smctWGMeiAXrpKkpeJ0YBTPZ5LAwIUjEeVK5JLVFBeNtd/w/JwK4+HpnR+Rx88P5pH3eVU0XJVTwe3LHfWZwEJMoayHm87IdyuF0LK2PLQ3UL9l168AtZLxiIQ3HOgwFIvgggFm0E4AVgGoB3AdxradDly7L6wzULFy9exCeffIKPP/7YYtHJ+fPnHbAqQhyLKilJfQTGWJCjF2Ev7u7u0Ov1igPK77//HiNHjkR4eLjFgLJz586YP38+vv76a8UBZVVVFeLi4jBy5EiLAaXp3MkdO3ZgxowZigLK2tpaLF68GAEBAcjJybEYUPr5+WHTpk022Y5RUVGB0tJSRc8ghBCZTsMYVvaCsbJSzrchZwCvAvgJQAYAZV3OHIxBmA1HV1GC30kDEms4A3wyoCot16R+Vq6ZZ3U1rJzgaOerGc4cPM7aOWyCsT/E2ivpUsN2hy28i4P91bpJuK8BhrxyTeqWfVNTh1j3DGNlZb/PXrf8Zvcm5Zp5D3PGJlg7j00wtt0tM2ar1LC9mg8DAB5wx8+/HlYeqywNXTBjS2AiFZE0bk835wajDaAOwKcA+gHY7uC1OIwoili+fDkGDx5c7644QloqCilJva69KWyWlGzrBoyBYWRkJF544QXs2bPH7LopMCwuLsbkyZMVNaoxBYb+/v71Bob+/v7YtGkTkpOT0aFDB6vnAoC8vDwEBARgzpw5qKkxbwzau3dvZGRkIDc3F/369VM01759+zBhwgQMHz4czz77LGbOnKnoeYQQcgdOwRhWPgJgEQA53xBawRhW/gxjWNnVbquzk8opqX3AuUO3znLwQjlbZ80akFjnT2HltQYsNtfqyoUpzMFVlJzjY69lb56VGuckilEA7lI4m2+dyDeVa1K3VITq7HfOC1PNBucODe2YyN+RM64OdQmKJuK8t8BYeqee7SmsbNzanzhx4klHL6IZ+B3AekcvwhH27NmDMWPGIDo6GlVVkg3QCWlxKKQkt0Md7G5x+fJlpKenw9/fv97O1rYODP39/TFnzhyL5f4PPfQQ9Ho9li9fjkcffVTRXAcPHsTkyZOh0Whw5MgRs+tt27aFVqvFli1bMGrUKEVznT17FrNnz8aIESNQXHyjZ8KyZctQXS2ntwUhhNjMUQBRsC6sPAggDcD9dludjXEnxMHBDUic4JQsZ1x9DUis5AzwyaKKl5dpdMv2hqX1tdWDc0NyVYxxh55FyYBqlRM+lhq3M+T9jmD4u+1m5r6c4etyTeqWyqkLbboDx3iuKPuLLZ9phR2e2dotUoPKp+p8GdidV1FawIBeFFY2bs25kIPYz4kTJ/Daa6/ddlfc008/7YCVEdK4UEhJbqf78ePHlZXKNSN5eXkIDAxESkpKvYFhdna2TQLDAwcOYNKkSdBoNPjll1/Mrnfo0AHx8fHIz89HcLCyz0nnzp1DQkICgoKCsGWL+edwQRAwfvx4lJSUQKvVolWrVlbPVVdXh5ycHPj7+yMrKwt1dX8+iopzjgsXLlj9fEIIUeAXGMPKR2HciiZ5Vh6ANjCebWkKK7vYbXU2ckG8/CZneBeA5LmF9sFK5JxnKK8BiVUEBrxo4HVlZRrdsn2hukeUPvDe03uZKPKFADN/w9dAOEO6x5KY36XGtWrrHAnFVZQWV+AriuJX5ZrULeWahSNt8URWV9cOwHe2eJa1VCpBVqAOEW/bem5TWNm5Z4e9paELZux8NYO2GDce1DyHyGYqchkyZAhWr1592yKX1157zQErJKRxoZCSSGnxP4QrKiowbtw4ycBwy5YtGDZsmKK5bg4MCwoKzK6bAsOioiJERETYJDD08/PDkiVLzAJDABg4cCDWrl2LRYsW4d57LZ5tLdvWrVsxbNgwxMXF4fffJb9HEUKIoxwBEA5jZeWnAOQ0smiLG2Hl+wDuttvqFHoye/YZryxtsuDE3BwSVjIma+vsHTUgsY7AgBfrGErLNLplpdM+tPrt4tCCxDrv7NjFV1q39QDHdDActOVCJTF2/soVLquKkoFF2Hcx3BcQV9sirFRnzyxTZ8UE1sEQBKDANuuTjzH2rftn0ZulxpWFzvcBEGi/lfCeAmPpra+c31sZmvragdcXtbbfXEQOxtjjR48epY6RRJKcIhdb7YojpLmgkJLcVkveznD27FkkJCTg2WefxY4dO8yumwLD4uJiREREwNnZ+hfctbW1fwoMDQbz78Q+Pj7YtGmTTQLD4uJiDB8+vN7AsGvXrkhLS8O6deswcOBARXMdPnwY4eHheOmll/Djjz8qehYhhDSgn2EMK9UAlkJeWNkOwBswBp3vwy4Va7bhsSTmd68sbbKzqq4PgHgwJnmWoWKMbVdnRRdIDbO6AYl1BAa8KBgMe5SGlYM+Da9VZ2tzrrRq1x8c0zlwwJYLrQ8HTx/0RexvUuNat3F+DZw3UIB+LawMSy1QGlYO0MdtU+u1I+pgCAKD5NZrW+EQZVVRMkGweRVlPXqIjOsuV9dWVIamvrYlLNGlgeYl5lROTk7NtsEoUe5OilyU7oojpLmhkJLcFmNs6IEDB1rUG1tToxofH596A0NfX9/rgWHnzp0VzVdUVCQrMFy5ciXc3d0VzfXzzz8jPDwcEyZMwA8//GB23dXVFRERESgsLERISIiiBkM1NTVITk7GkCFDsG7dOrPrjDE88wwde0oIafT2AQgF4AVjWGnevcxcexjDyp8AJALoaK/FKdXvszdq1HrtAmehti/sHFYKjCXJGVcHw1v2WsNtXA8rKzS6TJ6YaPVnZFNYqe5d48WASXYOKy/UsSsfSQ3aMXlRBzD2uh3XYRnnPqawskyzQFHwPEAft02dpX3mWmXlBhutsD67PLO0klWUpWG6p8Bhv8ZBlvUQGdd15u0prHSgllzIQerXkEUuhDRXFFISKW3btWvn4+hFNBRTYDhnzhyLDVy6detm08BQo9Fg4sSJ2L9/v9l1V1dXaLValJSUKA4ML1y4AJ1Oh6FDh1oMDAEgODgYW7duRXx8PNq2bWv1XKIoYsWKFfD398cnn3yC2tpaszFqtRqrV69GWlqa1fMQQkgD2wtjWOkNYAUA80OlzN0D4G3cCCuVdVOzI7Ow0th51ZZ2eGRG50sNMjYgwRAbz30nBA4ILDFRThh9WywxUfTUa1fdFFbaYzvBPwdmzj4tNaitU21Ew1VRWsC5DwCbnHN+rbJyLAQMhZ3CSiaoEhmY5J9xJkJZR29lHhQZn38f7/CwA9fQko1w9AJI49HQRS6ENGcUUhJJLeFN4aFDhxAaGioZGG7btg0hISGK5qqurkZKSgqGDh2KvLw8s+uMMYwaNQpbt26FVqtF69bWF7KaAkNfX1/odDpcvXrVbIxarcaaNWug1+vRvXt3q+cCgN27d2P06NGIiorCqVOnzK7fc889SEpKwoYNG/Dkk08qmosQQhykAsAE3FlY2Qk3wso3YGy40yiZwkrhYk1fgTMtBzP/y9wKjmxAcodEAWyeLR94U1jpzYBJAMw/aFjngovgLPm2rzIksR1jcHQ3hmOuHVrpbflAdaa2RK3XjuVcDIRtw8pdHplRm6QGlb48/0nGoOwwcoU48B8PfUylI9fQgvU8duyY4sZbpOlryCIXQloCJ0cvgDQJw2Gsqmh2qqur8dFHH+HTTz+1WPHHGMPzzz+POXPm4IEHHlA0lyiKWLVqFd59912cPm256MHLywvJycl4/PHHFc0FALt27cKcOXOwa9cui9e7dOkCrVaLl156CSqVStFcJ0+exNy5c7Fq1SqLHeucnZ0RGhqKuLg4tG/fXtFchBDSSJTjRlgZD0DOG6zOMJ5VqQWgA7AIwCV7LVAJjxWJ5wF8XBmSmAXXDmEi43Gwsnt542lAIstKe4U+16ozV/HExP9U/tx+LAebA3Al1YX/6psZKVlFyV3bR3AOx5btMD6/70eRV+zxaK/smdsBjC0N0z0lcLwB4DklzxO4kCSnilIQVAny3lHYCQMH2HuOWwBhjA2HfSqkSRNw6NAhvPPOOxaLTgBjkcvf//53vPbaa4qKTghpaaiSksgx8MSJE8o6tTQyoigiOzsbvr6+SE9PtxhQDhw4EOvWrUNGRobigHL79u0YMWIEoqKiLAaUXbp0wbx587BhwwbFAeWJEycQGRmJUaNGWQwonZ2dMX36dBQWFmLKlCmKAspLly4hPT0d/v7+WLlypcWA0t/fH5s3b0ZycjIFlISQ5qgUxrDSB8CXMu+5F8aw8jCMlZWN9kw5jxWJ5z2yYz4WRdFN4EwLoOpOn8E53pU1kAlz7vTZNiaKoviB1CCemCiUvjzf09pJTJWVnr2rBwDCOAB7rHjMBRfBeaHUoNKX57fljjiL8s9O1lwQJKsod76a2IaDW322jXeWdodarx0rimIAgA3GEO/OMMZ2u2f/42upcaVTFw4E4w6togSwxisrptzBa2jRBEFo9rvNiDm5u+IKCwsV74ojpCWikJLIIYii+LSjF2FL+/btw6xZsyw2qjEFhmvXrlXc2doUGI4fPx6VleaFGbcGhoJg/R9JU2AYEBBQb2BoOnfSFoFhXl4eAgMDkZKSggsXLphdf/jhh7F06VIsX74cffv2VTQXIYQ0ATsAjAIwGMA3Mu+5D8aw8kcAUQAa7TcZ76UzL9wSVp6UeesuT3205TKTm5SG6Z5igEO75TKG1d5LZ1ZIjas41D5EEITvyzS6r8pfTh1k9XyJiaJaH73es3eNDyCMY4ztlnsv5yxDThWloFL9HeCOftH8vu+KGMmKYZcrHT6oCFu4szxUN0VJ4yLvpTO/Veu1Y5mAJzmw6k7CSs5ZsqwqStGQCA7rDwtXioFDFOc6bH4CAOCcD+WcU+eTFsJ0jJafn1+9RS7e3t7473//a5MiF0JaKgopiSyCIAx39BrsrXXr1oiMjMS2bdtsEhjqdDoMHjz4toFhYWGhzQLDIUOG1BsY9unTBzk5OdDr9ejVq5eiucrLyzF27FhoNBocPXrU7HrHjh0RHx+P/Px8PP10s8q2CSFEjhIAwwD4A9gi854HAXyIphVWugucacFw4nbjBcbeaQINSAAGLoK9LzWMJyYKnOEN4y0IgsC3lWl0X1WELbB6G4QprPTIiva5Vllp+ZyWG3dcdFU5pUo9t/Tl+W0551HWrstGTtZcZFlSg0pnLOrOwTXg3BMMS8p/br+zPFQ3JTck1+rtHp6faUu99NpJEMUnZIaVezz1/5A829JYRckc+rmYcaxVZ88sc+QaCACg/YkTJ1pMg9GWrKSkBMOHD0dUVBR+++03s+umIpf169dj0CCr310RQkAhJZGJcz6cc+u34DR2wcHBKCgowKxZs9CmjfX9DDjnWLduHYYMGQKdTofLly+bjenTpw8+//xz6PV69OzZU8myUV5ejjFjxkCj0eDYsWNm1zt27IikpCTk5+cjKEhZgcrZs2eRkJCA5557Dt9++63ZdScnJ0yZMgXFxcWIiIiAszO9WCaEtGjFMFYG+gPYKvOeHjCGlfsBvIpGfHa4Kax0ae/8qMh5hKWwkjG22z0reqPUsxpDAxJw9h85W2fLD7d/kQEeN/8aA4I4Z8VlGt1Xe0JTn7B2CQyMq/XR6z31Mb7GsJJ9b3Gp4J/KqqIUVH9lxqMFHIZBmCenilKorZuJm8J5BniAYYlbm2OKw0p19swyL712Egd7/HZhJWPsXVmBOhfnOLqKUgSXPJaANBja8t2MHT9+/PquuL1795pdN+2KKyoqUlzkQggxoj9FRK4HTp482WTbkdV37qK7uztWrlxpk8CwrKwMY8aMQXh4uMXA8K677roeGA4dOlTRXFVVVYiLi8Nzzz2H//3vf2bXbw4MZ8yYAScn67/n1tbWYvHixfDx8cGSJUtgMBjMxvj5+WHjxo2YN28eOnXqZPVchBDSDBXD2AwmGID5X9iW9QSQAWNl5asAlHU3s6O+H0Ve8c6OXWwKKzlw3HRNBJfZgER4y76rlMDAwQ2SDUg4OGNgs+p/DIJUjBeVaXRflb48/0nrl2MMK9X6GF9BEJ4Fw86brl12MggfSj2j9OX5bTl4tLVrsJGq6ov8M6lBlWHp94NxjeWr3B0MS9zaHv1eaVjplRVT7qXXThIN4iALYWWpR1a05Jmye0J1AxjwjLVrsAmOL730sRYDbOIQzX63WUt06644S27eFdeuXbsGXiEhzReFlEQ2znmT/SHcv39/tGrV6vr/7tSpEz744ANs3LgRvr6+ip59c2D43XffmV23R2AYEBCAnJwlb4ZgAAAgAElEQVQcuweGRUVFGDZsGObMmYPq6mqz67169UJGRgZyc3Ph5uamaC5CCGnmNgN4EsawcqfEWJPeMIaV5QBC0QTCyjOsxo0xFg3GvlRnxXwldZ9x66yDK5E4+6+crbOVmtRx4FyyYQ4DggRBKCzXpG7ZNzV1iJKleWRG56uztINNYSUH/9Q9J/q2W+wBQCWoXnV0FSWYMF9OFaWIK7PA4XrbQRxu1yord5WH6qZsCUy0+sOU99KZFV567SSBs8cA9jkAAxdYipxAXcWQ4NAqSgAQpY8lIA1q0PHjxzs7ehHENky74gICAqDT6XDlyhWzMX379sWyZctsUuRCCDHXaLcRkUYpGIBkJ8nGqEePHvjiiy/wxRdfoGfPnnjllVfQoUMHRc+sra2FXq/H/PnzUVNTY3GMn58fkpKS0K9fP0VzAcZzJ99++20cPnzY4vVevXrhzTffxKhRoxTPtX//frz99tsoLCy0eL1du3aIiorCK6+88qfwlxBCiKTN1/4zDMAHAOR0aHMDoIexE/gHAHIAiPZaoBJDsxIvA/in8T8xkuOZKL4NOHjrLGPSHb3BWQVS37yzh3PfOhGbyjWpJWDsHXVWdIGVq4RHZnQ+B99SEPaO5HmlW8ISXTjn/7B2LlvgYKeutvpjidS4yrD0+0VcDruDJ/cDw5LOvTq8VRq6YMHvv5zPGlqQWGfNGj30MZUAppWFLZinzozZL/Xva2XYwv4ixOfuvGe4Ta1XL42R+5KDNAyBMRYEINfRCyHKVFRUYNasWdi1y/KxwJ06dUJcXBwmTZpU7y49QohyFFKSOzHkwIEDrfv27Wv+SqkJ8PHxgY+Pbc62zsvLw5w5c3DkyBGL13v37o1Zs2bZJDA8ePAgEhMTkZ+fb/F6mzZt8Le//Q2vv/664sDw3LlzmD9/PpYuXYq6OvPP/IIgICQkBG+++Sbuu+8+RXMZDAbk5tLnOUJIi7UZwCAAzwNIAtBfxj3uMIaVM6/dsxJwcGSiwJ5Q3QDGMMKRvwPO2TrvrGiJRjVARejCMQDUVs7iC843lmtSSxjnSZ7ZWrkNlf6EgXFkwfyw61t0RodwgN9vzRy2whgWDPo08aLUOAO/FMfAbl9FaQnnvQXG0jv1bD+zNHTBfCVhpVdW7A9ArOQ4kYtvwZGBOgDGuOSxBKThXdttRh9qm7CqqiqMGzcO58+fN7vm7OyMsLAwaLVaxUUuhBBptN2b3Ik2rq6ufo5ehCMdPHgQkydPhkajsRhQtm3bFlqtFlu2bFEcUP7xxx9ISEhAUFCQxYCSMYbx48ejpKQEWq1WUUBZV1eHzMxMDB48GJmZmRYDykGDBmH9+vVYuHCh4oCyuLgYw4cPR0KCeTNXejNJCGlBOIB1AB4DMAHADzLv84TxC3EpgBA4ODixlorBsQ1IAACidEdvcAaG2crn4r6c4etyTeqWcs3CkcqfZ25LWKILHHwWJWP4TbhQLVlFWT7jwy6MsWmK5gJ6CYyld+7ZYW9p6IIZSraB307FNJ03GJ63x7Pl4sDXnlmx5ucKkcZghKMXQJTZuXOnxYAyKCgI33zzDd555x0KKAlpIFRJSe6ISqUKBvCNo9fR0M6dOwedTge9Xl9vheG4ceOQkJCAe+9VdgRUXV0d/u///g8ffPABzpw5Y3HMgAEDkJSUhMcee0zRXIDx3Mm3334bP/xg+btx165dkZCQgNGjR4MxZd8ljxw5guTkZGzYsMHidTc3N8X//AghpAkSAawAsArAiwDeBfCIjPvUuBFWplx7RpOwJ1Q3AAzPOnrrrJwGJOVTF77ARO5lu2m5L8BXl2tSSwC2QK2PXm+rJ3dGx1fAxa62ep5VOFvgsSLR/Nv+rWrrZsKaKkrLk/a8FlbGVYamLmrV0enffT+KtN3OHwPi4eCXASJnKY6cn9xW9+PHj7t169Ztn6MXQqxz6zn/HTt2xMcff4ynn37aQSsipOWiSkpyR5py8xxr1NXVIScnB35+fliyZInFgHLgwIFYu3YtFi1apDhgKy4uxogRIxAXF2cxoLz//vuRlpaGL7/8UnFAefjwYUydOhUTJ060GFC6uLggJiYGxcXFGDNmjKKA8sKFC3jvvfcQGBhYb0A5atQoLFu2THEQSgghTZgprHSDsbLygMz7vGEMK7cDUH7OSAOoc2lXAREzwHDQYYsQ2VypIRycMRFv2GcB3BcQV5eHpRbYqrLSIBp2M8aKbfEsa3DgtEE0fCo17uDL8+8DhOl2WEFPkXHd5eraisrQ1NcOvL5I8gxPKbkhuSrOUAPAvFthw9nUPzvmfw6cn0hrUd+Rmrtu3bpRQEmIg1BISe5U/1OnTjn0nKOGYtqSHBcXh99//93seteuXZGWloZ169Zh4EA5fQ/qd/jwYYSHh2PChAnYt8/8JayLiwsiIiJQVFSEkJAQRUHexYsXodPpMHToUGzcuNHimODgYBQUFCA2NhaurtYXOZg65AUGBuKjjz66bYe8jIwMdOnSxeq5CCGkGTGFlR4ANAB+knnfUwDWAtgGoFF/uxr0aXitOlubc6VVu/7gmM7lB7K2skFOA5LKsIXPA1z5toXb4dwHEFeXa3RblYaV/bNjiz2zYp6ugyEIgOW3gnakYkj1XjrzgtS4S4zFAryNHZfS41pYWVkZmvqacRu8dSasmGBQZ2mnOzHBnTG2GIxZdfalEnUwUEfvxi/Y0QsghJDmgEJKcqdYXV1do/7io9TPP/98PTC0VGHo6uqKiIgIFBYW2iwwDAwMxLp16yyOCQ4OxtatWxEfH4+2bdtaPRfnHCtWrICvry90Op3FwNDT0xOrV6+GXq9Hjx49rJ4LAEpLSzF69GiEh4fj119/Nbt+1113ISkpCfn5+QgMDFQ0FyGENFO1ALJhrKzUADgk8z5fGBvzFAMYap+l2YYprFT3rvFiwCQO/NgQ8zLGJasoAYCDz7L3Wm7yFCCurghLLSzXLBzJwa3+gDFAH7dNrdeObciwkoGdUQl1/5Yat/OlBZ0h2KOK0qIHRcZ1nXn7CqVhpVtW9GHPrJgIlUps0LCSc2weoI/b1hBzEUUCDxw4oLhylxBCWjoKKYk1muWbwpsrDBs6MLx69arZGLVajf/85z/Q6/V48MEHrZ4LAPbs2YMXXngBUVFROHXqlNn1u+++G0lJSfjqq6/w1FNPKZqrqqoKcXFxGDlyJHbuNC9ScXZ2xvTp07Fjxw7MmDGDGuUQQoi0m8PKcADmb34sGwwgH8awcoh9lmYbLDFR9NRrV6l713jbO6yU24CkXLNwJDgG2Wsd9eGcPwmIqys0C4vKQ+crOgvTFFZCwFDYOazk4Kn9PnujRmpcq9YsFpy3s+daLDCFlZXlYQv+qqTBjvuS2COeWTERgqhy4+DpAGx39qUFIqijdxPRtl27dr6OXgQhhDR1FFISa4zg3Pq3+42NKIpYsWIFfHx8bhsYrlmzBnq9Ht27d1c03+7du2UFhhs2bMCTTz6paK6TJ08iMjISI0eOxPffm/cGMAWG27dvVxwY1tbWYvHixfD390dOTg5EUTQb4+/vj02bNiE5OZk65BFCyJ27CuBTAA/BGFYel3nfYAAFAPIAPGGXldnIrWElgP02n0PAB/IGijbo6K0E769yZn/Y4knqTG2JWq8dy7kYCDuElQzsjLOqLkNq3M6XFnRmYK/Yev470B1gr5++111xyyaP7KhfvPSxMQJ38uTg6Qzssi0WeDMO5PfPjnXYGaPkznDOm2UhByGENCQKKYk17q+qqvJ09CJsYffu3Rg9ejSioqJw+vRps+tdunTBvHnzsGHDBjzxhLLvdabA8Pnnn7d7YHj58mWkp6cjICAAK1euBOfmn8X9/f2Rl5dnk8AwLy8P/v7+mDNnDs6fN2/o+dBDD0Gv12P58uV49NFHFc1FCCHkeljZF8A/AJyUed8wAN/CGFY2eIXgnTCFlZ69a/oDwjgYO5jbwiZ1prZEalBl6MJnHVFFeTPGmN59SewRWz7TK3vmdrVeO1ZkGAJgA5it+quLH8qpomzdisU4oIryTxjn705YMcFmTXBMYSUXuM3DSs6kmzuRRoWa5xBCiEIUUhKrNPUu3ydOnJAVGBYWFmLKlCk2CQz9/f0bLDAMDAxESkpKvYFhdnY2li9fjkceeUTRXAcOHMCkSZOg0Wjwyy+/mF3v0KED4uPjkZ+fj+BgerlMCCE2dhFAGoA+MIaVVTLvGwbgOxjDSmWd3+yMJSaKan30es/eNU9dCyv3KHme3AYkIuPxSuaxgVoV2Hx7Pdw7S7tDrdeOZQKe5MAqhWHl704qwydSg74NndsJYK8qmMcG2E+nj5xfYY8nqzO1R730sTEGZycPG4WVBd5ZMUU2WRxpKANOnjx5n6MXQQghTRmFlMQqTXU7w6VLlyQrDE3nTiYnJ6N9+/aK5svLy8OQIUOQkpKCCxfMm10+/PDDWLp0qU0Cw4qKCowbN04yMNyyZQuGDRumaK5z584hISEBQUFBKCgoMLsuCALGjx+PoqIiREREoFWrVormI4QQclsXcCOsnAXgrMz7hgHYCWAdgP72WZptXA8r9TFPAcI4xtjuO32G3AYkFVM/HAHwx61bqY0wttQtK/qw1LDK0LQeShrseH6mLfXSaydBFJ+wNqzkjKXJqaJsw1pHA1zZByuFOMSUoQWJkg1vlJxZ6b048piXPjbGRTT0BWMLwHDJmudw8BRr10AcRjAYDM26wSghhNgbhZTEWkOOHj3q6uhF3ImbKwwtBYZ9+vRBTk4O9Ho9evXqpWiu8vJyjB07FhqNBkePHjW73rFjx+sVhk8/reyzzNmzZ5GQkIBnn30WO3bsMLtuCgyLi4sREREBZ2dnq+cynTv51FNPYcmSJTAYzHdL+fj4YNOmTVi0aBHuvfdeq+cihBByx84D+ABADxjDynMy7mEAngfwPYBcAP3stjobYGBcrY9e75EV7XOtsnKX3HvlNiDhotiQHb0tqRUNhnlSg3a+muEsMsPmCs3CXeWhuim5IblWb/tQZ88s89JrJ3Gwx+8wrDxnAPuX1KBrVZR/tXZ9NnLozJHzy6UGVU5J7dO5Z/tDZWG6hB2TF1m9vaXP0pmn1Fkx8S7M+Y7DSg5e6KWPLbR2buI4giA0yUIOQghpLCikJNZyEQTBz9GLkGvdunX1BoZ33303UlJSkJ+fj6CgIEXznD59GlqtFs8++yy+/fZbs+tOTk4ICwtDSUmJzQJDHx+fegPDwYMHIy8vD4sWLULnzp2tngsAioqKMHz4cMyZMwfV1dVm17t27Yq0tDSsXLkS7u7uiuYihBCiyK1hpZzmKwKAEACVMIaVysr77cwUVnrqY3yNYSUzP7vlJnIbkJSHLQgGuEM79DKwz72XzvxZapzz5RoNwHsC3B0MS9zaHNupNKz0yoop99JrJ4kGcZCssJKxtAFZ0ZJhuKvQOsrRVZRgfK6cKkqDE94C0IVxvNXOuXaf0rCyb2bk6T+FlWAXpe5xglOytfMRx+KcD29ODUYJIaShUUhJlGgybwrr6sw/kzo5OWHq1KnYtm0bpk6dCicnq3f2oLa2Fv/85z/h5+eHL774wmJnaz8/P2zatAlz587F3XffbfVcgHRg2K1bN6SlpWHFihVwc3NTNNehQ4eg0WgwceJE7N9v3mTV1dUVWq0WJSUlCAkJAWP0uYwQQhqJGhjDyocBvAPA/AeGOVNYuQ/GsLKv3VZnA6awUq2P8RUE4Vkw7LQ0Tm4DEsaFN227wjtmYAZInkW589UMZ8bYzD//6rWwsu3R75WGld5LZ1aYwkqAfQ7A/IMNY3/Ugf1T6lmV01PvETj+Zu1abOTQb4fPfyE1qFwz72Fm/PcfAMA5Ot8cVu4Meb+jtQswhZW1wuVHbh9WshJ3/T+oirLpeuDkyZP0tp4QQqxEISWxGmOsyTbPue+++5CXl4eUlBTcddddip5l2kb+7rvvoqbG/EimXr164bPPPkNubi769VO2i+7QoUMIDQ2tNzBs06YNtFottm3bhpCQEAtPkK+6uhopKSkICgpCXl6e2XXGGEaNGoWtW7dCq9WidevWiuYjhBBiN2cAJMIYVn4AY8MdKTdXVmZfu7dR88iMzldnaQcLgvAswL676ZKsBiSVGt3THHywHZcox+ceOTEHpQa1vnz+ZQb0sniRw80YVh6rLA1dMEPR+YpLZ1ao9THTBDBTWHl92wbjWCSnilI08EgOKOsKqJDI+ftyqigBp3hwbvbPyxRWurRpta8sTJewO2yh1R8eB2bOvh5WcoZ32a0vDxh7x9pnk8ahqTcYJYQQR6KQkijhdfr06a6OXoQ17r33Xjz66KOKnvHjjz/ipZdegkajwc8/m+/KateuHWbPno2CggI888wziuYyBYZDhw7F5s2bza7bMjAURRErVqyAv78/0tPTcfXqVbMxXl5eWLNmDTIyMtC9e3er5yKEENKgfoNx+3cvGMNKOWfkOQN4GcbKymwAD9lrcbbikRmdr9bH+AlcGAOw7+Q2IOGMzbb32iQYVMxJ1lmUEFic5NM47y0wlt65V4cKpWGlhz6mUq2PmSYI3BRW/i7WXkmXXGvI+x3h+CrKX5wuSVdRlk1b+BAYJt5uDAfvxDjecuKiTcJKryxt8uWr3O16WMnYdnVWdIG1zySNRpPZbUYIIY2N9ftbCQFYbW3tMABLHb2QhvTHH3/g448/xqeffora2lqz64wxPP/883j77bfRrVs3RXOJoohVq1YhOTkZv/32m8Ux3t7eSE5OxqBBgxTNBQDbt29HQkIC9u7da/F6ly5doNVqMWnSJAgCveMghJAm6jSMYWUqgBgAUQBcJO4xhZUTAWQBSALwq/2WqJxHdvRXAL6SM7YiVDeUc+7gs7bZMvesqANSo1pdPT8ZHL1lP/ZaWNmpZ/uZpaEL5v/+y/kseVWF5jwyY/cCmFY26b27vZa9KdlFvlWbVlEAV7ZlRSEONtdjRaL5G9dbMAOfDZhXUdbjHsbxlhN4VHlYaga/emWBnH8elgz6IvY3AMm7ps79l6uhtbLzgEhjMeTAgQOt+/bte8XRCyGEkKaGUgaiVIt5U3hrhaGlgLJ///5Yu3YtMjIyFAeU27Ztw/DhwxEVFWUxoOzSpQvmzZuH9evXKw4oT5w4gcjISIwfP95iQOns7Izp06ejsLAQU6ZMoYCSEEKah1MwhpV9ASwCcFnGPa0AvArgEIAMAMp+2DUWDPEOXoHBiXPJKsrckFwVA2ZKjbOEAb0ExtI79+ywV2llpZxAbmfI+x0Zw9+tncNGjqouVn8uNehaFeVLd/543h6cxzLn1gfKw1JTyia9Z3XIODBz9mm3bO2P1t5PGpU2rq6uTabBKCGENCaUNBClWkQHu23btiE4OPi2gWFaWhrWr1+Pxx57TNFcx48fR2RkJEJCQm4bGBYVFSkODC9dugSdTgdfX1+sXLkSnJs38QwODkZhYSGSk5PRvr1jG3MSQgixi2MwVlM+CmNYKaf6xxRWHgCQBuB+u63OzvZNTR3CAX/HroL9n5yAyr3N0cng6KNsLt7TGFa231cZmvragdcX2eVQaZc2rV4H5w6uDGTvyamiFEQ+y9JZlPL9OaysnJ56j/XPIs2BSqVqMYUchBBiSxRSEqW6/Prrr16OXoS93BwY7tu3z+y6i4sLIiIiUFRUpLiz9cWLF6HT6TB48GCsXLnS4pjg4GAUFRUhOTkZ7dq1s3ouzjnWrVuHIUOGQKfT4coV8++jffr0weeffw69Xo+ePXtaPRchhJAm4xfcCCs/BSBnS3AbAJEADsIYVnax2+rspE7EWw5egsGJ8/elBuWG5KpEQPosSvl6iIzrLlfXVtg6rNwxeVEHzvCarZ5npaPCxWrJI4kqQ9N6cM4n2WZKY1gpGnCgTLMg9eDL8++zzXNJU0PNcwghxDoUUhLFVCpVs/shLDcwLCgoQHx8vN0Dw759+2LZsmXQ6/Xo0aOH1XMBQFlZGcaMGYPw8HAcO3bM7Ppdd92FpKQk5OfnY+jQoYrmIoQQ0iQdARAO4zZwuWFlW9wIK98H0GTO1qtDXSKADY6anzOWK6eK0s316EvM+P+JrZnCysrK0NTXtoQlSp1PKqmzcMUFHF+CMavOvrQFzvCBnCpKzgzxMJ65asPJeTsGFnFJpdpXplmQWj7jwyYX3hPF+p86darJVpgTQoijUEhJFOOcN5vtDKbAMCAgoN7A0NPTE6tXr7ZJYFhaWorRo0cjPDwcv/5q3n/g5sAwMDBQ0VxVVVWIi4vDc889h++++87supOTE6ZMmYLi4mLMmDEDTk7UV4sQQlq4wzCGlabKSoOMe9oBeAPGqsz3ATi0aYocA/Rx29R67VgIGIqGDytFFcd8qUG5IbkqzvCGndfyoMi4rjNvrzis7LN05im1PmaGSiW6c/B0yDtCwJaOubZ3zpYaVBma1oMDNqqitOBaWIlaA4WVLQ+rq6t72tGLIISQpoZCSmIL/sePH2/j6EUotWfPHrzwwgsIDw/H8ePHza7ffffdSEpKwldffYWnnnpK0VymwHDkyJHYuXOn2XXTuZM7duzAjBkzoFKprJ6rtrYWixcvRkBAAHJyciCKotkYPz8/bNq0CfPmzcM999AxSoQQQv7kEIxhpReApbAurOxot9XZiDpTW6LWa8dyLgaiocJKxlZ46GMqpYb1a3tsIgMeaYglAeh+c1hZEpLqau2D3JfEHvHSx8YI3MmzIcNKzjGv70eRknOJguFNgLdqgCW1vTmsrAxLpwq7lqHZFHIQQkhDoZCS2IILHH7gvPWqqqoQGRmJkSNH4vvvvze7bgoMt2/fbrPA0N/fv97A0N/fH5s2bUJycjI6dOhg9VwAkJeXh4CAAMyZMwc1NTVm13v37o2MjAzk5uaiX79+iuZqCFVVVSgqKnL0MgghpKXaCyAUgDeAFQDMu62Zaw9jWPkTgEQAyn6wNQCv7Jnb1XrtWJFhCOwbVooCxwdSg3JDclXg/E07rqM+3UXGde3a8L3lmtTpSh7kkR31i5c+NgYCPDh4OgOT00neKhz41bWjc5bUuPKpugfBMcVe66hHWwYWIfLLe8s0C1L3TlnYtYHnJw1rREtoMEoIIbZEISWxlSb3pvDy5ctIT0+Hv79/vZ2t7RUYnj9/3uz6Qw89BL1ej+XLl+PRRx9VNNfBgwcxefJkaDQaHDlyxOx627ZtodVqsWXLFowaNUrRXA3h5mrQrVu3Ono5hBDS0lUCmIA7Cys7AXgbxrDyDRgb7jRq3lnaHWq9dqwoigEANoDJ+n3eiVVyqijd2x4LacAqSjMM6MYVdxQ3Umdqj3rpY2O4wD3tFVYyxmRVUTLOZjVQFaUlbRlYRJ2TOMBB85OGcX9VVZWnoxdBCCFNCR06R2ylSTXPOXnyJAICAiw2jgGMna3feecdmzSOOXDgAN5++20UFBRYvN6hQwe8/vrreOWVV9CqlbLPyufOnYNOp4Ner0ddnflZ9YIgYNy4cUhISMC9996raK6G8vXXXyMpKQmHDx+WGnqhAZZDCCHkhnIYw0ovAG8BGA9AqmqoM4zbv7UAdAAWAbhkxzUq5r105rcAxpaHzvfiTJjFGMaBS/4+b4+BiwZRsqM3T0wUyn/mcY4txWIXXVVOqbZ8ojpTexRATOmMRams9mqMAGE6B1fcsAfAyZoL0EsNKp2xqDuvrQu1wXxWY4zt9syK/sr4R4E0V9e6fJc7eh2EENJUUCUlsRX1sWPHujt6EXKdOXPGYkDZoUMHxMfH45tvvlEcUJ47dw4JCQkICgqyGFAKgoDx48ejqKgIERERigLKuro65OTkwM/PD0uWLLEYUA4cOBBr167FokWLmkRA+cMPP2DChAmYNm2anIASAL6085IIIYRYVgZjWOkL+X8X3wtjWHkYxspKWwRUdqXOnlnmpddOgig+wYFVSiorOcdq76UzK6TGVfzcYTwDPKydxxY4+Kd9MyNP2+PZ3osjj3npY2NcRENfMLYATFlgzRj7wHdFjOQzVLV1bziwihIAwDlLZmC2rs4ljUxzajBKCCENgUJKYjMqlarJdrBTqVQIDQ1FSUkJIiIi4OzsbPWzamtr/xQYGgzm/QV8fHywadMmmwSGxcXFGD58OOLi4vD777+bXe/atSvS0tKwbt06DBw4UNFcDeHs2bOYPXs2hg8fjuLiYrm3fQFjNQ4hhBDH2QFgFIDBkB9W3gdjWHkAQBSaUFjJwR63Kqxk4GDsPalhPDFRgP07et8WA7vsZBA+lBpXEpLqWvry/LbWztNn6cxT6qyYeBfmrCSsrKq+gEypQaUzFnXn4Bornm9Lezz1/2joTvLEMYYcPXrU6uZThBDS0lBISWymqb4p9PX1xcaNG/H+++8r7mxdVFQkKzBcuXIl3N3dFc31888/Izw8HBMmTMAPP/xgdt3V1RUREREoLCxESEgIGGvc53abqkEDAgKQlZVlsRrUgh9h/EI8CUCtXRdICCFErhIY/272B5Av857uAD4EsB/GsLK1fZZmO15ZMeVeeu0k0SAOAtjnAMy74Vm2xisrRnL7Z9mhjuPAuUPPs+Pgn7rnRJ+QGte+Df6uUgk/loXpEnaGvG91J/e+mZGn/xRWgl2Ue6/A2Tw5VZRCbd1MOPjfL8bYu1RF2WK4CILg5+hFEEJIU0EhJbGlEZzzRvnv1N133232az169MC///1vmwaGEydOxP79+82uu7q6QqvVYtu2bYoDwwsXLkCn02Ho0KFYt26dxTHBwcHYunUr4uPj0bat1YUNDaa4uBgjRoxAXFwczpw5I+eWcwBmwXgOGm3zJoSQxqkYwNMwhpUFMu/pgRth5atoAueney+dWaHWx0wTwExhpfkWChMGDlGcK/VMDs4EJs6y5TrvFAO7rDIIkmdRlr48vy0Hj+YcnRnHWy5tWu0rC9Ml7A5beJe1c5vCylrh8hX8A6AAACAASURBVCMyw8qqSy7Vn0k9tzIs/X4wx1ZRcqDSo1f1ekeugTS4JlnIQQghjtAoAyXSZHU+fvy4t6MXYYmfnx+CgoIAGDtbz5o1C1u3bsXIkSMVPbe6uhopKSn1BoaMMYwaNQpbt26FVquFi4v1u9hEUcSKFSvg6+sLnU6Hq1evmo1Rq9VYs2YN9Ho9undv/EeEHj58+Ho16L59++TcIgJYCuBRAB8AkOzeSQghxOGKAQyF8Yv6/2Te0xNABozbwJtEWOmhj6lU62OmCQKvN6xkHGvV2TPLpJ5VEaYbC0Btj3XKxSH+W04VpUpQvcqMZ4xeu493YhxvOXFRcVg5MHP2aXVWTPyVq2JfzvAuA6rrGbpg0KeJklWXIq7MAodjt94K7B2WmCi36pY0A4yxJtVglBBCHIlCSmJrjfKHsJOTE3JycvDdd9+htLQUkZGRaN3a+p0+psDQ398f6enpFgNDLy8vrFmzBhkZGYoDw127duGFF15AVFQUTp82P7u+S5cumDdvHjZs2IAnnnhC0VwN4eLFi9DpdAgMDKy3GtSCAgADAYQCOGWvtRFCCLGbzQCehDGs/E7mPb1gDCtNlZUqu6zMhjwyY/daDCsZuAj+gdT9HJyBC2/ae523w8AuO6taS1ZRbglLdOHg/6jn8j3GsJIfLA9LTSmb9J75thaZBn0R+5tXljb58lXuxhneBWN/mK5xsFNXWtcslnpGZVj6/QAPs3YNtsH2qntWy/7gQ5oNr9OnT3d19CIIIaQpoJCS2JQgCI16O8MDDzyANm3aKHrG9u3bMWLECFmB4eOPP65orhMnTiAyMhKjRo3Crl27zK47Oztj+vTpKCwsxJQpU6BSNe7vbpxzyWpQC44C0MBYhVNq1wUSQghpCJsBPAFjWPm9zHsegjGsLIPxZVXj/oGHG2ElROGxa2HlGi99rOTvtzxMNxrgXg2wxHqJEJf0++z141LjOqNDOID7bz+Ktwfnscy59QFbhZUXxcvXw0qBcZ2cKkoDvxTn8CpKjiSqomyRWG1t7TBHL4IQQpoCCimJTXHO/U+ePNn4D0G0gikwHD9+PCorK82u3xoYCoL1f7wuXbqE9PR0BAQEYOXKleDc/Gx107mTycnJaN++vdVzNZTdu3dfrwY9dUpWIeRFAO8AeARAtl0XRwghxBE2A3gcwAsAdsu8xx2AHsaXViEAGndXOADqpdH71PqYafsuPDhZaiwHZ4wzh3b0BnCllar1AqlBW8ISXQAeLf+xfw4rK6enWt2t8Mns2WdMYWX1BZYhNb58xoddGGPTrJ3PNthez4eq/+vYNRAHatSFHIQQ0lg0+vN9SJPTinMeAOArRy/EVi5duoR//vOfSE9Px+XLly2OCQ4ORlJSEnr27Kl4vry8PMTHx+PYsWMWr/fp0weJiYnXz9hs7E6ePIm5c+di1apVFsNWCziAlQBiAfxi18URQghxNA5gHYD1AEYCSAYg53xrDwC5AMqv3bPy2rMarQkrJtTfUOeavZrUUTAebeI4jH0mr4qy4yvgohVbWHl7cMSKBvbXMs0CfRuRv99n6UyrjnF5Mnu2rG57qP1/9u48Pqrq/v/4604SVsUVseKuoIBsIiqBhEWCFQRbK9IqEq3+TCstUaKoxQSM0CISFRQrlghBatWg/Wq0aoOIBtwXFhWRxSA7yBa2wCRzf38cUtBMmJvM3LmT5P18PHj0Ifeeez4Pi+TOe845n7J7wPJ0FaWFPU6rKOu1frZtW5alru4iIkejlZQScbZt14lvCm3bpqCggJ49e5KTkxM0oDz//PP55z//SV5eXtgB5dKlS/nVr35Fampq0IDyuOOOIzs7m3nz5tWKgLK0tJSpU6eSlJRU5WrQID7DdIG9HgWUIiL1SQATVl6M+Rmw3OG49piwchG1ZGXl0QSwPO3oDdZBXyDO2VmUdmBkWFPZ9jEW1vD9cXHLlqROenTpbY+3COt5VVh50yOngO9WN57tmMWydufs/renNYjXWqxfv97TYxxERGoDraQUN8Rk85zqWLJkCZmZmXz6afBz/Y8//nhGjhzJzTffTHx8eP8Zbd++nccee4yZM2dSXl55kUV8fDy//e1vuffeeznppJPCmitaCgsLeeCBB1i7dq3TIRswW7unYz6oiohI/RQA8oGXgd8A44FWDsZ1wISVHwF/xQSetcrSYTlXg93F4zKebTcrPeSXhM3t4261CZwWkRkPhZX4y29ekjppppUQ/3D76Xdujsizgf2WdTfY4R1IHiYbxmsVpcTFxfVD56uLiByVVlKKG9qtX7/+DK+LqInNmzczatQo+vfvHzSgjI+PZ+jQoSxYsIDbbrstrIDS7/czffp0unXrRm5ubtCAskePHrz99ttMnDixVgSUS5cu5de//jWpqalOA8qDwBSgDfAMCihFRMSoCCvbYZqnrXQ47nLgNWAhMNCd0twR7/N9ZWHNBPzeVGAdxGeHPItyxZ+nNAwQuNuFApoeCiuXLUmd9Kjpxh0+y2dtALZH4lk1rODb9mfvftm7+SVW1JXdZiIiblJIKW6pVR3sKgLD5ORkZs+eTSBQOSvr0aMH//3vf5k4cSInnljjs94Bs9KwZ8+eZGVlsXv37krXzz77bKZNm8ZLL71EmzZtwporGnbs2EFmZib9+/fn448/djrsdUw4mQ6UuFaciIjUZn5M87S2mLBytcNxiZiwcgEQ+2ekAG1m3lV8Ud7INJ8d39bGngociOb8FsxsPyMj5DeMpSX+31sQmVWUwTW1sIYH7NJvlqROevSboY/V4NzLwy6amfG4b9/uVj7byrCxanT2ZVhs+69aRSmHJG3YsMHTVb0iIrFOIaW4wrKsWvNNYWFhIcnJyVUGhuecc87/AsMLL7wwrLlWrlzJ0KFDSU1Npbi4uNL1Jk2akJGRwfz58xk4MPYXgDhZDRrEMuCXmBUuTj9siohI/VYRVrYB0oD1Dsd1B97BhJW9XKkswtrNSv+hQ97dI/HRzsaeamEF79oXWX5ffCDkKsqvB49tAIR3FqVzTS2s4eVxgeVf3fzo1HDCynb5Y/e0mzXyybh9JW18tpUBRGw7+VFZrFy2/4w5UZlLaoNGmLPXRUSkCgopxS0ptm3H9J+vlStXcuONN5KamsqaNWsqXW/atCkZGRm8++67YQeGu3btIjMzkz59+jBv3rxK1y3L4rrrruODDz4gIyODBg0ahDVfNBQVFZGSkkJWVhYlJY4WQm4H7sQ0OXjb1eJERKSuOog5HuRcTFgZsgv1Id2Bd4FC4FJ3Sous9jMy1nbIu3uk7bMvcjustCwrr23u3ZVfhn6mvPGxtwBnulVHFRratn1beXxg2ZKbc3KW3PC3E2r6oIqwMhAIVISVmyJYZyWWbY9z0tVd6pVas5BDRMQLMR0iSa128saNGy/2uohgdu7c+b/A8N1336103efzRSwwLCsrY/bs2fTo0YPc3FzKysoq3dO5c2dee+01pkyZwimnnFLjuaJl1apV3HTTTQwZMoTvvvvOyZAyzAfKC4DJgF7WRUQkXD8PKzc6HNcX+BgTVnZ1p7TIqggryxPi29nYU7HYH+Ep/HFYj4S66bPbpyVYFm6cRemMTWPLZmh5g0Z2uI/q+Nw9ew+FlW3dCyutVVvX7MmP/HOllqv1DUZFRNykkFLcFFM/hJ0EhhdffDGvvvoqU6ZMoXnz5mHNt2DBAq688kpGjRrFtm3bKl0/9dRTmTx5Mq+//jpdunjdzDO0Xbt2MX78ePr06cM777zjdNhcoDPmA+SPrhUnIiL11QFMWNkKs1rf6TbevsAnmLAy9n8IAx2nj1jXIe/ukY3LA62xrEkRCyst67k2M+8qDnVbgwO7vVhF+XOPd555185IPawirDzQcLdZWWk5DrtDsgmM7z1/bOWXTanv2q9bt+50r4sQEYlVCimDGDFiBMuXL/e6jLogZrYzfPfdd1xxxRWMGjWK7dsrN3hs2bIlTz/9dEQCw+LiYm6++Wauv/56li1bVul648aNycjIYOHChQwePBjLssKaz22BQID8/Hx69OjB1KlT8fsdNR1dAVyP+TPwlasFioiIwF7Mav3zgPtw3s25L/ApUID5Ui3mnf/cPVvazxw5upGV0CoCYaU/UF4+MdRNn90+LcHC590qSgDL2lVm+f7uxqMveWbsvnazRj7Z6NiECwK2Pdx2foxAVVZvW7PnxYgUJ3VOXFzcFV7XICISq+pzSFnlVpH333+flJQURo8ezc6dEfuytj5K3LJlyzFeFwHw9ddfs2LFikq/37hxY+6++26KiooYNGhQWHPs3r2bcePG0bNnT/773/9Wum5ZFoMGDeL9998nIyODxo0bhzVfNCxYsICUlBTS09ODrgYNYg/wIObcSW1xEhGRaNsLPAychQkrdzgYYwFXA59hwsqOrlUXQa1mjNjafubI0X7rgAkrsfZV9xkW1j87PnfP96HuSyjdnQr2WTWrNEJse7KTVZSLb3qkaU2naPXEiAMdZ909PW7f7vDCSsv+q1ZRSlVs246ZhRwiIrGmPoeUWzjK2XhlZWXMmDGDxMREZsyYEXRrsITUIBAI9PK6iKqkpKTw3nvvMXLkSBo1alTj59i2TX5+PklJSTz11FNBVxq2b9+eV155haeffpqWLVuGU3ZUFBcXk5aWVuVq0CACwHPA+cBYzPY7ERERr+zhp2Glk2+dfZiw8gvgJcxZyjHv4hl/MWGlr7R1NcPKcqsch2dRWveEWWZ4LGuX7T/4VKjbvrz5seN9vrjlS1MffXZp6sTzajpdu/yxB38WVjrtJg+w+sfiPf+q6dxSL1wZ6w1GRUS8Up//ctwBhHyB2LlzJ6NHjyYlJYWioqIolFW3BAKBmPymsG3btuTl5XH66eEdCfPpp59y1VVXkZ6ezpYtWypdb968OTk5Obz55ptcdtllYc0VDfv27SMnJ4fevXtTUFDgdNjHQCIwDOdngYmIiETDbkxYeR5mpf8uB2N8wGDgG0xY2cq16iKoIqw8cDDQyrYYZ0FJiCH/bDd75MpQz21YuucmC86OTJU1Y2M/0eH5+0Ouio0ncCfYzcG+EeIWL0199Nmvhz56fk3nPSKsvBCbW7GskKtOA7Y9QasoJYSTN27c2MnrIkREYlF9DikB/h/wNA66DS9fvpwhQ4Zwyy23UFxc7HphdUhMNc+pEO45kJs2bWLEiBH86le/YsmSJZWuJyQkcOutt1JUVMTvfvc7fL7Y/k+tYjVoYmIiOTk5HDjgaCHkOiAV6IYJKkVERGLVdsxK/4qwMlSAB4fDyq+BWZjdAjHvkn/d/WOHmRkPlR6029gW47CsYMFseZwV7+gsSnzWKBfKdMyCEg4efDLUfZ8NnnAcNn884rcSwL4xEGcvWpr66LPf3Dy5xmFzu/yxB9vPypjt21vSAZtbgdVV3PpD/H6tohRHYvIzkoiI12I7OXFfKfBHzPl5bzsZ8Pbbb9OzZ08yMzPZvXu3q8XVERdu2LDB606QEVNaWsrUqVNJSkpizpw52Hblo02TkpIoLCzkoYceolmzZh5UWT2LFi1i0KBBVa4GDWIf5gNea8yHtirPdxUREYkx2zgcVj4MjprOJAA3YVZWzgLOdau4SKoIK/cFSiuHlRb/ajszvfJh3T/T4OCeG7Htc1wtNATb5kknqygbNGmQDhwf5FIC2DeW22VLlqTmPL9sWE7rmtZSEVYeaHjMobDSWvWTWrH+2i5/7MGaPl/qD51LKSISXH0PKSssA34JDAJCbuPw+/3k5ubSrVs3pk+fTnl5yIWY9V2d+KawsLCQnj17Mn78ePbu3Vvp+nnnncdzzz3Hiy++SOvWNX7/jZqK1aADBgzg888/dzLExjTDaYv5gBdON1EREREv/Yg5q/Isqh9WLgOmAbF/yDRw2ay/bDsyrLSwtsUHeDjUuJcGvxRngadnUVpQ4kuwngh132eDJxxnWdwR4jafBb8ps1gcblh5yTNpfhNWNu1otoGzElgbt6/knzV9ptQvlmX1iJUGoyIisUQh5U8VABcCd2LOMDqq7du3k5WVRf/+/fn4Y+12rUpt/6Zw6dKl/PrXvyY1NZW1a9dWun7ccccxevRo5s2bxxVXXOFBhdVTsRo0OTm5ytWgQXwOJAPXA2tcLVBERCR6tmLCytbAFMwum1AaALdjtvxOA05zrboIqggrS/ZxXptZGd+Fur9tk7U3Ynu9xd1+ql3uyO2h7mrUpMGfse0THD70J2Hl4t8/XuMGSf8LKxsc0ynOir9KqyilGhqUl5cne12EiEisUUhZ2UFgMiasfAbTtfioQoVY9Z1lWSm2bcd5XUd17dixg8zMzCpDaJ/Px3XXXUdRURHDhw8nISHBgyqrp7CwkF69ejF+/Hj27NnjZMhGIA24DFjganEiIiLeWQekczisdHI488/Dyl+4Vl0EJeaPDLlq9KXBL8UFwNOzKLGsPQd9oc+i/OjGKc1siz/VYAafBb/xlZcvWpqa8++vfp/TsQbPAExY6WT7vMiRavtCDhERNyikrNoGDoczHzgZcGQAFGw7cD12wqZNm7p4XYRTfr+f6dOn061bN3Jzc4Nu5+/evTuFhYVMmTKFk08+2YMqq+err77i2muvJTU1lR9++MHJED/mQ1pFWK8zDUREpD5YiwkrL8D8/HPSpbkhJqxcgfmiu4Vr1UVJm8Zrf2d53NXctnnq4hl/2RrqvqYJZX+qxirKYHxAf7ucj5am5vz765sfU9dliZY6cSSWiEgkKaQM7TOgB2aba8h0Z//+/f9rrJKfn+90K22dZ9t2rfghXFRUREpKCllZWZSUVG78edpppzF58mTy8/Np06aNBxVWT8Vq0KuuuoqPPvrI6bDXgTaYD2lOup+KiIjUNWswX1a3wnlY2RQYAawCJgAnuladi14a/FKcbXGvx2XsLfOVTgl100c3TmmGbf85QnP6gP4BO/Dh0tScfy8altM5Qs8VqUrb9evXn+F1ESIisUQhpTNHNgx5EAfnFW3atIn09HSuvvpqp01J6rqY3s6watUqbrrpJoYMGcJ331U+pqlJkyZkZGSwcOFCBg8e7EGF1eNkNWgQ3wL9gYGYD1giIiL1XTEmrGyN850FTYF7MUHnBCCcVX5R1/nUTfE+m9kW1jbPirCsvztZRdkkoewOIh8G+4D+cT4+XJqa8+/Ftzx2cYSfL3KkmP6MJCISbQopq2cvpqtxa+A5JwO+/PJLrrnmGkaMGMGWLVvcrC3WJW7btq2Z10X83K5duxg/fjx9+vThnXfeqXTdsiwGDhzI+++/T0ZGBg0bNvSgyuopKiqiX79+Va4GDWI7pllUe+BNV4sTERGpnb7HhJXtMe+ATsLKY/hpWHm8a9VFUKsnRhy4aFbGw+WB8lY+28oANke5hL2NrPjHQ9309eCxx1h2jc6idMbGAvr77MAHS1Nz/r0kdVKtObpIag+fz6eQUkTkCAopa2YtMAzoAywJdXMgEGDOnDkkJiaSk5PDwYP1svFffGlpaS+vi6hQXl7OzJkzSUxMZOrUqfj9/kr3dOnShTfeeINp06Zx2mmx37hz9erVDBs2jCFDhrB8+XInQ8owq0IuxJyh5WQrm4iISH22DPMO2BETVoZssAgciwkrV2G+7D7OreIiqeNz9+xtN2vkk4FAoM2hsHJTNOa1bWtaqxkjQq6itJsccwfYzd0vyISVFtYHS1Jz3lx606OXuD6n1Bu2bafYtq3P5CIih+gvxPC8C3QGUoGQyyT37dtHTk4OvXr1oqCgwPXiYk0sfVP47bff8pe//IUdO3ZUutaiRQsmTpzIq6++SqdOsX92eklJCePHj6d3797MnTvX6bB3gIsxq0JCfhAQERGRn/iaw2FlPuZooFBOBMZwOKyMuR0mwRwRVrZ1P6y09jWOi3801F1fDx57DJaV7l4dwVnQhzh7wdLUnFfUYEci5KSNGzfqSAERkUMUUoYvAMzCdIF8GAi5TLK4uJi0tDSuv/56li1b5nZ9MSPWm+c0atSIu+66i4ULFzJ06FB8vtj+zyMQCJCfn0+PHj2qXA0axEpME6i+wFJXCxQREan7vsL8XO2E87DyJA6HlfcCjV2rLoIqwspGzRJaB2x7OBYbIz2Hjf2Mk1WUgSbH/sG2OTnS8ztiVlYOsLETPZlf6qKY/owkIhJNsZ3C1C47gfswZxW94WTAggULuPLKKxk1ahTbtnl3NnkUtd60adM5XhcRTEpKCvPnz+eee+6hSZMmXpcT0sKFC+nXrx/p6en8+OOPTobsxTR9ugjzIUpEREQiZwkmrOwGvO5wzMmYsyrXUIvCylZPjDjQcdbd0xsdm3BBwLaH27AhEs+1sErjy30hz6JcfNMjTW1zlraXNpfsZYbHNUjdETO7zUREvKaQMvK+A67G/LD5JtTNZWVlzJ49m6SkJKZPn05ZWd0+FjAQCHjyQzguLi7o77dr145XXnmFvLw8zjzzzChXVX0bNmxgxIgRDB48mG++CfnHC8yKjueA8zFbyw64WJ6IiEh99zEwEEjEeVjZHBNWfgekA43cKS2yKsLKuH27IxJW2nZgWtvZd4VcnRkf50uzzL8zz/hsa2Ji/sj9XtYgdUrili1bjvG6CBGRWKCQ0j1zMVt/7gR2hbp5586dZGVl0adPH+bNm+d6cR7yJKTs1KkTDRo0+N8/n3zyyUycOJG33nqLyy+/3IuSqqXiPNPu3bszZ84cp8M+wXxIGkaUDrsXERERAD7EhJU9MOdAO3E68DiHw8qG7pQWWe3yxx78WVi5vrrPsLBK4wJxj4W677PbxzYptxlZs0ojZvP+RiXPelyD1C0NAoFAL6+LEBGJBQop3eXHdE0+D5gClIcasHLlSoYOHUpqairFxcUul+eJvrZtB1/W6KIzzzyTF154gcGDB3P33XezYMEChg4dWuUKy1hh2zYFBQX07NmTnJwcDhxwtBByPaaZ0+XAR64WKCIiIkezEHMOdBKm4aITZ2DCyuXA7UC8O6VF1hFh5YXY3Iplfe90rE3gH05WUTY6eOztXq+iBCZd8szYfR7XIHWMV7vNRERijULK6NiG+Ua8K/C+kwGFhYX07NmTzMxMdu/e7WpxUXb85s2bu3ox8eWXX87kyZMZOXIkzZrFfkPNxYsXc80115CWlsb69Y4WJezDNG+6ENPMycnh/SIiIuK+BUAfTFj5nsMxZwHTgBXUsrCy/ayM2b69JR2wuRVYfbT7LazShLiGITt6v3vz2EZen0VpY2050HD3dC9rkDpLzXNERFBIGW1fAj2BQUDIb5f9fj+5ubkkJycze/ZsAoGA6wVGQ6x3+fba5s2bGTVqFAMGDOCzzz5zOux1oB2medMe14oTERGRcCwAemGOv/nU4ZizMWHld5iwMra3gRxSEVYeaHjMobDSWhXsvgCB3Auf/XPI8yxPto+9HZtfRL5S53yWnaNVlOKSCzdu3Hi210WIiHhNIaU3CjgcKIVcJlkRWvXv359PPvnE9eLcZtu2tjME4ff7mT59OklJSdUJpb8AkjHnXhW7WZ+IiIhEzFzgUkxY+bnDMedgwsqlmPOma0VYeckzaX4TVjbtaLaBs/KIywcaxDWcFOoZ7948thGWt2dRWhY/Wnu1ilLcY9t2X69rEBHxmkJK7+zHbM1tg+m+HHJr7pIlS/j1r39NWloa69atc7s+N12+ffv247wuIpYUFhaSnJxMVlYWe/Y4Wgi5DbPl6VKgyNXiRERExC1zMccBDcJ88ehEGyAPWIwJK2vF+/z/wsoGx3TC5lYbVmBZzzpZRXlKoNltXq+itCCnXf5Y7VYR12ghh4hILXmpqePWY14wL8N0gjyqnzdSKS0tdb1AF8SXlpb29rqIWLBixQpuuOEGUlNTWbNmjZMhfkwTpvMwTZlCNmMSERGRmGZjdtlcggkrFzkc147DYeVgwHKlugirCCu3rdndKcHnzwx1/7s3j21UbtkZ0aitKhbWtjhf2T+8rEHqPsuyUrxoMCoiEksUUsaOT4HumK7Mm0LdvH//fnJycujevTv5+fnYdu3qkVLfvyncuXMnmZmZ9OnTh/nz5zsdNhfohGnCtMut2kRERMQTFWFlF+B6THdvJy4CXsKEm7UmrOw9f2zZhc/eG/LYo+Y0+70Fp0WjpqrY2I86qVUkTCds2rSpi9dFiIh4SSFlbLExXZnPBx4EQi6T3LhxI+np6Vx33XV8/fXXbtcXMT6fr142z/H7/cyePZsePXqQm5tLebmjhZDLgQGYc6u+cbVAERER8VoAyAfaYsLK7xyO64AJKz/EnFVd663485SGAdu+28saLKxtCXFl07ysQeoPNRgVkfpOIWVs2guMBdpjXlJD+vDDD7nyyisZMWIEW7dudbO2iLBt+/zNmzef63Ud0VRUVES/fv0YNWoU27dvdzJkB6a5UgfgP64WJyIiIrGmIqxsgwkrVx799v+5DHgN+IBaHlaW7i67xYKWXtZgWzymVZQSRfV6t5mIiELK2LYS81J6BbAk1M2BQIA5c+aQmJhITk4OBw8edL3AcJSXl9eLbwq///57UlNTGTJkCMuXO9q5FcA0U7oA01wptv+PFBERETcdubIyFVjlcFw3TFi5APMuWev4AtYasDzbRWJhbUvw+Z/2an6plxK3bdvWzOsiRES8opCydpiHOZ8oDQi5THLv3r3k5OTQu3dvCgoKXC8uDHX6m8KSkhLGjx9P7969KSwsdDpsHtAZ00wp9pfEioiISLT4MccCtcG8E65zOK475lzrBUCtalzYbtZdb16Ud9fF4LvWsqwvo16AbU/WKkqJsvjS0tJeXhchIuIVhZS1RxnwDNVYXff999+TlpbGkCFD+Pbbb92uryb62rad4HURkRYIBMjPzycpKYmpU6c6XdG6imqsmhUREZF6y495JzwPE1ZucDiuO+bL0AVAT3dKizwLy26fd9cbUHAGKQAAIABJREFU7Wbe1Q181wJfRGnqnX6fT2dRStT5fL46vZBDRORoFFLWPtU+p7CoqIgrr7yyOmchRkuzDRs2dPW6iEiqOBs0PT3d6dmgezFNki7C4fmjIiIiIpgvrJ8BzsGElRsdjusOzAcKgVrzHlYRVl6UNzLRhJXW5y5P+XjnmXftdHkOkUrUPEdE6jOFlLXXkR2fl4W6+ciu0tOnT3faVToa6sQP4Y0bNzJixIjqdFm3MedOno9pkhSyk7uIiIhIEBVh5fnAncAmh+P6Ap9gwsou7pQWeRVhZfu8kYk+n+8qLD6L/CTWrjLL9/eIP1fEmdabNm06x+siRES8oJCy9psLdMS8lO4KdfPOnTvJysqiT58+zJ8/3+3aQrIsq1ZvZ9i/fz85OTl0796dOXPmYNu2k2GfYlYxDMP5BwkRERGRo9kHTOZwWLnZ4bi+mHeTAuBid0pzR7sZd81rPzOju8/nuwqsTyP2YNuerFWU4qVAIFCrPyOJiNSUQsq6wY95KT0PmAKEXCa5YsUKbrjhBlJTU1mzZo3b9R3NZWvWrDnBywJqwrZtCgoK6NmzJzk5OZSWOloIuR7TlfMy4ENXCxQREZH6ai+Hw8r7MEcFhWIBVwOfYcLKTq5V54J2M+6a1z5vZA+fz3eVZVaH1pxl7bL9B5+KUGkiNaWQUkTqJYWUdcs2IB24FChyMqCwsJDk5GQyMzPZvduT5oVxCQkJtarT5JIlS/jVr35FWloa69Y5aqy5H9PsqA2mK6ej5ZYiIiIiYdiDef84CxNWOlkZWBFWfg68hGnYWGu0m3HXvIvyMpJ8Pt9VlmV9XJNn2NhPdHj+fifBroib+tq2Hed1ESIi0aaQsm76AkgGBgHFoW72+/3k5uaSnJzM7NmzCQQCbtf3c7Xim8LNmzczatQo+vfvz6efOt5R9DrQDvPhwJMUWEREROq13Ziw8jxMs76QxwNhPiMMBr7BhJWtXavOBe1m3DXvopkjk8so72PDe07HWVDCwYNPulmbiEPHb968udY0thIRiRSFlHVbAYcDsj2hbq4I4QYMGMBnn0X+DPKj+GU0J6suv9/P9OnTqxvifgn0BAYC37taoIiIiEho2zHN+irCyhIHYyrCymWYsPJ8t4pzQ+e8UQs75GX0K6O8D6aj+VHZNk9qFaXECnX5FpH6SCFl3bcP8+35hZhu0iG3Gi9evJhrrrmGtLQ01q9f73Z9AGevXbs2Jl96K7bDZ2VlOd0Ovw1zWH1X4H1XixMRERGpvm0cDisfxrwrhnLkyspZh8bWGp3zRi1sn5dxZRnlfbB4N9g9FpT4Eqwnol2bSFVs264Vu81ERCJJIWX9sR7TTfpy4KNQN1c0hklOTiYnJ4cDBw64Wlx8fHxMfVO4cuVKbrzxxuo0FvJjmhadhzmsPmTzIhEREREP/YjZbXM2Jqzc72BMAnATZmXlNOB0t4pzQ+e8UQvbz8z45aGVlf/56VX7qXa5I7d7UphIcJdv3779OK+LEBGJJoWU9c8nQHdMl+lNoW7ev38/OTk5dO/enfz8fNeKipVvCnfu3ElmZiZ9+vTh3XeDftEezFygM6ZpkZNznkRERERixVZ+GlaWOhiTANwOrMKElae5VZwbDq2s/PX/wkrL2nPQp7MoJebEl5aW1qoGoyIi4VJIWT8FMFt1zsecSRRymeSGDRtIT0/nuuuu45tvvnGjpits205w48FOlJWVMXv2bHr06EFubi5lZWVOhn2H6YCZAnztaoEiIiIi7tqCCStbY3aHONlG0wATVn6PCSt/4Vp1LqgIKwPx8R0vnvGXrV7XI/JzsbKQQ0QkWhRS1m97MWcSXQQ4Wib5wQcf0K9fP0aMGMGPP/4YyVqO3bhx42WRfKBTCxYsoF+/fowaNYrt2x3t8tmJeYlvD7zhanEiIiIi0bUWszukJmHlSsyxN6e6Vp0LOk4fsc7rGkSC8fl8MXUkloiI2xRSCpgXyuuBvsDSUDcHAgHmzJlDjx49mDp1Kn6/P1J1RPWH8Pfff09aWhrXX3893377rZMhAUzzoQsw26EOulmfiIiIiId+wISVFwDPAE62mTQBRnA4rGzhWnUi9YBt2+dv3rz5XK/rEBGJFoWUcqR3gIuBNMz5REdVUlLC+PHj6d27N4WFhZGYPyoh5d69e8nJyaF3794UFBQ4HfYu5t/NMMx2KBEREZH6YA3m3bA1Jqx00hywKYfDygnACa5VJ1LHlZeXazWliNQbCinl58owL6AXYrb4hPzWfPXq1aSmpjJkyBCWL18eztyXrF279sRwHnA0gUCA/Px8EhMTycnJ4eBBRwsh12KaDPUBFrtVm4iIiEiM+x4TVrbH7CxxElYeA9yLCTonAMe7Vp1I3aVzKUWk3lBIKVXZjtni0x5408mAoqIi+vXrR2ZmJiUlJTWZMy4+Pv6KmgwM5YsvvuCaa64hPT2drVsdnYu+F9NUqDWmyZCIiIiIwDLMzpIOmLAy4GDMsZiwchXmPPTj3CpOpA7q62WDURGRaFJIKaF8C/QHBmFeLI/K7/eTm5tLt27dmD59OuXlTr5kPyzSHew2btzIiBEjGDhwIJ9//rmjEjBNhNpiXqJLI1mPiIiISB3xDSas7Ih5d7IdjDkRGMPhsLKZW8WJ1CHNNmzY0NXrIkREokEhpThVALQB7gRCLpPcsWMHWVlZXHXVVXz00UfVmSciZ67s37+fqVOnkpyczJw5c7BtJ+/NfAb0wDQR+iESdYiIiIjUcV9h3p2qE1aexOGw8l5Mwx0RqZrOpRSRekEhpVSHH9Op8ULMuZUht/d89dVXXHvttaSmpvLDD45yv7MuvPDCBuEUWVhYSM+ePRk/fjx79+51MmQD5oyly4APwplbREREpJ5aigkrO2PCSidOxpxVWYwJKxu7UplILefz+RRSiki9oJBSamIjJtS7FFjgZEBhYSG9evVi/Pjx7Nmz56j3XnHFFTX6Nn3p0qX86le/IjU1lXXr1jkZchDTHMhx6CoiIiIiR7UYE1Z2A153OKY5Pw0rG7lSmUgtZdv2pW42GBURiRUKKSUcnwPJmBfRNaFuLi0tZerUqSQlJZGfn1/lFuykpKRqhZTbt28nMzOT/v3788knnzgd9jomnEwHdldnPhEREREJ6SNgINAdeMfhmFMwYeV3mHe0hu6UJlLrxMXFxfX2uggREbcppJRwHdlo5kFgf6gBmzdvJj09nQEDBgRtZnPppZc2btAg9I5vv9/P9OnT6datG7m5uU6b9CwDfol5af7eyQARERERqbEPgL5AEvCuwzFnAI+jsFLkSBFtMCoiEosUUkqk7MN0aWwNPIeDQ9MXLVrEoEGDSEtLY8OGDf/7/UaNGvm6dOly1LEV505mZWWxe7ejhZDbMU1/2gNvOxkgIiIiIhGzAOiDCSvfczjmTExYuRy4HYh3pzSRWuFKrwsQEXGbQkqJtHXAMMw5RB+Hutm2bQoKCkhOTiYnJ4cDBw4AkJycHPT+VatWMXToUFJTUykuLnZSjx9z3uQFmKY/jpZbioiIiIgrFgC9MKvCnJ7TcxYwDbOy8nYgzpXKRGLb2WvXrm3ldREiIm5SSClu+RhIBFKBzaFu3rdvHzk5OXTv3p38/Hx69uxZ6Z4ZM2bQu3dv5s2b57SGNzErJ9OAHx1XLiIiIiJumwtchgkrP3M45hxMWLkU86W4wkqpV+Lj49Xluw7bvn271yWIeE4hpbgpAMwCzsecV3kg1IANGzaQnp7OuHHjOP74439y7ZtvvqGsrMzJvCswZ072x2wPEhEREZHYNBfoigkrv3A4pg2QByzBhJX6TCP1gm3bOpeyDtq5cyejR48mLS3N61JEPKcf6BINezDnVbbHNNkJ6YMPPmDXrl3VnWcncN+heV6v7mARERER8cxc4BJgELDI4Zi2mLByMTAYsNwpTSRm9LFtO8HrIiQyysrKmDFjBomJicyYMaPSgpwzzjjDo8pEvKOQUqJpBXA9ZoXjt6Futu2QvXcqlGPOnWwNPIyDFZsiIiIiEnNsoADognlnDPm+eMhFwEsorJS679iNGzde7nUREr6ioiJSUlIYPXo0O3furHS9ZcuWTJgwwYPKRLylkFK88CbQARiJWf0Yjvcw37qnAVvDfJaIiIiIeC+A2X3TDhNWfudwXHtMWPklJqwUqYu05bsWKy4uJi0tjSFDhrB8eeWTyRo1asTw4cOZP38+nTp18qBCEW8ppBSv+IHHMKsfp1H9rtvFmJfPXjjfEiQiIiIitUdFWNkGE1aucDiuIyas/BBzTrlIXaLmObVQRaPY3r17U1BQEPSelJQU3nvvPUaPHk3Tpk2jXKFIbFBIKV7bCvwBs61nvoP79wIPYF5W57hXloiIiIjEiCNXVqYCqxyOuxx4DVgIXOFOaSJRd8natWtP9LoIcca2bfLz80lMTCQnJ4cDByqfTHbRRRfxyiuvkJeXp3Mopd5TSCmxYjHQG7M68scq7vkXcAEwHiiNUl0iIiIiEhv8wCzMl9WpwGqH4xIxjXkWYN43RWqzuPj4eIXutcCiRYsYNGgQ6enpbNmypdL1E044gezsbN58800uv1xHjYqAQkqJPXOAMzDfeldsAd+O2eJzA7Deo7pEREREJDYcGVam4fz9sDswDxNW9nSnNBH32batcylj2KZNmxgxYgQDBgzg888/r3Q9ISGBW2+9lQ8//JDbbruNuLg4D6oUiU3xXhcgEkQpcI3XRYiIiIhITDsIPAPMBG4GxgCnORjXHXPM0FxgNPCJK9WJuEfnUsag0tJScnNzmTx5Mnv27Al6T1JSEg899BCtW7eOcnUitYNWUoqIiIiISG1WEVa2Au4ENjkc1xf4GCgELnGnNBFXnLV+/foLvC5CDissLKRnz56MHz8+aEB53nnnMWvWLF588UUFlCJHoZBSRERERETqgn3AZOB8TFi52eG4vsCnmLDyYndKE4k4raaMAV999RXXXnstqamprF27ttL14447jtGjRzNv3jz69u3rQYUitYtCShERERERqUv2cjisvA/Y4XBcX+AzoADo5E5pIpHh8/l0LqWHduzYQWZmJldddRUfffRRpes+n4/rrruOoqIihg8fTkJCggdVitQ+CilFRERERKQu2gM8DJyJCSt3OhhjAVcDnwMvARe6Vp1IGGzb7rNixYqGXtdR3/j9fqZPn063bt3Izc2lvLy80j3du3ensLCQKVOmcPLJJ3tQpUjtpZBSRERERETqsp+HlbscjPEBg4GvMWGlDpGTWNP0mGOOudzrIuqToqIiUlJSyMrKoqSkpNL10047jcmTJ5Ofn0+bNm08qFCk9lNIKSIiIiIi9cFuTFh5HvAgUDllqKwirFyGCStbuVadSDXZtq0t31GwevVqhg0bxpAhQ/juu+8qXW/SpAkZGRksXLiQwYMHe1Bh7bB48WKef/75oGd3ilRQSCkiIiIiIvXJNmAsJqx8GNNwJ5QjV1bOOjRWxGtqnuOiXbt2MX78eHr37s3cuXMrXbcsi4EDB/Lee++RkZFBw4bafR/M+vXr+cMf/kD//v25++676du3L8XFxV6XJTFKIaWIiIiIiNRHP2K2f5+NCSv3OxiTANyEWVk5CzjXreJEHOiycePG5l4XUdeUlZWRl5dHYmIiU6dOxe/3V7qnS5cuvP7660ybNo2WLVt6UGXs279/P5MmTSIpKYnXXnsN27YB2L17N2+++abH1UmsUkgpIiIiIiL12VZ+GlaWOhhzZFg5DVBKIV7wBQKBPl4XUdesWLGC+++/nx07dlS61qJFCyZOnMirr75K586dPaiudigsLKRXr148+uijlJZW/iv1wIEDHlQltYFCShEREREREdiCCStbAVNwFlY2AG4HVmPCytNcq04kCMuydC5lFDRq1Ig777yThQsXMnToUHw+RSnBLF68mGuuuYbU1FSdPSk1ov+yREREREREDlsHpAMXYMJKJ0t+KsLKFcBk4FTXqhP5qSu9LqCuS0lJYf78+YwaNYomTZp4XU5M2r59O5mZmVx99dV8+umnXpcjtZhCShERERERkcp+4HBY+QxQ5mBME2AEsBITVrZwrToR4/QNGza08bqI2qyqVZHt2rXj5ZdfJi8vjzPPPDPKVdUOBw8e5KmnnuLyyy8nNzeX8vLySvckJyfTqVMnD6qT2kghpYiIiIiISNXWAGmYbeBOw8qmHA4rJwAnuFadiLp8h6Vz584/6cx90kknMXHiRN566y26devmYWWxraioiJSUFMaNG8eePXsqXT/77LOZNm0aL7zwAqedppMwxJl4rwsQERERERGpBYoxYeXDwL3ArUBciDHHHLp3ODAVE1judK9EqadSMCt3pQZatmzJSy+9xD//+U/OPPNMbrvtNpo1a+Z1WTFr1apVjB07lnfeeSfo9SZNmvDHP/6RP/3pTz8Jf0WcUEgpIiIiIiLi3GpMWDkZ02jnBpyHlXcATwF/A3a5WKPUL71WrFjRsFWrVmqZXENdu3ala9euXpcR03bt2sWkSZPIy8ujrKzygnLLsvjNb37DAw88wCmnnOJBhVIXaLu3iIiIiIhI9X0DDAM6AvmA7WDMsZiwchUwFtByLYmEpsccc0yi10VI3VRWVsbs2bPp0aMHubm5QQPKTp068dprrzFlyhQFlBIWhZQiIiIiIiI19zVwPdULK08CxmDCynsxDXdEasy27RSva5C6Z8GCBVx55ZWMGjWKbdu2Vbp+6qmnMnnyZN544w26dOniQYVS1yikFBERERERCd9STFjZCedh5cmYcyqLMWFlY7eKkzpPzXMkYoqLi0lLS+P6669n2bJlla43atSI4cOHU1RUxODBg7Esy4MqpS5SSCkiIiIiIhI5SzBhZSLwusMxzflpWNnIlcqkLuu8adMm7bOVsOzbt4+cnBx69+5NQUFB0HtSUlJ47733GD16NE2bNo1yhVLXKaQUERERERGJvI+AgUB3nIeVp2DCyhVAOgorxTlfeXn5FV4XIbWTbdvk5+eTmJhITk4OBw5U7sF00UUX8e9//5u8vDzOOOMMD6qU+kAhpYiIiIiIiHs+wISVScA8h2NOBx4HlmPCyobulCZ1ic/n07mUUm2LFi1i0KBBpKens2XLlkrXTzjhBLKzs3nzzTe57LLLPKhQ6hOFlCIiIiIiIu5bAFyBCSvnOxxzJofDytuBeFcqkzrBtu1+tm3rcEBxZMOGDdxxxx0MGDCAzz//vNL1hIQE/vjHP/LRRx9x2223ERcX50GVUt8opBQREREREYmeBUBvIAX4xOGYs4BpmG3gCiulKi03bdrU1usiJLaVlpby6KOPkpSUxP/93/9h25V7fKWkpDB//nwyMzM59thjw5rvtdde49NPPw3rGVJ/KKQUERERERGJvrnAZZiw8jOHY87GhJUVKyu1tEl+wrZtdfmWoGzb5rXXXiMpKYlJkyaxf//+Sve0bt2af/3rX+Tl5XHOOeeENd9XX33Ftddeyx/+8Ae2bt36k2sNGjQI69lSdymkFBERERER8c5coCsmrKy85zK4czFh5RJgGNELK1OBAVGaS2pG51JKJUuXLv1fYLh+/fpK14877jgeeugh5s6dS8+ePcOa68cff+See+7hl7/8JR999FGl640bN6ZfP2XpEpy2CUisagm0x5zDcxJw3KHf3wmUAD9gXsp+8KQ6EREREZHIqggrrwYeBDo7GNMWyANGHRozB6i8dzMy2gIzgQAmrJzt0jwSnl5r165tfMYZZ1ReJif1ztatW3n44Yd54YUXCAQCla7HxcUxdOhQRo0axQknnBDWXH6/n9zcXB5//HFKSkqC3tO9e3fGjRvH+eefH9ZcUncppJRY4QOuBH4D9Ad+4XDcNuBt4FXgP8AeV6oTEREREXGfDRQAb2BWLD4EdHQwrh3wErD00Bg3wsq9h/7XB8wAdh2qVWJLY8uyEoF3vC5EvOP3+8nLy2PSpElHDQyzs7Np06ZN2PMVFRWRlZXF8uXLg14/7bTTuPfeexk8eHDYc0ndppBSvBYP/B64H3PGTnWdBNxw6NdO4BngCWBdhOoTEREREYm2AIfDyt9ggscLHIxrjwkrlwDjgPwI1rThUF0+zDv8i8BVwHsRnEMiIC4uLgWFlPVWUVERmZmZfPfdd0GvRzIwXL16NWPHjmXu3LlBrzdu3Jg77riDP/3pTzRs2DDs+aTu05mU4qUOmEPCp1GzgPLnjsdsdcmMwLNERERERLwWwASNbYHrMd29neiACSs/BAZGqBY/UHrEPzcGXgO6ROj5EiG2bV/pdQ0SfatXr2bYsGEMGTIkaEDZpEkTMjIyWLhwYdgBZUlJCePHj6d3795BA0rLshg4cCDvv/8+GRkZCijFMYWU4pXfAZ/gbPuKiIiIiEh9VhFWtsOcB7nS4bjLMUHiQiITVh742T83A97E2SpPiZ6OW7dudXp8ltRyu3btchQYvvfee2EHhoFAgPz8fHr06MHUqVPx+/2V7unYsSOvvvoq06ZNo2XLljWeS+onhZTihT8A/wT0dYqIiIiIiHN+YBZmZWUqsNrhuERMWLkA6BPG/I2D/F5zTNOfs8N4rkSW5ff7r/C6CHFXRWCYlJRUZWDYqVOniAWGH3zwAf369SM9PZ0ff/yx0vUWLVowceJE3njjDS655JKw5pL6S2dSSrT9BpgKWNUYsw9YC/yICdZPwjTWOTbi1YmIiIiIxL6KsPIF4GYgC3CSQHTHnFW4EHgAmF+NORsAjaq4djrwFpAEbK3GM8U9KagDe521cOFCsrKyWLZsWdDrLVq0ICMjgxtuuAGfL7y1aRs2bGDChAnMmTMn6PWEhASGDRvGvffeyzHHHBPWXCIKKSWazgFycbaCN4D5ofocUETlrSU+zDfIyZimOd0jV6aIiIiISK1wENM4ciYmrBwDnOZgXHfgXcwKyNGYY5hCOSPE9QsOPa8XsMPB88Rd/WzbtizLinSXd/FQNAPD/fv389RTT/Hkk09y4MDPP44bKSkpZGdnc9ZZZ4U1l0gFbfeWaJoCHOfgvm+BzpgtLHOpHFCCCTG/Ap4Cehy6/8XIlCkiIiIiUqtUhJXnAmnARofj+gIfA4VAqP2ZTs6d7AD8m+DbwiW6Tl23bl17r4uQyNi3bx85OTl07969yoAyJSWFoqIiHnroobACStu2KSgoIDk5mZycnKABZatWrXj++efJy8tTQCkRpZBSoiUJuNrBfZ9hQscl1Xz+IuC3mDN2gq95FxERERGp2w5gwspWwJ3AZofj+gKfYsLKqrp1Jzl8Vk9MZ/EEh/eLS+Lj4/t5XYOEpyIw7NmzZ5WBYbt27Xj55ZfJy8vjzDPPDGu+xYsXc80115CWlsb69esrXT/++OPJzs5m3rx59OrVK6y5RIJRSCnRcqeDe3ZgzqzcFsY87wKPhzFeRERERKS22wtMBs4D7gO2OxxXEVYWYHYqHSm5GvNfjdmCrs+bHrJtO8XrGqTmFi1a5CgwfOutt+jWrVtYc23evJlRo0YxYMAAPvvss0rXExISGDp0KAsWLOC2224jLi4urPlEqqIzKSUajgMGOLjvPuAHl2sREREREakv9gIPYxpXDgfuBU4IMcbChIz9gf9gGuysIPR28J+7AROO/rma4yRykteuXdv4jDPO2O91IeLc5s2bycnJ4fnnnycQCFS6XnHu5D333EOzZs3Cmsvv95OXl8fEiRPZs2dP0HuSkpLIzs7mggucnPggEh59syXRcCXQMMQ9WzEdCkVEREREJLL2YMLKszALA3Y6GOPDhJVfYHYrNajBvH8CHqzBOImMRnFxcU636YvH/H4/06dPJykpidmzZwcNKJOSkvjvf//LQw89FHZAWVhYSHJyMllZWUEDynPOOYdp06bx4osvhh1QLlu2jGHDhtGhQwceeOABysvLw3qe1F1aSSnRcLmDe14ASt0uRERERESkHtuNCSv/AYzAHMkUqrGlD7g0jDmzgBIgJ4xnSA0d2vL9X6/rkKMrLCwkMzOTH34IvrHw3HPPZcyYMaSkhL+Df8WKFYwZM4b58+cHvd6sWTP+/Oc/8//+3/+jQYOafDdx2I4dO5g4cSKzZ8/+XzD57LPP0rVrV6655pqwni11k0JKiYYODu5Z6HoVIiIiIiICZhv2WOAJzHbsu4DwlmUd3SOY1Zu5Ls4hQfh8vn7APV7XIcFFMzDcuXMnOTk5zJw5M+hKRp/Px7XXXktmZibNmzcPay6/38+sWbOYNGkSu3btqnS9uLg4rOdL3aWQUqLhLAf3fO56FSIiIiIicqRtmLDySeBuzOrKxi7MYwFPAz8Cr7rwfKmCbdvtt27d+ovmzZtv9LoWOcxpYJiVlcXJJ58c1lx+v58XX3yRCRMmsH178B5a3bp1Izs7m3bt2oU1F8D8+fMZM2YMK1asqPIe27bDnkfqJoWUEg1O/lbd4noVIiIiIiISzI+YsypzgAzcCSvjMUc89ceccSnRYZWVlaWg8/9jQkWjmkmTJlFSUhL0nsTERLKzs2nbtm3Y8xUVFTFmzBi+/fbboNd/8YtfcN9993HddddhWVZYc33//fdMmDCBgoKCsJ4j9ZtCSomGUC845ZjDvEVERERExDtbMWHlk4f+9w7MKshIaYRZSdkH+CyCz5WjOHQupUJKjxUVFZGVlcXy5cuDXo9mYNi4cWPuuOMOhg8fTqNGjcKaq6SkhMmTJzN9+nT8fn+l65Zl0bRp0yq7h4scSd29JRpCreX2oT+LIiIiIiKxYh2wi8gGlBWOBd4E2rjwbAkuxbZtN/6/FAdWr15NamoqQ4YMCRpQNm7cmIyMDD744AMGDx4cVkBZUlLC+PHj6d27d9CA0rIsBg4cyHvvvUdGRkZYAWUgECA/P5+kpCT+/ve/Bw0o27dvzyuvvEJycnKN55H6RSspJRr2Yr41rYqF6Sq4LTrliIiIiIjIUQxv5162AAAgAElEQVTErKR0y8mYjtM9gDUuziNGi/Xr13cEFnldSH1SUlLCE088wT/+8Q8OHjxY6bplWVx99dVkZWXRsmXLsOYKBAK8/PLLjBs3jq1btwa9p0OHDmRnZ3PppZeGNRfAl19+SVZWFp9/Hry1xIknnsidd97JLbfcQlxcHP/4xz/CnlPqB4WUEg2bgJNC3HMaCilFRERERLzWFXge93c6nQ7MBZIwnxfERZZl9UMhZVQ4CQw7duxIdnY2Xbt2DXu+Dz/8kKysLL7++uug11u0aEFGRgY33HADPl94/1lv2rSJv/71r7z88stBm98kJCQwbNgwRo0axbHHHhvWXFI/KaSUaCgGQrUJuwxY6n4pIiIiIiJShcuA/wDHRGm+8w/N1xuzvVxcYllWCjDR6zrqug8//JDMzEy++eaboNcjGRhu3LiRv/3tb1EJDPfv38+zzz7L448/zt69e4Pek5SUxLhx42jVqlVYc0n9ppBSouELYECIe3oB090vRUREREREghiIWUEZrYCyQmegALgS2B/lueuTpE2bNjU99dRTgydMEpZoB4ZPPfUUU6dOpbS0NOg9KSkpZGdnc9ZZZ4U1F0BhYSEPPPAAa9euDXr9vPPOY+zYsVxxxRVhzyWikFKiYaGDe34D3IXpKCgiIiIiItGRAGQCo/GumWUSkA/8GqjcfUMioWEgEEgC3vK6kLqkIjB88sknOXDgQNB7IhUY2rbN66+/zkMPPcS6deuC3nP++efz4IMP0rt377DmAli6dClZWVl8/PHHQa8fd9xxZGRkcPPNNxMfr2hJIkN/kiQa3gV2Ascf5Z5GwEjg/qhUJCIiIiIiXYFpmNWMXhsAzARuAgLellJnpaCQMiKcBIatWrVi7NixEQkMlyxZQmZmJp9++mnQ68cffzwjR46MSGC4fft2HnvsMWbOnEl5eXml6/Hx8fz2t7/l3nvv5aSTQrWeEKkehZQSDQcxW0fuCHHf3cDrOFt5eTTxQFmYzxARERERqauaAE8DQwHL41qOdANmccNwrwupo/p5XUBd4DQwrOhsHY7NmzeTk5PD888/TyBQObuvCAzvu+8+TjzxxLDm8vv95OXl8cgjj7B79+6g9/To0YMHH3yQNm3ahDWXSFUUUkq0PA7cztH/zMUDLwP9MedYVldDIANojtk6LiIiIiIilfXDrFiMRXcA2zFb0CWyLlq3bt3pp59+evClf3JUdTkwLCoq4oEHHmDFihVBr5999tncf//9DBw4MOy5RI5GIaVEywrgKWBEiPtaAPMxqyqfxdmKyGMxL1kjgfOAZ2pcpYiIiIhI3VeIWUTQFjgTOAto7GlFP/UAJqh8zOtC6pq4uLi+mG314pDTwDA7O5sLL7ww7PkKCwsZM2YMxcXFQa9HMjBctWoVY8eO5Z133gl6vUmTJvzxj3/kT3/6Ew0bNgx7PpFQFFJKNGViVkmeH+K+YzFn42Rgtom/DazGNNWxgJOBXwDdMIdsXw00c6dkEREREZE6Zy+Vdx6dAJyGec8+99CvI//5bKLbWCcHKAFyozhnnWfbdgoKKR0rLCwkKyuLNWvWBL1+zjnncN9990UkMFy5ciVjxozh3XffDXq9IjD885//TIMGDcKaa+fOnTzyyCM899xzlJVVXhfk8/m4/vrrue+++zjllFPCmqusrIydO3eG9QypPxRSSjSVAIOB93AWKrYGxh76BeYAba86DoqIiIiI1GU7Dv36uorrDTGrLs/g8OrLM4/4vbMwzTAjxcKcm7kN+L8IPre+62fbts+yLDUnOopQgWHTpk35wx/+ELHAMCcnh7y8vCoDw2uvvZbMzEyaN28e1lxlZWU899xzPPLII1UGh127diU7O5uOHTuGNRfAggULyMrK4ttvv/3J71tWLB2FK7FEIaVE2yJgEFCAWTFZHQooRURERES8cQBzhFPwQ+uMFhwOMY8MMit+r0U154wHXsB0pS6q5lgJ7uSNGzd2omY9AOq8aAeGL7zwAhMmTGD79u1B7+ncuTPZ2dl06dIlrLnAnDuZlZXF8uXLg14/7bTTeOCBB7jmmmvCDhGLi4vJzs7mrbeCN5M/44wzwnq+1F0KKcUL72G2af8fZtuIiIiIiIjUfpsP/fqsiuuNqLz68ix+Gmz+/OC7hsBtKKSMpH4opPwJJ4HhxRdfTHZ2NhdffHHY8y1YsIAxY8awbNmyoNdPPfVU7r//fq677rqIBIYPPvggb7/9dtDrjRo14o477mD48OE0bhze0bR79uxh8uTJ/OMf/+DgwYNB7xkyZAiDBg0Kax6puxRSilcWAx2BR4FbiOwqyf0RfJaIiIiIiERGKfDdoV9VOZWfrr48BZ1LGVGHzqWc4HUdsaKqLckVfvGLX3DfffdFLDD829/+RkFBQdDrjRs35ve//z133nknTZs2DWuuffv28fe//50nn3ySAwcOBL0nJSWFcePGhb2y0bZt5syZw/jx49myZUvQey666CKys7O5/PLLw5pL6jaFlOKlEsy3olOA+4FrgZoe6GED72M6AAb/G19ERERERGLdpkO/PvG6kLrKsqweW7ZsOeaUU07Z43UtXvr++++ZMGFCVAPDJ554osoVhrU1MFy0aBGZmZl8/vnnQa+fcMIJ3HXXXdxyyy3ExcWFPZ/UbQopJRYsAX6H+ZZ0IHAlcClm68fRrMOsyHwTeA1Y62KNIiIiIiIidUGD8vLyZOA/Xhfihb179/L0009XGRhalsXVV19NZmYmp59+elhzBQIBXn75ZcaNG8fWrVuD3tO+fXuys7O57LLLwpoLohsYbt68mfHjx/Pyyy9j23al6wkJCQwbNox77rmHZs2c9M0VUUgpsWULZitHxXaOZphtHi0wZ9EkALswKzCLMd0HRUREREREpBoObfmuVyGlk8CwQ4cOZGdnc+mll4Y935dffklWVlaVgeGJJ57InXfeGZHAcNOmTfz1r3+NSmBYWlpKbm4ukydPZs+e4Itxk5KSyM7O5oILLghrLql/FFJKLCsBvj70S0RERERERCKjn9cFRNMXX3xBVlYWX3wRvF9QixYtyMjI4He/+13UAsNRo0Zx7LHHhjWX08DwoYceonXr1mHNBVBYWEhmZiY//PBD0OvnnnsuY8eOpW/fvmHPJfWTQkoRERERERGR+qXt+vXrz2jZsmWdPjJr48aN/O1vf4tKYLh//36effZZHn/8cfbu3Rv0nqSkpP/P3p3HR1Xf+x9/n0nCvkkRREoFFRERN0BlCasBtWBdAL0uiVYrRYFQlcWamSQzRLEaKwLSq+AlLdeihHsf3lCtDRZ+DbiwCIKKCEU0bAFBCJBAJpnz+2MMpWaYmXgy52R5Pf+q+X7OfD6ejPTh2+85X82cOVPdunWz1EuyNzD89NNP5fF49OGHH4Zcb9WqlSZNmqSHH35YCQkJlvuh4SKkBAAAAACg4UmS9JrTQ8RCNIFhUlKSMjMz1aVLF8v98vPzlZaWpsLC0JnvRRddpIyMDA0fPtxyr0iBYevWrTVx4sQaCQy/++47vfDCC1q0aJEqKiqqrLtcLt1+++3yeDxq166dpV6AREgJAAAAAECD43K56mVImZ+fr6eeekq7d+8OuX7xxRcrIyNDw4YNs9xry5Yt8ng8+uijj0Ku19XA0O/3KycnR88//7yKi4tD1vTv319er1eXXXaZpV7AmQgpAQAAAABoYEzTTDJN02UYRsDpWWrKbbfddtbA8JxzztETTzyh++67T/Hx1qKQAwcOaNasWXrzzTcVCFS9ffHx8brvvvs0depUtWnTxlKvaALDAQMGyOv1qkePHpZ6SVJBQYE8Ho+2bdsWcv3888/X9OnTNXbsWMu9gB8ipAQAAAAAoOH5yb59+66RtN7pQWpKqINx4uPjlZycrCeeeMJyYFhWVqYFCxZo9uzZOnbsWMiamjzZuqCgQG63W19++WXI9ZoMDHfu3KmMjAytWLEi5HrTpk31yCOPaOLEiWrcuLHlfkAohJQAAAAAADRMI1SPQsofqsmTrd99911lZmZq165dIde7dOmi9PR0jRw50nKvSIFhs2bNNGHChBoJDIuLizVnzhy98sor8vv9VdYNw9CoUaPk8XjUqVMnS72ASAgpAQAAAABomJIkPe30ELHi8XgsB5Tbtm1Tenq6/vGPf4Rcb9GihaZMmaKHHnpIjRo1stTLzsAwEAho2bJl8vl8+vbbb0PWXHnllfL5fOrTp4+lXpK0ceNGbd26VQMHDtTPfvYzy5+H+omQEgAAAACAhqn/gQMHWrRv3/6404PUNkePHtXcuXPDBoZ33HGH0tLS1L59e0u9ogkMr7rqKnm93hoJDN9//315PB59/vnnIdc7dOigxx9/XHfffbdcLpelXoWFhZo5c6by8vIkBUPdd999V127drX0uaifCCkBAAAAAGiYGgUCgSGSljs9SG1RXl6uJUuW6Nlnn9WhQ4dC1lx11VXy+Xzq3bu35X5r1qyRx+PR1q1bQ67XZGC4d+9ezZo1S7m5uSHXExISlJycrOnTp6tFixaWepWUlGju3Ln6wx/+oJMnT57++fHjx/XXv/5VEyZMsPT5qJ8IKQEAAAAAaKACgUCSCCklSatXr1Z6evpZA8PzzjtPTz75pMaMGSPDMCz1sjMwLC0t1csvv6y5c+fq1KlTIWuSkpLk9Xp1wQUXWOplmqaWL18un8+n3bt3h6w52wwAISUAAAAAAA3XCKcHcNquXbv0zDPPnH4k+YeaNGmiBx98UKmpqTWyw3D+/PkRA0Ofz2f53Y2VgaHX69WePXtC1nTr1k2ZmZkaMmSIpV6StGnTJrndbm3YsMHyZ6FhIqQEAAAAAKDhunTfvn1dOnbsuMvpQexW2wLDnj17yuv1ql+/fpZ6SdInn3wit9ut9etDH97epk0bPfbYY3rggQcUFxdnqVdRUZGys7P1+uuvKxAIWPosNGyElAAAAAAANGCmad4gaYHTc9jFNE3l5uYqKytLBw4cCFlz+eWXy+v16vrrr7fcrzYFhgkJCbrzzjs1Y8YMtW3b1lKvsrIyvfLKK5o9e7ZOnDgRsmbw4MEqLi7Wxo0bLfVCw0BICQAAAABAwzZCDSSkjPRI8jnnnKPf/OY3tgWGycnJmjp1qlq1amWpl9/vV05Ojn73u9/p+PHQh7UnJiYqMzNTl156qaVekpSfn6/09HTt2rUr5HqXLl305JNPavTo0XrooYcIKREVQkoAAAAAABq2G0zTjDMMo8LpQWJl//79evrpp7Vs2TKZplll3YnA0Ov1qnv37pZ6ScHA0OPx6Ouvvw653rVrV82YMUOjR4+23GvHjh1KT0/XypUrQ643a9ZMEyZM0KRJk9SoUSPL/dCwEFICAAAAANCwnVNUVNRH0kdOD1LTTp48qYULF2r27NlhA0Ofz6dLLrnEcr/8/Hy53W598803IdcvvPBCpaenKykpyXKv7du3Kz09XatWrQq53rx5c/3617+ukcDwyJEjys7OVk5OjsrLy6usu1wu3X777XK73Tr33HMt9ULDRUgJAAAAAEADZ5rmCNWzkPKdd97RG2+8YcvJ1pECw1atWmnSpEn61a9+VWOB4aJFi1RRUXXza00GhuXl5VqyZIlmzZqlw4cPh6y5+uqr5fV61bt3b0u9AEJKAAAAAAAaONM0kyT5nJ6jJr3wwgshf966dWtNnDhRDz/8sBISEiz1iDYw9Hg8ateunaVefr9fb7zxRtjAsF+/fvJ6verZs6elXpK0evVqpaena+vWrSHXzzvvPD355JMaM2aMDMOw3A8gpAQAAAAAAP0OHz7cum3btkedHiRW4uLidO+992rq1KmWT7aOJjDs37+/vF6vLrvsMku9JKmgoEDp6en64osvQq537NhRM2bMqJHAcNeuXXrmmWeUl5cXcr1p06b65S9/qSlTpqh58+aWegFnIqQEAAAAAADxpaWlQyS95fQgsTBgwAB5vV716NHD8mcVFBTI4/Fo27ZtIddrMjD86quvNGvWrLCB4SOPPKJHH31UTZo0sdSrpKRE8+fP15w5c1RWVhayJikpSTNnzlTnzp0t9QJCIaQEAAAAAACSlKQ6HFImJCTI7/f/288uuOACud1u3XzzzZY/f+fOncrMzFR+fn7I9crAcOLEiWrcuLGlXidOnNAf/vCHswaGhmFo1KhRcrvd+ulPf2qpVyAQ0LJly5SVlaUDBw6ErOnVq5e8Xq+uu+46S72AcAgpAQAAAACADMMY4fQMVtx44436n//5H0nBk60nT56shx9+2HJgWFxcrDlz5ujVV18NGxh6PB516tTJUq/KwHDmzJk6ePBgyJorrrhCXq9X1157raVekrRx40Z5PB5t2LAh5Hrbtm01ZcoUPfDAA4qLi7PcDwiHkBIAAAAAAEhSt6Kiogs7dOiw0+lBfowXXnhB1157rY4dO6YxY8aoQ4cOlj4v2sDQ5/Opb9++lnpJ0gcffCCPx6PPPvss5HqHDh30+OOP6+6775bL5bLUa8+ePfL5fMrLy5NpmlXWGzVqpIceekipqalq2bKlpV5AtOLN9fLY3tXUe0ZfrQlbsk43y1Afu0b63hGjj14KV2B+rHMV0AS7BjrN0OtGb+0IV2Ku1f1y6Wd2jRRsqi+NvloStmSdLpeh2+0a6bRyvWhcr+JwJeY6TZMhay/uqC5Dq43e+nu4EnODhsnUQLtGkiQZKjV667lwJeZ6tZaUatNEZzTW/xh99WnYknW6S4YusWskSVJA3xjXapGtPQEAAIAYqqioSJL0n07P8WM0atRIycnJNfJZdgaG+/bt0zPPPKNly5aFDAwTEhKUnJysadOmWQ4MS0tL9fLLL2vevHk6efJkyJqRI0cqPT1dXbp0sdTLNE393//9n9auXWvpc9BwxEt6yvauLpVK4UNKuXSTTD1sz0CnFUrhQ0pVqIMMB+6ZtFYKH1LKpWRJA2yZ5l/ekcKHlJIulxPfs6Z6TQofUsrQVEmtbJmnUkDPSeFDSgU07PvZ7GPqqBQ+pFRAreRy5Pv/pRQ+pJR0l6SbbJjlX1xaIxFSAgAAoF6psyFlTahtgWFSUpIyMzNrJDB86623NHPmTO3duzdkTffu3eX1epWYmGiplyRt3rxZHo8nZEDZqFEjy5+P+onHvQEAAAAAQKXhpmnGG4ZR7vQgdoo2MPR6vbrgggss9TJNU8uXL5fP59Pu3btD1lx88cXKzMzU0KFDLfWSgoGh2+3WunXrQq63adNGU6dO1X333af4eGsx0cGDBzVr1iy98cYbCgQCVdabNWumkSNHWuqB+ouQEgAAAAAAVGqzZ8+evpI+cHoQO9TGwPCxxx7T/fffbzkwPHDggGbNmqU333wzZGAYHx+v++67T1OnTlWbNm0s9fL7/Xr11Vc1e/ZsHTt2LGTNwIEDlZWVpYsuushSL9RfhJQAAAAAAOC0uLi4EWoAIaWdgWFRUZGys7P1+uuvnzUwvOuuuzRjxgy1bdvWUi+/36+cnBw999xzYQPDzMxM9ejRw1IvSSooKJDb7daXX34Zcv3888/X9OnTNXbsWMu9UL8RUgIAAAAAgNNM00ySlOn0HLFS3wPDtLQ0bd++PeR6ly5d9OSTT2r06NGWe/3zn/9URkaG3nvvvZDrzZo104QJEzRx4kQ1btzYcj/Uf4SUAAAAAADgTNcdPny4ddu2bY86PUhNijYw9Hq9uvTSSy33y8/PV3p6unbt2hVyva4GhkePHtXcuXP1yiuvyO/3V1k3DEOjRo1Senq6zj//fEu90LAQUgIAAAAAgDPFnzx5cpik/3V6kJqSn58vj8ejr7/+OuR6165dNWPGjBoJDHfs2KH09HStXLky5HplYDhp0iTLJ11HExjecccdSktLU/v27S31CgQCWrZsmbxerw4dOhSy5qqrrpLP51Pv3r0t9ULDREgJAAAAAAB+KEn1IKSMFBg2b95cv/71r2skMDxy5Iiys7OVk5Oj8vKqh6O7XC7dfvvtNRIYlpeXa8mSJXr22WdtCQzXrFkjj8ejrVu3hlzv0KGDfvvb32rMmDEyDMNyPzRMhJQAAAAAAOCHbnR6ACuiDQzdbrfOPfdcS72iCQyvvvpqeb3eGgkMV69erfT09LMGhuedd56efPLJGgkM9+7dq1mzZik3NzfkepMmTfTggw8qNTVVLVq0sNQLIKQEAAAAAAA/1LWoqOiiDh06/NPpQaqjMjCcNWuWDh8+HLLmmmuukdfr1TXXXGO5n52B4a5du/TMM88oLy8v5HpNBoYlJSWaP3++5s6dq1OnToWsSUpKks/n089+9jNLvYBKhJQAAAAAAKCKQCAwQtJ8p+eI1urVq+XxePTFF1+EXO/YsaNmzJhhS2DYtGlT/fKXv9SUKVPUvHlzS73sDAxN09Ty5cuVmZmpvXv3hqy5/PLL5fV6df3111vqBfwQISUAAAAAAKjCNM0k1aGQ8p577gl5eEwsAsM5c+aorKwsZE1SUpJmzpypzp07W+plmqZyc3OVlZWlAwcOhKypycBw06ZNcrvd2rBhQ8j1c845R7/5zW/0wAMPKC4uznI/4IcIKQEAAAAAQCjDTdNMMAyjavJXBxiGoVtvvVVpaWnq2LGjpc8KBAKn3zt58ODBkDVXXHGFfD6f+vbta6mXZG9gWFRUpKysLC1btkymaVZZT0hIUHJysqZOnapWrVpZ6gWEQ0gJAAAAAABCabV3795rJa1xepAf4z//8z81atQoy5+zdu1aud1ubdmyJeR6+/btNWPGDI0bN04ul8tSr/379+vpp5+2JTA8efKkFi5cqNmzZ+v48eMhaxITE+X1etW9e3dLvYBoEFICAAAAAICzSVIdDSm7du1q6fpoA8Np06apZcuWlnpFGxj6fD5dcskllnpJUn5+vtxut7755puQ6xdeeKEyMjJ0ww03WO4FRIuQEgAAAAAAhORyuUZIynB6DjuVlpbqtdde04svvqgTJ06ErElMTNTMmTPVrVs3y/3sDAw//fRTeTweffjhhyHXW7VqpUmTJunhhx9WQkKC5X5AdRBSAgAAAACAkEzTvLawsLBt586dDzs9ix3y8/OVlpamwsLCkOsXXXSRMjIyNHz4cMu9IgWGrVu31sSJE2skMPzuu+/0wgsvaNGiRaqoqKiy7nK5dPvtt8vj8ahdu3aWegE/FiElAAAAAAA4m7i4uLihkpY5PUgsbdmyRR6PRx999FHI9boaGPr9fuXk5Oj5559XcXFxyJr+/fvL6/Xqsssus9QLsIqQEgAAAAAAhJOkehpSRgoM4+Pjddddd2n69On6yU9+YqlXNIHhgAED5PV61aNHD0u9JKmgoEAej0fbtm0LuX7++edr+vTpGjt2rOVeQE0gpAQAAAAAAOGMdHqAmhZNYDhw4EBlZmbWWGDodrv15ZdfhlyvycBw586dyszMVH5+fsj1pk2b6pFHHtHEiRPVuHFjy/2AmkJICQAAAAAAwulSWFjYrXPnztudHqQmFBQUKC0tTdu3h/7b6dKli5588kmNHj3acq+dO3cqIyNDK1asCLnerFkzTZgwoUYCw+LiYs2ZM0evvPKK/H5/lXXDMDRq1Ch5PB516tTJUi8gFggpAQAAAABAWPHx8SMk1emQ8p///KcyMjL03nvvhVyvq4FhIBDQsmXL5PP59O2334asufLKK+Xz+dSnTx9LvYBYIqQEAAAAAABhmaaZJGme03P8GEePHtXcuXPDBoZ33HGH0tLS1L59e0u97A4M33//fXk8Hn3++ech1zt06KDHH39cd999t1wul+V+sVZcXKwXX3zR6THgEEJKAAAAAAAQyTDTNBMMw6ia8tVS5eXlWrx4sZ599lkdOnQoZM1VV10ln8+n3r17W+63Zs0apaen2xIY7t27V7NmzVJubm7I9YSEBCUnJ2v69Olq0aKFpV52qAx3Z86cqYMHDzo9DhxCSAkAAAAAACJpuW/fvuslFTg9SLTuv/9+FRUVhVzr2LGj0tLSdOutt8owDEt97AwMS0tL9fLLL2vu3Lk6depUyJqkpCR5vV5dcMEFlnrZ5YMPPpDH49Fnn30WTfl3sZ4HziGkBAAAAAAA0UhSHQopQwWUTZo00YMPPqjU1FTLgWFJSYnmz58fMTD0+Xz62c9+ZqmXaZpavny5vF6v9uzZE7KmW7duyszM1JAhQyz1skthYaF8Pp+WL18e7SWrJO2N3URwGiElAAAAAACIxghJHqeH+DEMw9Do0aPldrstH1Rjd2D4ySefyO12a/369SHX27Rpo8cee0wPPPCA4uLiLPeLtZKSEs2dO1fz588/a7gbwmpJd8dwLNQChJQAAAAAACAafQoLC9t27tz5sNODVMfll18un8+n6667zvJn2RkYFhUVKTs7W6+//roCgUCV9YSEBN15552aMWOG2rZta6mXHSrDXZ/Pp927d0d72R5Jv5X0J0lmzIZDrRAvqcT2rqbKItYEVCbD9tki94tTQAEH7pmh8og1pk46cM9ORlFTLie+ZxWq+qf4D5kqkWFzWG9E8f0P1tS+738jBVTuwO9SUXz/g99Fe2czo/r+AwAAAPVFXHx8/HBJS50eJJROnTpp165dp/+6Xbt2mjFjhu666y7LB9VEExgmJydr6tSpatWqlaVefr9fOTk5eu6553Ts2LGQNYmJicrMzNSll15qqZddNm/eLLfbrXXr1kV7SamklyRlSQp9E1DvWHs7LAAAAAAAtdcHkq7/4Q9/+9vfauLEiQ6MUy+8ev755z9s8TOekjTzhz/s27ev3nrrrR/9of/4xz+Umpqq48ePKzk5WampqTUWGP7ud7/T8ePHQ9YkJibK6/Wqe/fulnpJUn5+vjwej77++uuQ6127dtWMGTM0evRoy73sECncPYvlkiZL+ip2k6E24nFvAAAAAAAQrZucHuBsBg0apI0bN9bY50UKDC+88EKlp6crKTPPOAoAACAASURBVCnJcq/t27crPT1dq1atCrnevHlz/frXv9akSZPUqFEjy/1iLZrdoCFslDRF0j9iNxlqM0JKAAAAAAAQrZ/u2bOne6dOnbY5PUisRAoMW7VqpUmTJulXv/qV5cDwyJEjys7O1qJFi1RRUVFl3eVy6fbbb5fb7da5555rqZddIoW7IRyS5JM0V1LVm4AGg5ASAAAAAABUxwhJ9S6ktDMw9Pv9euONNzRr1iwdPhz6HKJ+/frJ6/WqZ8+elnrZZceOHUpPT9fKlSujvcQvab6CJ8YfjdlgqDMIKQEAAAAAQNRcLleSpDlOz1FTog0MfT6fLrvsMsv9CgoKlJ6eri+++CLkeseOHTVjxgyNGTNGhlH7jxKpDHdzcnJUXh7NmaeSpBUKPtr9WewmQ11DSAkAAAAAAKJmmuaw7du3N+7Wrdspp2exqqCgQB6PR9u2hd4YWpOB4VdffaVZs2YpLy8v5HrTpk31yCOP6NFHH1WTJk0s9bJDeXm5lixZEjbcDeFLSY9J+kvsJkNdRUgJAAAAAACqo3mLFi36SVrl9CA/1ldffaWMjAzl5+eHXK8MDCdOnKjGjRtb6nXixAn94Q9/0Jw5c1RWVlZl3TAMjRo1Sm63Wz/96U8t9bLL6tWr5fF4zrobNIQjkmZJ+r2kqjcBECElAAAAAACoJtM0k1QHQ8ri4mLNmTNHr776aswDw0AgoGXLlmnmzJk6ePBgyJorrrhCXq9X1157raVedom0GzSEgKT/lvSEpAMxGwz1Qry5Xgts7+rSMuMavROuxFyre+XSEJsm+r6pDhl9NT1sySZ1Urky7RrpDLONPtoSrsBcp2kydIldA33vE6NP+HeRmOt1naRf2TTPv5RpmtFfYfecm+v1kqRmNk0UZOhto7f+J1yJuUG3y9TNdo30vRKjjyaHKzDfV1s10u/sGugMrxp99FG4AnO9Jkm60qZ5vm+qL42+jtwPAAAAwGkjJD3l9BDRijYw9Pl86tu3r+V+H3zwgTwejz77LPQrFzt06KDHH39cd999t1wul+V+sVZSUqL58+efdTfoWaxS8L2Tn8RsMNQr8ZLus72rqW1S+JBScbpOps2zGSqUwoeU8uscGQ7cM0O5UviQUoZulDTAlnkqmWqnSC9MNtXVkXvWXBlS+JBS0n9IahX7Yc4Q0H4pfEipgK5x4J4dlcKHlIpXcznzZ8YKKXxIKVPDZegmewb6nqE1EiElAAAAGqRr9u3bd27Hjh1DJ361iJ2B4b59+/TMM89o2bJlMk2zynpCQoKSk5M1bdo0tWzZ0lIvO0QT7oZQKClN0h9jNxnqIx73BgAAAAAA1eUKBALDJS1xepCzsTMwLC0t1csvv6x58+bp5MmTIWuSkpKUmZmpLl26WOpll40bN8rj8WjDhg3RXlIi6TkF3z0Z+iYAYRBSAgAAAACAanO5XEmqhSFltIGh1+vVBRdcYKmXaZpavny5fD6fdu/eHbLm4osvVkZGhoYNG2apl10ihbshmJJyFXzv5DcxHQ71GiElAAAAAKBBCQQCTo9QL5imOdLpGc4UbWCYmZmpoUOHWu63efNmeTwerV27NuR6mzZt9Nhjj+n+++9XfHztj19KS0v12muv6cUXX9SJEyeivWy9pFRJ78duMjQUtf+fEgAAAAAAalB2drYOHjyo6dOnq0WLFk6PU5d12rdv32UdO3b83OlBJOnWW2/VunXrQq61bdtW06ZN0z333KO4uDhLfYqKijRr1iwtXbo0ZOAdHx+vlJQUPfHEE2rdurWlXnbJz89XWlqaCgsLo71kr6RMSQsUPMEbsKz2HyEFAAAAAMCPE/JZVb/fr4ULF2rQoEHVeaQVIZimOcLpGSpt2rSpys8SEhL00EMPac2aNUpOTrYUUJaVlWnu3LlKTEzUG2+8ETKgHDx4sFasWCGfz1cnAsotW7botttuU0pKSrQBZZmklyRdKukVEVCiBhFSAgAAAADqq53hFvfv369Jkybplltu0caNG+2aqb5JcnqAsxk0aJBWrFghr9drOTB85513NHjwYD399NM6fvx4lfWuXbsqJydHf/7zn3XJJZdY6mWHw4cPy+126+abb9ZHH30U7WXLJfVQ8PHuYzEbDg0WISUAAAAAoL56QVGcMrxhwwaNGjVKU6ZMUVFRkQ1j1StDtm/f3tjpIUJxu93q1q2bpc/YunWrxo0bpwcffFBff/11lfWWLVsqLS1Nq1atUlJSrc1rT/P7/VqwYIH69eunhQsXqqKiIprLtkq6UdJoRQj+ASsIKQEAAAAA9dXHkgZLirhN0jRNvfnmmxo4cKDmzJmjU6dOxX66+qFZy5YtBzg9RE07cuSI3G63Ro4cqdWrV1dZd7lcGjNmjAoKCvTII48oISHBgSmrp6CgQDfccIM8Ho+OHYtqI+RhSVMk9ZL0bkyHA0RICQAAAACo39ZK6iMpRVLEbZInTpzQM888owEDBmjp0qUxH64+CAQCtX8LYZTKy8u1ePFiJSYmauHChSovL69Sc/XVV+utt97SSy+9pPbt2zswZfX885//1H333ac777xT27dvj+YSv4Lvm+wuabakqLZbAlYRUgIAAAAA6ruApD9KukjBE4kjbpPcu3evUlNTNXbsWH3+ea04vLo2qzWH51ixevVqjRw5UtOmTdOhQ4eqrJ933nmaPXu2li9frt69ezswYfUcPXpUbrdbQ4cO1XvvvRftZSskXS1pvKRvYzYcEAIhJQAAAACgoTghKUPBx1ej2ia5Zs0ajRgxQpMnT9a335LZnMXV+/fvr/1bCs9i165dGj9+vMaNG6etW7dWWW/atKkeffRRFRQUaOzYsTIMw4Epo1e5G3TgwIFn3Q0awnZJ4xQ8COmzmA4InAUhJQAAAACgoakMZG6Q9Gmk4kAgoNzcXA0cOFDz5s2T3++P+YB1jBEIBG5weojqKikpUXZ2toYMGaK8vLyQNUlJSVq1apWeeuopNW/e3OYJqy/SbtAQjkiaoWoE90CsEFICAAAAABqq91SNR1uLi4uVlZWloUOHasWKFTEfri4xTbPOvJfSNE0tXbpU/fv3V3Z2tsrKyqrU9OrVS//7v/+rnJwcde7c2YEpqyfSbtAQApL+JOlSSc8qilcgALFGSAkAAAAAaMjK9a9DQl76/q/D2rlzp5KTk3XnnXdq27ZtsZ6vTjAM40bTNGv3c9CSNm7cqFtuuUWpqak6cOBAlfVzzjlHXq9Xb7/9tq677joHJqyeyt2gQ4cOPetu0BD+n6TekpIVxWFSgF0IKQEAAAAAkA5LSlXwsde/RnNBQUGBRowYIbfbreLi4pgOVwecV1RU1NPpIc5m//79mjx5skaNGqUNGzZUWU9ISNCDDz6oDz74QA899JDi4uIcmDJ6P9wNeupUVBshdyt4yv1QSZtiOiDwIxBSAgAAAADwL19IuknSLZJ2Rir2+/1auHCh+vXrpwULFqiioiLmA9ZWgUCg1p3yXVpaqnnz5ikxMVG5ubkyTbNKTWJiolasWCGfz6dWrVo5MGX1bNq0Kexu0BBKFDzV/hIFT7mvehOAWoCQEgAAAACAqvIk9ZA0RVLEbZLfffedPB6PbrrpJn344YcxH66WqlXvpfzLX/6ixMREZWVl6cSJE1XWu3fvriVLluiNN95Qt27dHJiweip3g/785z8PuRs0BFPBw3AuU/BU+9IYjgdYRkgJAAAAAEBoZZJmK3i4yCsKHjYS1qeffqrbb79dKSkp+uabb2I9X20zuLCwsKnTQ1R68cUXtXfv3io/b926tZ566in97W9/06BBgxyYrHpOnjypefPmadCgQWfdDRrCBkmDFDzF/uuYDgjUEEJKAAAAAADC26fgCeDXSloTzQX5+fkaMmSIsrKydPz48ZgOV4s0dblcA5we4mzi4+P1wAMP6P3339ejjz6qhIQEp0eKKD8/X4MHD67O9+jM7+rqmA4H1DBCSgAAAAAAorNBUqKi3J125g64pUuXRrsDrk5zuVy16pHvSgMHDtS7776rrKwsnXPOOU6PE9GZO3ILCwujuaRMwdPpo971C9Q2hJQAAAAAAETvzPf8ZSqK9/zt379fqamp1XmXYJ1lmqZjh+eE2hnZpUsX/dd//ZfefPNN9ejRw4Gpque7776T2+2u7rtNlyv4/tRURfH+VKC2IqQEAAAAAKD6ShQ8jOQSSX9SFCcmV57KPHny5GhPZa6Lrjx48GBHJxrfdNNNp/93ixYt9NRTT2nVqlUaOXKkE+NUi9/v14IFC9SvXz8tXLgw2lPiK0+iH60oTqIHart4pwcAAAAAAKAO2y0pWdJCSS9KuipcsWmays3N1dtvv60JEyZo4sSJaty4sR1z2sXw+/3DJS22u3F2drauu+46FRcXa8yYMWrfvr3dI/woBQUFcrvd+vLLL6O95LAkr6R5kspjNhhgM3ZSAgAAAABg3f+T1FtSiqSiSMUlJSXKzs7W0KFDlZeXF/PhbObIeykbNWqke++9V4888kidCCh37typ5ORk3XnnndEGlOUKvm+yu4KnzhNQol4hpAQAAAAAoGYEJP1RwcNLnpV0KtIFu3bt0vjx4zV27Fht3bo11vPZZYRpmobTQ9RWR48eVVZWloYOHaoVK1ZEe9l7kq5W8OTub2M2HOAgQkoAAAAAAGrWEUkzJPVS8JCdiNasWaOkpCRNnjxZhw4diulwNjhv9+7dvZweorYJBAJaunSpEhMTNW/ePPn9/mgu26HgafI3SPo0pgMCDiOkBAAAAAAgNrYrGDAlSfosUnEgEFBubq4GDhxYnRCrVoqPj3fslO/aqDKETk1N1bffRrUR8oSCp8dfriiDbqCui1fwNCh7BRT5PwsFtF+G7bPti1jh0kmZDtwzU8ejqPpa0k9iPcq/MfRNxJo4HVXAgXvmUjT/j75NUstYj/JvjMjvp/m+xu57Vhyxorn8KnXgdxmnoxFrgt9Fu2f72uZ+AAAAqJtWKPio7gOSsiS1C1dc+TjwkiVLlJGRoeHDh9sxY40yTTNJ0vNOz+G0vXv3atasWcrNzY32koCk/5Y0VVG82xSoT3hHBAAAAAAA9mkrKV3So5LiorkgMTFRPp9Pl1xySUwHq2EnKyoq2nbu3Lk0xNpTkmb+8Id9+/bVW2+9FfvJbFBSUqL58+dr7ty5OnUq4qtJK62VlCrpw9hNBtRePO4NAAAAAIB9DisYRPWS9G40FxQUFCgpKUlut1vFxZEfgKolmsTFxSU6PYTdTNNUXl6eBg8erOzs7GgDyj0Kngp/vQgo0YARUgIAAAAAYL+tkm6UdIuknZGK/X6/Fi5cqH79+mnBggWqqKiI+YBWff/Id4OxadMm/eIXv9D48eO1Z8+eaC4pUfAU+EsVPBXejOV8QG1HSAkAAAAAgHPyJPWQNEXSsUjF3333nTwej26++WZ99NFHMR/OCpfL1SAOzykqKtK0adM0atQorV+/PtrLlkvqqeAp8NGcQQHUe4SUAAAAAAA4q0zSbAV31L2i4OEpYW3ZskW33XabUlJSVFhYGOv5fhTTNHsdPHiwo9NzxIrf79eCBQuUmJioxYsXKxCI+GuTpI8lDZI0WtKuWM4H1DWElAAAAAAA1A57JY2XdJ2k96O5ID8/X4MHD1ZWVpZOnDgR0+F+BKO8vLxePvKdn5+vxMREeTweHT8e1UbIbxXcLXutpIKYDgfUUYSUAAAAAADULuslDZQ0TtI3kYpPnjypefPmKTExUUuXLpVp1p5XG9a391Ju375dd999t1JSUvTNNxF/NZLkl/SSpIsU3C1b+18mCjiEkBIAAAAAgNrHlLRUwfdVZko6GemC/fv3KzU1VaNGjdKGDRtiPV+0kkzTNJwewqojR47I7XZr2LBhWrVqVbSXrZB0pYKnudeZY9kBp8Sb65Rve1dTC4xr9UbYkvWaJFO32DXS9/YbfXVfuAJzo7qoXK/aNdAZnjL6am24AnOdXpDUy6Z5ggx9aPSRO1yJuV5DZeq3do10WqnuNgbpYLgSc73+V6Za2DXS9/5s9NVr4QrMdfqlpP+waZ4gQ8eNProtXIn5sc5VhV63a6TTDD1t9NHKcCXmevlk6nq7RvreFqOvHrO5JwAAABqWEkkZkhZKypLC/zurJG3cuFG33HKL7rjjDqWlpal9+/YxHjGsDnv27LlS0iYnh/ix/H6/cnJy9Pzzz6u4OOqccZukxyS9HbvJgPonXoYG2d7Vpb9FrDF0iWT7bJHfNlyuFo7cM0Nto6i5StKA2A9zBlORX3piqoMj96y1GkdRNVCGWsV8ljOZiuYIvgsduGdHI1aUq4lcDvwuTS2MoqaXA/cszuZ+AAAAaLgKJSVLek3Siwru0Dsr0zSVm5urt99+WxMmTNCkSZPUqFEjO+aswjCMEaqDIWVBQYE8Ho+2bdsW7SXfSXpW0u8VPAwJQDXwuDcAAAAAAHXHKknXSEqRdCBScUlJibKzszVkyBDl5eXFeraQDMOoU++l3Llzp1JSUnTnnXdGG1CWK3gqe3cFQ0oCSuBHIKQEAAAAAKBuCUj6o6oRiu3atUvjx4/XuHHjtHXr1ljP90OJ+/fvb2530+oqLi5WVlaWhg0bpvz8qN+M93dJvRU8lT3s68YAhEdICQAAAABA3XRE0gwFzyb4SzQXrF69WiNHjtS0adN06NChmA53hsaBQCDRrmbVFQgEtHTpUg0cOFDz5s1TWVlUGyF3KHj6+nBJm2M6INBAEFICAAAAAFC3fSlplKQkSZ9FKi4vL9fixYs1cOBALViwQOXl5TEfUNIIO5pU1wcffKARI0YoNTVV3377bTSXnFDwtPVeCp6+DqCGEFICAAAAAFA/rJB0taQpiuJgzKNHj8rj8WjYsGH6+9//HuvZalVIuW/fPk2ePFljxozR559/Hs0lpqQ/SbpYwdPWT8ZwPKBBIqQEAAAAAKD+8EuaLekiSS9Jqoh0wY4dO3TvvfcqJSVFu3btitVcPffs2dM5Vh8erdLSUmVnZ6t///7Kzc2VaZrRXLZO0gAFT1ffH9MBgQaMkBIAAAAAgPrnkKRUSX0l/SOaC/Lz8zV48GC53W4dO3YsFjPdEIsPjYZpmsrLy9PgwYOVnZ2tU6dORXPZHgVPUb9O0gcxHRAAISUAAAAAAPXYRkmDJd0i6atIxX6/XwsXLtSgQYO0ePFiVVRE3IgZNcMwkmrsw6ph8+bNuvXWWzV+/Hjt3r07mktKFTw1vYeCp6hHtd0SgDWElAAAAAAA1H95knoqeBp4xG2SRUVFmjZtmn7+859r7dq1NTVDkmmatuUQlX8PN998s9atWxftZctVjfsEoOYQUgIAAAAA0DCcuUPwT4pih+DmzZt12223VWcXYjjt9u3bd7XVD4nE7/drwYIFp3eDBgKBaC6r3HE6WlHsOAVQ8wgpAQAAAABoWPYoeAhMVO9aPPN9jllZWTpx4oSV3jE95Ts/P1+DBg2Sx+OJ9r2ahxQ8DT3qd3cCiA1CSgAAAAAAGqbKU6tTFMWp1aWlpZo3b54GDRqkpUuXRnsy9g/F5L2UO3bs0D333KOUlBR9/fXX0VziV/D084sUPA295l6+CeBHIaQEAAAAAKDhMhU8HOZiSZmSTka6YN++fUpNTdXo0aP18ccfV7ffgPbt2zeq/pihHTlyRG63W8OGDdPKlSujvWyFpKsUPP38aE3NAsAaQkoAAAAAAHBCUoak7gq+rzKijz/+WLfccosmT56sgwcPRtun0dixY7v+uBH/pby8XIsXL9bAgQO1cOFClZeXR3PZl5JGKbib83OrMwCoWYSUAAAAAACg0jcKvq9ymKTNkYoDgYByc3PVv39/ZWdnq6ysLGKDgQMHXmxlwNWrV2vEiBGaNm2aDh8+HM0l3yl4WncvSX+x0htA7BBSAgAAAACAH1op6WoF31cZcZvkiRMnlJ2draFDhyovLy9sbc+ePX9USPnVV19p/PjxGjdunL744otoLgkouCv0UgVPNY+coAJwDCElAAAAAAAIJaDg+yq7K8qQL5ogsV27dud26tQp6iGqE4CeoTJkTZZ0IOpmABxDSAkAAAAAAMKpfFz6CklvR3NBpEeyBw0aFPEzAoGAli5dWq1HySUVKrj7M6rH1QHUHoSUAAAAAAAgGtsk/VxRHjxz5uE2CxYsUEVFxem1wYMHh7228lCe1NTUaA/lOaHg6eSXKLj7E0AdQ0gJAAAAAACqY4WkqyRNkXQ0UvGRI0fk8Xg0bNgwrVy5UpKUmJgol6tqJLFv3z5NnjxZo0eP1scffxzNLKakpZIuU/B08pPR/k0AqF0IKQEAAAAAQHX5Jc2WdJGklyRVhC+Xtm/frnvuuUcpKSkqLi7WFVdc8W/r27Zt04ABA5SbmyvTNKOZ4UNJ10sap+Cp5ADqMEJKAAAAAADwYx2SlCrpWkkF0VyQn58f8p2UxcXFOnkyqo2QeyWNlzRA0tqoJwVQqxFSAgAAAAAAqz6WNEjSLZJ2RSr2+/3atGlTdXuUKbhr81JJryh4+jiAeoKQEgAAAAAA1JQ8ST0VPMSmpAY/N1dSdwV3bR6rwc8FUEsQUgIAAAAAgJpUouAhNj0kvaHg4TY/1lZJN0oaqyh2aAKouwgpAQAAAABALHwj6S4FHwOP6qjuMxxU8L2TvSS9W8NzAaiFCCkBAAAAAEAsrZbUV9JDkooi1Pol/V7SJQq+dzLiqeEA6od4Sfm2dw3oq4g1pj6X3bMZEf+wlOJ0TAEH7lm5vo1YY2qdjBp950dkRhT/NSxOex25Z35Fcyzc3yU1j/Uo/8bQ9ihr7L1npo5HrDmpk2rmwO8yTnsj1gS/i/GxH+YMpj6ztR8AAABQdwUkLZS0VMH3VaZKMn5Q876kX0raZu9oAAAAAAAAABqigZK2K3hi97eSHnd2HAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBBMO5fseUL27uaZvaipCteDVeS/N6WdJep/7BrJEmSYexZNPzy4eFK7v/b593kqsiza6RKZoX5cM7IK/4RriZlxZbFhtTHrpkkSYZWLhrea0K4kpS/b/m5EVC2XSOdFucasmhoz/3hSlJWbFlnSC3tGkmSTJfxnznDLv99uJqUv3/6GyNgjrdrJkkypeKcG3pdG67m/pWfnaeKwCqbRjrNdOnxnGG9/hKu5v73tsyXqaF2zSRJprQ+54Ze99rZEwAAAACA+ijelLra3dSIM9pErJHRzpRp72ymGR+ppML0N3bJ5cA9i2sWucg43zTtvWeGaUYMuY2A0dL236WkBJVH/H3KMLqYptnKhnH+pcL8STQ1pmHvP5uGoaMRa1yBhECFA39mBIzIQbJpdjRl2DubYey1tR8AAAAAAPWUy+kBAAAAAAAAADRshJQAAAAAAAAAHEVICQAAAAAAAMBRhJQAAAAAAAAAHEVICQAAAAAAAMBRhJQAAAAAAAAAHEVICQAAAAAAAMBRhJQAAAAAAAAAHEVICQAAAAAAAMBRhJQAAAAAAAAAHEVICQAAAAAAAMBRhJQAAAAAAAAAHEVICQAAAAAAAMBRhJQAAAAAAAAAHEVICQAAAAAAAMBRhJQAAAAAAAAAHEVICQAAAAAAAMBRhJQAAAAAAAAAHEVICQAAAAAAAMBRhJQAAAAAAAAAHEVICQAAAAAAAMBRhJQAAAAAAAAAHEVICQAAAAAAAMBRhJQAAAAAAAAAHEVICQAAAAAAAMBRhJQAAAAAAAAAHEVICQAAAAAAAMBR8YaMBbZ3DZibIpUYptZIhq0hqmkEDkesaZpwyCgL2H7PTJcKIxYZyjNMY6sN45zZc0ukkoqAuSPOZf/3rOSEcSJSjWEG/ii5mtgxTyUzzlgbsSjOtdYImLbeM9M0SyPVnDpmHm/UxGX777IiYO6IWGQYfzVMY48N45xmGoo8FwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZKe9tKbG9qyl3zg29ssOVpKzYMluGfmXXSJJkmPpm0Q29Lg1Xk/L3z3rKDKyza6Yz3JozvNffwhWkrNicL8MYYNdAkmRI7ywa3uuOcDUp+VvGyaVFNo10mqlG3f44vPuecDUp723ZJ6m1TSMFmcZzOTdcnh6uJGXFp5kyzKl2jSRJMo0jOTdcfn64kodWfvJTf8D1pV0jnRbQ/TlJvd4MV3L/e1uWmdJNdo0kSTLNNTk3XJFka08AAAAAAOqheJmKs7up4ZIrcpHhkmnaOpspxUeqCfjLDVecy/57JlcU98wVZ/c9kyL3MwzDZdo+l9Qo7qQRucqIt/2eRdMvWGPrXIZhRvz+V7hchioc+DPDMCJ//00zTjLsnc2w/88CAAAAAADqo8j/4g8AAAAAAAAAMURICQAAAAAAAMBRhJQAAAAAAAAAHEVICQAAAAAAAMBRhJQAAAAAAAAAHEVICQAAAAAAAMBRhJQAAAAAAAAAHEVICQAAAAAAAMBRhJQAAAAAAAAAHEVICQAAAAAAAMBRhJQAAAAAAAAAHEVICQAAAAAAAMBRhJQAAAAAAAAAHEVICQAAAAAAAMBRhJQAAAAAAAAAHEVICQAAAAAAAMBRhJQAAAAAAAAAHEVICQAAAAAAAMBRhJQAAAAAAAAAHEVICQAAAAAAAMBRhJQAAAAAAAAAHEVICQAAAAAAAMBRhJQAAAAAAAAAHEVICQAAAAAAAMBRhJQAAAAAAAAAHEVICQAAAAAAAMBRhJQAAAAAAAAAHBVvGGa67V0rzILIRWaeYZh7Yj/MGR1lHI1UE19RUWTGG7bfM5dZ8WXEIjOw0DD0NxvGOS1gmjsi1RgyNssI2H7PAsWNI/4+DSlLhtnEjnkqmUb8+xGLXHF/M1R+3IZxzmx6MlJF2YkTYXCY+QAADGpJREFURxMaN7P9d2mYrs2RagIyF7sMfWjHPJVM0yy0sx8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABYYv/zbF+fb3fRYQkXx0qE9j4erGZu/vnVLs0Vzu2aSJH/z+PI/Dbj4QLiaIStXxl/o79jerpkqNS+POzTn5m6nwtX8R976dk0bt2hk10ySZAQqTi68sefhcDVj33y/acs2bc+xa6ZKx45sLlo6blxFuJr7V352nssf57JrJkk6VX7k+H/ffH1xuJp73v6wVeP4Ni3smkmSAgkVgUVDe+4PVzP2zTfjWra5ooNdM1U6duTwd0vH9S8NV/PgXz9ra7rimtg1kySVnjpe9ufRfb61sycAAAAAAPVRfIXL/5XdTZubSpP0XLiaZq4mMytM/8M2jSRJcpX6CyVdHK6mc1nbSyvi/BtsGum0Y40qfiHpr+FqGjVr8maF6R9g00iSJMNlviPp1nA1zdu2+kWF/Dk2jXRa63O7XyRpd7gaM2BuqXD5W9k0kiQpPqH5c5LSItRMqzD8U20aSZJkBHRUUtgAvkWHHudX+P07bBrptOZtW6VIWhKupiK+4jVTgZtsGkmS1KhZkzWShtnZEwAAAACA+sjWHWQAAAAAAAAA8EOElAAAAAAAAAAcRUgJAAAAAAAAwFGElAAAAAAAAAAcRUgJAAAAAAAAwFGElAAAAAAAAAAcRUgJAAAAAAAAwFGElAAAAAAAAAAcRUgJAAAAAAAAwFGElAAAAAAAAAAcRUgJAAAAAAAAwFGElAAAAAAAAAAcRUgJAAAAAAAAwFGElAAAAAAAAAAcRUgJAAAAAAAAwFGElAAAAAAAAAAcRUgJAAAAAAAAwFGElAAAAAAAAAAcRUgJAAAAAAAAwFGElAAAAAAAAAAcRUgJAAAAAAAAwFGElAAAAAAAAAAcRUgJAAAAAAAAwFGElAAAAAAAAAAcRUgJAAAAAAAAwFGElAAAAAAAAAAcRUgJAAAAAAAAwFGElAAAAAAAAAAcFW+Y5gN2NzUCcZsi1pj6o0zzAzvmqWTGxR2PVBPXKLBb5Ybt96y8sfFJpJo4l+vpQHl5ezvmqWS64ndHqokzXB9UBMptv2eu4/7DkWpMs2KCyzQa2TFPJVec67NINXFxxtJAReBzO+apFJBZFqkmofjUobImjWz/Xca54iL+WWAa8S8YgfI37Zinkisu7oCd/QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsMD45P7s6+1umlDu+vqyxb/ZF65m6/2/71KmwHl2zSRJZkCnrvrj4xvD1ax/OKNZQlnLK+yaqVJAri+uXvSbI+FqPnvg+cvKTaOVXTNJklxx31352pRt4UrW/8fz7RIaGxfbNVKl+BPHPu65NKMsXM2W+17oE4gz4+2aSZJchvb0+q/HC8PVbHkgu3PAVCe7ZpIkV4VR3utPj60PV/PZ2IxG5c1bXmPXTJX8p8wdff78xLfhaj755YvdFag4x66ZJCneMIt7/tcTn9vZEwAAAACA+ijeZer/2d20It5Mk/Rc2BrTfNwlPWzTSEGGCiWFDdMSSptf6HLZf8/iDfMXkv4arsYMuOa6ZA6waaTve1a8I+nWcDVNGrtuME0zx6aRTitv3fYiSbvD1Rgu8x2XKXuDXVPPSUoLWxPQeJc01Z6Bvheno5LahysJtGjZwRWw//vfpLErRdKScDVGoOJZw9RNNo0kSTJN1xpJw+zsCQAAAPz/duwmxM6zjOPw/bznzEymH4miQhGzqkKlzTS6EDS6kC5KUTEbrW6SiWBcKEiTCSJU6kqUTNKVmwZ0km4MghSltBsRrEUoWdjEkHShXaS2Ej9qEmPm831cpCfL9ywCzw3Jda1veP68Z5jFD+BO1GUPAAAAAADubiIlAAAAAJBKpAQAAAAAUomUAAAAAEAqkRIAAAAASCVSAgAAAACpREoAAAAAIJVICQAAAACkEikBAAAAgFQiJQAAAACQSqQEAAAAAFKJlAAAAABAKpESAAAAAEglUgIAAAAAqURKAAAAACCVSAkAAAAApBIpAQAAAIBUIiUAAAAAkEqkBAAAAABSiZQAAAAAQCqREgAAAABIJVICAAAAAKlESgAAAAAglUgJAAAAAKQSKQEAAACAVCIlAAAAAJBKpAQAAAAAUomUAAAAAECq8Vatj7V+dL6WN6fd9KPybL/Zn26xZ2JUu9VpNxvz1/86Xr2v+TerG+vnp930Jb7b93VHiz0To370r2k362X1t10/2/ybzVz59+VpN1slvlT7Om6xZ2J2Ji5NuxmN64n1jXi5xZ6JUmJz2s22+2YuX7+y3vy37Lu1N6bdlK3u+1tla7nFnomuK1davgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC3oZzbf/yrrR+tpT+7sLJ0cejm9QPPfrLr60dbbbqpXN918qkXhy7OfOXHO+bumX281aKJrsz9/uGVb/996ObP+459vpbyoVabIiK2av/27lNLfxi6OXfg2M7oy6dbbZq49r/4zWd+eejG0M3ZxeW9pXazrTZFRNQSFxZWDp0bujm7eHxXqfHxVpsiImrp1xdWll4Yujlz8If3zK1t/2KrTbd09Y+7fn740tDJn/Ytf3ZUug+3mhQRUWr9xyOnDv+u5ZsAAABwJxpH1OdbP1qiezoiBiPlqK8HatSDjSa9p16KiMFIObNttDPjm0WsfTkiXh48KeUHEXVPmz03dV15KSIGI2WpZU+NerLRpFvu3THzYES8NXTT1XKiRt3eaFJERJQaRyNiMFKWWp+MiCNtFr33ZnRXImIwUs5t3P+BlP8ZteyPiF8M3XRdWYpan2g06aZSXo0IkRIAAABuU5c9AAAAAAC4u4mUAAAAAEAqkRIAAAAASCVSAgAAAACpREoAAAAAIJVICQAAAACkEikBAAAAgFQiJQAAAACQSqQEAAAAAFKJlAAAAABAKpESAAAAAEglUgIAAAAAqURKAAAAACCVSAkAAAAApBIpAQAAAIBUIiUAAAAAkEqkBAAAAABSiZQAAAAAQCqREgAAAABIJVICAAAAAKlESgAAAAAglUgJAAAAAKQSKQEAAACAVCIlAAAAAJBKpAQAAAAAUomUAAAAAEAqkRIAAAAASCVSAgAAAACpxl0df6z1o9c2y3+m3ZRxPFM2xkdb7JkYjbvNaTcb89vfmF9dbf7NLpd3L0+72dZvfW2tzG5rsWdirbt+Y9rN6uzVX8+vvr/5N7tw5YF3pt1szcx8Yrxem8b69a6/Ou1ms3TLs333XIs9t96cKf20mwv/3fn2w/PvNP8tb8y9+89pN5tl7Ztz/b3zLfZMzNX11ZbvAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwG0o5/YfP9z60a0ar+w+dei1oZvz+4891kfZ3WpTREQt9erCyuETQzdnvr78wbnZbn+rTRN9v/WrR58/8ubQzbl9x56MUj7SalNERC39XxZWll4Yujm7uPxQqd0XWm2amBltPPfQz753bejm/L7j3+lLzLXaFBHRl3jt0ZVDrwzdvL54/HNdjU+12hQRUaKsPnLyqZ8O3Vz8xk/u39iaOdhq00Qt/YsLK0sXh27OLi7vLbV7sNWmiIio9a1dpw6fbvomAAAA3IHGEfVHrR8ddeXpiBiMlDXK3ojaNIaUGpciYjBSzozrAxnfbDwanY+IwUhZSvlWjbqn0aTJqy9FxGCk7KLbXRO+2Vo3fzoiBiNlLfWZiNjeZtFNXY2jETEYKbtaH4+II20W3VRLXImIwUi5Ucfvy/j776L7W0QMRsqIshhRn2ix59aLpbwaESIlAAAA3KYuewAAAAAAcHcTKQEAAACAVCIlAAAAAJBKpAQAAAAAUomUAAAAAEAqkRIAAAAASCVSAgAAAACpREoAAAAAIJVICQAAAACkEikBAAAAgFQiJQAAAACQSqQEAAAAAFKJlAAAAABAKpESAAAAAEglUgIAAAAAqURKAAAAACCVSAkAAAAApBIpAQAAAIBUIiUAAAAAkEqkBAAAAABSiZQAAAAAQCqREgAAAABIJVICAAAAAKlESgAAAAAglUgJAAAAAKQSKQEAAACAVCIlAAAAAJBKpAQAAAAAUv0ftI3JOs303HwAAAAASUVORK5CYII=" + } + }, + "cell_type": "markdown", + "id": "d1ddc881", + "metadata": {}, + "source": [ + "
\n", + "\n", + "
" + ] + }, { "cell_type": "code", "execution_count": null, - "id": "d7ca1516", + "id": "7efe441c", "metadata": {}, "outputs": [], "source": [ @@ -784,7 +820,7 @@ }, { "cell_type": "markdown", - "id": "661b5b3e", + "id": "72d82138", "metadata": {}, "source": [ "### Running Floyd's updates in parallel\n", @@ -799,7 +835,7 @@ } }, "cell_type": "markdown", - "id": "18a9f60f", + "id": "6abd8c34", "metadata": {}, "source": [ "
\n", @@ -810,7 +846,7 @@ { "cell_type": "code", "execution_count": null, - "id": "138c77eb", + "id": "52961b52", "metadata": {}, "outputs": [], "source": [ @@ -853,7 +889,7 @@ }, { "cell_type": "markdown", - "id": "ad1c3fca", + "id": "54081b85", "metadata": {}, "source": [ "### Collecting back the results\n", @@ -861,10 +897,25 @@ "At this point, we have solved the ASP problem, but the solution is cut in different pieces, each one stored on a different MPI rank. It is often useful to gather the solution into a single matrix, e.g., to compare it against the sequential algorithm.The following function collects all pieces and stores them in $C$ on rank 0. Again, we implement this with `MPI.Send` and `MPI.Recv!` as it is easier as we are working with a row-partition. However, we could do it also with `MPI.Gather!`." ] }, + { + "attachments": { + "g7043.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSkAAATJCAYAAAA7PJMlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAACAASURBVHic7N1peFXlofbx/95JmAXEAcQ6F5GqVYsTQphKsFXRVkF6PAoqHm1FwTYV8WhCTKRaa1pBqdUDrai1tUDPsah9a0BQUOtUFVSqVMUis6CgjCF7vR+2RgiBrITsvZLs/++68iFrP8/aN7b10rvPAJIkSZIkSZKidgQQVPnpFGmiNMqOOoAkSZIkSZKkJuFA4GTgJGCfKp/9FXhmdxMtKSVJkiRJkiTVVjvgeKD7Dj/dgNhuxn+CJaUkSZIkSZKkevIdkisj6028Pl8mSZIkSZIkqcmr94WPlpSSJEmSJEmS6ssa4NnaTnK7tyRJkiRJkqS6WA+8Cby6w8/bwEHAstq8yJJSkiRJkiRJUm28ABwOfFhfL7SklCRJkiRJklQba7/4qTeWlJIkSZIkSapvrYFmO/y+FdhUZcwRQH/gG8D+JO9OWQncDyzew7uzgW8CxwNHfzG3HfA58AmwFHgOeB2oqGP+fdi5N9sMbKkyphswAOgK7Ad8BqwmucpwDrv+edOhOdCqmuefpDuIJEmSJEmSFLWHgGCHn3t2+OxkYFaVz3f8+X417+sAXAE8AWzYw9wdfz4Gir6YW1vPVnnXmB0+O7Waz6v+rAduJFkahnVENe/pVIv5RwHvVplfTvKvW7p1Ztc/yw0R5JAkSZIkSVIG211J+RNgO3su+M6v5n0ba5izp5/lQI9a5t9dSXldiPw7/swG2oT8zr0pKU8DVlWZ+xlwVsj59a3WJWU8DaEkSZIkSZKkq4FSIKuGcdX1VTl7GL8eWEdyS3l1DiK5/bpnTQFrcDnwK2rOv6P+wG/38ntrci7wNHDgDs9WAn2BJ1P83ZIkSZIkSVKDVXUl5RySZzp++ftC4Kckt04fCnQhWej9Csir5n3b+GpV5K+BwcDXgViVcYcBw4G/s+tKvg+BfUPmr7qScsYO+RPAn4DvkSxAs0mewXkqMInkFuuq3312iO+sy0rKq9l1ZeeiL94VJbd7S5IkSZIkKXJVS8ovfxIkt07XZjUiJEvOQYTfFRwjuTW7osr33xxy/u7OnFwL9Klh7ll8Vap++fP/QnxnbUrKGHB7NePnk7zEJ2qWlJIkSZIkSbV0CMmVcKo/uyspf5rmHAVVvv8jdr61e3eqKym3krz0J4yfV5lbwc7bsasTtqRsDjxSzdjpQIuQ+VLNklKSJEmSJCmkwcA/+aqAug/oGGmipqO6kvJ50n8/SjNgRZUc3UPMq66kvKUW3/s1dl3FWdMlNmFKyvYkV5VWHXcXDevuGUtKSZIkSZKkGnQjuf22upV+nwNFJFerqe6qKymHRJTlgSo5rg4xp2pJuQXYv5bfu7DKO26sYXxNJeWhwJtVPq8geWN6Q+Pt3pIkSZIkSbvRAZhAsjw6czdjWgPjSJZBUZVqTdFW4C8RffcHVX4/tg7veBn4uJZz3qry+wF1+N4vnQi8wM7ZtwA/AH65F+9tMMLswZckSZIkSWrMckiunisiuV02jK+TvMF5NvBjksWm6u5NkkVlfWkDfBM4nuQKw9ZAy92MPaHK72Fv+N7Ra3WYs67K7+3q8A6AgSTPm9ynyru/B8yr4zsbHEtKSZIkSZLUlA0geV5fXVbPAXwb+AfwW5I3Q6+pp1yZpupqxrr6LnAl8B3qfklM2KJ6R2vrMGdTld93V6LuyWUkz8LM2eHZEpLnWy6qw/saLLd7S5IkSZKkpqgr8CRQRt0Lyi9lkyzGFpFckZm1l+/LROv3cv4BwBMk/zP9Hnt3i3VdzhvdXIc5QR3mVPUzdi4oXwfOoIkVlOBKSkmSJEmS1LS0BwqBa9i53Nmtk08+mXfffZcNGzbUNHQ/YBLwQ+A64Om9yJlptuzF3ANJ3mj9jd18vgL4iGQR+jlQXuXzriS3hjcF+wNtSf6ZJUmSJEmS1MDEgWHASqq/tXuXn8MPPzy47777guXLlwdvvfVWMGLEiCArKyvU3C9+ZgJHpe+P2KhUvd37nr141x/Z9a/9s8CFhLuMZkyVubNDzKl6u/eYWqeGX1R5xyM1jK/udu/xQKLKsxXAcXXIk061vt1bkiRJkiSpsetDchtsqHKxVatWQX5+fvDBBx8Ey5cv3+nnqaeeCk4//fTaFJXbSN4Y3jZ9f9xGob5KyhPZ9a/5z4BYLd5xa5X5jamk7ARcAVRUeb4G+FYdMqVLrUtKz6SUJEmSJEmN1deAB0luBa56g/MuYrEYgwcP5vnnnyc/P5/mzXc9mvC4447jz3/+M1OnTuXQQw8NkyEHGAX8k+S5lZ5XWb/Or/L7ApIXGNXmvMcD6y9OJCaTXCW8fYdn+5MsW0+PJFEKWFJKkiRJkqTGphVQBLwLXEKIVXUnnngif/nLX5g4cSIHHlhzZ5WXl8fcuXO56aabaNOmTZhMBwH3AS8CvcJMUCinVPl9Bsntz7Vxcj1lidLvgaEkV+5+qT3wFMmVxI2eJaUkSZIkSWosYsAQ4G1gHNCypgmdOnViwoQJPPHEE3Tv3r1WX9aiRQtGjhzJs88+y+DBg4nFQu0w7k5yq/CfgMNq9YWqTtVG+d+1nH8QTefSnD+TXFm64yVE+5C88XxgJInqkSWlJEmSJElqDLoD8whZ/u1YMA4ZMiRswVitTp06MXHixNoUnTuWqUWEKFO1W9lVfm9Ry/k/pGltwX8COAfYuMOzVsBfgEGRJKonlpSSJEmSJKkh+3Ib9UtAzzAT6rBVO5Qvt4xPmDAh1JZxkuXROJLb0odRu8telLSmyu+n1WLu14H8eszSUMwGvgNs2OFZc5Jb4YdEkqgeWFJKkiRJkqSGqBkwmq8upKmxw6jDpTe1FovFGDJkyB4v36nG14CpwAvUrmQTvFzl9x+QLB9rciDJ0q51vSdqGOYDA4B1OzzLAf5A8pzWRqfqkllJkiRJkqSoDQLuAo4MM3jfffflxz/+MZdddhlZWenZ2duqVSvy8/O54IILuO2225g5c2aYaacBz5O8BOV6YFUqMzYR/wuM3eH3FsBfSZ7NuHA3cwYAvwGO+uL3z4H6W1LbcLwM9Cd5ec6XS3uzgAdIHjFwf4q//1R2f/TCvtU8O549rPS0pJQkSZIkSQ3FMcCvSG5lrVFOTg7Dhg3j+uuvp23btqlNthuHH3449913H8OGDaOwsJBFixbVNCVOcqXb94FS4DZga4pjNmYvAY+TPIfxS18HXiNZVs4FVpBcMXk48F3gpB3Gvk9ydeFNqY8aiTeAvsAsoPMXz+IkS9qWwIQUfvdIkscYhPWfX/xUy+3ekiRJkiQpah1IlikLCVlQ5ubmUlZWRklJSWQF5Y569uxJWVkZEyZMYL/99gszpQ3J8yoX0ojPEUyTEcCSKs+ySBaXd5JcmXo/8N/sXFCuBM4C1qc+YqQWAb2BD3d4FiO5GnlstTMaIEtKSZIkSZIUlWyS502+A4wixI7PI488kgcffJBHH32Uo48+OtX5aiUejzNkyBDmz5/PyJEjycnJCTOtC8kby8uA41IasPFaDeQCz9VizhyS25HfSUmihuc9kkXlv6o8vw24Jf1xas9bpSRJkiRJUhS+TXKlV6hirm3btlx77bVceeWVYcu/yL333nsUFRUxe/bssFO2A78luTX545QFS4+h7Lyq8QXgsb18Zxw4j+TKyt7APjt8FgDLgWeAB0me0xh88Vlvkisqv/Qe8D81fNcPSW4f/9Jfv3h3bZz1xXd/6Q2SW893pwMwpsqz8cBntfjOg0gW/lU7v6kkV1zWpwuBb9XXyywpJUmSJElSOnUhWbyE2uIcj8c5//zzKSwsZP/9909tshSZN28eBQUFvPvuu2GnrAOKgXuAipQFa9yygANIXtCygeQlRNsjTaS9YkkpSZIkSZLSoQ3wU5Jn5DUPM6Fnz54UFxfTrVu3lAZLh/LycqZOncqdd97Jhg0bwk5bBPwY+FvqkkkNgyWlJEmSJElKpThwMXAH0DHMhM6dO3PDDTcwZEjTu0/mk08+4Ze//CUPPPAAFRWhF0k+DowmeVO11CRZUkqSJEmSpFQ5jeS5k6eHGdyqVSt+9KMfcc0119C8eajFlo3WwoULKSws5MUXXww7ZRvwG6CA5PZmqUmxpJQkSZIkSfXta8DPSK6grLF7iMVinHPOORQWFnLwwQenPFxDUlZWxs0338zSpUvDTllO8rbmyUAiZcGkNLOklCRJkiRJ9aUVcC1wM8kzKGt0wgknUFJSwsknn5zSYA3Zli1bmDJlCnfddRcbN24MO+0V4DrgudQlk9LHklKSJEmSJNWHQcDdwGFhBnfs2JH8/Hwuuugi4vF4apM1EitXruRnP/sZM2bMIAiCMFMCYDrJC4n+ndJwUopZUkqSJEmSpL3xLWAC0CvM4JycHIYNG8YNN9xAmzahFltmnNdee43CwkJeffXVsFM2Ab8Abge2pCyYlEKWlJIkSZIkqS72J3mJy0ggK8yEvLw8SkpKOPTQQ1MarCkIgoDp06czfvx4Vq9eHXbaUpJb7R8iucpSajQsKSVJkiRJUm3kAFcDxUDbMBO6dOnCLbfcQt++fVOZq0natGkT9957L3fffTfbtm0LO20uyfMq30hZMKmeWVJKkiRJkqSwBgG/Ao4KM7h9+/b85Cc/4bLLLiMrK9RiS+3GkiVLuO2225g5c2bYKQng9yTPqwy9FFOKiiWlJEmSJEmqSVeS5eR3wwzOyclh6NChjB07lg4dOqQ2WYaZP38+48aNY9GiRWGnfEryrMq7gK0pCybtJUtKSZIkSZK0O/sCRSS3d2eHmZCbm0txcTFdu3ZNZa6Mtn37dv74xz/y85//nLVr14ad9i6QDzyeumRS3VlSSpIkSZKkqrKBy4FbgQPCTDjiiCMoKioiLy8vpcH0lfXr13PnnXcydepUtm/fHnbaLJLnVb6VumRS7VlSSpIkSZKkHfUnuTX4+DCD27Zty7XXXst//dd/0axZs9QmU7X+9a9/UVRUxNNPPx12SjlwL1AIrE9ZMKkWLCklSZIkSRLA14GfAUPCDI7H45x//vkUFBRwwAGhFlsqxcrKyhg3bhxLliwJO2UtUALcA1SkKpcUhiWlJEmSJEmZrTVwPXAD0CLMhB49elBcXMyxxx6b0mCqvfLycqZOncovfvELPvvss7DTXgdGA8+mLpm0Z5aUkiRJkiRlphhwCfBzoFOYCQcddBBjx45l8ODBxGJWCg3ZqlWrKC0t5Q9/+AMVFaEXST4OjAI+SF0yqXr+HUWSJEmSpMxzCjAB6BFmcMuWLbn66qsZOXIkLVqEWmypBmLBggUUFhby0ksvhZ2yDfgNcDMQeimmtLeyog4gSZIkSZLS5mBgEnA3cEhNg2OxGIMGDeJ3v/sd3/nOd8jOzk55QNWvjh07MnToULp27crrr7/Ohg0bapqSBZwGDAc+B14DghTHlFxJKUmSJElSBmhJchvvzUCbMBO++c1vUlJSwimnnJLSYEqfzZs389vf/pa77rqLjRs3hp32MnAd8HzqkkmWlJIkSZIkNXWDgInA4WEGd+zYkfz8fC666CLi8XhKgykaK1as4LbbbmPGjBkEQahFkgEwHfgp8O+UhlPGsqSUJEmSJKlpOonkuZO5YQbn5OQwbNgwxowZwz777JPaZGoQ/vGPf1BYWMg//vGPsFM2AncCtwNbUhZMGcmSUpIkSZKkpmU/oBAYSci7KPLy8iguLuawww5LaTA1PIlEghkzZnDrrbeyZs2asNOWkjw64MHUJVOmsaSUJEmSJKlpyAGuBm4B2oWZ8PWvf51bbrmFfv36pTSYGr6NGzfym9/8hrvvvptt27aFnTaH5HmVC1KXTJnCklKSJEmSpMZvAMmt3d8IM7h9+/b85Cc/4dJLL/XGbu3kgw8+4Pbbb2fmzJlhpySA35M8r3J1yoKpybOklCRJkiSp8eoK/BI4K8zg7OxsfvCDHzB27Fg6dOiQ2mRq1ObPn09hYSH//Oc/w075BPg58Csg9FJM6UuWlJIkSZIkNT77AjcAPwaahZnQq1cviouLOeaYY1IaTE3H9u3b+eMf/8jtt9/OunXrwk57B8gHnkhdMjVFlpSSJEmSJDUeceBi4BfAgWEmHHHEEYwdO5ZBgwalNJiark8//ZTS0lIeeOABKioqwk6bBYwG3k5dMjUllpSSJEmSJDUO/YC7gG+GGdy6dWt++MMfcu2119KsWajFltIeLV68mKKiIubMmRN2SjlwL8nb5tenLJiaBEtKSZIkSZIatkOA8cAlYQbH43HOP/98CgoKOOCAA1KbTBmprKyMwsJCPvzww7BT1gIlwD1A6KWYyiyWlJIkSZIkNUytgetJnj3ZIsyEk046ieLiYrp3757SYFJ5eTlTp07lF7/4BZ999lnYaa+R3AI+L3XJ1FhZUkqSJEmS1LDEgMHAncChYSYcdNBBjB07lsGDBxOL+a/6Sp9Vq1ZRWlrKI488QiKRCDvtceBaYEnKgqnR8e9ckiRJkiQ1HKeQPHfyjDCDW7ZsyeWXX851111H69atU5tM2oM33niDwsJCXn755bBTNgMTgVuBz1MWTI2GJaUkSZIkSdHrDIwDriB5g3eN8vLyuPXWWznkkENSGkwKKwgCHn/8cYqLi1m2bFnYacuA/wYeAoKUhVODZ0kpSZIkSVJ0mgE/InmpyD5hJhx//PGUlJRw6qmnpjSYVFebN2/m17/+Nffccw9bt24NO+1lkudVvpC6ZGrILCklSZIkSYrGIGACcESYwR06dOC6667jsssuIysrK7XJpHqwfPlybr/9dmbMmEEQhFokGQAPA2OAlSkNpwbHklKSJEmSpPQ6kWQ52TvM4JycHIYNG8aYMWPYZ59Qiy2lBuX555+nsLCQt99+O+yUjSQvjrod2JKyYGpQLCklSZIkSUqPDiTPnRwJhFoKmZuby6233kqXLl1SGkxKtUQiwYwZMygpKeHjjz8OO+09kv+b+X3qkqmhsKSUJEmSJCm1coBrgQKgfZgJXbt2pbi4mNzc3JQGk9Jtw4YNlJaW8sADD1BeXh522mogF3g3dckUNUtKSZIkSZJS5yzgl0DXMIPbt2/P9ddfzyWXXEJ2dnZqk0kR+te//sW4ceOYM2dO2CkfAwekMJIiZkkpSZIkSVL9O4ZkOfndMIOzs7O55JJLuP7662nfPtRiS6lJmDVrFkVFRbz//vthhp8ALEhxJEXE/1tGkiRJkqT6056vzp3MCTOhd+/e3HLLLXTtGmqxpdSk7LvvvrRr1y7s8P1SmUXRsqSUJEmSJGnvZQFXACWE3JJ6+OGHM27cOM4888yUBpMaopUrVzJ+/Hj+/Oc/EwRB5fPmzZuzdevW3U1bnZZwikQ86gCSJEmSJDVyfYFXgd8QoqDcZ599uPnmm5k7d64FpTLO1q1bmTBhAr169WLGjBk7FZR5eXk89thjEaZTlFxJKUmSJElS3RwCjAcuJsSdD7FYjAsuuICbb76ZAw88MOXhpIamrKyMwsJCPvzww52eH3fccRQXF3P66aezdu3aiNIpapaUkiRJkiTVTitgDHAD0CLMhBNPPJGSkhK6d++e0mBSQ7R48WLGjRvH3Llzd3q+77778pOf/IRLL72UrKysaMKpwbCklCRJkiQpnBgwGLgTODTMhE6dOnHjjTcyePBgYrEaF1tKTcqnn35KaWkpDzzwABUVFZXPc3JyGD58OD/96U9p27ZthAnVkFhSSpIkSZJUs5OBu4CeYQa3aNGCESNGcN1119G6devUJpMamPLych599FFuv/121q1bt9Nnubm5FBcXe5u9dmFJKUmSJEnS7h0EFJG8uTvU5bN5eXnceuutHHLIIanMJTVI8+bNo7CwkHfeeWen50ceeSRFRUUMGDAgomRq6CwpJUmSJEnaVTPgR0AxEGo/6o6Xf0iZ5oMPPqCoqIiysrKdnrdt25Zrr72WK6+8kpycnIjSqTGwpJQkSZIkaWeDSG7tPjLM4H333Zcf//jHXHbZZV7+oYyzYcMG7r77bv7nf/6Hbdu2VT6Px+NccMEFFBQUsP/++0eYUI2FJaUkSZIkSUndgF8C3wkzOCcnh2HDhnH99dd7+YcyTiKRYMaMGdx6662sWbNmp8969uzJLbfcwje+8Y2I0qkxsqSUJEmSJGW6DsA4YCQQailkbm4uJSUlHH300SkNJjVEL7zwAoWFhbz11ls7Pe/cuTNjx45l8ODBESVTY2ZJKUmSJEnKVNnA5cB4INR+1KOOOopx48Z5+Ycy0ooVK7jtttuYMWMGQRBUPm/ZsiVXX30111xzDc2bN48woRozS0pJkiRJUib6NslzJ48LM7hdu3Zcc801Xv6hjLR582Z+/etfM2nSJLZs2VL5PBaLcc4551BYWMjBBx8cYUI1BZaUkiRJkqRM0oXkyskhYQbH43HOP/98CgsLvfxDGScIAh5//HFKSkr46KOPdvrshBNOoKSkhJNPPjmidGpqLCklSZIkSZmgDfBTYCwQaj9qz549KS4uplu3bikNJjVECxYsoKCggJdffnmn5x07diQ/P5+LLrqIeDweUTo1RZaUkiRJkqSmLAsoIXkpTqgruDt37swNN9zAkCGhFltKTcqqVasoLS3lkUceIZFIVD7Pyclh+PDhjBkzhjZt2kSYUE2VJaUkSZIkqanaH1gMtA8zuHXr1owePZorr7ySZs2apTaZ1MBs3bqV+++/n4kTJ7Jx48adPsvLy6O4uJjDDjssonTKBJaUkiRJkqSmahohCsp4PM7gwYO58cYb6dixYxpiSQ3Lk08+SUlJCR9++OFOz7t06cItt9xC3759owmmjGJJKUmSJElqqk6sacCBBx7I7373O0466aR05JEalEWLFjFu3Djmz5+/0/P27duTn5/PpZdeSlZWVkTplGk84VSSJEmS1FRtr2nA6tWrGT9+PG+//XY68kgNwrp167jxxhsZOHDgTgVlTk4OF198MfPnz2fEiBEWlEorS0pJkiRJUlO1Msyg559/njPPPJMbbriBtWvXpjqTFJny8nKmTJlCz549mTp1KhUVFZWf5ebm8tRTT3HHHXfQoUOHCFMqU1lSSpIkSZKaqs/DDqyoqOChhx6iZ8+e3H///ZSXl6cyl5R2c+fOZcCAARQUFLB+/frK50cccQRTp07l0UcfpWvXrhEmVKazpJQkSZIk6QsbNmygqKiIvn37MnPmzKjjSHvtgw8+4KqrruKiiy5i8eLFlc/btm3LTTfdxJw5c8jLy4swoZRkSSlJkiRJyjSJmgZ8WewMHTqUd955Jx2ZpHq1adMmSktL6dev306FezweZ8iQIcybN4+RI0fSrFmzCFNKX7GklCRJkiRlmruAJ8MMnDdvHgMHDmTMmDGsW7cuxbGkvZdIJJg2bRo9evSgtLSUbdu2VX7Wo0cP/va3vzFhwgQOOOCACFNKu7KklCRJkiRlmjXA2UAesKimweXl5Tz88MP06tWLyZMn73TZiNSQvPbaa5x33nmMHj2aNWvWVD4/6KCDmDhxItOnT+fYY4+NMKG0e5aUkiRJkqRMNQs4AbgO2FDT4E8//ZTCwkL69+/P3LlzU51NCm3FihWMGjWKc845h1dffbXyecuWLcnPz+e5555j8ODBxGKxCFNKe2ZJKUmSJEnKZOXABOAoYCJQ4zLJxYsXc9FFFzF8+HA+/PDDVOeTdmvz5s1MmjSJ3r17M336dIIgACAWizFo0CCeeeYZ8vPzadGiRcRJpZpZUkqSJEmSMkqbNm2quynkY2A0cCowP8x7ysrK6N27NwUFBXz++ef1GVGqUVlZGX379mX8+PFs3Lix8vk3v/lN/u///o/77ruPr33taxEmlGrHklKSJEmSlFGOO+64I/bw8T+AXOBcYElN7yovL2fKlCnk5uby8MMPk0jUeHG4tFcWLlzI9773PYYPH87SpUsrn3fs2JE77riDJ598klNOOSXChFLdWFJKkiRJkjLK4Ycf3iXEsJnAscBYoMZlkqtWrWLMmDGcffbZvPLKK3sbUdrFunXrKCgo4KyzzuKll16qfJ6Tk8MVV1zBs88+y8UXX0w8btWjxsn/5kqSJEmSMkqnTp3ClJQAm4CfA92Ah4CgpglvvPEG5513HldddRXLli3bi5RSUnl5OZMnT6ZHjx5MmTJlp9vl8/LyePbZZykuLmafffaJMKW09ywpJUmSJEkZpVWrVgcuW7bskFpM+QgYBpwO/L2mwUEQMHPmTHr37k1paSlbt26ta1RluHnz5jFgwAAKCwv57LPPKp9//etf5/e//z1Tp07lsMMOizChVH8sKSVJkiRJmSivDnNeAnoCw4FVNQ3evHkzpaWl9OzZk2nTptXh65Sp3nvvPS655BKGDh3K4sWLK5+3b9+ekpISnn76afr16xdhQqn+WVJKkiRJkjJOPB6vS0kJkAAeBI4CbgFqXCa5fPlyRo8ezeDBg3n77bfr+LXKBOvXr6egoIB+/foxe/bsyufZ2dlcfPHFzJ8/nxEjRpCdnR1hSik1LCklSZIkSRknCIK8IAj25t+JNwJFwPFAqGWSzz//PAMHDmTUqFF8/PHHe/HVamq2b9/Oww8/TK9evZgyZQrbt2+v/KxXr1489dRT3HHHHXTo0CHClFJqWVJKkiRJkjLRfitWrPhWPbxnMXAhMAB4s6bBiUSC6dOn06tXLyZNmkR5eXk9RFBjNn/+fM4880zGjBnD2rVrK58fccQR3HffffzpT3/imGOOiTChlB6WlJIkSZKkTDWwHt81GzgJuAqocZnkhg0bGD9+PP369WPWrFn1GEONxZIlS7jqqqu48MILWbRoUeXzVq1akZ+fz5w5cxg0aFCECaX0sqSUJEmSJGWqup5LuTvbgfuBrsDEL37fo/fff59hw4YxdOhQ3nnnnXqOo4Zo06ZNlJaW0q9fP2bOnFn5PB6PM2TIEF544QXy8/Np1qxZhCml9LOklCRJkiRlqjNWr17dJgXvlsNgUQAAIABJREFUXQeMJnle5f8LM2HevHkMHDiQgoICNmzYkIJIiloQBEybNo0zzjiD0tJStm796s6lk046iccee4wJEyZwwAEHRJhSio4lpSRJkiQpUzVLJBJ9U/j+fwLfBc4F3q9pcHl5OVOmTKFHjx5MnjyZioqKFEZTOr3++uuce+65jB49mtWrV1c+79SpExMnTuTxxx+ne/fuESaUomdJKUmSJEnKWIlEor63fFdnJtANuA6ocZnkJ598QmFhId/97nf5+9//nvJwSp2VK1cyatQozj77bF599dXK5y1btmTkyJHMmzePwYMHE4vFIkwpNQyWlJIkSZKkTFafl+fsyTZgAnAMyXMrEzVNePPNNzn//PMZPnw4//73v1OdT/Voy5YtTJo0id69ezN9+nSCIKj8LC8vj7lz53LTTTfRunXrCFNKDYslpSRJkiQpkx2zYsWKw9P4fStI3gB+KvBcmAllZWX07duX8ePH8/nnn6c0nPZeWVkZffr02eU/r+OPP57//d//ZerUqRxyyCERJpQaJktKSZIkSVJGC4JgQARf+yqQC1wIfFjT4C9X5uXm5jJt2rSdVuapYdhx5evSpUsrn3fo0IGSkhKefPJJTjvttAgTSg2bJaUkSZIkKaMFQZCOcymr/WpgGvAN4BZgc00TVq1axejRo3c541DR+eSTTygoKNjlDNGcnByuuOIKXnjhBUaMGEFWVlaEKaWGz5JSkiRJkpTRYrFYXhAEUTZIm4Ai4GjgIZLl5R59eVv0qFGjdrotWulTXl7O5MmT6dGjB1OmTNnpNvbc3FxmzZpFcXEx++yzT4QppcbDklKSJEmSlOn2XblyZfeoQwAfAcOAfsDrNQ0OgoDp06dzxhlnUFpaytatW1MeUEnz5s0jLy+PwsJCNmz46sL2o446ioceeohHH32ULl26RJhQanwsKSVJkiRJGS8IgnTd8h3GM0B3YDiwqqbBmzZtorS0lF69ejFt2rSUh8tk77//PsOGDWPo0KG8++67lc/btWtHSUkJc+bM4dvf/naECaXGy5JSkiRJkiSI6lzK3UkADwLHAD8HalwmuWzZMkaPHs2QIUNYtGhRqvNllPXr1zN+/Hj69evHrFmzKp9nZ2dz8cUXM3/+fEaMGEF2dnaEKaXGzZJSkiRJkiQ4Y+3atW2jDlGNT4GxwPEkL9mp0XPPPUdeXh6jRo1i7dq1KQ3X1CUSCaZNm0Zubi6TJk2ivLy88rNevXrxt7/9jTvuuIP99tsvwpRS02BJKUmSJEkSZG/ZsqVv1CH2YDFwIckVn2/VNDiRSDB9+nR69eq1S7mmcL4se0ePHs3HH39c+fzwww/nvvvu409/+hPdunWLMKHUtFhSSpIkSZIExOPxhrbluzqzgJOAq4CPaxhbuU25f//+zJ49O+XhmoLly5czatSoXbbNt2rVivz8fObMmcOgQYMiTCg1TZaUkiRJkiTR4C7P2ZNy4H6gKzARqKhpwnvvvccll1yyy4Uv+sqXFxD17NmT6dOnVz6PxWIMGTKE559/nvz8fJo3bx5hSqnpsqSUJEmSJCnp6JUrVx4RdYhaWAeMJnle5d/CTJg3bx55eXkUFBSwYcOGlIZrLIIgYObMmfTp04fS0lK2bv3qjqITTzyRv/zlL0yYMIEDDzwwwpRS02dJKUmSJEnSFxKJRGPY8l3VIuA7wLnA+zUNLi8vZ8qUKfTo0YPJkydTUVHjQswm6/XXX+e8887jqquuYtmyZZXPO3XqxMSJE3niiSfo3r17hAmlzGFJKUmSJEnSVxpjSfmlmUA34Drgs5oGf/LJJxQWFnLWWWfx4osvpjxcQ7Jq1SrGjBnDOeecwyuvvFL5vEWLFowcOZJnn32WwYMHE4vFIkwpZRZLSkmSJEmSvjIgCIKsqEPshW3ABOAYkudWJmqasHDhQr7//e8zfPhwli5dmup8kSovL2fy5Mnk5uby8MMPk0h89ZcnLy+PZ555hptuuok2bdpEmFLKTJaUkiRJkiR9pf2qVatOiTpEPVhO8gbw04Dnw0woKyujT58+jB8/no0bN6Y0XBTKysrIzc2lsLCQzz//vPL5cccdx5///GemTp3KIYccEmFCKbNZUkqSJEmStIMgCM6MOkM9egXoBVwI/LumwVu2bGHSpEnk5uYybdo0giBIecBUW7x4MRdddBHDhw/n3//+6i/BvvvuS0lJCX/96185/fTTI0woCSwpJUmSJEnaSRAEjflcyuoEwDSS51XeAmypacLKlSsZPXo055xzDq+++mqq86XEp59+SkFBAf3792fu3LmVz3Nycrjiiit44YUXGDFiBFlZjXl3v9R0WFJKkiRJkrSz09atW9cu6hApsAkoAo4GHgoz4bXXXuPcc89l1KhRrF69OpXZ6s2X506efvrpTJkyZafby3NzcykrK6O4uJi2bdtGmFJSVZaUkiRJkiTtLHvLli39ow6RQkuBYUA/4I2aBgdBwPTp0znjjDMoLS1l27ZtKQ9YV/PmzWPgwIEUFhayYcOGyudHHnkkDz74II8++ihHH310hAkl7Y4lpSRJkiRJu2pqW76rMxf4FjAcqHGZ5KZNmygtLaVv377MnDkz1dlq5f3332f48OEMHTqUd955p/J5u3btuOmmm5gzZw4DBgyIMKGkmlhSSpIkSZK0q+9EHSBNEsCDQFfg50CNyySXLFnCVVddxYUXXsiiRYtSnW+PNmzYwPjx4+nfvz9lZWWVz+PxOEOGDGHevHmMHDmSnJycCFNKCsOSUpIkSZKkXR2xatWqo6IOkUafAmOB44EnwkyYP38+Z555JmPGjGHt2rUpDVdVIpFg2rRp9OrVi0mTJu20Bb1nz56UlZUxYcIE9t9//7TmklR3lpSSJEmSJFUjkUgMjDpDBN4FziG53f2tmgZv376dhx9+mF69ejF58mS2b9+e8oDPP/88AwcOZPTo0Xz88ceVzzt37szEiROZNm0a3bp1S3kOSfXLklKSJEmSpGoEQZAJ51LuzizgJOA6YH1Ng9evX09hYSH9+/fn6aefTkmgFStWMGrUKIYMGcLbb79d+bxVq1bk5+fz3HPPMXjw4JR8t6TUs6SUJEmSJKl63w6CIJMPMywHJgBHAROBipom/Otf/+Liiy9m+PDhLFmypF5CbN68mdLSUs444wymT59OEAQAxGIxBg0axDPPPEN+fj7Nmzevl++TFA1LSkmSJEmSqtd2+fLlp0YdogFYC4wGTgGeDTOhrKyMPn36UFBQwGeffVanLw2CgJkzZ9KnTx9KS0vZunVr5WcnnHACjz32GPfddx8HH3xwnd4vqWGxpJQkSZIkafcyect3Va8BfYBzgQ9qGlxeXs6UKVPo3bs3Dz/8MBUVNS7ErLRgwQK+973vcdVVV/HRRx9VPu/YsSN33HEHTzzxBCeffHId/giSGipLSkmSJEmSdiMej2fi5Tk1mQkcS/I28BqXSa5atYoxY8Zw9tln89JLL4Uae9ZZZ/Hyyy9XPs/JyeGKK65g3rx5XHzxxcTj1hlSU+P/qiVJkiRJ2o0gCE5dunRph6hzNECbgZ8DxwAPAUFNExYsWMD3v//9XVZHQnLV5eTJkytXXSYSicrP8vLymDdvHsXFxbRp06Z+/xSSGgxLSkmSJEmSdi8rKyurX9QhGrDlwDDgNOCFmgbveM7k+PHj2bhxI2VlZfTu3ZvCwsKdzq/s0qULjzzyCFOnTuXQQw9N3Z9AUoOQHXUASZIkSZIauDxgRtQhGriXgV7AcOBnQKc9Dd68eTOTJk1iypQpbNmyZafP2rdvT35+PpdeeilZWVkpCyypYXElpSRJkiRJe3Zm1AEaiQTwO+BoklvBt+55ODsVlF+eO/n3v/+dESNGZFxBuX37dl5++WUWL14cdRQpEpaUkiRJkiTt2eFLly7tEnWIRuQzkpfqdCF5XmUol19+OcXFxbRt2zZlwRqqZ599lgEDBnDeeefRt29ffvvb30YdSUo7S0pJkiRJkmqQnZ3tLd+1t5TkeZV5wJs1DX777bdTHqih+eCDD7j00kv5wQ9+wLvvvgskz+38zW9+E3EyKf0sKSVJkiRJqkEQBHlRZ2jEZgEnkDyvcs3uBlU9m7Ip27RpE6WlpfTr14+nnnpql883btwYQSopWpaUkiRJkiTVrH8QBDlRh2jEEsCDQFfg2YizRCaRSPCHP/yBHj16UFpayrZt26KOJDUYlpSSJEmSJNVsnxUrVpwedYgm4BNg16WDGeC1117jvPPOIz8/nzVrdrugVMpYlpSSJEmSJIXjlm/V2vLly/nRj37EOeecw6uvvrrL5zk5OeTl+V8tyZJSkiRJkqRwvDxHoW3ZsoVJkybRp08fHnvsMYIg2GVMbm4uZWVlXH311REklBoWS0pJkiRJksI5eenSpR2iDqGGr6ysjD59+jB+/PhqL8E56qijeOihh3j00Uc5+uijI0goNTzZUQeQJEmSJKmRyMrOzv42MC3qIGqYFi5cSGFhIS+++GK1n7dr145rrrmGK6+8kpwc72GSdmRJKUmSJElSSEEQ5GFJqSo++eQTfvnLX/LAAw9QUVGxy+fxeJzzzz+fcePGsd9++0WQUGr4LCklSZIkSQrPcylVqby8nKlTp3LnnXeyYcOGasf07NmT4uJiunXrluZ0UuNiSSlJkiRJUniHLVu2rOvBBx/8TtRBFK158+ZRUFDAu+++W+3nBx98MGPGjGHIkCFpTiY1TpaUkiRJkiTVzkDAkjJDvffeexQVFTF79uxqP2/VqhU/+tGPuOaaa2jevHma00mNlyWlJEmSJEm1EI/H84C7o86h9Fq/fj333HMP999/P+Xl5bt8HovFuOCCC7j55ps58MADI0goNW6WlJIkSZIk1UIQBP0XL17cvEuXLlujzqLUSyQSzJgxg+LiYtauXVvtmBNPPJGSkhK6d++e5nRS02FJKUmSJElS7bRu06bN6cAzUQdRas2fP59x48axaNGiaj/v1KkTN954I4MHDyYWi6U5ndS0WFJKkiRJklRLQRDkYUnZZC1ZsoTbbruNmTNnVvt5ixYtGDFiBKNHj6ZNmzZpTic1TZaUkiRJkiTV3kDg5qhDqH5t2rSJe++9l3vuuYetW6vfzZ+Xl0dJSQmHHnpomtNJTZslpSRJkiRJtdd9xYoVBxx00EFrog6ivRcEAdOnT2f8+PGsXr262jHHHXccxcXFnH766WlOJ2UGS0pJkiRJkmovnkgk+gOPRh1Ee2fBggXccMMNvPHGG9V+vv/++3PDDTfwH//xH8Tj8TSnkzKHJaUkSZIkSXUQi8XysKRs1FauXMkFF1zAxo0bd/ksJyeHESNGcN1119G2bdsI0kmZxZJSkiRJkqS6OTPqANo7r776arUFZV5eHuPGjePII4+MIJWUmSwpJUmSJEmqm68tX768W+fOnRdFHUR1U1FRsdPv7dq1495776Vv377RBJIymIcpSJIkSZJUdwOjDqD607lzZwtKKSKWlJIkSZIk1V1e1AEkqSmwpJQkSZIkqe76Ll68uHnUISSpsbOklCRJkiSp7lq3adPmjKhDSFJjZ0kpSZIkSdJeCILAcyklaS9ZUkqSJEmStHcsKSVpL1lSSpIkSZK0d05auXLlgVGHkKTGzJJSkiRJkqS9E0skEgOiDiFJjZklpSRJkiRJeykIgryoM0hSY2ZJKUmSJEnSXorH4wODIIhFnUOSGitLSkmSJEmS9lIQBJ1XrVp1bNQ5JKmxsqSUJEmSJKkeJBIJb/mWpDqypJQkSZIkqX54LqUk1ZElpSRJkiRJ9aPP0qVLW0YdQpIaI0tKSZIkSZLqR8t4PN4z6hCS1BhZUkqSJEmSVE/i8bhbviWpDiwpJUmSJEmqJ0EQeHmOJNWBJaUkSZIkSfXnhDVr1hwUdQhJamwsKSVJkiRJqj+x8vLyb0cdQpIaG0tKSZIkSZLql+dSSlItWVJKkiRJklS/BgZBEIs6hCQ1JpaUkiRJkiTVr04fffTR8VGHkKTGxJJSkiRJkqR6lp2d7S3fklQLlpSSJEmSJNWzIAg8l1KSasGSUpIkSZKk+td76dKlLaMOIUmNhSWlJEmSJEn1r0VWVlZu1CEkqbGwpJQkSZIkKQXc8i1J4VlSSpIkSZKUAvF43MtzJCkkS0pJkiRJklIgCILj16xZc1DUOSSpMbCklCRJkiQpNWLbt293y7ckhWBJKUmSJElSingupSSFY0kpSZIkSVLq5AVBEIs6hCQ1dJaUkiRJkiSlTsdly5adEHUISWroLCklSZIkSUqhWCzmLd+SVANLSkmSJEmSUigWi3kupSTVwJJSkiRJkqTUyl25cmXrqENIUkNmSSlJkiRJUmo1TyQSuVGHkKSGzJJSkiRJkqTUc8u3JO2BJaUkSZIkSann5TmStAeWlJIkSZIkpd5xH3300deiDiFJDZUlpSRJkiRJaZCVlTUg6gyS1FBZUkqSJEmSlAZBEHgupSTthiWlJEmSJEnpMTAIAv89XJKq4d8cJUmSJElKj/1XrFhxYtQhJKkhsqSUJEmSJCl9vOVbkqphSSlJkiRJUpp4LqUkVc+SUpIkSZKkNInFYr1Wr17dJuocktTQWFJKkiRJkpQ+zSoqKnpHHUKSGhpLSkmSJEmS0sgt35K0K0tKSZIkSZLSy8tzJKkKS0pJkiRJktLrG8uXLz806hCS1JBYUkqSJEmSlGZu+ZaknVlSSpIkSZKUZvF43JJSknZgSSlJkiRJUpoFQTAgCAL/nVySvuDfECVJkiRJSr/9Vq5c2T3qEJLUUFhSSpIkSZIUgSAIvOVbkr5gSSlJkiRJUjQ8l1KSvmBJKUmSJElSNM5Yu3Zt26hDSFJDYEkpSZIkSVI0crZs2dIn6hCS1BBYUkqSJEmSFJF4PO6Wb0nCklKSJEmSpMh4eY4kJVlSSpIkSZIUna4rV648IuoQkhQ1S0pJkiRJkiKUSCQGRJ1BkqJmSSlJkiRJUrQ8l1JSxrOklCRJkiQpWgOCIMiKOoQkRcmSUpIkSZKkaO27atWqk6MOIUlRsqSUJEmSJCli3vItKdNZUkqSJEmSFLEgCDyXUlJGs6SUJEmSJCl6PdatW9cu6hCSFBVLSkmSJEmSope9efPmvlGHkKSoWFJKkiRJktQwuOVbUsaypJQkSZIkqQGIxWJeniMpY1lSSpIkSQ3A8KffOnbY7DdviDqHpEh1WbVq1ZFRh5CkKFhSSpIkSREaVvbWoZfOenMSQeLlWBAUD//bgt5RZ5IUnYqKCrd8S8pI2VEHkCRJkjLRsNnvHBxjaz4krggCmhN88UF2vAjoH2E0SdHKA+6LOoQkpZsrKSVJkqQ0Gjbrxf0unbVwfJxtbxHERhLQfKcBQdDz8jlvD4gonqTofTsIAhcUSco4/o1PkiRJSoMhc95q0yqR+GEMxgQB7SpXTlajoqKihCCYTSy2h1GSmqj2y5YtOwV4IeogkpROlpSSJElSCl0585VWW1q1vDxWUTEWYgeEbB2/ddmshef+Dh5LbTpJDVFWVtZALCklZRi3e0uSJEkpcOUrr+QMm/3GFdtaNn87FiRKIXZAbeYnYrGioqLAf16XMlAQBF6eIynj+A89kiRJUj0qKgriw8vevGDr+uYLYkF8UgAH1fFV31jSc+EP6jWcpMbitHXr1rWLOoQkpZMlpSRJklQfgiA2/OmFZ3+Q++ZLxIJHCDhyr18ZixUN+dNbzeojnqRGJXvLli39ow4hSelkSSlJkiTtpctmv9X/0qffeoEEfybg+Hp89WGt960YXo/vk9R4uOVbUkaxpJQkSZLq6LLZC88Y/vTCskSQ+GsQBCel5EtisZuunPlKq5S8W1JD9p2oA0hSOnm7tyRJklRLl85685SA4L8TAWcR8rruugrgoG0tm/8XMCG13ySpgTli1apVR3Xs2PG9qINIUjq4klKSJEkK6ZKyhd2Gz17wCATzgLPS9sWx2Jj/fPLvbdP2fZIahEQiMTDqDJKULq6klCRJSr9OwGnAicCRX/zeFsgBPgc2AKuBhcAC4EVgUyRJBcClcxYdTkV5URBjKEEsnuLFk7sIgmD/7OatrwXGp/mrJUUoCII84N6oc0hSOlhSSpIkpce+wHDgIuBkIFaLuZuBMmAG8Ciwtd7TaY8qyrfvnxWP/YCgVv+51asYjB4268XfPDjgtLVRZZCUdt8OgiAnFouVRx1EklLN7d6SJEmp1Rq4Bfg38CvgFGpXUAK0BM4FpgJLgOvrMZ9CeGjg8a8E8GSUGYKAdnFa/STKDJLSru3y5ctPjTqEJKWDJaUkSVLq9ADeAAqBNvX0zk7A6Hp6l2ohUZEoJEYi0hAxRl7+1D87R5pBUrrlRR1AktLBklKSJCk1/hOYAxwVdRDVj4fOPOFNYHqUGYKAlol4+ZgoM0hKr3g87uU5kjKCJaUkSVL9uwR4EGgedRDt2ZA/vdVs2Ow3rhg+a+F0gqDGbfgV8fgtMdiejmy7E8AVlzzzxhFRZpCUPkEQnLp06dIOUeeQpFSzpJQkSapffYHfEf6fswLgFWAK8DOSW8MnAI8Ai1KQT0BRURAfXvbmBa07JBbEgvgkYNClcxZ+t6Z5D/c79l/EeSgNEfckJ2t71o0RZ5CUPllZWVn9og4hSalmSSlJklR/2gO/B7JCjN1EspTsTPIynSuAm4AS4DqS28W/ARwIjABeTUHezBMEseFlb17wQe7CBcSCRwL4akViECspKgpq/OfjWBbjiUV7w3pAcPGlcxYcE2UGSWnluZSSmjxLSkmSVF+OAc4mWbZdBJxEuLIOIJtkUfefwJXA+cBpXzxvTIpIlo41+SdwHMlScmUNY9cAvwVOBnKBf+xFvox22ey3+l/69FsvEAse4f+zd+fhUVX3H8ff507CFkBF3EVwQQUSUERRIEhIAmpBqwgqCglLtS1ValEsBkJITKEWbFHRQkESoLQQUSz+QMiGLGJbFEMSQFFRUVARBIWwJHPP749LashM5s6ayfJ9PQ9Pm7nn3vMlxMydzz2LVh2rH9ea6M9ii4fYXWfhrTF7Qc8PTZVe0jgwjSlhrUEIUZsGhrsAIYQItfp24y+EEEKI0LsReNnD8c+ByiAnAvgl8CusUX/V7QfmAM8Bx90cPxd4Chh9+v9XdxhYBkw7fa2a3ArM8nD8v6dr9FZzoACIrOH4KSABazRkpQuxvhd2dgF9gIM+1FNpE9a/z71+nNtojcov7mUqppmm2de2sVZp/QoLX18fF+dx3UnjZMV0s2nkSDStglaor7QeMjL3g5mLEq/bFrYahBC1pcPevXs7tmvXbne4CxFCiFCRkFIIIYQQ1bUCbvBwvOXp/22HtW5iHw9tLwKeAR4A7gQ+rXLsdiALazpzTc4GHjl9/t1YwaE775zuq6ZRjNcBmcCXHvqq6nbgZg/HV3BmQAnwC+w3yjkJ3I9/AWUlE1gewPmNRnJeyY0a/bSpuQPt3TkarupgnvsQ1s9mjRbe0f1AUv72l0GFbadtDUoZRhpwV7hqEELUnoiIiAGAhJQN1MGDgdwaCNEwyHRvIYQQQvjjQqxRfZ4Cyqq6AIXAeae/HgL8C88BZVWtgdVYU57dKQf+6uF8BzDKy74Ahtkcf8WPc8AaoVrkQx3CDyNyizsl5W9fCnojcIev52utJj+6erftzuzKcM5CccivIoNFq9uS1m63HyEqhGgIBoS7ABF833//PZMmTeKRRx4JdylChJ2ElEIIIYTwVTPgDeAyH8+7DHgJ6Apk4/uMjqZYu2bXNAV7HnjczGQM3t37tAAGeTj+FbC22muXYK0x6YkJvOhF/8JPY/J3tE/OK5ljGLyHVkM0KD8v1e7HZifH2DXKirv+sELP9rOP4Ikw0sJdghAi9LTWcVrrmt4DRT1TXl7OggUL6NWrF9nZ2TidzjOOX3aZr7dZQtR/ElIKIYQQwlftgZv8PHcIVsAX5ef50cDgGo59g+dp0O3xbhTKz/BcXzbgrPZaTy+uuw34xIt2wkcj8z+8JCl/+3MVOEs0eiza6w2baqS1fnr0G7ts15s8ZjheBH0g0P4CNTR361nhrkEIEXKt9u/ff0u4ixCBe/vtt0lISGDKlCkcOXLE5Xi7du2YMWNGGCoTIrwkpBRCCCFEoHZgjazciDXt2hOFNVW8qv3A/2GFl0e96C/Zw7Hnbc79hRfX9zRtW2ON5qzuGi+uu8WLNsIHD6za2jY5rzjT4FQpWo1D0yRoF9ecZ7Yqt90IKSeuy1Gl1B+D1q9PdClaDc+Oj+6fk9jD9VOuEKIhSgx3AcJ/n332GY888ggPPPAAu3e7Li/avHlzxo0bR0FBAd26dQtDhUKEl4SUQgghhPDXfqA/1nqTPwf6At3xflOYcqwdt9thTa++DbgK+zUbe1PzNN6teA4DB+MaklbVEs9rGG4APnbzensP51Qq8aKN8MLoN3a1SsovfqJJi2Y7NTyhNc1D0Y82eWL4m9vPsW1ofPc3vN+UKRg+1DDm8k0xPbITo1fUYr9CiPCTdSnrobKyMmbNmkW/fv1YtWqV2zaJiYmsX7+elJQUoqL8nXAiRP0mIaUQQggh/FGBtaNwYbXXS7DWnfTGk1ib3VSdOv0N8Fub89rgeT1MT6MpI/E8EnMQ1pqUNXG3YQ5YG/vY+d6LNsKDEWuLopLyi58wW5bvRpOJ1t583wNxdpPmarxdo6y4uBPAH0JcC8Bercxxnzu+674oIWZJWpoya6FPIUTdcsOXX355briLEN4xTZOcnBxuueUWZs2axalTp1zaxMTE8Prrr5OdnU27du3CUKUQdYeElEIIIYTwx9+B/9ZwbJMX538KzKnh2Absp31f4OHYCmCfh+NjqXkkpqep3j8Ar9ZwzJuRfDId109Dl5c2GZlfNNZwGDvQZGqN/ejGYNE8OmLzx7a70Jcd2pmF0h+FpAbFARQpyvFd9KL4bvPXx8VrsIyaAAAgAElEQVRVhKQfIUR94HA4HPHhLkLY27ZtG3fddRfjx4/nwAHXpYvbtGlDeno6q1evpmdPb5a2FqLhk5BSCCGEEP5Y6uGYp4CwUg7WaEx3TOBrm/PP9nCsHGuEZk2uxJqmXl0r4HYP5/0TKKvhmOvQCFeeRmiKGozMK4lr0cbcobQxB89T9UNCQ0vj+PGJdu1yhg1zKm1kBrVzxSEUKU3LTl6dHR8z8/SITSFEI6e1lnUp67D9+/fz2GOPMWjQIN577z2X45GRkYwZM4YtW7YwduxYHI6A93oTosGQkFIIIYQQ/vi3h2M/enG+3SYydrsl241cnAuc9HDc3QY6dwLNPJxT01Rv8G7Dn9ob/degOL5ScFF4a1C/GFtYdKldqw6buiwHtgfcGxxVMFMZFZ2y42Nmzhvco6ZwXAjRON0W7gKEq+PHjzNnzhz69u3Lq6++itbapU1sbCx5eXlkZGTQqlWrMFQpRN0mIaUQQgghfPUdnqcu/+DFNVy3tDxToGvtfQss83D850Dbaq95mupdiudg1ptNU67woo2oZlFCp4+08vhvWQt0swqnY5Jdq7Q0ZSql0v3uRnFKoeY7mzfvlJUQk5IVd/1hfy6TlqaNh7dujfS7DiFEXXfpvn37rg13EeInubm59OvXj8zMTI4dO+Zy/Morr2Tx4sUsW7aMjh07hqFCIeoHCSmFEEII4Su7kZLejPqyW5+xqZe1eOJpA52mQFKVr88CBnpo72kUJcAnXtTTy4s2wo0IHNNQXk2pDxmt9KiReTuvtmuXFR+9SinlKdB2p1yh5juckddkJUSPW9z7qm/9LJNR+aX9P4stfefU4aa/9vcaQtQRErR7Jrt81wHFxcX8/Oc/Jykpib1797ocP+uss0hPT6ewsJD4eFlKVAg7ElIKIYQQwlfBCIs8TcUOlveAdzwcr7qBzl3UHIyeAhbb9FXTJkJV3YxM+XYx+o1dtvPdFsR3/hxUVi2UUzONw6D8aW+aKlSaV9dUmCi9AkW3rIToca8MuNab9VzdSlq3rXdSfkmeqc01WuvrUWrig6vfDfXu50KEggEMBXYAsvZiDWRdyvA6dOgQU6ZM4Y477uA///mPy/GIiAgeeughNm3axNixY4mIiAhDlULUPxJSCiGEEKIhe8HDsWuB2NP/39NU7zexXyPzQ2C/TZvmWMGoAEbkFndKyt++1BlVvmHo8uW2uwYoQ2WivBqlGzJaqftG5hV3tWu3ML5LAZr1Nlcr0Jqe2fFdh2fHx3gzEtetkfkf3JSUV/w6RkQBWlf+PKO1bhvRNOpRf68rRBhUhpM7geXAVUAmPz1MElUopeJ2794djFkHwgfl5eXMnz+fW265hQULFuB0Ol3a9OnTh7Vr1/Lss89y7rnnhqFKIeovCSlFQ3Ur1k1O5Z9O4S1HCCFEmKwAvvJw/BdYoxs9jUixm+oN1hqar3nRbgJwnhftGqwx+TvaJ+eVzDEM3kOrIUDnFm2uvd/uvKy4Ll8rrefWQok10xgKUr1pqpSarMB11wR0AYbulZ3Q9fZFCTF+b7IzKq+0c1L+9qWGdmwA7nBbA4wfmfdv+YQs6rqqIyeXA1WXVbgR2SSmJlEtW7a8JdxFNCa5ubnceuutpKam8uOPrivfdOjQgblz57J8+XI6dZKPn0L4Q0JK0VBNwbrJqfwzJLzl+OU84GdYH6DTgInAQ0BvoEn4yhJCiHqlHPirh+NDgFHU/Hv1K+AtL/uai9tQ6gwXYIWegd6D1btNeEbmf3hJcl7JHKd27tDosWiqjJ5UU4cuL7V9bzM5/ieU8mZjplAaPGJtUU+7RlkJ0f/VsOZ/LyjeVQ4GZid0vT27f9f3/O28MuQ1lbkVrYZoD6PMtOYsgxa/87cvIUJMAYOxluZYDlxTQ7sMZDSlWzLlu3Z88sknPPTQQyQlJfHZZ5+5HG/RogUTJkygsLCQwYMH136B9cS2bdtYunQpn3/+ebhLEXWYLIwgRN3TF5gMxFPzh9gjQBbwB6wdbIUQQtRsHtbvVXfT4ppjTSesySLAdS6Xe8VYU8PtPqEMAv4JjMD3tTnPBqZhraHZwcdzw+KBVVvbNm3e9HE4NU5b32932rdo40zG+req0aKEngeT87Y/r1GTg16oDwyHSgNut2unYaqCCwxDTVvYP3ptIH2OLSy6tMLpmOTUzmQNEbZxeCXFuNHrds0JZL1LIYJMYf0eTAO6e9H+htPtV4WwpvpqAJAS7iIaqiNHjjBz5kyys7OpqKhwOa6UYsiQIUyePJnzzz8/DBXWD3v37iUjI4M333wTgKioKNauXcsVV9S7562iFshISiHqjiZYo3Dexpp26Om/z7OA8VhroMnjOiGE8OxbrFCwJs1qeF0DC33sawLeBY9Dgf/geUfxqjoCzwF7gMeoBw+aR7+xq1VSfvETTVo026nhCa1rDChPUykPr9rawu66xxyOP6Ns1wgNMdU/ubC4n12rRQkx27MTYnoFElA+sGpr2+S84sxyp6NUo8dqH//ttaa5aZRP9Ld/IYJIAXdijZz8F94FlGBNAz8RqqLque779+9v1EuIhEJFRQULFy7837qT7gLKG2+8kTVr1vD8889LQFmDsrIynn32Wfr27fu/gBLg2LFjvPWWt5NURGNT529whWgkmmCtZfYzH887G1iJNRpnabCLEkKIBuQFIMnHczYCu308ZzfwBJ437KnUFWsq+YfAauADrA16jmOtk3kBcB3W5j6dqCfTHUesLYoyIoxfmZQ/geYc+xnw/3PhqRbNHgb+4qlRTlyXo0l5xX/Gmk0QNtrkGbSORSmv/4K+GP3GrlbOluWPgHpKa93ah++jCw1jR7xdNHvxrd32BLFEIXyRgPXf7I0+nLMHmAEswPsR7Y2NYZpmPJ4fxAkf7d69m5QU9wNUL7zwQiZNmsS9996LUvXibbnWaa158803ycjI4Msvv3Tb5uRJXyeSiMZCQkoh6oY/4RpQngL+AbwKfApEAV2AX3PmDZ6BNdJnN/DfkFcqhBD103vAZqx1fb3lzYY57ryIFUD+wsv211DzWmz1xtDlpU2an1sxUmljCpoL/YzUnnxw9buv/P2Omz2uO6kc383RznPHgbrEv26CQHNjcmHx7VlWwBw0AYS8nkQ6KhyTgIeDcTEhfNAHeAZrU0tvfQZMx/od7DqETZzBMIxEJKQMuebNm/PrX/+aX//61zRvbjMxoBHbtm0bqampvPee30svi0ZOpnsLEX49gEervXYQiAOSsdY324EVQGYBNwG/5cxPLU2wnjLLf9NCCFEzb0Y3VvoB6yGRv36F/yFnvZKWpo2k3JIhUW3M7Uobc4AL/b2W1rptRNOo6u+JLrLi4k4oUz3rbz9Bo1VGWpoOynvv0OWlTUbmF401HMYONJlac04wrltJox9KLtx+bTCvKYQHfYACrBHp3gaUXwCPYC1vMQ8JKL2itfZ22RDhp8TERNavX8+ECRMkoKzBN998w8SJExk8eLAElCIgEmgIEX7TOXMKnxNrMf53PJwzG9fpcDHAfcEtTQghGpTXsHbr9sYy4FgAfTmBMVhTv08FcJ26S2uVlFsyZE9s8XaUXqrh8iBd+fFRq9+3XWPt2GHjFdCfBalP3yl+ROuVB2/6ODKQywQz5PVI49AmqSG5thA/6Q3kYYWTcV6esxfrAfzVSDjpj0v279/fOdxF1GcOh8Pt6zExMaxcuZLs7GzatWtXy1XVDydPnuSFF16gT58+LFmyBNM0Xdr069eP7t29XYJWNHYSUgoRXn2w1uip6nm8m7Y9Gfi82mtTqSdrlgkhRBiUAy972TZYoyBnYS3RsT5I16v07yBfzyej8kv7JxeUbkHppWjVMagX17Qym0Q+btcsZ1iXU0qpZ4LatzcUpxRqvtmseeeshK4ZL9zR0b+FtUIX8tZIaXXPyNwPrg91P6JRugVr9+1NQLyX53wL/B4rnJyNd5uOCTe01gPCXUN9dt1119Gs2U976J133nnMmjWLNWvWcNNNN4WxsrotNzeXfv36MX36dI4dc32ue/nllzN37lyWLl3KRRddFIYKRX0ka1IKEV73V/vaxLpJ80YZ1m7gVTcOuAZrk4VtgZcmhBAN0jyshzw17egN1hIb7waxz+1YI4rigXHAIMCf0XffYW2W9sLpa9a6pHXbeuOInGZqMzaU/SjFr0ev2/XiKwOu3eep3bGDO5dGndtpgtZ0CmU9p5UrVLbhjMi0q8vOqPzS/mZByXQU16Fr79miBqUMIw24q9Y6FQ1dT6zfqYN8OOcA1gOc57E2ChOBS8Rm0zFRs0suuYScnByWLFlChw4dGD16NK1atQp3WXXWxx9/zNSpUyksLHR7PCoqil/+8pc8+uijNGnSpJarE/WdhJR138Wc+abvxFp7sFITYAgwGGttw3ZYH7x+AP6OtcmKO5Gn2/cFumPtGnopcNbp499jrYu4FeuJ6KtYNxS+uhroV+XrI1hT6Co1BYYDPweuBy7BCuq+Az7C2vV0IfC1H30H4jzg7mqvaSAHOBykPhTWv1tVebiOjvRkIdZi5FVHRf8cCSmFEIHZhbUuWE3sfg9W2JwPcNTm+B+wfhfX5AOb82tyAGuDgWQPbUK1lmT+6T+tsT5Q9sJ67+uA9f5X9U7+e6xai0//WY/1fhyWHW5H5n9wk9KOScAd6JBsZn0GrWnuNMqfAsZ7apczbJgzuaA4Hc0/QlaMwgT9OqgpWfHRnwR6uaS84jdNbSYGozS/aHVb0rptvbMHXL85bDWIhqArVjh5L97P4vkOmIn1oKUsRHU1Vv12797dtGNHP0d2C2644QZuuOGGcJdRpx0+fJhZs2aRnZ1NRYXrqgyGYXDPPfcwZcoUzjvPdtUWIdySkLLuuxprtFylk/wUUv4MmAO0d3Ne6xpe74G1mP/d4HFB9nNP/7kaK0ScCfwN62bE7oNlVb04s/6P+CmkvOP0sUurnWNgrcd0IVaI+jQwhdp7OtgRWANcWeW1cqwP3MEKKMFaQ/Kyaq/l+3iNr4ESrBvFSoOwpn0LIYS/9mGNOPSXM8DzAV4P8HxP3qLmkLIcWBzCvsF6kLji9J+qFNb795EQ9++1UXmlnU3lnKy0ukfX/nIiY0a8XfSXxbd22+OpUVZc9OtJBSX/RXNj8EvQBVqrpxYldA3ayFWl9CatVfhCSgBHZAbQP6w1iPoqGkjFt3DyIPAi8BzW7z8RfC1atWrVG2uzIiGCqqKign/+85/MmDGDQ4cOuW3TvXt3pk2bJkGvCJisSVl/jcda98VdEFnJ3b/vGGA0ngNKd1qc7vMdrBEfgfoNVv3VA0p3WgJ/xtpgJtRuwfo7Vg0of8Qa8bgwyH11dfOap81yarKp2tddkAcQQgjhyT0ejr2JtU5aOGjqUECZlFc8xlTme2g1JAwBJUCkUW6k2LZSShtKZQS3a12AoXtlJ3S9fVFCTFCn1jsr9Augw/UzZtG69+jCHdXXxBbCky7AIqAIGIp3vxMOAdOw7qvTkIAypEwzjCO0RYO1adMmBgwYwMSJE90GlBdddBGzZ89m1apVElCKoJCQsn76OVZoV/XmoHJq9ttYoxXL8e7mQQOfAG9gjdB8Dmt04xtYI2mqi8EKF1v4WTtYIyhn89PPnwm8d7rPHKygrtzNeb8/fW6o3I01krFtldf2A7cCa0PQn7v1s4r9uE71c5oCV/hxHSGEaAy64jmkfKm2CqnrjEjW4f79uPYohicXbr/WrtnC/tFrMdgQhP7eNYyIAdkJXW/P7t/1vYCv58bigd2OKaWeDcW1feF0OjPQtbggpqivOvFTODkC7z4//gj8kZ/CyTrz8KWBk81zRNDs2bOHRx55hGHDhrFr1y6X482bN2fcuHFs2LCBoUOHopS8nYjgkJCy/nEAf+WnAPJNrNF/52PtHtoPa/OUi7GCTHecWAvvPwS0Aa7CCj7HAhOAX57++lKshf6r7yAaDWT6WX9bYCnWz95xrPUUL8Cahv5zYBjQG7gI91MF/0JoRnM8ihWQNq/y2g6s722o1nes/qHrCP7dxH3hxbWFEKKxa4P1vreGmkebl+L7shsN1sJbY/aCnh/WIjQObZLqVduKijR/u1GKErQanh0fc+vC/p3e9vc6I3NLLxuau/Usu3atTjabB3zpbz9B0n1UXvGdYa5B1F2XYw1cKMYKJx1enHMUK5xsjzW4IJjLJAl713/99dfnh7sIUb+VlZUxa9Ys4uLiWLVqlds2iYmJrF+/npSUFKKiomq5QtHQSUhZ/0RghXoa+B3WNOR3sUYjVvUd7kf/rcYKsO7G2ljH082DxlqovzfWE9SqfoHvU8bB+pB4FtaGAPFYa01+56bdQaw1IF+o9npHrJGNwWJgrbf5PGfefG0A+uDbJja+alfta3dhozfcnVd9rUshhGhsHsaaangIOIH1vrIY6yFeTSZjvfeJ04yTFdNR/BjOGpRW94xYV9zDrt3pjWDW+Xj5XWg1PKt/dI/sxOjqa4R67YFVW9sm5xVnKqWLo4ymj9u1f+GOjiexNocKK1OptKHLl3sTPonGowNWOPkR1u9Rb34+jmHdS1+JFU5+H6rihEfKNE1ZxkH4xTRNcnJyuOWWW5g1axanTp1yaRMTE8PKlSvJzs6mXbvqH2WFCA4JKeuvOdQ8UtKTVcDHPp7jxBplWXWcdxTWiBR/aCAJ2OJF20m4hpjVd8T2V1PgH1ijR6tajjVdItQ3WC2rfe3v02Z3dVa/thBCNDbNsB6mnYP1+97OW1izDBqFEWuLokYXlHSza7fwju4HQL9cGzXVRIMyHHqKN20NZU5V3gXNe7Uyx5Ud2tk9OzF6BUr5FU6Peau0TXLe9ilNWjTbqeEJ0M3QPDpi88e2o5nKDu3MQumP/Ok3iDpHnXPtfWGuQdQNl2GFk7uxwklv1jevDCevwlq7PrxrrQq01rIupfDZtm3buOuuuxg/fjwHDhxwOd6mTRvS09NZvXo1N910UxgqFI2JhJT102Gs8K42lWPdhFQV6+e11mKFpd44Brxa7bXufvZb1TlYoy2GVXv9OeABrF3UQ616kHjcz+u4O09CSiGE8N5erIdnDd7Q5aVNRuYXjTUcxg6nqVc8unq3bYCrDOcsFO6386wtWt2WtHZ7X7tmC+O7vY+nsFlxAEVK61PNuiyK7zY/Z9gwpz/ljFhbFJWUX/xERYS5U6Mmo3Xr/5UKLY2y40/aXSNn2DCn0oa/y+cEjVYqbejy0ibhrkOETTusteIrR056E06exFqWqSNWOPl1yKoTPlFK3aZlrVnhpa+++opf/vKXDBo0iPfec12GuUmTJowbN453332XsWPH4nDIwHsRehJS1k//wFrzpbZtrPZ1Tz+v426tSU+qj7gMdL3FDsBmoOqHHRP4LdaoyupT50Ol+gIeJ/y8joSUQgjhv11Y6zk36BFAaWnaSMotGRLVxtyutDEHuBBo90OTk2Ptzs2Ku/6wQs8OfZU2Iow0b5qZRKQqqDjzVXUQRUrZwR87ZsfHzDw93dpnVULenWgygbPdNlTq4bGFRZfaXa/Dpi7LgaDuHu6H9lHnOBtFSC/OcD4wAyucfAzvRpyfwrqPvwJrWab9IatO+OvCb775pku4ixB12/Hjx5k5cyaxsbH861//QmvXyQQDBw7837qTLVv6/9FSa82//vUv/vOf/wRSsmhEJKSsn3LD1O831b6+FN9/hjT4vPvmp9W+dv+BwDvdsXYPr7qz9gmsEZW1/QGs+pNqv0Zz1HCeN0/BhRCiMfsUa+2063F9n2k4tFZJuSVD9sQWb0fppdraDOMnSk8a/cauVnaXcVboF0CHN8jVundyXrHtVMZFCZ0+Av4JoOCogpll+kSn7PiYmTnDevk1a+HhrVsjR+YVP9SijbP4dMh7gU2xzSqcDttZL2lpylRKpftTU1AplfLwqq0twl2GqBXnYYWTnwFPYS2NYad6OLkvVMWJwJmmKbt8C7e01qxcuZI+ffrw3HPPceKE6xiZa6+9lmXLlrFw4UI6dOgQUH/FxcXcfffd/PKXv3SZRt60qTfPRURjJEFG/fRBkK5jYI0mTMDasftarBF4UXgXBBpAa3xbS/Ew1uYFvvih2tfNsJ72+joK4nas9SarPgo6CNyFNbKyth3F+v5Val5TQxvuzgvHSFshhKhL1uB+lM/3wIdYU7wbtFH5pf3NgpLpKK6jptl/mvOcURW/Ap71dK3FA7sdS84vflZrZoagVK9pSEfrPNs1JB0RGTgrvjEpm7Uooaev9x3/k5amjT29S+8+dVinK7gKvJ9FqZUeNTJv5+zToWmNsuKjVyXlF7+L5mZ/6wyUhotONW/6C2r/ga2oPW2BJ4BHAW8D6XKswD+Nhvwwp+FJxFrCSoj/KSoqYsqUKWzdutXt8bPPPpsnn3ySESNGEBERWEx04MABZsyYwbJlyzBN10mKzZs3Z8AAydKFexJS1k/VRzT6KgL4FdYIEk+7nHrjLHwLKf3ZjKbczWsR+BZS3gVM5cyf+T1YweWHftQUDNWDRG+eZLsjIaUQQrjaffpPo5O0bltvHJHTTG16uXa0njDmrdL5C27r4nHdyVYnm837ocmJ32LNpAiX7sn5xXdl2WxylBXX6TPg6UA6GpVf2n8PJdPRXOfXrjoah0H500CybVOt0hT6LX+6CRqlJj64+t2Ff7/j5uoPh0X9di5WMPk4Zz4c96QynEzH9w03Rfjdunfv3ubt2rXzd7170YB8++23TJ8+nZycHLeBYUREBCNGjODJJ5/k7LMDmbAI5eXl/O1vf2P27Nn8+OOPbtv06dOHZ555hquuuiqgvkTDJdO9658KoCyA88/FGjX4PIEHlAC+rp5bYd8kJHpwZkB5EognfAElWJsCVeXvYh/upum5f1cQQgjRYI3M/+Cm5LzitzAiCtDal83tzq6I0OPtGp1ex/EP/lcYHFqRMXT58pCt3p+0blvv5PySfFOba9BcF8i1tFL3jcwr7mrXblFCdCGa9YH0FSitdduIplGPhrMGEVRtsEZAfoL1oN6bgNIEcoAuwEgkoKyvmhuG0TvcRYjwKi8vZ/78+cTGxtY4orFPnz6sXbuWzMzMgAPKjRs3kpiYyDPPPOM2oLz44ouZPXs2y5cv5+qrrw6oL9GwyUjK+sffdQvBmiKdD3Sr9roJlADvYk1/+wb3oyOjgIUB9B9OP3DmzVlTrL/LYMIX6B2o9rW/I1PcnVf92kIIIRqoUXmlnU3lnKy0ukf7Mh+5KqUfHbH54zmLe1/lcd3JskM7s1qce+1v0Sp8nzC0urpFm2vvB/4ezMuOWFvU0+EwpmmIc7eJgF80hoJU4F67pqYmxaHY5Pe/YSAUJujXHZp/1HrfIthaAb/GmjHlbepgAiuAKYT3Ab4IEsMwEoG8cNchwmPjxo1MnjyZ3bvdTyjp0KEDkyZNYvDgwQH39cknn5CWlkZ+fr7b4y1atOBXv/oVv/nNb2QdSuEVCSkblydxDSiXYt2QeLPOzPlBr6j2/BnoCAyv8tqtwDqsKd++TFkPll1A1cU4LsC/tTYvq+HaQgghGrAx+TvaO7U50VTmKLRyBBSraaKM48cnYq1ZV6OcYcOcI/OKn1GwKJDuAqVQU4YuX/7PnGHDAnl4CwQp5PVs8Ii1RT0XD+z2b0+NFg+I2ZqUV7wa+FkIanBLgdawRpk6NSuxa3Ft9StCoiUwDmsznHO8PEcD/wdMBopCVJcIA631AKyfBdGIfPLJJ0ydOpWCggK3x4MZGB45coQXX3yRefPmUV7uujqbUopBgwYxdepULr44GBM4RWMhIWXjYWCtR1PVfOAXPlzD2xueuqgCGAEcB8ZUef1mrNGlA4HvarmmndW+VsBVQKmP1+lY7WsTeQouhBAN1tjCoksrnI5JTu1M1hBBkAb9gfrF2MKiv8yP6/alp1ZXbIrO2dOnZAKuDz5rhVJs0ThSAw0okwt3dsDpfDIoIa8Nw6HSsB6KemQ6zVQjwrgdXRtLMukCpXRKVny390PflwihKGAs1hqs3g4oqAwnU4FtIapLhFe3AwcOXHTeeee520BONDBHjhxh5syZZGdnU1HhurqaUoohQ4YwefJkzj8/sHFHpmmyYsUKMjIy+O479x+fr7vuOtLT0+nRo0dAfYnGSULKxuMmzrxxqQBSfLxG++CVExYmVih7HPhNlde7A4VYu5wHuimRL6qHlAC98D2krL7mzOe4rncphBCinntg1da2TZs3fbzcqX4D2t/N1jzQzcpN42msqaI1SktT5si84nRlTQ+tNUpRok31h6yE6ID6rQx5cVYEOeT1RPVPLizulxUXs95Tq8UDu5Uk5Re/CgwLWSWnQ97s+M4bQtWHqBWV4eTvgQt9OC/v9DnvhaIoUWeo8vLyeGBJuAsRoVNRUcE///lP/vjHP3Lw4EG3ba6//nrS09O54YYbAu5v8+bNpKamsnOnu4+xcMEFFzBhwgSGDx+OYcj2J8I/ElI2HldW+3on4HHdKTduCVIt4aSxRpSWAROrvB4NvI0VVHocQRJE72Kth1l145s+wN98uEZTrAC6qtwA6xJCCFGHjH5jVytny/JHQD2ltW5NaFO15JF5O/+yKKHTR54aLUqIeTMpv/hdNDeHspjTdqFVelZ8l9dQyu+/fOhDXs+0yTNoHWv3d3AaxrQIp3mPDvJ9erBCXhF2TYEkrE1xLvLhvDys0Zb/DUFNom5KRELKBmvTpk1MnTq1xsDwwgsvZNKkSdx7770oFdhKJvv27WPGjBm8+uqrbo83a9aMMWPGMH78eFq29HcvWCEsElI2HudV+/p7H89XhPCpfhg8hRVUplV57RqsoDIe+KwWajgJvAUMrfLaz7GejHs7EvIeoEW111YGXpoQQohwG7G2KMqIMH5lUv4EmnNCHE5aNA5FRQpWCOK5qVZpCv1WyGpRfKEx/3j84IcLA53anXXUngEAACAASURBVJamjT3NSzZouLJWvo/uaG5MKiy5I9uaZlujJXFdPk4uKF6Myagg9RyUkFeEXRMgGWunbl8WeMvDmj31nxDUJOq2AVprpeS/+wbls88+Y/r06axatcrt8crA8Le//S1RUVEB9VVWVsbLL7/Miy++yMmT7rdNSExMJCMjg8suc7dNghC+kzG4jcfxal/7uhjFz4DOQaqlrpjGmaMpAa4ANgC1tWtp9UCxNfCAD+f/strXRwD3KyULIYSoF4YuL20yMr9orOEwdqLJ1LqW14RWDBuZV9zVrtmihOhCNOuDX4A+gCKl9clm0Yviu80PxuY4aWnKVIrng1FdIJQmPS1N295/KweZKJ830qt2Eb7QyhxXdmhn9+zE6BUSUNZbTYCHsTa5nIv3AeVmIA5rNJ0ElI3ThV9++WVMuIsQwVFWVsasWbOIi4urMaBMTEzk7bffJiUlJaCAUmvNqlWr6Nu3L7NmzXIbUEZHR/Paa6+RnZ0tAaUIKgkpG4/qU5ivwfsg7hzg5eCWU2f8CWv6d9Ub93ZYIyq71EL/rwJ7qr2WCbT14twHgb7VXnse33cHF0IIUYe0OFdPVNqYA1wQlgI0hqGY6k1TU5OigjY0UR1EkVJ26GjH7PiYmS/c0TGo72dNzjq5QLm+59YqrYn+LLZ4iF27hbfG7AU9369OlN6nlTEh0JB39Bu7WiXlltjWKkImEhiJtUTTXOASL8/bjDUrqA+E4iGCqE8iIiIGhLsGERitNTk5OfTq1ctjYPj666+TnZ1Nu3btAurvgw8+4K677uKRRx5h3759LsfPOecc0tPTWbNmDTffXBsrvojGRkLKxmMT1mY5lRQwB+sGyJPzsaaJXBqiuuqCF7E21Kl6E38h1o3d9SHu+xTWiM6qzgeWY42qrEkvrLqrOgjMCl5pQgghwkHrYy+j1A/hrYFBI9YW9bRrt3hAzFYNqwPpS8FRBTPL9IlO2fExM3OG9ao++yMo5vXoUa61+kMoru0TrdL6FRbaLrlknKyYjuJH7y98OuQ9eLTzovguL/ob8laO5HVGlZcqpf8+MveDUN8LiTNVhpM7gGysWT7e2ALciRVOyqwaAYDWOjHcNQj/ffDBB9x5552MHz+eb7913U6iamDYs6ftW7ZH33zzDRMnTmTQoEFs3brV5XhkZCRjxoxhy5YtjB07FofDEVB/QtREQsrG4wjWqL2qErBuYm500/5srKnEJVi7XwNsD1l14bcA64awapDbFsgHAvuNb28J1iY6VcVh3WwO48wg+QKstYjysP6NqpqM9e8shBCiHluU0PMgMDvcdRgOleZNO9NppqIwfe5AUYbSc1STZtdmJcSk5CT28Os9LC1NG0n5JQ8kF5ba7nBc9v2OvwO7/OknWDRc1b7i3BF27Rbe0f0AaNuZLMEKeR/eujVyZF7xQy3aOIsrR/JqUMow0vy5nvCZgbVOeSlWOHmVl+e9ixVO9gLczwEVjVnfffv2VV+/XtRxX3/9NY899hg/+9nPeO+991yOBzMwPHHiBHPmzCE2NpYlS5Zgmq5v57Gxsaxbt46MjAxat/Y0jkaIwElI2bhMBqqPzOiDtU7NXqzgazXwAdbO3y/z04Y732At1t2QLQXuwxrdWOkcrN2yq0+rDibn6X6rT8nvDCzD2uBnD9a/wddYm/00r9b2FeCvIaxRCCFELSoz1F9AHwhvFap/cmFxP7tWiwd2K8H1Qagn5Qo13xnp6Jwd3/V3C/t29PvvOSq/tP+e2JItaJ2lneYku/Y5w4Y50Srd3/6CRqmUR1fvbmrbzHDOQnHI/cEghry5JUNOHW76gYIFoDqc0UCr25LWbg/lfVBjVxlO7sCaSdPRy/O2Yz3MlnBSeNIMiA13EcI7VQPDV199Fa1dV1OJjY0lNzc3KIFhbm4u/fr1IzMzk6NHj7ocv+KKK8jOzmbZsmVcc801AfW1Y8cOHnroIaKjo5k0aRJOZ8DLTYsGSkLKxuUTrDCszM2xS7HWr7kd6MaZo/e+BAZQOzteh9trwN2cudFQK2AN1sLjofIF0A9r3aHqIoAO1LzZ0UtYC6oLIYSo40bmbb8luaD4Hrt2OXFdjmIY4V/CwyQTrZVdM6dhTFNnzkZwpTBReoUD3TUrIXrckr6d9/tbVtK6bb2T80vyTW2uQXPd6ZfHjHi76HK7c7MTuryG4r/+9h0k7X5ocnKsXaOsuOsPK3T1UbXBDXn7lLyL0ku1p5F7ETKaMgQUMBh4Hyuc9DYBKMYKJ68DcgjbdvWiHpEp3/VAbm4ut956K5mZmRw7dszl+JVXXsnixYtZtmwZV18d2B6vJSUl3HPPPSQlJfHFF1+4HG/dujUpKSkUFhaSmBjYj8/Bgwd56qmnGDhwIAUFBRw6dIjs7Gz+9a9/BXRd0XBJSNn4vAXcjDWV2E45kIU13bshT/WubjUwCKj67tAC+Nfp10PlE6yp938EXB9lufoQuAsYx5nraQohhKhjRuWVdk7K377UQBVqU7344Op3bYc/KHXgZdBf1UZ9NdGaHkmFJXfYtVsS1+VjDBa7O3Z6Y53VytQ3Zcd3Hf5KQtdP/a1nxNqinsl5xW9hRBRorftUOxxpVBhP215EKW0oleFvDUGj9KTRb+xqZdfMWaFfAP1tMEPeUfml/ZPzizeb2lyD9XDaM617jy7ckeBvf+IMleHke1j3lvbff0spVjjZDQknhW9k85w6rKSkhLvvvpukpCT27t3rcvyss84iJSWFgoIC4uPjA+rr+++/Z8qUKdx+++28+2711cbAMAzuvfdeNm3axLhx44iMtNu+ombl5eXMmzeP3r17s3jxYpeRk59//rnf1xYNm+2i3SLs/g1cWeXrYNyQFGNNDbkFuA24ATj39LFvgX1YU75Xnf7/lY5UqwWsaeKerAA2VPm63I96P3bTr7vRoFWN4Mwp0e6nStWsALgcaxRlVf7U74tjwO+BGViBaCzWtJ/WgIk13bsEWIv1fZUbVCGEqMOSC3d2wOl80lTmKLRyWL+09bkRTVs+Bjzj6dysuLgTI/O2/1HB87VRa02UJj0tTa9JS1Me151UDjK1ZjiaKtOYdYFSOiUrvtv7gdSQVFDaBe1MUVrdo62QpyYPJhdun5UV19XjupML+0evTSoo3oAZ0uVcPNOc54yq+BXwrKdmiwd2OzaqoGSs03TsWZTQ6aNAuhyxtqinYRjppjb7+Xqu0+nMQOt8lJJ7D/8lYN3j3eDDOTuwHmD/HXkoLfwT/cUXX1x82WWXuW7VLMLm+++/57nnniMrK8vt1GfDMLjnnntITU2lbdu2AfVVXl5OdnY2M2fO5Icf3O/L16tXL9LT0+ncuXNAfQEUFBSQlpbGxx9/XGMbd1PZhQAJKeuD44DfIw5sbMG7EZWVTD9q+fH0n0CU+9Gv36MLqjhw+k84HMbaUGdJmPoXQggRgLGFRZdWOB2TcFYka4io/khJaf34qNXvz7U2R6lZs7NPvXLySNPfor3e4TfotCZ6T++Se7GmpNZo4a0xe5Pyt88HNU4ptmgcqdnxnTd4OsfOyLydVytV8Xu0+QBaGbYfaTQObZIKDLe9eEVFGkZEmHdB1hPGvFU6f8FtXTw+TF3YP3ptIL1UhrxoNSSAy3RPzi++KwtWBlJLI5UA/AH3m1XWZA9WoLkACSdFYFRkZGQi1oZMIsy8CQx79+5Neno6nTp1Cri/jRs3kpqayocffuj2+MUXX8xTTz3F0KFDA+5rz549zJgxg1WrZJlc4T+Z7i2EEEIIESQPrNraNjmvOLPc6SjV6LG6hgfCGlqaTSIft7vevB49yrUmM/iV+kYppvYrLLR9uG02azHD4XD8LCs+pl8gAeXYwqJLk/NK5hhUbEPzINr7e1al1T0j1hX3sGuXPeD6zVib44XT2RURenyoLj66oOiapPziV9Dm1gADSgA0aurQ5cv930a28UnAmhWVi/cB5WfAI8DVwDwkoBRBoLWWdSnrgI0bN5KYmEhqaqrbgPLiiy9m9uzZ5OTkBBxQfvrppyQlJXHfffe5DSibN2/OhAkT2Lx5c8AB5Q8//EBaWhr9+vVzG1AqpWjVynZ1EyEACSmFEEIIIQI25q3SNsl526c0adFsp4YnQDezP0uNG5n/4SV2rY4f2vkPpdxurFZrNFzVvuLcEXbtFve+6ttX4jrn+dvPqNXvn+dNyOuJBmU49BRv2hrKTFXhXjpF6UdHbP64ps3x/DLq7eJ2yXklc0zTeN/XkNdG5xZtrr0/SNdqyPoAhVjh5E1envM5VjjZESuc9LwRlRC+Gai1ls/+YfLJJ58wcuRI7rvvPj76yHXVjhYtWgQ1MMzMzCQuLo7cXNfncEopBg8ezIYNG5gwYQJNmzZ1cxXvmKZJTk4OsbGxzJs3j/Jy15XRunbtysqVK+nbN3yrq4j6RX5RCSGEEEL4acTaoqik/OInKiLMnRo1Ga1tN8T5iW6m1KmJdq1yhg1zmjAtkDqDQqmUR1fv9v/TjAeVIa/ZNNKHkNcDrW5LWrvd9hPRwvhu72vFGwH1FShNlDpxYlQwLlUZ8prlqsTfkNeemjp0eWmT4F+3QegN5AMbgX5envMF8Fus3b0lnBSh0nbfvn3ebtIkguTIkSNkZmbSv39/8vJcn9+FIjDs06cPc+bMcRsYduvWjTfeeIO5c+dyySW2z0g92rJlCwMHDmT8+PEcOOC6cs0FF1zAs88+y+rVq7nxRl9WuhCNnaxJKYQQQgjho6HLS5s0P7dipNJGKpoL/L6QyZgRbxf9ZfGt3fZ4araof/TKpIKS/6J9WtMu2Nr90OTkWGBOsC44Ym1RlBFh/KpCm0+COjuoYxojjDSgv10zrSOmGFQMCk2gZ0Pxhcb84/GDHy4M5DJj3ipt44xwjjOVGo+mVYgHh7Zv0caZjBWoCcstwNNYmx5660tgJjAXOBGKooSoZgCwLdxFNAamabJixQoyMjL47rvv3La57rrrSE9Pp0cP29VJbL3zzjukpqayY8cOt8cvuOACJkyYwPDhwzGMwMap7d+/n+nTp7NixQq3m99ERkYycuRIJk6cKFO8hV8kpBRCCCGE8NLDW7dGnjjc9D6Fcwra6BCES0Ya5UYKMNZjK6W0yiuepuHNIPQZAD0WrV8KdIfnoIW8nmjdOzmvODErIcbjupOLEjp9lJRfvAzNgyGpwy39lVaO58462eRvL9zR8aS/VwlpyOuRSnl41dYl8wb3KKutHuuom4EUfAsnvwWeA57H2iBTiFphGEYi1k7xIoQ2b95MamoqO3e6X6UlmIHhvn37mDFjBq+++qrb45WB4VNPPUXLli0D6uv48eO89NJLzJkzhxMn3D9XSUxMJD09nfbt2wfUl2jcJKQUQgghhLCRlqaNPb1L7z51WKcruApU8C6uGD4it3jW4sQYj+tOZiXE5Cblbd8AqtYXdlJwFPjrMX3y2UACyhCEvB5pSEfrPLuaI3BMq1DOoWhCPI1ZHUTp58oOHp2TM6yX3wFVrYS8nl14qkWzh4G/hKHvuqArMBm4F+9/GRwAZiHhpAgTrXXs119/HXXhhRceC3ctDZFdYNisWTPGjBnD+PHjgxYYvvjii5w86f45V7ACQ601b775JhkZGXz55Zdu21x11VVMmzaNuLi4gPoSAiSkFEIIIYTwaFR+af89umQG0C0kA9U0DkORCjxg29Z0pmFEFISiDLcUZaAXqsjm0xf27ei66JSXQhryetY9Ob/4rixY6anRgvjOnyfll2SBfjgURfwU8p54Niehx5FArxd1ntlLO42gTbv305Oj39i14JW7rv0xzHXUphhgCr6Fk99hLZEwC2hM3ytR9zTRWvcF1oS7kIakrKyMl19+2TYwzMjI4LLLLguor8rAMD09na+++sptm44dOzJt2jT69esXUF8A27dvZ8qUKfz3v/91e/zss8/md7/7HcnJyURESLQkgkN+koQQQggh3Ehat623ckSmm9rsE+q+FNydnFdyY1ZCtPtPAqdlD7h+c1Je8VpgYIhLKleo7IpI45klfTvvD+RCIQ95bWhFxtDly1flDBvm9NROGSpTm/ohNC2C1nmQQt7qsuJi1iflFq9Heb05S9Bprds6W5Y/BmSGq4Za1AWYim/h5EHgRayp3T+EqC4hfKK1TkRCyqDwJjCMjo4mPT2dm2++OeD+ioqKmDJlClu3bnV7vDIwHDVqFA6HI6C+vvnmG2bNmsXSpUsxTdPleEREBPfffz+///3vadOmTUB9CVGdhJRCCCGEEFWMWFvU0+EwpmmIc7cofChoUKCnAHfattXOqYZyDNChGI6oMEG/7tBMfiUh5tNALzd0+XKHqc2/YO1cHB5aXd2izbX3A3/31CwrrsvXSXnb54H6bRB6LVeobAyVkRXX5esgXM+FqUlxKDaF5OfAe4+PWv3+vIV3dA9aAFvHdAZ+DwwHvP3U/yPwEjAdCHjUrBBBNiDcBTQEH3zwAampqTUGhueccw6PP/54rQSGkZGR3HfffUEJDMvLy8nOzuZPf/oTP/7ofuB3nz59SE9P59prrw2oLyFqEthKrUIIIYQQDcTogpJuyXnbVxoOY4OGcCysNHBk7ge2ozYXJV63TcPrwexYWdtBr1amvik7vuvwVxK6BhxQAuQMG+bUdWKknZo6dHmp7XqTp46f+hNK+T/qTWGi9AoHumtWQvS4UAWUAIsHxGzVsDpU1/eKppXZJPLxsNYQGpdj7bq9HRiBdwHlUaxNSS7DCjYloBR1UZevvvqqXbiLqK+++eYbJk6cyKBBg9wGlJGRkYwZM4YtW7YwduzYgALK8vJy5s+fT2xsLEuWLHEbUMbGxrJ27VqeffbZgAPK3Nxc+vbtS2pqqtuA8vLLL2fu3LksX75cAkoRUhJSCiGEEEIAFZrbNOr2cNagjIh0r9qZjlQFFcHpVRcoZfbKToi5Oyuxa3FwrvmTRfHRy4GiYF/XR+1btHEm2zX6x+Ae3yltPu/rxRVolF6hdUS3QEPepHXbeo/M3z7dm7am00y1Rr+Gj1L8evS6XReHs4Yg6oAVTn4EPIxv4WR7rHDycKiKEyJIEsJdQH3jbWC4bt06MjIyaN26dUD9VQ0Mjx496nK8MjBctmxZwIHhxx9/zIMPPkhSUhKff/65y/EWLVowYcIECgsLGTx4cEB9CeENCSmFEEIIIQBd4XwR9LfhLUL3Ts4rTrRrljWg824N/wikK6XYgnIkZid0vX1hfLf3A7mWTUdag1fha2iplIdXbbVdb/KYw/FnFD5MX9YFpnbekh3fdfiihE4f+VtdUkFpl6T87UsxIgqUVr9LLizuZ3fO4oHdSgD3W8nWEq1p7jTKnwpnDUHQHiuc3I0VTnqzJNYxrJ26r8IKJw+FrDohgkgpZfseI36Sm5tLbGxsjYHhFVdcQXZ2NsuWLeOaawJb2WT37t0MHz68xsAwKioqaIHh999/z6RJk4iLi6OwsNDluGEYDB8+nC1btjBhwgSaNLGdjFCjiooKDh2SX5HCOxJSCiGEEEIAiwd2O6aV44/hrkNDOlrbrjOotZGO4pSv11eKrRjckxUf0y87vvMG/6qEMfk72ifnl8x7qLD0Kru2ixJi3kTxrr99BcmFp1o0s929Oyeuy1E0f/bieu/g1InZCV1vX5R43TZ/ixpdUHRNUn7xK2hzK1oNqXxdmzzjzc+B0zCmBW9Urd/GjHi76PIw1+CPy4DZwId4H06eBOZhhZPjgW9CVp0QoZGotZYcwEZpaSlDhgwhKSmJL774wuV469atSUlJoaCggMTEwHLfw4cPM2XKFPr378/69etdjhuGwb333ss777wTcGBYXl7OggUL6NWrF9nZ2TidrnvK9ezZkzVr1jBz5kzOO+88v/sC2LBhAwkJCWzZsuWM15UK53LKoi6TX05CCCGEEKcdP8g80J+FuYzuyfnFd9k1WpTY5QsUr3h7UaXYiVbDs/pH98nuH/N//hY3avX75yXnFWdWaHO71jopwjRTvepfm5P97TOInnxw9bu28/CU47s5KL3P/UH+i8E92QkxcdkDu/od8o56u7hdcl7JHNM03kfzILrafbnmxuTCYtvlB5bEdfkYg8X+1hEkkUaF8XSYa/DFpfwUTj4GNPXinFNY4eQVwCNAyNYbFSLE2u7fv//6cBdRV1UGhrfddptLsAY/BYabNm1i3LhxAQeGS5YsoU+fPixYsMBtYHjLLbewdu1ann/++YADw/Xr15OQkMCUKVM4csR12dxLLrmEv/71r7z22mvExMQE1NeePXtITk7m/vvv56OPXCcZXHbZZQFdXzRcElIKIYQQokEbWljaMjmv+OnkguIn7drmDOtySmsV/tGUiox+hYW2o7qUMqajKPPciC+0MscdO7jzhuzE6BUo5deW5WPeKm2TnLd9itk0cqeGJ0A3A9AwdHRBSTe787MSum1Es96fvoNFa902omnUo3btsuLiTijO/DmoDHmz+0fHBiPkNctViUaP1Z5G72mVkZZmP+JJOchEcdLfmoLkweTC7XV9N4XzgRlYa04+BjTz4pzq4aT78FqI+kV2+a6mct3Jm2++ucbAsFevXqxbt47nn3+etm3bBtTfxo0bGThwIBMnTnQ7Ffqiiy5i9uzZvPrqq3Tp0iWgvvbs2UNSUhLDhw9n9+7dLsebN2/OE088wcaNG7nzzjsDGuX4448/8swzz9CvXz/WrVvnclwpxf3338+dd97pdx+iYZOQUgghhBAN0tDlpU1G5heNbeE0d2iYqjWTRmz++Hy7845/vzMba4RV+Gh19WXOtvfbNcuK6/K1Rv+1hot8pZUxofXJZtGL4rvNzxk2zPUTlxdGrC2KSsovfqIiwtypUZPRtDqzGwxTa69GU5qalNM7iYfT46NWv287HKXJWScXKNgT3JC3ONNsGvlR1ZDXE62J/iy2eIhdu4W3xuwFPd+fuoJG49AmXv0chMF5WOHkZ8BTQHMvzikHFgOdsMLJr0JVnBBhIOtSVrFx40YGDBhAamoqP/zwg8vxiy+++H+BYefOnQPqa8+ePTzyyCPcd9997Nq1y+V48+bNmTBhAps3b2bo0KEBBYZlZWXMmjWLuLg4cnNz3bZJTExk/fr1/O53v6NZM2+e27intSYnJ4fY2FheeuklysvLXdrExMTw2muv8dxzzxER4c3qGqIxkpBSCCGEEA3Kw1u3Ro7MK36oRRtnsdLGHOACADRRjuNltht85Awb5tSQGeo67ShIHbq81H4emT4+E6WqfKpSB1GklB062mVRfJcXX7ijo18j7CpDXsNh7ESTCZxdYwmaQcm5RTfbXXPxgJitKPwehRgUmlZmk8jH7ZrN69GjvMJhDGp61snOgYS8QwtLW/4U8vIEGtvNe86sV6V5M6rWOFkxHcWP/tQYLEqre0asK+4RzhqqaQukAZ/gXzg5EvB7p3Yh6rDe3377bctwFxFun376KUlJSdx33318+KHrs8nqgWEgfvjhBzIzM4mLi2PVqlUux5VSDB48mLfffpsJEyYEFBiapklOTg633HILs2bN4tQp1+WrY2JiWLlyJdnZ2bRr187vvgC2bdvGnXfeyfjx4/n2W9f9B8855xzS09NZvXo1PXv2DKgv0fBJSCmEEEKIBiEtTRtJuSVDTh1u+oGCBaA6VG+jlXo4uXCny+vVLYqPXg4UBb1I37Rv3sY5yq7RooSeB4HZCo4qmFmmT3TKjo+ZmTOs13F/On1469bIkflFY1uc6/zwjJDXjjLSvGmmlZGKwvSntmBRil+PXrfrYrt2S+K6fDyvRw/X4SBe+Gkkr9M25PVEw1UdzHMfsmu38I7uB0C/7E8fwaJBGQ49JZw1nHYuP4WTU6Ha6F/3TCAH6IIVTn4SquKEqAOaOJ3OW8NdRLhUBob9+/d3O8KwMjDcsGEDEyZMoGlTb5atda8yMIyNjWXOnDluA8OuXbvy+uuvM3fuXC699FK/+wIrMLzrrrsYP348Bw4ccDnepk2b/wWGN910U0B9ff311zz22GMMGjSI9957z+V4ZGQkY8aMYcuWLYwdOxaHwxFQf6JxkJBSCCGEEPXeqPzS/nv6lLyL0ku1teuue5ommBW2oylRSmtID2aN/lCopx9etdV25F2Zof7iqDA6ZiXEpOQk9nBdDd8LZ4S82piDVrYhXlUa4pILi/vZtcvu36VUWWFQ2GhNc6dRbv9z4AfXkFfZLjFgR2s1+dHVu20/JZcf5zngcKD9BURzw6gNuwPb3cF/rbBGTFaGk7abJPFTONkJGAa4LtgmRAOktW50U74rA8M+ffrUGBh269aNlStXMnfuXC655JKA+tuyZQsDBw6sMTC84IILePbZZ+tdYHjixAnmzJlDbGwsr776Klq7roISGxtLbm4uGRkZtG7tza9iISwSUgohhBCi3kpat613cn5JvqnNNYDt5i0AGpJGFxRdY9duUULMmyjeDbjIwFx4MqrZI3aNcuK6HF1wWxfXlfe95HXIa8ckE61tF9CqMIx0BRV+9xMcY0a8XXR5sC5WGfKePNy0yJ+Q10a7H5udHGPXaOmgrt8rpf8cxH69p/hRwcyKU2WdF/bt6PppPLRaYoWTX2CtPXmWF+dUHTk5DGszHSEak0a1ec4777zDgAEDGD9+PN99953L8crA8P/+7/+48cYbA+pr//79PPbYY9x7772Ulpa6HK8MDDds2MBDDz2EYfgfyxw/ftw2MExMTOTtt98mIyODVq28GVhes9zcXG699VYyMzM5duyYy/Err7ySxYsXs2zZMq6++uqA+hKNk6xWKoQQQoh6Z8Taop6GYaSj6OfuhtwjjcPESMGa0umR0uZkjZHnZ5nBYfLkg6vfXfD3O252Xc0/QKPyS/trzAxTm0FZR1BreiQVltyRjed1J5fEdfk4Ob94EZrRwejXLwrTUe7oCewJ9FKj8kv779ElfwS6OPL2rwAAIABJREFUBl6Ye1rrp0e/sWvxK3dd63HdSWeFfsFwMC4YIzi9ojimNC+fOq5nLh3U9fta6fMnLYFxwESgjZfnaKyfz1RgW4jqEqI+6LRv377LLr744i/CXUgo7du3jxkzZrBixQq3AV5kZCQjR45k4sSJAQd4x48f56WXXmLOnDmcOHHCbZvExETS09Np3759QH2BFRhOnjyZvXv3uj1+5ZVXMm3aNPr37x9wX8XFxaSmpvLvf//b7fGzzjqL3/zmNzz88MNERkYG3J9ovCSkFEIIIUS9kVRQ2gXtTFFa3aPB7y0vNQwdXVAy65X+0R7XncxK6LYxOa+4UMP/s3fucVlV2f9/7wN4QVPzUmZTWWmpiFrZ5AVUbjqV1kwJzZgCCj/9zlDaRGM1BCLEWE5WWDZjo8WD5ozSzTRLuamgdrELAlFZk1aaTmlqCSo8Z//+OFHW8/Ccw3NDcL9fr3m9Zthr77Vi6JyzP3vttSLc9eU5skdg+86zgQe9tWKjyKtLfZy31mxESLIyM+VrmZnCZd1JzR6UrQfU/0FKS81MvIdAB/mSHijTVowd6pFAOb24OlKX+oO61K/xVnhNIull79TwR2ChK7MVE4YeTyyuXCglj/g0HsEpIUU+msjOiwg54FNfjnQCkoH7sVoz1aAII+PyXV8EpVC0Nn648r28pePwBY2C4ZNPPsnJk877x3lLMJRSsn79erKzs/nyyy+d2vTr14/58+cTEeH554QVwTA1NZXExESPu2h/++23PProo+Tl5WG3O/aP0zSNW265hXnz5tGjRw+PfCkUoERKhcIVGpAA3A1cCLwDzAfKWzIohUKhOBuJL6q5QoiG+5D6H5BCa2bupCMSTUdmALeamerCniFkQJmnLj1Cyv7eWKZR5EUK039ud5GSwZ+NrpoMrHFl98z4AfsTi3YtB3GHr2I5HQFSCvmilEGZ+dEDPbram1hYMUIKkaVL3c+NJ2TqlPW7/mWWsXjOyQ5PH2t34i7Asw4MzvCiyOsG7TG+zeYDvZsxrwhD0Nzpi6AUitaKpmltTqRsFAyzsrLYt2+fU5v+/fszf/58xo0b57G/Xbt2kZ6ezttvv+10vFu3btx9991eEQwPHz7MY4891qRgGBgYyO9//3vuvfdejwXD+vp6bDYbjzzyCMeOOb/IMXr0aLKyshg4cKBHvhSK01EipULhnF8DucCI034W/cN/1gN3Anv8H5ZCoVCcXSSXVvyqwR5wPzQkSund7xYpmZhYWDEiL2aoy7qT+VHD3kosrlwvJRO96d8i27HLebYJQ7Z6ssiMkoor7VK7t1Hk9VZwTSEE88aVlr64OSLCZd1JcarhIdk+KAFpqfuyB8gSXep/zY8e5tH13mmFlQM1wULZcrXcugV10O7CaArTJE/c0P9kQlHl34CnvOW4UeQV9sB5eeMH+bu5TDsgEeOfuzm1PouANOAtH8SkULR6pJTRUkpNCNeZ762J3/72t00Kht27d2fu3LncfvvtHneaPnjwIAsWLKCgoMDlNfJ77rmHrl2tlMltmkbB8O9//zvffee84kdYWBjz58/3imBYVlZGeno6H3/s/DzvwgsvZO7cucTGxnrsS6H4JUqkVCh+zoXAAmAqTV8jnAhEAYsxrt5975/QFAqF4uxh+oZ3e8l2QXfV28UdIDv4yo/UAh7EOIBybSe0DNBvQPqp6aDgbQQLbJGhLms7mjF9S+VFsl7cp+syET9+90nod0lDj2nAs67snr3h6q8Ti3Y9JRE+6bSNl0TeRgI1vaOUWozHmbyeIOSd07Z9smTF6H7/c2VWe7gmL7jHgLuQwgudC7wj8rpBoziZgfGNZpVtGOLkFh/EpFC0JXocOHDgGsC5qtcKef/99x1+FhQURGJiIqmpqR53mj558iRPP/00ixcvdto4BmDcuHHMnz+f/v09vwRRVlbGAw88wO7dzs+G+vbty/3338+kSZM89vXpp5+SmZlJcXGx0/Hg4GD++Mc/cscdd9C+fXuP/SkUzlDdvRUKg2AgE6Oz4zTM65x1xKhp9AHwewv2CoVCobBA0uvV3ROLdqXr7YNqJNzjS4ESACnDE0srx5mZ2SJDqoXRCdinCEENUkyxRQ4O90SgjF2zvWNCUWWu3sAHEpksW+JgWoi0OzfsNt/FBNgfReB2Z3LnvnkbjVts0aER3hIoAZ6NGvou8LK31nMLSSettu4vZmYFcXF2IbUcD71tF+jRtugh1+fH+FWgDMJobFUDLMW6QLkN4yA5DCVQKhSWkFK26S7fY8eOpbi4mPnz53ssUL722muMGzeOBQsWOBUoL730Umw2G6tWrfJYoPz000+ZNm0at912m1OBMjg4mNTUVEpLSz0WKI8ePUpOTg6RkZFOBUohBJMnT2b79u2kpqYqgVLhU5RIqVDAJKAa4wpRcDPnXgT8G3gTGOnluBQKheKsYdrGik4JxZX3NATqNRLxgO+v/56GTg5Smh42NWhalgCX15c9YK8UesrxQzXX2GIGv4AQHiXrFcSOPIHgGiTtvBWgG1x0rN3JZDOjvIirjkjE495w6C2R1xU6gRk+/DuwhhAzk0srTOtN9i0PWQO4bA7VhIO3GkXevOih/qzHero4aQMuszhvOxCDIU6W+CY0haLNEtPSAfiSBx54gH79+nm0Rk1NDXFxcSQlJbF3716H8S5dupCens7mzZuJifHs13n06FHS09OJiIjwuWCo6zoFBQWEhYWxZMkS6uvrHWyGDRvGK6+8wuLFiznvvPPc9gXwzjvvsGzZMvbs2ePROoq2jRIpFWcz1wBlwCtAXw/Xuhajoc5ymlfIXaFQKM56Eot3JWqB2kdIcoBu/vYvJcPji6tuNLNbGRHyCYJ8L3vfJ4WW2uVUh9D8qKHLCuLiHCvhu4MhcmZ5ZS2P4pD3z1j7oangLBvsT4J0eX3ZBK+KvK74oenOf3y1vjVkh3pd+6uZVWam0GXz/g4+QIoptqiQMb4SeZtAA2IxDo1twOUW570B3ASMxqg/qVAoms+oQ4cOeZZi2EY5cuQI6enpTJgwgfJyx96pmqYxefJkysrK+OMf/0hQUJDbvhoaGli5ciVhYWEsX76chgbHszBvCobbtm0jJiaGOXPmcOjQIYfx888/n9zcXF599VWuueYaj3x9/vnnJCcnM2nSJDIyMoiOjua///2vR2sq2i5KpFScjZwPLMMooh5mZULv3pZ0Rw2YAXwEzIUWzV5RKBSKVoMuaY+kV0vGoAnmZ2ZK0+8izR6ULQR1nvoTQnyDIK328Pch+VEhTz5xQ/+Tnq75S2xRoZtAeu2qs1tIejV0bviTmdmKCUOPSxHwsBsO9kmhpdYe1gZ7IvLGllZ3TiiuvCehsHKjlazaABGQheCUO768SGJ8UY1pvcn86ND1CFw2h+IHkbf2cM1wX4u8v6BRnKzB6AZv9X5kBRCHcYtlnW9CUyjOGoJOnDgxtqWDOJOwIhheddVVrF27lsWLF9Orl2efMOXl5UyYMIG5c+c6FQx79+7tNcFw3759zJ49m9jYWGpqahzGO3ToQEpKCmVlZcTGxiKE+1XNjh8/zoIFCxg7diwbNmz48ee1tbW8/vrrbq+raNsokVJxNhEEzMEQEZOw8Pffv39/nnvuOXbu3Elubi49e/a04qcL8DBGNoBqeaZQKBQmdOh26hkELXqkLiWD/xtWZfrMfmb8gP1IudxtR4LvBDxSf/L7gbao0EcK4ka5JXhaEVQB0O2Z7qzvTYSUdye9Xt3dzK7uEE+D3GNpzV+IvAVxIW4JhrFrqtvFF1ckB9vtNUhyEIxLLK682Wze8qhBe4VJUyCfIwkQNKRZMpUis4mRfVLoKXsDvhnk1Uxec07PnFwDWG3uU4khTl6FH2rEKhRnC5qmtekr382hvLyc8ePHM3fuXA4fdiyXfMEFF5Cbm8v69es9Fgz37NnDrFmziIuL87lgWFtby6JFiwgLC+P55593ahMTE8PmzZtJS0ujc+fObvuSUrJu3TrGjRvHE088wcmTjuewzn6mUIASKRVnD9HA+8DjQFcz427dupGVlUVJSQkRERFomkZsbCzl5eWkpKTQrp2lJMl+GB/exUCoJ8ErFApFW+bp4cPrpXHVu0XRIGNcaalpgxlxquEhBN81a3FBrYBH6utk/7zo0LTnbhhxzJ0YMzOlllBYdeuesKrKxKKqa83sbeOv2gZsdMeXF+nWECjnmBkVxIWcklK4zqb0ksg7c+fOoPjiiuRO3fWPhdSWgPjx3pwUZFv5O0DT/oag1h3/XkMQF19UOcTMLD96cCmSzT9O+0HkFQGHBuVHDV22OSLCXzU2BUYt8J0Y30gDLM6rwhAnh2KIky3aYF2haGu09eY5Vvjss89+FAw//PBDh/GOHTuSkpLC1q1bvSYYRkREsG6d82TwmJgYtmzZQlpaGp06dXLbl5SSgoICRo0axaJFi5yKg4MHD+bFF1/EZrNx8cUXu+0LjLqTkyZNYtasWezbt8+jtRRnJ0qkVLR1rgReBQqBQWbGgYGBTJ06lfLycpKTkwkICPjZeJcuXUhLS6OkpKQ5RZEjgXcxulO26HVGhUKhaAmsdHiuO1zzbyFwTCPwIxL6XdzQM97M7tkbrv5aSPmUpUUFpwRimdC0gXnRoWmrJg751t34phdXR34WVvUmQq6S0E8i063Mk9I+T7S0qCPkndO2fWJaQKvu2xobxo2HX8znuDdF3pNH2lcIqS2RcIGDkRRXXGLvcZvZWnkRIQeElEvdicNrSDQBGVZMdUnaL0XevIiIE74O8TSiMcTJVzAyIa3wAZCAEicVCl9z5YEDBy5t6SBaAquCYWOGoT8Ew5deegmbzcZFF13kti+A999/n5tuuok5c+bwv/85ln0+99xzycrK4rXXXmPEiBEe+Tp48CBz587l5ptv5t133/VoLcXZjRIpFW2Vc4GHgF3ADVYmhIWFsWnTJhYuXEj37q5vpV122WXYbDZWr17NlVdeaWX5QGAmxsZrzg//W6FQKNo00zZWXJdQWLnxWIcTC81sC+Li7DrM90dcrhCaTI9ds72jqWGA/VEEjvfAflwIHSFf0AP1IXnRg1PyIkIOuBvT9OLqyISiyu261F8DTs+am5CwcdcYs/n5McPek/CSu/69gqSTVlc318ysIC7OLjktq/YnkXeQRyKvlCKhpPLGRpEX08YsYl7smmrTaxM6dX9HCLcEUy8yadrGiuvMjFaMD92pN+iXeCLyukk08DbGgfHVFufUYIiTQ4B8QPdNaAqFohFd16NbOgZ/0tjZeuTIkSxatIhTpxyrhoSGhvLyyy/7XTC87jrTR7pLDh48yOzZs7nxxht55513HMaDgoJISkpix44dThNzmsPJkyfJzc1l9OjRrFy5El13fFxHRkZy9dVWH/+Ksx0lUiraGhoQjyEG3ouF5jWXXnopS5cuZc2aNQwYYPXWkUF4eDibNm0iKyuLLl0sNcU7F+PKeRUWxVOFQqFobSSUVIckFO9apQVoWxGMQydp2pYK0wyN/MjBLyN42x8xNokUfTr26JpkZpYXcdURiXj8lz8XIBHyBSkDh9qihkxZMXboZ+6GklhYMSKhaNemH8RJ54WvArVMK2sJPSBDgL+u9DYRBDOTSyt+ZWaWHzV4jRDiPa+KvMVV29B5kZ+LvK64JLi7PdE01ujrDgmpL3Y3Nm+hBTRVc/LnrJgw9LiPQzmdaOBNDHFyuMU5nwGzMMrk5AP+qpGpUCjgrKlL+d5773HzzTczZ84cvv76a4fx7t27k5WVxYYNG/j1r3/tka8DBw74TTA8ceIES5YsITw8nOeffx4pHZPPG/ev2dnZVvevTVJYWMi4ceN4+OGHqa11rH7SuM9euXIlF1zgeHFBoXCGEikVbYkI4D3AhoVr1Z06dSI1NZXS0lImTZrkttOgoCCSk5N54403SEpKsvpiOf0a+kC3nSsUCsUZxIySiisTiiufQeo7keLW04aCtHrNvMGH0VE4y2cBWkSg3zdj7YfnmNnJBvuTIE9Lh5AlurSPtEUNmZIfPfBjd/03irxSaFtAuO64KuXoxKJK041l3vhBuyX8292YvIKkfb2u/dXUTgjZruuJcL+IvK4DSZu5bmewmdXxgIDHQDrucv2KiEwsrRzXsjH8SBiwGeMbx+rufi+GOHkF8DRKnFQoWoJoKaX7Clkr4KuvvmL27NlMnDjRb4LhmDFjXAqGhYWFXhUMc3Jy+P777x3GL7vsMvLz85tzE7BJdu/ezZQpU0hISGDv3r0O440l0jzdZyvOTpRIqWgLXIxx2l6ChQwJTdOYPHky27dvJzU11WoTHFO6detGdnY2r7/+OiNHjrQ6LRqoAHIxuoIrFApFq2P6lsqLEouqlui69i6S25FOvi8EU6YVVpoeytiiQjeB3OqTQK0i6dXQueFPZmYrJgw9LkXAw8B27DLGFj3k+vyYYe+569aFyGsSLllIaVrBX0otC4FbXbC9SGJ8UY1pJ+enhw+vd9fBtI0Vgy2LvK7pfbJTh1lmRgURId8LAh71wI930Mmx8nfgQ8IwmgWWAVZ/758Dd2Ec3j5NS2f7KhRnN+cePHjQatZzq6Kurs6SYFhUVER2djbnnGN6TumSwsJCxo4d26RgePnll7NixQpWr17NFVeYvhJdUlVVxS233EJCQgKff/65w/jpgmF0tGc3+o8cOUJ6ejqRkZFs3rzZYbxxn11WVtacZrMKxc9QIqWiNdMJyMS42j3NyoSrr76aV155hcWLF9Orl2962ISEhPDCCy80pztaEDAb+BSjXmWbPsFUKBRth+kb3u2VWFSZo9eLKolMlq7q7UoCNGGtwYcmxDyvBekmQsq7k16vdl2gGLisbNBTtujQCNuEIW4Lq5ZEXtdcnVhcebOZUX5MyOcInnEzTO8gCRA0mGfVukFi6a4BCcW7VgUEaM0SeV2i85fbN7xheoh4/PDRfwj4yis+3efAjFc+6twCfkdhZE2WYTQLtMIX/CRO5gKO3SMUCoXfaYtdvtevX09YWBg5OTkcP+5Y8eLKK69k9erVrF69mv79+3vk63TB8IsvvnAY79q1649NWKOiojzy9e2335Kens7111/PG2+84TDeKBiWl5eTkpJCUFCQ277q6+tZuXIlYWFhLF++HLvdMdl95MiRbNy40af7bMXZgRIpFa0RgVF38hNgHtDBbMIFF1xAbm4u69at81vR3piYGMrKysjKyqJzZ0t7hp4Y9SrfAsJ9GpxCoVB4QNLr1d0Ti3al6+2DaiTcA9L0OQwg4HeJRVXXmtk9GxW6HdjocaCe0c0eaL/LzCgzU7jd0ONHkbeBalOR1wQpyB5XWmo6XwhtAQLHwlH+RBA3o6RqqLeWaxR5pS7eRYpbpfGd4CVkj8D2nWebWRXEjapD5yHv+W0W2wV6dF5U6K3P3DzgOz/6HQGsA7Zh3Ayxwv+A+zCudecC/uwurlAoTJBStrm6lLm5uXz1leMZUteuXcnKyqKwsJDwcM+2XlYFw8YMQ08Fw2XLljFy5MgmBcNRo0axadMmFi9eTM+ePd32BVBWVsb48eOZO3cuhw879gts3Gc///zzhISEeORLoQAlUipaH9difAzbgN5mxh07diQlJYWtW7cSGxuLEP69BdVYr7KsrIypU6eiaZb+lbsa2Irx4d/Xl/EpFApFc5i2saJTQnHlPQ2Beo1EPICkWfehJAiJTLdiK6RMQ7RsR18pxB3Ttn1ynrfXNUTeyhy9fdDHEu5B0t7jRaW44mJ7z9+bmeVFhByQyH967M8DBHxQX2+3JGy7YvrW3T8TeZG+uYkgpPzz9A3vmqaFtOt+crkwGr/4CfGWJrTrbdGhEXnRQ8v855ehwBpgBzDR4pyvMcTJvsDDKHFSoThTGXn48OGuLR2ELwkMDGT69Ok/1p0MDHT7fNCSYDh69GgKCwu9KhhmZGRw7Ngxh/E+ffr8KBgOGjTII1+fffYZs2bN4rbbbuOjjz5yGO/YsSOpqals27atRfbZiraLEikVrYU+GHUn3wRMCz4KIZg0aRJbtmwhLS2NTp06+TxAV5x//vksXLiQ9evXM3y45VIvE4Fq4CGgJa5vKRQKBQCxa6rbxRdXJGsB4kMkOUA3D5abkFD8wRgzo7yYIZVIXvbAj+dIOgXU1d7rreViS6s7/yTycg8S06YszUFARuyaavMCULLuEYRw3N34nr1S6CnHD9X8esWEoW+6u0h80Zs9Eosqc2T9id1eE3ldIKGz3i7oz2Z2Tw8fXo8gx5ex/MAHSDHFFhUy5tmokBI/+GskFEOcfA+ItTjnG34uTtb5JDKFQuEtAuvq6sa1dBC+IiwsjI0bN5KTk0O3bp58yhiCYUxMjKlgWFBQwMCBnvVJ/e9//0t8fLxlwdATjh07Rk5ODhEREaxbt85h/PR9dmpqKh06eHzmqFD8DPePDRQK/9ARo15jGljL2BkyZAhZWVn8+tdWG0r6j2HDhrF27VrWr19PVlYW+/btM5sSDNwL3I7xO1gBOFZ6VigUCh8wc+fOoBNHgxIE9jSk1sdrC0v7fCDCzEwEyPlSFzf7KkPOHPk1utjt6Sqxa6rbdezREC/s9nkgvJ6ZeRqXdOxunw4sdWWUH33doYTiqlzAUlar58h9UgQ8WneIpwviQt1u3BNbWt05WNf/T8BcKenq37ehSJmx6cMnnxk/YL8rq+OHalZ16jEwVUo825E6Z68U+sK6Qx89WxAX58/u14OBDGAy1q/SHwKeBB4FWkIQVygU7jMeWNvSQbhLu3btqK//ee+1vn37kpmZyfjxnpfc/PTTT5k/fz5FRUVOx4ODg/njH//IHXfcQfv2np2hHTt2jCeeeIKnn37a4Z8JDMFw4sSJZGRkcOGFF3rkS9d1XnjhBR588EG+/vprpzZn8j5b0XZQmZSKM5lJ/JRJaCpQNmYrvvrqq2f0g/OXp08WX16/wrji/gZGDSiFQqHwGZmZUksorLr15JH2FUJqS5DCewKlwaiE4krTnUJexJAPkazysm9zBN8JeKThVO2gvPGhbl+NnrlzZ1B8cUVycA/7R0JqS3wsUAIgEH+duW6naYZmrSYeB+l8F+KtWIT4BkFa7eHvQ/KjQp4siAtxW6CML66+PtguP0aSIyUtcBVRdrAH1ptm1RbExdkRZHnZ+ZdS6Cl7A74ZlB81dJkfBcpBGLdYKjAyJ60IlN9hZExejtHcUAmUCkUrQ9O0Vt085ze/+c2P//2cc87hgQceYPPmzR4LlEePHiUnJ4fIyEinAqWbezyn6LpOQUEBYWFhLFmyxKlAOXToUNauXcvSpUs9Fih37NjBhAkTmDNnjlOBsnGfvWHDhjN6n61oG6hMSsWZyFUYDWRMrwOCUfcxPj6euXPncs45zSqP1qIEBweTmprKH/7wBx566CGef/55K9N+jVGT8zngL8BBX8aoUCjOPqYXV0d+JqseBob41JFkPlIWIoTLfDgptSyh6XG+vtILgKBWSJ46VScfWTVxyLfuLpOZKbXPRlf/7uQRmS0Mscaf9D7ZqcMs4DFXRgURId8nlFQtQpfeb/Yi+E5Iltaf/P7h524Y4RWRStfYHWiXXVv0KoFO0rQtFY+vGDvUZd3JvIjBLyWUVL2NxLRJlCuEEN9I5GNC++ZJW0SEP2s4DgD+CkwBy1nM3wFPYRwsH/FRXAqFwg9IKfsdPHjwsvPPP/+/LR2LOzz66KNcd911HDt2jMmTJ3PeeZ6dDzZmGGZnZ/PNN984tRk2bBhZWVnNKevVJNu3bycjI4MPPvjA6fj5559PamoqU6ZMsdrvoEm++OILHnzwQafXusHISp01axazZ89u8fJpirMHJVIqziR6YFwnSsHiR3FMTAzz58+nb9++vozLp/Tp04fFixdz2223kZGRQU1NjdkUDZgG3AI8AiwATvo4TIVC0caZXlwdqUv9QV3q1/jJ5dXxJVW/zYeXXBnlx4R8nlBS+SyS//NZJIJTQop8NJGdFxFywJOlkl6v7r4nqKoE31z3tYSQ3HP7hjeWmwmEQnz9D0mPO0F4loLx44IcF5J/eCryOmNlRMgnicWV+UhmeHPdZhKkNWh/Bf6fSyshpFZSla1L+YpbXnwg8lrkUoz6kTOwvkf4HliCkT3p1f/PFQpFy2G328cDLdpkzV2CgoKYOnWqV9batm2by/2ZNwXD/fv3u0xcaUzMuffee+nc2bN2BbW1tTz55JP885//5MQJ52dg119/PRkZGVxyySUe+ZJS8vLLL/Pmm26XolacZajr3oozgSBgDvApRv1JU4GyX79+rFy5EpvN1qoFytNp7PyWm5trtfNbJ2AeUIn1AvYKhULxMxILK0YkFO3apEv9NcBfAiUAApk1rrTUVAwRQluAoNYHAegI+YIeqA/Jix6c4qlACbD8NyGHkXi8jidIKXsGtu8828wuLyLihDTEJc8QnBKIZULTBuVFh6Z5W6BsRLMHZQvR4o1Xbp9WWGkqQD8bOXgjGlubtbLguIBH6utk/7zo0DQ/CpSXYNQx/RiYiTWB8jiwGOiHIWwqgVKhaFvEtHQALcn+/fuZPXs2sbGxTgXKDh06kJKSQllZGVOnTvVIoKyrq2PRokWMHj26SYEyJiaGrVu3kp2d7ZFAKaXkxRdfJCwsjMcff9ypQDlw4EDWrFnD8uXLPRYo33//fW6++WZSUlIcslA9rdepaLsokVLR0kRjdIl8HMxrTHXt2pWsrCxKSkqIjIz0eXD+RtM0YmNjKSsrIyUlhaCgICvT+mN02yzCKG6vUCgUlkgoqcyVQtsCYmyLBCDFFX31nn8wM8uLCDkgkV7L6BAgEfIFYQ8YYosaMsXs+m5zses8IFq4yZmQ8s/Tt+7uZWbXodupZxC4d6XPiyLvtG2fmN7He2b8gP1IudxdH15BEqAJMizZNjRkWrL7QeQNkgz0pcjrhIsOjOijAAAgAElEQVSBXOAjrIuTtfwkTs5BlZ1RKNoqkVLKs+7WZW1trSXBcPPmzaSlpXksGK5bt44xY8awaNEiTp50vBjXv39/Vq1ahc1m81gwfO+997jpppu44447OHDA8XV97rnnsmDBAjZt2kRYWJhHvg4ePMif//xnJk6cyM6dOx3Gg4ODmTBhgkc+FG0XJVIqWoorgPVAIRBiZhwYGMjUqVMpLy8nOTmZwMC2/c7s2rUraWlplJSUEB0dbXVaFIbguxSwlIqpUCjOcuxsa+kQpCQ9dk11OzO7hjoW4pVad7JEl/aRtqghU/LGD/K4c7czVowP3YngVV+sbRUJne31dXeb2T09fHi9lOQ0Z21viryNmbwBdXWllrJqTzU8hOA7d/15AwG/SyyqMq03aRt/1TaM75ym1mlA8FyjyLssOtRfgt9F/CROzgZL9V5PAU/zkzjZotnCCoXC53Tbv3//WdMhpVEwHDt2bJOCYUhICC+++CI2m42LL77YI38VFRXcfPPNzJo1i3379jmMd+vW7cfEnHHjxnnk6+DBg9x1111MmjSJd955x2E8KCiIpKQktm/fTkJCAgEBVksRO3Lq1CmWLFlCeHg4q1evRtd1B5sxY8bw+uuvc/nl/i7ZrWgtKJFS4W+6YRRVrwRutDIhLCyMjRs3snDhQnr06OHT4M40Lr/8cvLz81m9ejVXXHGFlSmBGNkQH2FsItq2mqtQKDzCFj24AKNzb0tySaduummdwVUTh3yLEE944Gc7dhljix5yfX7MsPfcXSSxtKavFTsptAwEjl/nfkRI7U/xxR+Z1pusO1zzbyEwLYhs4B2Rd9rGisEJxbtWNWbySuh3cUPPeLN5z95w9ddCyqfc9esNJAiJTLdiqwk945dZtY0iL3rAMFtU6AxvZ/K64DyMb7CPMcTJDhbmNIqTlwGzgK98Fp1CoTjTaNVdvq3SeCW5KcHw3HPPJSsri9dff50RI0Z45OvgwYPMnTuXG2+80WmGYWM9zcbEHE8Ew/r6epYtW8aYMWNYs2aNU8GwcZ+dnZ1N166mlxpdUlhYyLhx48jJyeH77793GO/bty9Lly7lP//5D/369fPIl6Jto0RKhb/QgHgM8exewDRrpvFBtmbNGgYObLH+A2cE4eHhFBYWkpWVRZcuXaxM6Y5xhb4S+I1Pg1MoFK0XISQa81s6DKlx/8x1O4PN7Go18TjIr5u1uOBtNG6xRYdG2CYMaV6NwNOYvqXyosSiqiXYG6oTSyvHmdnbIkOqBRS46887yA5CnJprZlUQF2fXMf072C7Qoz0XeXcNSCjetSogQNuJFLeePiY0mR67ZntH00UC7I8iOOxuDF5iQsLGXWPMjJ6NGvquFKz96SeyBF0b4ctMXif0whAn92B8g1kRJ+uBFRidvmcBjjt3hULRphFCtOm6lI2CYVNXkhszDHfs2OE1wTA8PJyVK1c6FQzDw8PZtGkTCxcupHv37m77AkMwHDNmDBkZGXz3nePlg0svvfTHffaAAQM88vXJJ58wdepUEhIS2LNnj8N4cHAwqampbN68mUmTJnnkS3F2oERKhT8YB7wL2DBO8V2iHmTOCQoKIjk5mR07dpCUlGT1RTkAeA1Yh5EFoVAozhLii97sMXXrBxeY2dkiQ19F8IY/YnJB71MdO5p27y6ICPkeTVtkZUEhqEGKKbbIweG2yFC3r15P3/Bur8Siyhy9gWqJTJYQiE4OUgqzuQ2aliWgwV3fXkEnadqWikvNzPIjB7+M4G3HEfGWJrTrbdGhEXnRQ8vcDSO+sPrixKKqJVIX7yLFrRIcf39S9OnYo2uS2Vp5EVcdkYjH3Y3FawRqmVbMdJ1MKWWRFPZwW/SQ6/PGh7zv48ga6cnPxUlzAfgncXIgxuGyv7I8FQrFmcd1e/fuPbelg/A2zREMs7OzrSaINMnpgqGzDMNGwXD16tVceeWVHvn65JNPuP3220lISGDv3r0O44377NLSUo/32UePHiU9PZ3IyEhKSkocxoUQTJ48me3bt5Oamkq7dqY5SgoFoERKhW+5CMgHSoGhZsbqQWaNc889l+zsbF577bXmXDmYCNRg1KDy7E2rUCjOaGJLqzsnFFfeIwj+IKDevtDKHCH1B3wdlxkSec/tG94wfT4J8fU/QLrK6torhZ5y/FDNNbaYwS8ghFsNbJJer+6eWFSZo7cP+ljCPcif6vZJyfD44irTkiUrI0I+QZDvjn8vEqTVa2mmVsbvKeu0n3yAFFNsUSFjno0Kcdx9WGT61t29Eosqc4SmV0lkMhKXJ2wC/b4Zaz88x2xd2WB/EuT/3I3LK0g5OrGo0jTTaEVMaE1+zJAb86OGveWPsIAeQCbwKYY4aZqlDOgYmb+DMMTJT30VnEKhaDUEBAUFRbR0EN6ksLCQ8PDwJgXDyy67DJvN5hXBcPfu3UyZMqVJwbBLly6kpaV5RTA8cuTIj4JhaWmpw7imaUyePJkdO3Z4vM9uaGhg5cqVhIWFsXz5choaHM9ir7rqKl555RUWL17MeeeZ5igpFD9DiZQKXxCM8XH8MTDNygT1IGs+gwcP/rF480UXXWRlSjuMGlQfYtStVP/+KxRtiNg11e3iiyuSg+32GoxGKN2EJHZGSZXpIVFe9NAyYRwotSCyR1C74DlmVnkRESckPOxk/j4ptNTaw9rg/Kihywri4uzuRNEo8jYE6jU/iJNOBR6BzMrMlKbPUc0elC0Ede7E4jUEU6YVVprWTbFFhW4SQtiQTLu0fLBHIm980Zs9Eosqc2T9id2/FHldIunV0LnhT2ZmKyYMPS5FgJO/A/8iIctKVq2fOAdDlPwUmIe1Q8lGcXIgEAd84rPoFApFa6RNXPmurq7m1ltvJSEhgc8//9xhvFEwLCkpISbGs3/k0wXDzZs3O4w3CoZlZWWkpKT4RTBcu3YtixcvplevXm77AigvL2fChAnMnTuXQ4cOOYz37t2b3Nxc1q9fzzXXXOORL8XZi2qqofAmApgMPAJYannWu3dv7r//fiZPnowQZ8o3fusiJiaG8PBwli9fTm5urtNTwV9wAUYH8JnAXUC5r2NUKBS+Y+bOnUEnjgYlCOxpSK3P6WMShF2X84BbzNax6zwQoFHu9Bqu3xB3Td+6+5/Pjunvsu5kh26nnjl5tP1dSC4TQnwjkY/VHvp+SUHcKLfFwNg11e069miIF3b7PBAWTstEyH/DqmKB1a6snhk/YH9i0a7lIO5wNzaPkQRoggzgD2ameVGDZ3riKra0unOwrv+fgLlS0hU3JE4h5d1Jr1f/a/lvQlzWnaw7xNPB3eWdIPq6Fax3uDqxuPLmPHi5BWM4B/gTcB9Gg0Ir6MALQDpGvXCFQqFwRquubX/kyBEWLVpEXl4edrvj2aWmadxyyy1kZGTQs2dPj3zV19ezevVqHnroIQ4fdv76GjlyJFlZWYSEhHjkCwzBcN68edTUOO97d8EFF3Dfffd5ZZ+9Z88eFixYwLp165yOd+jQgaSkJO666y46derkkS+FQmVSKbzFcAyxaw0WBMoOHTqQkpJCWVkZsbGxSqD0kMbf59atW5vzIroG2Irx/9klPg1QoVB4ncxMqSUUVt168kj7CiG1JUjRpwnTGxMLK0xrQ6wYH7oTgdu1G72BhM7yVF2qmd3Tw4fXo4sHhJDzjmviSltU6CPuCpQzd+4Mii+uSO7UXf9YSG2JNYHSQIOMcaWlpge+4lTDQwgcK9f7EQG/SyyqutZX69+5YXf70zN5pcSTNqHdGgKlaVZtQVzIKSlFy2dTCrKt/B34gM4YmZN7MWpPWhEoJbAe4xsgDiVQKhQK1/T94osvWl0r5sa6kyNGjGD58uVOBcpRo0axadMmFi9e7LFAWVZWxvjx45k7d65TgfKCCy4gNzeX559/3mOBcs+ePcyaNYu4uDinAmXHjh1/3Bd6us+ura1l0aJFjBs3rkmBMiYmhi1btpCWlqYESoVXUCKlwlP6YGTlvQmMsjJBPch8R+/evVm8eDGvvvqq1RR7AcQCH2Bc0bdSVF+hULQw04urIz8Lq3oTIVcBl5vZSy3gQSvrSqFlIHCsIO9HJNof44s/utDMzhYz+IW8qCEPFUSEmKaPO+OXIq80ssybGSv9Lm7oGW9m9+wNV38tpHzKnTi9hQQhkeneXrdR5P2u3YmPmivyukTIO6dt+8R0rc8Dv8lHSH91yXaC/B9S+6efnXYC5mBczX4IsNLYolGcHA5MAvzVvEehULRyAgMDx7d0DM2hUTDMyMjg2LFjDuN9+vT5UTAcNGiQR74+++wzZs2axW233cZHHzme+XTs2JHU1FS2bdvmN8Fw8+bNHu+zpZQUFBQwatQoFi1axKlTpxxsQkNDeemll5pTekyhsIQSKRXu0g7jA9lyfUP1IPMfw4YN45VXXiE3N9dqjc9gjPpVH2MUzFeprQrFGcj04urIhKLK7brUXwOGWJ4oZXh8UZVp8XtbZEg1kjWexOg5soPGqXt9t7wUCSWVNzZH5HWF0GR67Jrt5gc8AfZHEbi8vuwHJiRs3DXGGwt5Q+R1iaRTQF2t6d/B5oiIBilFtld9W0HwnYBHGk7VhtiiBy/ZHBHhjy7uwfwkTj4OnG9xXhFwLYY4+a5vQlMoFG0VKWWrqks5depUS4KhJxw7doycnBwiIiKcCoZCCCZNmsSWLVtITU2lQ4cObvvSdZ2CggJGjhzpF8Hwvffe46abbmLOnDn873+O/enOPfdcsrKy2LBhA9ddd51HvhQKZyiRUuEOkzA6RT+OUQfJJepB1jIIIYiNjf2xW3r79pZ6FvwKsGE00Bjm0wAVCoVlEgsrRiQU7dr0gzjpViVyTcgHLTX4EGQB9e748BZSMmNG0a7LvL3u9OLqyITiqm3ovEhzRF5XSNGnY4+uSWZmeRFXHZGIx73i0x0EpwRiWVCA8Ox6b6PIG171ljdEXpeuhJiZWFrT18wuP2rwGqDCV3H8DMFxAY/U18n+edGhac/dMMIxTcf7tMM4EG4UJ3tbnFcE/Bqj8cU7vglNoVCcBURJKYNaOgh3EUIwefLk5u6JnGK321m5ciWjR49myZIlTgXDxoawS5cu5Ve/+pUnofPee+9x8803M2fOHL7+2rFcd/fu3b22zz5w4ACzZ89m4sSJvPOO4ysjKCiIpKQkduzYQXJyMgEBAR75UyiaQjXOUTSHgcBjwAQrxkFBQcTHx/OXv/yFLl2sNJhU+ILg4GBSU1O59dZbXRY8/gVjMTY0zwF/AQ76MkaFQuGcaRsrBmuB4q9Sils9XUtKhscXV92Yb1z5bBJbVOinCcWV+UhMhTcfEqQj0sA7MSQWVoyQQmTpUh/rjfV+iUC/b8baD23P3DzAZd1J2WB/UgSIO7x2JdpSbDRIwWqhBWblRQzc48la04urI/Xiqhzgau9EZ4KkHXrDvcAfXdoJIWVRZZYwGsH4BsEpIUV+oJRZy6JD/fVObAckAhmAaQmE09gGpAFbfBCTQqE4+zjnq6++uo5W2mzzX//6FzfccIPH6+zYsYOMjAyqq6udjp9//vncf//9Xum3cODAAf72t7/xwgsvIKVjB7rGffbcuXM55xzTnCGXnDhxguXLl/P4449z/Phxpzbh4eFkZ2dzxRVXeORLobCCyqRUWKE7kAtUYlGgDA8Pp7CwkOzsbCVQniH07duXpUuXsmbNGgYOHGhligZMw7jSfy/g/rGjQqFoFjNKKq5MKN61KiBA24kXBMpGBDIrM1OavvvtQQHZQuB2p2zPkSW6tD/p6SrTNlYMTijetUoKbQsInwiUAEh6NXRu+JOZ2YoJQ49LEeCXRi8CJEK+gB4wzBYVOsMTgTK+aNfI0zJ5/SNQ/oCEhBklFVea2eVHh65H8IYPQqhH8JzQAkPzogen+EmgDMIovfIhRt1vqwLlNiASCEMJlAqFwou0tivfp3PJJZ71B/3qq6+YPXs2kydPdipQNmYYbt26lbi4OI8Eyrq6OpYsWUJ4eDjPP/+8U4EyPDycoqIisrOzPRYoCwsLGTt2LDk5OU4Fyssvv5wVK1awevVqJVAq/IbKpFS4IgiYDuQAllqeXX755WRmZhIVFeXTwBTuExYWxsaNG/nPf/7Dww8/zKFDh8ymdMMozJ+EkZlR4OsYFYqzlelbKi+S9eI+XZeJQKDjp6mniJD/hlXFAqtdWa0cM+irhKLKZcCdXg/BNdsFekZe9NAyTxZJLN01QOpkCClukdI/NXaFlHcnvV79r+W/CXFZd7LuEE8Hd5d3gujru2hkCXrA/bbxIR43R0ksqfqT1OVj3ojKLSQBdrQHMA7NXCKk/oBEK/KKX4EO8iW7FpCxMiLkE6+saU4Q8AeMzMnmXKPfhlFXutgXQSkUCgUwHuM5c9ZQV1fHU089xZIlSzhx4oRTm5iYGLKysjwWQsEQDB944AG++OILp+Pe3GdXVlaSkZHBm2++6XS8a9eu3HHHHcycOZOgoFZ701/RSlGZlIqmiAbewzjBNxUou3btSlpaGiUlJUqgbAUEBgYydepUysvLSUpKIjDQ0nlFf2ANUAiE+DRAheIsY/qGd3slFlXm6A1US2Sy9OEhogYZM3fuNP3iPFV38iEELq8vew/xFhq32KJDIzwRKOMLqy9OLKpaInXxLlLcKv3bBKybPdB+l5lRQVzIKSmFr7Iptwv0aFv0kOvzvCBQAiDEiwhqvbKW+0yeUVI11MwoL3pomTBqKnuILBF2baQtasgUPwmUGhALfIBRF9qqQLkDuAkjc1IJlAqFwmcIIa794osvurd0HP5ASsm6desYO3YsixYtcipQ9uvXj+eeew6bzeaxQFlZWcnvfvc7EhISnAqUXbt2JSsri9LSUo/32d9++y3p6enccMMNTgVKTdOYPHky5eXlpKSkKIFS0SIokVLxS5olRKkHWeuma9euZGdnN/el1ywBW6FQNE3S69XdE4sqc/T2QR9LuAfp+7IKEvqd+La9aVbavycN/wYplvg4nA+QYootKmSMLTL0VU8WmrHpwz5C06skMhlJi1Rzl0LcMW3bJ6b1Juu+rbEBnjWw+RniLYn4jacirzPyIkIOSOQ/vblms5FoupQZVkztOg8IcDcJebuU9iiviryuaRQnazC+vfpZnPcmhjg5CrBUaFqhUCg8JCAwMDCypYPwNbt27eK3v/0ts2bN4ssvv3QY79atG1lZWZSUlBAREeGRr8OHD7sUDE9PKklOTraaVOKU+vp6li1bxsiRI1m+fDl2u93BZvTo0RQWFrJ48WJ69Ojhti+FwlOUSKlopPFKbyXGB7Mp6kHWdji93kj//v2tTAnC6DT6ETAHWkYQUChaK7Gl1Z0TiivvaQjUa34QJ4P96V9oMj12zfaOZna18sSjCFxeX3aTvVLoKbWHa4bbYga/gBAe32x/ZvyA/Ug8Ejo9RtIpoK72XjOzgrg4uzRKqXjKjyJvfvRgL2QQNoGsewQh/NHFuukQJBMTCytGmNmtGB+6E9G8vwMhxJuNIm9+zDB/NIZoFCerMcRJq4W+dgFxwEiUOKlQKPxMa65LacbBgweZO3cuN9xwA2+//bbDuL8Fw8byXAsXLvR4n11WVkZMTAwZGRkcO+b4Ku/Tpw+5ubkUFBRY7VugUPgUJVIqNH4qzm6pOcqFF16oHmRtlMZCzFlZWVYLMXcHHqcZTZUUCgV0bLCvRpKDcUDkf6To06nHOclmZgUxw48ihTfrEX4phZ6yN+CbQflRQ5cVxMU5fpl7gNADMgQ0eHPN5iKFmJlYWtPXzC4/avAaoMJNN14Ref+wbmfP+KJdI83s8qOvO4TRQK9FkVrAg5bshJZh1JQ05QOkmJIXGTLWpyLvTwhgEvAOhjg5wOK8KgxxchhGXWjvl6tVKBQKc9rct36jYDhmzBhWrlyJrju+OsLCwti0aRMLFy6ke3fPbryXlZURHR1NRkYG333nWFHHjUanTfLpp58ybdo0brvtNj7++GOH8eDgYFJTU9m2bRuxsZZylBQKv6BEyrObsRgfyjbgfDPjxgdZeXm5epC1YYKCgkhOTmbHjh0kJSUREGApSXIg8DpGZsdlPg1QoWgDaEI83tIxgLhvxtoPTU8jdLt9CeBRR2MhxDcI0kTANyH5UUOXbY6I8ImQmDd+0G4pWOWLtS0jaYfeYJpNiRBSQlYzV/eKyNuYyds+uP0HAvGfmet2mmby1mricZBfu+PPa0gZnlhaOc7MzBYZUi1cNXkT8mMJSd7M5DWhUZzcCbyCITZaoRpIAIaixEmFQtHyXPLll1+2mRbPhYWFjBkzpknB8NJLL/1RMBwwwOqZknNOFwx3797tMN64zy4tLWXSpEke+Tp69Cg5OTlERkZSXOxYrlgIweTJk9m+fTupqam0b+/zSkMKRbNQIuXZya+AfIzi8qYfyupBdnbSvXt3srOz2bBhA9ddd53VaRMxamvlApZSMRWKs5G86NBCkFtbMgYpZU+986kUM7sVE4YeBzcbvQi+E/BI/cnvB9qiQh/Ji4hw3h7ThNg11e0Siqv+gJSmjXCkrmUjOOmOH28hIWFGScWVZnb50aHrEbxhZuctkXfmup3B8cXVdwTb7R8iyZGSrkDvk506zDKbWxAR8j2atsgdv15FJ8fK30GDpmU5yao1RF7t0FX50aErvZ3J2wTRwFsY4uTVFufU8JM4mQ+WskIVCoXC5wghxrd0DJ7yySefcPvtt5OQkMDevXsdxlurYKjrOgUFBYSFhbFkyRLq6+sdbIYNG8Yrr7zC4sWLOe880xLaCkWLoETKs4tgIBP4GJiGha6n6kGmCA0N5aWXXsJms3HRRRdZmdIOmI1RQmAm6jmjUDhFE2JeS8cA4u6k16tN7y7VHhb/ArnH+rIcF/BIfZ3snxcdmvbcDSPcqmeYmSm1hMKqW4N76BVImRdfUvVbszn5MSGfI3nWHX9eQxKgSy3NiqmQ+gNND3pH5J25c2dQfHFF8qmO7T8QUl8EotfPDHT+cvuGN7qYxiq+/gfIfe7E4C2kZHhCadUNZnYrI0I+QZAPgOBrf2Ty/oJGcbIQGG5xzmfALCAUQ5z0h4iqUCgUltE0rdXWpTxy5Ajp6elERkZSWupY4aOxIeyOHTtITU2lXbt2bvtqaGhg5cqVfhMMt23bRkxMDHPmzOHQoUMO4+effz65ubm8+uqrXHPNNR758gdHjx7l0UcfbekwFC2EEg/ODgRGgfYPgHmAabOE3r17t6oHmcL3xMTEsHnzZtLS0ujUqZOVKX0wOoC/idGBVKE4K0gorhyfWLgr1Mzu2ajQ7cBGP4TUJFLS1R5ov8vMriAu5BSSh0wXFJwSiGVC0wblRYemrZo45Fs3AxMJJZU3fhZe9RZCrkIaZSQEMmtcaalptXoRoC1AUOuWb28hiZtRUjXUzCwvemiZMG42/ISXRd6TR9vvElJbIuGCJoLtEdi+82zTWCMiTkhwL6vWiwhJVmamNP2GDdT0HARpeoN+pScibzMJAzZjiJPXWpyzB0OcvAJ4GiVOKhSKMxQpZYSUMqil42gOpwuGy5cvp6HB8ZzqqquuYu3atSxevJhevXo5WcU65eXlTJgwgblz5zoVDL25z96/fz+zZ88mNjaWmpoah/EOHTqQkpJCWVkZsbGxCGGao9SiNGaDhoeH8+yzLXverGg53G9LpWgtXINx9Xa0FeMOHTqQlJTEnDlz6Ny5s28jU7Q6OnbsSEpKCrfeeit/+9vfeOGFF5DStETWcKAceB64B/jc13EqFC1BYmHFCClEFpKxUohCjPIHLhFSpklNxCBb7tBQCnHHtG2fPLlidL//ubKr/fbD/ODuA/8MOFxjFtAgBav1QD17xdihn3kSz/Ti6ki9uCoHZ1djpbjiYnvP3wMrXa2RFxFyIKGo8h9AqiexeIIEoUuZAdxqZmvXeSBAo1wK6oUU+YFSZi2LDnW/DqiUIqG06obPZNV8JKFWKhkKKf88fevupc+O6e+y7mSHbqeeOXm0/V2NwnFLICWD/xtWFQusdmW3LGLol8Aj/omKMIwaoxHNmPM5Rpf3Z2jhhk8KhUJhkXO++uqrkUCLlqxpDvHx8Xz9tfNX24UXXkh6ejqTJk3yWMDbs2cPCxYsYN26dU7HG/fZd911l9WEjyapra3lH//4B08++SQnTzqvcBMTE0N2djYXX3yxR778xbZt28jIyHAqtjrBvUNwRatAZVK2XS7AyGJ7C4sC5emZckqgVLiid+/eLF68mPXr11s9AWzM5q3BKDnQwYfhKRR+ZdrGisEJxbtWSaFtATH2hx/HJBR/MMZsbl7MkEqQL/k4RNdIOgXU1Zo2eimIi7Mj+Vl3ZQESIV9ADxhmiwqd4YlAGV+0a2RC0a5CXeqv4aJ2n4CM2DXVpnew6k/IvwNH3I3HG0jJxMTCihFmdivGh+5EcFeQpg/Mix6c4olAOb24OjKhuGo7Oi8iMc3o/TFW6Gyvr7vbzO7p4cPrpdGZvkXRIMNKVq0fGA0UAWVYFyi/AO7ip8xJJVAqFIrWRKu68u1MoGxMvNi8eTM33XSTRwJlbW0tixYtIiIiokmBMiYmhi1btjTnRppTpJQUFBQwatQoFi1a5FSgHDx4MC+++CI2m61VCJSff/45ycnJTWaDOqEU2O/jsBQtiBIp2x7tgDk0ox5ga3uQKc4cGq9G5ObmWr0aEYxRcuBjIN6nwSkUPiaxdNeAhOJdqwICtJ1I4ZgtJ+3zrawj7IHznDT48CtSiJmJpTV9zexs0YMLgIofZpWgayNsUUOm5I0f5Niq0iKNIq9AbAZhKuwCl3Tqps8wM1o1cci3CPGEu3F5C6kFPGhuBXlRof/8IfPPLayKvK4QUvtTfPFHF5rZ1R2u+bcQWNpJ+AoJ/S5u6NmS75GRwDqMmwJRFuf8D7gPQ5zMhZZt8KRQKBRu0mqb5wgh+O1vf0t5ebnfBMNm1svcLr4AACAASURBVPZvkvfff5+bbrqJOXPm8L//OV5+Offcc8nKyuK1115jxAjT89EW5/jx4yxYsICxY8eyYcMGq9O2AlN8GJbiDECJlG2LSRiZao8DpgXwW9uDTHFmomkasbGxzS0yfRFgwzgJM63ZplCcSUzfUnlRYlHVEqmLd5HiVtl0E7JR00uqJpitlzd+0G4pWOXlMJuHpB2y4T5TOyGkRM6Rwh5uix5yfd74kPfddWkq8roKV+P+met2BpvZ1WricZAury/7HCnDE0srx/lq+WmbKocnFFW+1AyR1wWygxCn5ppZGVm1MtMzX54jNO6PXbMmwM9ur8MQJ7djoaTDD3yNIU72xajp6Y/amAqFQuErhu/fv79nSwfRXIYOHcrLL7/MU089xQUXNFGi2SLNEQyvu+46j3wdPHiQ2bNnc+ONN/LOO+84jAcFBZGUlMSOHTtITk4mIMDfr8XmIaVk3bp1jBs3jieeeKLJ6+q/YB+QAIwDDvgyPkXLo0TKtsEA4DXgFTCvEdXaHmSK1kFwcDCpqals3ryZSZMmWZ02DngXo4upah+vOKOZvnV3r8Siyhy9gWqJTEZi+vDUpcyx0uBD6lo2omWzqqQkfkZJhUO9yV+SHz1kR37UsLfc9RNfWH2xRZHXFb1Pdez4f2ZGBREh3wuh+asmYdPo5CClV6vVTyusHJhQvGtVgEY5YNrt2jI6SdO2VFxqZpYXFboWwdte89tsZEmAEJML4uL81WRmCLAG2IF1cfIbfi5O1vkkMoVCofAvmhAisqWDaIoLL/z5hYDzzjuPxx57jFdffZVrr7Xaz8w5Bw4c8JtgeOLECZYsWUJ4eDjPP/+80z4A4eHhbNq0iezsbLp0Mc1RanEqKiq4+eabmTVrFvv27bMypQ7j/TkAY79oocq2orWjRMrWTXeM60KVwG+sTGhtDzJF66Nv374sXbqUNWvWMGDAACtTNGAa8BFwL0bJAoXijCG+6M0eiUWVObL+xG4J9yBpb3myJHTPmKrfmpnlx4R8jqRl2xhKAuxSe8BXy8/Y9GGfhOJdjwpNr7Iq8rpCIu+5fcMbpi+y44eOLUXIFq1dJCXDp5d+6GGWo0GjyKtpvOOByOuKIK1eSzO1EkJiNIrxN9ultEfZoodc/0zk4Ao/+BuMIU6+j1Fb2crv+xAwH7gcY3PVsp3mFQqFwstIKc/YupQLFy7kggsu4JxzziElJYXy8nJuu+02NM196aNRMBwzZoxLwbCwsNAr++zCwkLGjRtHTk4O33//vcP4ZZddRn5+PqtXr+bKK03Pl1ucgwcPMnfuXG688UZ27txpddp6YBDGYZ/jL0HRZjmze9ArmiIQmIHREdJSqv1ll11GZmYm0dHRPg1MoTidhoYG/vOf//DQQw9x+PBhq9M+Bu4GXvVdZAqFObGl1Z2Ddf3/BMyVkq5uLyTk7r3aoWGbIyJc1p1MLK3uLXW9BonpNWZfIUBqmrjOm+JPfNGbPTSC70aQIiUdvbUugEA+mBc9JNvMLqFo10xosfqUHyDFg7bokBd/EPbcIr74owsFJ1NBJDdLKHcHgV3XuWZFTKhp3cmEol2Fnl8ztxCSEG+iyYy8iNDNvvb1AyEYB2e3Y/1Q/zDwBPAYcNRHcSkUiuazA3CobfXXv/6VO+64owXCaRN82adPH8+KLEIa4FC3+dprr2Xt2rUeLu09CgsLSU9P5/PPP3c6fvnllzNv3jyv7LOrqqrIyMjgjTfecDrepUsX7rzzTmbOnElQUJDH/nxNfX09NpuNhQsXOhVbm+BdjOZyZb6LTHEmozIpWx9RwHsYnbtNBcouXbqQlpZGaWmpEigVficwMJCpU6dSXl5OUlISgYGWGrFegXFyVoixSVQo/MqdG3a3jy+uSA6222uQ5HgkUAJI0b+v3vMPZmZ5ESEHkPzDI18eIkHYdf7kjbViS6s7JxRX3qOJ4BoJ93hboDQQd03futu0a1f7bqeeRfBf7/t3hdwjhZ5Se7hmuC1m8AvuCpSNmbwap6qRIsXnAiWAJEATZFgx1YSY5+NgqpFiSl7U4DF+EigHYlwpq8DI8rfyrfwdRsbk5UAmSqBUKBRtn1/t37/f0pWp1kpVVRW33HILCQkJTgXKrl27kpaWRklJicf77G+//Zb09HSuv/56pwKlpmlMnjyZ8vJyUlJSWoVAWVhYyJgxY8jIyLAqUB7CECd/jRIoz2qUSNl66I9x3agI4+qRS1rjg0zRdunWrRvZ2dmUlJQQERFhdVo0hiCfCx6KRAqFBWbu3BkUX1yR/F27Ex8JqS0B4bU6qRIy7tyw21Rcqj8h/y4E33rLb3MQQnyDIE0EfD3Hk3VmrtsZHF9cfUew3f6hV0ReF0joLE/VpZrZPT18eD1SWuqy7QW+lEJP2RtwKCQ/augyd2sm+kfkbRoBv0ssqjIt3vVsVOh2YKP3A5AfS0i6tDzUEHl9z6UYB8CVGOKklXIE32OIk5dgXEc74rPoFAqF4syj1Xb5doVVwbCsrMzjfXZ9fT3Lli1j5MiRLF++HLvd8ZNh1KhRbNq0icWLF9Oz55nfr2j37t1MmTKFhIQE9u7da2VKPbAY46AvF/BXrWnFGYqltCZFi9IJ+AvGx6+l7IlRo0aRlZXFoEGDfBqYQtFc+vXrx3PPPUdhYSEZGRlWXlxBwGyM63bZwJOoF5fCy2RmSu2z0dW/O3lEZgu4/P+zd+eBUVV34//fZ0LYRFzQutalbkCYIIpWIAlkpSKIVgIt1QwIJX2amtjiF+2DiQFMXUraAk/aYoNmIKU/SVzjUs0CEhYXLEsSlqKAIJsgOwlkmfP74xLWkHszMzeTkM/rr+eZOeeeTwVm5n7uOZ+PLRW5NTcc7nBsLPD3xobNHxq631VcNgus7WLzB6XYj9ZZNcePzvjnkPsOeXudCStWBB87GOyq1o5nlfZc01wVZTSO/0ko3jBrbvQdjVZgv3mJ81+bw8t/i8ZpRxxKqb0a/Wfl2Pt/7shIn7s3d/boJ9GkBqpCvFHrUqcBpp3QlNaTtUPFov3y8PtbrTwvbHXsyzErkeAnNwG/xyijY/V38VFgDkbZnXPbugohRBtwoi7lzEDH4S/1R5OnT5/OoUMN/xwaMGAAU6dOpUePHj6vV1paSlpaGhs2bGjw/WuvvZann36a+Ph4n9dqDgcOHCAzM5OcnJwGk63nUQSkAGvti0y0NrKTsuVyAAnA18BzWEhQXnvttcyYMYP8/HxJUIoWLTY2lsWLFzN16lQuvvhiK1O6AX8BvgBsr30m2gitlauk7IHN4eWfo/R8jCe4Ni7H7ycUrDCtN1npcMwAvcfOWABQHFUwvbpK98iJCZ3mbYIyPV07XIXljxw/2GGN0o4sDdf4O9TG6Y4Oqp82G5WerjzKjt2Uin0K/XzN8SM93NHO6Tl+SFACVHqOzUJhuZivTeJcH60x/czNiQ0tQ/O2Tysp9hg7efeGzI3und0MCcobMHZObgQmYC1BeRTjhvxWjJsqSVAKIdospVTkxo3mp0Rag9LSUmJjY0lLS2swQVl/n52Xl+dzgnLTpk0kJCQwatSoBhOUnTp1YuLEiSxdurRVJChramrIzc0lLCzsvLtBG7ABeACIRRKU4iySpGyZ7gWWAm7gKrPBre2DTAiA4OBgxo8fz+LFi3n00UetdtzrA3wCFGAczRPCK2OLK6JcxeXL8PCmXTvrGnD18U4d/sdsUF5kyBGlHNNti0JRrVDZwZoeOTHOyfOHhvp0vHxrWNlNSum5aH7krxCbSmsef+yT1aafCTkxoW+D+twvi55I8ipHrU9J3vPJi+17UKP+4s9reqWdI93KMOUJSlPQ9MTiiSRv0JFgvyZ5G/FDjONk/8V6cvI48ApG6Z0UYJdt0QkhROtxUZcuXfoFOghfnJ4w/O9//3vO+507d/bbffahQ4fIyMggMjKSoqKic95XSjFs2DAWL17MxIkT6dCh5ed/S0tLiYuLY9KkSVabpO7HOCEaCnxga3Ci1ZIkZctyPUax9k9poAPd2VrjB5kQZ7vqqqt4+eWX+eCDD7jnHtPyZ/WGAhXAi4ClrZhCACQUrennKlpT6NGeD4G7mnt9pfh/YxauvNR0oGPP30E3enzZCzUo/qkc7Zw5Mb2SsmOcu/1x0VdjQjdphdsf1/JBcFCN41krAxV6qk8rnZXkzYnsY1sdQl1b93+AX/6cvA9CD3AVl5nWHcuJ67lRw78sX/esJO+rw7sf9ilOcz/A+M74L0YZESs/mqoxkpM/AhKBnbZFJ4QQrdCJI9+tzsGDBy0lDD/55BOf77M9Hg95eXmEhYWRlZVFTU3NOWN69+7NO++8w+zZs7nuuuu8Xqu5bN68mcTExPPuBm2AB5gH3IFRy7nazvhE6yZJypahMzAF44fzY1go5HX33Xfz3nvvtZoPMiHMhIaG8vbbbzNr1iyuvvpqK1M6AU8DezH+/QhhSkEqqICVDNCay6gLesJs3IndZC/6ZVGFB6XfqAty3OmOdj6eE9lji1+ue5q64KBpSlHl7+s2hVaMHlO4xnRXbE6MsxD0Yi+W8FuSd0zJmiGuwvIEs3HzBvc+Cuolb9fxG80UtDb9baK1YyqK440OasYk7wlXYvxb2oLxndHRwpyzk5M77ApOCCFauVbVPKc+YRgeHn7ehOGdd97pt4ThsmXLiIuLIyUlhb17957zfv1mjffff5++ffv6tFZzOH03aEFBgdVpCzFOwyUA9pczEq2eJCkDSwE/B9ZjNEkw7dx59dVXM2vWLN5991369Oljd3xCNCulFI888ghLliwhJSXF6lPL9hj/fkw7/AqBg1QFgepFcoJ6cuzijVeajepwafVrKDb5tpYuUXWOfu7o0NG5kSFf+Xat88uN6LlTa7Ltur4lGgdKTbYy1KHUc5av68ck79jisv6ukrJC7VFvKYeePu7fFZebzancp/4B2us1/eSuhJLyh8wGzY0N2YritfO8bctO3kZcwZnJSSvd0Wswdnr0wEhO+ns3sxBCXGju2rlzp+lvmpZg6dKlxMbGmiYM33vvPZ8Thjt27CA5OZkRI0awdu25JReDg4MZN24cpaWlTSl7FTBnJ3erqy1thNwKuIAoYI2tAYoLSsv+13Bh6wuUAvMx6iM1qkOHDqSkpLBkyRIeeeQRlGqerqlCBELnzp15+umnWbx4MUOHDrU67Xd2xiQuDO6o0C812vKjXzto6KKrq0yT6q/07VuD941elmldF+2OCb0/Jy5klZfXYGxRRc8xxWUzBy1caFq3r7rq+Iso7D6ya+ahhOJV95oNei3auQz4yPxyuiRIqft8TfKOKSq/x1VU9pZHsxCP0fxLay6pa1f3pNncvJEh1Wg/7ar1gUJPtfL3QCnHCygqT5to+07es3QD0jEaDz6NcVrFjAfIA3pi7PTw8eGAEEK0GQ6PxxMd6CAaU58wjI+PZ926dee878+EYVVVFZmZmQwYMID8/PwGx9Q3EJ02bRpdunTxeq3msnz5cgYPHkxKSgp79ljaCHkU45TbHRil7IRoEklSNr+rgVeBz4ABViYMHTqUxYsX8/TTT9O5s5Xf2kJcGH74wx/y6KOPctVVpv2jQGpTCoscBD2HwhPIGDSO/0ko3mB6hujmJc5/oSizfmX1uUb9xB3jjJwbe+cSb+NLKKy4YUxReZZHeVZoTeKNdVe4zOb8a1jfvWiV5e2a/qBBKR2UZmWs0npyI38PTiZ5X43qtdrbeB4rLOvhKl4zH3QpMOSceJX6zWNLv/qB2XUq96+fi9EJM3C0uv2Guit+ZjYsJzJkl0b//cQkvyR5LbqcU8nJ54CuFubUJye7AyMBu2MUQogLjsPhaJF1KSsrKy0lDEtLS31OGGqtKSgoICIigszMTI4fP7fyyW233cb8+fNxu93ceOONXq/VXHbu3HlyN2hFRYWVKRrjNMKtGN/HdjfCExcoSVI2nw4YT/T/C4zFwn/7nj17kp+fzyuvvMIPf2i62VKIC8qWLVsYM2YMP/vZz9i9+9SpwPbt259vysFmCUy0eq/FhKxVWr8e2Ch0R0XNM2aj0tOVR1nbTbkWrUa7o0Mi5sb0WuhtVI9/vP5aV/GaPymHp1yjx6MJAqOWZ/yCZabHZSv1sT+hsNTe0UaxruK1pnVHc2JDy0C/dfprSqnPVBCD/ZXkdTj4Eq0e0eerNa25KKiq8mmz6+WNHFmHxttdtX6jIC1+QcV5P4RP0lXTPR4G+JrktehijN9X9cnJSyzMOX3n5Ehgo23RCSFarLq6ukCHcEHQWg8OdAynq08YDhw48LwJw5CQEN58803cbjc33HCDT+utXr2a4cOHk5iYyPbt51YJufTSS5k6dSolJSUMGjTIp7Waw9m7QbW2VCXpC4wNWAnALlsDFBc8OTPcPIYD0zGeKpjq1q0bkyZNYvTo0QQFBdkbmRAtzOHDh5kxYwb/+Mc/zihm7XA4eOSRR7j++uv585//3NDUFYDl9uCibRuzcN1N2lNbhsY84WKfmiB06KsxoaZHS11F5aWgGzjGrLdopf9Y9f2G1/JGjvT6biuh6LNuDjr/DkWS1g3X7lOKp3KinbMsxDoJ9DRvY/GTZe4YZ6TZoDEfr70NR90qjd6AdmS4Y3u94cuiCcUbrlMcnwhqPNpS92ijkYyjndP0GLTWylVc/hnQ25cYfaXRyXNjQmcHMoYTugBJGAnKyyzO0cD7wLOA3clTIUTLsRy47+wXg4ODSUhIYNKkSVx8sRzI8YVSKuSaa645t/hi4ybDuQ/g7rnnHt555x2vYxk2bBhffvllg+9169aNp59+mp///Oc+32fv2rWLP/zhD7zxxhsNJvKCg4MZO3Ysv/vd7+ja1crm/sDSWvPee+8xbdo0vv32W6vTdgC/x9hBGeCa7+JCITsp7XUHxo/ht7GQoAwODubRRx/lk08+4bHHHpMEpWhTtNYnCzL/9a9/PSNBedddd/Huu+8yY8YMLrroovNeolkCFReEnMgeW5RWga6TE1yn1LNWBir01LNe+lYrT9I3Qd+HzI3une1tgjJ+YUUXV3HZUw7VeZ2Gp86XoDwRxTOPv7Pe9C7OU1eXBdjdFMVM/7El5aY7O3Liem4ENcgd7bzblwRlQtFn3cYUlWU4qK5AqyTLCUoATXs8taa7KVFK42CKtzH6i0L974SCFYGsPXMRkIKxc/JFrCUoNfAecDcwDElQCtHWNPgbsaamhjlz5hAREcGCBQus7hgTDWhJuynXrDm3R0twcDCJiYksXbqURx991Kf77OPHjzNjxgzCwsLOu9MwKiqK4uJi0tPTW0WCcs2aNTz00EMkJiZaTVBWAS9hlEuZi9yHCT+SJKU9LgNmAOU0UIOqIeHh4Xz88ce8/PLLXH65abNPIS4oK1eu5MEHHyQlJYXvvvvu5OvXXHMNM2fOpKCggLvuuiuAEYoLUW17x/NKURXgMH4+pnCN02xQToyzEPRipdReFJNV0N6QudG9sxdFRtZ6s+iEghWdE4orftO5rm49mgytzY/Iaq2v8HSpTjIbN29w76OgXvImLn/yaJ2Rnq5Nf+fkxPT6AqW8+nHdtCTv+WlwPV6y+g6zce4o5/soPvVmDT+6+vhFHRMDsG59cvIr4C+AaS3PE4owdtkPA1baE5oQooX7urE3d+/ezZNPPsnQoUPPuwNPmGqRdSkBIiMjKSkp4bnnnvM5Yfjee+8xcOBAXnrpJSorK895/5ZbbmHevHnk5uZy662WDlEG1O7du5k0aRJDhgzhiy++sDrtPSAEeAYC3jBRXIAkSelf7YAJGMXtk0/8/426+eabmT17Nq+//jp33GF6fyLEBWXXrl0kJyef86OwU6dOJCUlsXjxYkaMGCHd7IUtciN67tQe/hHQIDQO7bC2m1LroHF1tXW3u6Od03MiI70qRj5hxYrghOLV46s7dVirtCcT1JVNu4L63bh/V5g+Savcp/4Beos3MfqNxrklovwhOy7tTZK3UZqgOu2w9PfAodpZagxkK48e2YyrdcD4bbURIzl5tcV5RcC9GDfOknUQom37E5g/lKx/aP7EE0+wa5eU1WuigRs3brR+iqAZ/e///i+33HKLT9dYu3YtI0aMYMKECWzduvWc97t27cpzzz1HSUkJ0dEtutk5YOwizs7OJiIigtzcXDweS/0kVwIDMR76bbY1QNGmSZLSf6KA/wCzAdObvq5duzJ58mQWLlzIsGHDbA9OiJbk2LFjZGVlER4efs4xidjYWD755BMmT57c2NFuIfyi+tjxl1CBfQqsNMMTilc1UG/yTHNjQ7YauxSbLj1dO1yF5Y8cP9hhjdKOLA3XeHMdrbmkrl3dk2bj8kaGVKN50Zs1/ElrPXXQwoWmDwytqk/yHu/UYZ13Sd7zU5r4x0vKTetNvhbV4xMFXjdH8oliz4mdvKb1Pv2gPUZychPGbyurf2eLgB9jJCctbwsRQlzQVgIRWHhgobXmjTfeICwsjL/85S8cOyYNii3q3KlTp7BAB+FvBw4cIDU1lcGDB7Ns2bJz3nc4HIwYMYLS0lISExMJDg4OQJRNU1hYSEREBGlpaRw+bOkn8PfAkxinEhbbGpwQSJLSH24FFgDFgOmRvdM/yJKSkhrrVCzEBamwsJCBAweSkZHB0aOn8i1Op5O3334bt9vN9ddfH8AIRVvyr2F992owbQZjJw1K6SB7dsdprVwlZQ9sDi//HKXno/mRz5dU6jfji8quMhv3Tbvv56F0gLsmq6t/pK8M8fUqZyd5sb6bzzINqs6jn7Myts7Ds6o56z8p9in080FHgnv4spPXorOTk9danLcUiMRITn5uT2hCiFasvsGiCwvdhysrK3n55ZcZMGAAeXl5Uq/SgqCgoBZ75LupampqyM3NJSwsjDlz5jTYCb5fv3589NFHzJw5kyuv9NszS9t89dVX/OIXv8DlcvHNN99YmVIDzARuwShl53WDRiGaQpKU3rsISAfKgHgrE1rbB5kQ/lRWVsbDDz+My+Vi27ZtJ1+/6qqrePnll/nggw+4917TzWRC+F2V5/hfUOwLcBixruK1Ef684NjiiqgxJRXL8fAm2vwhmmWai2qUNm30sigyshaPOrvhT/NQVCtUdrAm5NWoXt43SdFauQrLH9kcXrbaX0leEw+MKVx9Tgfas82Lc65A8b7NsYDiqILpylHbIycmdNqrw7vbues4GEgA1mEkJ6+zOG8pEA2EAYtsiUwIcaHQGE0+bgWmAKYPXHbu3ElKSgojRoygoqLC7vhaNa11XKBj8IfS0lLi4uKYNGkS+/ad+/PwmmuuYcaMGeTn5xMS4vNzUNvV7waNiopi4ULLBzGKgD4YtaAP2hacEA2QJGXTKYwf0V8BzwEdzSa0tg8yIfxp//79pKamMmTIED777LOTrwcHBzN+/HgWL17sc5c9IXyRF9v3IJAZ0CAUHrTHNDllxdjisv6ukrJCj/Z8qLXu449rnkv9cszCdTeZjXLH9MqjeTsp16D4p3K0c+bE9ErKjnF63WX8ZJJX6flodbs/g2yMdgQ9b2mccqShsFREqslOJHk9HTt1z4lxTs6J7HPAlnUMDoyHvWsBN1hOBC8HHsRITpbYE5oQ4gJ1FGOziRPIszJh+fLlDB48mOTkZPbs2WNnbK3Znd99953fTxo0l82bN5OYmMioUaPYsGHDOe936tSJiRMnsnTpUuLj41t8zfza2tozdoPW1lrqtfhfYCjGqQTJyouA8FudpjbiHoytzv2sDO7UqRO//vWvSUpKomNH01ymEBeUmpoa3G4306dP59ChQ2e8Fxsby5QpU7jpppsCE5wQZ6n8/nBW525dktDK6tFSP9Ilqi7o9zlxIat8ucqYovJ7NPp/PZohth8E1rRH1z4D/KrRcUppSsqm4OFNW+NReEC/VecISsuNDPnKl0slFK4KU46gDI+fksZNpnV4QlF55NyYXo1ud3BHhVS4isoWAD/z4+o1CuV21LXLeDWu+w4/XrchDuARIAO4rQnzPgX+ABTYEZQQok35ChiJ0Vvgz0BoY4M9Hg/5+fl8+OGH/OpXv+KJJ56Q0l1nUrW1tdHAPwMdSFMcOnSIWbNm8Y9//IPq6upz3ldKMXToUFJTU1tNSaolS5aQlpbG+vXrrU45ALyI8e/g3P8IQjQj2UlpzXUYRwM+w0KCUinFsGHD+OSTT5g4caIkKEWbU1paSmxsLGlpaWckKG+99VZyc3Nxu92SoBQtSt7I/lVKOf7YzMsu07ou2h0Ter8vCcrHCst6uIrXzAddCgzxY3yN0pqEx0tW32E2zh3lfB/FpzZGUhKk1H3u6NDRviYoARyOdn3RBCZBWR+D0s+jtfkWDcVUjJpRvlF4UPoNFL1zYnol2ZygPH3n5AKsJyjXYCQT+iMJSiGEf5UAdwOJgOk2yaNHj5KZmUlkZCQFBfJxdJZWU5fS4/GQl5dHeHg4WVlZDSYoQ0NDeeutt5g9e3arSFDW7wYdOXKk1QSlB5gH3AG8hCQoRQsgOykb1wlIBp4FuliZEBoayrRp07jnnntsDUyIlujrr78mPT2d4uLiM16/5JJLeOqpp3C5XLRrJx87omU6uldld77ckwLqJjvXUUp95tE8Z7ZTzszjH6+/1uOo/oNWjEIrR7OX9NcE1eF4FnjMbKjSnmc1jiI/B1Di8ajUeXGhK/x6Wceev1PXLRmU1ZqIfqc1fROKyx+YC+81Ns4d7fzaVVw2F804H1Yr0Vo9PTcmdI3317BEYRwhmwaYdjE/TdmJOfk0Z7MgIURbUwu8gnH8+2ngtxiNvM6rPiGUm5vLlClT6N69ezOE2eIN1lorpVSL/rxevnw5aWlp560zetVVVzFx4kRGjx6Nw9Hy93VVVlbyt7/9jVmzZjWYbD2PRRhdu5uzLI8Qplr+v7jAGYbxlP9FLCQoT2/+IQlK0dYcPHiQjIwMoqKizkhQzeTFAAAAIABJREFUtmvXjkcffZQlS5Ywbtw4SVCKFi1vZEi1Urxg4xJr0Wp0TlTIQF8TlACe4DqPVmo4OnDf5UoT/3hJuWnCKSemd6kCn/83g5HkVUEMdseE3j8vzunfBCVwonP1i/6+blMp9NT0dG36Z1sXHDRNKaqavoIu8XgY4I4JvX9ujNPOBKXC+E31JfAu1hOUFRg7J3tjJA1a9A2vEOKCsR94BuPo9wdWJpSWljJ48ODzNlppY67evXt3r0AHcT47d+4kOTn5vI2QgoODGTdu3Mma+S09QVm/G7Rfv35kZmZaTVBuw+hyH4kkKEUL1LL/1QVGH2Axxg/pm8wGt7YPMiH8qf6LMSwsjKysLGpqTp06DAsL46OPPuLll1+mW7duAYxSCOuOfr9+HmC5gI81eotWnqTKfev6umN7vYGfdhfkRIbsUpq/+uNa3tKg6jz6OStj6zw8q3xKNOkKtBqdE90rIifSucj765jrcGn1ayg22bmGORWyKaw83mxUbkTPnVqTbf2yfGpnkvcsMcAXGL+prDZxWodx8yTJSSFEIG0AHsA4vrzObHBNTc3JJiXZ2dnU1dXZHmBL1RK7fFdVVZGZmcmAAQPIz89H63O/WmJjY1m8eDHTpk3j4osvDkCUTbNy5UqGDx9OSkqK1WZOlRhd7W/HKGUnRIskGbVTumE0xfkCCLcyobV9kAnhT0uXLiU2NpaUlBS+//77k6/fdNNNzJ49mwULFtCjR48ARihE0+WNHFmnlLbUXdmCb7XyJH0T9H3I3Oje2XkjR/r/jiWo9o9Ksd/v122aB8YUrjat4TgvzrlCmxxfPo8NGsbdvMRpJHm99POCFVeMKSrLSCguM02qvtK3bw3ab38PvOaAtAkrVgSbjauuOv4iisONjzKSvO5o50C7k7wYycnPgUKMOm9WbMaoB+fEuHlqu3f4QoiWpAjjocmTwCGTsRw4cIC0tDSioqJYtGiR3bG1SFrrFlWXsqCggAEDBpCZmcmxY8fOeb9Hjx4sWLAAt9vNjTfeGIAIm2bXrl0kJyczdOhQvvzySytTNMZDvx4YXe3P/Y8gRAsiSUroCLyA8eM4GQgym3Drrbfyz3/+s9V8kAnhTzt27CA5OZn4+HjWrTv1YLlz585MnDiRRYsWMWzYsABGKIRvcqKc+Si8bmSjlNqLYrIK2hsyN7p39qLIyFp/xne6nMg+BzTMsuv6VmlHkLWEnsPxnNGJ25JtRpJ3711zY5y56enK6rwzPP7O+otdxWVPte/ccZ2Gp5RWv0so3mBab/LmJc5/oSjzZk1/0XDrsf0dTGt+/mtY371olXWet/2S5LUoBqPJYCFgtfbNFozk5O0Y9eAkOSmEaGlqMDaz3ALMxMLn1MaNGxk9ejQul4tvvvnG7vhamoHbtm3rFOgg6s2cOZNdu3ad8/qll17K1KlT+eijjwgLCwtAZE1TVVVFVlYW4eHh590N2oAVQBhG+ZSttgYohJ+09SRlNHAAo+6I6VbIyy+/nBdeeIGFCxcSGRlpe3BCtCRHjhwhIyOD/v37k5+ff/J1pRTx8fEsW7aMiRMn0r59ozXGhWj5lNJK6SlNn8c+hX6+5viRHu5o5/QTtQ2bbMKKFcEJxavHjyku/3RCwYrOZuMrHY4ZoC2d87GN1uEJReWmX4zuqJAKNAsaHaTYcyLJ28uXJO+EghWdXcVlT3m61GxEk4HWXU8E29FB9dNm89PTlUe1gN2UyqFT4xcsM73Zq9TH/oTi9GJofknyWhSGUXO0ELjX4pxvMJKTt2EkJ21L5gshhJ/sBVIwPudKrUwoLCwkIiKC1NRUjhw5YmtwLUhHh8PRYrN+9eXali9fzvjx41tFzfzCwkIGDRpERkYGR48etTJlB8Z37I+BZbYGJ4SftfUk5TtAB7NB9R9kS5cuxeVyERRkutlSiAuGx+Ph9ddfJzw8nKysrDMKMvfp04d3332XGTNm8IMf/CCAUQrhXzlRoR+glKUbEBRHFUxXjtoeOTGh0/455D7T42ANSU/XDldh+SPHD3ZYo7QjS2vd53inDv9jNi8vMuSIUo7p3qzpTw6ln0drZTpQMRVjV8rZr+9T6OeDjgT7lOSNX1DRPqF49fjjnTqsQ5OhNZedPUZrHn+8aM2PzK6VExP6NqjPvYnDb7S69qJuF483G5YX2/cgWv25Psnbtbqj7Tt5gQFAMcbN+iCLc7ZiHJu8A0lOCiFap/8AEcCDGLvBG1VTU8OcOXMIDw8nNzcXj8fOZ0YtRos68l2vvmb+tGnTuOSSSwIdjqmysjIefvhhXC4X27ZtszKlGmO3b3eM79g28ZdNXFjacpLybuAis0EDBgygqKio1XyQCeFPK1asYOjQofz2t79l9+7dJ1+/+uqrmTlzJu+99x5332213JgQrYv21KY3OkBRrVDZwZoeOTHOyTmRfQ54t5BWrpKyBzaHl3+O0vPRnEyeKcX/G7Nw5aWm13Ds+Tvo7V6t7yda0zehuPwBs3HuaOfXqNMKtp+V5H11eHeT2ooNq0/yXnS5Z43Sjizg6kaGB3tQk61cV6GnehOPf6lnHn9nvemJj8p9h2Z1qDx+uzvaOX3WkNuO2xhQP6AAWAJEWZzzLaeSkzMAO+MTQojmUACEYJzKM90muXv3biZNmsQDDzzAihV29y0LLKVUwJrnNHSq6+abb8btdrNgwQK6d+8egKiaZt++faSmpjJkyBA+++wzq9Pew6g7mQJmdaqFaLnacpLS0r7ur776iv/85z9t5YmXEADs3LmTpKQkhg8fzqpVp0rzdezYkaSkJEpLSxkxYgRKmW+aEqK1mht75xLQxQ28VYPin8rRzpkT0yspO8a5u4ExlowtrohyFZcvw8ObaJxnv681l1EX9ITZdU7sOnzR2zj8RaGnpqdr098WdcFB05TioEJlezp26u5zkrew/JHN4WVrUHq+hpstTVP8/LHCMtPuXjkxzkLQi72KzU+01ld4ulQnmY3LG9m/6pVhfSttDOU+jJvyZcBQi3O+w7iBvx0jOSkF+4UQF5JK4CWMnWvzMJqUNGr16tUMHz6cxMREtm8P6PNFO4Xu2bPnmkAsPGTIkJP/d9euXUlNTWXRokXExrbIzZ1nqKmpITs7m379+jFnzhyrXeLXAT8BhgGbbA1QiGbQljMM3TH+QVvSu3dvpk2bRt++fW0MSYjAOnbsGH/729/IysqisvLM+9zY2Fief/55fvjDHwYoOsNf//pXnn++wTJxX2C9FpoQlrhK1tytPGqpBmU0fNFv1TmC0nIjQ77y5bpji8v6exRT8BBhNlbBEdW+Y/fXIm5rtO7khBUrgo8f7LDm9J2YgaAhYW6M83WzcY99tPqieYN7WyqsdD5jiyuiNPoPWus+3sxX8FZOjPNn5uuU9fdoFnqzhr8oxcGgGkf3OT8J2Wc+2u9CgWeBEVj/7bgHyMQ4dlZlU1xCCNHS3IvxQOY+K4M7derEr3/9a37zm9/QoYNpFbLWJuHaa6+d18j7k4FzftTfc889vPPOO14vWlNTw5tvvsnRo0d58MEHueKKK7y+VnMqLS3l2WefZePGjVan7AOmAv+HNJ0TF5C2vJOySeqfeCUlJbFz585AhyOE37377rtERETwxz/+8YwEpdPp5K233sLtdgc8QSlEc3NHhX6p0QWgS4KUus8dHTralwTlmKLye1xFZW95NAutJCgBNHTxVFc9ZTbulb59a2gBjV4ckDZhxYpgs3G+JCjHFpf1d5WUFXq050NvE5QnPDSmqNy0C/Vr0c5lwEc+rOMzrbmkrl3dk828rBNYAKwC4rGWoNwLTMHogvsSkqAUQrQtn2PU63UB57aUPktVVRWZmZkMGDCAvLw824NrZgHZuhgcHMyoUaN4/PHHW0WC8uuvv+axxx5j1KhRVhOUNRj1JuvLp0iCUlxQJEnZBFpr3nrrLcLCwprSWUuIFq28vJyf/vSn/OpXv+Lbb789+fpll13GtGnT+OCDD/jxj38cwAiFCKwOl1aPdseE3v9qVK/V3l7jscKyHq7iNfNBlwJDTCecw/GrhOIN15mNunmJ81/AmqZf33803Hr8QIcEO67tTZK3MRqURqdZGas8jjRl4RifbRR1KGVen9Q/QjCSk6uxnpzcx6nkZDpSD0sI0XZ5gLnArRifi6Y1eHfs2EFKSgojRoxg7dq1dsfXXOK0lYZ6bdTBgwdJTU0lMjKS4uKGqgs1qAjog9G5e69twQkRQJKk9EJVVRVZWVlERESQl5eH1oG7ZxHCW/v37yc1NZX777+fTz/99OTrwcHBjB8/nuXLlzNu3DjpZi/avFf69j23E7VFCYUVN4wpKs9yOPgSrR7RXpdZ0R0VNc+YjUpPVx5HC9hNqSA1fsGyTv66nu9J3kbFuYrXmiY8c+JCVmml3/Tz2hbpEq25LyfamWzzQj0wbqybkpw8jLFjsj456VV3eyGEuAAdxfhc7AVY2ia5bNky4uLiSE5OZu/eVp+Dumr79u2hgQ6ipamtrSU3N5ewsDDmzJlDbW2tlWkbgZEYu1MrbA1QiACTJGXDMrFQ2H3nzp2kpKQwdOhQvvzyy2YISwjfNVaQOTw8nMLCQqZOnUrXrl0DGKUQrVtC8YbrXMVr/qQcnnKNHo/G92y/1mMfL1pjWm/ytRjnu0oR0LahWqlNXa662OczVuOK197onySvCV03xcowVdfuOQWW7ib8Q5fg0P3dMaH3z41x2rlD9mZgNlAGPAaW/r4ewUhO3oDRGMe7xkdCCHHh+wojwRSD8TnbKI/HQ35+PmFhYWRlZVFT4/Wz0oALCgoKWJfvlmjJkiUMHjyYSZMm8f3331uZcgDjO9aJxUS3EK2dJCkbNh2jC2VjhX5PWrlyJcOHDyc5OZk9exrtayBEQJWWlhIXF0daWhqHDp3a7HLLLbcwb948Xn/9dW6//fYARihE65ZQ9Fm3MUVlGQ6qK9AqCY0/q+AH1yn1rOkopbTDEfScH9dtAl2BVqPd0b2iXhvo3ObtVeqTvLXU+S/J27j+ruIy0xupnLieG7Vivs2xgOJTh6NdnDsm9H53VKidT0FvwkhO/heYQNOSkzciyUkhhGiKYuAujKO6pjeNhw4dIiMjg8jISAoLC20Pzg5a65bfUrsZbNmyhcTEREaOHMm6dZZ693owchHdMb5zTUsGCHGhkCTl+W0DEoAoLNT3qn/i1a9fPzIzM6murrY9QCGs2rRpEwkJCYwaNYoNGzacfP2SSy5h8uTJlJSUEB0dHcAIhWjd4hdWdHEVlz3lUJ3XaXhKa/x21PksPx9TuMZpNujVyJ5FoD+xKYaGbNAw7uYlzr7u2F5veHuRnxesuOKsJG97fwbZKM0ULNTO0h7HNJQ9NwtKUW4keZ0DX4vqYeef340YycmNGMnJdhbmHMXo1H0rRnIyEF3GhRCitavFaHrSHeMz1XR3/qZNm3C5XOf8jm8lwnfs2NE50EEESmVlJZmZmURGRlJQUGB12ifA3Ri5iN22BSdECyVJSnMLMYrTuoDvzAZ7+UEkhC1OfwJbVFR08nWHw0F8fDxLliwhKSmJ4GDTRrxCiAZMKFjROaG44jed6+rWo8nQmktsXVDj0A4LuykBh1LptsZi2KaVJ+mboL13zY1x5qanK4+3F0oorvhNh04dNtic5G3MXWMWlj9sNmhubMhWNK/5ee0NaDU6J6qXT0leC27A6AS6AevJyeMYN9S3AinIDZMQQvjDPozPVCfwoZUJ9SeiUlNTzzgR1cJ1BMIDHURz01qTl5dH//79yczM5PhxS882v8XIOUQCq2wNUIgWTJKU1tR3aKvfbm26TXLz5s0nt3SvX7/e7viEOIPH4yEvL6/BWjYDBgygsLCQGTNm0K1btwBGKUTrFb+gon1C8erxxzt1WKe0JxPUlc22uOahhOJV95oNey3auQyl/21LDIo9KCaroL295kb3zl4UGelznUblqTuqoYs/wvOW1nrKoIULTRN3KsjxAopKPyx5Msnrju31BkrZ1Ynvek4lJ5PBUhmCaozk5I8wjibusik2IYRoy9ZjNIR7EPjabHBNTQ1z5syhX79+ZGdnn1FbvgVrU0e+V61axYMPPkhKSgrffWe6xwmgEqML/O0YOQfpyivaNElSNs1+jCNOocD7ViYsWbKEuLg4Jk2axL59cjJK2K++K2BKSsoZXQGvvfZaZs6cSV5eHj169AhghEK0bmOLV9/V+XLPWqUdWcDVAQnC47BUc1J5eBaF17sbz70g+xT6+aAjwT3c0c7pOZGRpk3mrKrcv34uRhItcLS6/Ya6K35mNiwnMmQXmr95vc6JJG/X6o4h/krynscPgBcxak4mY+xoMXN2cnKHTbEJIYQ4pQDoATwJmG6T3L9/P2lpadx///18+umntgfnozbRPGfXrl0kJyfzwAMPWG2qqzGa4fTE6AJfZWN4QrQakqRswPPPP2/WPXUDMBTjqdBas+vV1taSm5tLWFgY2dnZ1NY2Y2NQ0Wbs2LGD5ORkRowYwdq1p/5adu7cmYkTJ7J06VJGjBgRwAiFuDAc8dR8jeKiQMaglIpxFa+NMBuXExtaBvot3xfkqILpylHbIycmdNqrw7sf9vmaZ8kbObIOzfP+vm5TKUiLX1BhWguz5pj+o1Lsb+LF96GY3KHy+O3uaOf0WUNus6sQ/pUYycktwNNg6fh8DUaR/h4YycntNsUmhBCiYTUYu967YzwsMn3IWF5ezk9/+lNcLhdbt261Oz5v9dq6deu1gQ7CLseOHSMrK4vw8HDy8/PR2tJGyC8xjsGPBL6xNUAhWhlJUjbgnnvuGWhxaBFwJ8YTr4Nmgw8cOEBaWhpRUVEsXLjQlxCFOKmqqorMzEwGDBhAfn7+ydeVUgwbNozFixczceJEOnTwZ5NhIdquvNi+B5XiT4GOA103xcowVdfuOWWhMH/Dk6lWqGxPx07dc2Kck3Mi+3jVyTk9XTviF1aYHuV2x/TKA1Z7s4Yf3XjRpZ7HzQbNHxq6X8MsKxdUcKQ+yeuOdk5/ZVhffxwVb8gVGLsxvsa75GQCsMmm2IQQQlizE+Nh0b3AUisTCgsLGTRoEBkZGRw5csTW4LyggoODL8gj34WFhQwcOJCMjAyOHj1qZUqT/2yFaGskSdmASy+91HR3ymnqn3jdgtGhzbQwyFdffcUvfvELXC4X33wjD06Ed7TWFBQUEBERcU5B5jvvvJN3332X2bNnc+21F+yDSyEC5ujew/+H0oE+Btt/bEn5YLNBOXE9N2rF/CZeu0ahsoPqgu/IiemVNG/ArZaKKjVkbHFF1JbwimUXac9008FKaRxYSr7aSTv4/YSCFabdSCsdjhmg95x3wIkkb12nTj18SfJacDmnkpPPARdbmOPBOGYWgpGcNK2FJoQQolk1abfd6Tv68vLyrO7oaxZa6wsqSXn6DtZt27ZZmVKNkSuwvEtWiLZKkpQNaN++fZjWuqntjr/H6NB2D7DYyoTCwkIiIiJITU3l8GG/n5wTF7DVq1czfPhwEhMT2b791Im8q666ipkzZ/L+++9z9913BzBCIS5seSP7Vynl+GOg4/BonZGerk2/y7XHMQ2F+dFihQel30DROyemV9Krcd29TsS6Pl45wFVcXuTRng+11n20JuHxktV3mM1zRznfRxHoAltXV3fq9CuzQXmRIUeUcjSUfK1RqOy64KDbfU3ymrgYY8dkfXKyq4U59cnJHhg3vhttik0IIYTvTq9bOAULdQt3795NSkpKU2ojNofBWpv/Xmnp9u/fT2pqalNrgb6H8Z2bgoV6o0K0da3+g8IOSqkuO3fuvM/L6SuBgRgd2raYDa7v0BYREUFubi4ejzxUEee3e/duJk2axAMPPMCKFStOvt6xY0eSkpIoLS1lxIgRKKUCGKUQbcPRvSpbweaABqFxbh5Q8bDZsLmxIVvRvGZysRKt+bE7OnS0O9rp9a66hOJV97qKyt7C0a4ErcNPizWoTjuetXINpT2WxtlJo5/6xQefmif9HHv+Dtp4WnRWkjc3oudOm8LrgpGc3IpRe/JSC3NO3zk5EqOZjhBCiNahEmPH/O0YJTpMt0nWd5lOTExkx45AH/7gih07dvQOdBDeqqmpITs7m379+jFnzhyrXdXXA/cDw5BSKkJYJknK8/N1S3oBxhOvZwDTwiD1yachQ4bwxRdf+Li0uNDUfzGGh4efk8yOjY1l0aJFTJ48mS5dTEu+CSH8JG9kSLUHzwuBjgOHZ8qghQvbmQ1TQY4XUDRQC1GXeDwMcMeE3j83xrnG2zAeKyzr4SpeM9+hgxYDQxqMQRP/eEm56U1KTkzvUgUBLt6suwW375xiNionMvKYVvoPCt7yeLjL1ySvifrk5DdYT05qjF0cfTGSk+ttik0IIYT9vsUo0REJrDIb3Fh5qABolV2+S0tLiY2NJS0tjUOHLG2E3IfRs8IJ/NvW4IS4AEmS8vz88SFaBbyEUXvC0hOvNWvW8NBDD5GYmMi3337rhxBEa1dfFiAtLe2MQti9evXizTffxO12c8MNNwQwQiHarqp9G3IJdNJHq9turL1ytNmwnMiQXWj+dvIFxacqiMHumND758U5VzQytVHjitfeOKaoPMvh4Eu0ekTDebdya1B1Hv2clevWeXhWWfjetJd6cuzijVeajZob3Ts7J8b5s3mxznU2BXIRxjGxrzCSk5dbnFeEkZwchnHSQwghxIXhE+BuwAXsNhtcWVl5stFmXl6e7cE1xOFwtKq6lF9//TUJCQmMGjWK//7X0uGDWox6k3dg9KzwrmmhEG2cJCnPr++2bdus3gSY2Y7xxOvHwHKzwfVPvAYOHEhmZibHjh3zUxiiNdm4cSOjR48+p8HSZZddxrRp0/jwww+57z5vqxIIIfwhb+TIOo1nWqDjwKFTn/hgYwezYe1qHdNBL3Y41IPuaOfAnEjnIm+XTCjecN2YovKsOl23VqPHowmyOPWBMYWrTT+85sU5V2hjB2DAaOhSV1P1uwCG0AGYgJGc/AtwlcV5RRg1smOB/9gTmhBCiADzAHOBWzHqVZpuk9yxYwcpKSnEx8ezbp1dz9UaprUO37Vr10XNuqgXDh48SEZGBlFRURQVFVmdVgz0wejcvde24IRoAyRJeX5B7dq1i/bzNb8ABmA88dplNriqquqMJ14tqUObsM+BAwdITU0lKiqKRYsWnXw9ODiY8ePHs3z5csaNG0dQkNV8gBDCTnOjQ99AmR+5spXmhsMdjo01GzbnJyH73DGhsa9F9frI26V+XrDiijFFZRlK16zV6PEaTI+an007gp63NNDheA4V2A6YSjt+nVC84bpmXrY9RnJyEzAbuNrivCKMB6KxgNe7Y4UQQrQqRzDqVToxag+bWrp0KbGxsSQnJ7N3b7Pl1NprrSOaa7Gm8ng85OXlER4eTlZWFjU1NVambcQopRIDlNsaoBBthCQpG6G1tmNLuubMJ16m2yR37txJSkoKI0aMoKKiwoaQREtQU1NDbm4uYWFh5xRkDg8P5+OPP2bq1Kl07WqleasQotkopTWO9ECHoTW/n1CworNd13/8nfUXu4rLnmrfueM6DU+B7uj1xbQOTygqjzQb5o4KqUCzwOt1/EJ3dFD9dDMtdnZy8lqL85Zi1CeLBT63JzQhhBAtXH3CLBYLCTOPx0N+fn5Tk3I+sen+2mf1SduUlBSrSdujGPfylhPDQghrJEnZuPttvPZRmvjEa/ny5QwePJjk5GT27NljY2iiuZWWljJ48GAmTZrEvn37Tr7+ox/9iLlz5/L6669zxx13BDBCIURj5kaHfIhSpQEO4+rjnTr8j78v+thHqy9yFZc95elSsxFNBlr75UmJQ+nn0fq89StPUkwF7L9zOu/ybEarZTYvE4xRFmYdRnLS6s7NpUA0EAYssiUyIYQQrU0RcBcWjx6ffry5uLjY7thaVPOcHTt2kJyc3JTj7x6MXhO3YNzLB7QTkRAXIklSNu767du3250Z+grjiVc0UGY2+OwnXtXV1TaHJ+y0efNmEhMTGTVqFOvXn+q90bVrVyZPnszChQuJiYkJYIRCCKu0pzY90DEoxf8bs3CllY7PpuIXVLRPKF493hHkWIsmQ2su88d162lN34Ti8gfMxrmjnV+jmOvPta3Re1BMvri6Y++cmF7/n02LnJ6cdAM/sjhvGcZOmTCgxJ7QhBBCtGI1nGriMhOoa3y40Sjmsccea0qjGG+EbN++/Yd2Xdyq0xsJ5efnW532OUbptgQsNCsSQnhHkpTmmutpTwmnnniZbpM8dOgQGRkZREZGUlBQYHtwwr/O9+fncDiIj49nyZIlJCUlERwcHMAohRBNMTf2ziVaa8sV1v1OcRits47S3qdukunp2uEqLH/koss9a5R2ZGG9HmKTKfTU9HRt+lukLjhomlJU2RXHmdT3KCZX7jtymzvaOX3WkNvs2CXhAOKBCozk5C0W530KPIhxkxS4v2tCCCFai31ACsbpPUv1qEtLS4mNjSU1NZVDhw7ZEVPAdmCc3aD2+HFLX/HfYvSUuA/je1gIYSNJUppwOBzNWTejljOfeJneaJ6+E2/Dhg12xyd8dHZB5tN3wvbv35+PP/6YGTNmcMUVVwQwSiGEt1QQacqoPdyMi1KtUNmejp165sSETsuLDDni1XW0Vq7C8kc2h5etQen5Gm72c6QNUCFbwipGmo3Kjei5U2uybY0EjiiYXqmP9XBHO6fnjexvR1K0Pjm5FlgA3GZx3mqMUxf9AHkyKYQQoqnWAT/BeNC1yWxwTU0Nc+bMoV+/fmRnZ59RK99XSqmA1KVctWoVw4cPJzExke3bt1uZUgm8BPTA6CkhXWyFaAaSpDShtY7auHFjh2Zedj/GE69ewAdWJpSWlhIXF3dOTUPRctTXFE1JSTmjpui1117LzJkzyc/Pp2fPngGMUAjhK3dU6Jca3VxJXCT7AAAgAElEQVRJpBqFyg6qC74jJ6ZX0rwBt37n7YXGFldEuUrKP0Xp+WhlNXHmFxqdNmHFCtNt49VVx19EcdjvASiOK1R2XadOPXJinJPzYvse9PsaZ+6cXIDxMNKKMozkZB+kML8QQgjfFWAk3Z4ETLdJ7t+/n7S0NIYMGcJnn33mrxhitTY/ReEvu3fvZtKkSQwdOpQVK1ZYnfYeEAI8g9E9XQjRTCRJae6iLl263BegtTcAD2DUnTKt5Ht6d2h/P/ES3tu5cyfJycnndGfv1KkTEydOZOnSpYwYMSKAEQoh/MlB0HMoPLYtoPCg9BsoeufE9Ep6Na77Dl8uN6aobI5Hez5Ec6e/QmyiW44f6JBgNuhfw/ruRassP65bo1DZdcFBPid5G6GAYcAKjORkd4vzyjGSk70xkpOye0MIIYS/VAMzMJKVr4D5b5aysjIefvhhXC4X27Zt83X9K3bu3NnH14uYqampITs7m/DwcHJzc/F4LP00+w8QjvHdvcXO+IQQDZMkpQVa64BsST9NEcaNiqUnXgcOHCAtLY2oqCgWLVpkd2ziPKqqqs4oyKy1cY+plGLYsGEsXryYiRMn0qFDc2/UFULY6bWYkLVK69ftubou0Zofu6NDR7ujnV/744pK63f9cR2fYoDU+AXLOpmNq9TH/oTCt+MCZyV5cyN67vTpeucXg5GcfBdjJ6QVazHqXklyUgghhN12YPRD+DGw1MqEwsJCBg4cSEZGBkePHvVlbVv7PhQWFhIeHk5aWhpHjljaCLkX4177XmCJnbEJIRonSUprmqt5TmNqMJ543YLFDm0bN25k9OjRuFwuvvnmG7vjEyecXZD52LFjJ9/r3bs377zzDrNnz+a6664LYJRCCFsFBaejqDYfaJUuwaH7u2NC758b41zjv+vCa7Gh74D63J/XbCoN11zU7eLxZuPyYvseRKs/e7PGiVqhHyiPvtefSd4GxABfAIUYDfGsWI+RnAzFqHtl305cIYQQ4kwrMHYPjgS2mg0+duwYWVlZhIeHk5eXd3IjRhPZcn9dUVHBT3/6U1wuF1u3mv5PAeMeeybGPfYMLNxjCyHsJUlKa+7euXPnlYEO4oS9GPUq7wVKrUwoLCwkIiKC1NRUq0+ShJfWrFnDQw89RGJiIt9+++3J16+66ipefvll3n//ffr27RvACIUQzSEnsscWlHL7fCHFpw5Huzh3TOj97qjQL/0QWoOCghxT7Lq2deqZx99Zf7HZKE9dXRawu2nX1iXaoQe4Y5wP58SGlnkZoJkY4DOM5KTVD/rNGLtYnBjJSbk5EkIIEQgaYwd/D2AKcKzx4bBr1y5SUlIYOnQoX37Z5J8o/X/wgx+0b3qYDTtw4ACpqan85Cc/4dNPLTfgrj+tmIKF04pCiOYhSUprHB6PJyrQQZzlP0AERoe2LWaD6zu0NbEmh7CoviDzkCFD+OKLL06+HhwczPjx4yktLeXRRx/F4ZB/ckK0FXXtHBlK4VWHaKUoR6vR7mjnwNeienzibQxjPyn74ZiF624yG/dqZM8i0F6v4w9a6ys8XaqTzMbNG9z7KKiXrFxTKZY3Q5I3DFiIkZy81+KcbzCSk7dj1AOrtSc0IYQQokkqgXSM76d5ViasXLmSBx98kOTkZL77znJ55/ajRo262bsQT6mvO3nfffcxZ84cqz0ZmtT3QQjRvCRjYpFSKtB1Kc+ngCZ0HqtPpj3wwANN6W4mzqP+izEiIuKc5G9sbCyLFy9m6tSpdOnSJYBRCiECITei506P5pUmTtuAVqNzonr1dcf2esPbtX9esOKKMUVlGZ4aVa49dS9bmeNQKt3b9fxH/W7cvysuNxtVuU/9A/SW817lRJI3J9o5yJckr4kwoBjjVMMgi3O2YtS8ugNJTgohhGi5tgEJQCSw2myw1pr8/Hz69+9PZmYm1dXmFW/CwsJu9SXA0tJS4uLiSEtL49AhSxsh92N8B/cCPvBlbSGEfSRJad3gQAfQiErgJYyuofOwUGh/9erVDB8+nMTERLZv3253fBek+mP0aWlpHD58+OTrt912G/Pnz8ftdnPjjTcGMEIhRKDVVB1/GcVh85Fs08qT9E3Q3rvcsb3eQCmvCjw9/s76i13FZU+179xxnYanQHdE6+EJxatMd/i9Fu1chtL/9mZdf9GaS2qD635rNi5vZEg1mhcbeGu9P5K8Jvpj7JosBayestjGqeTkDOC4PaEJIYQQfrUIo76yCzDdJllZWUlmZiaDBg2ioKCg0bE9e/b0Kkm5adMmXC4Xo0aNYsOGDVam1GI8GKz/DpYHhEK0YJKktO76HTt29Ah0ECa2Yzzxug8wLcZR3+AlIiKCzMxMjh+XeyYrvvrqK37xi1+c05Do0ksvZdq0aZSUlDBo0KDABSiEaDH+NazvXg2zzjtAsQfF5K7VHUPmRvfOXhQZ6dUP58c+Wn2Rq7jsKU+Xmo1oMtC66xkDPI7nrFxHeXgWFeimLSppfFHZVWajKvevn4txZAsUW7XyJFXuW+dTktfEfRinF5Zi1J+04juMkw63Y9wYmdb4EkIIIVoYD0bd5DswNsaYbpPcsmULiYmJjBw5knXrGj5R3a1btyub0kj00KFDZGRkEBUVRWFhodVpJRhJ1kRgj+XFhBABI0nKpmkJXb6t+BwYgPHEy7S5QFVVFZmZmQwYMIC8vDzbg2ut6gsyR0VFsXDhwpOvBwcH8+ijj7JkyRLGjRtHUFBQAKMUQrQ0VZ7jf0Gx78xX1fcoJld+f/g2d7Rz+qwht3n1lCh+QUX7hOLV4x1BjnVoMrTmsobGKaVixpasG2h2PaOpjH7Lm1j8RnNRjdJPmw3LGzmyTjn0M6Cf6HDJ8Z5zo3tn540caUfjmd7AAmA5MNTinD0YycmbMG7oJDkphBCitTuA8d3mBN6zMmHJkiUMHjyYSZMm8f3335/z/sCBpj9N8Hg85OXlERYWRlZWlqWj5MBXGN3KowG7GuYJIWwgScqmaal1KRtS/8TrFowObaY3wDt27CAlJYURI0awdu1au+NrNWpra8nNzSUsLIw5c+ZQW3tqo1N4eDgfffQRL7/8MpdfblpGTQjRBuXF9j2oFH8CUHBEwfRKfayHO9o5PW9kf68a6wxauLBdQlHZo50vrytT2pEFmO489Hhq061cW9W1e04F/CiU+qWVhj85UaEfuGNCX3mlb98aG4JwYiQnVwLxFufs5czkpFd/vkIIIUQL9l9gGMa9cYXZ4NPvpbKzs8+4l4qIiGh07rJly4iLiyMlJYW9e/daie0oxr2vE6NbuRCilZEkZdMM2rhxY4dAB9FERzE6tFn+oK7/MkhOTrb6ZXDBOv3p3759pzZC3XzzzcyePZvXX3+d7t27BzBCIURr0P7o8SzQGR4qb8+JcU7Oi+170JvrpKdrh6uw/JEbPd1WKZgD6qYmTO8/pqjiJ2aDcuJ6btSK+d7E5zea9ujaZwK0ei+M5ORqjOSksjDne4ybolswkpOVtkUnhBBCtAxFQB+Mmsumv2sOHjxIWloaUVFRlJSUAMZOyoZOoe3YsYPk5GTi4+Otbp7RGL0ZbsW495UTDEK0UlZ+eF+ougMNFshYtWoVP/jBDxqc5HA4oq+++uoSOwOzWTTwF4ybMFNdu3bliSeeYMKECQQHB9sbWQuyZcsWXnjhhXMKPtf/9/jlL39J+/btAxRd2/bXv/6V559/vqG3vgBMm4MI0VqNLa6I8uB5Ac2dXl9EUXZzaa9709NVo3UnEworblAOTzmawD2YU9QFKU+fV6N6W6qK7wc9MXZB/gLrD3EPA38FXsDCDZoQQghxgeoGpAFJgKXaV7GxsUyZMoWkpCRWrlx58vWuXbty/PjxpvRLWAqkAF82LWQhREskOymbyOPxtKYj3w0pxnjilYhxLK1R9QWKIyMjKSoqsj24QDtfRzqHw0F8fDylpaUkJSVJglII0WxcH68cMKa4vNijPR/6lKAE0Dg3D6h42GzY3NiQrUrzqk9r+UoTVOdx/G8zrNQdozzKGuAxrP02OoyxY/IGjMSmJCiFEEK0Zd9jJArvARZbmVBYWMjAgQPR+sxed4cOHbKaoNyO0YMhHElQCnHBkCRl07WW5jmNqQVewejQNhMLtcc2bdpEQkICo0aNYsOG5trU0nzqCzL369ePzMzMMwoy9+vXj48++ogZM2Zw5ZVXBjBKIURbklC86t4xRWX/xtGuRGsd5rcLOzxTBi1c2M5sWDt4ARWgY8sKD0q/EYSeYuMqNwOzMQrqP4a1nR9HMJKTN2IkJw/YFp0QQgjR+qwEBgIPApvNBtfU1LBq1aqmrlGF8V1c/5BRNz5cCNGaSJKy6frs2rWr4bPgrc8+jCdeTuDfViaUlpYSFxdHamoqhw4dsjW45rJy5UqGDx9OSkoKe/bsOfn6Nddcw8yZM8nPzyckJCSAEQoh2pKxRRU9XcVr5jt00GINkX5fQKvbbqy9crTZsOwY526l+avf12+EMm40PlAefa87OnT0qzGhm2xY5kaM5OR/gQmAacIWo77zTIxaV88A+22ISwghhLhQFAAhGEfAj/rxuu9xqjzLET9eVwjRQkiSsumUx+OJCXQQfrYeuB/jiZfpDWFNTQ1z5syhX79+ZGdnU1dXZ3uAdti1axfJyckMHTqUL788dUKgU6dOTJw4kaVLlzJixAiUasulW4UQzWXMwnU3jSkqz/Iozwq0ekTbWTfaoVOf+MBCI7ig2j8q1VwJOV2ilKe/O8b5cE5saJkNC9wAzAA2YD05Wcmp5GQKsNuGuIQQQogLURUwDWPH43x82/G4EojA6Cq+xefIhBAtliQpvaC1bu11Kc+nAOiB0aHNdJvk/v37SUtL4/777+fTTz+1PTh/qaqqIisri/DwcPLz80/WQVFKMWzYMD755BMmTpxIx44dAxypEKItGL9w9fVjisqzqKut0OjxaGsF532iueFwh2NjzYblRPY5oGGWnaEoxXJUUKw7JvT+16J7/8eGJX7IqeRkMlhqBlSNURalPjm5y4a4hBBCiLbgW4ymdGEYjS6bYjfwS6AvUOrnuIQQLZAkKb3gcDjitNYX6va6aoybue4YN2iNdoAFKC8v56c//Skul4utW7faHZ9PCgsLGTRoEBkZGRw9eurkQWhoKG+//TazZ8/m+uuvD2CEQoi24ucFK64YU1SWUVMXVKHR4/X/z96dx0dZ3Xsc/5xJwhIWEUXADbSgAgZUcAHBghBtrbFaCb21SBCoeotLJVgXRDGpFZEEQfGW1oWgckvAuqFeXABBQK2tSlhU1KogiCguKAIhc+4fJ9EQkjzPTGbmmSTf9+vFSzNzzvP8UEhmvnPO+flb2Rcz1nLDpU+9nu41bmcoNB3sNq9xkTKGNVhz0ezBGQOLBnf3dch+hA4BJuO2dV8F+PnkqSKcPBrXYG5LHOoSERFpjFYCpwGX4P3zdQ8wFTgGuA8f70lFpGFQSBkFa+2hW7dubeiHFG7BvUE7BVjhZ0LlAPDbb5PriJCSkhIuuOACcnJy2Lhx4w+Pt2/fnilTpvDMM89w8sknB1ihiDQ2TZs3fdjCeLBBLdvusDu96e+9Bs0f1ONbY0JTY3jft7HmotlnHt+nKPP4R2N43QrtcOHkh8B1+AsnS4GHcB/QXYbrGCoiIiKxFQZm4xq4FlL9FvDlwPHAtfjY3SciDYtCyiiFw+GG0OXbj38BA4BhwEdeg3ft2vXDVur58+f/sJU6KNu3b2fixImcc845vPrqqz88npaWxpgxY1i2bBnDhw8nFNJfBRFJrLAt+1PQNRgYf9HC1Qd6Dgxt+wtuu1ZdbvaxNeGxO7evP6ko8/hHMSbWPyAOZt9wsrmPORXhZDdgBD46kYqIiEid7QBygdNxOx72ANtwx46dAWwIrjQRCZKSmeg11HMpq2OB+bhOarfiDkGu1datW7n66qv5xS9+sU9TmkQpLS3lvvvuo2/fvtx///37NPfJzMxk2bJl5OXl0apVq4TXJiICMCfzhJfBLg6yBms5MK0ZV3qNmz1o0C5j7eSobmLsZmtCua13Nzt+zuBe980fNizW3dYOAiYB7+PCSc8t7LiVHBU/10aUzxUREZHEWoVbVdkUd0zL9GDLEZGgKaSM3k83btzoZ5VGQ7IT90bwGNzKE89VMG+++SbnnXceV111FZ999lmcy3OWL1/OkCFDuPnmm9mxY8cPj3fp0oVHHnmEoqIiOnXqlJBaRERqFeImU7dul3VmMFdfsmxDO69xTQ7cMxvDBxFc+QsME3Z+8W33OYN73HP3OV1316XOarTChZLvA7cArX3MqQgnu+F2CLwX45pERERERCRKCimj1zwUCp0edBEB2YRbeTIIeNNrsLWWBQsW0K9fPwoKCti9O9bvU53333+fiy++mF//+tds2PDjDoE2bdqQn5/P4sWLGTRoUFzuLSISjaIze/7LYp8KsgYLLcN7vh/vNe6vffqUmrDN9xpn4FsDU3faXd2KBmdMnT+sn+fq+whVhJMf47Z3H+BjTkU42QMXTr4b45pERERERKSOFFLWQSgUakxbvqvzEtAbyAG2eg3euXMnBQUFnH766cyfPz9mRXz99ddMnDiRQYMG8eKLL/7weGpqKsOHD+fll19m9OjRpKYmtHGuiIgvIVJuwQTdtTJ0+YgX3znMa1TnFRl/B1ZX+6RhJ8bONE2aHTd7SMaE+Zl9vo5xkS1x4eRHuHCyjY85FliI+1k1DHg7xjWJiIiIiEiMKKSsA2ttY2meU5swMAfXEfUOwHOZ5ObNm7n66qvJzs5m/fr1Ud947969PPzww/Tv35/777+fvXv3/vBc//79WbRoEVOmTKFt27ZR30NEJN4eHNJjnbF2XrBV2GaG0uu9Rk2aZMIha6s2/Ck1mPvK0lK6Fw3uOe7BM7pui3FxLYCrcVuzJwPejX5+DCf7AFn4WPUvIiIiIiLBUkhZN722bdvWMegiksRXwPVABm5LnacVK1aQmZnJVVddxRdffBHRzV5++WXOPvts/vjHP+4zt3PnzsyaNYvi4mK6desW0TVFRAKTkjYJw55Aa7D2klEvrD7aa9iDmT2fAPMahjDGPpqC7Tl7yPFjHz6j+5YYV5TOj+HkXUB7n/NeAE7BhZP/jnFNIiIiIiISJwop68aUlpYODrqIJLMBt6UuE1jrNTgcDrNgwQL69+/PzJkzKS0trXX8hx9+yGWXXcawYcP2WYWZnp5Obm4uS5cuJSsrq46/BRGRxJo9qNuHxpo5AZeRVmbMTX4GmrC5MsWETyga3POiB4b0jKCZji9NgEv5MZzs4HNeRTiZCbwe45pERERERCTOFFLWXWM/l7ImLwAnApcBn3sN/vrrr7nttts488wz9zlXskLFeZaDBg3iqad+7DERCoXIzs5m1apV5Obm0qRJkxj+FkREEmdvk9CfjCHWTWYi9ZsRL5T09Bo0+6webz5wZq93YnzvinDyA2AW4HenwgpgIO7n8T9jXJOIiIiIiCSIQsq6O8taa4IuIkmVAn8FjgVmAGVeEyp36H733Xex1jJ//vxqO4OfeOKJPPHEE0yfPp127drF7TchIpIID5/RfYsN87dAi7CEjM/VlDGUBozANbWZBXg28Cm3AjgT6I9r5CYiIiIiIvWYQsq667Bp06aMoItIcttx54r1xucbyeXLl5OZmcnpp5/O1VdfzWefffbDcx06dGDGjBksXLiQ3r17x6diEZEA7Nm1+w4MOwItwtpfjnjxzVMScKeKcHI9UAQc5XPeCmAILpxcEp/SREREREQk0RRSxkBqaqq6fPvzFm5LXjbwodfg0tJSPvzwx2HNmzdn7NixLF++nKFDh2JM41rAGg6H+eSTT7DWBl2KiMTJ/2b1+dzC3UHXYUzqiDhePoT7ObAOF07+xOe8VcB5uHBy/3NBRERERESkXlNIGQPWWp1LGZkFuC3gfwB/K4ZSU1N58sknmTBhAi1atIhrccnoqaeeom/fvpx88skMGTKE7du3B12SiMTJ9+Hdd2EI5i+54WNrwmN3fr7u6jhcvSKcXA8UA118znsVF072A57yGCsiIiIiIvWUQsrYOGPjxo3Ngy6intkDTAe6AQ8DtS4P3Lt3L++//34i6koqa9eu5cILL+Syyy5j48aNAKxfv565c+cGXJmIxMv8zD5fG0NhYu9qP7EmlNt6d7Pj5wzudd/8YcM8zxCOQEU4uRYXTh7jc95qYBjQF4WTIiIiIiINnkLK2GiWkpIyIOgi6qlPgIuBU4CVtQ3csSPYY9oS6csvv2TixIn87Gc/Y9WqVfs9r5WUIg3bd5/vuAdjN8f/TuYLDBN2bv+2x5zBPe65+5yuu73n+L84kAX8CxdOHudz3hpcOHkCMB+PD7FERERERKRhUEgZI9ryXWev484ZGwbsDbiWwJSWljJr1iz69u3L/fffT1lZLBcziUh9MX9Yv++NCd0Zr+sb+NbA1J12V7eiwRlT5w/r931sL08W7vv6k7iw0Y91QA7QC4WTIiIiIiKNTmrQBTQUoVDoLODaoOuo5yzujent+G+k0GAsX76cm2++mXfeeSfoUkQkCXz3ubkvvW34ajCdY3ZRw06wD5q05rc/eEbXbTG77o+G4L6H94lgznpgMvAIoE9mREREREQaKa2kjBFrbca2bds6Bl1HAxEOuoBEeu+99xg+fDi//vWvqw0oW7RoQadOnQKoTESCNH9Yjz3GcHuMLldqMPeVpaV0Lxrcc1wcAsohwGvA8/gPKP8DXAZkAHNQQCkiIiIi0qgppIwds3fvXm35Ft+++eYbbrvtNoYMGcLixYv3e94YQ1ZWFkuXLqVfv34BVCgiQfvui7cfAt6O+gKGMMY+moLtOXvI8WMfPqP7lthVB7hjOpbiwsmTfc75EBdOHgP8FYWTIiIiIiKCtnvHVPm5lHOCrkOSWzgc5tFHHyU/P5/PP/+82jG9evUiLy+Pk0/2+55fRBqi+cOGlY144a18Q+iRSOYZsBaeNWF78+zMniVxKK0/kAcMimDOx8BtwAM04rOHRURERESkegopYyvTWmuMMTrsX6q1cuVKbr75ZtatW1ft8+3btyc3N5eLLrqIUEgLnUUE5gzu+WjO4jXXYv02oLGLjbETZg/u9e84lHM6cCswOII5G4EC4C9ALLuHi4iIiIhIA6KQMrbaf/LJJ72AN4MuRJLL5s2bmTx5MgsWLKj2+bS0NEaMGMEf//hHWrVqleDqRCSpGWPti2snGcKPe4xcSZm9pejsnsviUEVf4Ebg3AjmfAYUAtOBXXGoSUREREREGhCFlDFmjDkLhZRS7vvvv+fee+/lnnvuYffu6hcQZWZmkpeXp+Y4IlKjOYN7PJvz4prlWDug6nPG8Lo1/LnozIyn43DrU4GbiCyc3IZbOTkD+D4ONYmIiIiISAOkkDLGjDGZwJSg65BgWWtZuHAheXl5fPLJJ9WO6dq1K7feeisDBw5MbHEiUi/Z8N5JxqS8WPG1May3YZM/e3CPfxD7Y0Z64sLJoYDxOedzYCpwN7AzxvWIiIiIiEgDp0PvYm/Ap59+2iLoIiQ4b731Fueffz6XXXZZtQFlmzZtyMvLY/HixQooRcS3OZknvAz2RQwfWxMe+90X63sXZR7/aIwDyuOBYtyOgGz8BZRf4M6p/AlwBwooRUREREQkClpJGXtNw+HwAOD/gi5EEmvr1q0UFBQwd+5cwuHwfs+npaXx61//muuvv562bdsGUKGI1Hfh5ukjmzf96su/9ulTGuNLdweuB36L/w8wt+NWTU4Dvo5xPSIiIiIi0sgopIyPTBRSNhqlpaUUFRVx5513smPHjmrHDBgwgFtvvZXjjjsuwdWJSEPy0OldPovxJbsBNwAXASk+5+wA7gUmA1/FuB4REREREWmkFFLGx1lBFyCJ8fzzz3PzzTfz0UcfVfv8UUcdxfXXX09WVlaCKxMRqdVRuJWTo/EfTn4LzMRt6f4yTnWJiIiIiEgjpZAyPo7ftGnT4YcffvimoAuR+NiwYQO33HILS5curfb5Fi1acPnll3PllVfSpEmTxBYnIlKzzriVk6Pw/xrgO+B+4DYg1is5RUREREREAIWUcZOSkjIEmB10HRJbX331FQUFBcyePZuysrL9ng+FQvzqV79i4sSJtGvXLoAKRUSqdSQwgejCyduBT+NUl4iIiIiICKCQMm6stZkopGwwSktLmTdvHpMnT2b79u3Vjunbty95eXn06NEjwdWJiNToCGA8cBnQ1Oec3UARMAnYEp+yRERERERE9qWQMn7OstaGjDH7t3mWeuWll15i4sSJvPfee9U+f/jhhzNx4kSdOykiyeQQYBxwNdDM55w9uA/XbgU2x6csERERERGR6imkjJ+Dt2zZcgLw76ALkeg9+eSTXH755dU+l56ezhVXXMHll19Os2Z+MwARkbhqB+QCVwHNfc6pCCfzgE/iU5aIiIiIiEjtFFLG11kopKzXHn/88f0eM8ZwwQUXMGHCBDp27BhAVSIi+zkYt637SiDd55xS4O+4bd0fxKcsERERERERfxRSxlH5uZSTg65Dordnz559vu7evTt33HEHvXv3DqgiEZF9HIQLJq8BWvucEwYeBW4Eqj/HQkREREREJMEUUsaRMab/Z5991vKQQw75NuhaJDaGDh2qgFJEkkFb3JbuPwAH+JxTEU5OADbEqS4REREREanZpUB2pa+X445dEhRSxluTsrKyM4Bngi5EREQahFbA74HrgTY+51SEkxOBd+JUl4iIiIiIeOsKDKn09ddBFRIBA/QCTi//Z3fgQFyDzp3AV8C7wErgeeDjaG+kkDLOrLVnoZBSRETqpiUwFrgO94LADws8DdwEvBWnukREREREpOEJAQOBi4BzAK+GHP2BUUAZsBDIB/4V6U0VUsbfWUEXICIi9VYLYAzu/MhDfM6pCCdvBt6IU10iIiIiIs2HrB4AACAASURBVNIwHQ0sBY6IYm4K8EvgF8CfgVtxO7t8CUVxQ4lMt82bNx8ZdBEiIlKvtACuxjW2uQv/AeULwMlAFgooRUREREQkcgcSXUBZWSpu0cR9uO3iviikTIDyLt8iIiJemuIO096ACyc7+Jz3AnAKkEkU2ypERERERERqsQn4K3Ax0A3XyNMArYFTgT8BX1Qz7xLc4gtfFFImQCgUUkgpIiK1aYILJz8AZuF95kuFF4DTcOHkP+NTmoiIiIiINEJhYAHwc6AzcBnwMPA28GX5mB3Aa7gmnd2A56q5zq1Aez83VEiZANbaIdZa/bcWEZGqqoaTh/qctwIYhAsnX41PaSIiIiIi0giFgflATyAb+D9cQxwv23DnUb5S5fHWwG/93FjBWWIc9Omnn/YOuggREUkaacAIYD0unDzM57wVwGBc97ylcalMREREREQaszeAYcDaKObuAv67msfP8zNZ3b0TxFp7FtqKJyLS2IWAC3Gd7rpEMG8VcDvwVDyKEhERERGJkzSgB3AUbkXdt8B/gH/7nPuT8rktgea4bcZf4gK0L2ueGjMtcN2ujwTalN/zQ2BdAu5dX70JrAGOr/TYsX4mKqRMnEzgtqCLEBGRQFSEk38Cjolg3iu4QFPhpIiIiIgkkxbA41UeGwN8VP7vGcC1wPlAqyrjNlP9TqIQ8FPgZ+X/PBF3PFJ1wrigcgFwD7A9svI5GrejqbIs3EpAgBOAG8sfa1bN/E3AbGAK7lzGRDkRt3ghpdJjO4E/4MLfZLGOfUPKdrj/v+HaJimkTJx+X3zxReuDDjrom6ALERGRhKkIJ/Px+elhudW4QHMBYONQl4iIiIhIXaQCQ6o81gLX8flW4AZqzpxMNY9lAkX4byAZwgWhFWHoNcB9PueCC06r1p9SXtstwARqz8wOB27Cda8+m+i2RkfqbNxZkZVD389xQWoyBZSwfxi5p5rH9qMzKRMnbdeuXT8NuggREUkIg3ux8G+gGP8BZQnu/JcTcC9AFFCKiIiISH1yL67Tc20BX3VZ1NH4Dyiragn8DZgc5fzK7sKFlH4X9R2GOyv+yBjcuzajcLurKgeU7wP92L9RTTI4usrXW/xM0krKBAqFQploy56ISENmgHNxnx6fGMG8teVztHJSREREROqrkcDllb7eAizENYv8BjgY6I5rAlmbvcBy4DXc+YafAV/jVjoegvtA/1fs/3r7OuB13GvqaIwCrqr09UrgGVwY+BXQHrcN/TfsuwX8YOAvwDlR3rc2FSs7b6ny+Gu4RRGfxeGedXUYULV59Eo/ExVSJlB58xwREWmYhuA+va36A7k268vnPAKUxaMoEREREZEEGVf+zz247d53A6XVjKvujEeAt4FC4FFqP2NyIe5opPNwW7zbVXpuZvnzu6qZ56Ww/J8bgRxgSTVjinD9Rp4FulZ6/Oe49wH/iuK+NUnDnZt5SZXHn8IFpd/F8F6xdBn7npkJ8ISfidrunVjHfvrpp0cFXYSIiMTUENwnmc/jP6D8D+6HdwYwBwWUIiIiIlL/peBWQZ6PC/yqCyih+gBxAa4L+N/w3wTnSWAw+zauOQT4L5/zq0rFBZT9qD6grPA+bvfU7iqP50R53+q0woWtVQPKvwAXkLwBZVfcGaGVvcv+TZaqpZAywcLhcNWDWUVEpH4agjv/5XngZJ9zPsSFk8cAf0XhpIiIiIg0LFNxqwwj9QU+GqtUowTX7bqyaENKgItxnbu9vAvMrfJYrPqQHAosAyrvxrW4buP/TfK+h0jFrWytulL2Rlx47UkhZeJlBl2AiIjUSX/cJ6vPA6f6nPMRLpzsigsnff2QFhERERGpR3YSm+Y1kXq4ytenUH0HcS9LgZciGP9Yla+7UfNWdr96AKtw525W2AOMYP8wNtlMA86o8lgxbvu+LwopE2+Itbbq3nwREUl+pwMv4g7xHuhzzsfAH3DdvRVOioiIiEhD9hSuwU2ibcQ15qlwIBDNUXvFEY5/s8rXabjmOtEaCLzMvp3Cv8Y15KkaxCab3wFXVHnsP8ClkVxEjXMS78CtW7f2AV4NuhAREfGlL26LwrkRzNmE2+oyi+gO7RYRERERqW9eicM1m+N2I7UDWgBNaxhX9XzIdsAHEd4r0vq3VvNYG9wuqkhdBDzAvr+/TcAvgNVRXC+RsoH/qfLY18CFRBhaK6QMQHmXb4WUIiLJ7TRgApGFk5/hDgmfAXwfj6JERERERJLUuhhdpzcutDsHF1BGsxu1TRRzPo1w/J7yX00qPdYyivteh9vKXXmL+hpcx3A/52MG6TzgEfb9f7QT9x7qjUgvppAyANbaTCA/6DpERKRaPYGbgKH4P8tmG1CAwkkRERERaby+quP8I4G7cN2r66pFFHN2eA/ZT9VmP5Gehflz3IrDyhYDvyKYrfOROBu3RT6t0mO7cf//Xo7mggopg9F3+/btB7Rt2zbZ/8CJiDQmGcBEIgsnPwdm4gLKaF7UiIiIiIg0FN/VYW534AWgo8/77Kny2AHs23clmsY5Noo5dZVezWNzSP6AchCucVDl7el7gd8Az0V7UYWUwUj9/vvvBwJPBF2IiIjQA7iFyMLJ7cDduK3d33iMFRERERFpDKIN+dKBp9k/oFwPzANW4pqwbKLm897/A3SO8v5BWoP7fR9U6bH7cYHrg4FU5O104EnceaEVyoCR7N/xPCIKKYOTiUJKEZEgdQNuwJ134/ecmx3AvcBk6r6dRUREREREIJd9A8YwcDVux5Lf4DOa7d3J4B3c+5Hn+bEzeAouqGyOe++RTE7GBcqVz94MA2NwZ1PWSch7iMSDMeasoGsQEWmkjsJ13S4BLsZfQPktcAfQCbgeBZQiIiIiIrFyUZWvpwP34D+gDAEHxrSixCoBBgKfVHrM4P4b5AZRUA1OAhbhttZXsMDlwOxY3EAhZXC6bt269eigixARaUQ648LJd4FLiS6c/DJexYmIiIiINEKHAsdVeex/IrzGcdT/ncJvA2cAH1Z6zABTcU09g9YLd9Zk5TDYAlcAf4vVTRRSBqisrCwz6BpERBqBTrhwcgMunPTzAuY7XKfuLrhwcnvcqhMRERERabyqnkO5B3gvwmucEaNagvYB7veyocrj+cCfE1/OD47HbUc/qMrj44jxdnSFlMFSSCkijc3PcJ8OXpWAex2J2yryDv7Dyd3AX4GuuHNwtsatOhERERERaVXl671E3oBnTIxqSQYbcUHl2iqP3wBMI7qu5XXRDdd1vV2Vx68D7or1zRRSBmuwtba+L0kWEfGrP/AobmXjOXG8z+H8GE5eBTT1MWcPLpw8GrgM2BK36kREREREpELVHUvpuMUGfg0FeseunKTwKe6MyjeqPP4H3Fb4RGV5xwKL+bGhT4WbgCnxuKFCymC1+eSTT04OuggRkQTIAJ7EvegA+CgO9zgE13X7XVw42czHnKrh5OY41CX1xJsjpvYvubiwT9B1iIiISCAOw3VTlsT6APeavLLf+ZzblcjPr6wvPgfOBF6p8vhlwIP4O1+/LroALwIdqjyeB9wWr5sqpAxYSkqKunyLSEPXFXeGSeVDlmMZBh6MCyc/xG078PPishR4CLd94TL27aQnjZDFmhRj7iJkV6zOKXj2rYvvPDXomkRERCQhLgDWAZtwTRLvZf+trRI/3wLLqzx2HfBLj3kDgGW49wIQ+Rbx+uAr4Czc77OyEcBcIC1O9z0Kt4LysCqP/wW3xfvAKH957iRWSBkwa63OpRSRhuxwXBe4qlsEvovBtQ8GJgHvE104OQL3ya0Ia0ZMOx+34hcDZ4ZCoWUlOYVL1l9S+NOASxMREZH4OA54FvgH7rUhuGOC/hv3GnES/o4NkrqrunU4DXgMmAecizsu6iDc/6fflD/3Ej+u8nsW+DghlSbeDuDnuPdUlQ0DFhCfP6NZwBHVPH45bnt+tL88t+UrpAzeaR999NGB3sNEROqdg4FFQOdqniurw3Xb8mM4eQvQ2secMDAf6IELJ9+vw/2lgbFYg+HGap7ptzdsnyvJKVxSMnLawIQXJiIiIvHQFnd+eQmuqWN1WuJeZ5YA2QmqqzF7DnigymMGF8Q9hdsx9Tluxetc4Hx+bCCzDriYhrmSssJO4Dzcf4vKzgOeoAEdU6CQMngpaWlpA4MuQkQkxloBzwDda3g+mh+krXArJqMJJ7vjXuRsiOK+0sCVjCz4JdieNY+w/bDhRSU5hUvWjCgYlLjKREREJIZSgUv5sbminya2XYFi3NFFx8evNMGtYC2KcM4SXIOZL2JeTfLZDVyIe29T2dm4910tE15RHKizdHLIxC1XFhFpCJoBjwO1NQaL5JyflsBYXEDpd+V5GPfD+ibgrQjuJY2MxZo1tvA6n6P7WcP/leQUrgyFTH6PB69ZHN/qREREJEYG487SizZoHAL8G9ewZAJuVV9jVwb8q8pj39fhenuAkbhs5HrgtBrGWeB1YAbwCD+uoFzDvmHllx7328n+9Yf9l/uDN4Amlb7+1mP8J1XuG8nxU6W47e6fA6dUerwVcDuu+3dddqxV+Iz9/9vEgueRXwopk0NNS8xFROqbVOB/cZ3oatPZx7Uqwsk/4rbl+GGBp4GbcS8YRGq1LqcwCzgpslm2Xzhsny3JKVwJZmpG0TVPx6U4ERERqauuQCHuXMO6SsOtxLwAmAjcR2wCofrqW6BPHK77RPmvDrggriNuF9ZWXMD3Tvm/V5UV4X02EJv6+0U4/q7yX9EqA35fh/l+/L38V8Jpu3dyOGrr1q0/CboIEZE6MrgXa+f7GFvbC4IWwNXAe7iu3X4DyhfKr5uFAkrxKYy5PvrZth+E/1GSU7ikJGfaL2JXlYiIiNTRAcCduNV1vgLK3r1707Klrx2z7XBdjv+F22os8fEp8CQwCxfq/S+uy3V1AaU0EAopk0Q4HD4r6BpEROroTiDH59jDgaOqPNYU9+n0BtwLkaodwWvyAm5reSZuG46ILyUjCs4F69ll0Ft5WDmycKnCShERkUCFcE0S3wHGs+823GodeuihTJ8+naeeeopXXnmF0aNHk5KS4udevXBnIj4FHF2HmkWknELKJGGtzQy6BhGROrgZyI1wzhnl/2yCCyc/wH1S2tHn/BeAU3Hh5OsR3lsEQtwQ0+tZ29etrCx4SWGliIhIwp0CrMA1X/H8sLt58+bk5uayYsUKsrNdA++2bduSn5/PM888w6mnnur3vucC63Edw1tFVbmIAAopk8lga21a0EWIiERhLHBrFPN+zr7h5KE+560ABuHCydeiuK8Iq0cWnIONyzlKAKeVh5WvrckpuNBiTZzuIyIiInAYMAd4hZqbrfzAGENWVhbLli0jNzeXpk2b7jcmIyODxx57jKKiIo444gg/NTTBdQx/G/f6VlmLSBT0Fyd5tN68efMp3sNERJLKRbjOetEYhgsnD/M5fgWuM2N/YGmU9xQBwFhzYwJu08vC3DU50xRWioiIxF46cB0uGLwYdz56rXr16sUTTzzBrFmzOOww75egmZmZLF26lAkTJtCiRQs/NR2Ke337KpE3VBFp9BRSJhdt+RaR+uQs4EGi/1niN7BZifv+2B9YHOW9RH6wdmThz8CenLg72p4urCz8p8JKERGRmMgC1uKaLHp2u2nfvj1Tpkzh6aefpk+fyDZSNG/enLFjx7J8+XKGDh2KMb5+jPcBXgaKgSMjuqFII6aQMomEQiE1zxGR+uIM4HF8HEZeB68A5wGn486fFIkJa+2EgG6dYWHu2pzCZUsGTkoNqAYREZH67CRch+cngc5eg9PS0hg9ejTLly9n+PDhhELRRyAdOnRgxowZLFy4kN69ffXdM0A27rzKSUCzqG8u0kgopEwi1tpTNm7c2DboOkREPJyIe2HYPE7Xfwu3FbwvrluiSMyU5BSeZd3B+oGxhrWDlk7aG2QNIiIi9czBuMY0rwED/EzIzMxk2bJl5Ofn07Kl52JL30488USeeOIJpk+fTrt27fxMSQduAd7FdR4XkRoopEwuKSkpKYOCLkJEpBZdgGeAA+Jw7RJcOHkiMD8O1xfBwPUBl1AaLgvfEXANIiIi9UUacDXwPq4xTYrXhK5duzJ37lyKioro1KlTXIoKhUJkZ2ezatUqcnNzadLE1+aiI3Cdx5cAveJSmEg9p5Ay+ehcShFJVkcALwId4nDt13Av1uYDNg7XF2HdqGlDLPb0IGswxszt9dC1/wmyBhHZhwE6AscAvYHuwOH4OONOROJuCG6HzV1Aa6/Bbdq0IS8vj8WLFzNw4MB41wZAeno6ubm5LF26lKysLL/TBgL/xnUkPyRetYnURwopk8/ZQRcgIlKNg4FFxO/g71OAa+J0bREAwmF7Q8AllIVIudNr0OuXzkpbPXLq+XbSJL1OE4m9Q4BRwEO4phu7gM3AO8Dr5Y9tBHYAHwNPAzfjVvmLSGIci/u79zzQzWtwWloaw4cP5+WXX2bMmDGkpHgutoy5zp07M2vWLIqLi+nWzbNkcFnMxbjvPdcR33PeReoNvfhNPp03bdp0TNBFiIhU0hp4Fh8vEuvoTlyjHJGYW3vJtDOttf2DrcLM7T776g1eo5rs/m64sWbemv+0fqNkRMHw4uzixL/bEml4BuIavm0G7geG41ZN1hYMHAGcA9yKW/X0IXADoDPkReLjQNy5k2twf/c8DRgwgOeee44pU6bQtm3wfzX79+/PokWLIqmnDa5DeQnwi7gWJ1IPKKRMQsYYdfkWkWTRDHgC6JOAe4WARxJ0L2lkbDh8Y8AllKVaO8VrUHF2cYoxdrz7yh6H4f5uLTatfWvE1DHqCC4Slc64s5SXAL/Ex3l2tegE/Bm3wjKjzpWJSIVU4FLcqsKryr+u1VFHHcWsWbOYN28exx57bLzri0hqauoPKztHjx5NaqqvH9/HAAtxq0d7xLVAkSSmkDIJhUIhnUspIskgFZiHW32SKC2BF/DZtVHEj5KR0wbawP9Mmb93m5P7rteoY5t/PBxLl30etPaokDEzD+rUSmGlSGSG4s6z+3mMr9sCH+fjiYgvZwL/AmYBnq2yW7duzYQJE1iyZEkkZ0AGok2bNuTn57N48WIGDfLdH3cI8AZuRWk8GlWKJDWFlEnIWjvIWpsWdB0i0qgZ3Ha4ILZfH4D7FHl0APeWhsjaCQFXUJZq7WSvQW4Vpbm2pucNdFZYKeLbVbgP2hQmiiSnLkAxriljT6/BoVCIoUOHsnz5csaOHeu3m3ZS6NKlC4888ghFRUV07tzZz5Q03Pew93GdzXXsizQaCimTU6stW7b0DboIEWnU7gJGBHj/psB9uMYGBwZYh9Rz63LuOgPsGUHWYI0p9rOKsluLjy8y0NVrXEVYeXCn1uvWjii8YsOVM5rGplKRBmMM7ueY3uuIJJ8WwCTcGYzZfib07duXRYsWMWPGDNq181xsmbQyMzN56aWXyMvLo1WrVn6mHIT7XvZPINDXMiKJoh/cyUtbvkUkKLfgPr1NBsNxnVZHop9ZEoW97J0YcAllNhS63WtQcXZxirXmj5Fd2nYKG1uw65vSNQorRX5wKjATtyPAjzdxjXEG486B64jrLNwPyMF9YPZB7MsUaXQM7gPw93CvNZt5TejYsSPTp09nwYIF9OjRMI5pTEtLY8yYMSxbtozhw4cTCvl6eXsi8BLwFHBUXAsUCZje8CUvNc8RkSBcift0O5l0BB4E/h50IVK/lFxS0M9ggl15YMyCXg/84R2vYcelf/xfxh2aH40jy8PKtWtHFF6xZOQkzzd+Ig1UE6CI2jt2V3gfOB/35n8SsBhYB3wKvAusAuYAv8NtS83EdQe3sS5apBE4GViB+/vZwWtw8+bNyc3NZcWKFWRnZ2OM388c6o/27dszZcoUnnnmGU4++WS/087FfXg/GfC1FFOkvtFZRsmr96ZNmw46/PDDvwi6EBFpNIbjtpQkq45BFyD1TJhbgq4gZLnDa1BxdnEKbLw+Bvc7ImxswcG21R/Wjii867PQN/cNmj1pVwyuK4nXi9pfp68Dvq/09WG4FUo9cN2sATYCL+POfNvmcb9TcZ2vewGHAN8BW4FXcSt3NnjMT6P2M+XCuEYQkTiS2ptofIILFCv7PW4VpJdXcW/2P/dZi8U1dXsB6Avc43OeSGN3GHA77jWmZ9JojOHcc89l4sSJHH744XEvLhn07NmTxx9/nIULF5Kfn8+mTZu8pjQHrgMuBm7AHY2kD0+kwVBImbxSUlJSBuNeWIqIxFsWbrVi0Cvsvwc+Aj7GvcH+uNLX/wywLqlnSkbc2ZPEdqavzqM9isat9RrUPf3jYRYT7SrK6lSEldesHVE47evvub/f/HHfe0+TJPICcHAtz5+A61p9AHA3cBHVN1b4L+AOYArwZ2Bvled74QK3/jXcZxhwJ/AwMJ6aw869uDfK3Wqp+SQiCyqLceFpTX7KviFlGjDOx3U/BM4Gvo6glspWAafgY6uqSCPWHHd00AR8rvjr2bMneXl5nHLKKXEtLBkZY8jKymLIkCHce++9zJw5k127PD9jPBS3MvUKXHOdVfGuUyQRgn4zKrWw1upcShFJhH64rdSJ+ODqS+BfwELgr8D1uDfBA4CfAC1xb3LPxjU+yMO9AFsCfJuA+qSByJhz7WprwwOBZwIpwGDD4bCvjt4Wc0Ocqjg8bGxBy3TeLckpGL8yu7B5nO4jwegB/Bu3mqa2zq8tcGcuPsm+wVoO8Bo1B5QVQrhVmstxqxurY/FeXfg7j+cr64QLAmuyobyeys4CjvC4rsWt6Io2oKxQhlttKiL7yyKCLcmVtz03xoCyssrb3IcOHep3m3vFVvpivL8HiiQ9hZTJ7WdBFyAiDV5v4FkgPQbX2oU7x+sF4AHcGV+X4JoRHIN7c9wW6IN7AXsZboXPfNyWxA9wWwJFYqLnnGtXZRTlXhA2/JQEh5XW8o9eD127xmtct+Ybh+Jve2rUDPYQ4LaW6XaDwsoGowPuz/TREcz5OTCj/N9/ifs+7efsxgrH4j7QqikQnQN8Vcv8i3CBqR/Z1L419EH23974Kx/XfQH3Zl5EYq+iucuT+GjukpaWxujRoyNtINModOzYkRkzZkTSMMjgvm+ux73+1kpvqbf0nSC5Hb558+bjgi5CRBqsdOBpoLXP8VtxW67/gTu78hrgQtwnuB1wW3uOxTUXGI1buTMb14xgA7A7dqWL+Ndrdu4rGUW5F4TD4TOAZzBxPrvJYDHGs6O3nTQpZA3XxbWWSow73++HsPL1SyfF4sMJCcYD1LyqsTa/w61Sf4jo3gf0xX1/r863uPCwJgfgVs77Udu4MtwK+6oG+LjuvT7vLyL+HQRMx71G9NWsLjMzk5deeon8/HxatVL/l5r07duXRYsWMX36dNq1q+2I3h+0wHVOfxe3Al6k3lFImfzU5VtE4qXyKpXduCBxMS5YvBX3RjQTFzw2xwWRp+CCyWtwQeU/gNdxAaZIUuv10LWvZhTlXkA4fIqFR+MYVj7ec/a4Eq9BJR+2utC4LbsJVRFWNt3d6u3VOVOD7X4u0Tq0DnP/Rt26wv6+ludmUvuKeD9bvo/Grbivyf8Bm6s8dgCuA3dtwsBSH/cXEX/ScGchvo87f7K2YycA6NKlC4888ghFRUV07tw5zuU1DKFQiOzsbFauXElubi5NmvhaAH8E7sOcxdTe1Ewk6SikTHI6l1JE4ug73Ju6jrhtIcfgtmZfgtsq8gBua9y7uK3cIg1CxpxrV/csyr3IYk6OeVhpsITDf/YaZrHGYGLR0TtqBnNAalmKV9dmSW7fAFNxHx5dgGuiU7U5Tm3CwCO4cxrPxa3A+cZjTi9qDgTfx63Qr0lf4HiP63tt9X6gmseO8pgDbhtkbdvRRcS/IcCbuA+sD/Aa3KZNG/Ly8li8eDGDBg2Ke3ENUYsWLcjNzWXJkiVkZWX5nTYI17BsDu4DSpGkp5AyyRljBm3YsKFp0HWISIP1Lft2RxVpNHrOHlcS67DSWJ7MmHPtaq9xa3MKf4W1XmFNXFnsX7s/fM2WIGuQOtmC65h9LW5V++O41Ux+w++9wHm4gPIRXLiYhwsrvf4u1LbS8W6PuV6rKWvb6r0N13itKj8rSzf6GCMitTsG93fweaC71+DU1FSGDx/Oyy+/zJgxY0hNTUSPxobtqKOOYtasWcybN4/jjvN1MlwI12DtHeA6IjuLWCThFFImvxYtW7bsG3QRIiIiDVVFWBkuC/cB8wjRNnAy2DD2Dq9hFmssxKujty8GsyulLFQYZA1SZ6NwKxeruh/vkBFgCtWvelwOrPKY262W514A1tXy/HDcESLV6YILXmvyELCnmsf9nK/6pY8xIlK9A3HdukuAX/iZ0L9/fxYtWsSUKVNo27ZtXItrjAYMGBDpf9+K/4ergXPiWpxIHSikrAe05VtERKR2JSPu7LkmZ+pvirOLPc/Eqkmvh65dk1E0blQIUxFWlkV0AcvCnkXj/+U1bM2IaecDGVGWGRNhY+/zs4ryzRGFp7w96g51NUg+b+DOZqzOV3ivGtwLTKvlea8/xwfW8pwF7qnl+ba47enV8WqsU91Wb3Bn43lR8zaRyIVwDVjexucqvM6dOzNr1iyKi4vp1q22zzOkrtLS0n5YqTp69GhSUny9BDoW9wGVr9WwIommkLJ+UPMcERGR2pjQrRYz+7j0jeveGjF1zJKBk6LeU9ajaNzajKJxo0IhG1lYGTaTvYZYrMFwY7S1xYLB7GoSalLgNW7JyEnNUkK2eG9Z6gclIwtve2PktDaJqE98qW7Lc2VeZy++Anxey/Ofecz3OoNujkcNNW35ri2kfBVYW8NzOz3qAdCfX5HIVJxnWAQc4jU4PT2d3Nxcli5dGsmZiRIDbdq0IT8/n8WLFzNw4EC/0yrOFZ2Oj3NFRRJFIWX9cNKWLVt00K2IiEg11o6cdgKGnwMY6BwyZuZBnVqtrXNY+eD42U0TdQAAIABJREFUdRlF40YRDvX2EVY+nfHQuNe9rlkysuCXYAPttBnGPnDcA1dW7Y68n4M54HdYOlpojbXjU619r2Rk4W2rL7q9tlV0khhe5556Nb95y+N5r5DTa7nOd9S86hFgAFD1MLVjcU15alLb9fw0xDnIxxgRcZ2h5+CzM3QoFGLo0KGsWrUqku7TEgddu3Zl7ty5FBUV0alTJz9T0nBnGb+P69Qe9W4UkVhRSFk/hMLh8OCgixAREUlGYexE7L6dfSvCyoM7ta7zysqMh65Zn1E0bpQ19qQaw8qw8dfR25rroq0jRnY3tWaq16AlIyc1szY8bt9HbSusHW/Smm5QWBk4r636XiGlV0gdi5RhJjWf72qAMVUey67lWjuBv9fy/Ic+6umJ3vuI1KYFMAl4F9doxdOJJ57IE088wYwZM2jXTmtqkkVmZibLli0jLy+Pli1b+plyEK5T+2u4D5FEAqMf1PVEKBTSuZQiIiJVrBlV0AtsLYf4204urGy1fu2Iwis2XDmjabT36jl7/NsZReNGhcPhHsaY+zBmL4A1POtnFeW6nMIsam8KkggPHjtn3Cdeg9rZA0abGjsml4eVTZq+VzKy8La1owvVESHxvLY3l3o8v8Pj+VispvmA2rel5wCV/z7WttV7AbUHrxs9nge3nbGHxxiRxsjgPiRYB9wCNPOa0KFDB6ZPn87ChQvp3bt3vOuTKKSlpTFmzBiWL1/O8OHDCYV8RT8nAcuAp4DO8axPpCYKKesJa+3ZQdcgIiKSbMJl5qaqqyhrcGTY2IJd35SuqWtY2euha/9z/OxxY1NIOQHMIyHsbb5qxVwf7T1jw+wJ2VTPsyg3XDmjaZjweM/LWdsSa8eHy9iwOmdq4XsX3+l5ZpnETHQd6H8UWVOo6N1dy3MHA+eX/3s3am8mVdtWb3D/Pf7po57f+hgj0pj0AV4GioEjvQY3b96csWPHsnz5crKzszHGz49fCVL79u2ZMmUKTz/9NH369PE77VxcaD0Z8LUUUyRWFFLWH4dt2bJF3bdEJJZCwPXAHcAVQBZuO5y2cEq9sDansIfBnhvhtIqwcu3aEYVXLBk5yXPFSE26z756Q0bRuFHHzx7vGY6UjCg4F2ywy02MfbDHnKs/9hq265vSUTWvoqyGtS0NZuz3KSnrV+dMLSwZc1f7OtUpDcmL1NzsBn5soFPbKsr3cCt7vDztY8zv0BtuEXDf42fhGlL18zMhMzOTpUuXMmHCBFq0aBHX4iT2evXqxRNPPMGsWbM47LDD/Expjuvo/jauw7sSaUkIhZT1iLVWXb5FJJZ6ArcDf8StdnkS10xhO27b3Brcm77/AW4EhgP9gU5A1Of7icRKGG4m+tcyR4SNLTjYtqpzWOlLiBvien1vpSkp1tcqSgvXRnWH8rCS0jKFlVLBAvfU8vyZQBdqDykfLL+OlwXAXo8xbYFpPq4l0lA1wTVIeRu4FB8/QzMyMnjssccoKiriiCOOiHd9EkfGGLKysli2bBm5ubk0beprU8lhuA7vrwCnxbVAERRS1jc6l1JEYqkEeK6G51rhzu46B7gcuA14CFiOa1CwC/gYt0XoEdx2kN/jtodk4M7+EombtZdM7Q72vBhc6vCwsQUH2dYbSnIKxq/MLmweg2vuY/XIgnOw+N5jFQ8GZne/f/xHXuN27dhziXFvSOqiReWwcu3ImR3qeD2p3x4CvqzhOQMUAjXtFirDvTn2YyPwDx/jxrB/055IGNy2ce1wkvomCxdO3oV7nVertm3bkpeXxzPPPMOpp54a9+IkcZo3b05ubi4rVqxg6NChfqedAqzEdX7Xz3WJG4WU9cvADRs2RH2GlohIFWXABbigMVIpwBHA6cBFuO0gM3EHba8GvgK+B94HnsdtKZqE+9R+CHA0Wo0pdRAOhyYSw9cxBnsIcFvLdBvzsNJYE93KxNgpNTZ1iteg1y+dlYY1uTG8bwuDGRu2u9evzplauG74tI4xvLbUH99R+5mSWbU8twjwbPRUySS8mwYB/BW4ich/DvUDXgIeRkejSP3RDfg/3I6Zo7wGp6WlMXr0aFatWsWYMWNISYlFHy1JRoceeigzZsxgwYIFdO/u63MXg+v8/h7u+62yCYk5hZT1S3qrVq1OD7oIEWlQduJWP74Zh2s3w4WRQ3Dh5C24sPJ5XHhZitta/jruwPbpuLAzG+gNtIlDTdIAlFw8rRvY871HRs5AOyqFla9fOim9zhcN2REWO9NgdtW9wqjM8XMWZZPdOy7BR+OEyNl0gxlblhJ+Z83Iwplvj7rb/3mX0lDMJLpmPV4Nc6paD9zpY5wB8nEfqv2W2n/eHAv8N/BvYAUwIMKaRILSFvfaqgTw1YR1wIABvPDCC+Tn59OqlediS2kg+vXrx3PPPcf06dM5+OCD/UxpgXtdvwb3ul0kZhRS1jPhcFhbvkUk1r7Gbev+IIB7H4gLJLOBq3DbxotxweWX5b/eAp4AdC6vAGBSwjcR59cwFWFl092t361rWJnxYO7GnkXjx5WlpfYIIKwsTTUhX6soDSHvjt5109RaO6a0rFRhZePzH2BhhHO24VbnR2oS/ncIdMOtitwG/AtX40PA4+XX+BS3PfZe4MQoahEJQhru3Mn3ca+tPJdC/uQnP+Ghhx5i3rx5dO3aNd71SRIKhUJkZ2fz8ssvM3bsWNLS0vxM64J73f4i7rgnkTpTSFn/6E26iMTDFty5t1uCLqSKNrgGP+fhmvdII7d65NTjrOVXibuj/SGsXD2yYOIrv53ROtor9brvqk09i8aPaxYu64oxUzF8H8NCq2d4uNvsaz70Gpa2a0cO2E5xrwcA26RyWPnOiMK6noEp9cPdEY5/GNgTxX1KcVvII9khkAqcBPwC1yTul7jjTNT8SeqbIcAbuHMnPXekHHDAAUyYMIHFixczePDguBcnya9169ZMmDCBJUuWMGTIEL/TzsStNp+F+5BXJGoKKeufEz/99NNDgi5CRBqkD3DbgbYHXUg11kLg3ZElCRhrJhDI6xfbzlhuSk8tXVfXrtVdHrr2s4zZ4yY0M2nxDivLQnvNVK9Br186Ky1kQn+MUw21cGHlHmPXr84pzE/8/SXBXsRtr/Zrdh3u9RUwGHd+pEhjcAxu5fHzuMaHtUpNTWX48OGRrpqTRuToo49mzpw5zJs3j2OPPdbPlFTc8U7v4Fby6ux5iYpCyvrHhMNh3x9piIhEqAR3RuV3QRdS7htc1/BewKqAa5GArR459TjAdxvKeDCwNuO+P2yNxbW6PnjVtn3CSszOWFy3gjHm4R4Pj3vPa1zTXd9enLhVlNWXgLHRrJiT+uden+P+SWSBZnW24z54m0J052GK1AdtcEflrMa9fvPUv39/Fi1axJQpUzjooIPiWpzUfwMGDOC5554jLy+P1q19bSY5ELeStwT4eVyLkwZJIWU9ZK3VuZQiEk+rgF8R3Ta7WFqBO9/mf9AbTAGMNTcQ8GsXi70t1tesCCtLQ7uOiWFYWRYixbOByOuXzkojZAJYRfkjA9+wZ889QdYgCfMQ7qxhL5E2zKnJblxDtj7AM4CNwTU/BSZS9xBVpC5CwAjcmanX4aPLcufOnZk1axbFxcV069Yt3vVJA5KWlsaYMWNYtWoVo0eP9tvx/Tjc992ngJ/EtUBpUBRS1kPGmJ9Za03QdYhIg/YcruNpUOHgLGAQ4NmRWBqHtcMLu2BMoKsoLXZZz6Lxy+J1/ZMevHFbxuxxE3bvCXe1hj8Zt5I4SmZu99lXb/Aa1WTPt7/F2qOiv0/dWcs9Pefe4Ce4kvpvJ3C/jzH/G+P7vok7b7I7bmXl+gjnfwXMBYYBnYE/ATtiWJ9IJH6KO/+vCB/npqanp5Obm8uSJUvIysqKe3HScB144IHk5+fz7LPPctppp/mddi7ue+50IOpzvaXxUEhZP3XYunWr51kjIiJ1tAC4nNisPInEbeX3LU3wfSWJ2RQ7AWsDPd8olVRf5yauHlkw8vXsyQdEe58+/zv+856zc/N37bHdrOFPGPN1hJcoS7XWs6N3cXZxioFroywzJgx8E0ozng1VXs+efMBbF98ZaJiaYO0AU8uvtzzmn+8x32vb9Z0e84dH+huqZCa1fwD2DyDSP/N+Vaw66w50xDXYuQaYBvwV16V2NjADyAf+C3e+XzvcB3fzcaszRYJwODAHWII7BqdWxhiGDh3KypUryc3NpWlTz8WWIr4cf/zx/OMf/6CoqIgjjzzSz5Q0XKf5t3HnVvpaiimNk0LKeiocDqvLt4gkwn3AHxJ4v7uBmxJ4P6kHSnKm/MQaMyzYKszK7kV/8FxFuf6Swp8ay6ym6U3eLxlZeNvqi24/MNo7VoSVO8O7Igwrzd+7zcl912tU9/SNv8XSJdr6YsPe2+P+cZ7Nupq0SLsqFAqtW51TMHfdyOldE1GZxI1XyBerrd5ePgUW4s5OGwdcBvwauATX9OFmYB6wDtiboJpEqpMOTAI2ABfjPiio1QknnMCTTz7JjBkzOOQQ9VyV+MjMzGTp0qVMmDCBli1b+pnSEbdb6jWgf1yLk3pLIWX9pXMpRSRRZgB3JOA+C3BvDEX2ZVJuDHoVJcbc6mfY3nBFyG5bYe14k9Z0Q8nIwtvWji5sG+2tT51z4xf7hJVu62lNylKtnex1zeLs4pQwBHoWJcZ8uyfkfRbl69mTDzCYsUDIwIVldu/q1TkFc9ePKDgmAVVK7F1GzatoNgBLE1eKSFIzQDYuKL8FaOY1oUOHDkyfPp2nn36a3r17x7s+EZo1a8bYsWNZvnw5Q4cOxRhfp9KdBCzHnVcZZOM+SUIKKeuvn27cuLF50EWISKNxA24rXLy8B4wi8VvLJcmtHjXtaDD/FWgRxqzKmH3NUq9hJZcU9AN7xr6PurAyXEbMwsrv9qZ1BSZQTVhpjSn2s4qyW/ONvzEQ6IpEa7n3pAdv3OY1rml62hVYW3lFasjAhXsNb63OKZj71qi7jo1jmRJbJ+C2V9dkJvo5IALQGxfiFOMjxKkIipYtW0Z2drbfoEgkZtq3b8+MGTMiDcjPxYXwkwFfSzGl4VNIWX81D4VCpwddhIg0Ghb4b9zWt3hoClyAzqiRKkyZDXwVZciYPD/jbJhJNT9pW1aElatzpha+d/GdUe+/O+2Rq77JKMqdmpaytwswAWMqms6U2VDodq/5xdnFKdZwXbT3j5Hv9oZ2zfAa9MpvZ7QGrqjh6ZCBC0NlZW+uzimYu3rk1ONiW6LUQTPcCrBs3LmOVwEPAiuouXHC5+VjRBqzytthfb3Xi2LLrUjcVBw1MGvWLA499FA/U9JxZwWvx3WsV8LeyCmkrMdCoZC2fItIIoVxLx4WxeHaR+C6VK4uv4d+PolbRWn4TcBlvNLjwWsWew1aPeLOvsZ1XK2dtS0NZuz3KSnrV+dMLSwZc5dnZ9aaHPfAdTsyinKn7sUcZzD5GO7r9cAf3vGc12LTrw0Eu1XamP/xs4qyRWrpWMBr9WnIwIXGmjdKcgoeWzty2gmxKVLqoA1uBVgxrlP3dGAk7s1oTfKpU0d7kXqtCe7Im4rGIp6vg6JoXiKSEMYYsrKyWLZsWSRNmw7HvRdYBZwa1wIlqelNYD1mrVXzHBFJtD3AhcDKOF2/O+4Fylu4FTj6NLURC4Xt9UGvokxJCfnq6G1CoVsiunB5WElp2frVOVML146c2SGqAoETZ1/z1fFF4/6UMTv3Kq+xxdnFKcba66O9V4x818yk3uU1aG32pJbG1LiKsjoh4JywDa8qySl47M0RBSdGX6Ik2HK8O46LNFRZuFVkd1HzSuMfHHjggeTl5fHss89y2mmnxb04kWilp6eTm5vLihUrGDp0qN9pp+LeZ8wBov4gV+ovhZT1W69t27Z1DLoIEWl0vgPOAd6I4z2Ox63AUVjZSK0dMf1Ia4NdRWmMebX7A9e84DXurZEFp2EZFOVtWhjM2LDdta6uYaUf3VtsygaCPsPxL10fvMpzFaVt3mqstRwcxfVDwDkpIVaV5BQ89tYl006K4hqSOBtwW8LVQVsam+OAZ4EngaO9BqelpTF69GhWrVrFmDFjSEnRCTlSPxx66KHMmDGD+fPn061bNz9TQrhO9u/hOtv7WoopDYNCyvrNlJaWDg66CBFplL4GfgZ4bi2towxcWPkGLqyURiIc2nsj2CZB1mAtf/IzzlhzcwxuVx5W7l6/Omdq4brh02L+IaSdNCkUtjbYjt7wXbNQ2jSvQW9dfGcLa8yVdbqTxQDnhGx4ZUlOwWOrc6aq1W3yWQicAWwOuhCRBGqLOwKhBPdaytOAAQN4/vnnyc/Pp3Vrz8WWIknp9NNP5/nnn2f69OkcfLCvzyBb4jrbrwEuimtxkjQUUtZ/OpdSRILyGfBzon9z+Q5uBY0fvXBh5SrctihpwF7PnnwAmIBDafPPjKJxz3mNeuviO0812Bh+YGjTDWZsWUr4nTUjC2e+PepuX6fO+7H6gwN+ZaBHrK4XDQt/87OKMpSS8nuw7WJ0UwOcYzArV+cUPFtycWGfmFxXahMGvqzm12bgn8DdQF/c9/NPA6pRJNHScOdOvodrJuV5nEnXrl2ZO3cu8+bN45hjgj1KWCQWQqEQ2dnZLFu2jFGjRpGa6utUny7AI8AW4CdxLVACp5Cy/jvLWqttkCISlP8AZwHbo5g7ExeY5ADv+5xzGm5b1ApAK8kbqD7zr/86nJray2JnYvg+iBpCxt8qylAoZWKcSmhqrR1TWlYau7DS7n02ZE0uAYVCBvP/7N17XNRlvgfwz/MbBhS837Ky0sq8cNOsTREUWdHyUmuBnhIZFI62SwvKIFYEy4KWF2YIjN2DK8kgtSmWm2ZuYqCCt9IURjTTyrxraQqCCMzvOX/8HEQH/P2YCz+Yed6v1/njMM/8nu852wbzme/zfGsUpIO0LkpKo21TAwLA0d0srLS5yxC6xe79n4cB/AFCQLNPtuoYpvVNhHCFzfsAuost7tq1K5KTk7F9+3b4+/vbujaGaXXdunXD4sWLUVBQgDFjxkh9W1+w3x12j4WU7V/fs2fPespdBMMwDq0cQkdlZQvftwtAHYSLsYdACCt/kvheHwDbAZQAZt8FyLRh3qujznrpYmM6EOVAEJLammElIeTQ0JwFolPsS2eteA6gNj7RQJ0bh5XHQ7UPm/sk77ULq9xzYz645VI5hKNEDYIL1qxUDKV8lntOpGhAynGK1wlgnS7KZjQOK4+EpT5ry70YhnFoTwHYDOC/EP7WuS+FQgGVSoXdu3cjIiICSqXS5gUyjJwGDRqETz75BDk5Oejfv7+Ut/SCcHc9Y6dYSGkHnJyc2JRvhmHk9g2APwGokbj+OoT7ZYwah5XzAJyT+JzRAAohhJVjJb6HaUcGron61TMnJr41w0oeNJmAULF1HMe9Y+ta7hDCylqC7/Uq7Yels1YMMPdJz6xKqnbPjfmgQ2flIJ7SyNYIKwlIjYJXSOuiBF1g63qMCBBAKSkpU2m2CqEzwzCMVXQFkArh3skpUt7g6+uLbdu24b333kOPHj1sWhzDtDV9+vRBz549pS636ReZjLxYSGkHKKUspGQYpi0oBDATgEHC2t3NrKsFsArClMt5kH7f5WgAOwAUAGBdUXbIGFbWkVtCWAlSbaOtDnvmxGwVW3S7+06G37/UGaAzOU5Rpldpwy150sCVUbe8c2NXc1WVT/GURlIbDi+h4P81NG+BaBiqUHD/a+suyqYQIIDjuF16lWazJd2qDMM4PA5ABIAfAKgBiA6Ae+yxx7B69WqsX79e6uRjhrEbly5dwvz58zFlyhQcPHiw4eciXcSXbV4YIxsWUtoHv/Pnz7vKXQRjO3V1dXKXwDBSfQZgDgCxLjSxqeDGsHIggPmQfofeeAhdnQUA2H1zdujpNW8LYSVX8xQlWEyACqtuQJEipYuSp6QVuyibQKiSgj9sjUe55yfVeufGrlZUVw66HVZK7WSWhIDUKBUuWrF1RWFJHShFq3VRNoWCDKvsUPG7nDUwDNNu+QE4AOBfAPqILXZzc8Nbb72FHTt2YNKkSTYvjmHaktraWnzwwQfw9fXF+vXrwfN8w2uBgYHYtGmTjNUxcmIhpX3oAOGXImNnLl68iKioKHz66adyl8IwLZELYKHImjMSn1UNIB3CVL/5AC5JfN94CBNkCwA8LfE9TDvy9Jq3f/XKUafU1NIhVgwrSz1yY7aILTocqhlOCCZaYT/zUXzhpYs9KL5QukZh5WBrhpU8+OzBH/5VtEuzF7rMg3ApvmwIQeozq5Js1aXLMIx96gfhb5+dAIaLLSaEYOrUqdixYwf++te/wsXFxeYFMkxbUlBQAH9/f7z77ruoqqpq+Llxmr1Op0O/fv1krJCREwsp7YeNL+5nWlNNTQ3S0tLg6+uLDRs2gNK7m3pacF8Hw8hFA+Dd+7ze0iE7VbgTVr4JQGqn03gIXQ2bAQxr4Z5MO/DMv2N/axxWgpDr5j6LAxZL6aJUECSCgpi7j1XwZKmtHt04rARFOKQPtGrKLWeFS6rYoqKwpA5oxbsom0IIfuOqKrLlrIFhmHbFFcAiAMcAzALEfy94e3vj888/R1ZWFh5+mN0swTiWkydPYubMmVCpVDh16lTDz7t164aUlBQUFhayafYMCyntCLuX0k5s2rQJY8aMwYoVK1BdbdrM4e7ujtdee02GyhimxeIB/F8zr90y85k3ACwD8CiEsPKahPcQCJfWHwSwHsBgM/dmbOT7OSsfKgvTJJS99l53c59hDCur+RqzwkoKlA8dUPmF2LrysLRhIHjB3DqtZIvn2pgDYovKVKkjykO0T5q7iXt+Uq1nrjrvlksnLyGsJD+2+CGEfCiti7Lr/4LiQbMKtRZKUt3zk26ILbNkaBHDMHZjKoCjAJYC6CS2+IEHHsDy5cuxZcsWPPMMu42GcSzXrl1DQkICAgICUFRU1PBzpVKJkJAQlJSUIDw8HAqFQsYqmbaChZT2w+P06dMPyV0EY74jR47g5Zdfxuuvv46zZ8+avN6lSxfEx8fjyy+/RPfuZn+OZ5jWFgngkyZ+bunZpnvDSimBFAcgGEA5hLDyKQtrYKyk1lC7kFC8Q5xdTurDtEvKw7VmjzV9LvftK3eFldKCbIDQZJKUxIst40ET2kAX5f26lAEAFJQQcCt5BdWXqTQfl855f5C52z2zal6dEFa6ebcwrLzlzGOF2CLhLko+xtz6rIEQ/EaqK/4ltu7krBV9OE7xnV6lLdKr0ia3Rm0Mw7QpTwMoBrAJwGNii5VKJcLDw1FcXIyQkBBwHPv4zTiO+vp65OXlwdfXF9nZ2aivr294zc/PD1999RWWL1/Optkzd2H/lrQfRKlUsiPf7dDvv/+OhIQEvPDCC9i3b5/J6xzHISgoCCUlJYiMjBSbdMYwbQ0PQAXg3mnJXaz0/EoIYeUTAP4OafcSGsPKYxDCyoFWqoUxgz7i/QcIwWwAAKWdQGksb8CJMlWq9uSsFaKDB5pjDCur6pUDIXT13iesJEc9+98QvaH9yByNN0BlDaYowVYpXZTlYWlTADoCAEeAVziD4bDVw0qCk/d/B1kzKDdG9F7L3rRrOAFk/aKVUqKV0kV5k5BYgLoC1AfgP9OHaXewsJJhHEIvCNfOfAPAV8obAgMDUVxcjJSUFHTqJNpsyTB2paSkBBMnTkRcXByuXr3a8PMBAwYgKysL69atw+DB7HATY4qFlHaEUspCynakrq4Oq1evxqhRo5CdnQ2DwWCyxsfHB9u2bUNGRgZ69eolQ5UMYxW1AIIA7G70s0etvMcVAEkQwsplEAbuiGncWZl7+71MK6P1hjhQdLz7h7QTAYm8qVAcK1OlavUR7z9g7vNHfhRV4alTpyoV9U8CiAchpveZEj5FUhelgbwjdxclB7pEyjoK+ua9bzWGlXqVZqMQuJrHGFZ69K/0JMBrFDjRxLI6jio0Ys868dcMFx58rLm1WAMBuaJU1K0SW3fg1dRe4Ljwu35I6SiA/0yv0uxkYSXD2CUlgGgAPwKIAiB6HrXx8I9HH7X2nzsM07adOnUK8+bNw/Tp03Hs2LGGn7u5uUGtVqOoqAhTp06VsUKmrWMhpX2ZSCll/5m2A8XFxZgwYQISExNRUWHa+PXQQw8hPT0dGzZswNChQ2WokGGsrhrCvZClt//3jvdZa4nfIBz/7g8hrLwp4T1KCBfeH4MQVj5uo9qYe+gj3n+AUDKn2QW3w0rUGSwOKwd/uKjSU6dOVXJ1xs5K4Wt9gmMe/W/8R+z95SqtOwGdYu7+1kG/8siJ/VZslV6VNhkUzV16xgGYRA3Yp1dpNpaHpZk9UIokJfEeOvWnngMqvW6HlT80vAayxj03+rTYM2oq6ubI3kVJkDb4w0Wiw7ycXUgsKG2uHWokwH92JEy7S69Km0xB5b0SgGEYa5gK4W+D9yHhBEi3bt2QnJzMhn8wDqm6uhoajQb+/v7YvHlzw885jkNwcDD27NkDtVoNZ2dnGatk2gMWaNmXXufPnze7M4KxvZ9++gmhoaGYMWMGjh8/bvJ6x44doVarsXv3bgQHB8tQIcPY1DUI07ajASTaeK9fcXdYWSPhPY3DyiwAbOymrdUZbh+dFeXWOKwsD8vsa+6WxrCyql45CEASAUmQdhclEiH3302cxInehH9bytMATOLB79OrNBsPh2qGm1uWMaz8vvqRYRR0DgXKCVWI3kVZHpzkDEDeuyhBrii5uuYGfDU48GpqLwLyv2LrKKXPAfxnR1Rp3xxRaV5hYSXDtEuDAHwJ4d5J0VMWjYd/REREsOEfjEPheR75+fnw8fGBRqNBbW1tw2ujRo3CV199hfT0dPTu3VvGKpn2xEnuAhirmwDgkNxFMHerqKjAypUrsWrVKtTV1Zm8TgjBlClTkJiYiIcfZrkIY9d+A5DRivtdhhBWZgKIBTAXQAeR9zjfXhcGIAdfQPetAAAgAElEQVTCMfILtirQUZ2ctaLPTZAIgLbkbW4EJJKnt2aXqVLXOBkUK4bmLTDrP5uRH0VVAHhPytry2alDeZ6+aM4+1kMKPNfE7BFbVR6a9gJPeemjY4Xj65MUHF7QqzRbeY5L8V6z4DtzKpyeP90A4KPb/yOKd+s0B9TqVz+0DKXpUrooXZxJzH26KJt6sBcFPj6iSis7As1Sd13MZwSkRf+wMwzT6rpD+J3/F0j8nOzn54fk5GQMGmT2db8M024dOnQIiYmJOHjw4F0/f/DBB/HWW2/hlVdeASHsuzqmZVgnpZ3hOI7dS9mGGL9Z8vX1RWZmZpMBpbe3Nz7//HNkZWWxgJJhbOcMhA7OQRBC0lsS3mMMK09CuCzf7O49xlQ1x6kldlE2gboSkEiDgj9+JEybeTQk7UHrVnc3nucSIPPfTPWolxSo8oTGm7XB7bCSo/wevUqzsUyVOsKs50h0YG6WEpSobbmHBNfqOC5LbNH+0Hd7AmSueVsYw0rtt6yzkmHaLCcIv++PQ7h3UjSgfPzxx6HT6bBu3ToWUDIO5+LFi4iKisKUKVPuCigbnwoMCgpiASVjFhZS2hlKqd/Fixfd5K6DAXbv3o0JEyYgOjoav/32m8nrDzzwAJYvX44tW7bgmWekN70wDGOR07gTVq4CUC/hPa4QPrQYw0qz70VkBAdeTe1FCImwwqNcKKURBgX94UiYNvP7OSutfrehflbaEID+ydrPbQkK8vVwXdxusXVHZr8/EaDPWroZgEkEZE+ZSrNVP0trk19QzrcqZ8P6A7Ra6v3hOQvuM/Vd4EpcFgC0s4V7eVLg4yNhaQf0oZoQmpTE/gZnmLYhAMB3EK55ET2P2qVLF8THx6OwsBCBgaw3hHEsN2/eRGZmJvz8/LBhwwZQKhwQIIRg6tSp2LlzJ9RqNTp0EDu0xDDNY38g2R9nSukYuYtwZOfPn0dUVBSCg4Nx9OhRk9eVSiXCw8NRXFyMkJAQcBz7ryHDyOAXAPMADIT0sNINd8LKpRCOhTFmcFZy6pYdnRVDnSmlEXWGuuNHwrSZx0O11mtLV9AoyPz3kgH10iZ68/y9E70tQoAAcHR3mUqz9UhYqmXhZyMH5mYpCThZJ3qDkOv1hPun2LLbXZSvW21fSj1AkK3/ufMBfagmZH3wenZ5HcPI40kA6wF8DcBTbDHHcQgKCkJxcTEiIyPZ8A/G4RQUFMDf3x9LlixBVVVVw8+9vLzwn//8B1lZWejXr5+MFTL2gqUjdohSyr7Wk4Fxotno0aOxYcOGJtcEBgZi165dSElJQadOVvx8zjCMuU5BCCs9AawFYJDwnk4AFkEIOpcC6Gar4uzR/tB3exIC0QEk5hHCylqC7/Uq7Yels1YMsPSJHTo7zecpjQSR6V5SgiIpXZT6sNRAgPrYpgQEUEpKylSarYdDtX+w9HkjVs2tB8gCgBwUX20jlKZL6aLsyLlEW6GL0gQB3EGQPcT1LAsrGaZ1uUG4d1IPQNKUSuPwj4yMDDb8g3E4er0e06ZNg0qlwpkzZxp+bjwV+OWXX+LZZ632PSbDsJDSTk2QuwBHQinF5s2bMXbsWGg0Gty6ZXrV3cCBA/Hxxx9Dp9Phsccek6FKhmFEfA8gFIAXpIeVnSGElachhJVdbVadHXHlOsTYIvS5G3UG6EyOU5TpVdoPy+akPW7ukwaujLrlnRu7ukNn5SCe0kgKnLdmpWJ4EEldlIRyb9m6FgIEKAgtLlNptpbOWvGc+c8h1FO3YIunLsaH47gXQHDAmnWKF0Cu07raf4gtOxSW1o1QzLNtMXQoCLKHuJ05yMJKhrEpDsASAGcB/A3iQ/Tw4IMPIj09HRs2bIC7u7ut62OYNuXq1atISEjApEmTsH///oafK5VKREREYNeuXexUIGMT7J8o++R+7ty5R+QuwhGUlpbipZdewrx583Du3DmT17t164bk5GQUFhbC39+/9QtsJ8rLy1FWViZ3GQwDAEchhJXeAPIhbfS0Maz8EUJ3RhdbFdfe7Q99tydsHvo0JoSVxMCX6VXaD/Wq5U+Y+yRjWKmorjSGlab/0rcyCuz0zokpFltXrtL8kYKOtnU9RgQI4Dhul16lLTo2WzvWkme5r1lQ6JmjHt2aYSUFXen18Vu/i61zAj8frdUpTTGEhZUMYzM9APwG4G1I+O+0q6srFi1ahD179iA4OJgN/2AcSm1tLf7xj39g1KhRyM7OhsFw53v7wMBA7Ny5E8nJyejc2cbfNzMOi4WU9mu83AXYs0uXLiEuLg6TJ0/GgQOmn6mUSiVCQkJQUlKCiIgIKBTss0ZTjh8/jhkzZiAwMBDPP/88Fi1aJHdJDGNUDmA6WhZW9oTQnfEjhNDSzMnV9qsj6TDf9l2UTVICdCagKC0LXTHKkge55yfV3g4rB9s+rKSLJa0CMW+it8WoTz1Pt+lVqZssDdXuCitBvrVWhfciQAVqaz8QW1f22nvdAfIXW9XRLGNY6XrmkF6VNrnV92cY+5QPCfdIE0LwyiuvoKSkBNHR0XBxcWmF0him7di2bRv8/f2xePFiVFZWNvz8ySefxEcffQSdTof+/fvLVyDjEFhIaacIIexeShuor6/H6tWr4efnh7y8PPA8b7LGz88P27Ztw/Lly9GjRw8Zqmz7rl27hvj4eAQGBqK4+E6TUF5eHioqKmSsjGFM6CGElcMgfMiRoheE49+nIISVHW1SWTtTHq7tQYA/y1zGmSunq6wSgDUOK0ERDuAnazz3DrLHSxe7S2zVkVDNuNbsomwad3l6/nQpVySIcl+zoNBTF+PLcdwLBPjGGs9sjFJ8IKWLEkqXv4JSOa9wGERB+8i4P8PYk6fFFvTp0webNm3CypUr0bdv39aoiWHajOPHj+N//ud/EBYWhlOnTjX8vFu3bkhJSUFhYSHGjRsnX4GMQ2Ehpf0KpJSy/3ytbNmyZUhMTMSNGzdMXnviiSeQl5eHdevWYdCgQTJU1/bV19cjLy8Pfn5+WLNmDerr7x6oTCm9a1ocw7QhZRDCylEAvpD4nt64O6wUvf/KntF63iYDSFqCAO+N25EkZZK7ZO75SbWeueq8Wy6dvKwZVjpxSJK0kECmLsoGBidKl1v7oe5rFhR66NR+9TAEUFDRsFYKAlRwSrJSbN2B4KVdCUHrd1He7YyiuuIjmWtgGHsh+iXK5cuXsWzZMhw7dqw16mGYNqFx48iuXXd+1To5OSEkJATFxcUIDw+Hk5OTjFUyjoaFWPar14ULF4bLXYS9aXwnh1GXLl2QlJSEwsJCBAQEyFBV+1BcXIzAwEDExcXhypUrcpfDMObaB2AqgNGQHlb2gRBW/gAgGg4YVh4KS+tGQV6XtQhCfv71l8qPbfX4Z1bNq7s7rCQ/mv0wQvYOWROzU2zZsdnasRTwM3sfqyCfDMlV/2Crpw/Xxe320sUGCmElRP9/cn/0H+7ZMVfFVnVwdf4rKBU9Gmpb5D33/KRaeWtgGLtxQcqikpISTJw4EW+//TZ+/1284Zph2qv6+nqsWbMGPj4+Jo0jvr6++Oqrr7B8+XL07NlTxioZR8VCSvvGpnzbEMdxCAoKQnFxMebOnQulUil3SW3SqVOnMG/ePMyYMQPHjx+XuxyGsZY9EMJKPwCFEt/zCID3ARyHEFY6zGVXTjwfjdYaQNIMCrpUShelXqUNPxqWPtDcfe6ElW7eoAgHwcmWPoPw9O9S1tXzeKflFVqVwYnSpWKL1gevV5SpUsdYspEQVqon1MMQAGBHix9AyI1aTvwuyn0zM7pQgjfMKNGaznDVFWvFFh0KS+t2YG4W++ODYcSZHoFqRn19PXJycuDj44Ps7GyTUz8M094VFxdjwoQJiI+Px7Vr1xp+3r9/f2RlZWH9+vUYMmSIjBUyjo6FlPaN3Utpoeam+fn4+GDbtm3IyMhA7969W7mq9uHGjRtYvHgx/P39sXnzZpPXCSGYMIHl6Ey7VwLgjxDCyh0S3/Mo7oSVcwHY9RmaA8FLu0L+o7OnFVXiXZRlc9IeB0GGgdaXlak0H5fOed/suzsawkrnTsNAEU6BExLfus8jV10ktkg/W+MDUIuCP0tRQtZL6aIc0vHMqwSkQB+m3WHpMJjhurjdnjr1xHoYAkAg+v+nhlop/vH0mrd/FVvnpqx/Q+4uSkqwTEoXpRP4pS63bhwrD9W+URSW5HAd2gxjS9evX0dCQgL8/f2xfft2ucthGIs1bhz5/vvvG37u6uoKtVqNHTt2YOrUqTJWyDACFlLat9GXL1/uJHcR7dm93yI98sgjWLVqFTZs2IChQ4fKVFXbRilFfn4+fH198Y9//AO1taafszw8PPDpp59i5UrRq8EYpr0oATAOwpdDUod9PAYgC0J4ZbdhpbObMgoyd1GCQtLRWWLg3wKlTgA4ArzCGQyH9SrNxiNzNN7mbm0MKz0HVHoR4DUqHPtvFgckS3ku5SXeWWk7vIJihdii9cHrFZRgEQCA0lEA/5lepdmpV6VNpqBNfxMowXBd3G7PHPXztzsrvxRZXlXP1WSIPbM8OKkTAY00tyYrOduxszJXbJF+tuYRUDITwCM8oZpetPMRFlYyTIuZTsC8x08//YTQ0FDMmDEDP/xgs5stGMZmqqurodFoMG7cuLsaRziOQ3BwMPbs2QO1Wg1nZ2cZq2SYO1hIad+cDQbDWLmLaM8WLFiA2bNnY8SIEXj77bexa9cuTJkyRe6y2qzDhw/jxRdfRHR0NC5fvmzyevfu3ZGcnIytW7di5MiRMlTIMDa3HcBzEMLKAxLf0x9CWKkHEApAYZPKZHAgeGlXAiJ36HOGu1mZJ7aodNaKASDktXt+zAGYRA3Yp1dpNpaHpQ0ztwiSlMR76NSfeg6o9CbAaxA6ae9eQ8h+d536a7FnlYWuGEUAeX+/E5LvrospF1s22O3sDAI8dc+PRwL8Z0dU2v1HVJpXLA4rdepp4DAOzYeVkrooDW5d3qAUvcytxRooxfKBK6NuiS7k8RZAG3+iNIaV5SysZBjJ3gfwXykLjXerJyQkoKKiwsZlMYzljI0jPj4+0Gg0uHXrzq+W4cOH4/PPP0d6ejr69OkjY5UMY4qFlHaOUsqOfFugY8eOWLJkCTZv3ow33ngDLi4Oc4Vci1y8eBFRUVGYPHkyDh48aPK6UqlEeHg49u7di4iICCgUdpPBMExztgN4FkJY+Z3E9wwGoIMwSdwuwkoXV6XsR2d5SpdK6aJUcIo3b3dRNoUDMIkHv0+v0mw8HKoxezCdMaz0GFA57N6wkoJPkfQMjvubuftbCc9RLBNbtD54vYJQ+uZ9lnhT4OMjqrRvLA0rPdeo93jq1NMo5f1xd1hZ1YFTpou9vzw4qROh8t5FSYFzHbsqc8TW6WdrHgHIrGZe7scTqulJu5zQqzSxe4K1Ha1aJMPYl18BvADgRQA/iS2uq6tDdnY2Ro0ahdWrVzc5UJNh2oLmGkf69u2LjIwMfPHFFxgxYoSMFTJM81hIaf/YpX+MzdTU1CAzMxNjxozBhg0bQCk1WePn54eCggKkpKSgS5cuMlTJMLLaDuAZCB+ADkl8z1AIYWUpgGAAZgc3cto3M6MLIPsAkrNON2+IHp0tD01/lAqB4f1REACTFBz26lWajaWz0542t7C7wkpCVAD5yDMntkDsfaVhmpGgGGfuvlbyqZQuyqFuZ4MBSLjXk3oJYaX2W0vDSq/chXs9deppPMFYAF+CkH8OXBMl2kVJXTv9BaCyXjJNCJHURUl4LLqni9J0DWgfAEs6uVIWVjKMuM0AhgCYD0C0TfL3339HYmIiXnjhBezbt8/mxTGMVM01jnTs2BGRkZEoLi5GUFBQs3MXGKYtYCGl/Rty/vz5R+UugrE/BQUFGDt2LJYsWYIbN0yHJj7xxBPIzc3FunXr8NRT9570YxiHQiF8ADKGlaUS3+cOYD3aaVjp5lQXCaCHnDVQUEkDSHjOcO/RWbEHEwCTOMrv0as0G8tUqWa3I5CkJN4jJ+YTT13MHEnrKUk0dy+rIKA8z4tO9KZJSRxPaVwLn+5JgY+PhKUdsDSs9M5R7/PUqacdq+on+v+v0lkr3Ci4KHP3spKLlVXQiS0qjcjoR4VOa0kI0BuNwsoDc5NcLaqSYexXLYB0CKcaVkHCfZVHjhzByy+/DJVKhdOnT9u6PoZp1v0aRwIDA7Fjxw7Ex8fDzc1NxioZRhoWUjoAduSbsabGf5CdOXPG5PWuXbsiPj4ehYWFGD9+vAwVMkybxUMIK58GMB1N3EnYDE8IYeVhCGFlm1cenNSJEPm7KDt2cRYNfYQBJAgxa4fbYSUB2VOm0mzVz9I+Y9ZzJCqdteI5AvpHW+4hhlJ85r124RGxdUd+7hJEhKDdnE08KPCxXqU9qA/VhNCkJLP/Xp2eP130PCbHcX9uA12Uy3zyY26KrePq6+IAtPjuGWNY6XKryw8srGQYgaura1NfTl0AMA/AHwDslvKcgoIC+Pv7N/vFPcPYUnP//Hl6emLjxo3Q6XR45JFHZKyQYVqGhZQOgOM4FlIyFvv999+RkJDQ7NEWjuMQFBSE4uJiREZGQqlUylAlw7QLPIB8CMe6p0OY7i2FF4Swci+AqbYpzTpox86Rcg8gAaErJB2dpeTNFnVRNvccIAAc3V2m0mw9Epb6rKXPawrHKRJs8VzJCCgIeU9sGU1K4mCc6G3RdnAHQbb+584H9KGakPXB661+T6vQRYn51n5uC12qqMIasUXHQ7UPgyLMsq1oQ1hZFqZJuH0tA8M4JC8vrwH3efkgAD8Iv6d/EXtW4062/Pz8Jq9AYhhraq6Tt3v37khJScGXX36J5557TsYKGcY8LKR0AJTSCZTSdj+AgZFHXV0dVq9ejVGjRiE7O7vJS8JHjx6NgoICZGRkoFcveXMJhmlHjGGlOwAVgJMS3zcSwCYIHR5tLqykoIQnmCFvDTjXobOzaOhTGpHRj1LpR2elIEAApaSkTKXZejhU+wdrPVcY1iPzyQhKPvfKidGLLSv7qevLoNTDWtsaw8ohrmetHlY6Kbh5t7sMZcNRslxKF2UtoWZ1UTaN9iYU73RS1h0rC9MkHAhe2tU6z2WY9mPAgAFPiiyhuPOl4t8B1Ig98+LFi4iOjm52mCTDWKq5xhGlUomIiAjs3bsX4eHhbFAp026xkNIxdL948aLZl/szjqu4uBiBgYFITExERYXpPeIPPfQQ0tPTkZ+fjyFDhshQIcPYhToAuRA+BKkgYcLobT4QwsoSAAG2Ka3lCAhVVFeO5CmNpMB5eWqApC5KRV296AASC2oIUBBarFdpi46q3h9j6fOG5aoPcRz3AggOWKO+FiOgoIYlYssoKOEIf7+J3hagQ0GQPcTtzEFrhZU8z2+nIJtAIFfb06XrN5Ettqg8LLMvCFTW3pxS9CIU73RwdWZhJeNw+vTpM1Di0moASQAGAlgLiP/7wjhdOSoq6q7pygxjrvs1jvj5+WH79u1ITk5mg0qZdo+FlA6CUsqmfDOSnThxAq+++ipmzJiBH374weR1Nzc3vP3229izZw+Cg9vFFXkM0x4Yw8ohEO7DOifxfaMBfA0hrPS3SWUt5J6fVOudG7taUV056HZYKfX/Fmu4WFlNcsQWCQNIqNVDH1PUxwBDgV6lLTo2WzvWkie5r1lQ6JmjHi1HWEkoNnnmLiwTW3ckTDMNwj2qtkMxRAgrz5aXhqZGFPknOZn7KM/chWVeuphgjpIRAPkIgOgdllZFuBVSuigNtGYRKGw2oZuC9mwcVh4KS+tmq70Ypq1wc3N74Ny5cy25rO8shMFV4yBhCB6lFBs2bICPjw80Gg1u3RL97oxhmtRc48gTTzyBtWvXYt26dRg4UGrmzjBtGwspHQe7l5IRdf36dSQkJGD8+PHYuXOnyescx2H69OkoKSnBG2+8AWdn8xuQDAYDNmzYYEm5DGOvaiFMFn0cQlgptRtxNIAiAAUQLvyXXaOwcnBrhZUEnKSjs1xd/UJY7eisFNSnnqfb9CptkT4szd+SJ90VVoJ8a6UCm0dAedBlYssoKAHl3rJ5PQ0b0gEcIZk9H+tscVjprosp99TFzOE4+kxrhZUU5PIt5+uiXZT6iPcfIASzbV2PUJMQViopf0Ifpl3CwkrGAZgz5XEnhCF4KgCXxBZXV1dDo9Fg3Lhx2Lx5sxnbMY7qp59+QmhoqEnjSONBpX/8o6zz9BjG6lhI6Th8rly5wnq/mSYZDAbodDr4+PggOzsbdXV1JmtGjBiBL774Au+//z4eeOABi/bbs2cPJk6ciPj4eJPX2P0pDNPg3rDygsT3jQewH0JYadNp01I1DitBEQ7pR9pb6lJFNf1QbNHxUO3DAG2V0McU9QHlv9KrNOmWPsl9zYJCT12ML8dxLxBC9lujuiZRfOGlixW9XE0/O+1FgHrZrI5mEKA/R0hmr/6dS0tnrbBoSoD7mtijnrqYOeA5m3dWEoLUZ1YlVYuto/WGOFt2UTa5J9AFlMY6gX6vV2niT/w1oxUDfYZpPYQQcxs5eAinHwYDWAZAtE3y1KlTmDdvHqZPn45jx46ZuS3jCCoqKrBkyRKMGzcO27dvb/g5x3EIDg5GSUkJG1TK2C0WUjoOZU1NjUXHzBj7VFJSggkTJuCtt97C77//bvJ637598cEHH2DTpk0YNmyYRXudPn0ac+fORVBQEI4ePWry+uDBg9G7t6zzCximLboFIawcCGEKsWjXxm3jAXwLIaxsE/cSu+cn1XrmqvNuuXTyEsJK8qNVN5B4dLaWQyt3UZqiHCm01rPc1ywo9MiJGVMPQwAVOnysiydLxZZQUEJ4aqO7KCWieKQDUZy1xqM81y44ZsuwkhD8xlVVSOuipGSONfduEUq7gyD4yZ5XTb+9ZBj7EEgpteQz8TUAbwLwAvCFlDeUlJRg4sSJiIuLw5UrVyzYmrE3PM8jPz8fvr6+yMzMvKtxxNfXFwUFBUhPT0fPnj1lrJJhbIuFlA6E4zh25Jtp8MsvvyA8PLzZb3M7dOiA+fPno6SkBC+//DIIIWbvVV1djWXLlmHs2LH44oum/36bPHky/v3vf1u0D8PYuSoA6QCegPCB6KrE940HcADAZgDDbVNayzyzal6dEFa6eYMiHETyZPNmST06Wx6W2RegYZbuZxly1POxCquf+Ruui9vtpVNPqIchAMAOKz32S8+1MaL3Xx5VaadC/jB8zaDcGKteKWAMK3medyeErAYh9VZ5MCWp7vlJN0TX1RliAepqlT3NxPPcYpKUxMtZA8PYUK8LFy5Y43fjDwCmQrhiq1xscX19PfLy8poMoxjHtHv3bkyYMAHR0dH47bffGn7ev39/ZGVlYf369WxQKeMQWEjpQNjwHAa4cy+Ov78/tm7d2uSawMBA7NixA3FxcXB1Nf+zEaUUmzdvxtixY5Gent7kheEDBw7ERx99hH/9618WHyNnGAdRBeFo2WMQwkrTFmhTBMAU3AkrvW1WXQs0hJXOnYZZGlZKPTproDdb/eisCYpkW4Y+w3Vxuz116on1MASAoMiSZxFC35WyjgeRt4sSpJajThpbPd177cKfPXJiIp1ALA4rCcFvpLriX2LrTs5a0QcgEebuYx3ke6/Hr38mbw0MY3PW/Iy0HcIXgvMhdFne1/Xr17FkyRIEBATg66+/tmIZTHtx/vx5REVFITg4+K6TZq6urlCr1SgqKsLUqVNlrJBhWhcLKR3LoIsXLw6QuwhGHo0Dw+YmDLq7u+PTTz+FTqfDo48+atF+paWl+NOf/oR58+bh3DnTxpZu3bohOTkZhYWFGDdunEV7MYyDuoG7w0rRD0MQfu9PAfAdgPUABtmsuhYwhpUe/Ss9CfAaBU605P0tOjpLZDw6CwAgRz0er/hcbJV+VtoQfViqRScghuvidnvmqJ+/fQy8xcfLKfBfj5xY0cE8+lDNFICOMK9KKyF0jXtu9GmxZeWzU4eWByeZPfVtSM6CU5aGlZQSrZQuymqOU8vdRQlgiZRAvXTWCrfWKIZhbMTap83qcOfkQwYkXBfx448/YtasWZgxYwZOnGjRr0CmnTI2jowePfquYaKEEAQHB2PPnj1Qq9VwcWFXAjOOhYWUDobneXMm2DHt3OHDh/HSSy+JBob//e9/MWrUKIv2unTpEuLi4jB58mR8+63pZ1snJyeEhISgpKQEERERbFAOw1iuEkJY+QSAvwO4LuE9HIBgAEchhJUDbVZdC5CkJN5Dp/7Uc0Cl1+2w8gfxd6EFR2frF8reRUn4FCmhD+H4v4OSL/QqzTdHVJpXKKjZd2HcPgb+wu1j4F9KfR9PyRJJCzm03kTvptUpFFS0i/LEXzNcDDz5gnftfLQ8VPtGUVhSB3M3NIaVCgU/lBCyGkIoIYqAXFEq6laJrTvwamovQuTvovQYULFBbJV+VtoQBcedKlOlavUR77MjEUx7NPry5cudbPDcqwCiAXgC+ErKG4qLizF+/HgkJCSgsrLSBiUxcrtf48iwYcOwadMmpKeno0+fPjJWyTDyYSGl42H3UjoQY2A4ZcoUHDhgeqWYUqlEeHg49u3bZ3FgWFdXh9WrV2PMmDHIy8sDz5t+Bvf19cW2bduwfPly9OjRw+y9GIZp0lUASbgTVlZIeI8xrCyHMKX0SVsV1xKNwkpvArwG4Hiza1t0dJYLt2qhLUVwzKP/jf+ILSufnTqUCnebAYA3BT4+okqzSljpqVNPA4dxEA8rtw3LjflG7JllYZpJoPJOkSdAztDs2F/E1tVU1s8mwMMAHuEJ1fSincvLQ7Vv7AnWmh1cD82O/cUjJyaSo05DKWgmRCb8UoK0wR8uEk0enJWcGpTaIjSRjBC8JylQV/DvUKALAYlEneFYmSpVK9z9yjDthrPBYLDlgNFjAJ4H8CKAn8UW19XVITs7G6NGjcLq1athMFh1bhcjo9LS0iYbR/r27YuMjEbMQykAACAASURBVAxs2bIFI0bIezCBYeTGQkrHM55SylrX7JwxMPTz82s2MPTz88O2bduQkpKCLl26WLRfQUEBxowZg8TExCa/9R0wYEDDhc+DBw+2aC+GYURdwZ2wchkA0WnXAJQAZkHorMwF8LitimsJY1jpMaBymBBWku/vXSP16OxNQtrNABKekkSY/I1GvYSwUvutpWGl5xr1Hk+dehqlvD+aCSvrYRCd6A0AhJK3za3DSuoUhEsVW1QenOQMStX3/LgfT6imkyt+0Ks0sZaEle650ae9dLExHHXyoKCZBKTm3jUE5IqSq/s/sWftD323JyH4X3NrsQqCk7+eEu+iLAtLHUwpXm70IzcCEsnTmqNlqlTt0ZC0B21YJcNYDaW0NRo5NgMYDOG+StEvK65evYrExERMmjQJ+/fvt3lxjO00PmnWuHGkQ4cOiIyMxK5duxAUFMQGiDIMWEjpiLpfunRJ1o4HxrYKCgrg5+eHxMRE3Lhh+rn98ccfh06nw7p16zBokGXX0Z04cQIzZ86ESqXCL7+YNrG4ubmxC58ZRj6/Qbirsj9aHlYeA5AFoetMdnfCyorhAPcygFKgZUdnwcncRSlxAEn57NShoHjpPks8rRVWeuUu3OupU0/jCcYC+BIEFAAoxfbhurjdorWGaZ8H6LPm7m8luUNyFpwSW2To2Hk2gCYvWyagfQAs6eRKT1grrKQcNQ0rKU2X0kXpynWIAWhnc2uwBgqyZNyOJNH7Ngkl8Wj684QbAYk0KPjjR8K0mSysZNqB1howWgvhvsrBAFYBEP3iSq/XY9q0aVCpVDhz5oyt62Os6H6NI8ZBpfHx8ejUSdbGeYZpU1hI6YDYlG/7VF5ejldeeQUqlQqnT5vODujSpQvi4+NRWFiIwEDLviy+du0aEhISEBAQgKIi08GxHMchKCio4cJnZ2ezZxQwDGO5yxDCyqcgXOBv0uHVBGcAcwH8BCGsfMhm1bUASUriPXULtngMqBxJCUIo4RdJOjrrQmLlPjoLiQNIDDx5B9L+PhPCyrC0A/pQTQhNSjL7bzrvHPU+T516Gm/gxwL0K4BfLOV9PMUic/e0kjonwi0XW3RgbpaSEHJvF6UJAvQGsKSzK07oVZrYA3OTzO689VyjPuOli40xKJ3cbx8Dv1THcVli79sf+m5PUMwzd1/rID9eOVWxXmxVWVjqYABBIstcKKURxrDy+zkr28S/SximCUPOnz9v2dTIljkPYB6A5wDskfKGgoIC+Pv7Y8mSJaiqqrJpcYzlmmsc8fDwwGeffWaVQaUMY49YSOmAWuk4A9NKjIHh888/j71795q8bgwMS0pKEBkZaVFgWF9fj7y8PPj6+iI7O7vJO3KefvppbNq0CRkZGejdu7fZezEMY3VnIVzgbwwr73t33m33hpVtohuKJCXxXjnqfM+c2LViaw+8mtqLgMh+dPZYdb9PxZbpZ6UNIcC0Fj2bUg8QZOt/7nxAH6oJWR+83uwrXbzXLtzvqYt90St3oekvk3trVWknANTH3L2sgiBPShelc+2NMIA+Jv3BtDeAJS63uvxQFqZJ2Dczw+w7UbxXR5310sXG/EYqnxqes+Ca2PqOpMN8ubsoQem7Erso34L0zxIulNKIOkPd8SNh2szjodo20aXNMI3J9BnpAABfANMBmHYZ3OPmzZvIzMyEn58f8vPzQSm1eYFMy5w4cQKvvfaaSeNI9+7dkZKSgq1bt2LkyJEyVsgwbRsLKR3TqKtXr3aVuwjGMsbjAyNHjmw2MPTx8cG2bduQkZGBXr16WbRfSUkJJkyYgLi4OFy9etXk9QcffBDp6enYvHkznn76aYv2YhjGps5ACCsHQThqJhpGAHCBEFaegHBMrd1M8HVxJjFyd1ESkJTp+dPFJx9wfHNHZyXsAXcQZA9xPWtxWClxvzdt+XwJ6ngDv0xs0YG5WUpQxJq3Be1NKN7ppKw7ZmlYOS4nSbSDuTxc24MAfzZ3Dyv56bfTlZ+ILSoP0T4JQsS6KJtAnSmlEbUE37OwkmlrOI6Tq5GDAsgHMBTC4DvRf19cvHgR0dHRmDJlCg4ePGjr+hgJGp8027FjR8PPlUolIiIisHfvXoSHh1s0qJRhHAELKR2TU01NzTi5i2DMV1xcjAkTJiAxMREVFaYDfB966CGkp6cjPz8fQ4cOtWivn3/+GfPmzcP06dPx/fcmMyvQsWPHhgufg4OD2YXPDNN+/ALhqNlASA8r3QBEATgJYCmAHjarzgr2h77bEyBzZS2iBQNIALxi+YZ0KAiyh7idOWirsPLonLTxFHS0tZ/bEgTkI++1C0Wn5Lrcqgolwr2sZqMUvRqHlQeCl9rki15az0fL3UVJgPekdFFSBY0HpU7m73QnrNSrtB+WzUlrE8O6GMdGKZ0g84DRKgiD754CIHpSAAAOHTqEl156CVFRUbh8+bIta2OaUVdX1+xJM+Og0uTkZIsHlTKMo2AhpYNiR77bp59++gkqlQozZszA8ePHTV7v2LEj1Go1du/ebXFgWFVVBY1Gg3HjxmHz5s0mrxNCMHXqVOzcuRPx8fFwc3Mzey+GYWR1CkJY+RSEsFK84w/oBGARhKBzKYDutirOEq5cx9fkDn2o1KOz4N6GNf8uoxhiq7CSN1B5J3oTUs8riKQuSgoaZ61tjWFlB1dnq4eVh8LSulGQ1631PLMQ8vOvv1R+LLZMr1r+BCVkunU2pc4AnUkMfBkLK5k2oPvFixfbwnGgMwBCAQQAKBNbzPM8NmzYAB8fH2g0GtTW1tq8QEZgbBy596TZ448/jtzcXKsMKmUYR8NCSgfFcRwbntOOVFRUYMmSJQgICEBBQYHJ68bAcNeuXVCr1XBxcTF7L57nkZ+ff98/dLy8vLBx40ZkZWWhX79+Zu8FAPv374dKpcKsWbOg1+stehbDMBb5GUJY6Qmhg8OcsLKbzaozg2fOgpUcx70AkG/lqYD8eOWXG+vEVpWHaJ8EpWYcnZWgIaw8W14amhpR5J9kQfebgHD8GwD5CNL+GbE+Sj/2+nDBT2LLnG9VhVjaRdnk9qA9G4eVh8LSLP7nXlFbQyiQA6GTShYUdKmUQB1E8bZlXZRNUjYOK/Wq5U9Y+fkMI0kbGzBaBGA4ABWEIXj3VV1dDY1GA39//yYbDBjr+fnnn5tsHDEOKi0qKsL48eNlrJBh2i8WUjooSumTly5dYt9Wt3HGwNDX1xeZmZlNBobe3t74z3/+g6ysLDz8sGVXO3333Xd48cUXER0djV9//dXk9QceeADLly/Hli1b8Ic//MGivc6dO4fXX38dL7/8MgoKCvD1118jNDQU9fVSTpwyDGNDxyB0cHhDuCNLyq38nSGElT9COKrWZu49dl+zoNBTF+PLcdwLBPimVTeX2EVpcMI7AGx7xJDSARwhmT0f62xxWOm+Jvaopy5mDsfRZ2QIKw0K4iQ60Xt98HoFIdTMuyilMYaVSsqf0Idpl1gSVnp9/NbvXjr1olu19ClKsJgApne52NZpRZV4F6XQ6Uj+x4Z1KAE6E1CU6lXaD8tDtE/acC+GaUpbCikBgAeQC+Ee6WUARNskT5061XBV07Fjx2xdn0MxNo6MGzfursYRjuMQHBzcMKhUqVTKWCXDtG8spHRgBoOhrf0SZhrZs2cPJkyYgOjoaPz2228mrzcODJ999lmL9rpw4QKioqIwdepUfPfddyavK5VKhIeHY9euXQgJCbHowuebN28iNTUVfn5+2LRp011TCS9duoQrV66Y/WyGYayqHMK0US9IDyt7APgb7oSVbeYCJvc1Cwo9dGq/ehgCKOiuVthS0gASvWr5EwQIboV6AAAE6G/tsBI8N6LVwkqCfw/NiT4htmxQx9MhoGiVgIsCXUBprBOlJ/Vh2iVlr71n9vUHz/w79jevHHVKTS0dQgkWg5Dr1qy1WRTvuecniYYfxMC/ZYMuyqYoATqTV9DDepX2w6Nh6QNbYU+GAQCfK1eutJnfXY1cgzCwzBPAFilvKCkpwcSJExEXF8f+vraQsXHEz8/PpHFk9OjR2LZtG9LT0y0eVMowDAspHR27l7INMgaGwcHBOHr0qMnr9waGHGf+f41v3ryJzMxMjBkzBhs2bLgrMDQKDAzEzp07kZKSgs6dLbvaraCgAP7+/tBqtaipaXpwIc/zFu3BMIzVHYEQVg6D9LCyJ+6ElYsAdLRZdS00XBe320sXGyiEldhpq32kDiABnCwcQGIeY1jZ67HO+hOzM3pb8izPtQuOeepi5vA8704IWQ1CbNUSb3DiIXoXZZF/khNHuEU2quE+aGdQGkuUzt+Xh2liLHmSMays5muEsFIIKGzlDHezMk9sUdmctMdByGs2rKMpSoDONMBwWK/Sri6dtWJAK+/POB6nmpoaf7mLuI8fAEyB8DnO9IPCPerr65GXlwc/Pz+sXr2anVgyw969ezFx4kSTk2YPPfQQMjIyrDKolGGYO1hI6dgCqAwfjJim3bx5ExqNBj4+PvcNDHft2mVxYEgpxebNmzF27FgsWbIEVVWmV2A9+eSTyMvLg06nQ//+/c3eCwBKS0vx0ksvQaVS4cyZMxY9i2EY2ZRBCCtHAfhC4nt6Qbir8hTaZFipnlAPQwCAHVZ9uMQBJELogxlW3bulCLk0cE2U6f0eZvBeu/Bnj5yYSN5g8LBFWEmAdUNy1T+IrevVv9OrAJXzTsNuBivdz/pc7ttXvHLUKZwTsVlYyVO6VEoXJcfTN+UI1AFA2JfO4hSEHf9mbI7juPbQyLEdwpeH8wGIdlxfu3YNiYmJCAgIQGFhoc2LswfGxpGgoCCUl5c3/NzV1bVhUGlQkG2uk2YYR8ZCSsfW7fz585ZdLMhYzBgYjhkzBhqNBrdu3TJZM3DgQHz00UfQ6XR47LHHLNqvrKwM06ZNw7x583D27FmT17t27Yrk5GQUFhYiICDAor0uX76MmJgYTJ48Gd9+azq3wpIuUIZhZLMfwFQAPpAeVvaBEFb+ACAaQAfblNZyw3Vxuz116on1MASAoMgaz5Q6gIQYqC0GkLQI4enfrf1MY1jpBGLNzkqDQaFYKrZoffB6BaXEahO9zVRVT26ttOYD3bNjrnrlqFOUivonAcSDkN+t9OizTjdv5IotKg9Nf5RSvGqlPc1CgG88c2JNpwcyjJW1seE591MHIB3AEwAyIOHKjZMnTyIkJAQqlQqnTp2ycXntk7FxZPTo0Xc1jhgHle7cudPiQaUMwzSPJQRMe/klbJdKS0vxpz/9CfPmzcO5c+dMXu/WrVtDYDhu3DiL9rp06RLi4uIwefJkfPON6ewIJycnhISEoKSkBBEREXByMv9zc11dHVavXg0/Pz988sknTR7h9vX1xWeffWb2HgzDyG4vhLDSF8DXEt/TD8D7uBNWtpm/8Ifr4nZ75qifv91Z+aUFj5I+gITIG/oA2OeRq7ZKMNuUITkLTnnkxEQqFPxQK4SV+d4fzj8utmiw6+n/IcBTFuxjDf94es3bVulOvdfgDxdVeurUqUqubiCsEFZS0GVSuih5rv5tgDpbspfFOMViWfdnHMlTFy9ebE9XC1yB8Dv1WQCS7lwuKCjA2LFjkZCQgMrKSpsW1140Pmmm0WjuuprK29sbn3/+uVUGlTIMc38spHRwhJD2cJzB7jQODJvqMLw3MLRkUI0xMBwzZgzy8vJgMJh+yerr64uvvvoKy5cvR8+ePc3eCwCKi4sxfvx4JCYmNvlHT//+/ZGVlYX169djyJAhFu3FMEybsBvAeAB+gOROxEcghJXHAcwF0GauHrndWTkNHMbBnLBS4gASWY/OGmsAkqWsK5utfenEXzPMDpSHZsf+YgwrKWgmANMjA/fHcyCSJnoD5E3zqrSaqg6cMl1sUXlwUqfvZr9r9l2gJmElcNWMx5zt2MVZJ7ZIP1vzCCiZacbzrek79zXR28QWHZibxUbqMlbB83x7/Ix0CMBYAC8C+FlscV1dHbKzsxs+IzjyvfBlZWUNjSONT5o1HlT6zDPPyFghwzgOFlIyz/3yyy9mT6FkWubewLC5DsNt27Zh+fLl6NGjh0X7Gb8lbY3A8Mcff8SsWbMwY8YMnDhhOnjVeH9LUVERpk6datFeDMO0SSUAAiCElVKnZz8GIAvACbSxsNJzjXqPp049jVLeH9LDSkkDSISjs7S1B5DchRCy312nFu2ALQtdMYrwdP3NivqTepUmdk+w1ux7RYdmx/7ipYuN4aiTRwvDyg3uuphysUVDXU9PbwNdlP8n5Y5Pg1uXN5S8y/EyVaq2PCyzr7mbGcNKrrpyIEeJmoJclvxmQlcMXBkl/p8Bj7fk7qLkKJdMQESHdrncuvGZXqXZeDhUM7w16mLsWnsMKY02A3CHMA1ctE3S2DwxadKkJk9b2bPG/7c3bhxRKpWIiIhAcXGxxYNKGYZpGfbfNkahVCotO0fMSFJQUIAxY8Y0GxgOGDCgITAcPHiwRXuJ3TdjDAx37NhhcWB4/fp1LFmyBAEBAfj6a9PPu4QQBAUFYc+ePez+FoZxDCUQOjkCAZi2ijetP4Sw8gcIYaX57eNW5pW7cK+nTj2NJxgLkbBS6gASSgzxAGTt+KLgUyQtJFwiABDQPgCWdHKlJywNK91zo0976WJjwMGdgmYSkJr7LOd5nhed6L0+eL2Cgrxlbk1WUtWBU6aJLSoPTupEKN4A4EZAInla88ORMG3m0ZC0B83d2D0/6YZ7bswHiuqKIRwlagCXRN5ysbKKk9ZFCTLL3LqsgRByaGju/P+KrSudteI5CNcYTVJw2KtXaTaWzk572vYVMnZqPKW0zfwuMsNNAMsADAGwFoBoyC92b709uV/jiHFQaXJyMjp16iRjlQzjmFhIyQDt+5vCNu/kyZOYOXMmVCoVfvnlF5PX3dzcrNZheP36dSQkJDQ7ue/ewNDZ2fzGiPr6euTl5cHX1xeZmZmoq6szWTNs2DBs2rQJGRkZ6NOnj9l7MQzTLm0H8AcIv2MOSnzPAAhhpR5AKNpQWOmdo97nqVNP43l+DIAvQUw+8EkfQALI2kUJ4DuPHPV2sUWlYZqRROiObUCA3mgUVh6Ym+RqbhGea9RnvHSxMZSjHs2FlYTgM++1C4+IPWtIxzNBAAaZW4s1UIJVUrooqWunvwC08VFvF0pphEHBHz8Sps38fs7Kh8ytwRhW8jwvFlYu9cmPuSn2PMJjkdxdlJSSFCldlBzHvXPnTSAAJnGU36NXaTaWqVJH2LJGxi51u3Tp0rNyF2EF5yD8Pn0Owl3S93W/exntRXONIwMHDsTHH39slUGlDMOYj4WUDAA8L3cB9ujatWsNgWFRkek1bRzH2SQwzM7ORn296WyC4cOHWy0wLCkpwcSJExEXF4crV66YvN63b1+kp6djy5YtGDGCfS5gGAe3HcJl/i9CuC9LiiEAdABKAQQDILYpreW81y7c76lTTwPP/4ECnxrDSukDSAyyH50lnCJJSuhDeCQ0+9rtsNLlVpcfrBVWGpRO7hQ0EwQ3b29CeRDRid40KYmjBIvM3d86SLWrgdeKrSqdtcKNgotq5mUXSmlEnaHO4rDSe+3CqnvCyouNXr5YWU1yRGuNyOhHhXBDToc9dPNFr1sonZ32NEgTX7rfDisJyJ4ylWarfpaWXSrHSNaOpnxL8S2A0QBUuPvfB01qPOE6Pz+/YcJ1e9Zc40i3bt2QkpKCwsJC+Pv7y1cgwzAAWEjJCPqfOXPmSbmLsBdSAsOnn366ITDs3dvse/MBSA8Mv/jiC4sDw1OnTmHevHmYPn06jh07ZvJ6hw4dEBkZiV27diE4OBiEtJlcgWEYeVEId2SNgBBWlkp8nzuA9QDK0MbCSs/chWVeOvVrlNLRAHKlDyBBSCuUdz+SBpCUzlrxHCEYL/442hBWloVpEvbNzOhibmHeq6POeuliY5x54g5C/kko/u2VE6MXe5/+VOdXiPDPimwo6Kon1y4UvQ+S47g/39NF2dTTnBuHlcdDtWaPkm0UVg7lKFGD4AIBt1xKFyVXXxcHQN47WigkdVESnv/b7UCy+TVAADi6u0yl2XokLNUeOuQYG6OU2ttpMwogF8CTAP4OQLRN8sKFC4iOjkZQUBDKy0WvBm6TmmscUSqVDYNKw8PDLRpUyjCM9bSZC+oZeTk5OU0AcFLuOtq7kpISJCYm4vvvv2/y9QcffBBvvvkmgoKCLA7wTp06hffeew+bN29u8vUOHTogPDwc8+fPh5ubm0V7VVdX45///Cc++OAD3LrV9B37gYGBWLx4MR555BGL9mIYxq4Zw8otAF4BkAJpR3Q9cCesXAxgAyTcr9UavHSxBwH8r5S1hJI3aTsZQHLX0VlJaG9C8U4nZd3rZWGa/6uuU6aP/CiqwpwaB+XGnAMwX9KuoOQI0t6U8x8HAlKjMJD3xdYJXZSYL/23P3WmFBG1hITqVdp8qiCLvT5c8JM5NXqvXVgF4IMDc5M+7OrSwyC2vjwssy+lt1RU3v+alXrkxmwB1PdddDhUM5wQTJRaKgECKCUBZSpNIU/J34blxjjWpBCmJUZevXq1a48ePa7LXYiVVQFIApAH4F0IXwLe1969ezFx4kS8/PLLSEhIsLjJojXU19fjk08+wdKlS3H16tW7XvPz80NycjIGDZL1lhCGYZrAOikZAHb5TWGr+vnnnxs6DJsKKDt27Gi1DsPq6mpoNBr4+/s3G1AGBgZi586diI+PtyigpJQiPz8fPj4+0Gg0TQaUHh4e+Oyzz6DT6VhAyTCMVDyAfABDAUyHMDBHCi8IYeVeAJZd4tvKSiMy+lEq79FZyQNImjs6KwGl6HU7rDxWFqZJOBC8tKs5z5GqXKV9GZR62HIPMRR01dC8BRfE1jkpuHm3j8m3dAdngM4kBr5Mr9J+WDYn7XFz6gSAZ1YlVUuZ6M3TmrcoaAdz97EGDlgsJVBXECSKdVE2hQABCkKL9Spt0VHV+2PMq5Kxc041NTX2PGD0JITfwX+E8CXgffE8jw0bNjR8LqitFb3hRDYlJSWYMGEC4uLi7gooBwwYAJ1Oh3Xr1rGAkmHaKBZSMkZ/pJTKOmm0PaqqqoJGo8G4ceOaDAwJIZg6dapNAsOm/jDw9PTExo0brRIYHj58GC+++CKio6Nx+bLpCbbu3bsjOTkZW7duxciRIy3ai2EYh2UMK4dA+KAktaP/OQCbAOxBOwkrFXX17WYAiZSjs+J7CWFlB1dnm4WVFJRQQNaJ3kIXJSd6F+WBuUmuBooYC7dTNg4r9arlT1j4vCaVh2X2BYHKFs+WigLlQwdUfiG2rjwsbRgIXrBwNx8DDAV6lbbo2GztWMuexdgbB2nkKIRwHcs8AKLDv8Q+/8ipucaRLl26ID4+HkVFRQgMdIT/SBmm/WIhJWPU+cKFC8/JXUR7wfO8aGDo5eWFjRs3IisrC/369bNov0OHDkkKDL/88ks895xl/zGeP38ef/nLXzB58mQcPGg6kFepVOLPf/4z9u7di4iICIvub2lqIjjDMA6pcWelCsCPEt83CkJYWYJ7plC3JeXh2h6U0Fly1kAIOSRlAEnD0VkroaA9G4eVh8LSulnr2UdC0/4EwNNazzMHT+hqKV2UHWo7zzWvi7JJSoDOBBSlepX2w/IQrVXvFTfQmkWg6GjNZ7YYockkKYkXW8aDJlgaqN9Bfep5uk2v0hbpw9L8rfNMpr3jOM6ehufcTz2AVRCuYFkGQLRN0hgIzpgxo9mrrlqL8aTZvcEpx3EIDg5GcXExIiMjLRpUyjD/z97Zx0VVbX/4u8+Aiq+VlmnlS0kpMKBmpQiIJFaamSZ6M2Pw5eb9XQqDQTQJIpBe1MGguF27mgySXUWtNCvFiwqIVqbigGaaaZqKphn4DnP2749x1JzBczhnhuFlPZ/P/eO699lrZRozz1lrL6JuIElJXKOJvClUzY4dO64Jw1OnbF82duzYEXPmzMHatWvx6KOPqop14sQJREVF4emnn65RGE6ePNkhwvDSpUvIzMxEcHAwPv/8c7tT/AIDA5GXl4eEhAS0bat4NgIAIC8vD8OGDVN1BkEQjY4qWC717wVLRcdRmc8NBPA/WGRlvWvN814Uc0Zg3B9gnwCQvA/QSaQ6s3VWCqusdOfiflNEWqojZOXlKrGQM8wGYy65L46BXWomNDNI7dsYkdSCy7xjs5a4A/wFUcN3mXRpH++JSPd0yKkMJQCOOOQsRfFZqbbbudVS20onGfwAPtzxCXB/cHGdSZe2sTTcUO/+e0LULZzzHuXl5YqvWGiA/AFgJizXq0i+2AKAwsLCa0M8b7770dlYC0cGDBhgUzgyYMAArFu3Dunp6Q3iDk2CICyQpCRupKm8KVTE8ePHERUVhREjRmDHjh0261ZhWFBQgAkTJjhEGAYGBmLFihW3FIYpKSmqhCHnHKtXr0ZgYCBSU1Nx7tw5mz2enp5YunQpli1bhgcffFBxLAAoKyvDc889B51Oh19//fUva+7u7mjXzqnXlxEE0TCogqWi4wFYZOUxmc8NhKVtrQhAvbpjzntx7B6tMWYSROFhF8jKEu+saMnW2V3hhj7qW2dvDQfagvNYN84PmCLSUnePf/t2pWf1+zT2d98sfcoF8VIvV8hKEfzjnh+/IvlnswNv8xI4OjkxFXeAv2Dm1bt36wxL94YbVP2g9s3SZ11u3roXOCYDTG5VswMRU2VVUZrZ684Q6tfh/pzhG5MubaNJN98JMpRoKJjN5qb4HWkfgOEAQgHsldpcVVWFnJwcBAQEYOHChTCbnf8jbufOnRg5cqRN4UinTp2QkZGBFStWwNvb2+l5EAThWEhSEtdgjD1y5MiRO1ydR33j4sWLyMzMRFBQUI3C0DqoJiUlBW3atFEVLy8vD4MGDUJqairOnz9vs/7AAw9gyZIlDhGGJpMJo0ePxj/+8Q/89ttvNuvt2rVDSkoKNmzYgODgIeb1VgAAIABJREFUYFWxTp8+jbi4ODz55JPYunWrzbpGo8GsWbPQsmVLVXEIgmhUXIFFVt4Pi6yUbKu9ykAAmwHkAXjEOakpQ7skeq/WGDNJFEVvxthCMFbt7JhcYHKrKB3YOisFbwPOY5l78/2miLTUsslpij9/PJY96/RfZCVw1oGJ1sTl5pzNk9q0MSKpBZjquyjlIjDguWqGErWyst9HU6u02fqcy81b+YFjMpjs+2LVwbDXp9u5z6W2lenSvBn403WREsD9AXEVycomTVPuNtsAwA+WanDJF0Fnz55FYmIiQkJCsGnTJqckZC0cubnTzMPDA3q9Hlu2bMGYMWNUDSolCMJ1kKQkbkTj5uZWb+/0cgVSwrBHjx7IycmB0WhEt27dVMUymUwYNWoUdDodjhyx7bJq164d4uPjkZ+fj8cff1xVrD/++AMJCQkYNmwYvv32W5t1QRAwZswYFBYWYvLkyXB3Vz5TqaqqCgsXLsTAgQORk5Nj982qv78/1q1bh6lTpyqOQxBEo+YyLLKyByxflE7IfG4IgO9gkZUPOyc1Zfgtmf6LT1ZMpBuYk2Ul26PtWiE52eDqABIX3MFhkZW8mu8rjUj7m5qTrLLyfLW7J4B4OFdWLn4oO8b27d5N3MnbTXZyFaU9rLJyV6nOsPjAi3PvUnrQNVnZrHXvupCVoijMlncXJRJR599jrsrKiLRNJCubHEOa+IDRKgDpsHQ3ZEBGJ8D+/fsxfvx46HQ6HD582CFJ1FQ4cuOgUr1ejxYtWjgkHkEQroEkJfEX6F5KCyaTCc8++yx0Oh2OHrW9Eq1du3ZITk5Gfn4+QkLUeV25wrCoqAiRkZEOEYYDBgzAokWL7ArDgQMHIi8vDxkZGejQoYPiWIDljpqhQ4ciMTERFRUVNuudOnVCeno6cnNz4eXlpSoWQRBNgguwfFGyykrbSWL2GQLgewBrAPRxTmrK6JUVfcipspJD3gASLjq5dfbWcKAtIDqktbj/J1EVWqN+nrumugeAeDD2hyPOvQ67InA3WXdRihBjHRu7VmgA9kS1u3hR7UFWWenTrVLLgPEc2O+IBP8K+9H3/j9XSe0qmzjPC+DPOD6+TDgfAPD/c1l8whW0PXbsWL2qyncRpwFMA/AogEI5D+Tl5SEoKAgJCQmorKxUHDgvLw/BwcE2hSO+vr74/PPPHTKolCCI+gFJSuJmHDbRsyFSXl6OuLg4DBs2DN99953NupubGyZMmICioiJMmTIFbm5uimPVVhi2b99ecSzAIgxDQ0NrFIadO3e+Jgx79eqlKtbBgweh0+kwbtw47Nu3z2bd2o5RXFyMsLAwascgCKK2nMf1qo6ZsFz0LwUD8DSAH2CRlX5Oy04BVlmp0YhejpOVbI/P/RVfSO0qnWTwA0Mdtc7ahwPf+GTFfu/IM3t+PKNSa9TPcxeqLJWVjpKVjC/2zp72q9S2O9F2EgM6OySmQjh4Ws+PZyg3AzfBkpJEH6N+pbZ7pe9VWfmTo84GIO8uSlFIgIu/w1Sj+m1XxidcQlO8l7ImdsBy7/MzAA5Jba6qqsKiRYsQFBSEnJwciKLkX/Nr3Fg4cmOnmXVQ6VdffYVHHiF/TBCNCZKUxM10PXr0qLqLDhsgVmFo/eFpTxgGBARg3bp1mDNnjtOF4T333ONQYRgeHo5x48bhp59sv0u0bNny2v0tYWFhqmJVVFQgNTUVISEhyMvLs1m3tmMUFBRAr9ejefPmquIRBNHkOQfgXQBdYZGVctp7rbJyB4DlAB5yWnYK8FoUe9gnKyZSEDW9OHgmLK3uimDgslpnYUa8K6soAUDkLNVZZ1tlpXC+wlJZCagZP1ul0XDJKsr9r2Q0Fzl3ZRUlGNhpd031AqecfV1W+jFgPCxDNlQciAN7L9y7Umqb6cX5vQD+rKpYKuFg/+tjjNviyhyIuocxRt1mtqwB4A3Lz1/byZs3YS0GGT58OLZv337LvWfOnLnWaXZj4Yi7uzumTJlybVCpIJDOIIjGBv2tJmxgjDWpN4XWeycTExPttiF069YNCxYswPLly1ULw59//hkvvviipDAsKipSLQz//PNPpKamYvDgwdiwYYPN+s33t6gRhqIoIjc3FwEBAcjMzMSVK1ds9vj5+V1rx7jnnnsUxyIIgrBDJSyy8gEAb0LG5f6wfAYKA7AHFllZr17QeWdP+9XXGBsjcDcfRbKSYa9398rPpLaVTZznxYERSvN0EOt7Z8fYti/cRJkuzVvN/YreuUnntEb9POFCpafAmZ6Dyb0u4BoMyPJaFCt5wdqlyuqJDHDxDzvxPTlVlDsmvnWn0ghWWenTvbK3RVayHxWdA5YyNnes5D13TCO+Dhd/fxG5+JacfRyc2kQaF48dPnz4dlcnUQ+5AMvP354AlgCQHNJWUlKCkSNHYurUqTaDO2/VaRYaGoqCggIkJyerHlRKEET9hSQlYYMgCE3iTeGBAwcwYcIE6HQ6HDp0yGbdKgw3bdqEESPUfX+zCsOQkBD873//s1lnjGHMmDEoLi52mDAMDAxEZmYmqqqqbPb07t0bX3zxhUOEYXFxMYYOHYpp06bh999/t1m3tmOsXbuW2jEIgnA2ZwAk4bqstC1Vt8UqK/fCIit7OCs5JVhlJQR4c/BMBnZJznNcbussZy4YQPJXqmF+R84+EVhwURAOlEakZe6ZMF/xMBrv3KRz3tkxH2guVPQSONMDKJf5aJWGCZITvcvCkpqBc73S/BzEGTeN+UOpTd+Gv9W+mdh8j0ln+Gy3bp7i4VLXZWVFH0AYDWCX/Idx4NShihVS23ZHzOvJOUYrzdEhMGzsnR1bJLXNFDEvtFSX9n2pzvAcycpGg8bd3X2wq5Oox/wGIBxAfwDbpDZzzrFmzRoEBQXBYDDg8uXLKCwsxJAhQ2wKR3r06IFPPvkERqMRXbt2dd4/AUEQ9QKSlIQNnPPBjXmC3Z9//omEhASEhIQgPz/fZv1mYdisWTPFsW6uMKxJGK5evRoZGRm46y7FBSIAgC1btiA0NFRSGH755Zfo16+fqljHjx9HVFQUwsLCsGfPHpt1d3d3TJ48mdoxCIJwBadxXVa+C0ulhxQ3VlZmX3223qBdrD/ia4yNMbu7yZCV7Edtt0rJ1tmyifO8wDHSkXnWFs6xQU7rbFlE2pMAfwRAc875FLNG3FcakZb546T3Fd/5aJWVoijKlZXZvbKiD0mda/ZoMxFAF6V5OQLOWLqcKsqWQosYy9AiDGNgxbt1hq9NL6Yp/oDAkpJErTF6rU/3ygGAMJoxtlMyV7DUwZuSJO9gZZzFw9VVlJB3LQHjwmsAtBxYWhoxfzvJykZDkyjkUMl3AAYC+DtkvAC6ePEiDAYDvL29MW7cOOzff30m12233YaUlBTk5+dj8GDywwTRVCBrQNijzfHjxwe4OglHU11djZycHAQEBGDRokWorrb9PNynTx+nCMPTp0/brN99991IT0/H2rVr8fDDiosXAADHjh27Jgz37t1rs24VhoWFhaqFofXDhL+/P1asWAHObbs6rO0YKSkp1I5BEIQr+R2Wu7K6wSIr5Uw5dgfwIiyVlQsA1KtxoX4Lo476GmNjWohmTzA2D8zOPxPnb8mpojSLzPWts+CyBpCIHDNu+qXmnPMpVeaqfaURaZn7wtMUtwX4LZl+/iZZecLOtio3JsyROmv7SwvcGWOurqI8awb7t9Smb8Pfag+OqTf+GgNCIPAtjpKV3lnRErKS/Xz6UMVyqfPKJqT1APCc0nwcAQc2+2XFSE40LtMZHufgA68/yH04sNSkS/vBFG6YsDxsucapiRLO5ElXJ9BAEAEshOXO53kAbO+BuokLF66/S7xxUOnkyZNVDSptiJjNZvzwww/4+eefXZ0KQbgEkpRETTSqN4X79+/HkCFDEBcXZ1cYdu7cGR9++CG+/PJL1cLw0KFDmDRpUo3CsEWLFoiOjr5276SaydYXLlyAwWDAwIEDsWKF/U6p0NBQFBYWIiUlBa1bt1Ycy15bxs14enpSOwZBEPWRU/irrJTTMu0O4CUAP8MiK106pflmeiyZflKbFRPfgrn/VVYyHNh78T7J1lnTi/N7MWCU0xO9BRzIl9U6q0sbCnD/Gk5pxjmfcoXhR0fJysvNKy2ykuH4tUWGHDlVlM2unIsAuGt/ADKW3icrWnKIlAdr8SrA7b5JvFFWlkbMU3xXCwPjN8pKWAZWXYfzt+RUUYoangDAxXKPz5a1i7FZ9n6dAd5gWNSr5dHtJCsbLN2OHDlSr64Eqef8CWA6LMN1cuU+NGXKFMyZMwd33HGH0xKrrxQVFWHo0KEYMWIEgoKCsHjxYlenRBB1DklKoiYa1fAck8lkd1CNh4cH9Ho9CgsLMXLkSFXC8Ny5c0hNTUVwcDC++eYbu3ueeeYZFBQUYPr06WjZsqXiWFZhOGjQoBqFobe3N1auXAmj0YguXdR1nZWUlODZZ5+1e8E1YGnHSE5OpnYMgiDqOydhkZUPAsiAvGE0zWCRlQdhkZWK70J0Bp6Lo05ps2LiNdVCL87wgSgKb8gZQAJBdHnrLGdM1gASZvl3JnXaNVlp0qV9vHvS/PuV5tXvo6QL3tkxH7Ro4/6QyHkkgCNCNZO8i3L7SwvcweHSid5g7M9qsH9JbSubnHYHA/5P8jgghHNWtFtn+HpXeNqjitO6Kiu1Rv0AQRCeAtgPAA7+/mvlfyVznZDWA4yNURrbMbBiX2NsgdSu0nDDYM55wK13cS+SlQ0XNze3RvUdqY44AGAsLJWothUcN1FWVub0hOobhw8fxuTJkzF27NhrRS6cc/z735JF8QTR6GhatdNEbeh37NixDp07d7a92LCREBoaitmzZ+O+++5TdQ7nHCtWrEBqaipOnrQ/KNTHxwfJycno37+/qliARRgmJCRg+/btdtdvu+02xMTEYOLEidBo1H3uLS8vh8FgwNKlSyGKtp2Dbm5u+Nvf/oaZM2c2ybedBEE0WI4AmAbAACAewCRIfyZqDousnABLG9vbsN8W7BK8cqKPA5DVZrw7Yl5PcNe2zgLYJKd1ds+k+UPMZnGg1L7r8GYAXmBmPtakS1sOVKdqjXGKeuY834+6DGDh8rDli+WI3+aXz4fDUq3rMhhHRh+jdBUlrxanAUz2fSwMCNEwHmLSpRVrILzhZXxVUtjVhPfi6HwOPnDfpA86yami5BoeD+7a7yxuApJkbWSIl3/qVVnZ6kisKdwwb+/F+z6V9YKBcCmc81AAki8CCLusA+ALy8/c2QDutLfp0iVZ8+EaBRcuXMCHH36IDz74wG7Ryblz51yQFUG4FqqkJGpCYIyFuDoJZ+Ht7Q2j0ahaUG7fvh3Dhg3DtGnT7ArKDh06YO7cufjmm29UC8ry8nLExcVh+PDhdgWl9d7Jbdu2YcqUKaoEZVVVFRYuXIigoCDk5OTYFZQBAQFYv369Q9oxSktLUVJSouoMgiAIBfwKYCoATwAfAZAUJgBaAoiCpTIkHYC6C4xdAIMwC66uogSXNYBEFPlrCkO4A/wFQFNi0qV9bNLNUTwISY442v7SAncOHqc0hkNg7E+x6nKm1LadEfNv42D/UBaE+5thzjPp0jbunZg2SNkZlsrKnh+/ckxqn0k35wHO2FilcRwCY1t7LY7ZLLVt78S0QRwIrPX5HL0ssvJoWUn4vCkbg5OoiKR+83hjHjBaB1TD8vO2J4CtLs7FZYiiiGXLlmHgwIE1dsURRFOFJCVRI1ffFDZK1LR1A8CJEycQFRWFkSNH2pVrVmFYVFSEF154QdWgGqswDAwMrFEYBgYGYv369UhJSUHbtm0VxwKAvLw8BAUFITExEZWVtoNBu3fvjgULFmD58uXo2bOnqlh79+7F2LFjMXToUDz11FOYPn26qvMIgiAUcggWWfkgLF+e5FQztYJFVv4M4B0AtzsrOUdSNiGtBzh3aessBy+Q0zpbNnF+iHTrrCR/kZVXB7A4nGaXz09gLq6i5Bwf+C597Q+pfW6iOA3AbSqj+VeLfL1Jl7axNNzgvHtemGYWOHeptGMif1POvmoRr6sKxHl3gbHM9l3bkKys37Q5fvz4Y65OohFwBsBaVyfhCnbt2oVnn30W0dHRKC+XHIBOEE0OkpTEraAJdjdx6dIlZGZmIigoqMbJ1o4WhoGBgUhMTLRb7n///ffDaDRi2bJleOihh1TF2r9/P1544QXodDocPnzYZr1Vq1bQ6/XYuHEjRowYoSrWH3/8gVmzZuGJJ55AUdH1mQlLly5FRUWFqrMJgiBU8AssslILYAnkycrWAGYAOAyLrFQpf5wLd0McXDyAxA1uKXL2cVG0O4BEIe4Af0HUcNNunWHpnoh0T0cdvDxsuYYx7tK7KBlQoXHDB1L7toe90w4M/3RcZO7PGb4x6dI2lk2c79AOHMu9ouxvjjxTAdt8svUbpTaZJhr8AR7kiIAM6Eaysn7TmAs5COdx/PhxvPzyy7fsinv88cddkBlB1C9IUhK34t5jx46pK5VrROTl5SE4OBipqak1CsPs7GyHCcPx48dDp9Ph119/tVlv27Yt4uPjkZ+fj9BQdZ+Tzp49i4SEBISEhGDjRtvP4YIgYMyYMSguLoZer0ezZs0Ux6qurkZOTg4CAwORlZWF6uq/dlZyznH+/HnF5xMEQTiIvQDCYbk7awkA2xJ2W9rAIit/BpAEoJ2zklPDefHSa5xhNgDJewudAyuWc5+hKWJ+sKLWWWkEBjxn5tW7d+sMS/eGGx5Ue+Cdp/YwUeTzAWb7hq+O4AyZ3otizkjta9bKPQpOEencXxTFr026tI0m3fzhjjiRVVe3BvC9I85SikYjyBTqMu+srAVWWdmha9s9JCvrHTQ8h5CNtchl0KBBWLVq1S2LXF5++WUXZEgQ9QuSlIQUTf6HcGlpKUaPHi0pDDdu3IghQ4aoinWjMNy0aZPNulUYFhUVITIy0iHCMCAgAIsWLYLZbFsw1LdvX6xevRoZGRm48067d1vLZvPmzRgyZAji4uJw5ozk9yiCIIj6wB5YZKUfgFwAtt8sbLkDwBu4LivVldQ7mMeyZ532zdKnCG6sl0tkJWOyWmfBeS0GkChCYMBz1Qwlu3WGpSWT3lP8dnHwpqRqv+zYhZebt/IGx2QwHHBkopIwdu7yZS6ripKBRTo3Ge4PiKscISu12dN3a7NigqthDgGwyTH5yYcx9q3Xx9EbpPbtDp87gAGK7+eUhne1yMo2e8vC017e/0pGc+fFIuTAGHvkyJEjNDGSkEROkYujuuIIorFAkpK4JU25neGPP/5AQkICnnrqKWzbts1m/WZh6O6u/A5t672T/fv3r1EY+vv7Y/369cjIyECHDh0UxwKAoqIiDB06tEZh2KlTJ6Snp2PNmjXo27evqliHDh3C1KlT8fzzz+Onn35SdRZBEISLKAUwFrWTle1xXVbOgGXgTr3Be1HMGd8sfYq7proHgHgwJnmXoWoY26rNit4ktW2P7r0gR7XOykBgwHOC2bxLrazs99HUKm22Pudys9a9wTGZA/sdmWhNcPDMfp/G/i61r3lL95fBeR3dnXpVVkakbVIrK/sY47ZojfonqmEOAYNk67Wj4BBlVVEyQXjD2blcpYvIuOFSRVVpWXjayxsjklrUUVzCFo2bm1ujHTBKqKc2RS5qu+IIorFBkpK4JYyxwfv3729Sb2ytwnDAgAF1IgwLCwsxdOhQJCYm2r2P0SoMc3Nz4eXlpSrWL7/8gqlTp2Ls2LH48ccfbdY9PDwQGRmJgoIChIWFqRowVFlZiZSUFAwaNAhr1qyxWWeM4ckn6dpTgiAaFCZYZOUAAF/KfKYDLHdVHoJFVno4JTOF9Px4RqXWqJ/nLlR5wsmyUmAsWc6+apjVDSBRxjVZWaozLOZJSYo/I1tlpbZ7pS8DxjtZVp6vZpffl9q07YWMtmDsFSfmYR/OB1hl5W7dPFXiuY8xbos2S//k1crKrxyUYU3s8MnSS1ZRlkQY+oPDeYOD7NNFZNzQgbchWelCmnIhB1EzdVnkQhCNFZKUhBStWrduPcDVSdQVUsKwc+fOSE9Px4oVK1QLw4MHD0Kn02HcuHHYt2+fzbqHhwf0ej2Ki4tVC8Pz58/DYDBg8ODBNQrDESNGYPPmzYiPj0erVq0UxxJFEbm5uQgMDMSHH36Iqqoqmz1arRarVq1Cenq64jgEQRAu5FsAIwD4Q76svBN/lZX1SizYyErL5FVHss17cXS+1CbTRIO/c1tnJRE4ILCkJDn3kN4SlpQk+hj1K2+Qlc5oJ/hX38WzTkltauVWFVl3VZR24HwAAIfcc361snIUBAyGk2QlEzRJDEyyYpqJSHBGfJncJzI+9y7e9gEX5tCUecLVCRD1h7ouciGIxgxdwExIcvVN4SZX5+FMDh48iKSkJGzYYP+luYeHB/75z3/i5ZdfRvPm6gpLKyoq8P777+M///kPrly5YrPOGMPTTz+NxMRE3HPPPapiiaKIlStXYvbs2Th1yv53GF9fXyQnJ+PRRx9VFQsAdu7cicTERPzwww921++44w68+uqrmDhxIjQaDSorK1XHJAiCcCFbcV1WJgOQM5bzLlhkZSQAA4B/A7jsrARrS8+PZ1QCmFcWlvRveLSNMDPMYOB3qT1X7gASiKir1tkaMxDA5jjywKvCcyVPSvqs7Jc2o7jlGgBHXD52voXgLvm2rywsqTVneNnOrIa65KhH22ZGRx6oXawvBjBqd/jcAYwJcQCGOejoHd6Lp60HXr3lppIX5z7GGNRdRq4SDnzmbYwpc2UOTZiuR48effDee++lu4yaOIWFhUhMTLRbdAJYilxmzJiBsLCwOs6MIBomJCkJOQyFpaqi0WEVhh999JHdir+6FoZ+fn5ITk7GI488oioWAOzYsQOJiYnYsWOH3fWOHTtCr9fj+eefh0ajURXrxIkTeOutt7By5Uq7E+vc3d0RHh6OuLg4tGnTRlUsgiCIekgxgCEAAmCRlXLaP+8D8B6AGACpAD4GUO2sBGuLd27SOQAflIUlZcGjbYTIeByAjkrOqs0AEgDBSmI4kBXOkj62spIlAlxNdeG/PRdHSVZRco82kZzDtWU7jM/1fD/KKTLeN3v6VgCjSiIM/QWOGVApKwUuJMupohQETYK862mdBAMH2NuuS4BgjA2FcyqkiQbAwYMH8eabbyIvL8/uuiOLXAiiKUHt3oQc+h4/flzdaOd6htlsRnZ2Nvz9/ZGZmWlXUD788MP48ssvsWDBAtWCcuvWrRg6dCimTZtmV1B27NgRc+bMwdq1a1ULyuPHjyMqKgojRoywKyjd3d0xefJkFBQUYMKECaoE5cWLF5GZmYnAwECsWLHCrqAMDAzEhg0bkJKSQoKSIIjGThGAEACBADbLfKYLgAWw3Fv4EurZC2Tv3KRz3tkxH4ii2EvgTA+gvLZncI7ZsjYyIbG2ZzsYURTFd6U28aQkoeTFuT5Kg1jbwH26V/QBhNEAdik45nwLwX2+1KaSF+e24q64i/KvnKg8L0hWUW5/KaklB1d8t41fln6b1qgfJYpiEICvLBKvdjDGdnplv/qN1L5d4WmPAi6/k/Bz36wYk4tzaNIIguDqPwOEC6ioqEBqaioGDx5sV1Bar9EqKCiAXq8nQUkQtYQkJSEHQRRFOS1sDYa9e/di5syZdidbW4XhF198gT59+qiKYxWGY8aMwZ49e2zWbxaGgqD8r6RVGAYFBdUoDENDQ7F582aHCMO8vDwEBwcjNTUV58+ft1l/4IEHsGTJEixbtgyenp6qYhEEQTQwimCpCAwF8L3MZ7rBIit/gkVWqitxdzB+S6afv0lWnpD56A4fY7T9MpMbKIkw9GcWwesyGMMqvyXTS6X2lR5sEyYIwg+7dYavTS+m9VMcLylJ1Bqj1/p0rxwACKMZYzvlPss5WyCnilLQaP4JcFe/aH7HPzfmotSmFpfbvlsaMX+7KdwwQc3gIr8l07/VGvWjmIDHOLCyNrKSc5Yip4pSw0RXDHe6DgOHKL7l0hwIcM4Hc85p8kkTwXrvfkBAQI1FLn5+fvjiiy8cUuRCEE0VkpSELARBGOrqHJxN8+bNMW3aNGzZssUhwtBgMMDf3/+WwrCgoEC1MOScY82aNRg0aFCNwrBHjx7IycmB0WhEt27dFMcCAJPJhFGjRkGn0+HIkSM26+3atUN8fDzy8/Px+OONym0TBEHUlg0AHoVFVm6X+Ux3WGSlCUA46q+s9BI404Ph+K32C4y92QAGkAAMXAR7R2obT0oSOMMMyyMIgcC37NYZvi6NmKe4DcIqK72zogdcray0f0/L9ScueGjc0qTOLXlxbivO+TSleTmIE5UXWJbUppIpGfdycB049wHDItMvbbabwg0TloctV/zn3+djfYmvUT8eovioTFm5y8f4quQgnpKJ8/vC0ubrMhjHam329N2uzIEAALQ5fvx4kxkw2pQpLi6+1hX3+++/26zf2BXXr5/id1cEQYAkJSETzvlQzpW34NR3QkNDsWnTJsyYMQMtW7ZUfM6NwtBgMODyZdvrlzw9PfHJJ5/AaDSia9euatLG7t27MWrUKEydOhVHjx61WW/Xrh2Sk5ORn5+PkBB1BSpnzpxBQkIChg0bhm+//dZm3c3NDRMmTEBRUREiIyPh7k4vlgmCIK6yAcAjsMhKCQF1jV4AjAB2wyIr69VnNqusbNHG/SGR80h7spIxttMrK3qd1Fn1YQAJOPtMTuus6VCb5xjgfeOvMSCEc1a0W2f42tIGrAwGxrXG6LU+xhh/i6xkdqfQcfCPZFVRCpp/MMtUeZfBIMyRU0UpVFVPB3CtJ5IB3mBY1KvlUdWyUps9fbevUT+egz1yK1nJGJstS6hzMREcrvtMzMBFcMlrCYg6g1q+GzHHjh2T1RVXWFiousiFIAgL9LeIkMs9J06c8HJ1Ekqp6d5FLy8vrFixwmF5Ce6nAAAgAElEQVTC8Nlnn61RGN52223XhOHgwXJmKtRMeXk54uLiMHz4cHz33Xc26zcKwylTpsDNTfkVZ1VVVVi4cCEGDBiARYsWwWw22+wJCAjAunXrMGfOHLRv315xLIIgiEbOBgD9ADwD+fcQesEiK0sAhAEulCN28Hw/6rJfduxCq6zkwDHrmggucwCJ4PrWWW6WHEDCwRkDm1nzMQjRMF64W2f4uuTFuY8pT8ciK7XGGH9BEJ4Cu16Fy8AuuZmF96TOKHlxbisOHq00BwdRXnGBfyy1qSwi824wrrO/yr3AsKhXqyM/qJWVvlkxJl+jfrxoFvvZkZUl3lnRX0qdsSvc0IcBTyrNwSFwfOlrjLUrsAmX0Oi7zZoi1q64gQMHYsWKFXb33NgV17p16zrOkCAaLyQpCdlwzhvsD+HevXujWbNm1/5/+/bt8e6772LdunXw9/dXdbZVGA4bNgzff2979djNwlDNoBqrMAwKCkJOTo7ThWFhYSGGDBmCxMREVFZW2qx369YNCxYswPLly9GrVy9VsQiCIJoIHMAaAA8DGAvgR5nP+QBYjnouK0+zyl6MsWgw9qU2K+ZrqecsrbMurkTi7As5rbNlurTR4FxyYA4DQgRBKDDp0jbunZg2SE1q3ouj87VZ+oFWWcnBP/LKib5liz0AaATNS66uogQT5sqpohRxeSY4PG65iaPX1crKHaZww4SNwUmK3776LZle6mvUjxc4exhgnwAwc4GlyruLEgkuraIEAFH6WgKiTul37NixDq5OgnAM1q64oKCgW3bFLV261CFFLgRB2FKvJkgS9Z5QAJKTJOsjXbt2xdKlS/Hf//4XXbt2xd///ne0bdtW1ZlVVVUwGo2YO3euXYEHWIRhcnIyevbsqSoWYBlU88Ybb+DQoUN217t164bXXnsNI0aMUB1r3759eOONN1BQUGB3vXXr1nj11VcxZcqUv8hfgiAIQjYigFwAKwE8B2A2gAdlPKeFRVZ+CyAVFuFZbxiclXQJwL8s/4uR3M9E8Q24UrgycJEx6Yne4KwUaa/V7nDuXy1ivUmXVgzG3tRmRW9SmCW8F0fnc/CNmyLelBwTuzEiqQXn/FWlsRwBBzt5pdmfi6T2lUVk3i3iUkQtTu4JhkUdurV9vSR83rwzv57LGrwpqVpJjt7GmDIAk3ZHzJujXRyzT+rPa1nE/N4ixGG1nxnuUNZql8TIvd+WqBsExlgILP9dJhowpaWlmDlzJnbssH8rS/v27REXF4fx48erKjohCOLWkKQkasOg/fv3N/f09LR9pdQA8Pf3V101aSUvLw+JiYk4fPiw3fXu3btj5syZDhGGBw4cQFJSEvLz8+2ut2zZEv/3f/+HV155RbUwPHv2LObOnYslS5agutr2M78gCAgLC8Nrr72Gu+66S1Uss9mM5cvp8xxBEE2em2VlKgBPGc89BmA1gK0A3kY9k5Vy2BVu6MMYnnCl9OGcrfHLipa8J7Q0fP6zsAhiJVH8wfk6ky6tmHGe7JOt36jkFAbGkYVLUvs6oO1UgN+tJIajYAzz+n2UdEFqn5lfjGNgt66itAfn3QXGMtt3bTO9JHzeXDWy0jcr9kcgVnKfyMXX4eIKZsa45LUERN1ztduMPtQ2YMrLyzF69GicO3fOZs3d3R0RERHQ6/Wqi1wIgpCG2r2J2tDSw8MjwNVJuJIDBw7ghRdegE6nsysoW7VqBb1ej40bN6oWlH/++ScSEhIQEhJiV1AyxjBmzBgUFxdDr9erEpTV1dVYvHgx/P39sXjxYruC8pFHHsHatWsxf/581YKyqKgIQ4cORUKC7TBXejNJEEQTxSorvQHoAPws87kBsMjKLQAed05qzkHD4NoBJAAAUXqiNzgDwyz1sbg/Z/jGpEvbaNLNH67+PFs2RiS1gIvvomQMvwvnKySrKE1T3uvIGJukKhbQTWAss0PXtntKwudNUdMGfitKJxn8wPC0M86WCwe+8cmKtb1XiKgPPOHqBAh1bN++3a6gDAkJwf/+9z+8+eabJCgJoo6gSkqiVmg0mlAA/3N1HnXN2bNnYTAYYDQaa6wwHD16NBISEnDnnequgKqursZ///tfvPvuuzh9+rTdPX369EFycjIefvhhVbEAy72Tb7zxBn780f61aJ07d8brr7+OkSNHgjF13yUPHz6MlJQUfPXVV3bXe/Xqpfr3jyAIooFTBSAbwKcAngeQBKC7jOf8YRnMswVAAgBF1Xp1xa5wQx8wPOXq1lk5A0hME+c/w0Tu67iw3B/gq0y6tGKAzdMao9c66uQOaPd3cLGTo85TBGfzvHOTbL/t30xV9XQoqaK0H7TrVVkZVxaeltGsndt/PN+PclznjxnxcHEVpchZqivjE7fk3mPHjvXq3LnzXlcnQijj5nv+27Vrhw8++ACPP96g3v0RRKOAKimJWtGQh+coobq6Gjk5OQgICMCiRYvsCsq+ffti9erVyMjIUC3YioqK8MQTTyAuLs6uoLz77ruRnp6OL7/8UrWgPHToECZOnIhx48bZFZQtWrRATEwMCgsL8eyzz6oSlOfPn8fbb7+N4ODgGgXliBEjsHTpUtUilCAIopFglZU9AUwF8JvM5wYCyAdQBEDV0BZnUt2idSlETAHDAZclIbK3pLZwcMZEzHBOAtwfEFeZItI2Oaqy0iyadzLGihxxlhI4cMosmj+S2nfgxbl3AcJkJ2TQVWTccKmiqrQsPO3l/a9kSN7hKcXysOUazlAJwHZaYd2xvnd2zHcujE9I06S+IzV2OnfuTIKSIFwESUqitvQ+efKkS+85qiusLclxcXE4c+aMzXqnTp2Qnp6ONWvWoG/fvqpiHTp0CFOnTsXYsWOxd6/tS9gWLVogMjIShYWFCAsLUyXyLly4AIPBgMGDB2PdunV294SGhmLTpk2IjY2Fh4fyIgfrhLzg4GC8//77t5yQt2DBAnTs2FFxLIIgiEbKFQAfAbgfFlkpOdn5KgMBbAKQB+ARp2Smgn4fTa3SZutzLjdr3Rsckzmwv45T+ErOAJKyiPlPA1x928Kt4HwAIK4y6Qyb1crK3tmxRT5ZMY9XwxwCwP5bQSeiYUjzWzL9vNS+i4zFArylE1PpclVWlpWFp71saYNXxtjcsWZtln6yGxO8GGMLwZiiuy/VUA0zTfSu/4S6OgGCIIjGAElKoraw6urqRv1a6ZdffrkmDO1VGHp4eCAyMhIFBQUOE4bBwcFYs8b+zIPQ0FBs3rwZ8fHxaNWqleJYnHPk5ubC398fBoPBrjD08fHBqlWrYDQa0aVLF8WxAGDXrl0YOXIkpk6dit9+sy0Auu2225CcnIz8/HwEBwerikUQBNEEsMrKHgBeBXBC5nNDAHwHi6zs55zUlGOVldrulb4MGM+Bn+oiLmNcsooSADj4TGfncgP9AXFVaURagUk3fzgHV/wBo48xbovWqB9Vl7KSgZ3WCNX/kdq3/fl5HSA4o4rSLveJjBs68DalamVlr6zoQz5ZMZEajVinspJzbOhjjNtSF7EIVQTv379fdeUuQRBEU4ckJaGERvmm8Pz589cqDO0JQ8YYRowY4RRheOXKFZs9Wq0Wn332GYxGI+677z7FsQCLMHzmmWcwbdo0nDx50mb99ttvR3JyMr7++mv0799fVazy8nLExcXh6aefxvbttkUq7u7umDx5MrZt24YpU6bQoByCIIjacQFAOq7LynKZzw0B8D0sslJd+b8TYElJoo9Rv1LbvdLP2bJS7gASk27+cPC6F7uc88cAcVWpbn6hKXyuqrswrbISAgbDybKSg6f1/HhGpdS+Zs1ZLDhv7cxc7GCVlWWmiHn/UDNgx2tR7GGfrJhIQdT04uCZABx396UdRNBE7wZCq9atW/u7OgmCIIiGDklKQglPcK787X59QxRFSWHo6+uLzz77DAsWLMC9996rKt7OnTtlCcOvvvoKjz32mKpYJ06cQFRUFIYPH44ffrCdDWAVhlu3blUtDKuqqrBw4UIEBgYiJycHoija7AkMDMT69euRkpJCE/IIgiDUcR7XZeVMAH/IfG4IgO0A1gDo7ZzUlHOzrASwz+ExBLwrb6PogIneauC9Ne7sT0ecpF2sL9Ya9aM4F4PhBFnJwE67a6oXSO3b/vy8Dgzs746OXwvuBdgrp+70Uj2yyTt72q++xtgYgbv5cPBMBnbJEQneCAfye2fHuuyOUaJ2cM4bZSEHQRBEXUKSklDC3eXl5T6uTsIR7Nix45owPHXqlM16x44dMWfOHKxduxaPPvqoqlhWYfj00087XRheunQJmZmZCAoKwooVK8C57WfxwMBA5OXlOUQY5uXlITAwEImJiTh3znag5/333w+j0Yhly5bhoYceUhWLIAiC+AvnALwLoCsssvKsjGcYgKcB/ABgOSzDeeoVVlnp072yNyCMBlDioKPXaxfri6U2lYXPf8oVVZQ3whgzei2KPezIM32zp2/VGvWjRIZBAL4Cc9R8dfE9OVWUzZuxGBdUUf4FxvnssbljHTYExyorucAdLis5kx7uRNQraHgOQRCESkhSEopo6FO+jx8/jqioKIwYMQI7duywWbcKw4KCAkyYMMEhwjAwMLDOhGFwcDBSU1NrFIbZ2dlYtmwZHnzwQVWxysrK8Nxzz0Gn0+HXX3+1WW/bti3i4+ORn5+P0FB6uUwQBOFEKmGRlV1gkZVyKvAEAGEAymCRlep+KDgBlpQkao3Ra326V/a/Kit3qTlP7gASkfF4NXEcQJUGbK6zDvfL0m/TGvWjmIDHOLBSpaw846Yxfyi16dvwt9oD7CUVcRwA+/nU4XO5zjhZu1h/xNcYG2N2d/N2kKzc5JcVU+iQ5Ii6os+JEyfucnUSBEEQDRmSlIQiGmo7w8WLFyUrDK2DalJSUtCmTRtV8fLy8jBo0CCkpqbi/HnbYZcPPPAAlixZ4hBhWFpaitGjR9coDNu1a4f4+Hhs3LgRQ4YMURXr7NmzSEhIwJNPPomtW7farAuCgDFjxqCoqAiRkZFo1qyZqngEQRCEbKyy8gEAbwKokPGMVVbuhUVWejotO4Vck5XGmP6AMJoxtrO2Z8gdQFI68b0nAO7aieiMLemVFX1IaltZeHoXNQN2fD7Wl/ga9eMhio8qlZWcsXQ5VZQtWfNogKv7YKUSDjF18KYkyYE3au6s9FsYddTXGBvTQjR7grF5YLio5BwOnqo0B8JlCGazuVEPGCUIgnA2JCkJpQw6cuSIh6uTqA1SwrBHjx7IycmB0WhEt27dVMUymUwYNWoUdDodjhw5YrNuFYb5+fl4/HF1n2X++OMPJCQk4KmnnsK2bdts1q3CsLCwEJGRkXB3d1ccy3rvZP/+/bFo0SKYzbbdUv7+/li/fj0yMjLQoUMHxbEIgiAIVZwGkASLrHwXloE7UtxYWZl99dl6BQPjWmP0Wu+s6AFXKytt2yFqQO4AEi6KdTnR2x5Votk8R2rT9pcWuIvMvKFUN3+HKdwwYXnYcsVtH9rs6bt9jfrxHOyRWsrKs2awf0ttulpF+Q+l+TmIg6cPn1smtalsQlqPDl3bHNwdYUjY9kKG4vaWHkumn9RmxcS3YO61lpUcvMDXGFugNDbhOgRBaJCFHARBEPUFkpSEUloIghDg6iTksnr1auh0Ohw9etRm7fbbb8dbb72F/Px8hISEqIpz6tQp6PV6PPXUU/j2229t1t3c3DBx4kQUFxc7TBgOGDCgRmE4cOBA5OXlOUQYFhYWYujQoUhMTERFhW1hTqdOnZCeno7c3Fx4eXmpikUQBEE4jN9haf/uBouslCNK3AG8CEtlZTaA7s5KTilWWeljjPG3yEpme9nzDcgdQGKKmBcKcJdO6GVgn/gtmf6L1D73S5U6gHcFuBcYFvVqeXS7WlnpmxVj8jXqx4tmsZ8sWclYep+saMl7UD2E5tNcXUUJxt+SU0VpdsPrADoyjtdbu1ftVSsrPRdHnfqLrASTfGHgBrcUpfEI18I5H9qYBowSBEHUNSQpCTU0mDeF1dW2n0nd3NwwadIkbNmyBREREXBzU9zZg6qqKvzrX/9CQEAAPv30U7uTrQMCArB+/Xqkpqbi9ttvVxwLsAjD0NDQGoVh586drwnDXr16qYp18OBB6HQ6jBs3Dvv22Q5Z9fDwgF6vR3FxMcLCwsAYfS4jCIKoh5zCX2WlnPvyrLLyRwALANzjrOSUYpWVWmOMvyAIT4Fhu719cgeQMC685tgMa42ZmSF5F+X2lxa4M8am//VXr8rKVkd+UCsr/ZZML7XKSoB9AsD2gw1jf1aD/UvqrLLJaXcIHP+nNBcHcfD3Q+c+ldpk0s15gFmqiQEAnKPDjbJye9g77ZQmYJWVVcKlB28tK1mxl/FVqqJsuNxz4sQJeltPEAShEJKUhGIYYw12eE7Hjh2xYcMGzJ49G7fddpuqs9avX4/g4GDMnj0blZW2VzJ169YNH3/8MZYvX46ePdUNUD148CDCw8Mxbtw4/PTTTzbrLVu2hF6vx5YtWxAWFmbnBPlUVFQgNTUVISEhyMvLs1lnjGHEiBEoKCiAXq9H8+bNVcUjCIIg6oSTsMjKBwFkQJ6sbAbgJQAHYZGVnZyWnQq8F0fna7P0AwVBeApg39+wJGsASZnO8DgHH+jEFOXwiXdOzAGpTc0vnXuRWYSzLRy9LLLyaFlJ+Lwpqu5XXDK9VGuMmSSAWWXltbYNxpEhp4pSNPMoDqibCqgSkfN35FRRAm7x4Nzm98sqK1u0bLZ3d4QhYWfEfMUfHvsunnVNVnKG2ezme2MZe1Pp2UT9oKEPGCUIgnAlJCkJNfieOnWqXn5RkeLOO+9UPajmp59+wt/+9jdERETgl19su7Jat26N+Ph4bNq0CU8++aSqWFZhOHjwYGzYsMFm3SoMN2/erFoYiqKI3NxcBAQEIDMzE1euXLHZ4+fnh88//xwLFizAPffUu8IagiAIQpojAKYBeAgWWXlZxjNWWXkAQDqAu52WnQq8F0fna40xAQIXngXY93IHkHDGZjk7NwnMGuYm6y5KCCxO8jTOuwuMZXbo1rZUraz0NsaUaY0xkwSBW2XlGbHqcqZkrmHvtIPrqyh/dbsoXUW5e9L8+8Ew7lZ7OHh7xvG6GxcdIit9s/Qpl67wXtdkJWNbtVnRm5SeSdQbGky3GUEQRH1DeX8rQQCsqqpqCIAlrk6kLvnzzz/xwQcf4KOPPkJVVZXNOmMMzz33HF5//XXcddddqmKJooiVK1ciJSUFv//+u909vXv3RnJyMvr166cqFgAUFxcjMTERe/bssbvesWNH6PV6jB8/HoJA7zgIgiAaAb/CIivTAMwCMAnSnw9bAogCMBnAIgBvASh3Yo6K8M6O/hrA13L2loYbBnPOXXzXNlvqlTVtv9SuZlfOvQBei3tCr8rK9l3bTC8Jnzf3zK/nsuRVFdrivTh2D4BJu8e/fbvv0tf+kMy1ZbNpAFfXsqISDvaWd26S7RvXm2BmPguwraKsgTsYx+tu4NNMEWkL+JXL8+T8ftij36exvwNI2THxrX97mJuruw+IqC8M2r9/f3NPT085L38IgiCIGyDLQKilybwpvLnC0J6g7N27N1avXo2MjAzVgnLLli0IDQ3FtGnT7ArKjh07Ys6cOfjyyy9VC8pjx44hKioKYWFhdgWlu7s7Jk+ejIKCAkyYMIEEJUEQROPjMICpADwBfARAjsRqBYusPADgHQANV7AwxLs4A7Mb55JVlMvDlmsYMF1qnz0Y0E1gLLND17Z71FZWyhFy28PeaccY/qk0hoM4orlQ8YnUpqtVlM/X/njeBpzHMvfm+00Raam7x7+t+O9A38WzTvXK1tve5UM0RFp6eHg0mAGjBEEQ9QkyDYRamsQEuxuF4enTp23WO3bsiPT0dKxduxYPP/ywqlg3CsO9e/farFuFYWFhoWphePHiRRgMBgwcOBArVqwA57ZDPENDQ1FQUICUlBS0aePawZwEQRCE0zkEi6zUwtIpYb7lbgutAcyARXS+A8CllXO1Ze/EtEEcCHRtFuy/cgSVV8sjL4Cjh7pYvKtFVrbZWxae9vL+VzKccql0i5bNXgHnLhbX7G05VZSCyGfau4tSPn+VlWWT0+5QfhbRGNBoNE2mkIMgCMKRkKQk1NLxt99+83V1Es7it99+u6UwbNGiBSIjI1FYWKh6svWFCxf+IgztERoaisLCQqSkpKB169aKY3HOsWbNGgQFBcFgMODyZdtuFE9PT3zyyScwGo3o2rWr4lgEQRBEg+RHAOEAfCFfVraBRVb+CousVDwJuS6pFvG6i1Mwu3H+jtSm5WHLNSIgfRelfLqIjBsuVVSVOlpWbnshoy1neNlR5ynkiHChQvJKorLw9C6c8/GOCWmRlaIZ+3fr5qUdeHGuurYaosFCw3MIgiCUQZKSUI1Go2l0P4StwjAgIOCWwnDTpk2Ij493iDAcNGjQLYXh0qVLYTQa0aVLF8WxAKCkpATPPvsspk6dit9++81m/bbbbkNycjLy8/MxePBgVbEIgiCIBs8eWGSlH4BcALYl97ZYZeXPAJLg4snOUlSjOgnAV66KzxlbLqeKspfHkeeZpR3f0VhlZVlZeNrLGyOSWqg9sINwuQU4vgRjiu6+dASc4V05VZScmeMBuDs2OG/NwCIvajR7d+vmpZmmvNfRoecTDYHeJ0+erJfDxQiCIOozJCkJ1XDOG007A+ccubm58Pf3r1EY+vj4YNWqVQ4ThiNHjpQlDIODg1XFKi8vR1xcHIYPH47vv//eZt3NzQ0TJkxAUVERpkyZAo1GoyoeQRAE0agoAzAWtZOV7QG8AYusnAHLwJ16Rx9j3BatUT8KAgaj7mWlqOGYK7VpedhyDWeY4eRc7hMZN3TgbVTLyh5Lpp/UGmOmaDSiFwfPhLzp8Y7kqEcb92ypTWXh6V044KAqSjtclZWoMpOsbHqw6urqx12dBEEQREODJCXhCAKPHTtWL7941IZdu3bhmWeewbRp03Dy5Emb9dtvvx3Jycn4+uuv0b9/f1WxbhSG27dvt1m33ju5bds21cKwqqoKCxcuRFBQEHJyciCKos2egIAArF+/HnPmzMEdd9A1SgRBEESNmGCRlX1gkZVy6ABL+/chWGSlh1MyU4l2sb5Ya9SP4lwMRl3JSsZyvY0xZVLberY6Oo4BD9ZFSgDuvVFWFoelKf735bUo9rCvMTZG4G4+dSkrOcccz/ejJGOJgvk1gDerg5Ra3SgryyIyqcKuadBoCjkIgiDqCpKUhCNoAZdfOK+c8vJyREVFYfjw4fjhhx9s1q3CcOvWrQ4ThoGBgTUKw8DAQKxfvx4pKSlo21Zdh1xeXh6CgoKQmJiIyspKm/Xu3btjwYIFWL58OXr27KkqVl1QXl6OwsJCV6dBEARBACWwyMoBAL6U+cyd+KusVN1W7Ax8s6dv1Rr1o0SGQXCurBQFjnelNi0PW64B5685MY+auFdk3NC6Jd9j0qVNVnOQd/a0X32NsTEQ4M3BMxnYJUcleTMc+M2jnXuW1D7TRMN94JjgrDxqoBUDixT5pT27dfPS9kyY36mO4xN1yxNNYcAoQRCEIyFJSTiKBvem8NKlS8jMzERgYGCNk60dLQwDAwORmJiIc+fO2azff//9MBqNWLZsGR566CFVsfbv34/x48dDp9Ph8OHDNuutWrWCXq/Hxo0bMWLECFWx6oIbq0E3b97s6nQIgiCI62wDMALAQAAbZD5zFyyy8icA01BPZaVfln6b1qgfJYpiEICvwGS1uNeGlXKqKL1aHQ2rwypKGxjQmaueKG5Bu1h/xNcYG8MF7uMsWckYk1VFyTibWUdVlPZoxcAiq93EPi6KT9QNd5eXl/u4OgmCIIiGhJurEyAaDQ1qeM7x48cRFBSEo0eP2l339PREUlKSQwbH7N+/H2+88QY2bdpkd71t27Z45ZVX8Pe//x3Nmqn7rHz27FkYDAZkZWXBbLYdxCoIAkaPHo2EhATceeedqmLVFd988w2Sk5Nx6NAhqa3n6yAdgiAIwj7FsLywDADwJoAQGc/cB+A9ADEA0gD8G3V/d6EkfkumfwtglCl8ri9nwkzGMBoc6qqjGLhoFiUnevOkJMH0C49zbSkWu+ChcUtz5InaxfojAGJKpmSksaorMQKEyRzcEbL6ROV5GKU2lUzJuJdXVYc7IJ5iGGM7fbKivwb0rkyDcDJXp3ybXJ0HQRBEQ4EqKQlHoT169Oi9rk5CLqdPn7YrKNu2bYv4+Hhs2LBBtaA8e/YsEhISEBISYldQCoKAMWPGoKioCJGRkaoEZXV1NXJychAQEIBFixbZFZR9+/bF6tWrkZGR0SAE5Y8//oixY8di0qRJcgQlIL/dkCAIgnAeRQAeh+UamE0yn+kCi6zcB+Al1NOX6Nrs6bt9jfrxEMVHObBSTWUl51jlt2R6qdS+0l/ajmGAt9I4joCDf+S5OOqUM872Wxh11NcYG9NCNHuCsXlguKjmPMbYu/65MZJnaKqqZ7iwihIAwDlLYWCOrs4l6hmNacAoQRBEXUCSknAYGo2mwU6w02g0CA8PR3FxMSIjI+Hu7q74LGtrcv/+/WsUhv7+/li/fj0yMjLQoUMHNamjsLAQQ4cORVxcHM6cOWOz3qlTJ6Snp2PNmjXo27evqlh1wR9//IFZs2Zh6NChKCoqkvvYpwAynJgWQRAEUTuKAAyGpbryO5nPdAWwAMB+NABZycEeUSQrGTgYe1tqG09KEuD8id63hIFdcjML70ntKw5L8yh5cW4rpXF6LJl+UpsVE9+CuauRleUV57FYalPJlIx7ObhOwfmOZJeP8dW6niRPuIZBR44cqZfDwgiCIOojJCkJh9FQ3xT6+/tj3bp1eOedd1RPtrYKw8TERFRUVNisW4Vhbm4uvLy8VMX65ZdfMHXqVIwbNw4//vijzbqHhwciIyNRUFCAsLAwMAutQrUAACAASURBVFa/7+22VoMGBQUhKysL1dXVch77CZa70MYDqHJqggRBEIQSNgB4DBZZuV3mM91gkZUmAOEAlE+scyK+WTEmX6N+vGgW+wHsEwC20/Ds87lvVoxk++fug+1Gg3OX3mfHwT/yyok+LrWvTUv8U6MRftodYUjYHvZOO6XxPBdHnfqLrAS7IPdZgbM5cqooharq6QCaK83RETDGZlMVZZOhhSAIAa5OgiAIoqFAkpJwJE9wzuvln6nbb7/d5te6dOmChQsXYsWKFaqF4cGDB6HT6TBu3Djs27fPZt3DwwN6vR7FxcWqheH58+dhMBgwePBgrFmzxmadMYYRI0Zg8+bNiI+PR6tWigsb6oyioiI88cQTiIuLw+nTp+U8chbATAC+oDZvgiCIhsAGAI/AIit3yHymJwAjgN2ox7LSb8n0Uq0xZpIAZpWVti0UVhg4RPEtqTM5OBOYONORedYWBnZJYxYk76IseXFuKw4ezTk6MI7XW7Rstnd3hCFhZ8T825TGtsrKKuHSgzJlZfnFFhUfS51bFpF5N5hrqyg5UObdrWKtK3Mg6pwGWchBEAThCuqlUCIaLB2OHTvm5+ok7BEYGHjtjslWrVrhtddew+bNmzFs2DBV51ZUVCA1NRUhISHIy8uzWbcKw4KCAuj1ejRvrvzFvSiKyM3Nhb+/PwwGA65cuWKzx9fXF5999hkWLFiAe++t/1eEHjp0CFOnTsXYsWOxd+9eOY+IAJYAeAjAu6iHAxYIgiCIW7IBQD8AzwDYKfMZL1hkZQmAMEDl0Bon4W2MKdMaYyYJAq9RVjKO1drs6bulziqNMIwCoHVGnnLhEP8jp4pSI2heYsC1y645eHvG8bobF1XLyr6LZ53SZsXEX74ienKG2QywbVOxMK/fR0mSVZciLs8Eh2tbbwX2JktKklt1SzQCGGMNasAoQRCEKyFJSTiaevlD2M3NDZ988gm+//57lJSU4JVXXnGIMAwMDERmZqZdYejn54fPP/8cCxYswD333KMmfezYsQPPPPMMpk2bhlOnbO+u79ixI+bMmYO1a9fi0UcfVRWrLrhw4QIMBgOCg4PtVoPWwCYAfWGppjnprNwIgiAIp8MBrMF1WVki8zlvAMtR32Xl4tg9dmUlAxfB35V6noMzcOE1Z+d5KxjYJXdNc8kqyo0RSS04+Ks1LN9hkZX8gCkiLXX3+Ldt21pk0u/T2N99s/Qpl67wXpxhNhj707rGwU5ebl65UOqMsojMuwEeoTQHx8D2aLtWyP7gQzQafE+dOtXJ1UkQBEE0BEhSEg5FEIR63c5wzz33oGXLlqrO2Lp1K4YOHSpLGD7yyCOqYh0/fhxRUVEYMWIEduyw7Y5zd3fH5MmTUVBQgAkTJkCjqZedcNfgnEtWg9rhCAAdLAMY5H6RJQiCIOo/Iiyysi+AsbBM95aDFhZZuRMWWVkvscpKiMLDV2Xl577G2B+knjNFGEYC3LcOUqwREeKinh+/ckxqXwe0nQrg7lvv4m3AeSxzb77fUbLygnjpmqwUGDfIqaI084txLq+i5EimKsomCauqqhri6iQIgiAaAiQpCYfCOQ88ceJE/b8EUQFWYThmzBjs2bPHZv1mYSgIyv96Xbx4EQaDAQMHDsSKFSvAue3d6qGhodi8eTNSUlLQpk0bxbHqip07d16rBj15UlYh5AUAbwJ4EEC2U5P7f/buPDqqKl3/+PdUEmYRB3BGHLBBBMShlSHMgRYEhxbo60C09RoVJUIEtTEBAnSjUrSg0I0XhCDtbQ3qrw2t1w4CGsC5FVARmYLMM4QpkKTO749NGjUFdZKqU6eSPJ+1WHddzt6132WjnDy197tFRMRLASAbc6y7P+Z2bydaY8LKjzGXqMWklq8OWdkya+jvVx666K5QY21sy7ItT2/0Bo7WiKs5IdSghfeOqgX2EOcf+/Ow8tv7J1b4tsIbZv9hd2lYWXDImhZq/IoHXjjHsqzfV3S9yLC+u+rSgn94W4N4KKY3coiIxIp4rwuQKqeGbdsdgfe8LiRSjhw5wtSpU3nppZc4ejR4C8SkpCQyMzO5+OKLw1rLtm3mzZvHmDFj2LRpU9Axl19+OaNGjaJr165hrRUt27Zt449//CNvvvlm0LA1CBuYCzwB/OhqcSIiEktKw8r/B/wXkAFc5mDejcA7wFJgJKbvZczpn93/5BfqHPdd8sQ+mJ2l3rGsV5ztojz9v7EDFTjCap+GzROBEuuh5ckTsuoE7PGXvzqsQm1cbpj9B0e37VFUPAwsT3dRWthjtYuyWuth27ZlWbrVXUTkVLSTUiLOtu0q8U2hbdvk5OTQqVMn/H5/0IDy8ssv529/+xtZWVlhB5TLly/ntttuIyUlJWhA2aBBAzIzM1mwYEGlCCgLCwuZMmUKiYmJJ90NGsQXQCJmJ40CShGR6qkIs4O+OabdxzqH89oBucBiIPb/ogwigOXpjd5gHfMF4pz1orQDQ8NayrbrWViDjsTFrVyePGHiigdeOCeszzuJNfc83wh897vx2Y5ZrGxxyYG3Pa1BvHbO5s2bPW3jICJSGWgnpbghJi/PKY/ly5eTnp7O559/HvR5gwYNGDp0KPfeey/x8eH9a7R9+3b8fj+vvfYagUDZL9jj4+P53e9+x5NPPslZZ50V1lrRkpubyzPPPMPGjRudTtmCOdo9HbOTRkREpDSs/DtwL2ZnpZOb6NoDHwBLgGcwF6/FvBUD/TeDfa3HZbzSYnZqyC8JG9qn328TOD8iKx4PKykquXd58oRZVkL8sy2nP749Ip8NHLGsJ8AOryF5mGwYp12UEhcX1wP1VxcROSXtpBQ3tNi8efNFXhdREdu3b2f48OH06tUraEAZHx/P3XffzeLFi3nggQfCCiiLioqYPn06HTt2ZM6cOUEDyg4dOvD+++/z3HPPVYqAcsWKFdx2220kJyc7DSiPAZMxu2VeRgGliIiUdQzzd8SlQArmiy0n2gMLMbsrf+1OaZET7/N9Y2HNwoSzHrCO4bND9qJc/djkmgECT7hQQN3jYeXK5ckTJprbuMNn+awtwJ5IfFYFK/i+ZZMDb3q3vsSKqnLaTETETQopxS2V6gY7p4Hhv/71L5577jnOPLPCvd4Bs9OwU6dOZGRkcODAgTLPmzRpwrRp03jjjTdo3rx5WGtFw969e0lPT6dXr158+umnTqfNw4STqUCBa8WJiEhV8cuwcqvDed2BTzFh5XXulBa+5rOG5F+VNTTFZ8dfaWNPAYI3wnaJBbNazkwL+Q1jYUHR7y2IzC7K4OpaWIMCduF3y5MnTPzu7j9XoO/lCVfNSnvBd/hAU59tpdlYFep9GRbb/qN2UcpxiVu2bPF0V6+ISKxTSCmusCyr0nxTmJubS8eOHU8aGF5yySX/CQybNWsW1lpr1qzh7rvvJjk5mfz8/DLP69SpQ1paGosWLaJPn5i9qPQ/SsPdtm3bMmPGDEpKQt4JALAS+A3mJlanfcZERERKHcWElU2BxwGnR4O7A59jwkpvL6c5hRazU39slfXEUHy0sLGnWFiFUVi2yBcfCLmL8tt+o2oA4fWidK6uhTWoJC6w6pt7J04JJ6xskT3qYIvZQ1+KO1zQ3GdbaTj/MxMeizUrj1w0NyprSWVQC9N7XURETkIhpbglybbtmP7ztWbNGu666y6Sk5PZsGFDmed169YlLS2NhQsXhh0Y7tu3j/T0dLp27cqCBQvKPLcsizvuuIOlS5eSlpZGjRo1wlovGvLy8khKSiIjI4OCAkcbIfdgfphsCbzvanEiIlIdHAImAZcDT+H8SG93zEVtOUAbd0oLX8uZaRtbZT0x1PbZV7kdVlqWlXXljCfKvgz9Qknt0+4DGrtVx0nUtG37gZL4wMrl9/r9y+/80xkV/aDSsDIQCJSGldsiWGcZlm2PdXKru1QrlWYjh4iIF2I6RJJK7eytW7fG5C6FnwaGCxcuLPPc5/NFLDAsLi5mzpw5JCYmMmPGDIqLi8uMadOmDe+88w6TJ0+mUaNGFV4rWtauXcs999zDgAED+OGHH5xMKcbsePkV5odJvayLiEgkHQSeBS7GhJV7HcyxgJs5EVa2dq26MJWGlSUJ8S1s7ClYHInwEkVxWM+HGvTFg9MSLAs3elE6Y1Pbsrm7pEYtO9yPav3qsEPHw8or3QsrrbU7NxzMjvznSiVX6S8YFRFxk0JKcVNM/SVcGhh26NDhpIHhNddc85/AsGHDhmGtt3jxYnr27Mnw4cPZvXt3mefnnnsukyZNYt68eVx7rdeXeYa2f/9+xo0bR9euXfnggw+cTpuP2aWSAuxyrTgREZGyYeU+B3N8mLDy38AbmC/UYlLr6YM3tcp6YmjtksAVWNaEiIWVlvVq81lD8kMNq3H0gBe7KH/phTazhjj539WR0rDyaM0DZmel5bjPaUg2gXFdFo0q+7Ip1V3LTZs2Xeh1ESIisUohZRCDBw9m1apVXpdRFcTMcYYffviBbt26MXz4cPbsKXsa7MILL+Svf/0r8+bN45prwtsAun79epKTk+nfvz8rV64s87x27dqkpaWxZMkS+vXrh2VZYa3ntkAgQHZ2Nh06dGDKlCkUFTm6dHQ10B/zZ+AbVwsUERH5uQOYsPIyYDTOLmfzAf2A7zBhZVPXqgvT5a8O29Fy1tARtayEphEIK4sCJSXPhRr0xYPTEix83u2iBLCs/cWW7y9ufPR1L4863GL20JdqnZbwq4BtD7Kd3yB/Mut2bzj4ekSKkyonLi6um9c1iIjEquocUp70qMhHH31EUlISI0aMYN++iH1ZWx2127FjRz2viwD45ptvWL16dZnfr1OnDsOGDeOjjz6ib9++Ya1x4MABxo4dS+fOncnNzS3z3LIsbr31VvLy8khLS6N27dphrRcNixcvJikpidTU1KC7QYM4iPmBsCWgI04iIuKlPcAoKhZWfgvMPj43JjWdOXhny1lDRxRZR01YiXW4vJ9hYf2t9avD1ocal1B4IBnsiytWaYTY9iQnuyiX3fN83You0fTFwUdbz35ietzhA+GFlZb9R+2ilJOxbTtmNnKIiMSa6hxS7uAUvfGKi4uZOXMm7dq1Y+bMmUGPBktINQKBQGeviwjGsiz69OnDokWLGDJkCLVq1arwZ5XuNExMTGTq1KlBdxq2bNmSt956i6lTp3L++eeHU3pU5Ofnk5KSctLdoEEEgFcxlxeMwty8KiIiEgt2cSKsfBYc7TxMAO4BVmLCykvdKi5c18z8gwkrfYVXlDOsLLFKcNiL0hoWZpnhsaz9dtGxqaGGfXXvnxv4fHGrViRPfGVF8nMVDphbZI869ouwcnM5pq/blX/wfyu6tlQLPWP9glEREa9U5/847gVCvkDs27ePESNGkJSURF5eXhTKqloCgUBMflN45ZVXMm3aNC68MLyWMJ999hk33XQTqamp7Nixo8zzRo0aMXHiRN577z1uuOGGsNaKhsOHD+P3++nSpQs5OTlOp30KtAMGAttdK05ERCQ8uzC9KptQsbByGnCBW8WFqzSsPHos0NS2GGuF3jn6txZzhq4J9bk1Cw/eY5l/Zp6xsV9s9drTIS9EiifwONgNwb4L4patSJ74yrd3T7y8ouv+JKxshs39WFbIXacB2x6vXZQSwtlbt2692usiRERiUXUOKQH+G/grDm4bXrVqFQMGDOC+++4jPz/f9cKqkJi6PKdUuH0gt23bxuDBg7nttttYsWJFmecJCQncf//9fPTRR/zud7/D54vtf9Vs2yY7O5t27drh9/s5etTRRshNQDLQFhNUioiIVAY7MGHlFcBkoNDBnBrAg8A6TFgZs8cirvvfJ3a1mpU2pvCY3dy2GItl7Q8yrCTOinfUixKfNdyFMh2zoIBjx14KNe6LfuNPx+bhn/xWAth3BeLsr1ckT3zlu3snVbjPaIvsUcdazk6b4ztU0Aqb+zF/DoL5Mf6IdlGKIzH5M5KIiNdiOzlxXyHwMKZ/3vtOJrz//vt06tSJ9PR0Dhw44GpxVUSzLVu2eH0TZMQcOXKEKVOmkJiYyNy5c7Htsq1NExMTmT9/PmPGjKF+/foeVFk+X3/9NX379j3pbtAgDmN6e12BOQJ30v6uIiIiMWwTkMqJsNLJN3S/DCvPc626MJWGlYcDhWXDSov/vXJWatlm3b9Q49jBu7DtS1wtNATb5iUnuyhr1KmRCjQI8igB7LtK7OLly5P9r60c6L+iorWUhpVHa9Y7HlZaa39WK9YfW2SPOlbRz5fqQ30pRUSCq+4hZamVwG+AvkDIYxxFRUXMmDGDtm3bMn36dEpKQm7ErO6qxDeFubm5dO7cmXHjxnHo0KEyzy+77DJeffVVXn/9dZo2jdlLQf+jdDdo7969+fLLL51MsTGX4VyJ6e0Vzm2iIiIisWIjJqz8FfAy4OSobk1MWLkamASc41p1Ybph9h92/zSstLB2xwd4NtS8N/q9EWeBp70oLSjwJVgvhhr3Rb/xp1sWj4QY5rPgt8UWy8INK697OaXIhJV1W5tj4KwBNsYdLvhbRT9TqhfLsjrEygWjIiKxRCHlz+UAzYDHgZDbJPfs2UNGRga9evXi00912vVkKvs3hStWrOC2224jOTmZjRs3lnl++umnM2LECBYsWEC3bt08qLB8CgsLmTJlCh07djzpbtAgvgQ6Av2BDa4WKCIi4o0NQArQFOdhZV1gMLAGGA+c6Vp1YSoNKwsOc1nz2Wk/hBp/ZZ2Nd2FT4X6OkWFPbTFj6J5Qo2rVqfEYtn2Gww/9WVi57Pcv/Kqi1f0nrKxR7+o4K/4m7aKUcqhRUlLS0esiRERijULKso5hvhFvhnlBDYSaECrEqu4sy0qybTvO6zrKa8+ePaSnp580hI6Pj+fuu+9m8eLFDBo0iISEBA+qLJ+f7gY9ePCgkylbMT+w3QAsdrU4ERGR2JCP+bvvCsy7oJMjM/WAJzFB53jAaWAWde2yh4Y8CfFGvzfiAuBpL0os6+AxX+helJ/cNbm+bfFoBVbwWfBbX0nJ1yuS/W9/83t/6wp8BmDCSifH50V+qrJv5BARcYNCypPbwolwZqmTCaGOA1djZ2zbtu1ar4twqqioiOnTp9O2bVtmzJgR9Dh/hw4deP/993nuuec466yzPKiyfL755htuv/12kpOT+fHHH51MKcL05yoN69XTQEREqpv1mHfBlsCrVCysDNYjMeY1r73xvyyzo9Qzts3Ua2b+YWeocXUTih8txy7KYHxAL7uET1Yk+9/+9t4/69ZliZYq0RJLRCSSFFKG9gXQAXPMNWS689OLVbKzs50epa3ybNuuFH8J5+Xl0b17dzIyMoJejNSkSROmTZvGG2+8QfPmzT2osHz27t1Leno6N910E5988onTafOA5pj+XAWuFSciIlI5rAQGAq0xvZmdvNydhgkr12L6OMf+TXrHvdHvjTjb4kmPyzhU7CucHGrQJ3dNro9tPxahNX1Ar4Ad+HhFsv/trwf620Toc0VO5srNmzdf5HURIiKxRCGlMz+9MGQ05lbwU9q2bRupqancfPPNTi8lqepi+jjD2rVrueeeexgwYACrV5c9rVOnTh3S0tJYuHAhffr08aDC8nGyGzSI74FeQB/MD1UiIiJywreYL63LE1aeCYzkRFh5mlvFRUqbc7fF+2zmWFi7PSvCsv7iZBdlnYTiR4h8H1Af0CvOx8crkv1vL7vvz9dE+PNFfiqmf0YSEYk2hZTlcwjzgnkF5thPSF999RW33HILgwcPZseOHW7WFuva7d69O+Z2Eezfv59x48bRtWtXPvjggzLPLcvijjvuYOnSpaSlpVGzZk0PqiyfvLw8evToQUZGBgUFjjZC7sFcFtUSeM/V4kRERCq/FZiw8mqch5VncyKsfBKo7Vp1YWr64uCjV81Oe7YkUNLUZ1tpwPYol3ColhX/QqhB3/YbVc+yK9SL0hkbC+jlswNLVyT7316ePKHStC6SysPn8ymkFBH5CYWUFbMRc+ynK7A81OBAIMDcuXNp164dfr+fY8eq5cV/8YWFhZ29LqJUSUkJM2fOpG3btkyZMoWioqIyY6677jreffddJk+eTKNGjTyosnzWrVvHwIEDGTBgAKtWrXIypRjTb7IZ5rIoJ7eYioiIiLEcE1a2w7RKcaIhpldlPjEeVrZ+ddihFrOHvhQIBJofDyu3RWNd27amNZ05OOQuSrtOvUfAbuh+QSastLCWLk/2v7finonXub6mVBu2bSfZtq2fyUVEjtN/EMOzEGgDJAMht0kePnwYv99P586dycnJcb24WBNL3xSuXLmSESNGsG/fvjLPzj33XCZNmsQ//vEPWreu8EWPUVNQUMC4cePo0qUL8+fPdzrtA+AazIUAIX8QEBERkZP6BNMqpTxhZSNMWPkDpgd0LXdKC99Pwsor3Q8rrcO14+Inhhr1bb9R9bCsVPfqCM6CrsTZi1ck+9/SBTsSIWdt3bpVLQVERI5TSBm+ADAb+BXwLBBym2R+fj4pKSn079+flStXul1fzIj1y3Nq1arF0KFDWbJkCf369cOyLK9LOqVAIEB2djYdOnQ46W7QINZgdn10xxxXExERkcj4GBNWdgAWOJxzIfACsAoTVsZsX5nSsLJW/YQrArY9CIutkV7Dxn7ZyS7KQJ3THrJtzo70+o6YnZW9bex2nqwvVVFM/4wkIhJNCikjZx/wFKav3z+dTFi8eDE9e/Zk+PDh7N7tXW/yKLpi27Ztl3hdRDBJSUksWrSIJ554gtq1Y/bk1X8sWbKEHj16kJqayq5du5xMOYS59OkqTP8sERERcccSoBuQCCxyOKcxJ8LKB4F4VyqLgKYvDj7aevYT02udlvCrgG0PsmFLJD7XwiqML/GF7EW57J7n69qml7aXthccYqbHNUjVETOnzUREvKaQMvJ+AG7G/GXzXajBxcXFzJkzh8TERKZPn05xcdVuCxgIBDz5SzguLi7o77ds2ZK3336brKwsGjduHOWqym/Lli0MHjyYfv368d13If94gWnm/ypwOebSp6MuliciIiInLAa6YN4JP3U452JgGrCaShJWxh0+EJGw0rYD066cMyTk7sz4OF+KZXp7esZnW8+1yx56xMsapEppt2PHjnpeFyEiEgsUUrpnPubWx8eB/aEG79u3j4yMDLp27cqCBU5PCFVKnoSUbdq0oUaNGv/5/xs2bMiECRN47733uOGGG7woqVxK+5m2b9+euXPnOp32GaY/1kCi1OxeREREypgP3Ih5B/rc4ZwmmLDyB0xYGfzb1hjQInvUsV+ElZvL+xkWVmFcIO7PocZ98eCoOiU2QytWacRsP1Kr4BWPa5CqpUYgEOjsdREiIrFAIaW7ijC3Jl8GTAZKQk1Ys2YNd999N8nJyeTn57tcnie627Yd9Rftxo0b8/rrr9OvXz+GDRtGXl4ed955Jz5fbP8rYNs2OTk5dOrUCb/fz9GjjjZCbsZc5nQjppm/iIiIeG8+8GtMWPmlwzmXYMLKFZgvHStDWNkMm/uxrPVO59oE/sfJLspax0570OtdlMCE614eddjjGqSK8eq0mYhIrInthKbq2I1phn498JGTCbm5uXTq1In09HQOHDjganFR1mD79u3Xe7HwDTfcwKRJkxgyZAj169f3ooRyWbZsGbfccgspKSls3uxoU8JhzOVNzTCXOdlu1iciIiIVMh/zTtgX+MrhnOZAFrAM6AfE7O1+LbJHHWs5O22O71BBK2zuB9adaryFVZgQVzPkjd4L7x1Vy+telDbWjqM1D0z3sgapsnR5jogICimj7SugE+alNOS3y0VFRcyYMYOOHTsyZ84cAoGA6wVGQ6zf8u217du3M3z4cHr37s0XX3zhdNo8oAXm8qaDrhUnIiIikWADOcC1mPfCZQ7ntQDeoBKFlUdr1jseVlprg40LEJjR7JXHQvazPNs+7UFszot8pc75LNuvXZTikmZbt25t4nURIiJeU0jpjRxOBEoht0mWhla9evXis88+c704t9m2reMMQRQVFTF9+nQSExPLE0r/G+gI9AHy3axPREREIq40rLwG6I+53duJlpiw8mtiPKy87uWUIhNW1m1tjoGz5iePj9aIqzkh1GcsvHdULSxve1FaFrusQ9pFKe6xbbu71zWIiHhNIaV3jmCO5jbH3L4c8mju8uXLue2220hJSWHTpk1u1+emG/fs2XO610XEktzcXDp27EhGRgYHDzraCLkbc+Tp10Ceq8WJiIiI2wJANnAlJqz8weG8VpiwcinmC8uY9Z+wska9q7G534bVWNYrTnZRNgrUf8DrXZQW+Ftkj9JpFXGNNnKIiCikjAWbMY3QbwA+DjX4lxepFBYWul6gC+ILCwu7eF1ELFi9ejV33nknycnJbNiwwcmUIswlTJdhLmUKeRmTiIiIVBqlYWVzTFi55tTD/+NG4B0qUVi5e8OBqxN8Remhxi+8d1StEstOi0ZtJ2Nh7Y7zFf+PlzVI1WdZVpIXF4yKiMQShZSx43OgPeZW5m2hBh85cgS/30/79u3Jzs7GtivXHSnV/ZvCffv2kZ6eTteuXVm0aJHTafOBqzGXMO13qzYRERHx3E93ViYT4vKZn2iLCSsXA13dKS0yuiwaVdzslSdDtj1qSP3fW3B+NGo6GRt7opNaRcJ0xrZt2671uggRES8ppIwtNuZW5suB0UDIbZJbt24lNTWVO+64g2+//dbt+iLG5/NVy8tzioqKmDNnDh06dGDGjBmUlDjaCLkK6A0kAd+5WqCIiIjEkiLMu2FzIAVzAseJ9sAHmLCysyuVRcHqxybXDNj2E17WYGHtTogrnuZlDVJ96IJREanuFFLGpkPAKExT9GwnEz7++GN69uzJ4MGD2blzp5u1RYRt25dv3779Uq/riKa8vDx69OjB8OHD2bNnj5MpezGXK7UC3nW1OBEREYllx4CXgUsxYWXI7Nl4AwAAIABJREFUPo7HtQcWArmY1kKVSuGB4vssuMDLGmyLP2sXpURRtT5tJiKikDK2rcH0I+oGLA81OBAIMHfuXNq1a4ff7+fYsWOuFxiOkpKSavFN4fr160lOTmbAgAGsWuXo0s4A5jKlX2EuV4rt/yFFREQkWn4ZVm51OK878AkmrLzendIizxewNoDl2SkSC2t3gq/or16tL9VSu927d9f3uggREa8opKwcFgDXYl5GQ26TPHToEH6/ny5dupCTk+N6cWGo0t8UFhQUMG7cOLp06UJubq7TaQuANpjLlGJ/S6yIiIh44SgmrGwKPI6DfubHdQc+w4SVMd/7rsXsIe9dlTXkGvDdblnWV1EvwLYnaRelRFl8YWFhZ6+LEBHxikLKyqMY8zLqeHfd+vXrSUlJYcCAAXz//fdu11cR3W3bTvC6iEgLBAJkZ2eTmJjIlClTnO5oXUs5ds2KiIiIYFoETcL0M38c2OFwXnfMpY05mC9HY5aFZbfMGvLPFrOGtAXf7cC/o7T0viKfT70oJep8Pl+V3sghInIqCikrn3L3KczLy6Nnz57l6YUYLfW3bNlSaY4cOVHaGzQ1NdVpb9BDmEuSrsJh/1ERERGRXygNKy/DvCfudTDHAm4GvsSEla1dqy4CSsPKq7KGtjNhpfWly0u+0GbWkH0uryFShi7PEZHqTCFl5fXTG59Xhhr801ulp0+f7vRW6WioEn8Jb926lcGDB5fnlnUb03fycswlSSFvchcREREJ4SDmxM3FmLDSSchWGlb+G3gDc2onZpWGlS2zhrbz+Xw3YfFF5Bex9hdbvr9E/HNFnLli27Ztl3hdhIiIFxRSVn7zMd98Pw7sDzV43759ZGRk0LVrVxYtWuR2bSFZllWpjzMcOXIEv99P+/btmTt3LrZtO5n2Oea2zYE47yElIiIi4tQBTFh5GebERsh3RMzPBf2A7zBhZVPXqouQFjOHLGg5K629z+e7CazPI/bBtj1JuyjFS4FAoFL/jCQiUlEKKauGIk4c8ZkMhNwmuXr1au68806Sk5PZsGGD2/Wdyg0bNmw4w8sCKsK2bXJycujUqRN+v5/CQkcbITcDycANwMeuFigiIiICezAnNkrDygIHc0rDyu8xYeXlbhUXKS1mDlnQMmtoB5/Pd5NlLgaqOMvabxcdmxqh0kQqSiGliFRLCimrlt1AKvBrIM/JhNzcXDp27Eh6ejoHDnhyeWFcQkJCFy8Wrqjly5dz6623kpKSwqZNm5xMOYLZzdAcmI056i0iIiISLbs5EVY+Cxx2MOenOytnA5e6VVyktJg5ZMFVWWmJPp/vJsuyPq3IZ9jYL7Z67WknPT1F3NTdtu04r4sQEYk2hZRV07+BjkBfID/U4KKiImbMmEHHjh2ZM2cOgUDA7fp+qVJ8U7h9+3aGDx9Or169+PxzxyeK5gEtMH2hPEmBRURERI7bhXknaYIJK484mJMA3IPpgT4NuMCt4iKlxcwhC66aNbRjMSVdbfjQ6TwLCjh27CU3axNxqMH27dur1AWjIiJOKKSs2nI4EZAdDDW4NITr3bs3X3wR+R7kp/CbaC5WXkVFRUyfPr28Ie5XQCegD7De1QJFREREymcnPw8rnfStqQE8CKzDhJXnu1VcpLTJGr6kVVZaj2JKugKLQo23bV7SLkqJFbrlW0SqI4WUVd9hzMtnM8xt0iGPGi9btoxbbrmFlJQUNm/e7HZ9AE02btwYk/2OSo/DZ2RkOD0OvxtzidH1wEeuFiciIiISnh2YsPIKTF/zow7m/DKsPM+16iKkTdbwJS2z0noWU9IVi4XBxlhQ4EuwXox2bSInY9t2pThtJiISSQopq4/NmNukbwQ+CTW49GKYjh074vf7OXrUyTtrxcXHx8fUN4Vr1qzhrrvuKs/FQkWYl/vLMJcYhby8SERERCRGbMT0Nb8CeBkodjCnJiasXI159znXteoipE3W8CUtZ6X95vjOynd//tSe2mLG0D2eFCYS3I179uw53esiRESiSSFl9fMZ0B5zy/S2UIOPHDmC3++nffv2ZGdnu1ZUrHxTuG/fPtLT0+natSsLFwb9oj2Y+UAbzMv9fteKExEREXHXj0AK0BTnYWVdYDCwBhNWNnKtugg5vrPytv+ElZZ18JhPvSgl5sQXFhZWqgtGRUTCpZCyegpgbmm8HBiNg6M9W7ZsITU1lTvuuIPvvvvOjZq62bad4MYHO1FcXMycOXPo0KEDM2bMoLjYyTs5PwA3Yy7++dbVAkVERESiJx8TVpburHRyQqQ0rFwLjAfOcKu4SCkNKwPx8a2vmfmHnV7XI/JLsbKRQ0QkWhRSVm+HgFHAVYCjbZJLly6lR48eDB48mF27dkWyltO2bt16QyQ/0KnFixfTo0cPhg8fzp49jk757MP0b2oJ/NPV4kRERES8sx4TVrbE9DZ3ElbWA54ENmDCygauVRchracP3uR1DSLB+Hy+mGqJJSLiNoWUAuZ4Tn+gO7Ai1OBAIMDcuXPp0KEDU6ZMoaioKFJ1RPUv4fXr15OSkkL//v35/vvvnUwJYF7Qf4W5jOiYm/WJiIiIxIiVmN7mrTHvQgEHc07DhJVrMV+Kq7eeSDnZtn359u3bL/W6DhGRaFFIKT/1AXAN5hvzkEdeCgoKGDduHF26dCE3NzcS60clpDx06BB+v58uXbqQk5PjdNpCzD+bgZibMEVERESqm285EVZmA7aDOWcCIzkRVtZ3qziRqqikpES7KUWk2lBIKb9UjOk91AxzW3XI5ozr1q0jOTmZAQMGsGrVqnDWvm7jxo1nhvMBpxIIBMjOzqZdu3b4/X6OHXO0EXIj5pKhrsAyt2oTERERqUS+wZzCuRrnYeVZnAgrnwTquFadSNWivpQiUm0opJST2YO5rbol8J6TCXl5efTo0YP09HQKCgoqsmZcfHx8t4pMDOXf//43t9xyC6mpqezc6agv+iHMpUJXYC4ZEhEREZGfW44JK9sC8xzOORvTqzIfE1bWdqUykaqju5cXjIqIRJNCSgnle6AX0BfzzfcpFRUVMWPGDNq2bcv06dMpKXHSX/2ESN9gt3XrVgYPHkyfPn348ssvHZWA2RFwJeZIUmEk6xERERGpgj4F+gDtcB5WNuTnYWUtVyoTqfzqb9my5XqvixARiQaFlOJUDtAceBwIuU1y7969ZGRkcNNNN/HJJ5+UZ52I9Fw5cuQIU6ZMoWPHjsydOxfbdnIKiS+ADpgdAT9Gog4RERGRauRjTFjZAdPr3IlGmLDyB8wpnprulCZSqakvpYhUCwoppTyKgEmYfpUv4+Bmx2+++Ybbb7+d5ORkfvzRUe53cbNmzWqEU2Rubi6dOnVi3LhxHDp0yMmULZjLgm4AloaztoiIiIiwBOgOJGIuH3TiIuAFTFj5IBDvTmkilY/P51NIKSLVgkJKqYitmFDv18BiJxNyc3Pp3Lkz48aN4+DBg6cc261btwo1Ul+xYgW33norycnJbNq0ycmUY5jLgRyHriIiIiLi2GLM5YOJwIcO5zQGpgGrUVgpAoBt279284JREZFYoZBSwvEl0BFzPHpDqMGFhYVMmTKFxMREsrOzT3oEOzExsVwh5Z49e0hPT6dXr1589tlnTqfNw4STqcCB8qwnIiIiIuWyGOiMuaX4c4dzmmDCytKdlXFuFCZSScTFxcV18boIERG3KaSUcP30opnRwJFQE7Zv305qaiq9e/cOepnNr3/969o1aoQ+8V1UVMT06dNp27YtM2bMcHpJz0rgN5h+SeudTBARERGRiJiPOYmThOkF7sQlmLByBTAQhZVSfUX0glERkVikkFIi5TDmNuwrgFcx4eUpff311/Tt25eUlBS2bNnyn9+vVauW79prrz3l3NK+kxkZGRw44Ggj5B7MpT8tgfedTBARERERV5SGlX2Bfzuc0xzIApZhwkr9HCPVTU+vCxARcZv+cpdI24R5cWwLfBpqsG3b5OTk0LFjR/x+P0ePHgWgY8eOQcevXbuWu+++m+TkZPLz853UU4TpN/krzKU/jrZbioiIiIirbCAHuA4TVn7tcF4LToSV/QDLlepEYk+TjRs3NvW6CBERNymkFLd8CrQDkoHtoQYfPnwYv99P+/btyc7OplOnTmXGzJw5ky5durBgwQKnNbyH2TmZAuxyXLmIiIiIREtpWHktps/59w7nXQW8gQk3FVZKtRAfH69bvquwPXv2eF2CiOcUUoqbAsBs4HJMv8qjoSZs2bKF1NRUxo4dS4MGDX727LvvvqO4uNjJuqsxPSd7AavKW7SIiIiIRF0A0+e8BSas/MHhvFaYsPJjzPufSJVl27b6UlZB+/btY8SIEaSkpHhdiojnFFJKNBzE9KtsiXn5DGnp0qXs37+/vOvsA546vs688k4WEREREc+VhpXNMWHlGofzbgDeAZaisFKqrq62bSd4XYRERnFxMTNnzqRdu3bMnDmzzIaciy66yKPKRLyjkFKiaTXmZbMXDo7y2HbIu3dKlWD6Tl4BPIuDHZsiIiIiEtNKw8orMe2D1jqc1xYTVi4GurlTmohnTtu6deuNXhch4cvLyyMpKYkRI0awb9++Ms8vuOACxo8f70FlIt5SSCleeA9zNGcoZvdjOD7ENFxPAXaG+VkiIiIiEluKMO2DmmPCyvUO57XH3CK+GOjiTmkintCR70osPz+flJQUBgwYwKpVZTuT1apVi0GDBrFo0SKuvvpqDyoU8ZZCSvFKEfBnzO7HaZT/1u18TJP0zji/DVJEREREKqfSsLIZ5svpzQ7ntQcWYMLKsjczilQ+ujynEiq9KLZLly7k5OQEHZOUlMSHH37IiBEjqFu3bpQrFIkNCinFazuBhzA3Oi5yMP4Q8Azm2/S57pUlIiIiIjHoGKbNz6WYsHKrw3ntMe+aucD1rlQmEh3Xbdy48UyvixBnbNsmOzubdu3a4ff7OXq0bGeyq666irfeeousrCz1oZRqTyGlxIplmKM4/YBdJxnzv8CvgHFAYZTqEhEREZHYUxpWXg48DmxzOK878BkmrLzOndJEXBUXHx+vfquVwNdff03fvn1JTU1lx44dZZ6fccYZZGZm8t5773HjjWo1KgIKKSX2zAUuwjQ8Lz0Cvgdz4c6dOD/aIyIiIiJV32FgEifCyu0O55WGlTnANe6UJuIO27bVlzKGbdu2jcGDB9O7d2++/PLLMs8TEhK4//77+fjjj3nggQeIi4vzoEqR2BTvdQEiQRQCt3hdhIiIiIhUGocwYeUMYBDwJHBGiDkWcDPQG/gnkI56nUvloL6UMaiwsJAZM2YwadIkDh48GHRMYmIiY8aM4YorrohydSKVg3ZSioiIiIhIVXEQeBa4GHgK2OdgTmlY+SXwBqa9kEgsu3jz5s36cxpDcnNz6dSpE+PGjQsaUF522WXMnj2b119/XQGlyCkopBQRERERkarmACasbIwJK/c7mOPD9Ef/DhNWKkmQWKbdlDHgm2++4fbbbyc5OZmNGzeWeX766aczYsQIFixYQPfu3T2oUKRyUUgpIiIiIiJVVWlYeRkwGihwMKc0rFyJCSsvd606kQry+XzqS+mhvXv3kp6ezk033cQnn3xS5rnP5+OOO+4gLy+PQYMGkZCQ4EGVIpWPQkoREREREanqdgOjMGHls5gLd0L56c7K2cfnisQE27a7rl69uqbXdVQ3RUVFTJ8+nbZt2zJjxgxKSkrKjGnfvj25ublMnjyZs88+24MqRSovhZQiIiIiIlJd7MIc/26CCSuPOJiTANyD2Vk5G7jEreJEyqFuvXr1bvS6iOokLy+PpKQkMjIyKCgouyn7/PPPZ9KkSWRnZ9O8eXMPKhSp/BRSioiIiIhIdbOTn4eVhQ7mlIaV3wPTgAvcKk7ECdu2deQ7CtatW8fAgQMZMGAAP/zwQ5nnderUIS0tjSVLltCvXz8PKqwcli9fzmuvvRa0d6dIKYWUIiIiIiJSXe3AhJVXAJNxFlbWAB4E1mHCyvNcq07k1HR5jov279/PuHHj6NKlC/Pnzy/z3LIs+vTpw4cffkhaWho1a+r0fTCbN2/moYce4qabbuKJJ56gW7du5Ofne12WxCiFlCIiIiIiUt1tBFKBX2HCyqMO5pSGlWuAScC5rlUnEty1W7dubeh1EVVNcXExWVlZtGvXjilTplBUVFRmzLXXXsu8efOYNm0aF1ygTdXBHDlyBL/fT2JiIu+88w62bQNw8OBB3n33XY+rk1ilkFJERERERMT4kRNh5ctAsYM5dYDBnAgrz3GtOpGf8wUCga5eF1HVrF69mqeffpq9e/eWeXbOOefw3HPP8Y9//IM2bdp4UF3lkJubS+fOnfH7/RQWlt2gfvSok++BpDpSSCkiIiIiIvJzG4AUzDFwp2FlXU6EleOBM1yrTuQ4y7LUlzIKatWqxeOPP86SJUu4++678fkUpQSzfPlybrnlFpKTk9V7UipE/2aJiIiIiIgEtx4TVrYEXgVKHMypBzyJCTrHAw1cq04EenpdQFWXlJTEokWLGD58OHXq1PG6nJi0Z88e0tPT6d27N59//rnX5UglppBSRERERETk1L4HBgKtMGFlwMGc0zBh5Y+YsPJ016qT6uzCLVu2NPe6iMrsZLsiW7RowZtvvklWVhaNGzeOclWVw7Fjx5g6dSpt27ZlxowZlJSU/R4nMTFRR+PFMYWUIiIiIiIiznyHCStbA9mA7WBOaVi5FhgF1HerOKm2dMt3GNq0afOzm7nPOussnnvuOf7v//6Ptm3belhZbMvLyyMpKYmxY8dy4MCBMs+bNGnCtGnTeP311zn//PM9qFAqo3ivCxAREREREalkvgH6Y46BpwN3AFaIOWcBI4FBwATgReCwizVK9ZGEubRJKuCCCy7gjTfe4G9/+xuNGzfmgQceoH59fZdwMmvXrmXUqFF88MEHQZ/XqVOHhx9+mEcfffRn4a+IEwopRUREREREKmYFJqxsDYwA+jmYczbm+Hca4AcmA0fcKlCqhc6rV6+u2bRpU12ZXEHXX389119/vddlxLT9+/fz0ksv8fLLL1NUVFTmuWVZ/Pa3v+WZZ56hUaNGHlQoVYGOe4uIiIiIiIRnGSasbAvMczinISaszMccB6/lSmVSHdStV69eO6+LkKqpuLiYOXPm0KFDB6ZMmRI0oLz66qt55513mDx5sgJKCYtCShERERERkcj4BOgDtAfmO5zTCBNW/gCkorBSKsC27SSva5CqZ/HixfTs2ZPhw4eze/fuMs/PPfdcJk2axD//+U+uvfZaDyqUqkYhpYiIiIiISGQtxfQJTAQWOJxzEfACsAoTVqqZm5SHLs+RiMnPzyclJYX+/fuzcuXKMs9r1arFoEGD+Oijj+jXrx+WFaolr4gzCilFRERERETcsRjohgkrP3Q4pzEnwsoH0T0C4kybbdu26ZythOXw4cP4/X66dOlCTk5O0DFJSUksWrSIESNGUK9evShXKFWdQkoRERERERF3LQY6Y3ZXfuZwzsXANMwx8AeBOFcqk6rCV1JS0s3rIqRysm2b7Oxs2rVrh9/v5+jRsncwXXXVVbz11ltkZWXRuHFjD6qU6kAhpYiIiIiISHTMB27AhJVfOJxzCSasXAEMRGGlnITP51NfSim3r7/+mr59+5KamsqOHTvKPD/jjDPIzMzkvffe48Ybb/SgQqlOFFKKiIiIiIhE13zgekxY+W+Hc5oDWcByTFipn+XkZ2zb7mHbtpoDiiNbt25l0KBB9O7dmy+//LLM84SEBB5++GE+/vhjHnjgAeLi9P2IuE9/sYmIiIiIiHhjPnAd0Bf4yuGcKzFh5TKgH6BQSkpdsG3btiu9LkJiW2FhIRMnTqRDhw68/fbb2LZdZkxp38n09HTq168f1no5OTl89pnTLhdS3SmkFBERERER8Y4N5GDCyv7A9w7nXQW8gcJK+QnbtnXLtwRl2zbvvPMOiYmJTJgwgSNHjpQZ07RpU1577TWysrK45JJLwlrv22+/5fbbbyclJYWdO3f+7FnNmjXD+mypuhRSioiIiIiIeC8AZAMtMGHlDw7ntcSElV9hwkqp3tSXUspYsWIFt99+Ow899BCbN28u8/z0009nzJgxzJ8/n86dO4e11q5duxg2bBg9e/bkk08+KfO8du3aJCXpj6kEF+91ASIncQHmhasxcBZw+vHf3wcUAD9i+vH86El1IiIiIiLuKA0r3wR+C4wDmjqY1xoTVn4C/BGzO1Oqn84bN26sfdFFF5XdJifVzq5duxg/fjx///vfCQQCZZ7HxcVx9913M2zYMM4888yw1ioqKuKVV17hz3/+MwUFBUHHtG/fnrFjx9K0qZP/pEl1pJBSYoUP6Il5EesFnOdw3m7gfeAfwLvAQVeqExERERGJrtKw8v8B/wVkAJc5mHcj8A6wFBiJ6Xsp1Udty7LaAR94XYh4p6ioiKysLCZMmHDKwDAzM5PmzZuHvV5eXh4ZGRmsWrUq6PPzzz+fJ598kn79tNlbTk0hpXgtHvg98DTQpALzzwLuPP5rH/Ay8CKwKUL1iYiIiIh4qQiYDfwvJqwcCVzqYF47IBdYggk4F7hVoMSWuLi4JBRSVlt5eXmkp6fzww/BO0ZEMjBct24do0ePJjc3N+jz2rVr88gjj/Doo4+qD6U4opBSvNQK88LVOkKf1wAYfvz/pkToM0VEREREYkFpWPl34F5M8HiBg3ntMYHVEmAE8KFL9UmMsG27J/CU13VIdK1bt45Ro0Yxf37wzdN16tTh4YcfjkhgWFBQwIsvvsjLL79MUVFRmeeWZXHzzTeTkZHBBRc4+c+UiKGQUrzyX8BMQF+niIiIiIg4dwxzemgWJqwcCZzvYF57YBHm+PcI4DNXqpNY0Hrnzp3nNWzYcKvXhYj7ohkYBgIB3nzzTcaMGcOuXbuCjmndujVjxozhuuuuC2stqZ50u7d44SHgbyigFBERERGpqNKw8lLMKaJtDud1Bz7FHAVXilA1WUVFRd28LkLcFQgEyM7OpkOHDkyZMiVoQNm6dWv+8Y9/MG3atLADyqVLl9KjRw9SU1ODBpTnnHMOzz33HP/85z8VUEqFaSelRNtvgSmAVY45h4GNwC5MsH4W5mKd0yJenYiIiIhI5XIUE1b+DXgA0+v9HAfzuh//NR94Evi3WwWKJ5KAOV4XIe5YsmQJGRkZrFy5Mujzc845h7S0NO688058vvD2pm3ZsoXx48czd+7coM8TEhIYOHAgw4cP57TT9CO6hEchpUTTJcAMnO3gDWD+Un0VyMO8fP2UD7gS6Ii5NKd95MoUEREREal0DgGTMO/bgzC92s90MK878AXwT0yfy6/cKlCiqodt25ZlWbbXhUjkOA0Mn3zySerVqxfWWkeOHGHq1Km89NJLHD36yx/HjaSkJDIzM7n44ovDWkuklEJKiabJwOkOxn0PDACWn2JMAPjm+K+pwNWY5tADwqxRRERERKQyOwg8izm9NAjzjtwgxBwLuBnoBbyJCSu/d7FGcd+5mzZtasmpf6aSSuLw4cP85S9/CRkYjhkzhsaNG4e1lm3bzJs3j8zMTDZv3hx0TNOmTRk9ejSdO3cOay2RX1JPSomWRMyLTyhfAB0o/1+mXwO/A7oCwfe8i4iIiIhUH6VhZWNMULnfwRwf0A/4FngDuMK16sR18fHxPbyuQcJj2zY5OTl06tQJv98fNKBs2rQpr732GllZWWEHlMuWLeOWW24hJSUlaEDZoEEDMjMzWbBggQJKcYV2Ukq0PO5gzF5Mz8rdYayz8PgvERERERGBA5iwcjrwGDAEqB9iTmlY+VvMzsoRwGoXaxQX2LadBEzwug6pmGXLlpGens4XX3wR9HmDBg0YOnQo9913H3FxcWGttX37dvx+P6+99hqBQKDM84SEBAYMGMBTTz3FmWc66SIhUjEKKSUaTgd6Oxj3FPCjy7WIiIiIiFRHu4FRwEvAo8BQQl9EWRpW3gr8HRgNrHWvRImwjhs3bqx90UUXHfG6EHHOSWA4cOBAhg0bRv36ob5vOLWioiKysrJ4/vnnOXDgQNAxiYmJjB49mmbNmoW1logTOu4t0dATqBlizE5gdhRqERERERGpznZhwsrLMDssnQRYCcA9mLZKs4FL3SpOIqpWXFxcotdFiDNFRUVMnz6dxMRE5syZEzSgTExM5F//+hdjxowJO6DMzc2lY8eOZGRkBA0oL7nkEqZNm8brr78edkC5cuVKkpOTadWqFSNGjKCkpCSsz5OqSzspJRpudDDm70Ch24WIiIiIiAhgNgk8BUzE7KocDNQOMac0rBwAzAIygeA3a0hMOH7k+19e1yGnlpubS3p6Oj/+GPxg4aWXXsrIkSNJSkoKe63Vq1czcuRIFi1aFPR53bp1eeihh3jssceoUaNGWGvt3buX559/njlz5lBcXAzAzJkzuf7667n11lvD+mypmhRSSjS0cjBmietViIiIiIjIL+3AhJUvAcOAB4FaIebUOD7uXkxYORrY4lqFUmE+n68H5n9XiUGhAsP69evz2GOP8d///d9hB4b79u3D7/cza9asoDsZfT4ft99+O+np6TRs2DCstYqLi8nKymLChAns31/2zq78/PywPl+qLoWUEg0XOxjzpetViIiIiIjIyWwCUgE/kAakELplU2lYmQxkASOBbS7WKOVk23bLnTt3ntewYcOtXtciJzgNDDMyMjj77LPDWquoqIjXX3+d8ePHs2fPnqBj2rZtS2ZmJi1atAhrLYAPP/yQkSNH8sMPP5x0jG3bYa8jVZNCSokGJ/9V3eF6FSIiIiIiEsqPmLByIvAH4PeE/rmxJiasvAuYAfwR2O5ijeKcVVxcnIT6/8eE0otqJkyYQEFBQdAx7dq1IzMzkyuvvDLs9fLy8hg5ciTff/990OfnnXceTz31FHfccQeWZYW1Vn5+Pn/605/IyckJ63OkelPGwVaTAAAgAElEQVRIKdEQqrdNCXAwGoWIiIiIiIgjGzC7Kf8EPI2zsLIuprfl74EpwHNA8K1bEjXH+1IqpPRYXl4eGRkZrFq1KujzSAaG69evZ/z48ScNDGvXrs0jjzzCoEGDqFUrVHeHUztw4ACTJk3if/7nfygqKirz3LIs6taty8GD+pFfQtPt3hINofZy+9CfRRERERGRWJSPCSuvAF7GbDAIpR7wJCboHA80cKs4cSTJtu3wUi+psHXr1pGcnMyAAQOCBpS1a9cmLS2NpUuX0q9fv7ACykOHDuH3++nSpUvQgNKyLPr06cOHH35IWlpaWAGlbdtkZ2eTmJjI1KlTgwaULVu25K233qJTp04VXkeqFwVDEg2HQjy3gNOjUYiIiIiIiFTIekxY2Qp4lfKFlT9iwkq983vjnM2bN7f2uojqpqCggHHjxtG1a1dyc3PLPC8NDD/66CPS0tKoWTNUC9iTCwQCZGdn065dO/x+P8eOHSszplWrVrz99ttMmzaNCy+8sMJrAXz11Vf07duX1NRUduwo27ntjDPOIDMzk3fffZcbbrghrLWketFxb4mGbcBZIcacD+yOQi0iIiIiIlJx3wEDgWcxF+Xcgdl0cCqnYcLKBzC3iE8EgjfkE1dYltUD+NrrOqqDQCDAm2++ydixY9m5c2fQMa1atWLMmDFcf/31Ya/38ccfk5GRwbfffhv0+TnnnENaWhp33nknPl94+9S2bdvGH//4R958882gl98kJCQwcOBAhg0bRv369cNaS6onhZQSDflAqGvCbgBWuF+KiIiIiIhEwLdAf6AlkI6zsPIsTLA5CNOz0g8ccLFGOc6yrCRMj1Bx0ccff0x6ejrfffdd0OeRDAy3bt3Kn/70p5CB4fDhwznttNPCWuvIkSO88sorvPDCCxw6FPygZGJiImPHjqVp06ZhrSXVm0JKiYZ/A71DjOkMTHe/FBERERERiaAVmLCyFfAMzsLKszFh5SOYoHIycMTFGgUSt23bVvfcc88N1YpLKiDageHUqVOZMmUKhYWFQcckJSUxevRomjRpEtZaALm5uTzzzDNs3Lgx6PPLLruMUaNG0a1bt7DXElFIKdGwxMGY3wJDgOD74UVEREREJJYtx4SVNwIjgJsdzGmI6VU5FHMEXGGle2oGAoFE4P+8LqQqcRoYZmZmcvHFF4e1lm3bzJs3jzFjxrBp06agYy6//HJGjRpF165dw1oLYMWKFWRkZPDpp58GfX766afz6KOP8uCDD5KQkBD2eiKgkFKiYyGwj1Pf6lcL83LydFQqEhERERERN3wC9AHaAn/AWVjZCBNWPgpMAKYBwRMfCUcSCikjwmlgOHr0aLp06RL2esuXLyc9PZ3PP/886PMGDRowdOhQ7r33XuLjw4t59u7dy8SJE5k1axYlJWXvx4qPj+d3v/sdTz75JGedFerqCZHyUUgp0XAMeA1znONUngDm4Wzn5anEA8VhfoaIiIiIiFTcx5iwsj2QCTjZ2nUh8AIndlb+FTjqVoHVUA+vC6gKohkYbt++Hb/fz2uvvUYgECjzPJKBYVFREVlZWUyYMIGCguD3WnXo0IHRo0fTvHnzsNYSORmFlBItLwAPcuo/c/HAm0AvTB/L8qoJpGGOjQypwHwREREREYmsJUA3oAMwBtOLPpTGmJ8fhgB/BF5BmxAi4apNmzZdeOGFFwbf+ien5DQwfOqppzjzzDPDWqs0MHz++ec5cCD43VKRDAzz8vJ45plnWL16ddDnTZo04emnn6ZPnz5hryVyKgopJVpWA1OBwSHGnQMswuyqdPoychpwD+Yb18uAlytcpYiIiIiIuGEx0AX4DTAa+LWDORdjjn7XBF50r7TqIy4urjswy+s6KhOngWFmZibNmjULe73c3FxGjhxJfn5+0OeRDAzXrl3LqFGj+OCDD4I+r1OnDg8//DCPPvooNWvWDHs9kVAUUko0pWN2SV4eYtxpmJeRNMwx8feBdZhLdSzMbYDnYfrcJGL63NR3p2QREREREYmg/zv+qztml+T1IcbvQqFaxNi2nYT+eTqWm5tLRkYGGzZsCPr8kksu4amnnopIYLhmzRpGjRrFggULgj4vDQwfe+wxatSoEdZa+/bt4/nnn+fVV1+luLjsviCfz0e/fv14+umnadSoUVhrFRcXs2/fvrA+Q6oPhZQSTQVAP+BDnIWKVwCjjv8CCAA+NwoTEREREZGomn/8V3fMpTnXnmTcc0Dw7WtSET1s2/ZZllX2vLL8x5o1axg5ciQLFy4M+rxu3bo89NBDEQsM/X4/WVlZJw0Mb7/9dp555pmIBIavvvoqEyZMYO/evUHHXHfddYwZM4bWrVuHtRbA4sWLGTlyJCtXrvzZ71uWFfZnS9WkkFKi7WugL5CD2TFZHgooRURERESqlvmY3ZQ3Y46Bt/nJs53AX7woqgo7e+vWrVdTsTsAqjyngWF6ejoNGzYMa63i4mL+/ve/8+yzz7J79+6gY9q0aUNmZibXXnuyDN+5vLw8Ro4cyffffx/0+XnnncczzzzDrbfeGnaImJ+fz5gxY3jvvfeCPr/ooovC+nypuhRSihc+xBzT/n9AE29LERERERERj9mYTQzzMGHlGKA18CfgoId1VVU9UEj5M6WB4fjx49mzZ0/QMddccw2ZmZlcc801Ya93sh2Gpc4991yefvpp7rjjjogEhqNHj+b9998P+rxWrVo88sgjDBo0iNq1a4e11sGDB5k8eTIvv/wyx44dCzqmf//+3HLLLWGtI1WXQkrxyjLMi8dE4D4iu0vySAQ/S0REREREoqM0rHwX0ybqH96WUzUd70s53us6YsXixYvJyMg45Q7Dp556KmKB4Z/+9CdycnKCPq9duza///3vefzxx6lbt25Yax0+fJi//OUvvPTSSxw9ejTomKSkJMaMGUPjxo3DWsu2bebNm8fo0aPZsmVL0DFXXXUVmZmZ3HjjjWGtJVWbQkrxUgHwADAZeBq4HahoQw8b+Aj4M+bFRkREREREKqcS4O9eF1FVWZbVYceOHfUaNWpUrXeprl+/nvHjx0c1MHzxxRdPusMwKSmJsWPHhn0U2rZt5s6dy7hx49ixY0fQMZEMDL/++msyMjL44osvgj4/44wzGDJkCPfddx9xcXFhrydVm0JK+f/s3Xl8VPW9//H3mSQsslMFUamgAqLiwqZCwh6sFqwLoLWaaK1SEYhVWbwyk2QGBKvxioC0Cl7Ser0o4d5HG6rXBpVfAy7sgogIRZQ1bEIgC5lkzu+PMZRrhpkJJ3NOltfz8fDxqPl+znw+nkzpw3e/53xrg02SfimpnaSRkm6R1FfSpRGu26Pgjsz3JP1V0u4YzggAAAAA9UGjioqKAQruWG1wioqK9Ic//CFiYDhjxgxdcskllnoFAgEtXbo0bGDYo0cPeb1e3XjjjZZ6ScHA0O12a926dSHXazIwLCgoUFZWlt566y0FAlXPYUpISFBKSoomTZqkli2jOTcXIKRE7XJQ0sIf/pKCJ4B3lNReUmNJCZKOK7gDc5ek0MeRAQAAAADO6odHvhtUSFkZGE6fPl2HDh0KWXPttdfK6/Wqb9++lvtt2LBBHo/nrIFh27Zt9cQTT9RIYHjgwAE999xzWrp0qUzTrLJek4FhaWmpFi5cqNmzZ+vkydCbcZOSkuT1etWtWzdLvdDwEFKiNiuUtOWHvwAAAAAANWO40wPYaf369UpPTz9rYNi+fXs99dRT+uUvf2lbYDh58mS1aNHCUq9oA0Ofz6euXbta6iVJeXl5crvd+u6770KuX3bZZUpPT1dycrLlXmiYCCkBAAAAAGhYrtq7d2/Hiy++uF6/Mmv//v2aOXOmLYFhSUmJ3njjDb388ssqKioKWZOUlKTp06erS5culnpJ0QWGGRkZGjZsmOVeX3zxhTwejz799NOQ6y1bttSECRP0yCOPqFGjcz1mAiCkBAAAAACgIUqW9IbTQ8RCNIFhcnKyMjMz1alTJ8v98vLyNG3aNO3eHTrzvfzyy5WRkaGhQ4da7hVtYPjoo48qISHBUq/vv/9eL730khYtWqSKiooq6y6XS3fddZc8Ho/OP/98S70AiZASAAAAAIAGx+Vy1cuQMi8vT88++6z27NkTcv2KK65QRkaGhgwZYrnX5s2b5fF49Nlnn4Vcb9WqlcaPH1/nAkO/36/s7Gy9+OKLKiwsDFnTr18/eb1eXXXVVZZ6AWcipAQAAAAAoIExTTPZNE2XYRhVj2auo+68886zBoZt2rTR008/rQceeEDx8daikIMHD2rWrFl65513Qp5sHR8frwceeECTJk1S69atLfWKJjDs37+/vF6vunfvbqmXJOXn58vj8Wjbtm0h1y+66CJNmTJFo0ePttwL+DFCSgAAAAAAGp6f7N+/v6ektU4PUlPWr19f5Wfx8fFKSUnR008/bTkwLCsr04IFCzR79mydOHEiZE1Nnmydn58vt9utr7/+OuR6TQaGO3fuVGZmpvLy8kKuN23aVOPGjdP48ePVuHFjy/2AUAgpAQAAAABomIarHoWUP1aTJ1u///77yszM1K5du0Kud+rUSenp6brlllss99q5c6cyMjK0fPnykOvnnXeeHnvssRoJDAsLCzVnzhy9/vrrKisrq7JuGIZGjBghj8ejiy++2FIvIBJCSgAAAAAAGqZkSc85PUSseDweywHltm3blJ6ern/84x8h15s3b660tLQaOdm6MjB87bXX5Pf7q6zXZGAYCAS0dOlS+Xw+HT58OGTNddddJ6/Xqz59+ljqJUkbN27Ul19+qcTERP30pz+1/HmonwgpAQAAAABomPodPHiwebt27U46PUhtc/z4cc2dOzdsYHj33Xdr2rRpateunaVe0QaGPp9PvXv3ttRLkj7++GN5PB59+eWXIdfbt2+vp556Svfdd59cLpelXnv27JHP51Nubq6kYKj7/vvvq3PnzpY+F/UTISUAAAAAAA1To0AgMEjSMqcHqS3Ky8u1ePFiPf/88zpy5EjImuuvv14+n0+9evWy3G/VqlVKT0+3JTDct2+fZs2apZycnJDrCQkJSklJ0eTJk9WiRQtLvYqLizVv3jzNnz9fpaWlp39+8uRJvffeexo3bpylz0f9REgJAAAAAEADFQgEkkVIKUlauXKl0tPTtXXr1pDrF154oZ555hmNGjVKhmFY6hVtYDhlyhQ1b97cUq+SkhK9+uqrmjt3rk6dOhWyJjk5WV6vV5deeqmlXqZpatmyZfL5fNqzZ0/ImrPNABBSAgAAAADQcA13egCn7dq1SzNnzjz9SPKPNWnSRA8//LDS0tIsB4bFxcWaP39+xMDQ5/NZfndjZWDo9Xq1d+/ekDVdunRRZmamBg0aZKmXFHzvpNvt1rp16yx/FhomQkoAAAAAABquK/fv39+pQ4cOu5wexG71OTD8/PPP5fF4tGbNmpDrrVu31pNPPqmHHnpIcXFxlnoVFBQoKytLb731lgKBgKXPQsNGSAkAAAAAQANmmuYwSQucnsMupmkqJydHM2bM0MGDB0PWXHPNNfJ6vbrpppss9/v888/ldru1du3akOt2BoYJCQm65557NHXqVLVt29ZSr7KyMr322mt65ZVXdPJk6LOXBg4cqMLCQm3YsMFSLzQMhJQAAAAAADRsw9VAQspIjyS3adNGv/vd72wLDFNSUjRp0iS1bNnSUi+/36/s7Gy98MILOnHiRMiapKQkZWZm6sorr7TUS5Ly8vKUnp6uXbt2hVzv1KmTnnnmGY0cOVKPPPIIISWiQkgJAAAAAEDDNsw0zTjDMCqcHiRWDhw4oOeee05Lly6VaZpV1mMRGP7+978/6w7DpKQkeb1edevWzVIvKRgYejweffvttyHXO3furKlTp2rkyJGWe+3YsUMZGRn68MMPQ66fd955euyxxzRhwgQ1atTIcj80LISUAAAAAAA0bG0KCgp6S/rM6UFqWmlpqRYuXKjZs2eHDQx9Pp+6du1quV9eXp7cbre+++67kOuXXXaZ0tPTlZycbLnX9u3blZ6erhUrVoRcb9asmX7729/WSGB47NgxZWVlKTs7W+Xl5VXWDcPQ3XffrWnTpqldu3aWeqHhIqQEAAAAAKCBM01zuOpZSPnee+/p7bfftuWgmkiBYcuWLTVhwgQ98sgjNRYYLlq0SBUVVTe/ulwu3XXXXXK73brgggss9SovL9fixYv1/PPP68iRIyFrbrjhBnm9XvXq1ctSL4CQEgAAAACABs40zWRJPqfnqEkvvfRSyJ+3atVK48eP16OPPqqEhARLPewMDP1+v95++23NmjVLR48eDVnTs2dPeb1e9ezZ01IvSVq5cqXS09O1devWkOsXXnihnnnmGY0aNUqGYVjuBxBSAgAAAACAm48ePdqqbdu2x50eJFbi4uJ0//33a9KkSZZPto4mMLz55pvl8/l01VVXWeolSfn5+UpPT9dXX30Vcr1Dhw6aOnVqjQSGu3bt0syZM5WbmxtyvWnTpvr1r3+tJ554Qs2aNbPUCzgTISUAAAAAAIgvKSkZJOkvTg8SC/3795fX61X37t0tf1Z+fr48Ho+2bdsWcr0mA8NvvvlGs2bNChsYjhs3To8//riaNGliqVdxcbHmz5+vOXPmqKysLGRNcnKypk+fro4dO1rqBYRCSAkAAAAAACQpWXU4pExISJDf7/8/P7v00kvldrt12223Wf78b775RhkZGcrLywu5XhkYjh8/Xo0bN7bUq6ioSH/4wx/OGhgahqERI0bI7XbrkksusdTLNE3l5ORoxowZOnjwYMiaHj16yOv16sYbb7TUCwiHkBIAAAAAAMgwjOFOz2DFz372M/33f/+3pODJ1hMnTtSjjz5qOTAsLCzUnDlz9Prrr8c8MAwEAlq6dKmmT5+uQ4cOhay59tpr5fV61bdvX0u9JGnDhg3yeDxat25dyPU2bdrod7/7nR566CHFxcVZ7geEQ0gJAAAAAAAkqUtBQcFl7du33+n0IOfipZdeUt++fXXixAmNGjVK7du3t/R50QaGPp9Pffr0sdRLktavXy+Px6P169eHXG/fvr2eeuop3XfffXK5XJZ67d27Vz6fT7m5uTJNs8p6QkKCHnnkEaWlpalFixaWegHRijfXymN714CWG331cbgSc41uk6Hedo30g2NGb70SrsBcrwsU0GN2DXSaobeMXtoRrsRcrQfl0k/tGinYVF8bfbQ4bMkaXSNDd9k10mnletm4SYXhSsw1mixD1l7cUV2GVhq99GG4EnOdhshUol0jSZIMlRi99EK4EnOtWklKs2miMxrrv40++iJsyRrdK0Nd7RpJkhTQd0ZfLbK1JwAAABBDFRUVyZL+6PQc56JRo0ZKSUmpkc/65JNP5PF4tGXLlpDrNRkY7t+/XzNnztTSpUvPGhimpKRo8uTJlgPDkpISvfrqq3r11VdVUlISsmb48OHKyMhQp06dLPUyTVO5ublavXq1pc9BwxEv6Vnbu7pULIUPKeXSrTL1qD0DnbZbCh9SqkLtZThwz6TVUviQUi6lSupnyzT/8p4UPqSUdI2c+J411RtS+JBShiZJamnLPJUCekEKH1IqoCE/zGYfU8el8CGlAmoplyPf/6+l8CGlpHsl3WrDLP/i0iqJkBIAAAD1Sp0NKWuCE4HhvHnzVFpaGrImOTlZmZmZNRIY/vWvf5XP59O+fftC1nTr1k2ZmZkaMGCApV6StHnzZrnd7pABpdXH71F/8bg3AAAAAACoNNQ0zXjDMMqdHsRO0QaGXq9Xl156qaVepmlq2bJl8vl82rNnT8iaK664QhkZGRoyZIilXpK0adMmud1urVmzJuR669atNWnSJD3wwAOKj7cWEx06dEjPP/+8Fi9erEAgUGW9adOmGj68Tr/6FDFESAkAAAAAACq13rt3bx9Jnzg9iB2iDQwzMzM1ePBgy/02bdokj8dz1kegW7durSeffFIPPvig5cDw4MGDmjVrlt55552QgWF8fLweeOABPf3002rTpo2lXn6/X6+//rpmz56tEydOhKxJTEzU9OnTdcUVV1jqhfqLkBIAAAAAAJwWFxc3XA0gpIxmh2FNBYYFBQXKysrSW2+9ddbA8N5779WUKVP0k5/8xFIvv9+v7OxsvfjiiyosDP0GtMTERGVmZqp79+6WeklSfn6+3G63vv7665DrF110kaZMmaLRo0db7oX6jZASAAAAAACcZppmsqRMp+eIlWgDw6lTp6pt27aWelUGhi+88ELYHYZ2BYadOnXSM888o5EjR1ru9c9//lMZGRn64IMPQq6fd955euyxxzR+/HjeQ4moEFICAAAAAIAz3Xj06NFWbdu2Pe70IDUp2sDQ6/XqyiuvtNwvLy9P6enp2rVrV8j1uhoYHj9+XHPnztVrr70mv99fZd0wDI0YMULp6em66KKLLPVCw0JICQAAAAAAzhRfWlo6RNL/OD1ITcnLy5PH49G3334bcr1z586aOnVqjQSGO3bsUEZGhj788MOQ65WB4YQJE9SoUSNLvaIJDO+++25NmzZN7dq1s9QrEAho6dKl8vl8Onz4cMia66+/Xl6vV71797bUCw0TISUAAAAAAPixZNWDkHLHjh1KT0/XRx99FHK9WbNm+u1vf1sjgeGxY8eUlZWl7OxslZdXPRzd5XLprrvuqtHA0Ov16siRIyFrrr/+evl8PvXq1ctSL0latWqVPB6Ptm7dGnK9ffv2euqpp3TffffJ5XJZ7oeGiZASAAAAAAD82M+cHsCKaANDt9utCy64wFKv8vJyLV68WM8///xZA8MbbrhBXq+3RgLDlStXKj09/ayB4YUXXqhnnnlGo0aNkmEYlnrt27dPs2bNUk5OTsj1Jk2a6OGHH1ZaWpqaN29uqRdASAkAAAAAAH6sc0FBweXt27f/p9ODVEdlYDhr1iwdPXo0ZE3Pnj3l9XrVs2dPy/3sDAx37dqlmTNnKjc3N+R6TQaGxcXFmj9/vubOnatTp06FrElOTpbP59NPf/pTS72ASoSUAAAAAACgikAgMFzSfKfniNbKlSvl8Xj01VdfhVzv0KGDpk6daktg2LRpU/3617/WE088oWbNmlnqZWdgaJqmli1bpszMTO3bty9kzdVXXy2fz6ebbrrJUi/gxwgpAQAAAABAFaZpJqsOhZS/+tWvQh4eE4vAcM6cOSorKwtZk5ycrOnTp6tjx46WepmmqZycHM2YMUMHDx4MWXPNNdfI6/XWSGC4ceNGeTwerV27NuR6mzZt9Lvf/U4PPfSQ4uLiLPcDfoyQEgAAAAAAhDLUNM0EwzCqJn91gGEYuuOOOzRt2jR16NDB0mcFAgG9/fbbmjVrlg4dOhSy5tprr5XP51OfPn0s9ZKCgaHb7da6detCrtdkYFhQUKCsrCy99dZbCgQCVdYTEhKUkpKiSZMmqWXLlpZ6AeEQUgIAAAAAgFBa7tu3r6+kVU4Pci7++Mc/asSIEZY/Z/Xq1XK73dq8eXPI9Xbt2mnq1KkaM2aM5ZOtDxw4oOeee05Lly6VaZpV1msyMCwtLdXChQs1e/ZsnTx5MmRNUlKSvF6vunXrZqkXEA1CSgAAAAAAcDbJqqMhZefOnS1dXxsDQ5/Pp65du1rqJUl5eXlyu9367rvvQq5fdtllSk9PV3JysuVeQLQIKQEAAAAAQEgul2u4pAyn57BTSUmJ3njjDb388ssqKioKWZOUlKTp06erS5culvtFExhmZGRo2LBhlntt2bJFbrdbn376acj1li1basKECXrkkUfUqFEjy/2A6iCkBAAAAAAAIZmm2Xf37t1tO3bseNTpWeyQl5enadOmaffu3SHXL7/8cmVkZGjo0KGWe33xxRfyeDwRA8NHH31UCQkJlnp9//33eumll7Ro0SJVVFRUWXe5XLrrrrvk8Xh0/vnnW+oFnCtCSgAAAAAAcDZxcXFxgyUtdXqQWNq8ebM8Ho8+++yzkOutWrXS+PHj61xg6Pf7lZ2drRdffFGFhYUha/r16yev16urrrrKUi/AKkJKAAAAAAAQTrLqaUgZKTCMj4/XvffeqylTpugnP/mJpV7RBIb9+/eX1+tV9+7dLfWSpPz8fHk8Hm3bti3k+kUXXaQpU6Zo9OjRlnsBNYGQEgAAAAAAhHOL0wPUtGgCw8TERGVmZta5wHDnzp3KzMxUXl5eyPWmTZtq3LhxGj9+vBo3bmy5H1BTCCkBAAAAAEA4nXbv3t2lY8eO250epCbk5+dr2rRp2r499D9Op06d9Mwzz2jkyJGWe+3cuVMZGRlavnx5yPXzzjtPjz32WI0EhoWFhZozZ45ef/11lZWVVVk3DEMjRoyQx+PRxRdfbKkXEAuElAAAAAAAIKz4+Pjhkup0SPnPf/5TGRkZ+uCDD0KuxyIwfO211+T3+6us12RgGAgEtHTpUvl8Ph0+fDhkzXXXXSev16s+ffpY6gXEEiElAAAAAAAIyzTNZEnznJ7jXBw/flxz584NGxjefffdmjZtmtq1a2epV7SBoc/nU+/evS31kqSPP/5YHo9HX375Zcj19u3b66mnntJ9990nl8tluV+sFRYW6uWXX3Z6DDiEkBIAAAAAAEQyxDTNBMMwqqZ8tVR5ebnefPNNPf/88zpy5EjImuuvv14+n0+9evWy3G/VqlVKT0+3JTDct2+fZs2apZycnJDrCQkJSklJ0eTJk9WiRQtLvexQGe5Onz5dhw4dcnocOISQEgAAAAAARNJi//79N0nKd3qQaD344IMqKCgIudahQwdNmzZNd9xxhwzDsNQn2sBwypQpat68uaVeJSUlevXVVzV37lydOnUqZE1ycrK8Xq8uvfRSS73s8sknn8jj8WjLli3RlH8f63ngHEJKAAAAAAAQjWTVoZAyVEDZpEkTPfzww0pLS7MtMPT5fPrpT39qqZdpmlq2bJm8Xq/27t0bsqZLly7KzPEigusAACAASURBVMzUoEGDLPWyy+7du+Xz+bRs2bJoL1khaV/sJoLTCCkBAAAAAEA0hkvyOD3EuTAMQyNHjpTb7bZ8UI3dgeHnn38uj8ejNWvWhFxv3bq1nnzyST300EOKi4uz3C/WiouLNXfuXM2fP/+s4W4IKyXdF8OxUAsQUgIAAAAAgGj03r17d9uOHTsedXqQ6rjmmmvk8/l04403Wv6szz//XG63W2vXrg25XpOBYUFBgbKysvTWW28pEAhUWY+Pj9e9996rqVOnqm3btpZ62aEy3PX5fNqzZ0+0l+2V9G+S/izJjNlwqBXiJRU70LcsYkVAZTJsny1yvzgFFHDgnhkqj1hjqtSBe1YaRU25nPieVajqn+I/ZqpYhs1hvRHF9z9YU/u+/40UULkjf2ZE/v4Hv4v2zmZG9f0HAAAA6ou4+Pj4oZKWOD1IKBdffLF27dp1+u/PP/98TZ06Vffee6/lg2oiBYaV752cNGmSWrZsaamX3+9Xdna2XnjhBZ04cSJkTVJSkjIzM3XllVda6mWXTZs2ye12n3U3aAglkl6RNENS6JuAesfa22EBAAAAAKi9PpF0049/+G//9m8aP368A+PUC69fdNFFj1r8jGclTf/xD/v06aO//OUv5/yh//jHP5SWlqaTJ08qJSVFaWlpNRYY/v73v9fJkydD1iQlJcnr9apbt26WeklSXl6ePB6Pvv3225DrnTt31tSpUzVy5EjLvewQKdw9i2WSJkr6JnaToTbicW8AAAAAABCtW50e4GwGDBigDRs21NjnRQoML7vsMqWnpys5Odlyr+3btys9PV0rVqwIud6sWTP99re/1YQJE9SoUSPL/WItmt2gIWyQ9ISkf8RuMtRmhJQAAAAAACBal+zdu7fbxRdfvM3pQWIlUmDYsmVLTZgwQY888ojlwPDYsWPKysrSokWLVFFRUWXd5XLprrvuktvt1gUXXGCpl10ihbshHJHkkzRXUtWbgAaDkBIAAAAAAFTHcEn1LqS0MzAsLy/X4sWLNWvWLB09Gvocop49e8rr9apnz56Wetllx44dSk9P10cffRTtJX5J8xU8Mf54zAZDnUFICQAAAAAAouZyuZIlzXF6jpri9/v19ttvhw0Mb775Zvl8Pl111VWW++Xn5ys9PV1fffVVyPUOHTpo6tSpGjVqlAyj9h8lUhnuZmdnq7w8mjNPJUnLFXy0e0vsJkNdQ0gJAAAAAACiZprmkO3btzfu0qXLKadnsSo/P18ej0fbtoXeGFqTgeE333yjWbNmKTc3N+R606ZNNW7cOD3++ONq0qSJpV52iGY3aAhfS3pS0t9iNxnqKkJKAAAAAABQHc2aN29+s6QVTg9yrr755htlZGQoLy8v5HplYDh+/Hg1btzYUq+ioiL94Q9/0Jw5c1RWVlZl3TAMjRgxQm63W5dccomlXnZZuXKlPB7PWXeDhnBM0ixJ/y6p6k0AREgJAAAAAACqyTTNZNXBkLKwsFBz5szR66+/HvPAMBAIaOnSpZo+fboOHToUsubaa6+V1+tV3759LfWyS6TdoCEEJP2npKclHYzZYKgX4s21WmB7V0M5Ri/9b7gSc7Xul0uDbJroh6Y6YvTRlLAlG3WxypVp10hnmG301uZwBeZaTZHUxaZ5Kn1u9A7/LhJzrW6U9IhN8/xLmSYb/RR2z7m5Vq9IOs+miYIMvWv00n+HKzHX6S6Zus2ukX5QbPTWxHAF5sdqq0b6vV0DneF1o7c+C1dgrtUESdfZNM8PTfW10ceR+wEAAAA4bbikZ50eIlrRBoY+n099+vSx3G/9+vXyeDxav359yPX27dvrqaee0n333SeXy2W5X6wVFxdr/vz5Z90NehYrFHzv5OcxGwz1SrykB2zvauorKXxIqTjdKNPm2QztlsKHlPKrjQwH7pmhHCl8SCnpZ5L62TDNv5g6X5FemGyqsyP3rJkypPAhpaRfSmoZ+2HOENABKXxIqYB6OnDPjkvhQ0rFq5mc+TNjuRQ+pJSpoTJ0qz0D/cDQKomQEgAAAA1Sz/3791/QoUOH0IlfLfLJJ5/I4/Foy5bQZ7TUZGC4f/9+zZw5U0uXLpVpmlXWExISlJKSosmTJ6tFixaWetkhmnA3hN2Spkn6U+wmQ33E494AAAAAAKC6XIFAYKikxU4PcjZ2BoYlJSV69dVXNW/ePJWWloasSU5OVmZmpjp16mSpl102bNggj8ejdevWRXtJsaQXFHz3ZOibAIRBSAkAAAAAAKrN5XIlqxaGlNEGhl6vV5deeqmlXqZpatmyZfL5fNqzZ0/ImiuuuEIZGRkaMmSIpV52iRTuhmBKylHwvZPfxXQ41GuElAAAAACABiUQCDg9Qr1gmuYtTs9wpmgDw8zMTA0ePNhyv02bNsnj8Wj16tUh11u3bq0nn3xSDz74oOLja3/8UlJSojfeeEMvv/yyioqKor1sraQ0SR/HbjI0FLX/vyUAAAAAANSgrKwsHTp0SFOmTFHz5s2dHqcuu3j//v1XdejQ4UunB5GkO+64Q2vWrAm51rZtW02aNEn333+/4uLiLPUpKCjQrFmztGTJkpCBd3x8vFJSUvT000+rdevWlnrZJS8vT9OmTdPu3bujvWSfpExJCxQ8wRuwrPYfIQUAAAAAwLkJ+ayq3+/XwoULNWDAgOo80ooQTNMc7vQMlTZu3FjlZwkJCfrNb36jVatWKTU11VJAWVZWprlz5yopKUlvv/12yIBy4MCBWr58uaZPn14nAsrNmzfrzjvvVGpqarQBZZmkVyRdKek1EVCiBhFSAgAAAADqq53hFg8cOKAJEybo9ttv14YNG+yaqb5JdnqAsxkwYICWL18ur9erVq1aWfqs9957T4MGDdJzzz2nkydPVlnv3LmzsrOz9V//9V/q2rWrpV52OHr0qNxut2677TZ99tln0V62TFJ3BR/vPhGz4dBgEVICAAAAAOqrlxTFKcPr1q3TiBEj9MQTT6igoMCGseqVQdu3b2/s9BChuN1udenSxdJnbN26VWPGjNHDDz+sXbt2VVlv0aKFpk2bphUrVig5udbmtaf5/X4tWLBAN998sxYuXKiKiopoLtsq6WeSRipC8A9YQUgJAAAAAKiv1ksaKCniNknTNPXOO+8oMTFRc+bM0alTp2I/Xf1wXosWLfo7PURNO3bsmNxut2655RatXLmyyrphGBo1apTy8/M1btw4JSQkODBl9eTn52vYsGHyeDw6cSKqjZBHJT0hqYek92M6HCBCSgAAAABA/bZaUm9JqZIibpMsKirSzJkz1b9/fy1ZsiTmw9UHgUCg9m8hjFJ5ebnefPNNJSUlaeHChSovL69Sc8MNN+ivf/2rXnnlFbVr186BKavnn//8px544AHdc8892r59ezSX+BV832Q3SbMlRbXdErCKkBIAAAAAUN8FJP1J0uUKnkgccZvkvn37lJaWptGjR+vLL2vF4dW1Wa05PMeKlStX6pZbbtHkyZN15MiRKusXXnihZs+erWXLlqlXr14OTFg9x48fl9vt1uDBg/XBBx9Ee9lySTdIGivpcMyGA0IgpAQAAAAANBRFkjIUfHw1qm2Sq1at0vDhwzVx4kQdPkxmcxY3HDhwoPZvKTyLXbt2aezYsRozZoy2bt1aZb1p06Z6/PHHlZ+fr9GjR8swDAemjF7lbtDExMSz7gYNYbukMQoehLQlpgMCZ0FICQAAAABoaCoDmWGSvohUHAgElJOTo8TERM2bN09+vz/mA9YxRiAQGOb0ENVVXFysrKwsDRo0SLm5uSFrkpOTtWLFCj377LNq1qyZzRNWX6TdoCEckzRV1QjugVghpAQAAAAANFQfqBqPthYWFmrGjBkaPHiwli9fHvPh6hLTNOvMeylN09SSJUvUr18/ZWVlqaysrEpNjx499D//8z/Kzs5Wx44dHZiyeiLtBg0hIOnPkq6U9LyieAUCEGuElAAAAACAhqxc/zok5JUf/j6snTt3KiUlRffcc4+2bdsW6/nqBMMwfmaaZu1+DlrShg0bdPvttystLU0HDx6sst6mTRt5vV69++67uvHGGx2YsHoqd4MOHjz4rLtBQ/h/knpJSlEUh0kBdiGkBAAAAABAOiopTcHHXv83mgvy8/M1fPhwud1uFRYWxnS4OuDCgoKCq50e4mwOHDigiRMnasSIEVq3bl2V9YSEBD388MP65JNP9Jvf/EZxcXEOTBm9H+8GPXUqqo2QexQ85X6wpI0xHRA4B4SUAAAAAAD8y1eSbpV0u6SdkYr9fr8WLlyom2++WQsWLFBFRUXMB6ytAoFArTvlu6SkRPPmzVNSUpJycnJkmmaVmqSkJC1fvlw+n08tW7Z0YMrq2bhxY9jdoCEUK3iqfVcFT7mvehOAWoCQEgAAAACAqnIldZf0hKSI2yS///57eTwe3Xrrrfr0009jPlwtVaveS/m3v/1NSUlJmjFjhoqKiqqsd+vWTYsXL9bbb7+tLl26ODBh9VTuBv35z38ecjdoCKaCh+FcpeCp9iUxHA+wjJASAAAAAIDQyiTNVvBwkdcUPGwkrC+++EJ33XWXUlNT9d1338V6vtpm4O7du5s6PUSll19+Wfv27avy81atWunZZ5/V3//+dw0YMMCByaqntLRU8+bN04ABA866GzSEdZIGKHiK/bcxHRCoIYSUAAAAAACEt1/BE8D7SloVzQV5eXkaNGiQZsyYoZMnT8Z0uFqkqcvl6u/0EGcTHx+vhx56SB9//LEef/xxJSQkOD1SRHl5eRo4cGB1vkdnfldXxnQ4oIYRUgIAAAAAEJ11kpIU5e60M3fALVmyJNodcHWay+WqVY98V0pMTNT777+vGTNmqE2bNk6PE9GZO3J3794dzSVlCp5OH/WuX6C2IaQEAAAAACB6Z77nL1NRvOfvwIEDSktLq867BOss0zQdOzwn1M7ITp066T/+4z/0zjvvqHv37g5MVT3ff/+93G53dd9tukzB96emKYr3pwK1FSElAAAAAADVV6zgYSRdJf1ZUZyYXHkq88SJE6M9lbkuuu7QoUMdnGh86623nv7PzZs317PPPqsVK1bolltucWKcavH7/VqwYIFuvvlmLVy4MNpT4itPoh+pKE6iB2q7eKcHAAAAAACgDtsjKUXSQkkvS7o+XLFpmsrJydG7776rxx57TOPHj1fjxo3tmNMuht/vHyrpTbsbZ2Vl6cYbb1RhYaFGjRqldu3a2T3COcnPz5fb7dbXX38d7SVHJXklzZNUHrPBAJuxkxIAAAAAAOv+n6ReklIlFUQqLi4uVlZWlgYPHqzc3NyYD2czR95L2ahRI91///0aN25cnQgod+7cqZSUFN1zzz3RBpTlCr5vspuCp84TUKJeIaQEAAAAAKBmBCT9ScHDS56XdCrSBbt27dLYsWM1evRobd26Ndbz2WW4aZqG00PUVsePH9eMGTM0ePBgLV++PNrLPpB0g4Indx+O2XCAgwgpAQAAAACoWcckTZXUQ8FDdiJatWqVkpOTNXHiRB05ciSmw9ngwj179vRweojaJhAIaMmSJUpKStK8efPk9/ujuWyHgqfJD5P0RUwHBBxGSAkAAAAAQGxsVzBgSpa0JVJxIBBQTk6OEhMTqxNi1Urx8fGOnfJdG1WG0GlpaTp8OKqNkEUKnh5/jaIMuoG6Ll7B06DsFVDk/1sooAMybJ9tf8QKl0plOnDPTJ2MomqXpLYxnuT/MvRdxJo4HVfAgXvmUjT/i75NUotYj/J/GJHfT/NDjd33rDBiRTP5VeLA7zJOxyPWBL+Lds/2rc39AAAAUDctV/BR3YckzZB0frjiyseBFy9erIyMDA0dOtSOGWuUaZrJkl50eg6n7du3T7NmzVJOTk60lwQk/aekSYri3aZAfcI7IgAAAAAAsE9bSemSHpcUF80FSUlJ8vl86tq1a0wHq2GlFRUVbTt27FgSYu1ZSdN//MM+ffroL3/5S+wns0FxcbHmz5+vuXPn6tSpiK8mrbRaUpqkT2M3GVB78bg3AAAAAAD2OapgENVD0vvRXJCfn6/k5GS53W4VFkZ+AKqWaBIXF5fk9BB2M01Tubm5GjhwoLKysqINKPcqeCr8TSKgRANGSAkAAAAAgP22SvqZpNsl7YxU7Pf7tXDhQt18881asGCBKioqYj6gVT888t1gbNy4Ub/4xS80duxY7d27N5pLihU8Bf5KBU+FN2M5H1DbEVICAAAAAOCcXEndJT0h6USk4u+//14ej0e33XabPvvss5gPZ4XL5WoQh+cUFBRo8uTJGjFihNauXRvtZcskXa3gKfDRnEEB1HuElAAAAAAAOKtM0mwFd9S9puDhKWFt3rxZd955p1JTU7V79+5Yz3dOTNPscejQoQ5OzxErfr9fCxYsUFJSkt58800FAhF/bZK0XtIASSMVPPwWwA8IKQEAAAAAqB32SRor6UZJH0dzQV5engYOHKgZM2aoqKgopsOdA6O8vLxePvKdl5enpKQkeTwenTwZ1UbIwwrulu0rKT+mwwF1FCElAAAAAAC1y1pJiZLGSPouUnFpaanmzZunpKQkLVmyRKZZe15tWN/eS7l9+3bdd999Sk1N1XffRfzVSJJf0iuSLldwt2ztf5ko4BBCSgAAAAAAah9T0hIF31eZKak00gUHDhxQWlqaRowYoXXr1sV6vmglm6ZpOD2EVceOHZPb7daQIUO0YsWKaC9bLuk6BU9zrzPHsgNOiTfXKM/2ri69bvTSO+FKzLWaIFO32zXSDw4YffRAuAJzgzqpXK/bNdAZnjX6aHW4AnON/l3SNTbNE2ToU6O33OFKzLUaLFP/ZtdIp5XoPmOADoUrMdfqf2SquV0j/eC/jD56I1yBuUa/lvRLm+YJMnTS6K07w5WY63WBKvSWXSOdZug5o7c+CldirpVPpm6ya6QfbDb66EmbewIAAKBhKZaUIWmhpBlS+H9nlaQNGzbo9ttv1913361p06apXbt2MR4xrPZ79+69TtJGJ4c4V36/X9nZ2XrxxRdVWBh1zrhN0pOS3o3dZED9Ey9DA2zvaur9iDWGukq2zxb5bcPlau7IPTPUNoqa6yX1i/0wZzAV+aUnpto7cs9aqXEUVYky1DLms5zJVDRH8F3mwD07HrGiXE3kcuTPjIVR1PRw4J7F2dwPAAAADdduSSmS3pD0soI79M7KNE3l5OTo3Xff1WOPPaYJEyaoUaNGdsxZhWEYw1UHQ8r8/Hx5PB5t27Yt2ku+l/S8pH9X8DAkANXA494AAAAAANQdKyT1lJQq6WCk4uLiYmVlZWnQoEHKzc2N9WwhGYZRp95LuXPnTqWmpuqee+6JNqAsV/BU9m4KhpQElMA5IKQEAAAAAKBuCUj6k6oRiu3atUtjx47VmDFjtHXr1ljP92NJBw4caGZ30+oqLCzUjBkzNGTIEOXlRf1mvA8l9VLwVPawrxsDEB4hJQAAAAAAddMxSVMl9ZD0t2guWLlypW655RZNnjxZR44cielwZ2gcCASS7GpWXYFAQEuWLFFiYqLmzZunsrKoNkLuUPD09aGSNsV0QKCBIKQEAAAAAKBu+1rSCEnJkrZEKi4vL9ebb76pxMRELViwQOXl5TEfUNJwO5pU1yeffKLhw4crLS1Nhw8fjuaSIgVPW++h4OnrAGoIISUAAAAAAPXDckk3SHpCURyMefz4cXk8Hg0ZMkQffvhhrGerVSHl/v37NXHiRI0aNUpffvllNJeYkv4s6QoFT1svjeF4QINESAkAAAAAQP3hlzRb0uWSXpFUEemCHTt26P7771dqaqp27doVq7mu3rt3b8dYfXi0SkpKlJWVpX79+iknJ0emaUZz2RpJ/RU8Xf1ATAcEGjBCSgAAAAAA6p8jktIk9ZH0j2guyMvL08CBA+V2u3XixIlYzDQsFh8aDdM0lZubq4EDByorK0unTp2K5rK9Cp6ifqOkT2I6IABCSgAAAAAA6rENkgZKul3SN5GK/X6/Fi5cqAEDBujNN99URUXEjZhRMwwjucY+rBo2bdqkO+64Q2PHjtWePXuiuaREwVPTuyt4inpU2y0BWENICQAAAABA/Zcr6WoFTwOPuE2yoKBAkydP1s9//nOtXr26pmZINk3Tthyi8p/htttu05o1a6K9bJmqcZ8A1BxCSgAAAAAAGoYzdwj+WVHsENy0aZPuvPPO6uxCDOf8/fv332D1QyLx+/1asGDB6d2ggUAgmssqd5yOVBQ7TgHUPEJKAAAAAAAalr0KHgIT1bsWz3yf44wZM1RUVGSld0xP+c7Ly9OAAQPk8Xiifa/mEQVPQ4/63Z0AYoOQEgAAAACAhqny1OpURXFqdUlJiebNm6cBAwZoyZIl0Z6M/WMxeS/ljh079Ktf/Uqpqan69ttvo7nEr+Dp55creBp6zb18E8A5IaQEAAAAAKDhMhU8HOYKSZmSSiNdsH//fqWlpWnkyJFav359dfv1b9euXaPqjxnasWPH5Ha7NWTIEH300UfRXrZc0vUKnn5+vKZmAWANISUAAAAAACiSlCGpm4Lvq4xo/fr1uv322zVx4kQdOnQo2j6NRo8e3fncRvyX8vJyvfnmm0pMTNTChQtVXl4ezWVfSxqh4G7OL63OAKBmEVICAAAAAIBK3yn4vsohkjZFKg4EAsrJyVG/fv2UlZWlsrKyiA0SExOvsDLgypUrNXz4cE2ePFlHjx6N5pLvFTytu4ekv1npDSB2CCkBAAAAAMCPfSTpBgXfVxlxm2RRUZGysrI0ePBg5ebmhq29+uqrzymk/OabbzR27FiNGTNGX331VTSXBBTcFXqlgqeaR05QATiGkBIAAAAAAIQSUPB9ld0UZcgXTZB4/vnnX3DxxRdHPUR1AtAzVIasKZIORt0MgGMIKQEAAAAAQDiVj0tfK+ndaC6I9Ej2gAEDIn5GIBDQkiVLqvUouaTdCu7+jOpxdQC1ByElAAAAAACIxjZJP1eUB8+cebjNggULVFFRcXpt4MCBYa+tPJQnLS0t2kN5ihQ8nbyrgrs/AdQxhJQAAAAAAKA6lku6XtITko5HKj527Jg8Ho+GDBmijz76SJKUlJQkl6tqJLF//35NnDhRI0eO1Pr166OZxZS0RNJVCp5OXhrtPwSA2oWQEgAAAAAAVJdf0mxJl0t6RVJF+HJp+/bt+tWvfqXU1FQVFhbq2muv/T/r27ZtU//+/ZWTkyPTNKOZ4VNJN0kao+Cp5ADqMEJKAAAAAABwro5ISpPUV1J+NBfk5eWFfCdlYWGhSkuj2gi5T9JYSf0lrY56UgC1GiElAAAAAACwar2kAZJul7QrUrHf79fGjRur26NMwV2bV0p6TcHTxwHUE4SUAAAAAACgpuRKulrBQ2yKa/BzcyR1U3DX5oka/FwAtQQhJQAAAAAAqEnFCh5i013S2woebnOutkr6maTRimKHJoC6i5ASAAAAAADEwneS7lXwMfCojuo+wyEF3zvZQ9L7NTwXgFqIkBIAAAAAAMTSSkl9JP1GUkGEWr+kf5fUVcH3TkY8NRxA/RAvKc/2rqa+iaLmS9k9mxHxD0spTicUcOCeletwxBpTq2WoyIZp/sWI4v8Ni9M+R+6ZX9EcC/ehpGaxHuX/MLQ9yhp775mpkxFrSlWq8xz4XcZpX8Sa4HcxPvbDnMHUFlv7AQAAAHVXQNJCSUsUfF9lmiTjRzUfS/q1pG32jgYAAAAAAACgIUqUtF3BE7sPS3rK2XEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACABsF4cPnmr+xuGjACL/5p6HULwtWkfLA53WXql3bNJEkyjL2Lhl4zNFzJg3//sotcFbl2jVTJrDAfzb7l2n+Eq3nwgy/+U6bZy66ZJEmGPlo0tMdj4UpSP9z8cyOgLLtGOi3ONWjR4KsPhCtJXb55jSG1sGskSTJdxh+zh1zz7+FqUj/84ndGwBxr10ySZEqF2cN69A1X8+BHWy5URWCFTSOdZrr0VPaQHn8LV/PgB5vny9Rgu2aSJFNamz2sx/129gQAAAAAoD6KN6XOdjc15GoducY435Rp72ymGR+ppML0N3bJZf89i4s7L1KNaZoXyebfp2GaEUNuI2C0sP13KSlB5RF/nzKMTqZptrRhnH+pMH8STY1p2Py7NHQ8Yo0rkBCocODPjIAROUg2zQ6mDHtnM4x9tvYDAAAAAKCecjk9AAAAAAAAAICGjZASAAAAAAAAgKMIKQEAAAAAAAA4ipASAAAAAAAAgKMIKQEAAAAAAAA4ipASAAAAAAAAgKMIKQEAAAAAAAA4ipASAAAAAAAAgKMIKQEAAAAAAAA4ipASAAAAAAAAgKMIKQEAAAAAAAA4ipASAAAAAAAAgKMIKQEAAAAAAAA4ipASAAAAAAAAgKMIKQEAAAAAAAA4ipASAAAAAAAAgKMIKQEAAAAAAAA4ipASAAAAAAAAgKMIKQEAAAAAAAA4ipASAAAAAAAAgKMIKQEAAAAAAAA4ipASAAAAAAAAgKMIKQEAAAAAAAA4ipASAAAAAAAAgKMIKQEAAAAAAAA4ipASAAAAAAAAgKMIKQEAAAAAAAA4Kt6QscD2rqb5eaQSw9QqybA1RDWNwNGINU0TjhhlAdvvmenS7kg1hly5kvmlHfOc0XRzpJKKgLkjzmX/96y4yCiKVGOYgT9JriZ2zFPJjDNWRyyKc602Aqat98w0zZJINadOmCcbNXHZ/rusCJg7IhYZxv8aprHXhnFOMw1FngsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAjNQPNhfb3tR0TVs07OqXwtWkLt88W4YesWsmSTJMfbdoWI8rw9WkfrjlapmBNXbNdIY7sof2+Hu4gtQPN+fJVH+77wp8tQAADr5JREFUBpIkQ3pv0dAed4erSc3bPEYuLbJppNNMNeryp6Hd9oarSf1g835JrWwaKcg0Xsgedk16uJLU5V9kyjAn2TWSJMk0jmUPu+aicCW/+ejzS/wB19d2jXRaQA9mJ/d4J1zJgx9sXmpKt9o1kiTJNFdlD7s22daeAAAAAADUQ/EyFWd3U9MIuCIWGYZLpmnrbKYUH6km4C83XHEu2++ZIVfkexZQvGT37zPy78gwDJdp8+9SkhrFlRqRq4x4u79nUfUL1tg6l2GYEb//FS6XoQr7/8wwDCPy99804yTD3tkM+/8sAAAAAACgPor8L/4AAAAAAAAAEEOElAAAAAAAAAAcRUgJAAAAAAAAwFGElAAAAAAAAAAcRUgJAAAAAAAAwFGElAAAAAAAAAAcRUgJAAAAAAAAwFGElAAAAAAAAAAcRUgJAAAAAAAAwFGElAAAAAAAAAAcRUgJAAAAAAAAwFGElAAAAAAAAAAcRUgJAAAAAAAAwFGElAAAAAAAAAAcRUgJAAAAAAAAwFGElAAAAAAAAAAcRUgJAAAAAAAAwFGElAAAAAAAAAAcRUgJAAAAAAAAwFGElAAAAAAAAAAcRUgJAAAAAAAAwFGElAAAAAAAAAAcRUgJAAAAAAAAwFGElAAAAAAAAAAcRUgJAAAAAAAAwFGElAAAAAAAAAAcRUgJAAAAAAAAwFHxhmGm2941YK6MXGTmGoa5N/bDnNFRxvFINfEVFQVmvGH7PXOZFV9HqjGlhS7DfN+OeSoFTHNHpBpDxiYZAdvvWaCwccTfpyHNkGE2sWOeSqYR/3HEIlfc3w2Vn7RhnDOblkaqKCsqOp7Q+Dzbf5eG6doUqSYg802XoU/tmKeSaZq77ewHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAFxq///tVFdjc9kVBRuGTw1SfD1YzOW9uqhdm8mV0zSZK/WXz5n/tfcTBczaCPPoq/zN+hnV0zVWpWHndkzm1dToWr+WXu2vObNm7eyK6ZJMkIVJQu/NnVR8PVjH7n46YtWrdtY9dMlU4c21SwZMyYinA1D3605UKXP85l10ySdKr82Mn/vO2mwnA1v3r305aN41s3t2smSQokVAQWDb76QLia0e+8E9ei9bXt7Zqp0oljR79fMqZfSbiah/93S1vTFdfErpkkqeTUybL/Gtn7sJ09AQAAAACoj+IrXP5v7G56XkDPSnoxbI2ryfQK0/+oTSNJklwl/t2SrghX07Gs7ZUVcf51No102olGFb+Q9L/haho1bbykQv5+No0kSTJc5nuS7ghX06xty19UyJ9t00intbqg2+WS9oSrMQPm5gqXv6VNI0mS4hOavSBpWoSayRWGf5JNI0mSjICOSwobwDdv3/2iCr9/h00jndasbctUSYvD1VTEV7xhKnCrTSNJkhqd12SVpCF29gQAAAAAoD6ydQcZAAAAAAAAAPwYISUAAAAAAAAARxFSAgAAAAAAAHAUISUAAAAAAAAARxFSAgAAAAAAAHAUISUAAAAAAAAARxFSAgAAAAAAAHAUISUAAAAAAAAARxFSAgAAAAAAAHAUISUAAAAAAAAARxFSAgAAAAAAAHAUISUAAAAAAAAARxFSAgAAAAAAAHAUISUAAAAAAAAARxFSAgAAAAAAAHAUISUAAAAAAAAARxFSAgAAAAAAAHAUISUAAAAAAAAARxFSAgAAAAAAAHAUISUAAAAAAAAARxFSAgAAAAAAAHAUISUAAAAAAAAARxFSAgAAAAAAAHAUISUAAAAAAAAARxFSAgAAAAAAAHAUISUAAAAAAAAARxFSAgAAAAAAAHAUISUAAMD/b8f+Qv2u6ziOvz+f3++cs6NuZplJIkQambr5B4myuigDkQp3Y+ZF7kxoEkWom0QY6U2ReDa78UZBjzNIE0IK0ZuILBFqZHPOKVQSmxrLf5uunX+/76eL+dvl93cx+HxAH4/rF3zefH+Hc/EEAACaGqZSNtd+dFTSs5M2qcTOKOWZGveMlcHg3UmbwXR3IFZT9W+2OpN2T9oMBoOfdqurZ9S4Z6zk4YFJm0HKz4y61erfLL+78uakTSmj7+aSpmvcM5YHee+kzWCQHu1G3Qs17hnroixP2kwdXnpjec109d9ykAcT/xeUNNyRutVf17hnLA8GB2u+BwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACcg7Z7b/rnaj06t5n+f/8ubX+vb7Ju7+xPL0Z1Z66aIiNLF0sU7tz7bt9m15Y6TppbXbqh101gX+cVLFm5+u2+zd/P8+aslrat1U0RE5MFbF91/00t9k13XzZ8+NZPOrXXS2PDIO3+74NE7lvs2e76947JuUIa1boqIyCleWf/A1v19mz2bt5/dlTir1k0REXmUVtc/dMuuvs3ea+6YXj157aW1bhpbWSr/uOxX217v2+y+4Refjm50Wq2bIiKGqRy+4IFtL9R8EwAAAN6PhrnEH2s/Ohp0t0XEfO+mlK05Ykulk45JsT8iemPa1NGTP5lz/W82TOXqiHiyb9N1+Z4c5fJKJ0VEROlGT0TExr7Nmpn81VLKg5VOOm711A+fExEH+jYplydyibpht8RdEfHj3k0XN+aIW+sc9J5BHIqIM/om3SlrP5a7+n//a2bypoh4uG+TutGdqcRVlU6KiIhS8tMR8ZWabwIAAMD7UW59AAAAAADwwSZSAgAAAABNiZQAAAAAQFMiJQAAAADQlEgJAAAAADQlUgIAAAAATYmUAAAAAEBTIiUAAAAA0JRICQAAAAA0JVICAAAAAE2JlAAAAABAUyIlAAAAANCUSAkAAAAANCVSAgAAAABNiZQAAAAAQFMiJQAAAADQlEgJAAAAADQlUgIAAAAATYmUAAAAAEBTIiUAAAAA0JRICQAAAAA0JVICAAAAAE2JlAAAAABAUyIlAAAAANCUSAkAAAAANCVSAgAAAABNiZQAAAAAQFMiJQAAAADQ1HBUyhW1H52N/PKkTTdId3er3SM17hkblLw4abMye+Rfw8VTqn+zsrK8d+ImxQ+6rpxa456xQTd4Y9JmOS3+PnfT1b/Z1KE3D07ajFJ8o3RlWOOesemp2D9pMxiW+5ZX4ska94ylFKuTNmtOmTp45NBy9d+yy0svTdqkUf7RKI3ma9wzlnM6VPM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAFpz6Yd36z9aDfIuy+6/6aX+ja7N999ae7KubVuOiYdWf/gzY/3LXZd8/NTZ06avrLWRWM5zTx1wcL3/tO3ef767V8uKX201k0REaPSvXrxzm1/7tvs2bz97OjS52vdNPbO/+J3lz96y9G+zXNz8xtTydO1boqIKCn2bVi4ZU/f5rm5HetTic/UuikioqRuecPCtsf6Nru23HHSzNK6r9e66bhcnln/wNb9fZO/Xz//xUHKH691UkREKuW/F+7c+oeabwIAAMD70TCiPFT70Twa3RYRvZFy0JXNJcqWSie9p+yPiN5IObVmcHaLbxaxdHVEPNm3KCn9JKJcXumgiIjIOT0REb2RMpX0hRLlwUonHXfyqVPnRMSBvk0u6b4SZV2lkyIiIpW4KyJ6I2Uq5dqIuLXORe+9GflQRPRGypmVtR9p8fefStoUEQ/3bXJO26KUqyqddExKT0eESAkAAAAnKLc+AAAAAAD4YBMpAQAAAICmREoAAAAAoCmREgAAAABoSqQEAAAAAJoSKQEAAACApkRKAAAAAKApkRIAAAAAaEqkBAAAAACaEikBAAAAgKZESgAAAACgKZESAAAAAGhKpAQAAAAAmhIpAQAAAICmREoAAAAAoCmREgAAAABoSqQEAAAAAJoSKQEAAACApkRKAAAAAKApkRIAAAAAaEqkBAAAAACaEikBAAAAgKZESgAAAACgKZESAAAAAGhKpAQAAAAAmhIpAQAAAICmREoAAAAAoCmREgAAAABoapjL8FO1H31nlN6etEnDuD2tDO+qcc/YYJhXJ21WZte9NLu4WP2bHUxvHZy0me1G1y6l6TU17hlbykeOTtosTh/+7eziadW/2b5DZ742aTOamrpkuFyqxvrl3B2etFlNeX66y/fWuOf4m1Opm7TZ9+7Zr14w+1r13/LozFuvT9qspqXvzHQnz9a4Z2ymLC/WfA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABOQNqzacfW6o+m7qkLF7b9tW+zd9P2K7pIF9e6KSKipHJ4w8LW+/o2u66bP31mOm+qddNY141+c9FDt77ct3l+bse3Somzat0UEVFS988NC9se69s8Nzd/Xir5a7VuGpsarNx73v0/fKdvs/f6Hd/vUszUuikiokvxl4sWbvlT32b33I4v5RKfrXVTRESKtHjhgzff07d58YY7166MprbUummspO7xDQvbXuzbPDc3vzGVfE6tmyIiopQD63dufaTqmwAAAPA+NIwoP6v9aCnptojojZQl0saIUjWGpBL7I6I3Uk4Ny5ktvtlwMNgbEb2RspS4MaJcXumk96QnIqI3UubIF5cG32wpzz4SEb2RsqRye0Ssq3PRMbnEXRHRGylzKVdGxK11LjqmpDgUEb2RcqUMP9Ti7z9HfiUieiNlRJqLKFfVuOf4iyk9HREiJQAAAJyg3PoAAAAAAOCDTaQEAAAAAJoSKQEAAACApkRKAAAAAKApkRIAAAAAaEqkBAAAAACaEikBAAAAgKZESgAAAACgKZESAAAAAGhKpAQAAAAAmhIpAQAAAICmREoAAAAAoCmREgAAAABoSqQEAAAAAJoSKQEAAACApkRKAAAAAKApkRIAAAAAaEqkBAAAAACaEikBAAAAgKZESgAAAACgKZESAAAAAGhKpAQAAAAAmhIpAQAAAICmREoAAAAAoCmREgAAAABoSqQEAAAAAJoSKQEAAACApkRKAAAAAKCp/wP2j8xtU9HM7gAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "id": "a0fb6974", + "metadata": {}, + "source": [ + "
\n", + "\n", + "
" + ] + }, { "cell_type": "code", "execution_count": null, - "id": "c12fd15d", + "id": "8c725aa9", "metadata": {}, "outputs": [], "source": [ @@ -893,7 +944,7 @@ }, { "cell_type": "markdown", - "id": "cbca58aa", + "id": "d573108e", "metadata": {}, "source": [ "### Running and testing the code\n", @@ -904,7 +955,7 @@ { "cell_type": "code", "execution_count": null, - "id": "2daef9be", + "id": "c8e9cea7", "metadata": {}, "outputs": [], "source": [ @@ -1042,7 +1093,7 @@ }, { "cell_type": "markdown", - "id": "7c8a16e4", + "id": "fb21edc4", "metadata": {}, "source": [ "## Summary\n", diff --git a/notebooks/figures/fig_jacobi.svg b/notebooks/figures/fig_jacobi.svg index 0babb12..a81b7e2 100644 --- a/notebooks/figures/fig_jacobi.svg +++ b/notebooks/figures/fig_jacobi.svg @@ -25,6 +25,33 @@ orient="auto" refY="0" refX="0" + id="marker27133" + style="overflow:visible">u + u_new + u_new[i] = u[i-1]+u[i]+u[1+1] + i + i + i+1 + i-1 + i + i+1 + i-1 + i + i + i+1 + i-1 + i + u + u_new + u + u_new + u + u_new + u + u + u_new + u + u_new + i + i-1 + i+1 + i + chnl_next_snd + chnl_next_rcv + chnl_prev_rcv + chnl_prev_snd + x + u + 0 + L + -1 + 1 + 0 + L + n+2 points + u + ? + -1 + ? + ? + ? + ? + ? + ? + ? + ? + ? + 1 + u + u_new + i + i-1 + i+1 + i + i + i+1 + i-1 + i + u + u_new + k + i + j + u + u + u + u_new + i + i-1 + i+1 + i + k + i + j + k + i + j + u + ? + -1 + ? + ? + ? + ? + ? + ? + ? + ? + ? + 1 + u + u_new + ? + -1 + ? + ? + ? + ? + ? + ? + ? + ? + ? + 1 + -1 + -1 + 1 + 1 + s + r + s + u + u_new + r + s + r + s + u + u_new + r + r-1 + s+1 + u + u + u_new + communication + computation + u + u_new + i-1 + i+1 + i + i+1 + -1 + -1 + -1 + 1 + 1 + 1 + u + u + u_new + communication + computation + -1 + -1 + -1 + 1 + 1 + 1 + (i+1,j) + (i,j) + (i-1,j) + (i,j+1) + (i,j-1) + + u + u_new + local + remote + remote + k + i + j + Graph G + ... + ... + ... + ... + ... + ... + Master + Workers + maxhops + u + u_new + rank 0 + rank 1 + rank 2 + root + rand(1:10) + u + u_new + local + remote + remote + local + remote + Distance matrix C + i+1 + i-1 + i + u + u_new + i+1 + i-1 + i + u + u_new + u + u_new + -1 + -1 + 1 + 1 + -1 + 1 + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + -1 + 1 + i-1 + i+1 + i + -1 + 1 + -1 + 1 + i-1 + i+1 + i + -1 + 1 + "red" phase + "black" phase + inf \ No newline at end of file + id="flowPara33131">infkk1111110000000loop tloop i,jmn \ No newline at end of file diff --git a/notebooks/figures/fig_matmul_machines.svg b/notebooks/figures/fig_matmul_machines.svg index 1303720..9aec1ca 100644 --- a/notebooks/figures/fig_matmul_machines.svg +++ b/notebooks/figures/fig_matmul_machines.svg @@ -19,6 +19,49 @@ inkscape:export-ydpi="200"> + + + + + + + + + + + + + + + image/svg+xml - + @@ -4864,5 +4938,3561 @@ id="rect1053-3-3-9-9" style="fill:#ff0000;fill-opacity:1" />x + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + proc 1 + proc 2 + proc 3 + + + + + + + + + + + + proc P+1 + ... + C + + + x x x x x x x x x x x x x x x x + + + + + + + + + + + + + + + + + + + + + + + + + + rank 1 + rank 2 + + + + + + + + + + + rank P-1 + ... + + + + + + + + + + + rank 0 + C + + + x x x x x x x x x x x x x x x x + + + + + + C + + + + + C + + + + + C + + + + + + + + + + + + + + + + rank 0 + C + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + rank 1 + rank 2 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + myC + myC + + + + + + + + + + + + rank 0 + C + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + rank 1 + rank 2 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + myC + myC + From 70f7004cc3a7e8404dd8a76f20425ecabc74181a Mon Sep 17 00:00:00 2001 From: Francesc Verdugo Date: Thu, 19 Sep 2024 10:37:09 +0200 Subject: [PATCH 3/4] More changes in ASP and LEQ --- notebooks/LEQ.ipynb | 357 +-- notebooks/asp.ipynb | 10 +- notebooks/figures/fig_jacobi.svg | 3528 +++++++++++++++++++++++++++++- 3 files changed, 3607 insertions(+), 288 deletions(-) diff --git a/notebooks/LEQ.ipynb b/notebooks/LEQ.ipynb index 4f4a1ec..b2e951c 100644 --- a/notebooks/LEQ.ipynb +++ b/notebooks/LEQ.ipynb @@ -22,7 +22,7 @@ "In this notebook, we will learn\n", "\n", "- How to parallelize Gaussian elimination\n", - "- How to fix static load imbalance" + "- What is load imbalance, and how to fix it in this algorithm" ] }, { @@ -37,26 +37,15 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "id": "7e93809a", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "ge_lb_answer (generic function with 1 method)" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "using Printf\n", "function answer_checker(answer,solution)\n", " if answer == solution\n", - " \"🥳 Well done! \"\n", + " \"🥳 Well done!\"\n", " else\n", " \"It's not correct. Keep trying! 💪\"\n", " end |> println\n", @@ -70,7 +59,8 @@ "function ge_lb_answer()\n", " msg = \"It is a form of static load balancing. We know in advance the load distribution and the partition strategy does not depend on the actual values of the input matrix\"\n", " println(msg)\n", - "end" + "end\n", + "println(\"🥳 Well done!\")" ] }, { @@ -105,14 +95,14 @@ "1 \\\\\n", "35 \\\\\n", "\\end{matrix}\n", - "\\right]\n", + "\\right].\n", "$$\n", "\n", "This is just a small example with three unknowns, but practical applications need to solve linear equations with large number of unknowns. Parallel processing is needed in these cases.\n", "\n", "### Problem statement\n", "\n", - "Let us consider a system of linear equations written in matrix form $Ax=b$, where A is a nonsingular square matrix, and x and b are vectors. The goal of Gaussian elimination is to transform the system $Ax=b$, into a new system $Ux=c$ such that\n", + "Let us consider a system of linear equations written in matrix form $Ax=b$, where $A$ is a nonsingular square matrix, and $x$ and $b$ are vectors. $A$ and $b$ are given, and $x$ is unknown. The goal of Gaussian elimination is to transform the system $Ax=b$, into a new system $Ux=c$ such that\n", "- both system have the same solution vector $x$,\n", "- the matrix $U$ of the new system is *upper triangular* with unit diagonal, namely $U_{ii} = 1$ and $U_{ij} = 0$ for $i>j$.\n", "\n", @@ -167,7 +157,7 @@ "\\right]\n", "$$\n", "\n", - "The most challenging part of solving a system of linear equations is to transform it to upper triangular form. Afterwards, the solution vector can be obtained easily with a backward substitution." + "The most challenging part of solving a system of linear equations is to transform it to upper triangular form. Afterwards, the solution vector can be obtained easily with a backward substitution. For this reason, we will study here the triangulation step only." ] }, { @@ -179,7 +169,7 @@ "\n", "### Augmented system matrix\n", "\n", - "In practice, vector $b$ is added as an additional column to A forming the so-called *augmented* matrix $A^* = [A | b]$.\n", + "In practice, vector $b$ is added as an additional column to A forming the so-called *augmented* matrix $A^* = [A b]$. The augmented matrix in the example above is\n", "\n", "$$\n", "\\left[\n", @@ -211,10 +201,10 @@ "1 & 2 & -1 & 1 \\\\\n", "3 & 11 & 5 & 35\\\\\n", "\\end{matrix}\n", - "\\right]\n", + "\\right].\n", "$$\n", "\n", - "With this new notation, the goal of Gaussian elimination is to find the augmented matrix containing $U$ and $c$, namely $U^*= [U | c]$, given the augmented matrix $A^* = [A | b]$.\n", + "With this new notation, the goal of Gaussian elimination is to find the augmented matrix containing $U$ and $c$, namely $U^*= [U c]$, given the augmented matrix $A^* = [A b]$. These are $A^*$ and $U^*$ in our example:\n", "\n", "$$\n", "A^*=\n", @@ -232,7 +222,7 @@ "0 & 1 & 2 & 8\\\\\n", "0 & 0 & 1 & 4\\\\\n", "\\end{matrix}\n", - "\\right]\n", + "\\right].\n", "$$\n", "\n" ] @@ -245,41 +235,32 @@ "### Serial implementation\n", "\n", "\n", - "The following algorithm computes the Gaussian elimination on a given augmented matrix `B`, representing a system of linear equations.\n", + "The following algorithm computes the Gaussian elimination on a given augmented matrix `B`, representing a system of linear equations. The result is given by overwriting `B`, avoiding the allocation of an additional matrix.\n", "\n", "- The outer loop is a loop over rows.\n", "- The first inner loop in line 4 divides the current row by the value of the diagonal entry, thus transforming the diagonal to contain only ones. Note that we skip the first entries in the row, as we know that these values are zero at this point. The cells updated in this loop at iteration $k$ are depicted in red in the figure below.\n", - "- The second inner loop beginning in line 8 substracts the rows from one another such that all entries below the diagonal become zero. The entries updated in this loop are depicted in blue in the figure below." + "- The second inner loop beginning in line 8 subtracts the rows from one another such that all entries below the diagonal become zero. The entries updated in this loop are depicted in blue in the figure below." ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "id": "e4070214", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "gaussian_elimination! (generic function with 1 method)" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "function gaussian_elimination!(B)\n", " n,m = size(B)\n", " @inbounds for k in 1:n\n", - " for t in k:m\n", + " for t in (k+1):m\n", " B[k,t] = B[k,t]/B[k,k]\n", " end\n", + " B[k,k] = 1\n", " for i in (k+1):n \n", - " for j in k:m\n", + " for j in (k+1):m\n", " B[i,j] = B[i,j] - B[i,k]*B[k,j]\n", " end\n", + " B[i,k] = 0\n", " end\n", " end\n", " B\n", @@ -288,17 +269,17 @@ }, { "attachments": { - "g30822.png": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzAAAAJsCAYAAAAiM0YjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAACAASURBVHic7N15nBx1nf/xV/X0zOS+LxJOEw4JEORGEMEFFEXwRF1wFQWPXd0VcfHADU0WVERWRV1XQMRjXcFdEfH4KaCcchiCAoKAAiEhCQFykWuurt8fNQM9ne6eqU73VNXM6/l49CNd1d/v1LtnJj396W/V9xsgSRru8sDZJdt/Aa7rvd8OnAy8G9gD2AkoAo8DvwIuBZ6u8nX3A84AXg3sBowCVgP3AN8Hrm3kk5AkSZI0MowGwpLbj3r37wM8XPZY+W0D8LayrzcK+E+gZ4C+PwfGNOk5SZIkSRqmKhUwBwGbqF2A9N26geN7v9Yo4KZB9guBXwJBk5+fJEmSpGGkvID5DfBE7/2twOVEoyyHA8cAnwZWlfVZ2vt1vl2y7z6iU9OOBQ4FTiE6Na28iDmt+U9RkiRJ0nBRXsD03R4Fdq/SZ2bv46Xtf9D7bxH4VyBXpe8ny/rd14gnIUmSJGlkqFTArCG6YL+WEyr0C4FFA/QLgHvL+uxZZ3ZJkiRJI0ylAuZjg+iXY9tTyZYBrYPo+7Gyfn8fO7UkSRVUG/6XJA1fPcBVg2hXBJaU7fs+0DWIvn8o23YERpLUEBYwkjTyPAisG2Tb5WXbd9TZb9Ig+0mSVJMFjCSNPNUWpqxkY9n2ikH221S2PT7GMSVJqsoCRpJGnvKipJZinX3L+7kWjCSpISxgJGnkCZMOIElSvSxgJEmSJGWGBYwkSZKkzLCAkSRJkpQZFjCSJEmSMsMCRpIkSVJmWMBIkiRJygwLGEmSJEmZYQEjSZIkKTMsYCRJkiRlhgWMJEmSpMzIJx1AktR0IbC2ZHtTjL5byvr21HnMzTGOKUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2N0cCpwM+BtoSzSJKk+KYCvwPeTfR3XZKGnQA4CrgWWAVsBf4v0USSJGl73Eb09/wZ4Drg1UAu0USS1ADzgEuAZcCzQNh7WwXslGAuSZK0fQ6g/9/2NcBK4GvAHgnmkqTYJgMfAf5MVKh089KLW9/twcTSSZKkRnmKbf/GF4HngUeBjwFTEkunYS9IOoAyrRU4AVhI9KnLqN591dwOfH8IckmSpOb5GPDyGo93A1uAB4AvAr8EuoYgl0YICxjV6zDg10QX5I9KOIskSUqnTqJrZg4BHkk4i4YJCxjVKwccA3wcOAIYB7QM0Odxok9jJElSdh0KzBqgTRewFvgFcCnwx2aHkqQ4RgHvAH4PrCZ60So/NzYE7kgqoCRJapjHqPx3fgvRBf13AqdQ+7RySUqNHYHzgSfpP0tJ3yxkYxNLJkmSttdsor/nfX/be4imVH4Q+DAwMblokrT9DgK+R/RpzHqic2A/mWgiSZK0Pf6LqGh5jmi5hIuBlyWaSJKaoBU4GbiFaIrFtmTjSJKkOkwluq7lx0TXv3ottaQRoT3pAJIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZI0kMnAmpLbN5KNI0lSOuSTDiBJqiggKmL6jEkqiCRJaZJLOoAkSZIkDZYFjCRJkqTMsICRJEmSlBkWMJIkSZIywwJGkiRJUmZYwEiSJEnKDKdRlqThZ0dgZtm+B4GOBLJIkiRJGgGmAGHJ7TuD7HccsL6kXxEoNCGfJEmSJL2ongLmvUBnSZ8O4O+blE+SJEmSXhSngAmIRllK268Fjm5qQkmSJEnqNdgCJg9cVtb2aWDBEGSUJEmSJGBwBcw44Jdl7R4AdhqijJIkSZIEDFzA7AAsKWtzIzBxCDNKkiRJElC7gJkPLC17/LtA6xBnlCRJkiSgegFzDNEF+qWPfZXoQn5JkiRJSkSlAubtwJaSfd3Ah5MKKEmSJEl9yguYlUSLUvZtbwTekFg6SZIkSSpRXsCU324A2hJLJ0mSJEklyguYO4hGYUr3/QIYlVRASZIkSepT6RqY3YDHy/bfDIxPJqIkSZIkRarNQrYz8FjZY7cBExLIKEmSJElA7XVgZgEPlD2+GJg6xBklSZIkCahdwADMAP5Y1ubPwA5DmFGSJEmSgIELGIDJwF1l7R4G5gxRRkmSJEkCBlfAAEwEbi9r+zjRBf+SJEmSNCQGW8AAjCFaF6a0/VJgXpMzSpIkSRIQr4ABaAd+WtZnJbBPEzNKkiRJEhC/gAFoA/63rN8zwIImZZQkSZIkoL4CBqAFuKqs7xrg0MZHlCRp6AVJB5AkVZQDdi3ZfgF4dpB9W4BdyvZtBlZtfyxJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJUnq1AlOSDiFJkiQpnfJJByjzQeBNwLFJB9FghbsBeySdQpIkpdrtEGxKOoSGhyDpAGUeAmYC84C1CWfRoISfBL6QdApJkpRq8yF4KOkQGh5ySQcoMQ+YBowFTks4iwYUjoZwAvz0mKSTSJKktPv0CdH7hrA16STKvjSNwPwHcFbv/SeAlyWYRQMKrwNOSjqFJEnKlDMhuCLpEMq2tIzABMDbS7Yn4nUVkiRJksqk5SL+VwGjS7YnE13Qf3YycVSHJcA/JB1iWwf8HHb+X/jpVUknqezYT8OGfeCeU5NOUtm3doKvXwsPHJR0kur2uxve8R449y9JJ6ns0KtgzFL43XlJJ6nslFPgsffDfa9NOkl1+/4JHliQdIrq9r8RXv4N+J9rk05S2asvhI4ZcNeZSSep7NwFcP234P7Dkk5S3b73wr+dAKesTjpJZQf/CCYvht98KekkZcYDdyYdQmqWnwBh2W056TrFTf2E10EYltxuSzpRFY+Q7kL4UtL94j4XSPusMRuA/ZMOUcPNwOVJh6jhQ0Sn7aZZV9IBBvAUcHrSIWq4Crgh6RA1HAasSzrEALYAc5IOUcM9wMVJh9hWOKnsvUII4RlJp1L2peEUslHAKyvsHwMcOcRZJEmSJKVYGgqYtxLNPFZuMvCxIc4iSZIkKcXSUMB8DBhX5bEjiEZiJEmSJCnxAmYmsFONx8cBbx6iLJIkSZJSLulZyN5PdKpYNWOBfwH+e2jiKGEzgb2Blt7tR4BlycWRJElS2iRdwJxJNAr0DNFMRzsCbcDjRMXLWGB3YBawKqGMap4jgGOAg4ADiX7+pT4KfH2oQ0mSJCm9kjyFbD6wA/BlYAHRdK3P9j72dmAXojewPUBK18jQdjoP+HfgZLYtXiRJkqRtJDkC8zjwMmBFlcc7iOauvwaYOESZlIxO4H7gXqLC9XXJxpEkSVJaJTkCs4XqxUupzcDKJmdRMr5EdOrYOOBgogX17ko0kSRJklIt6WtgNLL9JukAkiRJypakp1GWJEmSpEGzgJEkSZKUGRYwkiRJkjLDAkaSJElSZljASJIkScoMCxhJkiRJmWEBI0mSJCkzLGAkSZIkZYYFjCRJkqTMsICRJEmSlBkWMJIkSZIywwJGkiRJUmZYwEiSJEnKDAsYSZIkSZlhAaMknQyEZbdCyeNfq/D4kUMbUZIkSWliASNJkiQpM/JJB9CI9hDwqZh9nmxCDkmSJGWEBYyS9BhwUdIhJEmSlB2eQiZJkiQpMyxgJEmSJGWGBYwkSZKkzLCAkSRJkpQZFjCSJEmSMsMCRpIkSVJmWMBIkiRJygzXgVGDLJ8FfCjpFBVMAY4CNiUdpIpXAHNI5/cOYCbQSnrzAbQD7wAOSzpIFTsDo0nv9/A1wETSmw+iD9vSnG8CcBzR72IazQcmkd7v4Tyi711a80H0fuk9wJqkg1SxA3Awqfse7j46WvJNaqwg6QBllhO9mTsQWJJwFtUUXgec9NL2PVvh0FWJxaluJ2AjsDbpIFVMI/rD/XTSQapoBWYDS5MOUsMuwCqgI+kgVcwGuoHVSQepYmLv7amkg9SwK/Bkwhlq2RlYB2xIOkgVM4jegK9IOkgVo4g+LEnz68yuRO9RuhPOUc0cotfA55IO0t+UHDy/c9nOMyG4IpE4UpMsB0LggKSDaCDhdRCGJbfbkk5UxSPA2UmHqOFS4M6kQ9Qwl/SOXvXZAOyfdIgabgYuTzpEDR8Cnkg6xAC6kg4wgKeA05MOUcNVwA1Jh6jhMKICMM22EBUJaXUPcHHSIbYVTip7rxBCeEbSqZR9XgMjSZIkKTMsYCRJkiRlhgWMJEmSpMywgJEkSZKUGU6jLA1sR2APXir47yKa2UySJElDzAJG2tYbiObTP4hoSu9ZZY/vD/xpqENJkiTJAkaq5H+J1iWQJElSyngNjFTdFqLTxb6BSwlLkiSlgiMw0rY+CPwReIiXVl2+Adg9sUSSJEkCLGCkSr6XdABJkiRV5ilkkiRJkjLDAkaSJElSZljASJIkScoMCxhJkiRJmWEBI0mSJCkzLGAkSZIkZYYFjCRJkqTMsICRJEmSlBkWMJIkSZIywwJGkiRJUmZYwEiSJEnKDAsYSZIkSZlhASNJkiQpMyxgJEmSJGVGPukAUgotAj5Stm9cyf1bgZ6S7RCY2uxQkiRJsoCRKhkNTK7x+ISy7bCJWSRJklTCAkba1u/oP8IyEAsYSZKkIWIBI23rl703SZIkpYwX8UuSJEnKDAsYSZIkSZlhASNJkiQpMyxgJEmSJGWGBYwkSZKkzLCAkSRJkpQZFjCSJEmSMsMCRpIkSVJmWMBIkiRJygwLGEmSJEmZESQdoMxyYA5wILAk4SyqKbwOOOml7TtCOLInsTjV5YFi7y2NWnr/TeP3rk8e6E46RA15ou9fmHSQKtL+M8713tL+M057Pl9n6hcQZUz7z9jXmdgmAWvzZTvPhOCKJNJIzbKc6MXhgKSDaCDhdRCGJbfbkk5UxSPA2UmHqOFS4M6kQ9QwF9iUdIgBbAD2TzpEDTcDlycdooYPAU8kHWIAXUkHGMBTwOlJh6jhKuCGpEPUcBiwLukQA9hC9AFrWt0DXJx0iG2Fk8reK4QQnpF0KmWfp5BJkiRJygwLGEmSJEmZYQEjSZIkKTMsYCRJkiRlhgWMJEmSpMywgJEkSZKUGRYwkiRJkjKjfHEhSdnRCuwD7Ae09+67gfSv6SFJklQ3CxgpW04BjgYOon/h0udtWMBIkqRhzAJGypaFwPykQ0iSJCXFAkbKpqeBe3tvRwF/l2wcSZKkoWEBI2XLB4DHgVUl+76JBYwkSRohLGCkbPl90gEkSZKS5DTKkiRJkjLDAkaSJElSZljASJIkScoMCxhJkiRJmWEBI0mSJCkzLGAkSZIkZYYFjCRJkqTMsICRJEmSlBkWMJIkSZIywwJGkiRJUmZYwEiSJEnKDAsYSZIkSZlhASNJkiQpM/JJB5AUSzswpsK+PmOByWWPrweKzQwlSZI0VCxgpGw5Hfhmjce/W2HfPOBvzYkjSZI0tDyFTJIkSVJmOAIjZcstwAdj9nm2GUEkSZKSYAEjZcvDvTdJkqQRyVPIJEmSJGWGBYwkSZKkzLCAkSRJkpQZFjCSJEmSMsMCRpIkSVJmWMBIkiRJygwLGEmSJEmZESQdoMxyYA5wILAk4SyqKbwOOOml7bs74bA1icWpbgawBXgh6SBVTCJaj+m5pINUkQemAs8kHaSGmcBaoDPpIFVMA3qIMqbR2N7b6qSD1DALWJV0iBpmAJt6b2k0hejv/fNJB6minei1MM2vM7OIFgXuSTpIFdOBLmBd0kH6m5KD52eU7TwTgisSiaNhw4Us1SC7PA78W9IpKvg6cBNwbdJBqjgTmAt8KukgVcwCLgE+mnSQGr4PfAF4IukgVVwArAS+kXSQKk4g+jAizT/jq0l3vm8BPwZuTDpIFf9CVMScl3SQKvYCPkO6f8Y/BD4LpPGDOoCLgYeA7yQdpL8dxgJXJZ1CarblQAgckHQQDSS8DsKw5HZb0omqeAQ4O+kQNVwK3Jl0iBrmkt5PlftsAPZPOkQNNwOXJx2ihg+R3uKvT1fSAQbwFHB60iFquAq4IekQNRxG6kYOtrGF6AyRtLqHqIhJmXBS2XuFEMIzkk6l7PMaGEmSJEmZYQEjSZIkKTMsYCRJkiRlhhfxS2qGHYhmE3wF0QxXAL8CbkkskSRJGhYsYCQ1ymnA24kKl0oXu67FAkaSJG0nCxhJjfI2+q0NJEmS1HgWMJIaaStwP3Bv7+0VwD8lmkiSJA0rFjCSGuUjRCtpl67Z8YmEskiSpGHKAkZSoyxPOoAkSRr+nEZZkiRJUmZYwEiSJEnKDAsYSZIkSZlhASNJkiQpMyxgJEmSJGWGBYwkSZKkzLCAkSRJkpQZFjCSJEmSMsMCRpIkSVJmWMBIkiRJygwLGEmSJEmZYQEjSZIkKTMsYCRJkiRlRj7pAJKGjQnA7mX75pTdP7Ds8ceADc0MJUmShhcLGEmNcghwQ43HP9p7K/U64NdNSyRJkoYdTyGTJEmSlBmOwEhqlCXAcTH73NeMIJIkafiygJHUKGuAG5MOIUmShjdPIZMkSZKUGRYwkiRJkjLDAkaSJElSZljASJIkScoMCxhJkiRJmWEBI0mSJCkzLGAkSZIkZYYFjCRJkqTMsICRJEmSlBkWMJIkSZIyI590AA0XD74c+EnSKSrYCTgDOCLpIFUcCEwind87gHHAKNKbD2AM8BVgTdJBqlgAzCO938M9gFmkNx9AC+nONwP4GPDGpINUcRjQTnq/h9OJXmvSmg+gDfg2sDnpIFXsRfR9nJt0kP5mtcKqpENoGHIERkpWkHSAAaQ9n7ZfmHQASZKybDnRH9MDkg6igYTXQRiW3G5LOlEVjwBnJx2ihkuBO5MOUcNcYFPSIQawAdg/6RA13AxcnnSIGj4EPJF0iAF0JR1gAE8BpycdooargBuSDlHDYcC6pEMMYAswJ+kQNdwDXJx0iG2Fk8reK4QQnpF0KmWfIzCSJEmSMsMCRpIkSVJmWMBIkiRJygwLGEmSJEmZYQEjSZIkKTNcB0bSSDSXl9bgAfgLcGtycSRJ0mBZwEgaCQ4C3kZUtBwITC57/HIsYCRJygQLGEkjwTtJ93pAkiRpkCxgJI0kG4D7gHuBNuAjycaRJElxeRG/pJHgO8BeRKeOHU00GnNTkoEkSVJ9HIGRNBL8OekAkiSpMRyBkSRJkpQZFjCSJEmSMsMCRpIkSVJmWMBIkiRJygwLGEmSJEmZYQEjSZIkKTMsYCRJkiRlhgWMJEmSpMywgJEkSZKUGRYwkiRJkjLDAkaSJElSZljASJIkScoMCxhJkiRJmZFPOoAkDYEcMLFs39iS++3A5LLHNwMdzQwlSZLicwRG0kiwC7Cm7PaDksf/ocLjZwxxRkmSNAgWMJIkSZIyw1PIJI0EzwEfjNnnjmYEkSRJ28cCRtJI8AJwWdIhJEnS9vMUMkmSJEmZYQEjSZIkKTMsYCRJkiRlhgWMJEmSpMywgJEkSZKUGRYwkiRJkjLDAkaSJElSZljASJIkScoMF7JUg6yaBrwt6RQVTAQOIJ3ZAPYCZpDefDsALaQ3H0ArcDwwL+kgVczq/Tet38NDgHGkNx9EH7alOd9Y4DCiBVPTaC4whfR+D/cC2khvPoheB08Enk86SBXTgb1J3fdwn7HwYNIhNAwFSQcosxyYAxwILEk4i2oKrwNOemn77k44bE1icaqbAWwhvW8sJhK9AX8u6SBV5IGpwDNJB6lhJrAG6Eo6SBXT2lpacuPb2lKZb3N3d76zpyc3qb29M+ks1azZsqV9yujRHUnnqGZdR0fb6Hy+2N7S0p10lko2dHa2BkBafwc7e3pym7q6WiePGpXan/HarVvbJ7S3d7YEQZh0lko2dHS0BUEQpu1nXAwnsXbrivay3WdCcEUigTRsOAKTPfsCry/ZvhZ4NKEsJQ69B3hV0ikqeAS4DLgk6SBVXAocDByedJAq5gL3E43EpNUG4Fjgj0kHqaS1peX2dy9Y8MorTjopla+331y8OPjFI490/fzUU1OZD2DKRReFz33yk6nNt+ell3Z//y1vaTlkxx1TmfE9114b7DZ5ck/h6KNTme/OZcv4wM9+1vPAP/1TKvMBzLj44uJfP/rRlgmjRiUdpaJ//PnPu8a0trZ+6bWvTdX3cN2WUUy+qLFfMywUJhGNKEaef/7p4GtfS23xq+ZI1S+6BuVA4Asl24+RigJGkiSp6f4RWPTi1vTpBwP3JZZGifAifkmSJEmZ4QiMJEmSpNjCc8+dQz5/5Ys7guD/gkLhsmYf1wJGkiRJUnxBMIYg+LuSPX8aisN6CpkkSZKkzLCAkSRJkpQZFjCSJEmSMsMCRpIkSVJmeBH/yDEX+ApQugrX/wLfSiaOpIGs3bKFxStWBItXruTeFSuCB595JugqFgH4/LHHFk+ZPz+Vq4JLUlqFhcJhwBsIwyMJghnANOB54DngTuBXFAq3BFD362u4aNHBFIsnEi3wPQOYDqwhDJ8jCO4CfgXcHBQKxUFmnkax+OYXd+Ry9waFwhKA8BOfGMuYMW8hCN4C7EoQzOw91jKC4Ho6Oq4OPv/55+t9LlUzLVz4dmAS0fMrtV+4cOGZVTvmcv8TFAobt/f4FjAjwyHA9fT/JbsUuDyZOJIG8parr85d+/DDQbXHN3S48LQkDVZYKOxHGF4CHANA0O/ldSqwB/BK4GzOO+8PYUvLx4OFC++MdYxFi+ZTLF5CsXhshYenEgS7A4cDZwFLwkWLzg4WLrxtwC+cy+0EfLNkzyJgSXj++ccRht8jKpBKzSAI9gKOo739/LBQODsoFL4X57kMItN5wF4VHjmWXK7S8490df0G2O4CxlPIhr+Tgd/xUvESAp8C/gUYVOUvaeit3rSp33Y+l2PSqFFVWkuSqgkLhdcDtxMExwyqQxAcTLH427BQOG3Qxzj//OMoFu8Aqr957+8AisUbwoULTx/sMfodb+HCdxOGv2Db4qXcZODKsFD4bD3HSStHYIa3M4gq9r6fcwfwXuBHSQWSNDh7TZ3KHlOmhAfOmRMetMMOLJg5Mzz/lltyX7j99qqjMpKk/sJFi46gWPwJ/d/zrgG+Q/QB72qi08iOBN4PzOxt0wp8JywUNgSFws8GOMbBFIvXAW0lu9cBVxEENxGGzxAEU4FXEobvB2b3tsmTy10WLly4MVi06MeDf1LhfHK5TxANRHQA3yEIricMlwHjgAOADwD7lfQqhAsXLgsWLfruoI9TS7H4ZXK5qUSjV2eXPHI78Muq/Vpb1zbi8Hn6V4rP0n8Bmh2B9wALgDlAQPSDvoPo+oknGhFCDRcA5/Xe+qwF3gTcmkgiSbFccfLJjpBK0nYIzzlnPMXiVZQWL2F4B0HwjqBQWFXW/DdhofAV4AfA8b37AuBb4Wc+c3fwuc89U/EYhcIYisXv0r94uQd4W1AorChrfkNYKHwVuAo48cVj5HLfCM899/fBhRc+PagnFgRv7b33NLnc64OFC/9c1uKesFC4ArgY+OiLe3O5S8LPfOY3wec+t3JQx6kVYdGibwOEn/3s7uTzpQXMPUGh8MXt/foDyQE3lNwW9e4fDfwX8CRwAfB2ovMCDyc6JemLwF+Ai4CWZodULG1E//lKi5cniX5+Fi+SJGlkGDPmTGC3kj2PsXXrSRWKFwCCQmEN8DbgjyW7p9PWdlbVYxSLpxNdP9PnCeDECsVL3zHWAe8kKnL6TKG19RO1nkoFncAbKxQvfcfpplD4OGF4bcnuSbS1xT1OKlW6BmYKcBfwQWoXJ23AOUBjhqLUCJOAXwN/X7LvfqJh0b8kkkiSJGmIhYVCjui97EuC4GPBRRetr9UvKBQ2k8t9mP6zkL0vPOus0dscIxo9+VDZ7rN7C6Fax9jae4zSkfb3hOecM75WvzL/GRQK99c8DoQEwVnAlpLd7w4LhcxfUFlewOSBq3npnLlHgEuIhp8+DHyJ6NP8UqcCg77ISU0zB7gZOLpk3w1EU/gNbkhSkiRpeNiLaAmJPo8E553368F0DBYu/ANwd8muKUya9MptGhYKc4GXl+x5kkLh+kEe40+EYekMZBMYO/aowfTtddmgjlMoLAd+XrJrCkHwqhjHSaXyAuZ4omtithBd7L038Ang60SnlP0r0S/EVWX9Pkt0nqCSsS/RqNmCkn1XAW8ANiQRSJIkKTHF4uFlewZVWJT4ab+tMCz/egCHlR8j1voxYVh+jPKvV81jQaHw6KCPA7/ot9XTc0iMvqlUaQSmCJxEdGpYpYtIO4AzgQdL9u0JHNyMgBrQcUSTKuzYux0CBeB0oCuhTJIkScnJ5eb32y4W74vVPwjK28+v0Grvsu14x8jnl/TbDsN9BtUvDGueOraNXO6+su1KzyVTKl0D803gxgH6dQNfK9s32KpRjfUhoPScyU8A5yeURZIkKQ0m99vK55fH6t3V1b99GE6p0Kp8X7xjdHSUt690jG0FQbxLA4rF/rOOheHUWP1TqFIBc+kg+/6ubHtwVaMarXw10/cBs5IIIkmSlBITy7bjnVKfz5df7D+p4cdobR3MMSqJu5J9/1xBUJ47c8oLmOXAYM+pe5z+5/kNrmpUo/0z8PuS7fm927tVbi5JkjTsdfbbKhZbY/Zv67cVBB0DHiOXa8YxKom3EP369eW5Oiu2y5DyAibOwpQ9wKaS7QnbH0d1WE80+cJNJft2Ixohm5dIIkmSpGStK9se7OhGJJcrH6Uo/3oQLRL+kjCMd4xtM1U6RiXxRlAmThzMc8mU8gKm5tzYFXTX+FoaOpuIJl4onR5wF+A2Kl90JkmSNJw9U7a9KpF01QAAIABJREFUV6zexeLLy/ZUWr1+db+tnp54x9g2U6VjbCsM9xi4UT/l7Ssuspkl5UVHpVnHlA2biYqYn5TsmwX8lpfW9ZEkSRoJ/lC2fWjM/v3bF4uLt2kRBP2PkcvFPUb/CbAqHaOSINg//MAHBn+6WrFY/lzuHXTfgeTz5dNGD8mAhqMmw0sncArw/ZJ9M4gWuMz8nN+SJEmD0tFxN/0/mH9jWCiMGUzXsFDIE72fekkud8c2DTdvvof+ZyO9PjznnPHbtKt8jBzwzgGPUdlkZs/+u0G2hSDo/1zy+d9XaRlfZ+emsj2TK7ZrMAuY4aeHaA2YK0v2TQZ+A2y7iqwkSdIwE3z+888CvyzZNYFi8axBdS4WPwzsULJncVAoPLTNMS66aD1heF3JrjGMGfOJQR7j/cDOJXseDAqFJdWaV/CZcBCLyIfnn38CQfCKkl1LgoUL/xzjOLW1ta2n/6Re0xv2tWuwgBmeeoAz6D8l9kSiIubYRBJJkiQNpSDov2ZhLvepsFA4slaXsFA4iFxuUdnu6kuMlB8DPhEWCq8Z4Bj7kct9od/OYvGrtfpU8EoKhbMHOM5swvDrZcf5Rszj1BQUCpuJZibuc0h41lmjG3mMSuJNw6YsCYGPAV1A3y/4WOBnwJvpf8G/pJT5w9NPB5ffe2+/T9fuWfHSdZff/9OfgnuWL+/3+LlHHVXcZVLcSXAkaXgKzjvvprBQ+G/g1N5do4Hrw0Lhk8CVQaHw4ulf4dvf3sL8+acC/0HpAuFheAPnn/8/VY9RKNweFgpXEq3DB9AOXBsWCp9mxYrLg8su63rxSxUKOYrFdwBfpXQmsTC8hVzuuzGe2vre/p8PC4WprF+/KPjyl7eUNggXLTqcYvFKokmd+vyeXK70MoNG+S0wt/f+NCZOvD4sFP6TXO4JisXyCcKeKv2+18sCZngLgU8AzwJ9lf5ooiLmXfS/4F/ZNYqoOJ1INJ15D9EiV+t6/+2q3lVp9de1a7l8yZKqpwfcunRpcOvSpf32feDAA4NdJk0qv6BSkkayfyEM9yMI9u3dHg/8J7AoPO+8OwiC1cBU4HD6nzYG8Djd3WcE/U+R2tbmzWczevQrSk7VGgtcyuzZ54WFwh3AM4ThFOAwcrk5Zb2XEgSnB4VCnIm0/gt4LbA/8K9MnPjBsFD4LbAUmEAYHkCxuKCsz2q6u98fXHBBMybs+gbwHl5a1+Zo4GiKFQ7V1TW3N+d2sYAZGS7q/beviGkDriG6VqYZlbiaZxeidX9eQTT94nyiiRqqCYGngIeBPwNLiE4lfK65MbW92nI5Jo8aFatPPudZwZJUKigU1oWFwjFE73tKT+2aRhCcXKPrYuBNwYUXrhrwGF/84gvhOee8htGjf0QQvLbkoalEM8RCUPHzqD/S1XVycOGFTw90jDIddHe/nXz+Z8DLiT68fNNLgbY51kpyudcHF1zwWMzjDEpQKDwYFgpnAN8kKt6azgImex4BLivZHuzioxcRjcSUTqV3ONECmJmfD3yY2xN4P/AGYO+YfQOiomcX4HW9+3qAe4hG4q6kfB57pcJb9947fOvee/cknUOSUqVY3EIuV7qA5ICnIwWFwroQXkuh8HbgM8A+NZo/RrH4JR5++Krgxz8e9Gtw8MUvvgC8ISwU3kIYnksQlI+AlPobcAlwZXDhhXWdThVccMETYaFwOPB5olPkKi0ovxX4IfCpYOHCNfUcZ9B5CoUfhoXCzcBpwJFEi6lPY9uJBhoyAmQBkz139t7qcSX9ZydTuh1HdB3T62jshBstRMXr4UCB6MXtK8D9DTyGJEkNFyxa9GXgy7H7QUihcA1wTXjuubvQ2noExeJMcrlpFItrgNUUi3dt7yhFUCj8BPhJeO65O9HSciS53EyiN/LriE7juju44IJHtucYJcfaCHw0POusc5g06TWE4W7ADIrFteRyS4Ebg0JhQyOONcg8K4Av9t6aygJGSp95wNd4acSkmdqJTiV8L/ADogkfnh2C40qSlIjgwguX0oDrMAY4xjKg6sX/DT1WdAH/L4biWGnhCdNSeuSBfwceZGiKl1IB8G7gIeAfhvjYkiRJg2YBI6XDVOD/AZ8lGhVJyjTgu8C3eGk2EUmSpNTIA1NKtuNOt7obL12cs91zOksj1Bii2U52TThHqQ8QzXJWc5EsSZKkoZYH1g7Yqrp1jQoijVBTiWYWS+P1aEcRTbNddS0SSZKkoeYpZFJydgdOJp3FS5+9iE5pGz9QQ0mSpKGQtk9WlwNzgAOJFtxTaoXX0bc4EwB3hHBkGtesyBPNOd6MlWe3V6MLl/KVghv5/zskWj8mjfJE2VK5An0Q5FqCXEsQBEEafwcJwzAICYNckEtlPoBisZjL5dKbLwzDXBAEISn9HSwWi0GvlH4Pw6BYLAa5XEtK86X/ZxyGYS4MwzCXy6UsXy4IwxlBCBC+jbB4CcCZEFyRbK5sCRctegXF4h9Kdi0KCoVFiQVKgTR/8qtMOeIO4FVJp6igb+HPS5IOUiIH/Bw4YTu+xhbgp8D/AXcBlVbxDYimZD4ceAdwPPX/nw+A84EL6uzfTBuITnf7Y9JBKsvdOmXP49pfdvy//V/SSSp58qYvHrZh+eKj9nvPNU2ft79ei79+9OcP/MjNn046RzVLvvW6T80++D03zjrgXYuTzlLJn390xin5tnET9nzLV1L5pvHZh6/fedmt33zfAR/8ZSHpLNUs/sYxF8x/13cuHjVl1/VJZ6nkz1ef+U/59rFP7vmmr6RqKt3urfnRKxfPLnRsuJl1j99MmNoSNeW2bl1BW9tnXtzO5e5IME0qWMBIQ+8c6i9etgBfBb4ADPSHNAQe6719j2h083yiNV9a6jh2AbgNuKWOvpIkqQ7B5z73DEOwOGSWeA2MNLQWEK31Uo/FwD7Apxm4eKnkaeAMohGZJ+vo30J0Uf/YOvpKkiQ1hAWMNHQC4OvUN/L5PeBI4PEG5PgD0XVmN9fRdyeitWokSZISYQEjDZ3TiIqQuH4MvA/oaGCWNcAbgFvr6PtxYM8GZpEkSRo0CxhpaIwGLqqj3y3A39OcGcA2E03j/ETMfm3AxY2PI0mSNDALGGlonA7sELPPs8CpQHfj47xoHdEMZZ0x+70ReEXj40iSJNVmASM1XwtwVh39/pnK0yM32h+ob0Tl7EYHkSRJGogFjNR8byVajyWO3wNXNyFLNZ8DlsXs805gbhOySJIkVeU6MFLzfaiOPmcztCs+byaa3vmyGH1agPcDnxmoobbP84/eMGf1fT8+fPPaJ+cWOzdPCIKWrvyoCWvGzV7w4I6v+sc7R02YvSXpjJIkDRULGKm55hCtEh/HrcBdTcgykO8RLXQZ51qdU4mmVXZ95Sb5688/deyav936d4ThiyPmIT35zk3PzVnz2E1z1i+967Cdj/qX/56+zxuXJplTkqSh4ilkUnOdSvxV7/+jGUEGoQP4Rsw+O1Pf1NAahMd/8+9HrvnrLccRhrkg19I9fs6Cu2cd8M5rps1/43XtE+c8DtDTuWni0pu/9N71S/8wLem8kiQNBUdgpOY6LWb71cAvmhFkkK4kGoWJU3T9PfWtJ6MaNq68f/LzD//6BIAgl+/a9TXnXF42yvL7R3/68RPWPXnn0cXuzjFLf3fxyfu995pvJxRXkqQh4wiM1Dy7AvvG7PMjmjtt8kBWEq09E8ebgKAJWUa0Zbf/19Fh2JMHmLz7MTdWOkVs9xO/8Ou2sdNWAGxdt2yPZx+8fpehzilJ0lCzgJGa57g6+lzT8BTx/U/M9jOB/ZoRZKQKuztzm555eF+AINfSteMRH7q7Ursg31actPsxv+/bfv6R3ywYqoySJCXFAkZqnmNjtl9HMhfvl/sl8WdAO74ZQUaq5x+7Ycdi99axAG3jd3iq1ixjM+e/8S999zc/++heQ5FPkqQkWcBIzZEDjonZ5yagpwlZ4loBPByzTz2jTapi46qHZ/XdHz15p5rr84yevvsLLW3j1gJ0b31hSvfWta3NzidJUpIsYKTmmA9Mj9nnpmYEqdMNMdsfiZOCNEzH2mUv/u60jZ+xdqD2+dETe9uEwfqn7ov7eydJUqZYwEjNcVAdfe5seIr6xc0yGti7GUFGou6uzWP67reOmbZxoPYt7WNfbNO16ZmxzcolSVIaWMBIzfGKmO07gD83I0idFtfRJ+5zVhVh99b2vvu51lFdA7UPWto6++73dG5ua1YuSZLSwAJGao64b+YfAAZ8ozqEHgfWxOxjAdMoxeKL6/AELS3FgZrncrkX24TdXXEXTpUkKVMsYKTGywFxp7O9vxlBtkNI/EwHNCPISBS0tL44ohJ2dQ54bVGxp+vFC/db2sd01morSVLWWcBIjTcHGB+zz2PNCLKd/hqzvVP4Nkiutf3FIqS7a9OAp4SFXR0vnnLW0ja+o1m5JElKAwsYqfF2q6NPGguYuJmmA+OaEWSkaR0zdV3f/a4Nz0waqH331g0T++6PmbrbulptJUnKOgsYqfF2raPPcChgoL7nrjKjp+y6uu9+x4aVNadFDrs7c11b108FCHL5rnGz97GAkSQNaxYwUuPVMwLzVMNTbL96MtXz3FVm4m5HLCO6Dokt657atVbbNY/fskPY0zUKoG38zGUE+bD5CSVJSo4FjNR4u8ZsXwTWNyHH9lpVRx8LmAYYN2v+urax01YAdG9ZP/35R2+YU63tcw/9Yv++++PnLEjTVNySJDWFBYzUeLNjtu+i99P2lHmGqLiKY4dmBBmJJs191d1995++69uvrdRm46oHJm1YtuQQgCCX79zh4NPuG6p8kiQlxQJGarwpMdunaf2XUt3A2ph94j53VbHLqz66OD964rMAW9cs3fPhqz/41q4XnhnV9/i6v90y69Hrznl/3+ljk192xC2jJ++2Kam8kiQNlQHXF5AU29SY7bubkqIx1hHv+cR97qoiaB3dM/d1he8+9rNP/lOxp3P0CyvvP+SP33nb/q1jJq8u9nS2d29ZPw0IAEZN2fUvc1+36LcJR5YkaUg4AiM1XtxRiJ6mpGiMjTHbOwLTQBN3OezZ3d98ydfaJ8x6EiAsdrd1bnx2x+4t66cDAUGuZ+Kuh92y97su+36Qb4t7up8kSZnkCIzUWHlgQsw+aS5g4p6S5AhMg03c8aDnF7zv2m+ueex3O6x74va5nRufm5TLt3e2T9hhzcz93/rQqEk7b046oyRJQ8kCRmqsCfSe1hNDmguYuCMwEwduonpM2f2YlVN2P2Zl0jkkSUqap5BJjdVWR580n/oT99P99qakkCRJ6mUBIzVWax190jiFcp+4EwzU8/wlSZIGzQJGaqx6RmCGUwFTz/OXJEkaNAsYqbFG+giMBYwkSWoqCxipsRyBiT+JgSRJ0qBZwEiNleZiRJIkKfPS9knpcmAOcCCwJOEsqim8Djjppe17tsKhqxKLU91ORFMBrx2i47US/Q7H0QMsa0KWRpgOjI3RPgSWNilLNbsAq4COIT7u4AS5Ofm2MSG5fNwpqYdE2LV1dBjQnsuPWpd0lmqKnZum5NrGrkk6RzXFri2Tc/lRWwiCrUlnqaSnc9P4XEtbELS0bkg6S0U9Pa3FYue4XOvooXqdjq3YtXlKrnXMOlI6a2TY3TkpDHu6cq2j467d1WRBQDh5MmEHPd1zCXtuATgTgiuSTqZscx0YNcjs5cCXkk5RwQXAHcCvhuh404F/j9nnBeALTcjSCGcAB8Vo38HQP5dLgasY+sJpUAKCT42Zvmduwi6HLE46SyXrn7xrXsf6p+fNWPDWm5POUs2Ku7795lkHvOvmpHNUs3Lx90+YuOshj4yeOu+JpLNU8tyff3ZoS/u49snzXnNr0lkq2bpu6dR1f73tlWn+Ga+45zsnT9/npDtb2sZuSTpLJc8//KvXkGt5fuqex/8p6SylwmJL29a1+57YtelhNq5c5SkKahgLGDXIjquAbyWdooKPA7cxdNl2In4Bs5F0fu8AjiVeAbOJoX8uFwPXAH8c4uMOUnBq24SZ7bMP/oe7k05SSeeGVUHX5ufmpDUfwIq7r3xTmvOtWvLDY8bOePlfZx3wrlQWqWv/dusu+bZxE9L6PXz24et3Xvf4nYekNR/Ainu+88bpLz/hvlFTdl2fdJZK1j5+20H59rFPp+172L01P3rl4tknhsVxwM1Jx9Ew4jUwUmN11tEnbadyloo7q1o9z1+SJGnQLGCkxqrnDXya/x+OidneAkaSJDVVmt84SVm0gfgXebY0I0iDxLmAH4ZusgRJkjRCWcBIjdUDxD1HOs0FzLiY7Z9vSgpJkqReFjBS48Wd7jXNBYwjMJIkKVWchUxqvOeBuTHap/n/4dSY7Z9rSooRLuza0rLivqv3eGH5vfN6tr4wjly+p33c9DXTXv66ByfNfXUa11+SJKlp0vzGScqquCMwbU1Jsf3agIkx+6R2scGsevbB63d56vavv6Nn64Z+xeQmYM1fbz5u7Iw9/jT3xM9fO2rC7FSuTyFJUqN5CpnUeCtjtm8lnVMpzyR+rrjPXTU89/Avdn7ytxd9oK94aWkbt27M1Jc9NGrSLo8GuZYugE2rH13wl2v+8X3dWzfEnfJakqRMcgRGary4q3EHwBTSdwH8zDr6PNnoECNV99YNrUt/9+XTwmJPHmDKvFffMPd1i34b5NuKAFuee3zcoz87+90dG1bt2rnxmZ3/+stzX7fXW752fbKpJUlqPkdgpMaLW8AA7NzwFNtv1zr6PN7oECPVUzf/x+E9nZsmAoydsecf5534hRv7iheA0dNetnGPN3/le7n8qE0ALyy777CNqx6YlFReSZKGigWM1HhP1tFnXqNDNEDcTCGOwDTMuqV3H9x3f84rz7ypUpvRk3fZNGGXQ+8ECMOe/KolV79iqPJJkpQUCxip8eoZgdm94Sm2X9xMq4HNzQgy0qxfvnhq95Z1MwDaxk5dMWnXI1ZXaztj/on3993fuOLBvYcinyRJSbKAkRpvBfEXs9yjGUG2U9wC5uGmpBiBNiy9Z8e+++2Tdn6qVttJu71ydS7fthmga9Nzs8PuTl/XJUnDmn/opMYLgfti9lnQjCDbIQD2i9nn3mYEGYm2rHlyRt/99gmzaq+tE+TC/KiJayA6jWzDqvsnNzmeJEmJsoCRmmNJzPbzgVHNCFKnPYi/Bkzcok1V9GxeP6Hvftu4GQOO5uVHT1jXd7/j+aVxf26SJGWKBYzUHHHfzLcC+zQjSJ0OqqNP3KJNVRR7Otr77re0j+kcqH3Q0v5im56Oje212kqSlHUWMFJz1PNm/vCGp6hf3CybgEebEWQkCnu6XlyUMmhp7Rmofa4l3913v7trc1uzckmSlAYWMFJzPAysitnn75oRpE7HxWx/CzDgG20NUklBEvb0DPg6Xezpaem7n8uP6mpWLEmS0sACRmqOEPhtzD6vITqVLGk7E39WtBuaEWSkamlp6+i7XxzEiErpiE3rqLEdtdpKkpR1FjBS89wYs/144JXNCBLT6+voYwHTQC3t4zf13e/Y+Nz4gdr3dLxQctH/zE212kqSlHUWMFLzxC1gAN7Z8BTxvStm+6eBPzcjyEg1atJOz/bd73zhmSkDte/esj5qEwTFcTsfUHvaZUmSMs4CRmqeZcRfG+UUIMmLsHcCjozZ5yfNCDKSjZ2974q++x3rntqpVtuNqx6Y1NO1eQJAfvTkZ/Ot47trtZckKessYKTm+kHM9lOAk5oRZJDeT/zXhR82I8hINnX316xsaRu7HqDjhdU7bXnu8XHV2q5+4Pq9++6Pm7Hnw0ORT5KkJFnASM31QyDuJ+LnNCPIIIwCPhSzz9+Au5uQZWQLcuG42fv8CYCw2LLs9q+/qlKz7q4X8usev7Xvuqlw6t4n/mmoIkqSlBQLGKm5VhN/NrKDgSOakGUg7wVmxuzzA6IZ19RgOx/1z7cEuXwnwLqldx319N3f3rv08bC7M/fITz7+5u4t66cDjJk+78Gpe7xmRaWvJUnScJJPOoA0AvwncHzMPl8BDgWKjY9T0XhgYcw+XcC3m5BFwOgpL9s4c/9TfrJqyQ/fQRjmnr7z2//w/CM3PjJmyq7Lit0drRufeWif7i3rpwG0tI1dt9vxn/1Z0pklSRoKFjBS810P/AXYK0afg4DTgO81JdG2/g3YIWafHxBNVKAm2fmoj95XLHbln73/2pPCYnfb1jVP7rV1zZP9fo/axkxdudtrP/vfY6fvuSGpnJIkDSULGKn5isCXgCti9vsqcBvwRMMT9fcq4KyYfUKi56Qm2/Xoj/9h2l7HPbZq8Q8P2vTsY3N7OjeOJ2jpaRs7+bkJOx364OzD3/uAM49JkkYSCxhpaPwAOI9omuLBmgT8D/BqoFmrq8/oPUbc14KfAA81Po4qGTdr33XzTvz8jdS3tpAkScOKF/FLQ6MD+Nc6+h0KXAu0NzYOEBVIvwDmxOzXAXy68XEkSZIGZgEjDZ2rgd/V0e8E4BqiC+0bZQ7Rp/kH1dH3i8BjDcwiSZI0aBYw0tD6Z6LZu+I6CfgDsH8DMhwPLAEOrKPvUuALDcggSZJUFwsYaWg9SP2nX+0JLCaaDGDnOvrvC1wH/Jro2pe4uoBTgc119JUkSWoICxhp6P0HUSFRjxbg/UQzk90EfBg4AGit0HYs0YKYnyAavbmfaCSnXucCd2xHf0mSpO3mLGTS0AuB04F7gHl1fo0c8JreG0APsK73liO6QH/y9sXs5zqcNlmSJKWABYyUjLVExceDwIQGfL0WYGrvrdGKRKeOhU342pIkSbF4CpmUnGXAT4HOpIPU8EeiaZM3JR1EkiQJIEg6QJnlRNO7Hkg0S5JSK7yOftdTPLQa5v8qsTjVvY1oyt8/JR2kiiOA6b33JyYZpILlRAXMCUQLcabVacD/A55LOkglQZB7Y+u4GbSOm/pE0lkq6Xph9czurS/MGD197gNJZ6lm8zN/OWDMzL1S+zdhy7N/XdA2foeVLaPGrk46SyVbn186N5dvz7dNnPVI0lkq6dmycXzHhhXzxszc476ks1SzedVfDhgzfd6DtORT+YFTx9qn9w6DcOOoSTs+lXSW/vItxa499y92PkPXpgkUe34GcCYEVySdTNnmKWRqkK42YMekU1SQJ7oeJI3ZAMYRnf61GNib+mYHa4alwN+AaUQfdKT1+wdRvpnAqKSDVBa05VrbybeObcSpgg1XzI8eXcx35tKaD4AgF6Q5XxDkgpa2UaPTmjHIteRzLa35tOajp2ds0JJP7f8RgKAlT0v72PFBkK9nGvym62xpaQmgPX3fw6ClGPTQHRaB7qTDaBixgFGDLHgQODbpFBU8AlwGXJJ0kCouBQ4GjiF6I/4x4Hwau2hlHE8BHwGu792eSzR7WRp/tn02AGcSjRalUHDruFnz2192/L/9X9JJKnnypi8etmH54qP2fMtXU/uJ6OKvH/35NOdb8q3XfWrqnsf/7v+3d+fRcVR3vsC/t5Ze1Gqt1mJLtryB8YKNF1nyAtgDhgQIQxaTMO+FJCTwZgkDDkkmb96ZjDLDvMmQEBwYkjfAHJJMZiA4JECAQALBxoskWza2sWxsvFuy9q219VJV9/3Rbrllt9RSxuqqNt/POTrc6v6177dbttHPt25V8ZK76uzOkkj981+5U3NlZs351EZHfoZth34z7cy7P77Hyd/juifXPjx97Tf+y5M3vcfuLInU/+Lev9LcvpNz7tj4mt1Z4hlBzdtUN6UqFNiMUM9mu+PQZYR7YIicQwJ4DNH7vfwHUrtpPoJoM7UA55sXIiIiIsdhA0PkPE0A7gawDMDPEN1EP1G6AHwPwBUAHgDQO4FzEREREf23sYEhcq49AL4AoAzANwC8g+hKyX9XP6L3dfkKgKkAvononhciIiIix+MeGCLna0H0JpLfR/SeMX8CYCGim/7nItqEJLpppYnoCssJAAcBHAKwG8BWTOyqDhEREdGEYQNDlF4CiN475qUEz2We+zIB9AEYTGEuIiIiopRgA0N0+eg790VERER02eIeGCIiIiIiShtcgSEicjhphJXm/S/O7j29a1Yk2JOlqHpEzyzsLJj3iQPZZeXtducjIiJKJTYwREQO1nHk9yWn3nn0LmOwp+DC5zoP//7jvuL5u6+89Z9e0f1FQTvyERGl2sqH9pQZRvCq2LErbO7c9uNru+zM9FG2fr1UT02pHrrhtaXrjXXfLz9wKecof3D7NUKKotgxGxgiIofqOPL7kuNv/MNfSMvQAUDRvb0uf1GjNCOucKCpTEpL7W+uX3pw01/kz//8T5/WdL9hd2YioolmWJECCLEodhzR9HpEr7pJNjiITapPTB36fqiWqQK4pA2MgJgOIa6MHbOBISJyICPUq51865HPx5qXnJmr/jDr4//4lqp7TQDoaz6YffTVb30+3Nc2NRRomn7stW/fNOeOx163NzUREdHE4yZ+IiIHOr1lY6UZ7ssFgIyCK/dfefv334w1LwCQWTyvZ84dG3+iaO4BAAic3rWqr/lgtl15iYiIUoUNDBGRA3WfrFkeG5eu+PJbiWq8k2b2ZU1bXg0A0jK15veeX5yqfERERHbhKWRERA7T2/BenjHQWQQAroz8ppyZ17WMVFs4/9b93ce33gAA/U3vzwOwOTUpiYiIgPpNd4bXfPGdx2PHvS6/OVr9H8MccL3mD/e+ETtmA0NE5DDdp2qmxsbu3NLTo9XmzFzVoqiuQcsMe8N9bSXSCCtCc1kTn5KIiChq80/WTuiVMHc/tSwCIBI75ilkREQOM9h5qjA2dmdNaRu1WGhS82Z3ANHTyPqa9+dOcDwiIiJbcQWGiMhhzIGurNhYzywIJKvX3Fk94b62UgAY7DiV7S9d1jGR+YiI0t3S++p0eIOTdaH6TKhuiHBElWq/JyfYvLnq0qwmrKl6R+sPKJNVy5UZnQMREZEDqm42Vz+2cvBSzBEZhJCWAAAgAElEQVRv5de3F0pTZBlSZiqqGkYYgdr8N86iquqyW5VnA0NE5DCWGXLHxprbF0pWL3T3UI0Z6XdNVC4ionS3+Kvbprg0sVIiMg1QNQuAgAlIFRaAgS63XL5hR6MwlV21j1d++MfMsfTBdycr0FcMdGO6AOLmAKABpgVZ/sD2Jgm5q+6Hqw+P5de85sH3ctwidGfsWFhyX80PV9QCUlQ8VLtEmnKxYSAPAAQEpCkBFVjec9OAfOiW/VavUn3uNKxLbul9dbrmM740lE3KIzUbV2y+lHNUPFCzDgpmxI7ZwBAROYw0I3psLFQ96WZIRdWGbmBphgbYwBARXahKKsu6a25WgKvlaHVCCEiUSkWWlm+oPunrCr4y5v0dVVVKRc+6G6VUrhm1TgghIKYI4E+XP7jjjCrwUrIVGVekQ5W6Lyd2bCnSs6bqHU9/T83t0sT0EV8oRYYwzUol05yz+ltbf7ntu9de8ht+BruOC1/G1KFsUETGpZ5DCssHKYbm4B4YIiKnUc43JNI0k/49bZmmGhsLTTdGqyUi+qhZv/4FdXlX9acV4Or4xwWkJSCahCKOSaARAsNWKITE9MFc711L76tL/gN5VZVS3n3zHRc2LwLCgpTNsTmEIsLDXyimmlD/bP5fvpM5nvekSiEGu123CXmueRFSCogmQB4RijgmpdU3bBYLuaGg9rmK+2uyEv166YYrMEREDqNqrqH/wVmRQX20WmD4io3q8odHqyUi+qg5OW36KmGaQ6cfQUopVKVOkbKm+rHKoZWPpffV6Yo3dI0QyrU49zOylLJAyYh8DMCvRpujsvvmFRYwe+gBIaU0sccM6tW7n1o2ED+H5jcWSkteB4no393Sys9we24B8MJY35OEmC+h+M4dHdF16+3tj6zsjasQFX9dOxsq1kkpMwFAAH5ouAXA82Odx6m4AkNE5DCq298fG0f62/zJ6s1Q71CNJ6uob7RaIqKPkpVf314oLKMi/jFL139b+4PKdy48bWv3U8siu364apcpzV8CGFrNFsDsyger5440x/L/XZsvIVYMe1Cov9v1+Mq345uX2By1j1buViFfiF/xERLTV2zYMWyFaDQSMtq8SLlv58aVL21/ZHXv8Aohax+v/DAkB/9LQA79P0VKOa18w875Y53HqdjAEBE5jDtnamtsHAq05CWrN4KBaI0QVmbpkvYJjEZElFbMsFwGKUTsWAq5v+775QdGe83uH64+rUhsj3/MElg+Ur0IGkslZNzP1Er9zh9U7BttjurHVjYC5tZhc0iUj/aaC0kFXWVnV7w1Ws3ejWu7oSu/G/5Cc1zzOBEbGCIih8mcsqApNg52n5k6Wm1f88FsM9yfDQCaJ7tdc/u5B4aICNHTtaSiXhU7FhDWQCi0bSyvnXr2TF38ygUkilZ+fXvhhXXr17+gQqjzhh4QUgpTbr2wLpGd2W/tkcDQyomEmLT0wXcnj+W10ReoOzZtEkkv9FL7vcoPIdAyFBEoTPRe0gkbGCIih8m/4oazqp4RAIBwb8u0wa4TvpFq2+tfGTqtwVd01aFU5CMiSgea2yjC8P3eJ+t/tHZMp9lu2nSnKaEO+zvVMpTSC+uOlxQXSksOXf1REeJ07ROVSe/fBQCoqrIg5MH4hxSpXjRHIlJY5kC2b8yXebYgk76XdMIGhojIaYQifZMX7AMAKS31zNYfr0pUZkYG1c5jW1aeO5ST5t0y6ikLREQfJaZmTRn2gIKGcf0CF9RbUC5aHdGhD3tMmqJxPFNYhhw2h6Jgyki18YTQ2uqr5o/5oi06MCyXBWvsKz0OxAaGiMiByq796hahaBEA6DmxfU1T3c/nDCuQhjjy0oY/NQa6iwAgI3/mofwr143rf5xERJcz5dzVt4YY6BjP61VpDttTqCjWRZc6NlV12GOKZo1vH2KGe1i9JZWxXU7ZGt97cXeFhtUryhjncSheRpmIyIG8BVf0Fi781Este19YL6Wlntn+oy92HH7zYEbezNOGMejqa6pfYAx0FgOAqmcEpq/7Py/ZnZmIyEmEJT3xW+stTRnbDSnPG3aVMtOC98ICxbI88TfGlKYY1xxBr3fQFzp/+xkhpGcsr5PCCo1nns0/WRNavqFaxi5oYEmMaR6nYgNDRORQZWs21EkzpLXVv3qbtEx9oO3ogoG2owviazRvTuvMG7/1n5nF83rsyklE5ESWqqoirrswwuGkG97jBRoaTF/J+euoCKGoFxUJaIibw1TUcc1Rj3nGctScf8Aa28/miki+eX84ISW2WwLi3HuQad0DpHV4IqLL3fQbvlWTP+fGD5v2PL9ssP3YLCPYmy1UPax5s7uyppW/X1p5717NkxVJ/isREX20KLBCMm63hNedkfTGwPEK5s93DXSf348vhLxo1cMyrJBQxPnjSMR1Yc1oVvRUu02cfz2Usa3gSNMa1zzr17+gnpLnGzBpXfxe0gkbGCIih/OXLuvwly570+4cRETpxFL0oDDPL1RELGNc+z56uzv8KuJ6HgsXNReqIoJW/LF+8T6Z0WiGJ9NUz/cSirh4joQUZIxnntPF03yIWypShDre0+kchZv4iYiIiOiyIyORzvhjRVjjuveJqojh9crFG+eFKodvjpdawXjmCGrG8DnkGDfnWxjXe1E0K+l7SSdsYIiIiIjosqOr4mz8sZRi5nheLy1tVvyxaRpnL6yxwsqwxyxg9njmUBAZVi8VcdEcCQmRvfyvavPHOo+lKDPij01THds8DsUGhoiIiIguO9WPrewUQnYPPSCt/PKv7Zw6ykuGLP2bumwFMr7hMXRFOX1hXe0TlQHIuFUYiazKB6unj2WOVd/c5pdSGWqSpBDmoPCeGstrAUDRravHUje/qt4lTXlV3EOGrkQuei/phA0MEREREV2WLEu+N/wB84Y1Ve8k2QMuhRYxbpQQQz8nW8Ch6sdWDiaqtlTsGXYs5Q1L76tLesGASFi5AcP2o8sj+7+/qD/Z6+IyLVn9ra25yeoyA72rgLhLQEt5ZKT3kirlD2wvX/7AjpuHvr5eOyP5q85jA0NEREREl6WB3Jx9EuiNHQugsL/bc/v8qvqEV/Fav/4FtWJD7TppyfOnjwlEdCFrR5pD9rkOCCHOr/QIka96w3fMvv91d8IXVFUp5RuqbwTElUO/hrBMS9Grx/XmAC0SUtdX3F+TNVJB5YPVS6Qly+PnQYY63nkuOVVVZkKIRbEvYcmi8byeVyEjIiIiostSfdX88MqHtr9uWOLO2E0cBTDb1xO4p/yB7bt1Had6BsIDHq/fo0qz5LSUS6SUwzbiKxJbqjeu7Ew8A7D7qWWRivtrXoci74KIzgEhZuSqufcs27Bjt2opp/oig/2+7Ay3GJAlVrdcIjB8E76E2Lr70WXtY31fUpqnoIhSSCVHqNY9lQ9W71I060Npil53drYa6ukptoSyyIpvxKK5qnf+c0Vab+AH2MDQJdOZDeB6u1Mk4ANwJZyZDQCmAciBc/OVAFDh3HxA9O+xcgDZdgcZQW64r1Vv3ffiuDaPpkqwu7HAjAw6Nh8AQJpwcj5pRvSB1g+KnJrRDAaypRnOcGq+gbYPi6QZVp2aDwAgLaXj6DvTdHfWmE/vSSUr2Oc1jHCu0z5Dy3K5w71LYAx+AIzx6sATYcejq05VPlj9qinELULK6L1QJLKEUNYaBuBzeQAzcu7h4aQit9X8YOUeJFH7RGXD8q/Vviyl8Qlx7n4rAvALKdZIIaNzDFqQAvF3fYnOIa2auo2rdo7rTSlKszRwRKhYJyFcElhlGcoqAIjeu0YAcvi7EZZ5YOfGVbavvgCAlELEf9rClBd+9KNiA0OXyOG5AH5td4oEsgHcDWC93UFG4EO0QXDiZwdEs7nh3HxA9LzeRwEYdgdJRMLK6m/5AIPtJ8a0cTTVLCOoSzOiNdY++3m7s4xESqk4Op9lertP1qzoOb17md1ZEjHDfW4IRTj1M5RWRLWMkMup+QBASqm27P3lpwXEuH7IShUz0u+VlsxrrH12VvLqlBKAF9IKAXJcF+e65Go2rjhUcX9Nr6XixgtXPxISCFiW+U7dD1YfHuscO39QcWTxV7c9p6vyRghRnKxeAr2KGdmy84nrDo51jnh1T6x8r+L+d0PQXTdJS454Y0sphCmlrKn74aodeNwhv4clhq6gJiAszRs5Mp6Xs4GhS2RFDYBr7U6RwGEATyH6A64TPY7o6sEKu4OMYBaA/QDy7A4yigCA6wDstTtIIgLKu7mzrnPPvOnvXrQ7SyIn336kMtBQd93CL7zwiN1ZRlL3r2v+efF9r37H7hwj2fNvH/vWlPIvvFW85K46u7MkUv/8V+7UXJlZcz618Rm7syTSdug30868++N7nPw9rnty7cPzPvPkY5686T12Z0mk/hf3/pXm9p2cc8fG1+zOEs8Iat6muilVocBmdB/ffMl+XVOGGnWpb4kdq15jTN+X2icqGwD504q/rp1tqdYsIUWpUETmuR/+DUjZb0E0CUU95svuP7y5au24/2HsvX9dfRbAz5bev32WqojZUNRSIU2/hIjOITAgYDWZquuYDIjDu55aERnvHMPf03UH11TVnx7s6FoAVbtCCisbUmRAICKk7LEEjmmQ71dvXNmJjf+dmUY2DzDPSAx9PyIRc9RT4ZY+VDdJmhFf7NiErK/97rVd45mTDQwRERERpY3dG69rAtD0x71ayNrH8SGAD4ceqqpSUFVlXZJw5+x+YtUxAMcmco6YzVXz+wDUnPsCpBQQqVtp2bTpThPAiBc5uJBuRqbFPggphCld2o5kr5FCuOLekcGrkBERERHRR9cENRYpnyMmhc3LH8OyZFlsrMB8f/e/LEu6gibiLgMtIEJsYIiIiIiIKAWkkELE9oQami7HeFEB6Y+NLGn2sIEhIiIiIqIJV/FAbaEQ8ACAVOS+7Y+s7k32mvKv7ZwKKTJix6qiNHMPDBERERERTThv7mBPfyt+BgADhYUJ762zpuodzWjR/IMu4VcVvRDSqIy/+LQ0xAdsYIiIiIiIaMJtrlobBNA8Wk2w21NquXGnCgDSwrA750h5ovaJFQ1sYIiI0oE0RPep2oJwT5Mfqsv0F83t8BZckXTpnYiI6HIgpXVWU8SrAC+jTETkaDIyqB773T9d33OqptIM92fHP+XOKj5dtPiu3xUvvvOobQGJiIgmgIAMQygDUlqtwjSO7Hz82kOxK6yxgSEicqjIYKfr4HNf/nIo0Dw9wdMiFGguO71l41cGWg+9PvPmv3831fmIiCg1dj55YwcAx95w+FKq2bjiJBK91yfOD9nAEBE51OFfb1gfa160jLyWyUs++3rOzNUNZqhPb933q6s7jrx1k7RMvf3Qm7e4c8vaSpZ/8ZDNkYmIiCYcGxgiIgdq3ffizIHWIwsBQPX4O+d97ukfe7KmDMaez5y88F3vpNktZ7Y9+SVAiuY9z31iyuLPHhG617QvNRER0cTjfWCIiByoed8vr4+Nixetfy2+eYmZvOx/Hs4omH0AAMxgIL9h57MLUpmRiIjIDmxgiIgcJtLX6g51nZkNAIrm6ZtS/oWDI9Xmz7l5V2zcc6qWDQwREV322MAQETlM+5Hfl0lpagDgyS09ITSXNVLtpPm3nIBQTAAIdp6elaqMREREdmEDQ0TkMIPtxwtjY0926ag3/NK9eWHNm9UOAJYR9A12nfBNdD4iIiI7sYEhInKYUKB5UmzsyizsTlavebKHavoaD0warZaIiCjdsYEhInIYywi6Y2PVmzOQrF7VPEMb/I1wwD1aLRERUbpjA0NE5DDSDLliY0X3GMnqFVWPxMZWqJ8NDBERXdbYwBAROZgQkGOomvggREREDsEGhojIYYTqDsfGZjioJ6u3zPBQjeL2hSYqFxERkROwgSEichhF8ww1IeZgd0ayetMIemNj3ZsTnKhcRERETsAGhojIYdxZxe2xcbivNSdZvRHsGarxFS/omKhcRERETsAGhojIYbyTZrbGxsGehuLRaiODnS5jMDAJABTN0+/NLeuf6HxERER2YgNDROQwk65cd0oI1QCAYFfDDGmER/y7ur3+9RmQlgoA3rxpR1OVkYiIyC5sYIiIHEbPLAy5c6ceBQDLCGae3fXTeSPVdhx+szw2ziqrrE9FPiIiIjuxgSEicqDiRZ/ZEhs379t0azBw1nthTVPdz+cMtB1dAACqJ6ujdPkXD6QyIxERkR00uwMQEdHFChd9+njrgVf2D7QdWWgGe/MOPvflvyy65jNv5M287rQR6nG1vP/K1V0f/mEdojeBkcWLP/eq0L2m3bmJiIgmGhsYIiKHmvOpxzYdfO4rWaFA03RjsLuwsfqZuxurn7mgSshJcz/2WknFlw7aEpKIiCjFeAoZEZFD6d688MK7n/+3vDnrfqu6MrsveFq6syafmL72oadm3vztrbYEJCIisgFXYIiIHExoLmv2x/9hM6Sxpef07vxQd0OW4vIYvqK5nd68mX125yMiIko1NjBEROlAaDK7rKIdZRXtyYuJiIguXzyFjIiIiIiI0gYbGCIiIiIiShtsYIiIiIiIKG2wgSEiIiIiorTBBoaIiIiIiNIGGxgiIiIiIkobbGCIiIiIiChtCLsDXKABQAmApQD22JyFRiVfBnD7+ePtElgdsS3OyFwAzHNfTqQh+ufQiZ8dEM2mAwjbHWQULgAGAMvuIIkIoehC1QAIR+aDZQophCKE4tQ/I5CWqQpFdW4+KVUhhAVA2p0lEWkailBUQDj09yAkpLRUIRz/PXZ0PkhLCkV14PdYVQEJac2FtHYDwL2AeMbuVJTeeCNLukQqagDcZHeKBN4D8CyAx+0OMoLvAVgC4Aa7g4xgOoBaAEU25xhNE4B1AA7YHSQx5c3c2Wvd09Z+7SW7kyTS+O4T5YHGfdfOveuZH9idZST7nr79O4vufaXK7hwjef8ndz5UvOSudwoWftKR//B25FcPflpzZ2bNvPXhZ+3OkkjXkbemNux45u6rv/j8P9mdZST7nvnTb8/9zI83unKmBOzOksiRX3/tf6mujFOzbn34DbuzxDNDurd1X9nfhgNb0X1iG6QD2ytKT2xg6BLRTAB9dqdIwAIQgjOzAdGVFwvOzTd47r9OzQdE/9U7COdmNIWimro7y5mrWIpuQsBybL5zHJ5PKqrLcGxGoZiA4tjfg0LTIwCkU/PFqLon4tiMQlhCcd73WEhNFcIDCB3OO+mH0hn3wBARERERUdpgA0NERERERGmDDQwREREREaUNNjBERERERJQ22MAQEREREVHaYANDRERERERpgw0MERERERGlDd4HhojI4YKBs97mXT9b1NdyaJYZDGQJRY/ovrzOnFnXH5i8eP2HEJoj7wBPREQ0EdjAEBE5WGPts/Oadv30M5YR8sU/Huw+g97GfRWt+148Puvj//B8ZvG8HrsyEhERpRJPISMicqimup/Paax5+vOx5sWVWdCQNXXpdv/kBXWK5ukDgFBP48wjLz/0lWDgrNfetERERKnBFRgiIgeK9LZ4Gmue+RykVAAhCxd96lfT1359Z+x5I9ilf7Dpq3820HF8njHYXXjit39/29zPPr3JzsxERESpwBUYIiIHOrH5sWstI5QBAP7Sa2rimxcA0Dy5kTmffOx51eXrBoDe5volPadqCuzISkRElEpsYIiIHKi3cc+S6EjIqav+fEuiGj2zMJQ9Y+UOAICUSsv+X12TsoBEREQ2YQNDROQw3cffLTKDvXkA4Mqc1JA5eWHXSLUFV99+IDYeaD40LxX5iIiI7MQGhojIYQIN+6bExp7cstOj1WaXLuuIbegPD3QWycigOtH5iIiI7MQGhojIYYLdpwpjY5e/sDNZvZ6R0wEAkJba07gnfwKjERER2Y4NDBGRw5iDAX9s7PYXJb2/i+rODMTG4Z4m/2i1RERE6Y4NDBGRw1hmyBUbK7onkqxeqO5wbBwJ9blGqyUiIkp3bGCIiBxGmoYeGwtVN5PVK6o6VGNFBtnAEBHRZY0NDBGRwwhVG1p1kWYk6aZ8yzSHahTdGx6tloiIKN2xgSEichgl7pQwMzyQdEVFxp1yprsz2cAQEdFljQ0MEZHDqN6s3tg43NeWlazeDPUN1biyJ/eOVktERJTu2MAQETmMJ6esNTYO97bkJauPDHRHL50sFDO7ZEnHBEYjIiKyHRsYIiKHySpdfDY2DnadLhuttqehLt8ygpkA4MrIaxG6N+mmfyIionTGBoaIyGFyZq5u0bxZ7QAQ7msv6WvanztSbdv7r1wdG2cUzz+YinxERER2YgNDRORAWSWL34uOpDiz7f+tSVQT6Wt195zYsQIAIIRVtPCT76UqHxERkV3YwBAROVDZ9Ru2KZp7AAB6G9+rOPn2dyvjn48MdroO/eqBPzPD/TkA4C+evzu7rKLdjqxERESppNkdgIiILqb7i4IlK+997szWJ78EKZXW91/+ZPfxbRXunGmnLTPoHmw/fqVlhHwAoGXktMz4+HdeszszERFRKrCBISJyqMlL/scRWOZPG2ueXW8Zwcxwf8eUcH/HlPgaT07p0Vm3PvwLT9aUQbtyEhERpRIbGCIiB5u87O4PJs25+XuNu39+dX9z/SxjsDtHqO6QnpHXlX/F2vcLF95xHEKTduckIiJKFTYwREQOp/uLgtPXPLQLwC67sxAREdmNm/iJiIiIiChtsIEhIiIiIqK0wQaGiIiIiIjSBhsYIiIiIiJKG2xgiIiIiIgobbCBISIiIiKitCHsDnCBBgAlAJYC2GNzFhqVfBnA7eeP6waA8pN2pRnFlQC6AbTaHWQEJQA8AI7ZHWQEbgAzARyyO8go5gI4CcCZN3IUyizNnSkV1dVtd5REzMigT0rLp7l8Tv0zgkiwp1j3ZDfbnWMkRqi3UNEz+hVF7bc7SyJGsDdX0XRV0TztdmdJxLIibisSzNHc/ha7s4zECAaKFLe/XRHCtDtLImZksEBaRlhz+3vszhJPQhGQk4qkNQgzMgPSfBsA7gXEM3Zno/TG+8DQJZLfBuA5u1Mk8DUAewFssTvICO4AMAXO/OwAIB/AV+HcfADwbQBvADhrd5BEBMSfe/JnKP7iBe/bnSWR3rP7poUDLdPzr7ppv91ZRtKy94Wi/Ktudmy+1vdfut5fsvCMJ7u0we4siXQeeXuh6s50Z5dVOPIzDAUac3tO1y128ve4Zd+LN+ZdueaQqnqCdmdJpOv41hUQSlfujFUf2J0lnpSqFu6dVxQZOIr+lh7wjrt0qbCBoUtkxhkAD9udIoHPI/rD7aN2BxlBIYByOPOzA4BZAO6Dc/MBwDcBPIVoo+pA4iZPdol76rVffdvuJImcfPuRSiPYU+DUfADQsu+XNzo5X9vBV8v9UxbVFy+5q87uLIkEGvfma67MLKd+hm2HfjMt0LBvgVPzAUDL/hfXFi/8zDZP3nRHrXDEBM7uu0pz+0467TM0gpq3qW7Kn0BsBrDZ5jR0OeEeGCIiIiIiShtsYIiIiIiIKG2wgSEiIiIiorTBBoaIiIiIiNIGGxgiIiIiIkobbGCIiIiIiCht8DLKREQO131sS3Hz3l8uH+g4PssK9/uFUE3Nm93hL118YOqK++p0f5Ej701BREQ0EdjAEBE52PE3qq5rP/z7j0FaavzjZmQgK3SwaUbX8a2rpv/JN36ef+W6RrsyEhERpRIbGCIihzr59ncr2z9481YAEEIxM4rm7vXmz2yAGdYCDXuvDve1TDODvXknfvd/73H7Cv41s+SaLrszExERTTQ2MEREDtTXfDC7rf7V2wBAKKpRdv2Gfy9c9OnjQwXS2vrBrx+4LXC6brVlBDOPv/0vdyy8+7lnbQtMRESUItzET0TkQA3bnlwjLVMHgNxZ1/1hWPMCAEKRc25/9DUtI68ZAIKdJ6/qOPTGVBuiEhERpRQbGCIip5GG6Gs5uBCIrr6Urvrz6kRlQnNZebPXbo8dtx367aJURSQiIrILGxgiIofpOPx2iRUJZgKAy1982pMzbWCk2oKrP/FBbDzQdnhuKvIRERHZiQ0MEZHD9DYfmBwbe3Knnhmt1lcwJ6C6fN0AYAwG8o1gQJ/ofERERHZiA0NE5DCh7jOFsbE7syjplcU0b9a5GikCZ3ZPmrhkRERE9mMDQ0TkMFaoPyM21n35vcnqVbd/qCbc1+abqFxEREROwAaGiMhhTCPsio0V3RtJVi8UfajGDPe6RqslIiJKd2xgiIicxjKG7tElVNVKVq6oqhkbSyPC+3sREdFljQ0MEZHDCFUPx8bSjKjJ6i0zMrRxX3VnhEerJSIiSndsYIiIHEbR3UNNiBHqcyerl5Hzp5ypuo8NDBERXdbYwBAROYzuzeuJjSO9rdnJ6o1gT05s7M2f2T1RuYiIiJyADQwRkcN48spaY+NQb1PBqMXSEJFgTz4ACEWN+EuuTnrZZSIionTGBoaIyGFyZqwcunnlYFdD2Wi1nUe3Fksz4gEAV2ZhA4QmJzofERGRndjAEBE5TObkhV0uX/5ZADAGOos6jvxhyki17fW/uSY29pdcU5+KfERERHZiA0NE5EA5M1bujI2bav99XaKa/rbDWYEzuysAQChaZPKSu/amKh8REZFd2MAQETnQ1Os37FQ9WR0AMNBxfN4HL95/uxHsGrpcck9DXf6HLz10j2WGvQCQPb1iq7fgil678hIREaWKnTc8ywewHMBvk9TNBFAMYMeEJyIicghV95qz1v3tzz58/e/+QpoRT+BM3aq9T9+xRPflN0sz4goPdEyGlAoAeHJKj17x8X98y+7MREREqWDnCowK4BUAuwDcBsAX95wCYAmAnwP4AEB5ytMREdksZ9b1zVfc+vCPXL5JjQBgmWFvKNA0I9zfXhJtXoT0ly6pnve5f/+J0L2m3XmJiIhSwc4VmFYAuwFUINqoBAFMOvfcGwCsc8dtAP7DjoBERHbLmXldy4joYxUAAAIVSURBVDUzVj/RVv/atJ5TtbMig11ZQtEMT9bkjoJFn6z3FcwJ2J2RiIgolexsYADgMQBPA8g+9xWTHzc+BKAzlaGIiBxFKLJgwSdOFSz4xCm7oxAREdnN7k38LwMYHOX5XkSbHCIiIiIiItsbmCCAzaM8P4Dkm/yJiIiIiOgjwu4GBgAeB9AxwnO/AxBOYRYiIiIiInIwJzQw2xFdablQO6LNDREREREREQBnNDAA8DyACy8B2g+gzoYsRERERETkUHZfhSzmRwC+AKDw3LEJ4Gf2xaE/ghuQZXaHuNgVOlCcC2x1YDYAWOoH+tzAYYfm+04J8BMBnHBoPgCYoQC3TQae6LI7SWIL3Ga4xN3X5M+1O0kiRrA0w7JaFafmi5oGR+ezyhSjf3KGUzNKs8xlGV7NqfnCgcl+yKnCqfkAALJMDLTnZhshv1P+4XcYaZRqlpLlcdpnaEYUjxlWYUV8iN7+j+jSEHYHiHMAwPxz404A1wA4Y18cGp18GcDtdqcgIiIi51PUv4dlfgcA7gXEM3bnofTmpH9JeBKAPDduA5sXIiIiIiK6gJMamP9EdON+EMCjNmeh5L4IoAR4ZYvdQYiIiMjZLNlXBaAEwH/ZHIUuA046hQwA3gJQDmAKopv4yfHk3wD4rt0piIiIyNHmA+Kg3SHo8uCUTfwxjwD4Eti8pJNfAzhqdwgiIiJyNG4NoEvm/wNSbNP5CS6+7QAAAABJRU5ErkJggg==" + "g27851.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzAAAAJsCAYAAAAiM0YjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAACAASURBVHic7N15nBx1nf/xV/X0zOS+LxIIwYRDDkFuFBFUUFbE+wQPFBRXXQVcL1xss3ggrgfeeKKuq7grIh4/BeUSOQxBbgEFQgIkAZJJyDVX1++PmoGeTnfPVKe7q2rm9Xw8+pGu6u936t09k5n+9Lfq+w2QJI12eeCsku2/A5cO3O8EXgG8GdgD2BkoAvcDvwMuAB6u8nWfBZwKPB94xsDXWgvcBPwQ+GUjn4QkSZKksWE8EJbcfjqwf1/g7rLHym8bgdeUfb1xwNeB/mH6/hqY0KTnJEmSJGmUqlTAHAxspnYBMnjrA44b+FrjgD+OsF8I/BYImvz8JEmSJI0i5QXMH4AHBu5vA75NNMpyBHAM8FFgdVmfFQNf57sl+24hOjXtRcBhwOuITk0rL2JObv5TlCRJkjRalBcwg7d7gd2r9Jk78Hhp+x8P/FsE/h3IVen74bJ+tzTiSUiSJEkaGyoVMOuAXYbpd3yFfiGwdJh+AXBzWZ8968wuSZIkaYypVMB8YAT9cmx/KtlKoH0EfT9Q1u9NsVNLklRBteF/SdLo1Q/8YATtisDysn0/AnpH0PevZduOwEiSGsICRpLGnjuArhG2XVW2fV2d/aaNsJ8kSTVZwEjS2FNtYcpKNpVtPzLCfpvLtifHOKYkSVVZwEjS2FNelNRSrLNveT/XgpEkNYQFjCSNPWHSASRJqpcFjCRJkqTMsICRJEmSlBkWMJIkSZIywwJGkiRJUmZYwEiSJEnKDAsYSZIkSZlhASNJkiQpMyxgJEmSJGWGBYwkSZKkzLCAkSRJkpQZ+aQDSJKaLgTWl2xvjtF3a1nf/jqPuSXGMSVJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkqTWGA+cDFwGtCecRZIkxTcTuBJ4M9HfdUkadQLgKOASYDWwDfjfRBNJkqQdcS3R3/M1wKXA84FcookkqQGWAF8AVgKPAeHAbQ2wc4K5JEnSjjmQoX/b1wGPAl8B9kgwlyTFNh14L3An0WhLH0//chu83ZFYOkmS1CgPsf3f+CLwBHAv8AFgRmLpNOoFSQdQprUDxwPnEH3qMo7a17f8GfhRC3JJkqTm+QDwzBqP9wFbgduBzwG/BXpbkEtjhAWM6nU48AeigmVcwlkkSVI69RBdM3MocE/CWTRKWMCoXjngGOBM4LnAJKBtmD73E30aI0mSsuswYN4wbXqB9cBvgAuAvzU7lCTFMQ54PfAXYC3RL63yc2ND4LqkAkqSpIa5j8p/57cSXdB/PfA6XDZBUkbsDCwFHmToLCUh0cX9ExNLJkmSdtR8or/ng3/b+4lmGb0DeDcwNblokrTjDia6aH81sIHoHNgPJ5pIkiTtiG8SFS2PEy2XcD7wjEQTSVITtAMvB64mmmLRIWVJkrJnJtF1LT8nuv7Va6kljQmdSQeQJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSpOFMB9aV3L6WbBxJktIhn3QASVJFAVERM2hCUkEkSUqTXNIBJEmSJGmkLGAkSZIkZYYFjCRJkqTMsICRJEmSlBkWMJIkSZIywwJGkiRJUmY4jbIkjT47A3PL9t0BdCeQRZIkSdIYMAMIS27fH2G/Y4ENJf2KQKEJ+SRJkiTpKfUUMG8Dekr6dANvalI+SZIkSXpKnAImIBplKW2/Hji6qQklSZIkacBIC5g8cGFZ24eB/VuQUZIkSZKAkRUwk4DflrW7HdilRRklSZIkCRi+gNkJWF7W5gpgagszSpIkSRJQu4DZB1hR9vhFQHuLM0qSJEkSUL2AOYboAv3Sx75MdCG/JEmSJCWiUgHzWmBryb4+4N1JBZQkSZKkQeUFzKNEi1IObm8CXppYOkmSJEkqUV7AlN8uBzoSSydJkiRJJcoLmOuIRmFK9/0GGJdUQEmSJEkaVOkamN2A+8v2XwVMTiaiJEmSJEWqzUK2ELiv7LFrgSkJZJQkSZIkoPY6MPOA28seXwbMbHFGSZIkSQJqFzAAc4C/lbW5E9iphRklSZIkCRi+gAGYDtxQ1u5uYEGLMkqSJEkSMLICBmAq8OeytvcTXfAvSZIkSS0x0gIGYALRujCl7VcAS5qcUZIkSZKAeAUMQCfwy7I+jwL7NjGjJEmSJAHxCxiADuB/y/qtAfZvUkZJkiRJAuorYADagB+U9V0HHNb4iJIktV6QdABJUkU5YFHJ9pPAYyPs2wbsWrZvC7B6x2NJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJktKrHZiRdAhJkiRJ6ZRPOkCZdwGvAF6UdBCNVLgbsEfSKSRJUqr9GYLNSYfQ6BAkHaDMXcBcYAmwPuEsGpHww8Bnk04hSZJSbR8I7ko6hEaHXNIBSiwBZgETgZMTzqJhheMhnAK/PCbpJJIkKe0+enz0viFsTzqJsi9NIzBfAM4YuP8A8IwEs2hY4aXAiUmnkCRJmXIaBN9JOoSyLS0jMAHw2pLtqXhdhSRJkqQyabmI/3nA+JLt6UQX9J+VTBzVYTnwlqRDbO/A38DCi+GXFyWdpLIXfRQ27gs3nZR0ksq+sRC+/gu4/eCkk1T3rBvh9W+Fs/+edJLKDvsBTHgQriwkHKSK170O7nsH3PLipJNUt9+tcPv+Saeo7oAr4Jlfg/+5JOkklT3/09A9G244LekklZ29P1z2Lbjt8KSTVLffzfAfx8Pr1iadpLJDfgrTl8EfPp90kjKTgeuTDiE1yyVAWHZbRbpOcdMQ4aUQhiW3a5NOVMW9wJlJh6jhAtL9y30JkPZZYzYCByQdooargAuTDlHD6USn7aZZb9IBhvEQcErSIWq4CLg86RA1HA50JR1iGFuBBUmHqOEm4PykQ2wvnFb2XiGE8NSkUyn70nAK2TjgiAr7JwBHtjiLJEmSpBRLQwHzGqKZx8pNBz7Q4iySJEmSUiwNBcz7gUlVHnsu0UiMJEmSJCVewMwFdqnx+CTglS3KIkmSJCnlkp6F7FSiU8WqmUg0QvPfrYmjhM0F9gbaBrbvAVYmF0eSJElpk3QBcxrRKNAaopmOdgY6gPuJipdJwO7APGB1QhnVPM8FjgEOBg4i+v6Xeh/w1VaHkiRJUnoleQrZvkSFyReB/YHFwGMDj70W2BV4L9APpHSNDO2gTwD/Cbyc7YsXSZIkaTtJjsDcD+wGPFrl8W7gB8DFwNQWZVIyeoDbgJuJCteXJBtHkiRJaZXkCMwWqhcv9bRT9nye6NSxScAhRAvq3ZBoIkmSJKVa0tfAaGz7Q9IBJEmSlC1JT6MsSZIkSSNmASNJkiQpMyxgJEmSJGWGBYwkSZKkzLCAkSRJkpQZFjCSJEmSMsMCRpIkSVJmWMBIkiRJygwLGEmSJEmZYQEjSZIkKTMsYCRJkiRlhgWMJEmSpMywgJEkSZKUGRYwkiRJkjLDAkZJejkQlt0KJY9/pcLjR7Y2oiRJktLEAkaSJElSZuSTDqAx7S7gIzH7PNiEHJIkScoICxgl6T7gvKRDSJIkKTs8hUySJElSZljASJIkScoMCxhJkiRJmWEBI0mSJCkzLGAkSZIkZYYFjCRJkqTMsICRJEmSlBmuA6MGWTUPOD3pFBXMAJ4PbEk6SBXPBhaQztcOYC7QTnrzAXQCrwcOTzpIFQuBcaT3NXwBMJX05oPow7Y055sCHEv0s5hG+5Du7/ESotcurfkger/0VmBd0kGq2Ak4hNS9hruPj5Z8kxorSDpAmVVEb+YOApYnnEU1hZcCJz69fdM2OGx1YnGq2wXYBKxPOkgVs4j+cD+cdJAq2oH5wIqkg9SwK7Aa6E46SBXzgT5gbdJBqpg6cHso6SA1LAIeTDhDLQuBLmBj0kGqmAu0AY8kHaSKcUQZ0/x7ZhHRe5S+hHNUs4Dod+DjSQcZakYOnlhYtvM0CL6TSBypSVYBIXBg0kE0nPBSCMOS27VJJ6riXuDMpEPUcAFwfdIhalgCbE46xDA2AgckHaKGq4ALkw5Rw+nAA0mHGEZv0gGG8RBwStIhargIuDzpEDUcTlQAptlWoiIhrW4Czk86xPbCaWXvFUIIT006lbLPa2AkSZIkZYYFjCRJkqTMsICRJEmSlBkWMJIkSZIyw2mUpeHtDOzB0wX/DUQzm0mSJKnFLGCk7b2UaD79g4mm9J5X9vgBwK2tDiVJkiQLGKmS/yVal0CSJEkp4zUwUnVbiU4X+xouJSxJkpQKjsBI23sX8DfgLp5edflyYPfEEkmSJAmwgJEq+WHSASRJklSZp5BJkiRJygwLGEmSJEmZYQEjSZIkKTMsYCRJkiRlhgWMJEmSpMywgJEkSZKUGRYwkiRJkjLDAkaSJElSZljASJIkScoMCxhJkiRJmWEBI0mSJCkzLGAkSZIkZYYFjCRJkqTMsICRJEmSlBn5pANIKbQUeG/Zvkkl968B+ku2Q2Bms0NJkiTJAkaqZDwwvcbjU8q2wyZmkSRJUgkLGGl7VzJ0hGU4FjCSJEktYgEjbe+3AzdJkiSljBfxS5IkScoMCxhJkiRJmWEBI0mSJCkzLGAkSZIkZYYFjCRJkqTMsICRJEmSlBkWMJIkSZIywwJGkiRJUmZYwEiSJEnKDAsYSZIkSZkRJB2gzCpgAXAQsDzhLKopvBQ48ent60I4sj+xONXlgeLALY3aBv5N42s3KA/0JR2ihjzR6xcmHaSKtH+PcwO3tH+P057P3zP1C4gypv177O+Z2KYB6/NlO0+D4DtJpJGaZRXRL4cDkw6i4YSXQhiW3K5NOlEV9wJnJh2ihguA65MOUcMSYHPSIYaxETgg6RA1XAVcmHSIGk4HHkg6xDB6kw4wjIeAU5IOUcNFwOVJh6jhcKAr6RDD2Er0AWta3QScn3SI7YXTyt4rhBCemnQqZZ+nkEmSJEnKDAsYSZIkSZlhASNJkiQpMyxgJEmSJGWGBYwkSZKkzLCAkSRJkpQZFjCSJEmSMqN8cSFJ2dEO7As8C+gc2Hc56V/TQ5IkqW4WMFK2vA44GjiYoYXLoNdgASNJkkYxCxgpW84B9kk6hCRJUlIsYKRsehi4eeB2FPDCZONIkiS1hgWMlC3vAu4HHi3Z9w0sYCRJ0hhhASNly3VJB5AkSUqS0yhLkiRJygwLGEmSJEmZYQEjSZIkKTMsYCRJkiRlhgWMJEmSpMywgJEkSZKUGRYwkiRJkjLDAkaSJElSZljASJIkScoMCxhJkiRJmWEBI0mSJCkzLGAkSZIkZYYFjCRJkqTMyCcdQFIsncCECvsGTQSmlz2+ASg2M5QkSVKrWMBI2XIK8I0aj19UYd8S4J/NiSNJktRankImSZIkKTMcgZGy5WrgXTH7PNaMIJIkSUmwgJGy5e6BmyRJ0pjkKWSSJEmSMsMCRpIkSVJmWMBIkiRJygwLGEmSJEmZYQEjSZIkKTMsYCRJkiRlhgWMJEmSpMwIkg5QZhWwADgIWJ5wFtUUXgqc+PT2jT1w+LrE4lQ3B9gKPJl0kCqmEa3H9HjSQarIAzOBNUkHqWEusB7oSTpIFbOAfqKMaTRx4LY26SA1zANWJx2ihjnA5oFbGs0g+nv/RNJBqugk+l2Y5t8z84gWBe5POkgVs4FeoCvpIEPNyMETc8p2ngbBdxKJo1HDhSzVILveD/xH0ikq+CpwBfDLpINUcRqwGPhI0kGq2An4PPC+pIPU8CPgs8ADSQep4lzgUeBrSQep4niiDyPS/D3+GenO9y3g50S/a9Lo/cB0oJBwjmr2Aj5Gur/HPwE+DqTxgzqA84G7gO8nHWSonSYCP0g6hdRsq4AQODDpIBpOeCmEYcnt2qQTVXEvcGbSIWq4ALg+6RA1LCG9nyoP2ggckHSIGq4CLkw6RA2nk97ib1Bv0gGG8RBwStIhargIuDzpEDUcTupGDrazlegMkbS6iaiISZlwWtl7hRDCU5NOpezzGhhJkiRJmWEBI0mSJCkzLGAkSZIkZYYX8Utqhp2IZhN8NtEMVwC/A65OLJEkSRoVLGAkNcrJwGuJCpdKF7uuxwJGkiTtIAsYSY3yGoasDSRJktR4FjCSGmkbcBtw88Dt2cB7Ek0kSZJGFQsYSY3yXqKVtEvX7PhgQlkkSdIoZQEjqVFWJR1AkiSNfk6jLEmSJCkzLGAkSZIkZYYFjCRJkqTMsICRJEmSlBkWMJIkSZIywwJGkiRJUmZYwEiSJEnKDAsYSZIkSZlhASNJkiQpMyxgJEmSJGWGBYwkSZKkzLCAkSRJkpQZFjCSJEmSMiOfdABJo8YUYPeyfQvK7h9U9vh9wMZmhpIkSaOLBYykRjkM+EONx983cCv1EuD3TUskSZJGHU8hkyRJkpQZjsBIapSbgWNj9rmlGUEkSdLoZQEjqVHWAVckHUKSJI1unkImSZIkKTMsYCRJkiRlhgWMJEmSpMywgJEkSZKUGRYwkiRJkjLDAkaSJElSZljASJIkScoMCxhJkiRJmWEBI0mSJCkzLGAkSZIkZUY+6QAaLe54JvCLpFNUsDNwKnBk0kGqOAiYRjpfO4DJwDjSmw9gAvAlYF3SQarYH1hCel/DPYB5pDcfQBvpzjcH+ADwsqSDVHE40El6X8PZwCTSmw+gA/gusCXpIFXsRfQ6Lk46yFDz2mF10iE0CjkCIyUrSDqAxrww6QCSJGXZKqI/pgcmHUTDCS+FMCy5XZt0oiruBc5MOkQNFwDXJx2ihiXA5qRDDGMjcEDSIWq4Crgw6RA1nA48kHSIYfQmHWAYDwGnJB2ihouAy5MOUcPhQFfSIYaxFViQdIgabgLOTzrE9sJpZe8VQghPTTqVss8RGEmSJEmZYQEjSZIkKTMsYCRJkiRlhgWMJEmSpMywgJEkSZKUGa4DI2ksWszTa/AA/B24Jrk4kiRppCxgJI0FBwOvISpaDgKmlz3+bSxgJEnKBAsYSWPBG4Czkg4hSZJ2nAWMpLFkI3ALcDPQAbw32TiSJCkuL+KXNBZ8H9iL6NSxo4lGY/6YZCBJklQfR2AkjQV3Jh1AkiQ1hiMwkiRJkjLDAkaSJElSZljASJIkScoMCxhJkiRJmWEBI0mSJCkzLGAkSZIkZYYFjCRJkqTMsICRJEmSlBkWMJIkSZIywwJGkiRJUmZYwEiSJEnKDAsYSZIkSZlhASNJkiQpM/JJB5CkFsgBU8v2TSy53wlML3t8C9DdzFCSJCk+R2AkjQW7AuvKbj8uefwtFR4/tcUZJUnSCFjASJIkScoMTyGTNBY8DrwrZp/rmhFEkiTtGAsYSWPBk8CFSYeQJEk7zlPIJEmSJGWGBYwkSZKkzLCAkSRJkpQZFjCSJEmSMsMCRpIkSVJmWMBIkiRJygwLGEmSJEmZYQEjSZIkKTNcyFINsnoW8JqkU1QwFTiQdGYD2AuYQ3rz7QS0kd58AO3AccCSpINUMW/g37S+hocCk0hvPog+bEtzvonA4UQLpqbRYmA66X0N9wI6SG8+iH4PngA8kXSQKmYDe5O613DfiXBH0iE0CgVJByizClgAHAQsTziLagovBU58evvGHjh8XWJxqpsDbCW9byymEr0BfzzpIFXkgZnAmqSD1DAXWAf0Jh2killAH9CVdJAqJrblcpOmdXb2JB2kmnVbt3bOGD++O+kc1XR1d3eMz+eLnW1tfUlnqWRjT097AEzu6Ejl/5Ge/v7c5t7e9unjxqX2e7x+27bOKZ2dPW1BECadpZKN3d0dQRCEafseF8NprN/2SGfZ7tMg+E4igTRqOAKTPfsB/1KyfQlwb0JZShx2E/C8pFNUcC/wTeALSQep4gLgEOCIpINUsQS4lWgkJq02Ai8C/pZ0kCquIvo5fGfCOao5/bjFi7/025NOSu3fgxnnnRc+/uEPpzbfnhdc0PejV72q7dCdd05lxrdccknwjOnT+wtHH53KfNevXMk7f/Wr/tvf855U5gOYc/75xX+8731tU8aNSzpKRf/661/3Tmhvb//8i1+cqtewa+s4pp/X2K8ZFgrTgBlP7XjiiYeDr3wltcWvmiNVP+gakYOAz5Zs30cqChhJkqSm+1dg6VNbs2cfAtySWBolwov4JUmSJGWGIzCSJEmSYgvPPnsB+fz3ntoRBP8XFAoXNvu4FjCSJEmS4guCCQTBC0v23NqKw3oKmSRJkqTMsICRJEmSlBkWMJIkSZIywwJGkiRJUmZ4Ef/YsRj4ElC6Ctf/At9KJo6kEZhOtPbTwQP/7ge0Dzz2EeDnCeWSpEwKC4XDgZcShkcSBHOAWcATwOPA9cDvKBSuDiCs+xhLlx5CsXgC0QLfc4DZwDrC8HGC4Abgd8BVQaFQHGHmWRSLr3xqRy53c1AoLAcIP/jBiUyY8CqC4FXAIoJg7sCxVhIEl9Hd/bPgM595ot7nUjXTOee8FphG9PxKPSs855zTqnbM5f4nKBQ27ejxLWDGhkOByxj6Q3YB8O1k4kgagf8DXlXj8SmtCiJJWRcuXbof/f1fAI4BIAhKH54J7AE8BziLQuGmEM4MCoUbYh2jUNibMPwvisVjKzw8kyDYHTgCOANYHhYKZwaFwp+H/cK53C7AN0r2LAWWh5/85LGE4Q+JCqRScwiCvYBj6ez8ZFgonBUUCj+M81xGkOkTwF4VHnkRudyLqvbr7f0DsMMFjKeQjX4vB67k6eIlJPrk9v3AiCp/SYko/1SrD+hKIogkZVlYKPwLxeJ1BMExI+xyKHBleM45J8U4xouAvxAElYqXSg4ErggLhbeN9BhDjnfOOW8mDH/D9sVLuenA98JC4eP1HCetHIEZ3U4lqtgHv8/dwNuAnyYVSNKI/R24F7h54HYrcA7w0SRDSVKWhIXCc4hGtNtLdq8DfkAQXEkYriE6jexI4B3A3IE27eRyPwgLhSeDQuFXNY8RnTL2K6CjZHcX8APgT+RyawjDGcBzCMN3APMH2uSBb4eFwqagUPjfkT+pcB9yuQ8SDUR0A98nCC4jDFcCk4iKo3cCzyrpVQjPOWdlsHTpRSM+Ti3F4hfJ5WYSjV6dVfLIn4HfVu3X3r6+EYfPA6XDPI8xdAGaXYC3APsDC4AAWAtcR3T9xAONCKGGC4BPDNwGrQdeAVyTSCJJcVU/h1iSNKzwQx+aDFxEafEShtcRBK8PCoXVZc3/EBYKXwJ+DBw3sC8AvhV+7GM3Bp/+9JqKxygUJlAsXsTQ4uUm4DVBofBIWfPLw0Lhy0SFzQklx/h6ePbZ1wef+tTDI3piQfDqgXsPk8v9S3DOOXeWtbgpLBS+A5wPvO+pvbncf4Uf+9gfgk9/+tERHadWhKVLvwsQfvzju5PPlxYwNwWFwud29OsPJwdcXnJbOrB/PNHF3Q8A5wKvJTov8AiiU5I+R/Tp4HlAW7NDKpYOov98pcXLg0TfP4sXSZI0NkyYcBqwW8me+9i27cQKxQsAQaGwDngN8LeS3bPp6Dij6jGKxVOIrp8Z9ABwQoXiZfAYXcAbiIqcQTNob/9gradSQQ/wsgrFy+Bx+igUziQMLynZPY2OjrjHSaVK18DMAG4gGnqqVZx0AB8iqmyVDtOA3wNvKtl3G9Gw6N8TSSRJktRiYaGQA941ZGcQfCA477wNtfoFhcIWcrl3M3QWsreHZ5wxfrtjQEAud3rZ7rMGCqFax9g2cIzSa5HfOjBiNFJfDwqF22oeB0KC4Axga8nuN4eFwrhqfbKivIDJAz/j6XPm7gH+i2j46d3A54k+zS91EnBy8yJqhBYAVwFHl+y7nGgKv5ENSUqSJI0OexEtITHonuATn/j9SDoG55zzV+DGkl0zmDbtOds1LBQWA88s2fMghcJlIzzGrYThtSW7pjBx4lEj6TvgwhEdp1BYBfy6ZNcMguB5MY6TSuUFzHFE18RsJbrYe2/gg8BXgW8C/070A1E+6vJxonP4lIz9iEbN9i/Z9wPgpcDGJAJJkiQlplg8omzPiAqLEr8cshWG5V8P4PDyY8RaPyYMy49R/vWquS8oFO4d8XHgN0O2+vsPjdE3lSqNwBSBE4mKlErT7HYTXVx6R8m+PYFDmhFQwzqWaFKFnQe2Q6AAnAL0JpRJkiQpObncPkO2i8VbYvUPgvL2+1RotXfZdrxj5PPLh2yH4b4j6heGNU8d204ud0vZdqXnkimVroH5BnDFMP16ga+U7Rtp1ajGOh0oPWfyg8AnE8oiSZKUBtOHbOXzq2L17u0d2j6aBrlc+b54x+juLm9f6RjbC4J4lwYUi0NnHQvDmbH6p1ClAuaCEfa9smx7ZFWjGq18NdO3A/OSCCJJkpQSU8u2451Sn8+XX+w/reHHaG8fyTEqibuS/dBcQVCeO3PKC5hVRAunjcT9DD3Pb3q1hmqqfwOuL9neB/gLQ6cNlCRJGkt6hmwVi+1V2lXTMWQrCLqHPUYu14xjVBJvIfoNG8pz9VRslyHlBUychSn7gc0l21N2PI7qsIHoOpg/luzbjWiEbEkiiSRJkpLVVbY90tGNSC5XPkpR/vUgWiT8aWEY7xjbZ6p0jErijaBMnTqS55Ip5QVMzbmxK+ir8bXUOpuJJl4onR5wV+BaKl90JkmSNJqtKdveK1bvYvGZZXsqrV6/dshWf3+8Y2yfqdIxtheGewzfaIjy9hUX2cyS8qKj0qxjyoYtREXML0r2zQP+xNPr+kiSJI0Ffy3bPixm/6Hti8Vl27UIgqHHyOXiHmPo1TGYvgAAIABJREFUBFiVjlFJEBwQvvOdIz9drVgsfy43j7jvcPL58mmjWzKg4ajJ6NIDvA74Ucm+OUQLXGZ+zm9JkqQR6e6+kaEfzL8sLBQmjKRrWCjkid5PPS2Xu267hlu23MTQs5H+JfzQhyZv167yMXLAG4Y9RmXTmT//hSNsC0Ew9Lnk838Zcd/h9PRsLtvTkmviLWBGn36iNWC+X7JvOvAHYPtVZCVJkkaZ4DOfeQz4bcmuKRSLZ4yoc7H4bmCnkj3LgkLhru2Ocd55GwjDS0t2TWDChA+O8BjvABaW7LkjKBSWV2tewcfCESwiH37yk8cTBM8u2bU8OOecO2Mcp7aOjg0MndRrdsO+dg0WMKNTP/AOhk6JPZWoiHlRIokkSZJaKQiGrlmYy30kLBSOrNUlLBQOJpdbWra7+hIj5ceAD4aFwguGOcazyOU+O2RnsfjlWn0qeA6FwlnDHGc+YfjVsuN8LeZxagoKhS1EMxMPOjQ844zxjTxGJfGmYVOWhMAHiIY2zxzYNxH4FfBKhl7wLyl9DgFOLdtXeirom9n+1NBPAyuaGUqSsiL4xCf+GBYK/w2cNLBrPHBZWCh8GPheUCg8dfpX+NrXtrHPPicBX6B0gfAwvJxPfvJ/qh6jUPhzWCh8j2gdPoBO4JKwUPgojzzy7eDCC3uf+lKFQo5i8fXAlymdSSwMryaXuyjGU9sw0P8zYaEwkw0blgZf/OLW0gbh0qVHUCx+j2hSp0F/IZcrvcygUf4ELB64P4upUy8LC4Wvk8s9QLFYPkHYQ6Wve70sYEa3EDiLaJaMwUp/PFER80aGXvCv7BpHVJxOJZrOvJ9okauugX97q3dVii0G3lnj8ecP3Ep9GwsYSSr1fsLwWQTBfgPbk4GvA0vDT3ziOoJgLTATOIKhp40B3E9f36nB0FOktrdly1mMH//sklO1JgIXMH/+J8JC4TpgDWE4AzicXG5BWe8VBMEpQaEQZyKtbwIvBg4A/p2pU98VFgp/Ivr9P4UwPJBicf+yPmvp63tHcO65zZiw62vAW3l6XZujgaMpVjhUb+9iGvB3ylPIxobzgI+UbHcAFxN9gqtsWUT0pvbrRJ94rAG2Ao8D/wRuAW4jGs5dB3QDDwK/Az4PvAmY1eLMqk8P0RoDcW47/KmWJI0mQaHQRRAcQxheWfbQLILg5cBpwKsoL17C8GbgqOBTn3p42GN87nNPsnXrC4hO1S81k2iG2NMIglcDQ4uXMLyV3t6jgkLhoTjPCeimr++1wN0D21OAVwDvB04hCMqLl0fJ5V4cnHvufTGPMyJBoXAH0RkD5Rf0N40jMNlzD3BhyfZIFx89j+hNbukpJ0cQLYCZ+fnAR7k9ia5peimwd8y+AdHw8a7ASwb29QM3EY3EfY/yeeyVFr/AUVJJGqpY3EouV7qA5LAf3ASFQlcIx1EovBb4GLBvjeb3USx+nrvv/kHw85/3jzRW8LnPPRnCSykUXkkYnl2hiCj1T4rFL5DLfTf41Kfq+uApOPfcB8JC4QjgM0SnyFVaUH4b8BPgI8E556yr5zgjzlMo/CQsFK4CTgaOJFpMfRbbTzTQkBEgC5jsuX7gVo/vDtyUDccSXcd0PCOYaSSGNqLi9QigQPTL7UtEIzeSJKVWsHTpF4Evxu4HIYXCxcDF4dln70p7+3MpFueSy82iWFwHrKVYvGFHRikGjvEL4Bfh2WfvQlvbkeRyc4neyHcRncZ1Y3DuuffUe4whxysUNgHvC88440NMm/YCwnA3YA7F4npyuRXAFUGhsLERxxphnkeAzw3cmsoCRkqfJcBXeHrEpJk6iabdfhvwY6Jrph5rwXElSUpE8KlPraDJ1wsGn/rUSqDqxf8NPVZ0Af9vWnGstPAaGCk98sB/AnfQmuKlVEB0TdRdwFtafGxJkqQRs4CR0mEm8P+AjxONiiRlFnAR8C2enk1EkiQpNfLAjJLtuNOt7sbT5+Y7VatUnwnAMqIZxtLincBewMhWFJYkSWqRPNHUm/XqalQQaYyaSTSzWBqvRzsK+CGNnUBAkiRph3gKmZSc3YGXk87iZdBeRKe0TR6uoSRJUiuk7ZPVVUSL/BwELE84i2oKLyVanGnAdSEcOeL50lsoTzTneDNWnt1RjS5cylcKbuT/75Bo/Zg0yhNlq71SckKCINdGro2AII0/g4RhMSAglwtyqcwHUCwWc7lcevOFYZgLgiAkpT+DxWIxGJDS1zAMisVikMu1pTRf+r/HYRjmwjAMc7lcyvLlgjCcE4QA4WsIi/8FcBoE30k2V7aES5c+m2LxryW7lgaFwtLEAqVAmj/5VaY89zrgeUmnqOBe4JvAF5IOUiIH/JpofZd6bQV+CfwfcANQaaXggGhK5iOA1wPHUf//+QD4JHBunf2baSPR6W5/SzpIRbncNTP3PLbzGcf9x/8lHaWSB//4ucM3rlp21LPeenHT5+2v17KvHv2Zg9571UeTzlHN8m+95CPzD3nrFfMOfOOypLNUcudPT31dvmPSlD1f9aVUvml87O7LFq685htvP/Bdvy0knaWaZV875tx93vj988fNWLQh6SyV3Pmz096T75z44J6v+FKqptLt25Yf/+iy+YXujVfRdf9VhKktUVNu27ZH6Oj42FPbudx1CaZJBQsYqfU+RP3Fy1bgy8BngeH+kIbAfQO3HxKNbn6SaM2XtjqOXQCuBa6uo68kSapD8OlPr6EFi0NmidfASK21P9FaL/VYBuwLfJThi5dKHgZOJRqRebCO/m3Aj4CJdfSVJElqCAsYqXUC4KvUN/L5Q+BI4P4G5Pgr0XVmV9XRdxeitWokSZISYQEjtc7JREVIXD8H3g50NzDLOuClwDV19D0T2LOBWSRJkkbMAkZqjfHAeXX0uxp4E82ZAWwL0TTOD8Ts1wGc3/g4kiRJw7OAkVrjFGCnmH0eA04C+hof5yldRDOU9cTs9zLg2Y2PI0mSVJsFjNR8bcAZdfT7NypPj9xof6W+EZWzGh1EkiRpOBYwUvO9mmg9ljj+AvysCVmq+TSwMmafNwCLm5BFkiSpKteBkZrv9Dr6nEVrV3zeQjS984Ux+rQB7wA+NlxD7Zgn7r18wdpbfn7ElvUrnlHs2Tw1yLX15DunrJ80f/87dn7ev14/bsr8rUlnlCSpVSxgpOZaQLRKfBzXADc0Ictwfki00GWca3VOIppW2fWVm+Qfv/7Ii9b985oXEoZPjZiHxf58T9/jE9bd98cFG1bccPjCo97/37P3fdmKJHNKktQqnkImNddJxF/1/gvNCDIC3cDXYvZZSH1TQ2sE7v/Dfx657h9XH0sY5oJcW9/kBfvfOO/AN1w8a5+XXdo5dcH9AP09m6euuOrzb9uw4q+zks4rSVIrOAIjNdfJMduvBX7TjCAj9D2iUZg4RdebqG89GdWw6dHbpj9x9++PBwhy+d5FL/jQt8tGWf5y7y/PPL7rweuPLvb1TFhx5fkvf9bbLv5uQnElSWoZR2Ck5lkE7Bezz09p7rTJw3mUaO2ZOF4BBE3IMqat/PM3jw7D/jzA9N2PuaLSKWK7n/DZ33dMnPUIwLaulXs8dsdlu7Y6pyRJrWYBIzXPsXX0ubjhKeL7n5jt5wLPakaQsSrs68ltXnP3fgBBrq135+eefmOldkG+ozht92P+Mrj9xD1/2L9VGSVJSooFjNQ8L4rZvotkLt4v91viz4B2XDOCjFVP3Hf5zsW+bRMBOibv9FCtWcbm7vOyvw/e3/LYvXu1Ip8kSUmygJGaIwccE7PPH4H+JmSJ6xHg7ph96hltUhWbVt89b/D++Om71FyfZ/zs3Z9s65i0HqBv25Mz+ratb292PkmSkmQBIzXHPsDsmH3+2Iwgdbo8ZvsjcVKQhulev/Kpn52OyXPWD9c+P37qQJsw2PDQLXF/7iRJyhQLGKk5Dq6jz/UNT1G/uFnGA3s3I8hY1Ne7ZcLg/fYJszYN176tc+JTbXo3r5nYrFySJKWBBYzUHM+O2b4buLMZQeq0rI4+cZ+zqgj7tnUO3s+1j+sdrn3Q1tEzeL+/Z0tHs3JJkpQGFjBSc8R9M387MOwb1Ra6H1gXs48FTKMUi0+twxO0tRWHa57L5Z5qE/b1xl04VZKkTLGAkRovB8Sdzva2ZgTZASHxMx3YjCBjUdDW/tSIStjbM+y1RcX+3qcu3G/rnNBTq60kSVlnASM13gJgcsw+9zUjyA76R8z2TuHbILn2zqeKkL7ezcOeEhb2dj91yllbx+TuZuWSJCkNLGCkxtutjj5pLGDiZpoNTGpGkLGmfcLMrsH7vRvXTBuufd+2jVMH70+YuVtXrbaSJGWdBYzUeIvq6DMaChio77mrzPgZi9YO3u/euHpWrbZhX0+ud9uGmQBBLt87af6+FjCSpFHNAkZqvHpGYB5qeIodV0+mep67ykzd7bkria5DYmvXQ4tqtV13/9U7hf294wA6Js9dSZAPm59QkqTkWMBIjbcoZvsisKEJOXbU6jr6WMA0wKR5+3R1TJz1CEDf1q45T9x7+YJqbR+/6zcHDN6fvGD/NE3FLUlSU1jASI03P2b7XgY+bU+ZNUTFVRw7NSPIWDRt8fNuHLz/8A3ffXGlNptW3z5t48rlhwIEuXzPToecfEur8kmSlBQLGKnxZsRsn6b1X0r1AXGvp4j73FXFrs9737L8+KmPAWxbt2LPu3/2rlf3Prlm3ODjXf+8et69l37oHYOnj01/xnOvHj99t81J5ZUkqVWGXV9AUmwzY7bva0qKxugiXlES97mriqB9fP/ilxQuuu9XH35Psb9n/JOP3nbo377/mgPaJ0xfW+zv6ezbumEWEACMm7Ho74tfsvRPCUeWJKklHIGRGi/uKER/U1I0xqaY7R2BaaCpux7+2O6v/K+vdE6Z9yBAWOzr6Nn02M59WzfMBgKCXP/URYdfvfcbL/xRkO+Ie7qfJEmZ5AiM1Fh5YErMPqOpgHEEpsGm7nzwE/u//ZJvrLvvyp26Hvjz4p5Nj0/L5Tt7OqfstG7uAa++a9y0hVuSzihJUitZwEiNNYWB03piGE0FzNThm6geM3Y/5tEZux/zaNI5JElKmqeQSY3VUUefNJ/6E/fT/c6mpJAkSRpgASM1VnsdfdI4hfKguKND9Tx/SZKkEbOAkRqrnhGYNBcwcad4ruf5S5IkjZgFjNRYo20EJu4UzxYwkiSpqSxgpMYabSMwcU8h6yD+JAaSJEkjZgEjNVaaixFJkqTMS9snpauABcBBwPKEs6im8FLgxKe3b9oGh61OLE51uxBNBby+RcdrJ/oZjqMfWNmELI0wG5gYo30IrGhSlmp2BVYD3S0+7sgEuQX5jgkhuXzcKalbIuzdNj4M6Mzlx3UlnaWaYs/mGbmOieuSzlFNsXfr9Fx+3FaCYFvSWSrp79k8OdfWEQRt7RuTzlJRf397sdgzKdc+vlW/p2Mr9m6ZkWuf0EVKZ40M+3qmhWF/b659/OakswwVBITTpxN209+3mLD/aoDTIPhO0smUba4DowaZvwr4fNIpKvgU8Gfgdy063mzgP2P2eRL4bBOyNMKpwMEx2nfT+udyAfADWl84jUgQBB+ZMHvP3JRdD12WdJZKNjx4w5LuDQ8vmbP/q69KOks1j9zw3VfOO/CNVyWdo5pHl/3o+KmLDr1n/MwlDySdpZLH7/zVYW2dkzqnL3nBNUlnqWRb14qZXf+49jlp/h4/ctP3Xz573xOvb+uYuDXpLJU8cffvXkCu7YmZex53a9JZSoXFto5t6/c7oXfz3Wx6dLWnKKhhLGDUIDuvBr6VdIoKzgKuoXXZdiF+AbOJdL52AMcSr4DZTOufy/nAxcDfWnzckQmCkzqmzO2cf8hbbkw6SiU9G1cHvVseX5DWfACP3Pi9V6Q53+rlPzlm4pxn/mPegW9MZZG6/p/X7JrvmDQlra/hY3dftrDr/usPTWs+gEdu+v7LZj/z+FvGzVi0Iekslay//9qD850TH07ba9i3LT/+0WXzTwiLk4Crko6jUcRrYKTG6qmjT9pO5SwV90OOep6/JEnSiFnASI1Vzxv4NP8/nBCzvQWMJElqqjS/cZKyaCPxL/Jsa0aQBolzAT+0brIESZI0RlnASI3VD8Q9RzrNBcykmO2faEoKSZKkARYwUuPFne51NBUwjsBIkqSmchYyqfGeABbHaJ/m/4czYrZ/vCkpxriwd2vbI7f8bI8nV928pH/bk5PI5fs7J81eN+uZL7lj2uLnp3H9JUmSmibNb5ykrIo7AtPRlBQ7rgOYGrNPahcbzKrH7rhs14f+/NXX92/bOLN0/2Zg3T+uOnbinD1uXXzCZy4ZN2V+KtenkCSp0TyFTGq8R2O2byedUynPJX6uuM9dNTx+928WPvin8945WLy0dUzqmjDzGXeNm7brvUGurRdg89p79//7xf/69r5tG9uTTStJUms4AiM1XtzVuAOiU7XSdgH83Dr6PNjoEGNV37aN7Suu/OLJYbE/DzBjyfMvX/ySpX8K8h1FgK2P3z/p3l+d9ebujasX9Wxas/Afvz37JXu96iuXJZtakqTmcwRGary4BQzAwoan2HGL6uhzf6NDjFUPXfWFI/p7Nk8FmDhnz78tOeGzVwwWLwDjZz1j0x6v/NIPc/lxmwGeXHnL4ZtW3z4tqbySJLWKBYzUeA/W0WdJo0M0QNxMIY7ANEzXihsPGby/4Dmn/bFSm/HTd908ZdfDrgcIw/786uU/e3ar8kmSlBQLGKnx6hmB2b3hKXZc3ExrgS3NCDLWbFi1bGbf1q45AB0TZz4ybdFz11ZrO2efE24bvL/pkTv2bkU+SZKSZAEjNd4jxF/Mco9mBNlBcQuYu5uSYgzauOKmnQfvd05fuKJW22m7PWdtLt+xBaB38+Pzw74ef69LkkY1/9BJjRcCt8Tss38zguyAAHhWzD43NyPIWLR13YNzBu93Ttmp9to6QS7Mj5u6DqLTyDauvm16k+NJkpQoCxipOZbHbL8PMK4ZQeq0B/HXgIlbtKmK/i0bpgze75g4e+Nw7fPjp3QN3u9+YkXc75skSZliASM1R9w38+3Avs0IUqeD6+gTt2hTFcX+7s7B+22dE3qGax+0dT7Vpr97U2ettpIkZZ0FjNQc9byZP6LhKeoXN8tm4N5mBBmLwv7epxalDNra+4drn2vL9w3e7+vd0tGsXJIkpYEFjNQcdwOrY/Z5YTOC1OnYmO2vBoZ9o60RKilIwv7+YX9PF/v72wbv5/LjepsVS5KkNLCAkZojBP4Us88LiE4lS9pC4s+KdnkzgoxVbW0d3YP3iyMYUSkdsWkfN7G7VltJkrLOAkZqnititp8MPKcZQWL6lzr6WMA0UFvn5M2D97s3PT55uPb93U8+fdH/pLmba7WVJCnrLGCk5olbwAC8oeEp4ntjzPYPA3c2I8hYNW7aLo8N3u99cs2w0yL3bd0wA4AgKE5aeGDtaZclSco4CxipeVYSf22U1wFJXoS9C3BkzD6/aEaQsWzi/P0eGby/rWvlwlptN62+fVp/75YpAPnx0x/Lt0/uq9VekqSss4CRmuvHMdvPAE5sRpARegfxfy/8pBlBxrKZu7/g0baOiRsAup9cs8vWx++fVK3t2tsv23vw/qQ5e97dinySJCXJAkZqrp8AcT8R/1AzgozAOOD0mH3+CdzYhCxjW5ALJ83f91YAwmLbyj9/9XmVmvX1Ppnvuv+aweumwpl7n3BrqyJKkpQUCxipudYSfzayQ4DnNiHLcN4GzI3Z58dEM66pwRYe9W9XB7l8D0DXihuOevjG7+5d+njY15O75xdnvrJv64bZABNmL7lj5h4veKTS15IkaTTJJx1AGgO+DhwXs8+XgMOAYuPjVDQZOCdmn17gu03IImD8jGdsmnvA636xevlPXk8Y5h6+/rtveeKeK+6ZMGPRymJfd/umNXft27d1wyyAto6JXbsd9/FfJZ1ZkqRWsICRmu8y4O/AXjH6HAycDPywKYm29x/ATjH7/JhoogI1ycKj3ndLsdibf+y2S04Mi30d29Y9uNe2dQ8O+TnqmDDz0d1e/PH/njh7z41J5ZQkqZUsYKTmKwKfB74Ts9+XgWuBBxqeaKjnAWfE7BMSPSc12aKjz/zrrL2OvW/1sp8cvPmx+xb392yaTNDW3zFx+uNTdjnsjvlHvO12Zx6TJI0lFjBSa/wY+ATRNMUjNQ34H+D5QLNWV58zcIy4vwt+AdzV+DiqZNK8/bqWnPCZK6hvbSFJkkYVL+KXWqMb+Pc6+h0GXAJ0NjYOEBVIvwEWxOzXDXy08XEkSZKGZwEjtc7PgCvr6Hc8cDHRhfaNsoDo0/yD6+j7OeC+BmaRJEkaMQsYqbX+jWj2rrhOBP4KHNCADMcBy4GD6ui7AvhsAzJIkiTVxQJGaq07qP/0qz2BZUSTASyso/9+wKXA74mufYmrFzgJ2FJHX0mSpIawgJFa7wtEhUQ92oB3EM1M9kfg3cCBQHuFthOJFsT8INHozW1EIzn1Ohu4bgf6S5Ik7TBnIZNaLwROAW4CltT5NXLACwZuAP1A18AtR3SB/vQdiznEpThtsiRJSgELGCkZ64mKjzuAKQ34em3AzIFboxWJTh0Lm/C1JUmSYvEUMik5K4FfAj1JB6nhb0TTJm9OOogkSRJAkHSAMquIpnc9iGiWJKVWeClDrqe4ay3s87vE4lT3GqIpf29NOkgVzwVmD9yfmmSQClYRFTDHEy3EmVYnA/8PeDzpIJUEudzL2ifOoX3SzAeSzlJJ75Nr5/Zte3LO+NmLb086SzVb1vz9wAlz90rt34Stj/1j/47JOz3aNm7i2qSzVLLtiRWLc/nOfMfUefcknaWS/q2bJndvfGTJhLl73JJ0lmq2rP77gRNmL7mDtnwqP3DqXv/w3mEQbho3beeHks4yVL6t2LvnAcWeNfRunkKx/1cAp0HwnaSTKds8hUwN0tsB7Jx0igryRIVBGrMBTCI6/WsZsDf1zQ7WDCuAfwKziD7oSOvrB1G+ucC4pINUFAYdufZO8u0TG3GqYMMV8+PHF/M9ubTmAyDIBWnOFwS5oK1j3Pi0ZgxybflcW3s+rfno758YtOVT+38EIGjL09Y5cXIQ5OuZBr/petra2gLoTN9rGLQVg376wiLQl3QYjSIWMGqQ/e8AXpR0igruBb5JNPNXGl0AHAIcQ/RG/APAJ2nsopVxPAS8F7hsYHsJ0ehVGr+3gzYCpxGNFqVPLrhm0rx9Op9x3H/8X9JRKnnwj587fOOqZUft+aovp/YT0WVfPfozac63/Fsv+cjMPY+7ct6Bb1yWdJZK7vzpqa/Ld0yasuervpTK1/Cxuy9buPKab7w9zd/jZV875txFx/z7T8bNWLQh6SyV3Pmz096T75z44J6v+NJvks5Sqm/b/2/vzqPjqO58gX9vLb1Iaq3WYku2vIHxgo0XWbLNYg8YQiCELCYh7yUkJOQlM2HAIZPJzDuTKJnkTYaE4OCQzAA5ZJuBgZAAYU0g2HiRZEvGBsvGwrsla99aS29Vdd8fcsstu6WWEqur2nw/5+hwq/vXvt9u2UY/37pVmre5dlplyL8Fod4tdsehiwj3wBA5hwTwIIbu9/JrJHfTfARDzdQinG1eiIiIiByHDQyR8zQD+AyAFQB+haFN9JOlG8APAFwC4B4AfZM4FxEREdFfjQ0MkXPtAXAHgFIA/wBgC4ZWSv5aAxi6r8sXAEwH8HUM7XkhIiIicjzugSFyvlYM3UTyhxi6IME6AEsAzD/zNR3xb1ppYmiF5RiAAwAOAqgDsA2Tu6pDRERENGnYwBClll4M3Tvm2TjPZZz5MgH0AwgkMRcRERFRUrCBIbp49J/5IiIiIrpocQ8MERERERGlDK7AEBE5nDTCSsvbz8ztO7l7TiTYm6moekTPKOjKX/Ch/VmlZR125yMiIkomNjBERA7W2fCn4hNvPHC7EejNP/e5rkN/ujG9aGHdpTd973ndVxi0Ix8RUbKtvm9PqWEEL4seu8Lmru0/u6rbzkzvZxs2SPXEtKrhG15but5U+8Oy/RdyjrJ7d1whpCiMHrOBISJyqM6GPxUffeU7X5aWoQOAonv7XL7CJmlGXGF/c6mUljrQUr/8wNNfzlv46V8+quk+w+7MRESTzbAi+RBiSfQ4oun1GLrqJtngaE6dosZ8P1TLVAFc0AZGQMyEEJdGj9nAEBE5kBHq046/dv+no81L9uw1f55z47++pupeEwD6Ww5kHX7hG58O97dPD/mbZx558ZvXz7v1wZfsTU1ERDT5uImfiMiBTm7dVGGG+3MAIC3/0rcvveWHr0abFwDIKFrQO+/WTb9QNPcgAPhP7l7T33Igy668REREycIGhojIgXqOV6+MjktWff61eDXeKbP7M2esrAIAaZlay1tPLk1WPiIiIrvwFDIiIofpa3wr1xjsKgQAV1pec/bsq1tHqy1YeNPbPUe3XQsAA83vLACwJTkpiYiIgLpHVkTWfvaNh6LHfS6fOVb9X8IcdL3oC/e9Ej1mA0NE5DA9J6qnR8funBknxqrNnr2mVVFdAcsMe8P97cXSCCtCc1mTn5KIiGjIll+sm9QrYdY9siICIBI95ilkREQOE+g6URAduzOLxr7Pi9Ck5s3qBIZOI+tveTtnkuMRERHZiiswREQOYw52Z0bHeka+P1G95s7sDfe3lwBAoPNElq9kRedk5iMiSnXLv1irwxucqgs13YTqhghHVKkOeLKDLVsqL8xqwtrKN7QBvzJVtVwZQ3MgIiJyUNXNlqoHVwcuxByxVn9tR4E0RaYhZYaiqmGE4a/Je+U0KisvulV5NjBERA5jmSF3dKy500OJ6oXuHq4xIwOuycpFRJTqln5l+zSXJlZLRGYAqmYBEDABqcICMNjtlis37mwSprK75qGK9/6SOZbf++ZUBfqqwR7MFEDMHAA0wLQgy+7Z0SyepjKFAAAgAElEQVQhd9f++MpD4/k1r7j3rWy3CN0WPRaW3Ff941U1gBTl99Usk6ZcahjIBQABAWlKQAVW9l4/KO/74NtWn1J15jSsC25t5RtaoNd753A2KRuqN63aciHnKL+nej0UzIoes4EhInIYaUb06FioesLNkIqqDd/A0gwNsoEhIjpXpVRW9FTfoACXy7HqhBCQKJGKLCnbWHU8vTv4/Lj3d1RWKuW966+TUrlizDohhICYJoAPr7x35ylV4NlEKzKuSKcq9fTs6LGlSM/ayjc8A73Vt0gTM0d9oRRpwjQrlAxz3pXf2Pbb7d+/6oLf8LPvtE+oaZHhbFBE2oWeQworHVIMz8E9MERETqOcbUikaSb8e9oyTTU6FppujFVLRPR+s2HDU+rK7qqPKcDlsY8LSEtANAtFHJFAEwRGrFAIiZmBHO/ty79Ym/gH8spKpaznhlvPbV4EhAUpW6JzCEWER75QTDehfmrh376RMZH3pEohAj2um4U807wIKQVEMyAbhCKOSGn1j5jFQk4oqH2y/O7qzHi/XqrhCgwRkcOommv4f3BWJKCPVQuMXLFRXb7wWLVERO83x2fMXCNMc/j0I0gpharUKlJWVz1YMbzysfyLtbriDV0hhHIVzvyMLKXMV9IiHwDwu7HmqOi5YZUFzB1+QEgpTewxg3pV3SMrBmPn0HzGYmnJqyEx9He3tPLS3J4PAnhqvO9JQiyUUNLPHDXouvX6jvtX98VUiPK/r5kLFeullBkAIAAfNHwQwJPjncepuAJDROQwqts3EB1HBtp9ierNUN9wjSezsH+sWiKi95PVX9tRICyjPPYxS9dfrvlRxRvnnrZV98iKyO4fr9ltSvO3AIZXswUwt+LeqvmjzbHyn2ryJMSqEQ8K9Y+7H1r9emzzEp2j5oGKOhXyqdgVHyExc9XGnSNWiMYiIYeaFyn37dq0+tkd91/ZN7JCyJqHKt4LycB/C8jh/6dIKWeUbdy1cLzzOBUbGCIih3FnT2+LjkP9bbmJ6o2gf6hGCCujZNnYl10mInofMcNyBaQQ0WMp5Nu1PyzbP9Zr6n585UlFYkfsY5bAytHqRdBYLiFjfqZW6nf9qHzfWHNUPbi6CTC3jZhDomys15w3r5A9padXvTZWzd5N63qgK38c8aA0JzSPE7GBISJymIxpi5qj42D3yelj1fa3HMgywwNZAKB5sjo0t497YIiIMHS6llTUy6LHAsIaDIW2j+e100+fqo1duYBE4eqv7Sg4t27DhqdUCHXB8ANCSmHKbefWxbMr67U9EhheOZEQU5bf++bU8bwWAExT7nz6aZHwQi81P6h4DwKtwxGBgnjvJZWwgSEicpi8S649reppfgAI+1tnBLqPpY9W21H//PBpDemFlx1MRj4iolSguY1CjNzvfbz+p+vGdZrt00/fZkqoI/5OtQyl5Ny6o8VFBdKSw1d/VIQ4WbO5IuH9uwAAlZUWhDwQ+5Ai1fPmiEcKywzkZjeMax4AFmTC95JK2MAQETmNUGT61EX7AEBKSz217Wdr4pWZkYDadWTr6jOHcsqCD455ygIR0fuJqVnTRjygoHFCv8A59RaU81ZHdOgjHpOmaJrIFJYhR8yhKJg2Wm0sIbT2+sqF475oiw6MyGXBGvdKjxOxgSEicqDSq76yVShaBAB6j+1Y21z7m3kjCqQhGp7d+GFjsKcQANLyZh/Mu3T9hP7HSUR0MVPOXH1rmIHOibxeleaIPYWKYp13qWNTVUc8pmjWxPYhprlH1FtSGd/llK2JvRd3d2hEvaKMcx6H4mWUiYgcyJt/SV/B4o8+27r3qQ1SWuqpHT/9bOehVw+k5c4+aRgBV39z/SJjsKsIAFQ9zT9z/f991u7MREROIizpid1ab2nK+G5IedaIq5SZFrznFiiW5Ym9MaY0xYTmCHq9gfTQ2dvPCCE943mdFFZoIvNs+cXa0MqNVTJ6QQNLYlzzOBUbGCIihypdu7FWmiGtvf6Fm6Vl6oPthxcNth9eFFujebPbZl/3jf/KKFrQa1dOIiInslRVFTHdhREOJ9zwHsvf2GimF5+9jooQinpekYCGmDlMRZ3QHPVYYKxE9dkHrPH9bK6IxJv3RxJSYoclIM68B5nSPUBKhyciutjNvPYb1Xnzrnuvec+TKwIdR+YYwb4soephzZvVnTmj7J2Sirv2ap7MSOJfiYjo/UWBFZIxuyW87rSENwaOlb9woWuw5+x+fCHkeaselmGFhCLOHkcirnNrxrKqt8pt4uzroYxvBUea1oTm2bDhKfWEPNuASev895JK2MAQETmcr2RFp69kxat25yAiSiWWogeFeXahImIZE9r30dfT6VMR0/NYOK+5UBURtGKP9fP3yYxFMzwZpnq2l1DE+XPEI4UY9eqU8ZwsmpGOmKUiRagTPZ3OUbiJn4iIiIguOjIS6Yo9VoQ1oXufqIoYWa+cv3FeqHLk5nip5U9kjqBmjJxDjm9zvpByQvMompXwvaQSNjBEREREdNHRVXE69lhKMXsir5eWNif22DSN0+fWWGFlxGMWMHcicyiIjKiXijhvjriEyFr5TzV5453HUpRZscemqY5vHodiA0NEREREF52qB1d3CSF7hh+QVl7ZV3dNH+Mlw5b/Y22WAhnb8Bi6opw8t65mc4UfMmYVRiKz4t6qmeOZY83Xt/ukVIabJCmEGRDeE+N5LQAoAevy8dQtrKx3SVNeFvOQoSuR895LKmEDQ0REREQXJcuSb418wLx2beUbCfaAS6FFjOskxPDPyRZwsOrB1YF41ZaKPSOOpbx2+RdrE14wIBJWrsWI/eiy4e0fLhlI9LqYTMuu/Ma2nER1Gf6+NUDMJaClbBjtvSTLyo01K1bes/OG4a+v1cxK/Kqz2MAQERER0UVpMCd7nwT6oscCKBjo8dyysLI+7lW8Nmx4Si3fWLNeWvLs6WMCEV3ImtHmkP2u/UKIsys9QuSp3vCtc+9+yR33BZWVStnGqusAcenwryEs01L0qgm9OUCLhNQN5XdXZ45WUHFv1TJpybLYeZCmTnSeC05a1hwIsST6JSxZOJHX8ypkRERERHRRqq9cGF59346XDEvcFr2JowDmpvf67yy7Z0edruNE72B40OP1eVRpFp+Ucpk8Z4O8IrG1atPqrvgzAHWPrIiU3139EhR5O8TQHBBiVo6ac+eKjTvrVEs50R8JDKRnpbnFoCy2euQyAYzYVC8httU9sKJjvO9LSvMEFFECqWQL1bqz4t6q3YpmvSdN0efOylJDvb1FllCWWLGN2FCuql3/Vp7SG/gBNjB0wXRlAbjG7hRxpAG4FM7MBgAzAGTDufmKAahwbj5g6O+xMgBZdgeJSyI33N+mte17ZkKbR5Ml2NOUb0YCulPzAQCkCSfnk2ZEH2x7t9CpGc2gP0ua4TSn5htsf69QmmHVqfkAANJSOg+/MUN3Z4779J5ksoL9XsMI5zjtM7QslzvctwxG4F1gfFcHnhQ7H1hzovzuN1+0NNeNQsqhe6FIZAqhrDMMIN3lAczImYdHsoAduzat2oMEajZXNK78as1zUhofEmfutyIAn5BirRRyaI6ABSkQe9eXoTmlVV27ac2uCb0pRWmRBhqEivUSwiWBNZahrAGAoXvXCECOfDfCMvfv2rTG9tUXAFBVwIq5/rQw5bkf/ZjYwNAFcmg+gN/bnSKOLAB3ALjN7iCjSMdQg+DEzw4YyuaGc/MBQ+f1PgDAsDtIPFJamQOt7yLQcWxcG0eTzTKCujQjWlPN45+2O8topJSKo/NZprfnePWq3pN1K+zOEo8Z7ndDKMKpn6G0IqplhFxOzQcAUkq1de9vPyYgJvRDVrKYkQGvtGRuU83jcxJXJ5UAvJBWCJATujjXBVez+eoD5XdX+y0V1527+hGXgN+ytDdqf1x2aLxz7PpRecPSr2x/QlfldRCiKFG9BPoUVWzd9cCaA+OdI1bt5tVvld/9Zgi663ppyVFvbCmFMKWU1bU/XrMTDznj97C05JRoKycgLM0baZjI69nA0AWyqhrAVXaniKMBwH8A+JHdQUbxEIZWD1bZHWQUcwHsA5Brd5Ax+AFcDWCv3UHiEYryZs6cq92zr/+XZ+zOEs/x1++v8DfWXr34jqfutzvLaGp/svbfln7xhW/bnWM0e/7zA9+YVnbHa0XLbq+1O0s89U9+4TbNlZE576ObHrM7SzztB/8w49SbP7vTyd/j2ofXfXfBxx9+0JM7s9fuLPHU/89df6e504/Pu3XTi3ZniWUENW9z7bTKkH8Leo5uuWC/rilDTbrUt0aPVa8xru9LzeaKRkD+svzva+ZaqjVHSFEiFJFx5od/A1IOWBDNQlGPpGcNHNpSuW7C/zD21k+uPA3gV8vv3jFHVcRcKGqJkKZPQgzNITAoYDWbquuI9ItDux9ZEZnoHCPf09UH1lbWnwx0di+Cql0ihZUFKdIgEBFS9loCRzTId6o2re7Cpr9mptHVTVtuVnRXD38/IhFzzFPhlt9XO0WakeEbcZqQ9TXfv6p7InOygSEiIiKilFG36epmAM1/2auFrHkI7wF4b/ihykoFlZXW6K+ZuLrNa44AODKZc0RtqVzYD6D6zBcgpYBI4kpLpbCqgVEvcnAu3YzMiH4QUghTurSdiV4jhXDFvCODVyEjIiIiovevSWoskj5HVDKbl7+AZcnS6FiB+U7dv69IuIImYi4DLSBCbGCIiIiIiCgJpJBCRPeEGpoux3lRAemLjixp9rKBISIiIiKiSVd+T02BEPAAgFTkvh33X9mX6DVlX901HVKkRY9VRWnhHhgiIiIiIpp03pxA70AbfgUAgwUFce+ts7byDc1o1XwBl/Cpil4AaVTEXnxaGuJdNjBERERERDTptlSuCwJoGasm2OMpsdy4TQUAaWHEnXOkPFazeVUjGxgiolQgDdFzoiY/3Nvsg+oyfYXzO735lyRceiciIroYSGmd1hTxAsDLKBMROZqMBNQjf/zeNb0nqivM8EBW7FPuzKKThUtv/2PR0tsO2xaQiIhoEgjIMIQyKKXVJkyjYddDVx2MXmGNDQwRkUNFAl2uA098/vMhf8vMOE+LkL+l9OTWTV8YbDv40uwbvvVmsvMREVFy7Hr4uk4Ajr3h8IVUvWnVccR7r5vPDtnAEBE51KHfb9wQbV60tNzWqcs+8VL27CsbzVC/3rbvd5d3Nrx2vbRMvePgqx9055S2F6/87EGbIxMREU06NjBERA7Utu+Z2YNtDYsBQPX4uhZ88tGfeTKnBaLPZ0xd/KZ3ytzWU9sf/hwgRcueJz40beknGoTuNe1LTURENPl4HxgiIgdq2ffba6LjoiUbXoxtXqKmrvjfh9Ly5+4HADPoz2vc9fiiZGYkIiKyAxsYIiKHifS3uUPdp+YCgKJ7+qeV3XFgtNq8eTfsjo57T9SwgSEiooseGxgiIofpaPhTqZSmBgCe7JJjQnNZo9VOWfjBYxCKCQDBrpNzkpWRiIjILmxgiIgcJtBxtCA69mRPbx6rVvfmhjVvZgcAWEYwPdB9LH2y8xEREdmJDQwRkcOE/C1TomNXen5vonrNk9UTHfc37Z8yVi0REVGqYwNDROQwlhF0R8eqN3swUb2qeYY3+Bthv3usWiIiolTHBoaIyGGkGXJFx4ruMRLVK6oeiY6t0AAbGCIiuqixgSEicjAhIMdRNflBiIiIHIINDBGRwwjVHY6OzXBQT1RvmeHhGsWdHpqsXERERE7ABoaIyGEUzTPchJiBnrRE9aYR9EbHujc7OFm5iIiInIANDBGRw7gzizqi4/BAe1aieiPYmx0dpxct6pysXERERE7ABoaIyGG8U2a3RcfBnlNTx6qNBLpcRsA/BQAUzTPgzSkdmOx8REREdmIDQ0TkMFMuXX9CCNUAgGB34yxphEf9u7qj/qVZkJYKAN7cGYeTlZGIiMgubGCIiBxGzygIuXOmHwYAywhmnN79ywWj1XYeerUsOs4srahPRj4iIiI7sYEhInKgoiUf3xodt+x7+qag/7T33Jrm2t/MG2w/vAgAVE9mZ8nKz+5PZkYiIiI7aHYHICKi8xUs+djRtv3Pvz3Y3rDYDPblHnji839beMXHX86dffUpI9Svt77z+8Xd7/15PYZuAiOLln7yBaF7TbtzExERTTY2MEREDjXvow8+feCJL2SG/M0zjUBPQVPVY3c0VT12TpWQU+Z/4MXi8s8dsCUkERFRkvEUMiIih9K9ueHFn3nyP3PnrX9ZdWX0nPO0dGdOPTZz3X2PzL7hm9tsCUhERGQDrsAQETmY0FzW3Bu/swXS2Np7si4v1NOYqbg8Rnrh/C5v7ux+u/MRERElGxsYIqJUIDSZVVregdLyjsTFREREFy+eQkZERERERCmDDQwREREREaUMNjBERERERJQy2MAQEREREVHKYANDREREREQpgw0MERERERGlDDYwRERERESUMoTdAc7RCKAYwHIAe2zOQmOSzwG45ezxDglcGbEtzuhcAMwzX06kYejPoRM/O2Aomw4gbHeQMbgAGAAsu4PEI4SqC1UFIByZD5YppBCKEIpT/4xAWqYqFNW5+aRUhRAWAGl3lnikaShCUQHh0N+DkJDSUoVw/PfY0fkgLSkU1YHfY1UFJKQ1H9KqA4C7APGY3akotfFGlnSBlFcDuN7uFHHsBfBzAJvtDjKKHwBYBuBau4OMYhaAagCFdgcZQzOA9QD22x0kLkW8mjN3nXvGuq8+a3eUeJre3Fzmb9p31fzbH/uR3VlGs+/RW7695K7nK+3OMZp3fnHbfUXLbn8jf/FHHPkPbw2/u/djmjsjc/ZN333c7izxdDe8Nr1x52OfufyzT37P7iyj2ffYh785/+M/2+TKnua3O0s8Db//6v9RXWkn5tz03VfszhLLDOnetn2l/xz2b0PPse2QDmyvKDWxgaELRDMB9NudIg4LQAjOzAYMrbxYcG6+wJn/OjUfMPSv3kE4N6MpFNXU3ZnOXMVSdBMClmPzneHwfFJRXYZjMwrFBBTH/h4Umh4BIJ2aL0rVPRHHZhTCEorzvsdCaqoQHkDocN5JP5TKuAeGiIiIiIhSBhsYIiIiIiJKGWxgiIiIiIgoZbCBISIiIiKilMEGhoiIiIiIUgYbGCIiIiIiShlsYIiIiIiIKGXwPjBERA4X9J/2tuz+1ZL+1oNzzKA/Uyh6RE/P7cqec83+qUs3vAehOfIO8ERERJOBDQwRkYM11Ty+oHn3Lz9uGaH02MeDPafQ17SvvG3fM0fn3PidJzOKFvTalZGIiCiZeAoZEZFDNdf+Zl5T9aOfjjYvroz8xszpy3f4pi6qVTRPPwCEeptmNzx33xeC/tNee9MSERElB1dgiIgcKNLX6mmqfuyTkFIBhCxY8tHfzVz3tV3R541gt/7u01/51GDn0QVGoKfg2Mvfunn+Jx592s7MREREycAVGCIiBzq25cGrLCOUBgC+kiuqY5sXANA8OZF5H3nwSdWV3gMAfS31y3pPVOfbkZWIiCiZ2MAQETlQX9OeZUMjIaev+dLWeDV6RkEoa9bqnQAAKZXWt393RdICEhER2YQNDBGRw/QcfbPQDPblAoAro+BUxtTF3aPV5l9+y/7oeLDl4IJk5CMiIrITGxgiIofxN+6bFh17cqefHKs2q2RFZ3RDf3iwq1BGAupk5yMiIrITGxgiIocJ9pwoiI5dvsKuRPV6WnYnAEBaam/TnrxJjEZERGQ7NjBERA5jBvy+6NidUeBPVK+6M4Zrwr3NvrFqiYiIUh0bGCIih7HMkCs6VnRPJFG9UN3h6DgS6neNVUtERJTq2MAQETmMNA09OhaqbiaqV1R1uMaKBNjAEBHRRY0NDBGRwwhVG151kWYk4aZ8yzSHaxTdGx6rloiIKNWxgSEichgl5pQwMzyYcEVFxpxyprsz2MAQEdFFjQ0MEZHDqN7Mvug43N+emajeDPUP17iypvaNVUtERJTq2MAQETmMJ7u0LToO97XlJqqPDPYMXTpZKGZW8bLOSYxGRERkOzYwREQOk1my9HR0HOw+MWOs2t7G2jzLCGYAgCstt1Xo3oSb/omIiFIZGxgiIofJnn1lq+bN7ACAcH9HSX/z2zmj1ba/8/zl0XFa0cIDychHRERkJzYwREQOlFm89K2hkRSntv/H2ng1kf42d++xnasAAEJYhYs/8lay8hEREdmFDQwRkQOVXrNxu6K5BwGgr+mt8uOvf78i9vlIoMt18Hf3fMoMD2QDgK9oYV1WaXmHHVmJiIiSSbM7ABERnU/3FQaLV9/1xKltD38OUipt7zz3kZ6j28vd2TNOWmbQHeg4eqllhNIBQEvLbp1147dftDszERFRMrCBISJyqKnL/lcDLPOXTdWPb7CMYEZ4oHNaeKBzWmyNJ7vk8Jybvvs/nsxpAbtyEhERJRMbGCIiB5u64jPvTpl3ww+a6n5z+UBL/Rwj0JMtVHdIT8vtzrtk3TsFi289CqFJu3MSERElCxsYIiKH032FwZlr79sNYLfdWYiIiOzGTfxERERERJQy2MAQEREREVHKYANDREREREQpgw0MERERERGlDDYwRERERESUMtjAEBERERFRyhB2BzhHI4BiAMsB7LE5C41JPgfglrPHtYNA2XG70ozhUgA9ANrsDjKKYgAeAEfsDjIKN4DZAA7aHWQM8wEcB+DMGzkKZY7mzpCK6uqxO0o8ZiSQLqWVrrnSnfpnBJFgb5HuyWqxO8dojFBfgaKnDSiKOmB3lniMYF+Ooumqonk67M4Sj2VF3FYkmK25fa12ZxmNEfQXKm5fhyKEaXeWeMxIIF9aRlhz+3rtzhJLQhGQUwqlFYAZmQVpvg4AdwHiMbuzUWrjfWDoAslrB/CE3SniuA/AXgBb7Q4yilsBTIMzPzsAmALg7+DcfADwTQCvADhtd5B4hBBf8uTNUnxFi96xO0s8faf3zQj7W2fmXXb923ZnGU3r3qcK8y67wbH52t559hpf8eJTnqySRruzxNPV8Ppi1Z3hziotd+RnGPI35fSerF3q5O9x675nrsu9dO1BVfUE7c4ST/fRbasglO6cWWvetTtLLClVLdy3oDAyeBgDrb3gHXfpQmEDQxfIrFMAvmt3ijg+A+BlAD+yO8goCgCUwZmfHQDMBXAXnJsPAL4O4BEMNarOI8T1nqxi9/SrvvK63VHiOf76/RVGsDffqfkAoHXfb69zcr72Ay+U+aYtqS9adnut3Vni8TftzdNcGZlO/QzbD/5hhr9x3yKn5gOA1refWVe0+OPbPbkzHbXCEeU/ve8yzZ1+3GmfoRHUvM210/4GYguALTanoYsJ98AQEREREVHKYANDREREREQpgw0MERERERGlDDYwRERERESUMtjAEBERERFRymADQ0REREREKYOXUSYicrieI1uLWvb+duVg59E5VnjAJ4Rqat6sTl/J0v3TV32xVvcVOvLeFERERJOBDQwRkYMdfaXy6o5Df/oApKXGPm5GBjNDB5pndR/dtmbm3/zDb/IuXd9kV0YiIqJkYgNDRORQx1//fkXHu6/eBABCKGZa4fy93rzZjTDDmr9x7+Xh/tYZZrAv99gf/9+d7vT8n2QUX9Ftd2YiIqLJxgaGiMiB+lsOZLXXv3AzAAhFNUqv2fjzgiUfOzpcIK1t7/7+npv9J2uvtIxgxtHX//3WxZ954nHbAhMRESUJN/ETETlQ4/aH10rL1AEgZ87Vfx7RvACAUOS8Wx54UUvLbQGAYNfxyzoPvjLdhqhERERJxQaGiMhppCH6Ww8sBoZWX0rWfKkqXpnQXFbu3HU7osftB19ekqyIREREdmEDQ0TkMJ2HXi+2IsEMAHD5ik56smcMjlabf/mH3o2OB9sPzU9GPiIiIjuxgSEicpi+lv1To2NvzoxTY9Wm58/zq670HgAwAv48I+jXJzsfERGRndjAEBE5TKjnVEF07PIVdCWq17yZZ64+JoX/VN2UyUtGRERkPzYwREQOY4UG0qJjPS2vP1G96vb1Rcfh/vb0ycpFRETkBGxgiIgcxjTCruhY0b2RRPVC0YdrzHCfa6xaIiKiVMcGhojIaSxj+B5dQlWtROWKqprRsTQivL8XERFd1NjAEBE5jFD1cHQszYiaqN4yI8Mb91V3WnisWiIiolTHBoaIyGEU3T3chBihfneiehk5e8qZqqezgSEioosaGxgiIofRvbm90XGkvz0rUb0R7M2Ojr15s3smKxcREZETsIEhInIYT25pW3Qc8jePfVlkaYhIsDcPAISiRnzFl3dPcjwiIiJbsYEhInKY7Fmrh29eGeg+NXOs2q7D24qkGfEAgCujoBFCk5Mcj4iIyFZsYIiIHCZj6uJuV3reaQAwBrsKOxv+PG202o76P1wRHfuKr6hPRj4iIiI7sYEhInKg7Fmrd0XHzTU/Xx+vZqD9UKb/VF05AAhFi0xddvveZOUjIiKyCxsYIiIHmn7Nxl2qJ7MTAAY7jy5495m7bzGC3cOXS+5trM1779n77rTMsBcAsmaWb/PmX9JnV14iIqJksfOGZ3kAVgJ4OUHdbABFAHZOeiIiIodQda85Z/0//+q9l/7ly9KMePynatfsffTWZXp6Xos0I67wYOdUSKkAgCe75PAlN/7ra3ZnJiIiSgY7V2BUAM8D2A3gZgDpMc8pAJYB+A2AdwGUJT0dEZHNsudc03LJTd/9qSt9ShMAWGbYG/I3zwoPdBQPNS9C+kqWVS345M9/IXSvaXdeIiKiZLBzBaYNQB2Acgw1KkEA0cuFvgLAOnPcDuDXdgQkIrJb9uyrW6+YdeXm9voXZ/SeqJkTCXRnCkUzPJlTO/OXfKQ+PX+e3+6MREREyWRnAwMADwJ4FEDWma+ovJjxQQBdyQxFROQoQpH5iz50In/Rh07YHYWIiMhudm/ifw5AYIzn+zDU5BAREREREdnewAQBbLZvxYgAAAGqSURBVBnj+UEk3uRPRERERETvE3Y3MADwEIDOUZ77I4BwErMQEREREZGDOaGB2YGhlZZzdWCouSEiIiIiIgLgjAYGAJ4EcO4lQAcA1NqQhYiIiIiIHMruq5BF/RTAHQAKzhybAH5lXxz6C7gBWWp3iPNdogFFOcA2B2YDgOU+oN8NHHJovm8WA78WwDGH5gOAWQpw81Rgc7fdSeJb5DbDxe7+Zl+O3UniMYIlaZbVpjg135AZcHQ+q1QxBqamOTWjNEtdluHVnJov7J/qg5wunJoPACBLxWBHTpYR8jnlH35HkEaJZimZHqd9hmZE8ZhhFVYkHUO3/yO6MITdAWLsB7DwzLgLwBUATtkXh8YmnwNwi90piIiIyPkU9VuwzG8DwF2AeMzuPJTanPQvCQ8DkGfG7WDzQkRERERE53BSA/NfGNq4HwTwgM1ZKLHPAigGnt9qdxAiIiJyNkv2VwIoBvDfNkehi4CTTiEDgNcAlAGYhqFN/OR48h8BfN/uFERERORoCwFxwO4QdHFwyib+qPsBfA5sXlLJ7wEctjsEERERORq3BtAF8/8Be2iv3/VhZlcAAAAASUVORK5CYII=" } }, "cell_type": "markdown", - "id": "ffb84b53", + "id": "cc6ce65e", "metadata": {}, "source": [ "
\n", - "\n", - "
\n" + "\n", + "
" ] }, { @@ -307,7 +288,7 @@ "metadata": {}, "source": [ "
\n", - "Note: This algorithm is not correct for all matrices: if any diagonal element B[k,k] is zero, the computation in the first inner loop fails. To get around this problem, another step can be added to the algorithm that swaps the rows until the diagonal entry of the current row is not zero. This process of finding a nonzero value is called pivoting. We are not going to consider pivoting here for simplicity. \n", + "Note: This algorithm is not correct for all nonsingular matrices: if any diagonal element B[k,k] is zero, the computation in the first inner loop fails. To get around this problem, another step can be added to the algorithm that swaps the rows until the diagonal entry of the current row is not zero. This process of finding a nonzero value is called pivoting. We are not going to consider pivoting here for simplicity. \n", "
" ] }, @@ -321,24 +302,10 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "id": "eb30df0d", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3×4 Matrix{Float64}:\n", - " 1.0 3.0 1.0 9.0\n", - " 0.0 1.0 -1.0 1.0\n", - " 0.0 0.0 1.0 35.0" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "A = Float64[1 3 1; 1 2 -1; 3 11 5]\n", "b = Float64[9,1,35]\n", @@ -373,15 +340,15 @@ "\n", "```julia\n", "n,m = size(B)\n", - "for k in 1:n\n", - " for t in k:m\n", - " B[k,t] = B[k,t]/B[k,k]\n", - " end\n", - " for i in (k+1):n \n", - " for j in k:m\n", - " B[i,j] = B[i,j] - B[i,k]*B[k,j]\n", - " end\n", + "for t in (k+1):m\n", + " B[k,t] = B[k,t]/B[k,k]\n", + "end\n", + "B[k,k] = 1\n", + "for i in (k+1):n \n", + " for j in (k+1):m\n", + " B[i,j] = B[i,j] - B[i,k]*B[k,j]\n", " end\n", + " B[i,k] = 0\n", "end\n", "```" ] @@ -403,37 +370,21 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "id": "078e974e", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "🥳 Well done! \n" - ] - } - ], + "outputs": [], "source": [ - "answer = \"a\" # replace x with a, b, c, or d \n", + "answer = \"x\" # replace x with a, b, c, or d \n", "ge_par_check(answer)" ] }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "id": "1169c86e", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The outer loop of the algorithm is not parallelizable, since the iterations depend on the results of the previous iterations. However, we can extract parallelism from the inner loops.\n" - ] - } - ], + "outputs": [], "source": [ "ge_par_why()" ] @@ -445,7 +396,7 @@ "source": [ "### Data partition\n", "\n", - "Let start considering a row-wise block partition, as we did for the previous algorithms.\n", + "Let start considering a row-wise block partition, as we did in previous algorithms.\n", "\n", "In the figure below, we use different colors to illustrate which entries are assigned to a CPU. All entries with the same color are assigned to the same CPU." ] @@ -501,7 +452,7 @@ "Definition: *Load imbalance*: is the problem when work is not equally distributed over all processes and consequently some processes do more work than others.\n", "\n", "\n", - "Having processors waiting for others is a wast of computational resources and affects negatively parallel speedups. The optimal speedup (speedup equal to the number of processors) assumes that the work is perfectly parallel and that it is evenly distributed. If there is load imbalance, the last assumption is not true anymore and the speedup will be suboptimal.\n" + "Having processors waiting for others is a waist of computational resources and affects negatively parallel speedups. The optimal speedup (speedup equal to the number of processors) assumes that the work is perfectly parallel and that it is evenly distributed. If there is load imbalance, the last assumption is not true anymore and the speedup will be suboptimal.\n" ] }, { @@ -511,9 +462,9 @@ "source": [ "### Fixing load imbalance\n", "\n", - "In this application is relatively easy to fix the load imbalance problem. We know in advance which data is going to be processes at each CPU and we can design a more clever data partition.\n", + "In this application, is relatively easy to fix the load imbalance problem. We know in advance which data is going to be processes at each CPU and we can design a more clever data partition.\n", "\n", - "We can consider row-wise cyclic partition to fix the problem. See figure below. In this case, the CPUs will have less work as the value of $k$ increases, but amount of work will be better distributed than with the block partition." + "We can consider row-wise cyclic partition to fix the problem. See figure below. In this case, the CPUs will have less work as the value of $k$ increases, but amount of work will be better distributed than with the previous row block partition." ] }, { @@ -555,18 +506,10 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "id": "a6741a25", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "It is a form of static load balancing. We know in advance the load distribution and the partition strategy does not depend on the actual values of the input matrix\n" - ] - } - ], + "outputs": [], "source": [ "ge_lb_answer()" ] @@ -578,46 +521,46 @@ "source": [ "### Data dependencies\n", "\n", - "Using a cyclic partition, we managed to distribute the work uniformly. But we still need to study the data dependencies in order to implement it efficiently.\n", + "Using a cyclic partition, we managed to distribute the work uniformly. But we still need to study the data dependencies in order to implement this algorithm in parallel efficiently.\n", "\n", "Look again to the algorithm\n", "\n", "```julia\n", "n,m = size(B)\n", - "for k in 1:n\n", - " for t in k:m\n", - " B[k,t] = B[k,t]/B[k,k]\n", - " end\n", - " for i in (k+1):n \n", - " for j in k:m\n", - " B[i,j] = B[i,j] - B[i,k]*B[k,j]\n", - " end\n", + "for t in (k+1):m\n", + " B[k,t] = B[k,t]/B[k,k]\n", + "end\n", + "B[k,k] = 1\n", + "for i in (k+1):n \n", + " for j in (k+1):m\n", + " B[i,j] = B[i,j] - B[i,k]*B[k,j]\n", " end\n", + " B[i,k] = 0\n", "end\n", "```\n", "\n", - "Note that all updates on the loop over i and j we do the following update \n", + "Note that all updates on the loop over i and j we do the following: \n", "\n", "```julia\n", "B[i,j] = B[i,j] - B[i,k]*B[k,j]\n", "```\n", "\n", - "As we are using a row-wise partitions, the CPU that updates `B[i,j]` will also have entry `B[i,k]` in memory (both are in the same row). However, `B[k,j]` is in another row and it might be located on another processor. We might need to communicate `B[k,j]` for `j=k:m`. This corresponds to the cells marked in red in the figure below. These red entries are the data dependencies of this algorithm. The owner of these entries will send them to the other processors. This is very similar to the communications seen in previous notebook for Floyd's algorithm. There is a key difference however, in the current case we do not need to send the full row, only the entries beyond column $k$ (the red cells in the figure).\n" + "As we are using row-wise partitions, the CPU that updates `B[i,j]` will also have entry `B[i,k]` in memory (both are in the same row). However, `B[k,j]` is in another row and it might be located on another processor. We might need to communicate `B[k,j]` for `j=(k+1):m`. This corresponds to the cells marked in red in the figure below. These red entries are the data dependencies of this algorithm. The owner of these entries has to send them to the other processors. This is very similar to the communication pattern seen in previous notebook for Floyd's algorithm. There is a key difference however. In the current case, we do not need to send the full row, only the entries beyond column $k$ (the red cells in the figure).\n" ] }, { "attachments": { - "g30822.png": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzAAAAJsCAYAAAAiM0YjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAACAASURBVHic7N15nBx1nf/xV/X0zOS+LxJOEw4JEORGEMEFFEXwRF1wFQWPXd0VcfHADU0WVERWRV1XQMRjXcFdEfH4KaCcchiCAoKAAiEhCQFykWuurt8fNQM9ne6eqU73VNXM6/l49CNd1d/v1LtnJj396W/V9xsgSRru8sDZJdt/Aa7rvd8OnAy8G9gD2AkoAo8DvwIuBZ6u8nX3A84AXg3sBowCVgP3AN8Hrm3kk5AkSZI0MowGwpLbj3r37wM8XPZY+W0D8LayrzcK+E+gZ4C+PwfGNOk5SZIkSRqmKhUwBwGbqF2A9N26geN7v9Yo4KZB9guBXwJBk5+fJEmSpGGkvID5DfBE7/2twOVEoyyHA8cAnwZWlfVZ2vt1vl2y7z6iU9OOBQ4FTiE6Na28iDmt+U9RkiRJ0nBRXsD03R4Fdq/SZ2bv46Xtf9D7bxH4VyBXpe8ny/rd14gnIUmSJGlkqFTArCG6YL+WEyr0C4FFA/QLgHvL+uxZZ3ZJkiRJI0ylAuZjg+iXY9tTyZYBrYPo+7Gyfn8fO7UkSRVUG/6XJA1fPcBVg2hXBJaU7fs+0DWIvn8o23YERpLUEBYwkjTyPAisG2Tb5WXbd9TZb9Ig+0mSVJMFjCSNPNUWpqxkY9n2ikH221S2PT7GMSVJqsoCRpJGnvKipJZinX3L+7kWjCSpISxgJGnkCZMOIElSvSxgJEmSJGWGBYwkSZKkzLCAkSRJkpQZFjCSJEmSMsMCRpIkSVJmWMBIkiRJygwLGEmSJEmZYQEjSZIkKTMsYCRJkiRlhgWMJEmSpMzIJx1AktR0IbC2ZHtTjL5byvr21HnMzTGOKUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2N0cCpwM+BtoSzSJKk+KYCvwPeTfR3XZKGnQA4CrgWWAVsBf4v0USSJGl73Eb09/wZ4Drg1UAu0USS1ADzgEuAZcCzQNh7WwXslGAuSZK0fQ6g/9/2NcBK4GvAHgnmkqTYJgMfAf5MVKh089KLW9/twcTSSZKkRnmKbf/GF4HngUeBjwFTEkunYS9IOoAyrRU4AVhI9KnLqN591dwOfH8IckmSpOb5GPDyGo93A1uAB4AvAr8EuoYgl0YICxjV6zDg10QX5I9KOIskSUqnTqJrZg4BHkk4i4YJCxjVKwccA3wcOAIYB7QM0Odxok9jJElSdh0KzBqgTRewFvgFcCnwx2aHkqQ4RgHvAH4PrCZ60So/NzYE7kgqoCRJapjHqPx3fgvRBf13AqdQ+7RySUqNHYHzgSfpP0tJ3yxkYxNLJkmSttdsor/nfX/be4imVH4Q+DAwMblokrT9DgK+R/RpzHqic2A/mWgiSZK0Pf6LqGh5jmi5hIuBlyWaSJKaoBU4GbiFaIrFtmTjSJKkOkwluq7lx0TXv3ottaQRoT3pAJIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZI0kMnAmpLbN5KNI0lSOuSTDiBJqiggKmL6jEkqiCRJaZJLOoAkSZIkDZYFjCRJkqTMsICRJEmSlBkWMJIkSZIywwJGkiRJUmZYwEiSJEnKDKdRlqThZ0dgZtm+B4GOBLJIkiRJGgGmAGHJ7TuD7HccsL6kXxEoNCGfJEmSJL2ongLmvUBnSZ8O4O+blE+SJEmSXhSngAmIRllK268Fjm5qQkmSJEnqNdgCJg9cVtb2aWDBEGSUJEmSJGBwBcw44Jdl7R4AdhqijJIkSZIEDFzA7AAsKWtzIzBxCDNKkiRJElC7gJkPLC17/LtA6xBnlCRJkiSgegFzDNEF+qWPfZXoQn5JkiRJSkSlAubtwJaSfd3Ah5MKKEmSJEl9yguYlUSLUvZtbwTekFg6SZIkSSpRXsCU324A2hJLJ0mSJEklyguYO4hGYUr3/QIYlVRASZIkSepT6RqY3YDHy/bfDIxPJqIkSZIkRarNQrYz8FjZY7cBExLIKEmSJElA7XVgZgEPlD2+GJg6xBklSZIkCahdwADMAP5Y1ubPwA5DmFGSJEmSgIELGIDJwF1l7R4G5gxRRkmSJEkCBlfAAEwEbi9r+zjRBf+SJEmSNCQGW8AAjCFaF6a0/VJgXpMzSpIkSRIQr4ABaAd+WtZnJbBPEzNKkiRJEhC/gAFoA/63rN8zwIImZZQkSZIkoL4CBqAFuKqs7xrg0MZHlCRp6AVJB5AkVZQDdi3ZfgF4dpB9W4BdyvZtBlZtfyxJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJUnq1AlOSDiFJkiQpnfJJByjzQeBNwLFJB9FghbsBeySdQpIkpdrtEGxKOoSGhyDpAGUeAmYC84C1CWfRoISfBL6QdApJkpRq8yF4KOkQGh5ySQcoMQ+YBowFTks4iwYUjoZwAvz0mKSTSJKktPv0CdH7hrA16STKvjSNwPwHcFbv/SeAlyWYRQMKrwNOSjqFJEnKlDMhuCLpEMq2tIzABMDbS7Yn4nUVkiRJksqk5SL+VwGjS7YnE13Qf3YycVSHJcA/JB1iWwf8HHb+X/jpVUknqezYT8OGfeCeU5NOUtm3doKvXwsPHJR0kur2uxve8R449y9JJ6ns0KtgzFL43XlJJ6nslFPgsffDfa9NOkl1+/4JHliQdIrq9r8RXv4N+J9rk05S2asvhI4ZcNeZSSep7NwFcP234P7Dkk5S3b73wr+dAKesTjpJZQf/CCYvht98KekkZcYDdyYdQmqWnwBh2W056TrFTf2E10EYltxuSzpRFY+Q7kL4UtL94j4XSPusMRuA/ZMOUcPNwOVJh6jhQ0Sn7aZZV9IBBvAUcHrSIWq4Crgh6RA1HAasSzrEALYAc5IOUcM9wMVJh9hWOKnsvUII4RlJp1L2peEUslHAKyvsHwMcOcRZJEmSJKVYGgqYtxLNPFZuMvCxIc4iSZIkKcXSUMB8DBhX5bEjiEZiJEmSJCnxAmYmsFONx8cBbx6iLJIkSZJSLulZyN5PdKpYNWOBfwH+e2jiKGEzgb2Blt7tR4BlycWRJElS2iRdwJxJNAr0DNFMRzsCbcDjRMXLWGB3YBawKqGMap4jgGOAg4ADiX7+pT4KfH2oQ0mSJCm9kjyFbD6wA/BlYAHRdK3P9j72dmAXojewPUBK18jQdjoP+HfgZLYtXiRJkqRtJDkC8zjwMmBFlcc7iOauvwaYOESZlIxO4H7gXqLC9XXJxpEkSVJaJTkCs4XqxUupzcDKJmdRMr5EdOrYOOBgogX17ko0kSRJklIt6WtgNLL9JukAkiRJypakp1GWJEmSpEGzgJEkSZKUGRYwkiRJkjLDAkaSJElSZljASJIkScoMCxhJkiRJmWEBI0mSJCkzLGAkSZIkZYYFjCRJkqTMsICRJEmSlBkWMJIkSZIywwJGkiRJUmZYwEiSJEnKDAsYSZIkSZlhAaMknQyEZbdCyeNfq/D4kUMbUZIkSWliASNJkiQpM/JJB9CI9hDwqZh9nmxCDkmSJGWEBYyS9BhwUdIhJEmSlB2eQiZJkiQpMyxgJEmSJGWGBYwkSZKkzLCAkSRJkpQZFjCSJEmSMsMCRpIkSVJmWMBIkiRJygzXgVGDLJ8FfCjpFBVMAY4CNiUdpIpXAHNI5/cOYCbQSnrzAbQD7wAOSzpIFTsDo0nv9/A1wETSmw+iD9vSnG8CcBzR72IazQcmkd7v4Tyi711a80H0fuk9wJqkg1SxA3Awqfse7j46WvJNaqwg6QBllhO9mTsQWJJwFtUUXgec9NL2PVvh0FWJxaluJ2AjsDbpIFVMI/rD/XTSQapoBWYDS5MOUsMuwCqgI+kgVcwGuoHVSQepYmLv7amkg9SwK/Bkwhlq2RlYB2xIOkgVM4jegK9IOkgVo4g+LEnz68yuRO9RuhPOUc0cotfA55IO0t+UHDy/c9nOMyG4IpE4UpMsB0LggKSDaCDhdRCGJbfbkk5UxSPA2UmHqOFS4M6kQ9Qwl/SOXvXZAOyfdIgabgYuTzpEDR8Cnkg6xAC6kg4wgKeA05MOUcNVwA1Jh6jhMKICMM22EBUJaXUPcHHSIbYVTip7rxBCeEbSqZR9XgMjSZIkKTMsYCRJkiRlhgWMJEmSpMywgJEkSZKUGU6jLA1sR2APXir47yKa2UySJElDzAJG2tYbiObTP4hoSu9ZZY/vD/xpqENJkiTJAkaq5H+J1iWQJElSyngNjFTdFqLTxb6BSwlLkiSlgiMw0rY+CPwReIiXVl2+Adg9sUSSJEkCLGCkSr6XdABJkiRV5ilkkiRJkjLDAkaSJElSZljASJIkScoMCxhJkiRJmWEBI0mSJCkzLGAkSZIkZYYFjCRJkqTMsICRJEmSlBkWMJIkSZIywwJGkiRJUmZYwEiSJEnKDAsYSZIkSZlhASNJkiQpMyxgJEmSJGVGPukAUgotAj5Stm9cyf1bgZ6S7RCY2uxQkiRJsoCRKhkNTK7x+ISy7bCJWSRJklTCAkba1u/oP8IyEAsYSZKkIWIBI23rl703SZIkpYwX8UuSJEnKDAsYSZIkSZlhASNJkiQpMyxgJEmSJGWGBYwkSZKkzLCAkSRJkpQZFjCSJEmSMsMCRpIkSVJmWMBIkiRJygwLGEmSJEmZESQdoMxyYA5wILAk4SyqKbwOOOml7TtCOLInsTjV5YFi7y2NWnr/TeP3rk8e6E46RA15ou9fmHSQKtL+M8713tL+M057Pl9n6hcQZUz7z9jXmdgmAWvzZTvPhOCKJNJIzbKc6MXhgKSDaCDhdRCGJbfbkk5UxSPA2UmHqOFS4M6kQ9QwF9iUdIgBbAD2TzpEDTcDlycdooYPAU8kHWIAXUkHGMBTwOlJh6jhKuCGpEPUcBiwLukQA9hC9AFrWt0DXJx0iG2Fk8reK4QQnpF0KmWfp5BJkiRJygwLGEmSJEmZYQEjSZIkKTMsYCRJkiRlhgWMJEmSpMywgJEkSZKUGRYwkiRJkjKjfHEhSdnRCuwD7Ae09+67gfSv6SFJklQ3CxgpW04BjgYOon/h0udtWMBIkqRhzAJGypaFwPykQ0iSJCXFAkbKpqeBe3tvRwF/l2wcSZKkoWEBI2XLB4DHgVUl+76JBYwkSRohLGCkbPl90gEkSZKS5DTKkiRJkjLDAkaSJElSZljASJIkScoMCxhJkiRJmWEBI0mSJCkzLGAkSZIkZYYFjCRJkqTMsICRJEmSlBkWMJIkSZIywwJGkiRJUmZYwEiSJEnKDAsYSZIkSZlhASNJkiQpM/JJB5AUSzswpsK+PmOByWWPrweKzQwlSZI0VCxgpGw5Hfhmjce/W2HfPOBvzYkjSZI0tDyFTJIkSVJmOAIjZcstwAdj9nm2GUEkSZKSYAEjZcvDvTdJkqQRyVPIJEmSJGWGBYwkSZKkzLCAkSRJkpQZFjCSJEmSMsMCRpIkSVJmWMBIkiRJygwLGEmSJEmZESQdoMxyYA5wILAk4SyqKbwOOOml7bs74bA1icWpbgawBXgh6SBVTCJaj+m5pINUkQemAs8kHaSGmcBaoDPpIFVMA3qIMqbR2N7b6qSD1DALWJV0iBpmAJt6b2k0hejv/fNJB6minei1MM2vM7OIFgXuSTpIFdOBLmBd0kH6m5KD52eU7TwTgisSiaNhw4Us1SC7PA78W9IpKvg6cBNwbdJBqjgTmAt8KukgVcwCLgE+mnSQGr4PfAF4IukgVVwArAS+kXSQKk4g+jAizT/jq0l3vm8BPwZuTDpIFf9CVMScl3SQKvYCPkO6f8Y/BD4LpPGDOoCLgYeA7yQdpL8dxgJXJZ1CarblQAgckHQQDSS8DsKw5HZb0omqeAQ4O+kQNVwK3Jl0iBrmkt5PlftsAPZPOkQNNwOXJx2ihg+R3uKvT1fSAQbwFHB60iFquAq4IekQNRxG6kYOtrGF6AyRtLqHqIhJmXBS2XuFEMIzkk6l7PMaGEmSJEmZYQEjSZIkKTMsYCRJkiRlhhfxS2qGHYhmE3wF0QxXAL8CbkkskSRJGhYsYCQ1ymnA24kKl0oXu67FAkaSJG0nCxhJjfI2+q0NJEmS1HgWMJIaaStwP3Bv7+0VwD8lmkiSJA0rFjCSGuUjRCtpl67Z8YmEskiSpGHKAkZSoyxPOoAkSRr+nEZZkiRJUmZYwEiSJEnKDAsYSZIkSZlhASNJkiQpMyxgJEmSJGWGBYwkSZKkzLCAkSRJkpQZFjCSJEmSMsMCRpIkSVJmWMBIkiRJygwLGEmSJEmZYQEjSZIkKTMsYCRJkiRlRj7pAJKGjQnA7mX75pTdP7Ds8ceADc0MJUmShhcLGEmNcghwQ43HP9p7K/U64NdNSyRJkoYdTyGTJEmSlBmOwEhqlCXAcTH73NeMIJIkafiygJHUKGuAG5MOIUmShjdPIZMkSZKUGRYwkiRJkjLDAkaSJElSZljASJIkScoMCxhJkiRJmWEBI0mSJCkzLGAkSZIkZYYFjCRJkqTMsICRJEmSlBkWMJIkSZIyI590AA0XD74c+EnSKSrYCTgDOCLpIFUcCEwind87gHHAKNKbD2AM8BVgTdJBqlgAzCO938M9gFmkNx9AC+nONwP4GPDGpINUcRjQTnq/h9OJXmvSmg+gDfg2sDnpIFXsRfR9nJt0kP5mtcKqpENoGHIERkpWkHSAAaQ9n7ZfmHQASZKybDnRH9MDkg6igYTXQRiW3G5LOlEVjwBnJx2ihkuBO5MOUcNcYFPSIQawAdg/6RA13AxcnnSIGj4EPJF0iAF0JR1gAE8BpycdooargBuSDlHDYcC6pEMMYAswJ+kQNdwDXJx0iG2Fk8reK4QQnpF0KmWfIzCSJEmSMsMCRpIkSVJmWMBIkiRJygwLGEmSJEmZYQEjSZIkKTNcB0bSSDSXl9bgAfgLcGtycSRJ0mBZwEgaCQ4C3kZUtBwITC57/HIsYCRJygQLGEkjwTtJ93pAkiRpkCxgJI0kG4D7gHuBNuAjycaRJElxeRG/pJHgO8BeRKeOHU00GnNTkoEkSVJ9HIGRNBL8OekAkiSpMRyBkSRJkpQZFjCSJEmSMsMCRpIkSVJmWMBIkiRJygwLGEmSJEmZYQEjSZIkKTMsYCRJkiRlhgWMJEmSpMywgJEkSZKUGRYwkiRJkjLDAkaSJElSZljASJIkScoMCxhJkiRJmZFPOoAkDYEcMLFs39iS++3A5LLHNwMdzQwlSZLicwRG0kiwC7Cm7PaDksf/ocLjZwxxRkmSNAgWMJIkSZIyw1PIJI0EzwEfjNnnjmYEkSRJ28cCRtJI8AJwWdIhJEnS9vMUMkmSJEmZYQEjSZIkKTMsYCRJkiRlhgWMJEmSpMywgJEkSZKUGRYwkiRJkjLDAkaSJElSZljASJIkScoMF7JUg6yaBrwt6RQVTAQOIJ3ZAPYCZpDefDsALaQ3H0ArcDwwL+kgVczq/Tet38NDgHGkNx9EH7alOd9Y4DCiBVPTaC4whfR+D/cC2khvPoheB08Enk86SBXTgb1J3fdwn7HwYNIhNAwFSQcosxyYAxwILEk4i2oKrwNOemn77k44bE1icaqbAWwhvW8sJhK9AX8u6SBV5IGpwDNJB6lhJrAG6Eo6SBXT2lpacuPb2lKZb3N3d76zpyc3qb29M+ks1azZsqV9yujRHUnnqGZdR0fb6Hy+2N7S0p10lko2dHa2BkBafwc7e3pym7q6WiePGpXan/HarVvbJ7S3d7YEQZh0lko2dHS0BUEQpu1nXAwnsXbrivay3WdCcEUigTRsOAKTPfsCry/ZvhZ4NKEsJQ69B3hV0ikqeAS4DLgk6SBVXAocDByedJAq5gL3E43EpNUG4Fjgj0kHqaS1peX2dy9Y8MorTjopla+331y8OPjFI490/fzUU1OZD2DKRReFz33yk6nNt+ell3Z//y1vaTlkxx1TmfE9114b7DZ5ck/h6KNTme/OZcv4wM9+1vPAP/1TKvMBzLj44uJfP/rRlgmjRiUdpaJ//PnPu8a0trZ+6bWvTdX3cN2WUUy+qLFfMywUJhGNKEaef/7p4GtfS23xq+ZI1S+6BuVA4Asl24+RigJGkiSp6f4RWPTi1vTpBwP3JZZGifAifkmSJEmZ4QiMJEmSpNjCc8+dQz5/5Ys7guD/gkLhsmYf1wJGkiRJUnxBMIYg+LuSPX8aisN6CpkkSZKkzLCAkSRJkpQZFjCSJEmSMsMCRpIkSVJmeBH/yDEX+ApQugrX/wLfSiaOpIGs3bKFxStWBItXruTeFSuCB595JugqFgH4/LHHFk+ZPz+Vq4JLUlqFhcJhwBsIwyMJghnANOB54DngTuBXFAq3BFD362u4aNHBFIsnEi3wPQOYDqwhDJ8jCO4CfgXcHBQKxUFmnkax+OYXd+Ry9waFwhKA8BOfGMuYMW8hCN4C7EoQzOw91jKC4Ho6Oq4OPv/55+t9LlUzLVz4dmAS0fMrtV+4cOGZVTvmcv8TFAobt/f4FjAjwyHA9fT/JbsUuDyZOJIG8parr85d+/DDQbXHN3S48LQkDVZYKOxHGF4CHANA0O/ldSqwB/BK4GzOO+8PYUvLx4OFC++MdYxFi+ZTLF5CsXhshYenEgS7A4cDZwFLwkWLzg4WLrxtwC+cy+0EfLNkzyJgSXj++ccRht8jKpBKzSAI9gKOo739/LBQODsoFL4X57kMItN5wF4VHjmWXK7S8490df0G2O4CxlPIhr+Tgd/xUvESAp8C/gUYVOUvaeit3rSp33Y+l2PSqFFVWkuSqgkLhdcDtxMExwyqQxAcTLH427BQOG3Qxzj//OMoFu8Aqr957+8AisUbwoULTx/sMfodb+HCdxOGv2Db4qXcZODKsFD4bD3HSStHYIa3M4gq9r6fcwfwXuBHSQWSNDh7TZ3KHlOmhAfOmRMetMMOLJg5Mzz/lltyX7j99qqjMpKk/sJFi46gWPwJ/d/zrgG+Q/QB72qi08iOBN4PzOxt0wp8JywUNgSFws8GOMbBFIvXAW0lu9cBVxEENxGGzxAEU4FXEobvB2b3tsmTy10WLly4MVi06MeDf1LhfHK5TxANRHQA3yEIricMlwHjgAOADwD7lfQqhAsXLgsWLfruoI9TS7H4ZXK5qUSjV2eXPHI78Muq/Vpb1zbi8Hn6V4rP0n8Bmh2B9wALgDlAQPSDvoPo+oknGhFCDRcA5/Xe+qwF3gTcmkgiSbFccfLJjpBK0nYIzzlnPMXiVZQWL2F4B0HwjqBQWFXW/DdhofAV4AfA8b37AuBb4Wc+c3fwuc89U/EYhcIYisXv0r94uQd4W1AorChrfkNYKHwVuAo48cVj5HLfCM899/fBhRc+PagnFgRv7b33NLnc64OFC/9c1uKesFC4ArgY+OiLe3O5S8LPfOY3wec+t3JQx6kVYdGibwOEn/3s7uTzpQXMPUGh8MXt/foDyQE3lNwW9e4fDfwX8CRwAfB2ovMCDyc6JemLwF+Ai4CWZodULG1E//lKi5cniX5+Fi+SJGlkGDPmTGC3kj2PsXXrSRWKFwCCQmEN8DbgjyW7p9PWdlbVYxSLpxNdP9PnCeDECsVL3zHWAe8kKnL6TKG19RO1nkoFncAbKxQvfcfpplD4OGF4bcnuSbS1xT1OKlW6BmYKcBfwQWoXJ23AOUBjhqLUCJOAXwN/X7LvfqJh0b8kkkiSJGmIhYVCjui97EuC4GPBRRetr9UvKBQ2k8t9mP6zkL0vPOus0dscIxo9+VDZ7rN7C6Fax9jae4zSkfb3hOecM75WvzL/GRQK99c8DoQEwVnAlpLd7w4LhcxfUFlewOSBq3npnLlHgEuIhp8+DHyJ6NP8UqcCg77ISU0zB7gZOLpk3w1EU/gNbkhSkiRpeNiLaAmJPo8E553368F0DBYu/ANwd8muKUya9MptGhYKc4GXl+x5kkLh+kEe40+EYekMZBMYO/aowfTtddmgjlMoLAd+XrJrCkHwqhjHSaXyAuZ4omtithBd7L038Ang60SnlP0r0S/EVWX9Pkt0nqCSsS/RqNmCkn1XAW8ANiQRSJIkKTHF4uFlewZVWJT4ab+tMCz/egCHlR8j1voxYVh+jPKvV81jQaHw6KCPA7/ot9XTc0iMvqlUaQSmCJxEdGpYpYtIO4AzgQdL9u0JHNyMgBrQcUSTKuzYux0CBeB0oCuhTJIkScnJ5eb32y4W74vVPwjK28+v0Grvsu14x8jnl/TbDsN9BtUvDGueOraNXO6+su1KzyVTKl0D803gxgH6dQNfK9s32KpRjfUhoPScyU8A5yeURZIkKQ0m99vK55fH6t3V1b99GE6p0Kp8X7xjdHSUt690jG0FQbxLA4rF/rOOheHUWP1TqFIBc+kg+/6ubHtwVaMarXw10/cBs5IIIkmSlBITy7bjnVKfz5df7D+p4cdobR3MMSqJu5J9/1xBUJ47c8oLmOXAYM+pe5z+5/kNrmpUo/0z8PuS7fm927tVbi5JkjTsdfbbKhZbY/Zv67cVBB0DHiOXa8YxKom3EP369eW5Oiu2y5DyAibOwpQ9wKaS7QnbH0d1WE80+cJNJft2Ixohm5dIIkmSpGStK9se7OhGJJcrH6Uo/3oQLRL+kjCMd4xtM1U6RiXxRlAmThzMc8mU8gKm5tzYFXTX+FoaOpuIJl4onR5wF+A2Kl90JkmSNJw9U7a9KpF01QAAIABJREFUV6zexeLLy/ZUWr1+db+tnp54x9g2U6VjbCsM9xi4UT/l7Ssuspkl5UVHpVnHlA2biYqYn5TsmwX8lpfW9ZEkSRoJ/lC2fWjM/v3bF4uLt2kRBP2PkcvFPUb/CbAqHaOSINg//MAHBn+6WrFY/lzuHXTfgeTz5dNGD8mAhqMmw0sncArw/ZJ9M4gWuMz8nN+SJEmD0tFxN/0/mH9jWCiMGUzXsFDIE72fekkud8c2DTdvvof+ZyO9PjznnPHbtKt8jBzwzgGPUdlkZs/+u0G2hSDo/1zy+d9XaRlfZ+emsj2TK7ZrMAuY4aeHaA2YK0v2TQZ+A2y7iqwkSdIwE3z+888CvyzZNYFi8axBdS4WPwzsULJncVAoPLTNMS66aD1heF3JrjGMGfOJQR7j/cDOJXseDAqFJdWaV/CZcBCLyIfnn38CQfCKkl1LgoUL/xzjOLW1ta2n/6Re0xv2tWuwgBmeeoAz6D8l9kSiIubYRBJJkiQNpSDov2ZhLvepsFA4slaXsFA4iFxuUdnu6kuMlB8DPhEWCq8Z4Bj7kct9od/OYvGrtfpU8EoKhbMHOM5swvDrZcf5Rszj1BQUCpuJZibuc0h41lmjG3mMSuJNw6YsCYGPAV1A3y/4WOBnwJvpf8G/pJT5w9NPB5ffe2+/T9fuWfHSdZff/9OfgnuWL+/3+LlHHVXcZVLcSXAkaXgKzjvvprBQ+G/g1N5do4Hrw0Lhk8CVQaHw4ulf4dvf3sL8+acC/0HpAuFheAPnn/8/VY9RKNweFgpXEq3DB9AOXBsWCp9mxYrLg8su63rxSxUKOYrFdwBfpXQmsTC8hVzuuzGe2vre/p8PC4WprF+/KPjyl7eUNggXLTqcYvFKokmd+vyeXK70MoNG+S0wt/f+NCZOvD4sFP6TXO4JisXyCcKeKv2+18sCZngLgU8AzwJ9lf5ooiLmXfS/4F/ZNYqoOJ1INJ15D9EiV+t6/+2q3lVp9de1a7l8yZKqpwfcunRpcOvSpf32feDAA4NdJk0qv6BSkkayfyEM9yMI9u3dHg/8J7AoPO+8OwiC1cBU4HD6nzYG8Djd3WcE/U+R2tbmzWczevQrSk7VGgtcyuzZ54WFwh3AM4ThFOAwcrk5Zb2XEgSnB4VCnIm0/gt4LbA/8K9MnPjBsFD4LbAUmEAYHkCxuKCsz2q6u98fXHBBMybs+gbwHl5a1+Zo4GiKFQ7V1TW3N+d2sYAZGS7q/beviGkDriG6VqYZlbiaZxeidX9eQTT94nyiiRqqCYGngIeBPwNLiE4lfK65MbW92nI5Jo8aFatPPudZwZJUKigU1oWFwjFE73tKT+2aRhCcXKPrYuBNwYUXrhrwGF/84gvhOee8htGjf0QQvLbkoalEM8RCUPHzqD/S1XVycOGFTw90jDIddHe/nXz+Z8DLiT68fNNLgbY51kpyudcHF1zwWMzjDEpQKDwYFgpnAN8kKt6azgImex4BLivZHuzioxcRjcSUTqV3ONECmJmfD3yY2xN4P/AGYO+YfQOiomcX4HW9+3qAe4hG4q6kfB57pcJb9947fOvee/cknUOSUqVY3EIuV7qA5ICnIwWFwroQXkuh8HbgM8A+NZo/RrH4JR5++Krgxz8e9Gtw8MUvvgC8ISwU3kIYnksQlI+AlPobcAlwZXDhhXWdThVccMETYaFwOPB5olPkKi0ovxX4IfCpYOHCNfUcZ9B5CoUfhoXCzcBpwJFEi6lPY9uJBhoyAmQBkz139t7qcSX9ZydTuh1HdB3T62jshBstRMXr4UCB6MXtK8D9DTyGJEkNFyxa9GXgy7H7QUihcA1wTXjuubvQ2noExeJMcrlpFItrgNUUi3dt7yhFUCj8BPhJeO65O9HSciS53EyiN/LriE7juju44IJHtucYJcfaCHw0POusc5g06TWE4W7ADIrFteRyS4Ebg0JhQyOONcg8K4Av9t6aygJGSp95wNd4acSkmdqJTiV8L/ADogkfnh2C40qSlIjgwguX0oDrMAY4xjKg6sX/DT1WdAH/L4biWGnhCdNSeuSBfwceZGiKl1IB8G7gIeAfhvjYkiRJg2YBI6XDVOD/AZ8lGhVJyjTgu8C3eGk2EUmSpNTIA1NKtuNOt7obL12cs91zOksj1Bii2U52TThHqQ8QzXJWc5EsSZKkoZYH1g7Yqrp1jQoijVBTiWYWS+P1aEcRTbNddS0SSZKkoeYpZFJydgdOJp3FS5+9iE5pGz9QQ0mSpKGQtk9WlwNzgAOJFtxTaoXX0bc4EwB3hHBkGtesyBPNOd6MlWe3V6MLl/KVghv5/zskWj8mjfJE2VK5An0Q5FqCXEsQBEEafwcJwzAICYNckEtlPoBisZjL5dKbLwzDXBAEISn9HSwWi0GvlH4Pw6BYLAa5XEtK86X/ZxyGYS4MwzCXy6UsXy4IwxlBCBC+jbB4CcCZEFyRbK5sCRctegXF4h9Kdi0KCoVFiQVKgTR/8qtMOeIO4FVJp6igb+HPS5IOUiIH/Bw4YTu+xhbgp8D/AXcBlVbxDYimZD4ceAdwPPX/nw+A84EL6uzfTBuITnf7Y9JBKsvdOmXP49pfdvy//V/SSSp58qYvHrZh+eKj9nvPNU2ft79ei79+9OcP/MjNn046RzVLvvW6T80++D03zjrgXYuTzlLJn390xin5tnET9nzLV1L5pvHZh6/fedmt33zfAR/8ZSHpLNUs/sYxF8x/13cuHjVl1/VJZ6nkz1ef+U/59rFP7vmmr6RqKt3urfnRKxfPLnRsuJl1j99MmNoSNeW2bl1BW9tnXtzO5e5IME0qWMBIQ+8c6i9etgBfBb4ADPSHNAQe6719j2h083yiNV9a6jh2AbgNuKWOvpIkqQ7B5z73DEOwOGSWeA2MNLQWEK31Uo/FwD7Apxm4eKnkaeAMohGZJ+vo30J0Uf/YOvpKkiQ1hAWMNHQC4OvUN/L5PeBI4PEG5PgD0XVmN9fRdyeitWokSZISYQEjDZ3TiIqQuH4MvA/oaGCWNcAbgFvr6PtxYM8GZpEkSRo0CxhpaIwGLqqj3y3A39OcGcA2E03j/ETMfm3AxY2PI0mSNDALGGlonA7sELPPs8CpQHfj47xoHdEMZZ0x+70ReEXj40iSJNVmASM1XwtwVh39/pnK0yM32h+ob0Tl7EYHkSRJGogFjNR8byVajyWO3wNXNyFLNZ8DlsXs805gbhOySJIkVeU6MFLzfaiOPmcztCs+byaa3vmyGH1agPcDnxmoobbP84/eMGf1fT8+fPPaJ+cWOzdPCIKWrvyoCWvGzV7w4I6v+sc7R02YvSXpjJIkDRULGKm55hCtEh/HrcBdTcgykO8RLXQZ51qdU4mmVXZ95Sb5688/deyav936d4ThiyPmIT35zk3PzVnz2E1z1i+967Cdj/qX/56+zxuXJplTkqSh4ilkUnOdSvxV7/+jGUEGoQP4Rsw+O1Pf1NAahMd/8+9HrvnrLccRhrkg19I9fs6Cu2cd8M5rps1/43XtE+c8DtDTuWni0pu/9N71S/8wLem8kiQNBUdgpOY6LWb71cAvmhFkkK4kGoWJU3T9PfWtJ6MaNq68f/LzD//6BIAgl+/a9TXnXF42yvL7R3/68RPWPXnn0cXuzjFLf3fxyfu995pvJxRXkqQh4wiM1Dy7AvvG7PMjmjtt8kBWEq09E8ebgKAJWUa0Zbf/19Fh2JMHmLz7MTdWOkVs9xO/8Ou2sdNWAGxdt2yPZx+8fpehzilJ0lCzgJGa57g6+lzT8BTx/U/M9jOB/ZoRZKQKuztzm555eF+AINfSteMRH7q7Ursg31actPsxv+/bfv6R3ywYqoySJCXFAkZqnmNjtl9HMhfvl/sl8WdAO74ZQUaq5x+7Ycdi99axAG3jd3iq1ixjM+e/8S999zc/++heQ5FPkqQkWcBIzZEDjonZ5yagpwlZ4loBPByzTz2jTapi46qHZ/XdHz15p5rr84yevvsLLW3j1gJ0b31hSvfWta3NzidJUpIsYKTmmA9Mj9nnpmYEqdMNMdsfiZOCNEzH2mUv/u60jZ+xdqD2+dETe9uEwfqn7ov7eydJUqZYwEjNcVAdfe5seIr6xc0yGti7GUFGou6uzWP67reOmbZxoPYt7WNfbNO16ZmxzcolSVIaWMBIzfGKmO07gD83I0idFtfRJ+5zVhVh99b2vvu51lFdA7UPWto6++73dG5ua1YuSZLSwAJGao64b+YfAAZ8ozqEHgfWxOxjAdMoxeKL6/AELS3FgZrncrkX24TdXXEXTpUkKVMsYKTGywFxp7O9vxlBtkNI/EwHNCPISBS0tL44ohJ2dQ54bVGxp+vFC/db2sd01morSVLWWcBIjTcHGB+zz2PNCLKd/hqzvVP4Nkiutf3FIqS7a9OAp4SFXR0vnnLW0ja+o1m5JElKAwsYqfF2q6NPGguYuJmmA+OaEWSkaR0zdV3f/a4Nz0waqH331g0T++6PmbrbulptJUnKOgsYqfF2raPPcChgoL7nrjKjp+y6uu9+x4aVNadFDrs7c11b108FCHL5rnGz97GAkSQNaxYwUuPVMwLzVMNTbL96MtXz3FVm4m5HLCO6Dokt657atVbbNY/fskPY0zUKoG38zGUE+bD5CSVJSo4FjNR4u8ZsXwTWNyHH9lpVRx8LmAYYN2v+urax01YAdG9ZP/35R2+YU63tcw/9Yv++++PnLEjTVNySJDWFBYzUeLNjtu+i99P2lHmGqLiKY4dmBBmJJs191d1995++69uvrdRm46oHJm1YtuQQgCCX79zh4NPuG6p8kiQlxQJGarwpMdunaf2XUt3A2ph94j53VbHLqz66OD964rMAW9cs3fPhqz/41q4XnhnV9/i6v90y69Hrznl/3+ljk192xC2jJ++2Kam8kiQNlQHXF5AU29SY7bubkqIx1hHv+cR97qoiaB3dM/d1he8+9rNP/lOxp3P0CyvvP+SP33nb/q1jJq8u9nS2d29ZPw0IAEZN2fUvc1+36LcJR5YkaUg4AiM1XtxRiJ6mpGiMjTHbOwLTQBN3OezZ3d98ydfaJ8x6EiAsdrd1bnx2x+4t66cDAUGuZ+Kuh92y97su+36Qb4t7up8kSZnkCIzUWHlgQsw+aS5g4p6S5AhMg03c8aDnF7zv2m+ueex3O6x74va5nRufm5TLt3e2T9hhzcz93/rQqEk7b046oyRJQ8kCRmqsCfSe1hNDmguYuCMwEwduonpM2f2YlVN2P2Zl0jkkSUqap5BJjdVWR580n/oT99P99qakkCRJ6mUBIzVWax190jiFcp+4EwzU8/wlSZIGzQJGaqx6RmCGUwFTz/OXJEkaNAsYqbFG+giMBYwkSWoqCxipsRyBiT+JgSRJ0qBZwEiNleZiRJIkKfPS9knpcmAOcCCwJOEsqim8Djjppe17tsKhqxKLU91ORFMBrx2i47US/Q7H0QMsa0KWRpgOjI3RPgSWNilLNbsAq4COIT7u4AS5Ofm2MSG5fNwpqYdE2LV1dBjQnsuPWpd0lmqKnZum5NrGrkk6RzXFri2Tc/lRWwiCrUlnqaSnc9P4XEtbELS0bkg6S0U9Pa3FYue4XOvooXqdjq3YtXlKrnXMOlI6a2TY3TkpDHu6cq2j467d1WRBQDh5MmEHPd1zCXtuATgTgiuSTqZscx0YNcjs5cCXkk5RwQXAHcCvhuh404F/j9nnBeALTcjSCGcAB8Vo38HQP5dLgasY+sJpUAKCT42Zvmduwi6HLE46SyXrn7xrXsf6p+fNWPDWm5POUs2Ku7795lkHvOvmpHNUs3Lx90+YuOshj4yeOu+JpLNU8tyff3ZoS/u49snzXnNr0lkq2bpu6dR1f73tlWn+Ga+45zsnT9/npDtb2sZuSTpLJc8//KvXkGt5fuqex/8p6SylwmJL29a1+57YtelhNq5c5SkKahgLGDXIjquAbyWdooKPA7cxdNl2In4Bs5F0fu8AjiVeAbOJoX8uFwPXAH8c4uMOUnBq24SZ7bMP/oe7k05SSeeGVUHX5ufmpDUfwIq7r3xTmvOtWvLDY8bOePlfZx3wrlQWqWv/dusu+bZxE9L6PXz24et3Xvf4nYekNR/Ainu+88bpLz/hvlFTdl2fdJZK1j5+20H59rFPp+172L01P3rl4tknhsVxwM1Jx9Ew4jUwUmN11tEnbadyloo7q1o9z1+SJGnQLGCkxqrnDXya/x+OidneAkaSJDVVmt84SVm0gfgXebY0I0iDxLmAH4ZusgRJkjRCWcBIjdUDxD1HOs0FzLiY7Z9vSgpJkqReFjBS48Wd7jXNBYwjMJIkKVWchUxqvOeBuTHap/n/4dSY7Z9rSooRLuza0rLivqv3eGH5vfN6tr4wjly+p33c9DXTXv66ByfNfXUa11+SJKlp0vzGScqquCMwbU1Jsf3agIkx+6R2scGsevbB63d56vavv6Nn64Z+xeQmYM1fbz5u7Iw9/jT3xM9fO2rC7FSuTyFJUqN5CpnUeCtjtm8lnVMpzyR+rrjPXTU89/Avdn7ytxd9oK94aWkbt27M1Jc9NGrSLo8GuZYugE2rH13wl2v+8X3dWzfEnfJakqRMcgRGary4q3EHwBTSdwH8zDr6PNnoECNV99YNrUt/9+XTwmJPHmDKvFffMPd1i34b5NuKAFuee3zcoz87+90dG1bt2rnxmZ3/+stzX7fXW752fbKpJUlqPkdgpMaLW8AA7NzwFNtv1zr6PN7oECPVUzf/x+E9nZsmAoydsecf5534hRv7iheA0dNetnGPN3/le7n8qE0ALyy777CNqx6YlFReSZKGigWM1HhP1tFnXqNDNEDcTCGOwDTMuqV3H9x3f84rz7ypUpvRk3fZNGGXQ+8ECMOe/KolV79iqPJJkpQUCxip8eoZgdm94Sm2X9xMq4HNzQgy0qxfvnhq95Z1MwDaxk5dMWnXI1ZXaztj/on3993fuOLBvYcinyRJSbKAkRpvBfEXs9yjGUG2U9wC5uGmpBiBNiy9Z8e+++2Tdn6qVttJu71ydS7fthmga9Nzs8PuTl/XJUnDmn/opMYLgfti9lnQjCDbIQD2i9nn3mYEGYm2rHlyRt/99gmzaq+tE+TC/KiJayA6jWzDqvsnNzmeJEmJsoCRmmNJzPbzgVHNCFKnPYi/Bkzcok1V9GxeP6Hvftu4GQOO5uVHT1jXd7/j+aVxf26SJGWKBYzUHHHfzLcC+zQjSJ0OqqNP3KJNVRR7Otr77re0j+kcqH3Q0v5im56Oje212kqSlHUWMFJz1PNm/vCGp6hf3CybgEebEWQkCnu6XlyUMmhp7Rmofa4l3913v7trc1uzckmSlAYWMFJzPAysitnn75oRpE7HxWx/CzDgG20NUklBEvb0DPg6Xezpaem7n8uP6mpWLEmS0sACRmqOEPhtzD6vITqVLGk7E39WtBuaEWSkamlp6+i7XxzEiErpiE3rqLEdtdpKkpR1FjBS89wYs/144JXNCBLT6+voYwHTQC3t4zf13e/Y+Nz4gdr3dLxQctH/zE212kqSlHUWMFLzxC1gAN7Z8BTxvStm+6eBPzcjyEg1atJOz/bd73zhmSkDte/esj5qEwTFcTsfUHvaZUmSMs4CRmqeZcRfG+UUIMmLsHcCjozZ5yfNCDKSjZ2974q++x3rntqpVtuNqx6Y1NO1eQJAfvTkZ/Ot47trtZckKessYKTm+kHM9lOAk5oRZJDeT/zXhR82I8hINnX316xsaRu7HqDjhdU7bXnu8XHV2q5+4Pq9++6Pm7Hnw0ORT5KkJFnASM31QyDuJ+LnNCPIIIwCPhSzz9+Au5uQZWQLcuG42fv8CYCw2LLs9q+/qlKz7q4X8usev7Xvuqlw6t4n/mmoIkqSlBQLGKm5VhN/NrKDgSOakGUg7wVmxuzzA6IZ19RgOx/1z7cEuXwnwLqldx319N3f3rv08bC7M/fITz7+5u4t66cDjJk+78Gpe7xmRaWvJUnScJJPOoA0AvwncHzMPl8BDgWKjY9T0XhgYcw+XcC3m5BFwOgpL9s4c/9TfrJqyQ/fQRjmnr7z2//w/CM3PjJmyq7Lit0drRufeWif7i3rpwG0tI1dt9vxn/1Z0pklSRoKFjBS810P/AXYK0afg4DTgO81JdG2/g3YIWafHxBNVKAm2fmoj95XLHbln73/2pPCYnfb1jVP7rV1zZP9fo/axkxdudtrP/vfY6fvuSGpnJIkDSULGKn5isCXgCti9vsqcBvwRMMT9fcq4KyYfUKi56Qm2/Xoj/9h2l7HPbZq8Q8P2vTsY3N7OjeOJ2jpaRs7+bkJOx364OzD3/uAM49JkkYSCxhpaPwAOI9omuLBmgT8D/BqoFmrq8/oPUbc14KfAA81Po4qGTdr33XzTvz8jdS3tpAkScOKF/FLQ6MD+Nc6+h0KXAu0NzYOEBVIvwDmxOzXAXy68XEkSZIGZgEjDZ2rgd/V0e8E4BqiC+0bZQ7Rp/kH1dH3i8BjDcwiSZI0aBYw0tD6Z6LZu+I6CfgDsH8DMhwPLAEOrKPvUuALDcggSZJUFwsYaWg9SP2nX+0JLCaaDGDnOvrvC1wH/Jro2pe4uoBTgc119JUkSWoICxhp6P0HUSFRjxbg/UQzk90EfBg4AGit0HYs0YKYnyAavbmfaCSnXucCd2xHf0mSpO3mLGTS0AuB04F7gHl1fo0c8JreG0APsK73liO6QH/y9sXs5zqcNlmSJKWABYyUjLVExceDwIQGfL0WYGrvrdGKRKeOhU342pIkSbF4CpmUnGXAT4HOpIPU8EeiaZM3JR1EkiQJIEg6QJnlRNO7Hkg0S5JSK7yOftdTPLQa5v8qsTjVvY1oyt8/JR2kiiOA6b33JyYZpILlRAXMCUQLcabVacD/A55LOkglQZB7Y+u4GbSOm/pE0lkq6Xph9czurS/MGD197gNJZ6lm8zN/OWDMzL1S+zdhy7N/XdA2foeVLaPGrk46SyVbn186N5dvz7dNnPVI0lkq6dmycXzHhhXzxszc476ks1SzedVfDhgzfd6DtORT+YFTx9qn9w6DcOOoSTs+lXSW/vItxa499y92PkPXpgkUe34GcCYEVySdTNnmKWRqkK42YMekU1SQJ7oeJI3ZAMYRnf61GNib+mYHa4alwN+AaUQfdKT1+wdRvpnAqKSDVBa05VrbybeObcSpgg1XzI8eXcx35tKaD4AgF6Q5XxDkgpa2UaPTmjHIteRzLa35tOajp2ds0JJP7f8RgKAlT0v72PFBkK9nGvym62xpaQmgPX3fw6ClGPTQHRaB7qTDaBixgFGDLHgQODbpFBU8AlwGXJJ0kCouBQ4GjiF6I/4x4Hwau2hlHE8BHwGu792eSzR7WRp/tn02AGcSjRalUHDruFnz2192/L/9X9JJKnnypi8etmH54qP2fMtXU/uJ6OKvH/35NOdb8q3XfWrqnsf/7v+3d+fRcVR3vsC/t5Ze1Gqt1mJLtryB8YKNF1nyAtgDhgQIQxaTMO+FJCTwZgkDDkkmb96ZjDLDvMmQEBwYkjfAHJJMZiA4JECAQALBxoskWza2sWxsvFuy9q219VJV9/3Rbrllt9RSxuqqNt/POTrc6v6177dbttHPt25V8ZK76uzOkkj981+5U3NlZs351EZHfoZth34z7cy7P77Hyd/juifXPjx97Tf+y5M3vcfuLInU/+Lev9LcvpNz7tj4mt1Z4hlBzdtUN6UqFNiMUM9mu+PQZYR7YIicQwJ4DNH7vfwHUrtpPoJoM7UA55sXIiIiIsdhA0PkPE0A7gawDMDPEN1EP1G6AHwPwBUAHgDQO4FzEREREf23sYEhcq49AL4AoAzANwC8g+hKyX9XP6L3dfkKgKkAvononhciIiIix+MeGCLna0H0JpLfR/SeMX8CYCGim/7nItqEJLpppYnoCssJAAcBHAKwG8BWTOyqDhEREdGEYQNDlF4CiN475qUEz2We+zIB9AEYTGEuIiIiopRgA0N0+eg790VERER02eIeGCIiIiIiShtcgSEicjhphJXm/S/O7j29a1Yk2JOlqHpEzyzsLJj3iQPZZeXtducjIiJKJTYwREQO1nHk9yWn3nn0LmOwp+DC5zoP//7jvuL5u6+89Z9e0f1FQTvyERGl2sqH9pQZRvCq2LErbO7c9uNru+zM9FG2fr1UT02pHrrhtaXrjXXfLz9wKecof3D7NUKKotgxGxgiIofqOPL7kuNv/MNfSMvQAUDRvb0uf1GjNCOucKCpTEpL7W+uX3pw01/kz//8T5/WdL9hd2YioolmWJECCLEodhzR9HpEr7pJNjiITapPTB36fqiWqQK4pA2MgJgOIa6MHbOBISJyICPUq51865HPx5qXnJmr/jDr4//4lqp7TQDoaz6YffTVb30+3Nc2NRRomn7stW/fNOeOx163NzUREdHE4yZ+IiIHOr1lY6UZ7ssFgIyCK/dfefv334w1LwCQWTyvZ84dG3+iaO4BAAic3rWqr/lgtl15iYiIUoUNDBGRA3WfrFkeG5eu+PJbiWq8k2b2ZU1bXg0A0jK15veeX5yqfERERHbhKWRERA7T2/BenjHQWQQAroz8ppyZ17WMVFs4/9b93ce33gAA/U3vzwOwOTUpiYiIgPpNd4bXfPGdx2PHvS6/OVr9H8MccL3mD/e+ETtmA0NE5DDdp2qmxsbu3NLTo9XmzFzVoqiuQcsMe8N9bSXSCCtCc1kTn5KIiChq80/WTuiVMHc/tSwCIBI75ilkREQOM9h5qjA2dmdNaRu1WGhS82Z3ANHTyPqa9+dOcDwiIiJbcQWGiMhhzIGurNhYzywIJKvX3Fk94b62UgAY7DiV7S9d1jGR+YiI0t3S++p0eIOTdaH6TKhuiHBElWq/JyfYvLnq0qwmrKl6R+sPKJNVy5UZnQMREZEDqm42Vz+2cvBSzBEZhJCWAAAgAElEQVRv5de3F0pTZBlSZiqqGkYYgdr8N86iquqyW5VnA0NE5DCWGXLHxprbF0pWL3T3UI0Z6XdNVC4ionS3+Kvbprg0sVIiMg1QNQuAgAlIFRaAgS63XL5hR6MwlV21j1d++MfMsfTBdycr0FcMdGO6AOLmAKABpgVZ/sD2Jgm5q+6Hqw+P5de85sH3ctwidGfsWFhyX80PV9QCUlQ8VLtEmnKxYSAPAAQEpCkBFVjec9OAfOiW/VavUn3uNKxLbul9dbrmM740lE3KIzUbV2y+lHNUPFCzDgpmxI7ZwBAROYw0I3psLFQ96WZIRdWGbmBphgbYwBARXahKKsu6a25WgKvlaHVCCEiUSkWWlm+oPunrCr4y5v0dVVVKRc+6G6VUrhm1TgghIKYI4E+XP7jjjCrwUrIVGVekQ5W6Lyd2bCnSs6bqHU9/T83t0sT0EV8oRYYwzUol05yz+ltbf7ntu9de8ht+BruOC1/G1KFsUETGpZ5DCssHKYbm4B4YIiKnUc43JNI0k/49bZmmGhsLTTdGqyUi+qhZv/4FdXlX9acV4Or4xwWkJSCahCKOSaARAsNWKITE9MFc711L76tL/gN5VZVS3n3zHRc2LwLCgpTNsTmEIsLDXyimmlD/bP5fvpM5nvekSiEGu123CXmueRFSCogmQB4RijgmpdU3bBYLuaGg9rmK+2uyEv166YYrMEREDqNqrqH/wVmRQX20WmD4io3q8odHqyUi+qg5OW36KmGaQ6cfQUopVKVOkbKm+rHKoZWPpffV6Yo3dI0QyrU49zOylLJAyYh8DMCvRpujsvvmFRYwe+gBIaU0sccM6tW7n1o2ED+H5jcWSkteB4no393Sys9we24B8MJY35OEmC+h+M4dHdF16+3tj6zsjasQFX9dOxsq1kkpMwFAAH5ouAXA82Odx6m4AkNE5DCq298fG0f62/zJ6s1Q71CNJ6uob7RaIqKPkpVf314oLKMi/jFL139b+4PKdy48bWv3U8siu364apcpzV8CGFrNFsDsyger5440x/L/XZsvIVYMe1Cov9v1+Mq345uX2By1j1buViFfiF/xERLTV2zYMWyFaDQSMtq8SLlv58aVL21/ZHXv8Aohax+v/DAkB/9LQA79P0VKOa18w875Y53HqdjAEBE5jDtnamtsHAq05CWrN4KBaI0QVmbpkvYJjEZElFbMsFwGKUTsWAq5v+775QdGe83uH64+rUhsj3/MElg+Ur0IGkslZNzP1Er9zh9U7BttjurHVjYC5tZhc0iUj/aaC0kFXWVnV7w1Ws3ejWu7oSu/G/5Cc1zzOBEbGCIih8mcsqApNg52n5k6Wm1f88FsM9yfDQCaJ7tdc/u5B4aICNHTtaSiXhU7FhDWQCi0bSyvnXr2TF38ygUkilZ+fXvhhXXr17+gQqjzhh4QUgpTbr2wLpGd2W/tkcDQyomEmLT0wXcnj+W10ReoOzZtEkkv9FL7vcoPIdAyFBEoTPRe0gkbGCIih8m/4oazqp4RAIBwb8u0wa4TvpFq2+tfGTqtwVd01aFU5CMiSgea2yjC8P3eJ+t/tHZMp9lu2nSnKaEO+zvVMpTSC+uOlxQXSksOXf1REeJ07ROVSe/fBQCoqrIg5MH4hxSpXjRHIlJY5kC2b8yXebYgk76XdMIGhojIaYQifZMX7AMAKS31zNYfr0pUZkYG1c5jW1aeO5ST5t0y6ikLREQfJaZmTRn2gIKGcf0CF9RbUC5aHdGhD3tMmqJxPFNYhhw2h6Jgyki18YTQ2uqr5o/5oi06MCyXBWvsKz0OxAaGiMiByq796hahaBEA6DmxfU1T3c/nDCuQhjjy0oY/NQa6iwAgI3/mofwr143rf5xERJcz5dzVt4YY6BjP61VpDttTqCjWRZc6NlV12GOKZo1vH2KGe1i9JZWxXU7ZGt97cXeFhtUryhjncSheRpmIyIG8BVf0Fi781Este19YL6Wlntn+oy92HH7zYEbezNOGMejqa6pfYAx0FgOAqmcEpq/7Py/ZnZmIyEmEJT3xW+stTRnbDSnPG3aVMtOC98ICxbI88TfGlKYY1xxBr3fQFzp/+xkhpGcsr5PCCo1nns0/WRNavqFaxi5oYEmMaR6nYgNDRORQZWs21EkzpLXVv3qbtEx9oO3ogoG2owviazRvTuvMG7/1n5nF83rsyklE5ESWqqoirrswwuGkG97jBRoaTF/J+euoCKGoFxUJaIibw1TUcc1Rj3nGctScf8Aa28/miki+eX84ISW2WwLi3HuQad0DpHV4IqLL3fQbvlWTP+fGD5v2PL9ssP3YLCPYmy1UPax5s7uyppW/X1p5717NkxVJ/isREX20KLBCMm63hNedkfTGwPEK5s93DXSf348vhLxo1cMyrJBQxPnjSMR1Yc1oVvRUu02cfz2Usa3gSNMa1zzr17+gnpLnGzBpXfxe0gkbGCIih/OXLuvwly570+4cRETpxFL0oDDPL1RELGNc+z56uzv8KuJ6HgsXNReqIoJW/LF+8T6Z0WiGJ9NUz/cSirh4joQUZIxnntPF03yIWypShDre0+kchZv4iYiIiOiyIyORzvhjRVjjuveJqojh9crFG+eFKodvjpdawXjmCGrG8DnkGDfnWxjXe1E0K+l7SSdsYIiIiIjosqOr4mz8sZRi5nheLy1tVvyxaRpnL6yxwsqwxyxg9njmUBAZVi8VcdEcCQmRvfyvavPHOo+lKDPij01THds8DsUGhoiIiIguO9WPrewUQnYPPSCt/PKv7Zw6ykuGLP2bumwFMr7hMXRFOX1hXe0TlQHIuFUYiazKB6unj2WOVd/c5pdSGWqSpBDmoPCeGstrAUDRravHUje/qt4lTXlV3EOGrkQuei/phA0MEREREV2WLEu+N/wB84Y1Ve8k2QMuhRYxbpQQQz8nW8Ch6sdWDiaqtlTsGXYs5Q1L76tLesGASFi5AcP2o8sj+7+/qD/Z6+IyLVn9ra25yeoyA72rgLhLQEt5ZKT3kirlD2wvX/7AjpuHvr5eOyP5q85jA0NEREREl6WB3Jx9EuiNHQugsL/bc/v8qvqEV/Fav/4FtWJD7TppyfOnjwlEdCFrR5pD9rkOCCHOr/QIka96w3fMvv91d8IXVFUp5RuqbwTElUO/hrBMS9Grx/XmAC0SUtdX3F+TNVJB5YPVS6Qly+PnQYY63nkuOVVVZkKIRbEvYcmi8byeVyEjIiIiostSfdX88MqHtr9uWOLO2E0cBTDb1xO4p/yB7bt1Had6BsIDHq/fo0qz5LSUS6SUwzbiKxJbqjeu7Ew8A7D7qWWRivtrXoci74KIzgEhZuSqufcs27Bjt2opp/oig/2+7Ay3GJAlVrdcIjB8E76E2Lr70WXtY31fUpqnoIhSSCVHqNY9lQ9W71I060Npil53drYa6ukptoSyyIpvxKK5qnf+c0Vab+AH2MDQJdOZDeB6u1Mk4ANwJZyZDQCmAciBc/OVAFDh3HxA9O+xcgDZdgcZQW64r1Vv3ffiuDaPpkqwu7HAjAw6Nh8AQJpwcj5pRvSB1g+KnJrRDAaypRnOcGq+gbYPi6QZVp2aDwAgLaXj6DvTdHfWmE/vSSUr2Oc1jHCu0z5Dy3K5w71LYAx+AIzx6sATYcejq05VPlj9qinELULK6L1QJLKEUNYaBuBzeQAzcu7h4aQit9X8YOUeJFH7RGXD8q/Vviyl8Qlx7n4rAvALKdZIIaNzDFqQAvF3fYnOIa2auo2rdo7rTSlKszRwRKhYJyFcElhlGcoqAIjeu0YAcvi7EZZ5YOfGVbavvgCAlELEf9rClBd+9KNiA0OXyOG5AH5td4oEsgHcDWC93UFG4EO0QXDiZwdEs7nh3HxA9LzeRwEYdgdJRMLK6m/5AIPtJ8a0cTTVLCOoSzOiNdY++3m7s4xESqk4Op9lertP1qzoOb17md1ZEjHDfW4IRTj1M5RWRLWMkMup+QBASqm27P3lpwXEuH7IShUz0u+VlsxrrH12VvLqlBKAF9IKAXJcF+e65Go2rjhUcX9Nr6XixgtXPxISCFiW+U7dD1YfHuscO39QcWTxV7c9p6vyRghRnKxeAr2KGdmy84nrDo51jnh1T6x8r+L+d0PQXTdJS454Y0sphCmlrKn74aodeNwhv4clhq6gJiAszRs5Mp6Xs4GhS2RFDYBr7U6RwGEATyH6A64TPY7o6sEKu4OMYBaA/QDy7A4yigCA6wDstTtIIgLKu7mzrnPPvOnvXrQ7SyIn336kMtBQd93CL7zwiN1ZRlL3r2v+efF9r37H7hwj2fNvH/vWlPIvvFW85K46u7MkUv/8V+7UXJlZcz618Rm7syTSdug30868++N7nPw9rnty7cPzPvPkY5686T12Z0mk/hf3/pXm9p2cc8fG1+zOEs8Iat6muilVocBmdB/ffMl+XVOGGnWpb4kdq15jTN+X2icqGwD504q/rp1tqdYsIUWpUETmuR/+DUjZb0E0CUU95svuP7y5au24/2HsvX9dfRbAz5bev32WqojZUNRSIU2/hIjOITAgYDWZquuYDIjDu55aERnvHMPf03UH11TVnx7s6FoAVbtCCisbUmRAICKk7LEEjmmQ71dvXNmJjf+dmUY2DzDPSAx9PyIRc9RT4ZY+VDdJmhFf7NiErK/97rVd45mTDQwRERERpY3dG69rAtD0x71ayNrH8SGAD4ceqqpSUFVlXZJw5+x+YtUxAMcmco6YzVXz+wDUnPsCpBQQqVtp2bTpThPAiBc5uJBuRqbFPggphCld2o5kr5FCuOLekcGrkBERERHRR9cENRYpnyMmhc3LH8OyZFlsrMB8f/e/LEu6gibiLgMtIEJsYIiIiIiIKAWkkELE9oQami7HeFEB6Y+NLGn2sIEhIiIiIqIJV/FAbaEQ8ACAVOS+7Y+s7k32mvKv7ZwKKTJix6qiNHMPDBERERERTThv7mBPfyt+BgADhYUJ762zpuodzWjR/IMu4VcVvRDSqIy/+LQ0xAdsYIiIiIiIaMJtrlobBNA8Wk2w21NquXGnCgDSwrA750h5ovaJFQ1sYIiI0oE0RPep2oJwT5Mfqsv0F83t8BZckXTpnYiI6HIgpXVWU8SrAC+jTETkaDIyqB773T9d33OqptIM92fHP+XOKj5dtPiu3xUvvvOobQGJiIgmgIAMQygDUlqtwjSO7Hz82kOxK6yxgSEicqjIYKfr4HNf/nIo0Dw9wdMiFGguO71l41cGWg+9PvPmv3831fmIiCg1dj55YwcAx95w+FKq2bjiJBK91yfOD9nAEBE51OFfb1gfa160jLyWyUs++3rOzNUNZqhPb933q6s7jrx1k7RMvf3Qm7e4c8vaSpZ/8ZDNkYmIiCYcGxgiIgdq3ffizIHWIwsBQPX4O+d97ukfe7KmDMaez5y88F3vpNktZ7Y9+SVAiuY9z31iyuLPHhG617QvNRER0cTjfWCIiByoed8vr4+Nixetfy2+eYmZvOx/Hs4omH0AAMxgIL9h57MLUpmRiIjIDmxgiIgcJtLX6g51nZkNAIrm6ZtS/oWDI9Xmz7l5V2zcc6qWDQwREV322MAQETlM+5Hfl0lpagDgyS09ITSXNVLtpPm3nIBQTAAIdp6elaqMREREdmEDQ0TkMIPtxwtjY0926ag3/NK9eWHNm9UOAJYR9A12nfBNdD4iIiI7sYEhInKYUKB5UmzsyizsTlavebKHavoaD0warZaIiCjdsYEhInIYywi6Y2PVmzOQrF7VPEMb/I1wwD1aLRERUbpjA0NE5DDSDLliY0X3GMnqFVWPxMZWqJ8NDBERXdbYwBAROZgQkGOomvggREREDsEGhojIYYTqDsfGZjioJ6u3zPBQjeL2hSYqFxERkROwgSEichhF8ww1IeZgd0ayetMIemNj3ZsTnKhcRERETsAGhojIYdxZxe2xcbivNSdZvRHsGarxFS/omKhcRERETsAGhojIYbyTZrbGxsGehuLRaiODnS5jMDAJABTN0+/NLeuf6HxERER2YgNDROQwk65cd0oI1QCAYFfDDGmER/y7ur3+9RmQlgoA3rxpR1OVkYiIyC5sYIiIHEbPLAy5c6ceBQDLCGae3fXTeSPVdhx+szw2ziqrrE9FPiIiIjuxgSEicqDiRZ/ZEhs379t0azBw1nthTVPdz+cMtB1dAACqJ6ujdPkXD6QyIxERkR00uwMQEdHFChd9+njrgVf2D7QdWWgGe/MOPvflvyy65jNv5M287rQR6nG1vP/K1V0f/mEdojeBkcWLP/eq0L2m3bmJiIgmGhsYIiKHmvOpxzYdfO4rWaFA03RjsLuwsfqZuxurn7mgSshJcz/2WknFlw7aEpKIiCjFeAoZEZFD6d688MK7n/+3vDnrfqu6MrsveFq6syafmL72oadm3vztrbYEJCIisgFXYIiIHExoLmv2x/9hM6Sxpef07vxQd0OW4vIYvqK5nd68mX125yMiIko1NjBEROlAaDK7rKIdZRXtyYuJiIguXzyFjIiIiIiI0gYbGCIiIiIiShtsYIiIiIiIKG2wgSEiIiIiorTBBoaIiIiIiNIGGxgiIiIiIkobbGCIiIiIiChtCLsDXKABQAmApQD22JyFRiVfBnD7+ePtElgdsS3OyFwAzHNfTqQh+ufQiZ8dEM2mAwjbHWQULgAGAMvuIIkIoehC1QAIR+aDZQophCKE4tQ/I5CWqQpFdW4+KVUhhAVA2p0lEWkailBUQDj09yAkpLRUIRz/PXZ0PkhLCkV14PdYVQEJac2FtHYDwL2AeMbuVJTeeCNLukQqagDcZHeKBN4D8CyAx+0OMoLvAVgC4Aa7g4xgOoBaAEU25xhNE4B1AA7YHSQx5c3c2Wvd09Z+7SW7kyTS+O4T5YHGfdfOveuZH9idZST7nr79O4vufaXK7hwjef8ndz5UvOSudwoWftKR//B25FcPflpzZ2bNvPXhZ+3OkkjXkbemNux45u6rv/j8P9mdZST7nvnTb8/9zI83unKmBOzOksiRX3/tf6mujFOzbn34DbuzxDNDurd1X9nfhgNb0X1iG6QD2ytKT2xg6BLRTAB9dqdIwAIQgjOzAdGVFwvOzTd47r9OzQdE/9U7COdmNIWimro7y5mrWIpuQsBybL5zHJ5PKqrLcGxGoZiA4tjfg0LTIwCkU/PFqLon4tiMQlhCcd73WEhNFcIDCB3OO+mH0hn3wBARERERUdpgA0NERERERGmDDQwREREREaUNNjBERERERJQ22MAQEREREVHaYANDRERERERpgw0MERERERGlDd4HhojI4YKBs97mXT9b1NdyaJYZDGQJRY/ovrzOnFnXH5i8eP2HEJoj7wBPREQ0EdjAEBE5WGPts/Oadv30M5YR8sU/Huw+g97GfRWt+148Puvj//B8ZvG8HrsyEhERpRJPISMicqimup/Paax5+vOx5sWVWdCQNXXpdv/kBXWK5ukDgFBP48wjLz/0lWDgrNfetERERKnBFRgiIgeK9LZ4Gmue+RykVAAhCxd96lfT1359Z+x5I9ilf7Dpq3820HF8njHYXXjit39/29zPPr3JzsxERESpwBUYIiIHOrH5sWstI5QBAP7Sa2rimxcA0Dy5kTmffOx51eXrBoDe5volPadqCuzISkRElEpsYIiIHKi3cc+S6EjIqav+fEuiGj2zMJQ9Y+UOAICUSsv+X12TsoBEREQ2YQNDROQw3cffLTKDvXkA4Mqc1JA5eWHXSLUFV99+IDYeaD40LxX5iIiI7MQGhojIYQIN+6bExp7cstOj1WaXLuuIbegPD3QWycigOtH5iIiI7MQGhojIYYLdpwpjY5e/sDNZvZ6R0wEAkJba07gnfwKjERER2Y4NDBGRw5iDAX9s7PYXJb2/i+rODMTG4Z4m/2i1RERE6Y4NDBGRw1hmyBUbK7onkqxeqO5wbBwJ9blGqyUiIkp3bGCIiBxGmoYeGwtVN5PVK6o6VGNFBtnAEBHRZY0NDBGRwwhVG1p1kWYk6aZ8yzSHahTdGx6tloiIKN2xgSEichgl7pQwMzyQdEVFxp1yprsz2cAQEdFljQ0MEZHDqN6s3tg43NeWlazeDPUN1biyJ/eOVktERJTu2MAQETmMJ6esNTYO97bkJauPDHRHL50sFDO7ZEnHBEYjIiKyHRsYIiKHySpdfDY2DnadLhuttqehLt8ygpkA4MrIaxG6N+mmfyIionTGBoaIyGFyZq5u0bxZ7QAQ7msv6WvanztSbdv7r1wdG2cUzz+YinxERER2YgNDRORAWSWL34uOpDiz7f+tSVQT6Wt195zYsQIAIIRVtPCT76UqHxERkV3YwBAROVDZ9Ru2KZp7AAB6G9+rOPn2dyvjn48MdroO/eqBPzPD/TkA4C+evzu7rKLdjqxERESppNkdgIiILqb7i4IlK+997szWJ78EKZXW91/+ZPfxbRXunGmnLTPoHmw/fqVlhHwAoGXktMz4+HdeszszERFRKrCBISJyqMlL/scRWOZPG2ueXW8Zwcxwf8eUcH/HlPgaT07p0Vm3PvwLT9aUQbtyEhERpRIbGCIiB5u87O4PJs25+XuNu39+dX9z/SxjsDtHqO6QnpHXlX/F2vcLF95xHEKTduckIiJKFTYwREQOp/uLgtPXPLQLwC67sxAREdmNm/iJiIiIiChtsIEhIiIiIqK0wQaGiIiIiIjSBhsYIiIiIiJKG2xgiIiIiIgobbCBISIiIiKitCHsDnCBBgAlAJYC2GNzFhqVfBnA7eeP6waA8pN2pRnFlQC6AbTaHWQEJQA8AI7ZHWQEbgAzARyyO8go5gI4CcCZN3IUyizNnSkV1dVtd5REzMigT0rLp7l8Tv0zgkiwp1j3ZDfbnWMkRqi3UNEz+hVF7bc7SyJGsDdX0XRV0TztdmdJxLIibisSzNHc/ha7s4zECAaKFLe/XRHCtDtLImZksEBaRlhz+3vszhJPQhGQk4qkNQgzMgPSfBsA7gXEM3Zno/TG+8DQJZLfBuA5u1Mk8DUAewFssTvICO4AMAXO/OwAIB/AV+HcfADwbQBvADhrd5BEBMSfe/JnKP7iBe/bnSWR3rP7poUDLdPzr7ppv91ZRtKy94Wi/Ktudmy+1vdfut5fsvCMJ7u0we4siXQeeXuh6s50Z5dVOPIzDAUac3tO1y128ve4Zd+LN+ZdueaQqnqCdmdJpOv41hUQSlfujFUf2J0lnpSqFu6dVxQZOIr+lh7wjrt0qbCBoUtkxhkAD9udIoHPI/rD7aN2BxlBIYByOPOzA4BZAO6Dc/MBwDcBPIVoo+pA4iZPdol76rVffdvuJImcfPuRSiPYU+DUfADQsu+XNzo5X9vBV8v9UxbVFy+5q87uLIkEGvfma67MLKd+hm2HfjMt0LBvgVPzAUDL/hfXFi/8zDZP3nRHrXDEBM7uu0pz+0467TM0gpq3qW7Kn0BsBrDZ5jR0OeEeGCIiIiIiShtsYIiIiIiIKG2wgSEiIiIiorTBBoaIiIiIiNIGGxgiIiIiIkobbGCIiIiIiCht8DLKREQO131sS3Hz3l8uH+g4PssK9/uFUE3Nm93hL118YOqK++p0f5Ej701BREQ0EdjAEBE52PE3qq5rP/z7j0FaavzjZmQgK3SwaUbX8a2rpv/JN36ef+W6RrsyEhERpRIbGCIihzr59ncr2z9481YAEEIxM4rm7vXmz2yAGdYCDXuvDve1TDODvXknfvd/73H7Cv41s+SaLrszExERTTQ2MEREDtTXfDC7rf7V2wBAKKpRdv2Gfy9c9OnjQwXS2vrBrx+4LXC6brVlBDOPv/0vdyy8+7lnbQtMRESUItzET0TkQA3bnlwjLVMHgNxZ1/1hWPMCAEKRc25/9DUtI68ZAIKdJ6/qOPTGVBuiEhERpRQbGCIip5GG6Gs5uBCIrr6Urvrz6kRlQnNZebPXbo8dtx367aJURSQiIrILGxgiIofpOPx2iRUJZgKAy1982pMzbWCk2oKrP/FBbDzQdnhuKvIRERHZiQ0MEZHD9DYfmBwbe3Knnhmt1lcwJ6C6fN0AYAwG8o1gQJ/ofERERHZiA0NE5DCh7jOFsbE7syjplcU0b9a5GikCZ3ZPmrhkRERE9mMDQ0TkMFaoPyM21n35vcnqVbd/qCbc1+abqFxEREROwAaGiMhhTCPsio0V3RtJVi8UfajGDPe6RqslIiJKd2xgiIicxjKG7tElVNVKVq6oqhkbSyPC+3sREdFljQ0MEZHDCFUPx8bSjKjJ6i0zMrRxX3VnhEerJSIiSndsYIiIHEbR3UNNiBHqcyerl5Hzp5ypuo8NDBERXdbYwBAROYzuzeuJjSO9rdnJ6o1gT05s7M2f2T1RuYiIiJyADQwRkcN48spaY+NQb1PBqMXSEJFgTz4ACEWN+EuuTnrZZSIionTGBoaIyGFyZqwcunnlYFdD2Wi1nUe3Fksz4gEAV2ZhA4QmJzofERGRndjAEBE5TObkhV0uX/5ZADAGOos6jvxhyki17fW/uSY29pdcU5+KfERERHZiA0NE5EA5M1bujI2bav99XaKa/rbDWYEzuysAQChaZPKSu/amKh8REZFd2MAQETnQ1Os37FQ9WR0AMNBxfN4HL95/uxHsGrpcck9DXf6HLz10j2WGvQCQPb1iq7fgil678hIREaWKnTc8ywewHMBvk9TNBFAMYMeEJyIicghV95qz1v3tzz58/e/+QpoRT+BM3aq9T9+xRPflN0sz4goPdEyGlAoAeHJKj17x8X98y+7MREREqWDnCowK4BUAuwDcBsAX95wCYAmAnwP4AEB5ytMREdksZ9b1zVfc+vCPXL5JjQBgmWFvKNA0I9zfXhJtXoT0ly6pnve5f/+J0L2m3XmJiIhSwc4VmFYAuwFUINqoBAFMOvfcGwCsc8dtAP7DjoBERHbLmXldy4joYxUAAAIVSURBVDUzVj/RVv/atJ5TtbMig11ZQtEMT9bkjoJFn6z3FcwJ2J2RiIgolexsYADgMQBPA8g+9xWTHzc+BKAzlaGIiBxFKLJgwSdOFSz4xCm7oxAREdnN7k38LwMYHOX5XkSbHCIiIiIiItsbmCCAzaM8P4Dkm/yJiIiIiOgjwu4GBgAeB9AxwnO/AxBOYRYiIiIiInIwJzQw2xFdablQO6LNDREREREREQBnNDAA8DyACy8B2g+gzoYsRERERETkUHZfhSzmRwC+AKDw3LEJ4Gf2xaE/ghuQZXaHuNgVOlCcC2x1YDYAWOoH+tzAYYfm+04J8BMBnHBoPgCYoQC3TQae6LI7SWIL3Ga4xN3X5M+1O0kiRrA0w7JaFafmi5oGR+ezyhSjf3KGUzNKs8xlGV7NqfnCgcl+yKnCqfkAALJMDLTnZhshv1P+4XcYaZRqlpLlcdpnaEYUjxlWYUV8iN7+j+jSEHYHiHMAwPxz404A1wA4Y18cGp18GcDtdqcgIiIi51PUv4dlfgcA7gXEM3bnofTmpH9JeBKAPDduA5sXIiIiIiK6gJMamP9EdON+EMCjNmeh5L4IoAR4ZYvdQYiIiMjZLNlXBaAEwH/ZHIUuA046hQwA3gJQDmAKopv4yfHk3wD4rt0piIiIyNHmA+Kg3SHo8uCUTfwxjwD4Eti8pJNfAzhqdwgiIiJyNG4NoEvm/wNSbNP5CS6+7QAAAABJRU5ErkJggg==" + "g27851.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzAAAAJsCAYAAAAiM0YjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAACAASURBVHic7N15nBx1nf/xV/X0zOS+LxIIwYRDDkFuFBFUUFbE+wQPFBRXXQVcL1xss3ggrgfeeKKuq7grIh4/BeUSOQxBbgEFQgIkAZJJyDVX1++PmoGeTnfPVKe7q2rm9Xw8+pGu6u936t09k5n+9Lfq+w2QJI12eeCsku2/A5cO3O8EXgG8GdgD2BkoAvcDvwMuAB6u8nWfBZwKPB94xsDXWgvcBPwQ+GUjn4QkSZKksWE8EJbcfjqwf1/g7rLHym8bgdeUfb1xwNeB/mH6/hqY0KTnJEmSJGmUqlTAHAxspnYBMnjrA44b+FrjgD+OsF8I/BYImvz8JEmSJI0i5QXMH4AHBu5vA75NNMpyBHAM8FFgdVmfFQNf57sl+24hOjXtRcBhwOuITk0rL2JObv5TlCRJkjRalBcwg7d7gd2r9Jk78Hhp+x8P/FsE/h3IVen74bJ+tzTiSUiSJEkaGyoVMOuAXYbpd3yFfiGwdJh+AXBzWZ8968wuSZIkaYypVMB8YAT9cmx/KtlKoH0EfT9Q1u9NsVNLklRBteF/SdLo1Q/8YATtisDysn0/AnpH0PevZduOwEiSGsICRpLGnjuArhG2XVW2fV2d/aaNsJ8kSTVZwEjS2FNtYcpKNpVtPzLCfpvLtifHOKYkSVVZwEjS2FNelNRSrLNveT/XgpEkNYQFjCSNPWHSASRJqpcFjCRJkqTMsICRJEmSlBkWMJIkSZIywwJGkiRJUmZYwEiSJEnKDAsYSZIkSZlhASNJkiQpMyxgJEmSJGWGBYwkSZKkzLCAkSRJkpQZ+aQDSJKaLgTWl2xvjtF3a1nf/jqPuSXGMSVJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkqTWGA+cDFwGtCecRZIkxTcTuBJ4M9HfdUkadQLgKOASYDWwDfjfRBNJkqQdcS3R3/M1wKXA84FcookkqQGWAF8AVgKPAeHAbQ2wc4K5JEnSjjmQoX/b1wGPAl8B9kgwlyTFNh14L3An0WhLH0//chu83ZFYOkmS1CgPsf3f+CLwBHAv8AFgRmLpNOoFSQdQprUDxwPnEH3qMo7a17f8GfhRC3JJkqTm+QDwzBqP9wFbgduBzwG/BXpbkEtjhAWM6nU48AeigmVcwlkkSVI69RBdM3MocE/CWTRKWMCoXjngGOBM4LnAJKBtmD73E30aI0mSsuswYN4wbXqB9cBvgAuAvzU7lCTFMQ54PfAXYC3RL63yc2ND4LqkAkqSpIa5j8p/57cSXdB/PfA6XDZBUkbsDCwFHmToLCUh0cX9ExNLJkmSdtR8or/ng3/b+4lmGb0DeDcwNblokrTjDia6aH81sIHoHNgPJ5pIkiTtiG8SFS2PEy2XcD7wjEQTSVITtAMvB64mmmLRIWVJkrJnJtF1LT8nuv7Va6kljQmdSQeQJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSpOFMB9aV3L6WbBxJktIhn3QASVJFAVERM2hCUkEkSUqTXNIBJEmSJGmkLGAkSZIkZYYFjCRJkqTMsICRJEmSlBkWMJIkSZIywwJGkiRJUmY4jbIkjT47A3PL9t0BdCeQRZIkSdIYMAMIS27fH2G/Y4ENJf2KQKEJ+SRJkiTpKfUUMG8Dekr6dANvalI+SZIkSXpKnAImIBplKW2/Hji6qQklSZIkacBIC5g8cGFZ24eB/VuQUZIkSZKAkRUwk4DflrW7HdilRRklSZIkCRi+gNkJWF7W5gpgagszSpIkSRJQu4DZB1hR9vhFQHuLM0qSJEkSUL2AOYboAv3Sx75MdCG/JEmSJCWiUgHzWmBryb4+4N1JBZQkSZKkQeUFzKNEi1IObm8CXppYOkmSJEkqUV7AlN8uBzoSSydJkiRJJcoLmOuIRmFK9/0GGJdUQEmSJEkaVOkamN2A+8v2XwVMTiaiJEmSJEWqzUK2ELiv7LFrgSkJZJQkSZIkoPY6MPOA28seXwbMbHFGSZIkSQJqFzAAc4C/lbW5E9iphRklSZIkCRi+gAGYDtxQ1u5uYEGLMkqSJEkSMLICBmAq8OeytvcTXfAvSZIkSS0x0gIGYALRujCl7VcAS5qcUZIkSZKAeAUMQCfwy7I+jwL7NjGjJEmSJAHxCxiADuB/y/qtAfZvUkZJkiRJAuorYADagB+U9V0HHNb4iJIktV6QdABJUkU5YFHJ9pPAYyPs2wbsWrZvC7B6x2NJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJktKrHZiRdAhJkiRJ6ZRPOkCZdwGvAF6UdBCNVLgbsEfSKSRJUqr9GYLNSYfQ6BAkHaDMXcBcYAmwPuEsGpHww8Bnk04hSZJSbR8I7ko6hEaHXNIBSiwBZgETgZMTzqJhheMhnAK/PCbpJJIkKe0+enz0viFsTzqJsi9NIzBfAM4YuP8A8IwEs2hY4aXAiUmnkCRJmXIaBN9JOoSyLS0jMAHw2pLtqXhdhSRJkqQyabmI/3nA+JLt6UQX9J+VTBzVYTnwlqRDbO/A38DCi+GXFyWdpLIXfRQ27gs3nZR0ksq+sRC+/gu4/eCkk1T3rBvh9W+Fs/+edJLKDvsBTHgQriwkHKSK170O7nsH3PLipJNUt9+tcPv+Saeo7oAr4Jlfg/+5JOkklT3/09A9G244LekklZ29P1z2Lbjt8KSTVLffzfAfx8Pr1iadpLJDfgrTl8EfPp90kjKTgeuTDiE1yyVAWHZbRbpOcdMQ4aUQhiW3a5NOVMW9wJlJh6jhAtL9y30JkPZZYzYCByQdooargAuTDlHD6USn7aZZb9IBhvEQcErSIWq4CLg86RA1HA50JR1iGFuBBUmHqOEm4PykQ2wvnFb2XiGE8NSkUyn70nAK2TjgiAr7JwBHtjiLJEmSpBRLQwHzGqKZx8pNBz7Q4iySJEmSUiwNBcz7gUlVHnsu0UiMJEmSJCVewMwFdqnx+CTglS3KIkmSJCnlkp6F7FSiU8WqmUg0QvPfrYmjhM0F9gbaBrbvAVYmF0eSJElpk3QBcxrRKNAaopmOdgY6gPuJipdJwO7APGB1QhnVPM8FjgEOBg4i+v6Xeh/w1VaHkiRJUnoleQrZvkSFyReB/YHFwGMDj70W2BV4L9APpHSNDO2gTwD/Cbyc7YsXSZIkaTtJjsDcD+wGPFrl8W7gB8DFwNQWZVIyeoDbgJuJCteXJBtHkiRJaZXkCMwWqhcv9bRT9nye6NSxScAhRAvq3ZBoIkmSJKVa0tfAaGz7Q9IBJEmSlC1JT6MsSZIkSSNmASNJkiQpMyxgJEmSJGWGBYwkSZKkzLCAkSRJkpQZFjCSJEmSMsMCRpIkSVJmWMBIkiRJygwLGEmSJEmZYQEjSZIkKTMsYCRJkiRlhgWMJEmSpMywgJEkSZKUGRYwkiRJkjLDAkZJejkQlt0KJY9/pcLjR7Y2oiRJktLEAkaSJElSZuSTDqAx7S7gIzH7PNiEHJIkScoICxgl6T7gvKRDSJIkKTs8hUySJElSZljASJIkScoMCxhJkiRJmWEBI0mSJCkzLGAkSZIkZYYFjCRJkqTMsICRJEmSlBmuA6MGWTUPOD3pFBXMAJ4PbEk6SBXPBhaQztcOYC7QTnrzAXQCrwcOTzpIFQuBcaT3NXwBMJX05oPow7Y055sCHEv0s5hG+5Du7/ESotcurfkger/0VmBd0kGq2Ak4hNS9hruPj5Z8kxorSDpAmVVEb+YOApYnnEU1hZcCJz69fdM2OGx1YnGq2wXYBKxPOkgVs4j+cD+cdJAq2oH5wIqkg9SwK7Aa6E46SBXzgT5gbdJBqpg6cHso6SA1LAIeTDhDLQuBLmBj0kGqmAu0AY8kHaSKcUQZ0/x7ZhHRe5S+hHNUs4Dod+DjSQcZakYOnlhYtvM0CL6TSBypSVYBIXBg0kE0nPBSCMOS27VJJ6riXuDMpEPUcAFwfdIhalgCbE46xDA2AgckHaKGq4ALkw5Rw+nAA0mHGEZv0gGG8RBwStIhargIuDzpEDUcTlQAptlWoiIhrW4Czk86xPbCaWXvFUIIT006lbLPa2AkSZIkZYYFjCRJkqTMsICRJEmSlBkWMJIkSZIyw2mUpeHtDOzB0wX/DUQzm0mSJKnFLGCk7b2UaD79g4mm9J5X9vgBwK2tDiVJkiQLGKmS/yVal0CSJEkp4zUwUnVbiU4X+xouJSxJkpQKjsBI23sX8DfgLp5edflyYPfEEkmSJAmwgJEq+WHSASRJklSZp5BJkiRJygwLGEmSJEmZYQEjSZIkKTMsYCRJkiRlhgWMJEmSpMywgJEkSZKUGRYwkiRJkjLDAkaSJElSZljASJIkScoMCxhJkiRJmWEBI0mSJCkzLGAkSZIkZYYFjCRJkqTMsICRJEmSlBn5pANIKbQUeG/Zvkkl968B+ku2Q2Bms0NJkiTJAkaqZDwwvcbjU8q2wyZmkSRJUgkLGGl7VzJ0hGU4FjCSJEktYgEjbe+3AzdJkiSljBfxS5IkScoMCxhJkiRJmWEBI0mSJCkzLGAkSZIkZYYFjCRJkqTMsICRJEmSlBkWMJIkSZIywwJGkiRJUmZYwEiSJEnKDAsYSZIkSZkRJB2gzCpgAXAQsDzhLKopvBQ48ent60I4sj+xONXlgeLALY3aBv5N42s3KA/0JR2ihjzR6xcmHaSKtH+PcwO3tH+P057P3zP1C4gypv177O+Z2KYB6/NlO0+D4DtJpJGaZRXRL4cDkw6i4YSXQhiW3K5NOlEV9wJnJh2ihguA65MOUcMSYHPSIYaxETgg6RA1XAVcmHSIGk4HHkg6xDB6kw4wjIeAU5IOUcNFwOVJh6jhcKAr6RDD2Er0AWta3QScn3SI7YXTyt4rhBCemnQqZZ+nkEmSJEnKDAsYSZIkSZlhASNJkiQpMyxgJEmSJGWGBYwkSZKkzLCAkSRJkpQZFjCSJEmSMqN8cSFJ2dEO7As8C+gc2Hc56V/TQ5IkqW4WMFK2vA44GjiYoYXLoNdgASNJkkYxCxgpW84B9kk6hCRJUlIsYKRsehi4eeB2FPDCZONIkiS1hgWMlC3vAu4HHi3Z9w0sYCRJ0hhhASNly3VJB5AkSUqS0yhLkiRJygwLGEmSJEmZYQEjSZIkKTMsYCRJkiRlhgWMJEmSpMywgJEkSZKUGRYwkiRJkjLDAkaSJElSZljASJIkScoMCxhJkiRJmWEBI0mSJCkzLGAkSZIkZYYFjCRJkqTMyCcdQFIsncCECvsGTQSmlz2+ASg2M5QkSVKrWMBI2XIK8I0aj19UYd8S4J/NiSNJktRankImSZIkKTMcgZGy5WrgXTH7PNaMIJIkSUmwgJGy5e6BmyRJ0pjkKWSSJEmSMsMCRpIkSVJmWMBIkiRJygwLGEmSJEmZYQEjSZIkKTMsYCRJkiRlhgWMJEmSpMwIkg5QZhWwADgIWJ5wFtUUXgqc+PT2jT1w+LrE4lQ3B9gKPJl0kCqmEa3H9HjSQarIAzOBNUkHqWEusB7oSTpIFbOAfqKMaTRx4LY26SA1zANWJx2ihjnA5oFbGs0g+nv/RNJBqugk+l2Y5t8z84gWBe5POkgVs4FeoCvpIEPNyMETc8p2ngbBdxKJo1HDhSzVILveD/xH0ikq+CpwBfDLpINUcRqwGPhI0kGq2An4PPC+pIPU8CPgs8ADSQep4lzgUeBrSQep4niiDyPS/D3+GenO9y3g50S/a9Lo/cB0oJBwjmr2Aj5Gur/HPwE+DqTxgzqA84G7gO8nHWSonSYCP0g6hdRsq4AQODDpIBpOeCmEYcnt2qQTVXEvcGbSIWq4ALg+6RA1LCG9nyoP2ggckHSIGq4CLkw6RA2nk97ib1Bv0gGG8RBwStIhargIuDzpEDUcTupGDrazlegMkbS6iaiISZlwWtl7hRDCU5NOpezzGhhJkiRJmWEBI0mSJCkzLGAkSZIkZYYX8Utqhp2IZhN8NtEMVwC/A65OLJEkSRoVLGAkNcrJwGuJCpdKF7uuxwJGkiTtIAsYSY3yGoasDSRJktR4FjCSGmkbcBtw88Dt2cB7Ek0kSZJGFQsYSY3yXqKVtEvX7PhgQlkkSdIoZQEjqVFWJR1AkiSNfk6jLEmSJCkzLGAkSZIkZYYFjCRJkqTMsICRJEmSlBkWMJIkSZIywwJGkiRJUmZYwEiSJEnKDAsYSZIkSZlhASNJkiQpMyxgJEmSJGWGBYwkSZKkzLCAkSRJkpQZFjCSJEmSMiOfdABJo8YUYPeyfQvK7h9U9vh9wMZmhpIkSaOLBYykRjkM+EONx983cCv1EuD3TUskSZJGHU8hkyRJkpQZjsBIapSbgWNj9rmlGUEkSdLoZQEjqVHWAVckHUKSJI1unkImSZIkKTMsYCRJkiRlhgWMJEmSpMywgJEkSZKUGRYwkiRJkjLDAkaSJElSZljASJIkScoMCxhJkiRJmWEBI0mSJCkzLGAkSZIkZUY+6QAaLe54JvCLpFNUsDNwKnBk0kGqOAiYRjpfO4DJwDjSmw9gAvAlYF3SQarYH1hCel/DPYB5pDcfQBvpzjcH+ADwsqSDVHE40El6X8PZwCTSmw+gA/gusCXpIFXsRfQ6Lk46yFDz2mF10iE0CjkCIyUrSDqAxrww6QCSJGXZKqI/pgcmHUTDCS+FMCy5XZt0oiruBc5MOkQNFwDXJx2ihiXA5qRDDGMjcEDSIWq4Crgw6RA1nA48kHSIYfQmHWAYDwGnJB2ihouAy5MOUcPhQFfSIYaxFViQdIgabgLOTzrE9sJpZe8VQghPTTqVss8RGEmSJEmZYQEjSZIkKTMsYCRJkiRlhgWMJEmSpMywgJEkSZKUGa4DI2ksWszTa/AA/B24Jrk4kiRppCxgJI0FBwOvISpaDgKmlz3+bSxgJEnKBAsYSWPBG4Czkg4hSZJ2nAWMpLFkI3ALcDPQAbw32TiSJCkuL+KXNBZ8H9iL6NSxo4lGY/6YZCBJklQfR2AkjQV3Jh1AkiQ1hiMwkiRJkjLDAkaSJElSZljASJIkScoMCxhJkiRJmWEBI0mSJCkzLGAkSZIkZYYFjCRJkqTMsICRJEmSlBkWMJIkSZIywwJGkiRJUmZYwEiSJEnKDAsYSZIkSZlhASNJkiQpM/JJB5CkFsgBU8v2TSy53wlML3t8C9DdzFCSJCk+R2AkjQW7AuvKbj8uefwtFR4/tcUZJUnSCFjASJIkScoMTyGTNBY8DrwrZp/rmhFEkiTtGAsYSWPBk8CFSYeQJEk7zlPIJEmSJGWGBYwkSZKkzLCAkSRJkpQZFjCSJEmSMsMCRpIkSVJmWMBIkiRJygwLGEmSJEmZYQEjSZIkKTNcyFINsnoW8JqkU1QwFTiQdGYD2AuYQ3rz7QS0kd58AO3AccCSpINUMW/g37S+hocCk0hvPog+bEtzvonA4UQLpqbRYmA66X0N9wI6SG8+iH4PngA8kXSQKmYDe5O613DfiXBH0iE0CgVJByizClgAHAQsTziLagovBU58evvGHjh8XWJxqpsDbCW9byymEr0BfzzpIFXkgZnAmqSD1DAXWAf0Jh2killAH9CVdJAqJrblcpOmdXb2JB2kmnVbt3bOGD++O+kc1XR1d3eMz+eLnW1tfUlnqWRjT097AEzu6Ejl/5Ge/v7c5t7e9unjxqX2e7x+27bOKZ2dPW1BECadpZKN3d0dQRCEafseF8NprN/2SGfZ7tMg+E4igTRqOAKTPfsB/1KyfQlwb0JZShx2E/C8pFNUcC/wTeALSQep4gLgEOCIpINUsQS4lWgkJq02Ai8C/pZ0kCquIvo5fGfCOao5/bjFi7/025NOSu3fgxnnnRc+/uEPpzbfnhdc0PejV72q7dCdd05lxrdccknwjOnT+wtHH53KfNevXMk7f/Wr/tvf855U5gOYc/75xX+8731tU8aNSzpKRf/661/3Tmhvb//8i1+cqtewa+s4pp/X2K8ZFgrTgBlP7XjiiYeDr3wltcWvmiNVP+gakYOAz5Zs30cqChhJkqSm+1dg6VNbs2cfAtySWBolwov4JUmSJGWGIzCSJEmSYgvPPnsB+fz3ntoRBP8XFAoXNvu4FjCSJEmS4guCCQTBC0v23NqKw3oKmSRJkqTMsICRJEmSlBkWMJIkSZIywwJGkiRJUmZ4Ef/YsRj4ElC6Ctf/At9KJo6kEZhOtPbTwQP/7ge0Dzz2EeDnCeWSpEwKC4XDgZcShkcSBHOAWcATwOPA9cDvKBSuDiCs+xhLlx5CsXgC0QLfc4DZwDrC8HGC4Abgd8BVQaFQHGHmWRSLr3xqRy53c1AoLAcIP/jBiUyY8CqC4FXAIoJg7sCxVhIEl9Hd/bPgM595ot7nUjXTOee8FphG9PxKPSs855zTqnbM5f4nKBQ27ejxLWDGhkOByxj6Q3YB8O1k4kgagf8DXlXj8SmtCiJJWRcuXbof/f1fAI4BIAhKH54J7AE8BziLQuGmEM4MCoUbYh2jUNibMPwvisVjKzw8kyDYHTgCOANYHhYKZwaFwp+H/cK53C7AN0r2LAWWh5/85LGE4Q+JCqRScwiCvYBj6ez8ZFgonBUUCj+M81xGkOkTwF4VHnkRudyLqvbr7f0DsMMFjKeQjX4vB67k6eIlJPrk9v3AiCp/SYko/1SrD+hKIogkZVlYKPwLxeJ1BMExI+xyKHBleM45J8U4xouAvxAElYqXSg4ErggLhbeN9BhDjnfOOW8mDH/D9sVLuenA98JC4eP1HCetHIEZ3U4lqtgHv8/dwNuAnyYVSNKI/R24F7h54HYrcA7w0SRDSVKWhIXCc4hGtNtLdq8DfkAQXEkYriE6jexI4B3A3IE27eRyPwgLhSeDQuFXNY8RnTL2K6CjZHcX8APgT+RyawjDGcBzCMN3APMH2uSBb4eFwqagUPjfkT+pcB9yuQ8SDUR0A98nCC4jDFcCk4iKo3cCzyrpVQjPOWdlsHTpRSM+Ti3F4hfJ5WYSjV6dVfLIn4HfVu3X3r6+EYfPA6XDPI8xdAGaXYC3APsDC4AAWAtcR3T9xAONCKGGC4BPDNwGrQdeAVyTSCJJcVU/h1iSNKzwQx+aDFxEafEShtcRBK8PCoXVZc3/EBYKXwJ+DBw3sC8AvhV+7GM3Bp/+9JqKxygUJlAsXsTQ4uUm4DVBofBIWfPLw0Lhy0SFzQklx/h6ePbZ1wef+tTDI3piQfDqgXsPk8v9S3DOOXeWtbgpLBS+A5wPvO+pvbncf4Uf+9gfgk9/+tERHadWhKVLvwsQfvzju5PPlxYwNwWFwud29OsPJwdcXnJbOrB/PNHF3Q8A5wKvJTov8AiiU5I+R/Tp4HlAW7NDKpYOov98pcXLg0TfP4sXSZI0NkyYcBqwW8me+9i27cQKxQsAQaGwDngN8LeS3bPp6Dij6jGKxVOIrp8Z9ABwQoXiZfAYXcAbiIqcQTNob/9gradSQQ/wsgrFy+Bx+igUziQMLynZPY2OjrjHSaVK18DMAG4gGnqqVZx0AB8iqmyVDtOA3wNvKtl3G9Gw6N8TSSRJktRiYaGQA941ZGcQfCA477wNtfoFhcIWcrl3M3QWsreHZ5wxfrtjQEAud3rZ7rMGCqFax9g2cIzSa5HfOjBiNFJfDwqF22oeB0KC4Axga8nuN4eFwrhqfbKivIDJAz/j6XPm7gH+i2j46d3A54k+zS91EnBy8yJqhBYAVwFHl+y7nGgKv5ENSUqSJI0OexEtITHonuATn/j9SDoG55zzV+DGkl0zmDbtOds1LBQWA88s2fMghcJlIzzGrYThtSW7pjBx4lEj6TvgwhEdp1BYBfy6ZNcMguB5MY6TSuUFzHFE18RsJbrYe2/gg8BXgW8C/070A1E+6vJxonP4lIz9iEbN9i/Z9wPgpcDGJAJJkiQlplg8omzPiAqLEr8cshWG5V8P4PDyY8RaPyYMy49R/vWquS8oFO4d8XHgN0O2+vsPjdE3lSqNwBSBE4mKlErT7HYTXVx6R8m+PYFDmhFQwzqWaFKFnQe2Q6AAnAL0JpRJkiQpObncPkO2i8VbYvUPgvL2+1RotXfZdrxj5PPLh2yH4b4j6heGNU8d204ud0vZdqXnkimVroH5BnDFMP16ga+U7Rtp1ajGOh0oPWfyg8AnE8oiSZKUBtOHbOXzq2L17u0d2j6aBrlc+b54x+juLm9f6RjbC4J4lwYUi0NnHQvDmbH6p1ClAuaCEfa9smx7ZFWjGq18NdO3A/OSCCJJkpQSU8u2451Sn8+XX+w/reHHaG8fyTEqibuS/dBcQVCeO3PKC5hVRAunjcT9DD3Pb3q1hmqqfwOuL9neB/gLQ6cNlCRJGkt6hmwVi+1V2lXTMWQrCLqHPUYu14xjVBJvIfoNG8pz9VRslyHlBUychSn7gc0l21N2PI7qsIHoOpg/luzbjWiEbEkiiSRJkpLVVbY90tGNSC5XPkpR/vUgWiT8aWEY7xjbZ6p0jErijaBMnTqS55Ip5QVMzbmxK+ir8bXUOpuJJl4onR5wV+BaKl90JkmSNJqtKdveK1bvYvGZZXsqrV6/dshWf3+8Y2yfqdIxtheGewzfaIjy9hUX2cyS8qKj0qxjyoYtREXML0r2zQP+xNPr+kiSJI0Ffy3bPixm/6Hti8Vl27UIgqHHyOXiHmPo1TGYvgAAIABJREFUBFiVjlFJEBwQvvOdIz9drVgsfy43j7jvcPL58mmjWzKg4ajJ6NIDvA74Ucm+OUQLXGZ+zm9JkqQR6e6+kaEfzL8sLBQmjKRrWCjkid5PPS2Xu267hlu23MTQs5H+JfzQhyZv167yMXLAG4Y9RmXTmT//hSNsC0Ew9Lnk838Zcd/h9PRsLtvTkmviLWBGn36iNWC+X7JvOvAHYPtVZCVJkkaZ4DOfeQz4bcmuKRSLZ4yoc7H4bmCnkj3LgkLhru2Ocd55GwjDS0t2TWDChA+O8BjvABaW7LkjKBSWV2tewcfCESwiH37yk8cTBM8u2bU8OOecO2Mcp7aOjg0MndRrdsO+dg0WMKNTP/AOhk6JPZWoiHlRIokkSZJaKQiGrlmYy30kLBSOrNUlLBQOJpdbWra7+hIj5ceAD4aFwguGOcazyOU+O2RnsfjlWn0qeA6FwlnDHGc+YfjVsuN8LeZxagoKhS1EMxMPOjQ844zxjTxGJfGmYVOWhMAHiIY2zxzYNxH4FfBKhl7wLyl9DgFOLdtXeirom9n+1NBPAyuaGUqSsiL4xCf+GBYK/w2cNLBrPHBZWCh8GPheUCg8dfpX+NrXtrHPPicBX6B0gfAwvJxPfvJ/qh6jUPhzWCh8j2gdPoBO4JKwUPgojzzy7eDCC3uf+lKFQo5i8fXAlymdSSwMryaXuyjGU9sw0P8zYaEwkw0blgZf/OLW0gbh0qVHUCx+j2hSp0F/IZcrvcygUf4ELB64P4upUy8LC4Wvk8s9QLFYPkHYQ6Wve70sYEa3EDiLaJaMwUp/PFER80aGXvCv7BpHVJxOJZrOvJ9okauugX97q3dVii0G3lnj8ecP3Ep9GwsYSSr1fsLwWQTBfgPbk4GvA0vDT3ziOoJgLTATOIKhp40B3E9f36nB0FOktrdly1mMH//sklO1JgIXMH/+J8JC4TpgDWE4AzicXG5BWe8VBMEpQaEQZyKtbwIvBg4A/p2pU98VFgp/Ivr9P4UwPJBicf+yPmvp63tHcO65zZiw62vAW3l6XZujgaMpVjhUb+9iGvB3ylPIxobzgI+UbHcAFxN9gqtsWUT0pvbrRJ94rAG2Ao8D/wRuAW4jGs5dB3QDDwK/Az4PvAmY1eLMqk8P0RoDcW47/KmWJI0mQaHQRRAcQxheWfbQLILg5cBpwKsoL17C8GbgqOBTn3p42GN87nNPsnXrC4hO1S81k2iG2NMIglcDQ4uXMLyV3t6jgkLhoTjPCeimr++1wN0D21OAVwDvB04hCMqLl0fJ5V4cnHvufTGPMyJBoXAH0RkD5Rf0N40jMNlzD3BhyfZIFx89j+hNbukpJ0cQLYCZ+fnAR7k9ia5peimwd8y+AdHw8a7ASwb29QM3EY3EfY/yeeyVFr/AUVJJGqpY3EouV7qA5LAf3ASFQlcIx1EovBb4GLBvjeb3USx+nrvv/kHw85/3jzRW8LnPPRnCSykUXkkYnl2hiCj1T4rFL5DLfTf41Kfq+uApOPfcB8JC4QjgM0SnyFVaUH4b8BPgI8E556yr5zgjzlMo/CQsFK4CTgaOJFpMfRbbTzTQkBEgC5jsuX7gVo/vDtyUDccSXcd0PCOYaSSGNqLi9QigQPTL7UtEIzeSJKVWsHTpF4Evxu4HIYXCxcDF4dln70p7+3MpFueSy82iWFwHrKVYvGFHRikGjvEL4Bfh2WfvQlvbkeRyc4neyHcRncZ1Y3DuuffUe4whxysUNgHvC88440NMm/YCwnA3YA7F4npyuRXAFUGhsLERxxphnkeAzw3cmsoCRkqfJcBXeHrEpJk6iabdfhvwY6Jrph5rwXElSUpE8KlPraDJ1wsGn/rUSqDqxf8NPVZ0Af9vWnGstPAaGCk98sB/AnfQmuKlVEB0TdRdwFtafGxJkqQRs4CR0mEm8P+AjxONiiRlFnAR8C2enk1EkiQpNfLAjJLtuNOt7sbT5+Y7VatUnwnAMqIZxtLincBewMhWFJYkSWqRPNHUm/XqalQQaYyaSTSzWBqvRzsK+CGNnUBAkiRph3gKmZSc3YGXk87iZdBeRKe0TR6uoSRJUiuk7ZPVVUSL/BwELE84i2oKLyVanGnAdSEcOeL50lsoTzTneDNWnt1RjS5cylcKbuT/75Bo/Zg0yhNlq71SckKCINdGro2AII0/g4RhMSAglwtyqcwHUCwWc7lcevOFYZgLgiAkpT+DxWIxGJDS1zAMisVikMu1pTRf+r/HYRjmwjAMc7lcyvLlgjCcE4QA4WsIi/8FcBoE30k2V7aES5c+m2LxryW7lgaFwtLEAqVAmj/5VaY89zrgeUmnqOBe4JvAF5IOUiIH/JpofZd6bQV+CfwfcANQaaXggGhK5iOA1wPHUf//+QD4JHBunf2baSPR6W5/SzpIRbncNTP3PLbzGcf9x/8lHaWSB//4ucM3rlp21LPeenHT5+2v17KvHv2Zg9571UeTzlHN8m+95CPzD3nrFfMOfOOypLNUcudPT31dvmPSlD1f9aVUvml87O7LFq685htvP/Bdvy0knaWaZV875tx93vj988fNWLQh6SyV3Pmz096T75z44J6v+FKqptLt25Yf/+iy+YXujVfRdf9VhKktUVNu27ZH6Oj42FPbudx1CaZJBQsYqfU+RP3Fy1bgy8BngeH+kIbAfQO3HxKNbn6SaM2XtjqOXQCuBa6uo68kSapD8OlPr6EFi0NmidfASK21P9FaL/VYBuwLfJThi5dKHgZOJRqRebCO/m3Aj4CJdfSVJElqCAsYqXUC4KvUN/L5Q+BI4P4G5Pgr0XVmV9XRdxeitWokSZISYQEjtc7JREVIXD8H3g50NzDLOuClwDV19D0T2LOBWSRJkkbMAkZqjfHAeXX0uxp4E82ZAWwL0TTOD8Ts1wGc3/g4kiRJw7OAkVrjFGCnmH0eA04C+hof5yldRDOU9cTs9zLg2Y2PI0mSVJsFjNR8bcAZdfT7NypPj9xof6W+EZWzGh1EkiRpOBYwUvO9mmg9ljj+AvysCVmq+TSwMmafNwCLm5BFkiSpKteBkZrv9Dr6nEVrV3zeQjS984Ux+rQB7wA+NlxD7Zgn7r18wdpbfn7ElvUrnlHs2Tw1yLX15DunrJ80f/87dn7ev14/bsr8rUlnlCSpVSxgpOZaQLRKfBzXADc0Ictwfki00GWca3VOIppW2fWVm+Qfv/7Ii9b985oXEoZPjZiHxf58T9/jE9bd98cFG1bccPjCo97/37P3fdmKJHNKktQqnkImNddJxF/1/gvNCDIC3cDXYvZZSH1TQ2sE7v/Dfx657h9XH0sY5oJcW9/kBfvfOO/AN1w8a5+XXdo5dcH9AP09m6euuOrzb9uw4q+zks4rSVIrOAIjNdfJMduvBX7TjCAj9D2iUZg4RdebqG89GdWw6dHbpj9x9++PBwhy+d5FL/jQt8tGWf5y7y/PPL7rweuPLvb1TFhx5fkvf9bbLv5uQnElSWoZR2Ck5lkE7Bezz09p7rTJw3mUaO2ZOF4BBE3IMqat/PM3jw7D/jzA9N2PuaLSKWK7n/DZ33dMnPUIwLaulXs8dsdlu7Y6pyRJrWYBIzXPsXX0ubjhKeL7n5jt5wLPakaQsSrs68ltXnP3fgBBrq135+eefmOldkG+ozht92P+Mrj9xD1/2L9VGSVJSooFjNQ8L4rZvotkLt4v91viz4B2XDOCjFVP3Hf5zsW+bRMBOibv9FCtWcbm7vOyvw/e3/LYvXu1Ip8kSUmygJGaIwccE7PPH4H+JmSJ6xHg7ph96hltUhWbVt89b/D++Om71FyfZ/zs3Z9s65i0HqBv25Mz+ratb292PkmSkmQBIzXHPsDsmH3+2Iwgdbo8ZvsjcVKQhulev/Kpn52OyXPWD9c+P37qQJsw2PDQLXF/7iRJyhQLGKk5Dq6jz/UNT1G/uFnGA3s3I8hY1Ne7ZcLg/fYJszYN176tc+JTbXo3r5nYrFySJKWBBYzUHM+O2b4buLMZQeq0rI4+cZ+zqgj7tnUO3s+1j+sdrn3Q1tEzeL+/Z0tHs3JJkpQGFjBSc8R9M387MOwb1Ra6H1gXs48FTKMUi0+twxO0tRWHa57L5Z5qE/b1xl04VZKkTLGAkRovB8Sdzva2ZgTZASHxMx3YjCBjUdDW/tSIStjbM+y1RcX+3qcu3G/rnNBTq60kSVlnASM13gJgcsw+9zUjyA76R8z2TuHbILn2zqeKkL7ezcOeEhb2dj91yllbx+TuZuWSJCkNLGCkxtutjj5pLGDiZpoNTGpGkLGmfcLMrsH7vRvXTBuufd+2jVMH70+YuVtXrbaSJGWdBYzUeIvq6DMaChio77mrzPgZi9YO3u/euHpWrbZhX0+ud9uGmQBBLt87af6+FjCSpFHNAkZqvHpGYB5qeIodV0+mep67ykzd7bkria5DYmvXQ4tqtV13/9U7hf294wA6Js9dSZAPm59QkqTkWMBIjbcoZvsisKEJOXbU6jr6WMA0wKR5+3R1TJz1CEDf1q45T9x7+YJqbR+/6zcHDN6fvGD/NE3FLUlSU1jASI03P2b7XgY+bU+ZNUTFVRw7NSPIWDRt8fNuHLz/8A3ffXGlNptW3z5t48rlhwIEuXzPToecfEur8kmSlBQLGKnxZsRsn6b1X0r1AXGvp4j73FXFrs9737L8+KmPAWxbt2LPu3/2rlf3Prlm3ODjXf+8et69l37oHYOnj01/xnOvHj99t81J5ZUkqVWGXV9AUmwzY7bva0qKxugiXlES97mriqB9fP/ilxQuuu9XH35Psb9n/JOP3nbo377/mgPaJ0xfW+zv6ezbumEWEACMm7Ho74tfsvRPCUeWJKklHIGRGi/uKER/U1I0xqaY7R2BaaCpux7+2O6v/K+vdE6Z9yBAWOzr6Nn02M59WzfMBgKCXP/URYdfvfcbL/xRkO+Ie7qfJEmZ5AiM1Fh5YErMPqOpgHEEpsGm7nzwE/u//ZJvrLvvyp26Hvjz4p5Nj0/L5Tt7OqfstG7uAa++a9y0hVuSzihJUitZwEiNNYWB03piGE0FzNThm6geM3Y/5tEZux/zaNI5JElKmqeQSY3VUUefNJ/6E/fT/c6mpJAkSRpgASM1VnsdfdI4hfKguKND9Tx/SZKkEbOAkRqrnhGYNBcwcad4ruf5S5IkjZgFjNRYo20EJu4UzxYwkiSpqSxgpMYabSMwcU8h6yD+JAaSJEkjZgEjNVaaixFJkqTMS9snpauABcBBwPKEs6im8FLgxKe3b9oGh61OLE51uxBNBby+RcdrJ/oZjqMfWNmELI0wG5gYo30IrGhSlmp2BVYD3S0+7sgEuQX5jgkhuXzcKalbIuzdNj4M6Mzlx3UlnaWaYs/mGbmOieuSzlFNsXfr9Fx+3FaCYFvSWSrp79k8OdfWEQRt7RuTzlJRf397sdgzKdc+vlW/p2Mr9m6ZkWuf0EVKZ40M+3qmhWF/b659/OakswwVBITTpxN209+3mLD/aoDTIPhO0smUba4DowaZvwr4fNIpKvgU8Gfgdy063mzgP2P2eRL4bBOyNMKpwMEx2nfT+udyAfADWl84jUgQBB+ZMHvP3JRdD12WdJZKNjx4w5LuDQ8vmbP/q69KOks1j9zw3VfOO/CNVyWdo5pHl/3o+KmLDr1n/MwlDySdpZLH7/zVYW2dkzqnL3nBNUlnqWRb14qZXf+49jlp/h4/ctP3Xz573xOvb+uYuDXpLJU8cffvXkCu7YmZex53a9JZSoXFto5t6/c7oXfz3Wx6dLWnKKhhLGDUIDuvBr6VdIoKzgKuoXXZdiF+AbOJdL52AMcSr4DZTOufy/nAxcDfWnzckQmCkzqmzO2cf8hbbkw6SiU9G1cHvVseX5DWfACP3Pi9V6Q53+rlPzlm4pxn/mPegW9MZZG6/p/X7JrvmDQlra/hY3dftrDr/usPTWs+gEdu+v7LZj/z+FvGzVi0Iekslay//9qD850TH07ba9i3LT/+0WXzTwiLk4Crko6jUcRrYKTG6qmjT9pO5SwV90OOep6/JEnSiFnASI1Vzxv4NP8/nBCzvQWMJElqqjS/cZKyaCPxL/Jsa0aQBolzAT+0brIESZI0RlnASI3VD8Q9RzrNBcykmO2faEoKSZKkARYwUuPFne51NBUwjsBIkqSmchYyqfGeABbHaJ/m/4czYrZ/vCkpxriwd2vbI7f8bI8nV928pH/bk5PI5fs7J81eN+uZL7lj2uLnp3H9JUmSmibNb5ykrIo7AtPRlBQ7rgOYGrNPahcbzKrH7rhs14f+/NXX92/bOLN0/2Zg3T+uOnbinD1uXXzCZy4ZN2V+KtenkCSp0TyFTGq8R2O2byedUynPJX6uuM9dNTx+928WPvin8945WLy0dUzqmjDzGXeNm7brvUGurRdg89p79//7xf/69r5tG9uTTStJUms4AiM1XtzVuAOiU7XSdgH83Dr6PNjoEGNV37aN7Suu/OLJYbE/DzBjyfMvX/ySpX8K8h1FgK2P3z/p3l+d9ebujasX9Wxas/Afvz37JXu96iuXJZtakqTmcwRGary4BQzAwoan2HGL6uhzf6NDjFUPXfWFI/p7Nk8FmDhnz78tOeGzVwwWLwDjZz1j0x6v/NIPc/lxmwGeXHnL4ZtW3z4tqbySJLWKBYzUeA/W0WdJo0M0QNxMIY7ANEzXihsPGby/4Dmn/bFSm/HTd908ZdfDrgcIw/786uU/e3ar8kmSlBQLGKnx6hmB2b3hKXZc3ExrgS3NCDLWbFi1bGbf1q45AB0TZz4ybdFz11ZrO2efE24bvL/pkTv2bkU+SZKSZAEjNd4jxF/Mco9mBNlBcQuYu5uSYgzauOKmnQfvd05fuKJW22m7PWdtLt+xBaB38+Pzw74ef69LkkY1/9BJjRcCt8Tss38zguyAAHhWzD43NyPIWLR13YNzBu93Ttmp9to6QS7Mj5u6DqLTyDauvm16k+NJkpQoCxipOZbHbL8PMK4ZQeq0B/HXgIlbtKmK/i0bpgze75g4e+Nw7fPjp3QN3u9+YkXc75skSZliASM1R9w38+3Avs0IUqeD6+gTt2hTFcX+7s7B+22dE3qGax+0dT7Vpr97U2ettpIkZZ0FjNQc9byZP6LhKeoXN8tm4N5mBBmLwv7epxalDNra+4drn2vL9w3e7+vd0tGsXJIkpYEFjNQcdwOrY/Z5YTOC1OnYmO2vBoZ9o60RKilIwv7+YX9PF/v72wbv5/LjepsVS5KkNLCAkZojBP4Us88LiE4lS9pC4s+KdnkzgoxVbW0d3YP3iyMYUSkdsWkfN7G7VltJkrLOAkZqnititp8MPKcZQWL6lzr6WMA0UFvn5M2D97s3PT55uPb93U8+fdH/pLmba7WVJCnrLGCk5olbwAC8oeEp4ntjzPYPA3c2I8hYNW7aLo8N3u99cs2w0yL3bd0wA4AgKE5aeGDtaZclSco4CxipeVYSf22U1wFJXoS9C3BkzD6/aEaQsWzi/P0eGby/rWvlwlptN62+fVp/75YpAPnx0x/Lt0/uq9VekqSss4CRmuvHMdvPAE5sRpARegfxfy/8pBlBxrKZu7/g0baOiRsAup9cs8vWx++fVK3t2tsv23vw/qQ5e97dinySJCXJAkZqrp8AcT8R/1AzgozAOOD0mH3+CdzYhCxjW5ALJ83f91YAwmLbyj9/9XmVmvX1Ppnvuv+aweumwpl7n3BrqyJKkpQUCxipudYSfzayQ4DnNiHLcN4GzI3Z58dEM66pwRYe9W9XB7l8D0DXihuOevjG7+5d+njY15O75xdnvrJv64bZABNmL7lj5h4veKTS15IkaTTJJx1AGgO+DhwXs8+XgMOAYuPjVDQZOCdmn17gu03IImD8jGdsmnvA636xevlPXk8Y5h6+/rtveeKeK+6ZMGPRymJfd/umNXft27d1wyyAto6JXbsd9/FfJZ1ZkqRWsICRmu8y4O/AXjH6HAycDPywKYm29x/ATjH7/JhoogI1ycKj3ndLsdibf+y2S04Mi30d29Y9uNe2dQ8O+TnqmDDz0d1e/PH/njh7z41J5ZQkqZUsYKTmKwKfB74Ts9+XgWuBBxqeaKjnAWfE7BMSPSc12aKjz/zrrL2OvW/1sp8cvPmx+xb392yaTNDW3zFx+uNTdjnsjvlHvO12Zx6TJI0lFjBSa/wY+ATRNMUjNQ34H+D5QLNWV58zcIy4vwt+AdzV+DiqZNK8/bqWnPCZK6hvbSFJkkYVL+KXWqMb+Pc6+h0GXAJ0NjYOEBVIvwEWxOzXDXy08XEkSZKGZwEjtc7PgCvr6Hc8cDHRhfaNsoDo0/yD6+j7OeC+BmaRJEkaMQsYqbX+jWj2rrhOBP4KHNCADMcBy4GD6ui7AvhsAzJIkiTVxQJGaq07qP/0qz2BZUSTASyso/9+wKXA74mufYmrFzgJ2FJHX0mSpIawgJFa7wtEhUQ92oB3EM1M9kfg3cCBQHuFthOJFsT8INHozW1EIzn1Ohu4bgf6S5Ik7TBnIZNaLwROAW4CltT5NXLACwZuAP1A18AtR3SB/vQdiznEpThtsiRJSgELGCkZ64mKjzuAKQ34em3AzIFboxWJTh0Lm/C1JUmSYvEUMik5K4FfAj1JB6nhb0TTJm9OOogkSRJAkHSAMquIpnc9iGiWJKVWeClDrqe4ay3s87vE4lT3GqIpf29NOkgVzwVmD9yfmmSQClYRFTDHEy3EmVYnA/8PeDzpIJUEudzL2ifOoX3SzAeSzlJJ75Nr5/Zte3LO+NmLb086SzVb1vz9wAlz90rt34Stj/1j/47JOz3aNm7i2qSzVLLtiRWLc/nOfMfUefcknaWS/q2bJndvfGTJhLl73JJ0lmq2rP77gRNmL7mDtnwqP3DqXv/w3mEQbho3beeHks4yVL6t2LvnAcWeNfRunkKx/1cAp0HwnaSTKds8hUwN0tsB7Jx0igryRIVBGrMBTCI6/WsZsDf1zQ7WDCuAfwKziD7oSOvrB1G+ucC4pINUFAYdufZO8u0TG3GqYMMV8+PHF/M9ubTmAyDIBWnOFwS5oK1j3Pi0ZgxybflcW3s+rfno758YtOVT+38EIGjL09Y5cXIQ5OuZBr/petra2gLoTN9rGLQVg376wiLQl3QYjSIWMGqQ/e8AXpR0igruBb5JNPNXGl0AHAIcQ/RG/APAJ2nsopVxPAS8F7hsYHsJ0ehVGr+3gzYCpxGNFqVPLrhm0rx9Op9x3H/8X9JRKnnwj587fOOqZUft+aovp/YT0WVfPfozac63/Fsv+cjMPY+7ct6Bb1yWdJZK7vzpqa/Ld0yasuervpTK1/Cxuy9buPKab7w9zd/jZV875txFx/z7T8bNWLQh6SyV3Pmz096T75z44J6v+NJvks5Sqm/b/2/vzqPjqO58gX9vLb1Iaq3WYku2vIHxgo0XWbLNYg8YQiCELCYh7yUkJOQlM2HAIZPJzDuTKJnkTYaE4OCQzAA5ZJuBgZAAYU0g2HiRZEvGBsvGwrsla99aS29Vdd8fcsstu6WWEqur2nw/5+hwq/vXvt9u2UY/37pVmre5dlplyL8Fod4tdsehiwj3wBA5hwTwIIbu9/JrJHfTfARDzdQinG1eiIiIiByHDQyR8zQD+AyAFQB+haFN9JOlG8APAFwC4B4AfZM4FxEREdFfjQ0MkXPtAXAHgFIA/wBgC4ZWSv5aAxi6r8sXAEwH8HUM7XkhIiIicjzugSFyvlYM3UTyhxi6IME6AEsAzD/zNR3xb1ppYmiF5RiAAwAOAqgDsA2Tu6pDRERENGnYwBClll4M3Tvm2TjPZZz5MgH0AwgkMRcRERFRUrCBIbp49J/5IiIiIrpocQ8MERERERGlDK7AEBE5nDTCSsvbz8ztO7l7TiTYm6moekTPKOjKX/Ch/VmlZR125yMiIkomNjBERA7W2fCn4hNvPHC7EejNP/e5rkN/ujG9aGHdpTd973ndVxi0Ix8RUbKtvm9PqWEEL4seu8Lmru0/u6rbzkzvZxs2SPXEtKrhG15but5U+8Oy/RdyjrJ7d1whpCiMHrOBISJyqM6GPxUffeU7X5aWoQOAonv7XL7CJmlGXGF/c6mUljrQUr/8wNNfzlv46V8+quk+w+7MRESTzbAi+RBiSfQ4oun1GLrqJtngaE6dosZ8P1TLVAFc0AZGQMyEEJdGj9nAEBE5kBHq046/dv+no81L9uw1f55z47++pupeEwD6Ww5kHX7hG58O97dPD/mbZx558ZvXz7v1wZfsTU1ERDT5uImfiMiBTm7dVGGG+3MAIC3/0rcvveWHr0abFwDIKFrQO+/WTb9QNPcgAPhP7l7T33Igy668REREycIGhojIgXqOV6+MjktWff61eDXeKbP7M2esrAIAaZlay1tPLk1WPiIiIrvwFDIiIofpa3wr1xjsKgQAV1pec/bsq1tHqy1YeNPbPUe3XQsAA83vLACwJTkpiYiIgLpHVkTWfvaNh6LHfS6fOVb9X8IcdL3oC/e9Ej1mA0NE5DA9J6qnR8funBknxqrNnr2mVVFdAcsMe8P97cXSCCtCc1mTn5KIiGjIll+sm9QrYdY9siICIBI95ilkREQOE+g6URAduzOLxr7Pi9Ck5s3qBIZOI+tveTtnkuMRERHZiiswREQOYw52Z0bHeka+P1G95s7sDfe3lwBAoPNElq9kRedk5iMiSnXLv1irwxucqgs13YTqhghHVKkOeLKDLVsqL8xqwtrKN7QBvzJVtVwZQ3MgIiJyUNXNlqoHVwcuxByxVn9tR4E0RaYhZYaiqmGE4a/Je+U0KisvulV5NjBERA5jmSF3dKy500OJ6oXuHq4xIwOuycpFRJTqln5l+zSXJlZLRGYAqmYBEDABqcICMNjtlis37mwSprK75qGK9/6SOZbf++ZUBfqqwR7MFEDMHAA0wLQgy+7Z0SyepjKFAAAgAElEQVQhd9f++MpD4/k1r7j3rWy3CN0WPRaW3Ff941U1gBTl99Usk6ZcahjIBQABAWlKQAVW9l4/KO/74NtWn1J15jSsC25t5RtaoNd753A2KRuqN63aciHnKL+nej0UzIoes4EhInIYaUb06FioesLNkIqqDd/A0gwNsoEhIjpXpVRW9FTfoACXy7HqhBCQKJGKLCnbWHU8vTv4/Lj3d1RWKuW966+TUrlizDohhICYJoAPr7x35ylV4NlEKzKuSKcq9fTs6LGlSM/ayjc8A73Vt0gTM0d9oRRpwjQrlAxz3pXf2Pbb7d+/6oLf8LPvtE+oaZHhbFBE2oWeQworHVIMz8E9MERETqOcbUikaSb8e9oyTTU6FppujFVLRPR+s2HDU+rK7qqPKcDlsY8LSEtANAtFHJFAEwRGrFAIiZmBHO/ty79Ym/gH8spKpaznhlvPbV4EhAUpW6JzCEWER75QTDehfmrh376RMZH3pEohAj2um4U807wIKQVEMyAbhCKOSGn1j5jFQk4oqH2y/O7qzHi/XqrhCgwRkcOommv4f3BWJKCPVQuMXLFRXb7wWLVERO83x2fMXCNMc/j0I0gpharUKlJWVz1YMbzysfyLtbriDV0hhHIVzvyMLKXMV9IiHwDwu7HmqOi5YZUFzB1+QEgpTewxg3pV3SMrBmPn0HzGYmnJqyEx9He3tPLS3J4PAnhqvO9JQiyUUNLPHDXouvX6jvtX98VUiPK/r5kLFeullBkAIAAfNHwQwJPjncepuAJDROQwqts3EB1HBtp9ierNUN9wjSezsH+sWiKi95PVX9tRICyjPPYxS9dfrvlRxRvnnrZV98iKyO4fr9ltSvO3AIZXswUwt+LeqvmjzbHyn2ryJMSqEQ8K9Y+7H1r9emzzEp2j5oGKOhXyqdgVHyExc9XGnSNWiMYiIYeaFyn37dq0+tkd91/ZN7JCyJqHKt4LycB/C8jh/6dIKWeUbdy1cLzzOBUbGCIih3FnT2+LjkP9bbmJ6o2gf6hGCCujZNnYl10mInofMcNyBaQQ0WMp5Nu1PyzbP9Zr6n585UlFYkfsY5bAytHqRdBYLiFjfqZW6nf9qHzfWHNUPbi6CTC3jZhDomys15w3r5A9padXvTZWzd5N63qgK38c8aA0JzSPE7GBISJymIxpi5qj42D3yelj1fa3HMgywwNZAKB5sjo0t497YIiIMHS6llTUy6LHAsIaDIW2j+e100+fqo1duYBE4eqv7Sg4t27DhqdUCHXB8ANCSmHKbefWxbMr67U9EhheOZEQU5bf++bU8bwWAExT7nz6aZHwQi81P6h4DwKtwxGBgnjvJZWwgSEicpi8S649reppfgAI+1tnBLqPpY9W21H//PBpDemFlx1MRj4iolSguY1CjNzvfbz+p+vGdZrt00/fZkqoI/5OtQyl5Ny6o8VFBdKSw1d/VIQ4WbO5IuH9uwAAlZUWhDwQ+5Ai1fPmiEcKywzkZjeMax4AFmTC95JK2MAQETmNUGT61EX7AEBKSz217Wdr4pWZkYDadWTr6jOHcsqCD455ygIR0fuJqVnTRjygoHFCv8A59RaU81ZHdOgjHpOmaJrIFJYhR8yhKJg2Wm0sIbT2+sqF475oiw6MyGXBGvdKjxOxgSEicqDSq76yVShaBAB6j+1Y21z7m3kjCqQhGp7d+GFjsKcQANLyZh/Mu3T9hP7HSUR0MVPOXH1rmIHOibxeleaIPYWKYp13qWNTVUc8pmjWxPYhprlH1FtSGd/llK2JvRd3d2hEvaKMcx6H4mWUiYgcyJt/SV/B4o8+27r3qQ1SWuqpHT/9bOehVw+k5c4+aRgBV39z/SJjsKsIAFQ9zT9z/f991u7MREROIizpid1ab2nK+G5IedaIq5SZFrznFiiW5Ym9MaY0xYTmCHq9gfTQ2dvPCCE943mdFFZoIvNs+cXa0MqNVTJ6QQNLYlzzOBUbGCIihypdu7FWmiGtvf6Fm6Vl6oPthxcNth9eFFujebPbZl/3jf/KKFrQa1dOIiInslRVFTHdhREOJ9zwHsvf2GimF5+9jooQinpekYCGmDlMRZ3QHPVYYKxE9dkHrPH9bK6IxJv3RxJSYoclIM68B5nSPUBKhyciutjNvPYb1Xnzrnuvec+TKwIdR+YYwb4soephzZvVnTmj7J2Sirv2ap7MSOJfiYjo/UWBFZIxuyW87rSENwaOlb9woWuw5+x+fCHkeaselmGFhCLOHkcirnNrxrKqt8pt4uzroYxvBUea1oTm2bDhKfWEPNuASev895JK2MAQETmcr2RFp69kxat25yAiSiWWogeFeXahImIZE9r30dfT6VMR0/NYOK+5UBURtGKP9fP3yYxFMzwZpnq2l1DE+XPEI4UY9eqU8ZwsmpGOmKUiRagTPZ3OUbiJn4iIiIguOjIS6Yo9VoQ1oXufqIoYWa+cv3FeqHLk5nip5U9kjqBmjJxDjm9zvpByQvMompXwvaQSNjBEREREdNHRVXE69lhKMXsir5eWNif22DSN0+fWWGFlxGMWMHcicyiIjKiXijhvjriEyFr5TzV5453HUpRZscemqY5vHodiA0NEREREF52qB1d3CSF7hh+QVl7ZV3dNH+Mlw5b/Y22WAhnb8Bi6opw8t65mc4UfMmYVRiKz4t6qmeOZY83Xt/ukVIabJCmEGRDeE+N5LQAoAevy8dQtrKx3SVNeFvOQoSuR895LKmEDQ0REREQXJcuSb418wLx2beUbCfaAS6FFjOskxPDPyRZwsOrB1YF41ZaKPSOOpbx2+RdrE14wIBJWrsWI/eiy4e0fLhlI9LqYTMuu/Ma2nER1Gf6+NUDMJaClbBjtvSTLyo01K1bes/OG4a+v1cxK/Kqz2MAQERER0UVpMCd7nwT6oscCKBjo8dyysLI+7lW8Nmx4Si3fWLNeWvLs6WMCEV3ImtHmkP2u/UKIsys9QuSp3vCtc+9+yR33BZWVStnGqusAcenwryEs01L0qgm9OUCLhNQN5XdXZ45WUHFv1TJpybLYeZCmTnSeC05a1hwIsST6JSxZOJHX8ypkRERERHRRqq9cGF59346XDEvcFr2JowDmpvf67yy7Z0edruNE72B40OP1eVRpFp+Ucpk8Z4O8IrG1atPqrvgzAHWPrIiU3139EhR5O8TQHBBiVo6ac+eKjTvrVEs50R8JDKRnpbnFoCy2euQyAYzYVC8httU9sKJjvO9LSvMEFFECqWQL1bqz4t6q3YpmvSdN0efOylJDvb1FllCWWLGN2FCuql3/Vp7SG/gBNjB0wXRlAbjG7hRxpAG4FM7MBgAzAGTDufmKAahwbj5g6O+xMgBZdgeJSyI33N+mte17ZkKbR5Ml2NOUb0YCulPzAQCkCSfnk2ZEH2x7t9CpGc2gP0ua4TSn5htsf69QmmHVqfkAANJSOg+/MUN3Z4779J5ksoL9XsMI5zjtM7QslzvctwxG4F1gfFcHnhQ7H1hzovzuN1+0NNeNQsqhe6FIZAqhrDMMIN3lAczImYdHsoAduzat2oMEajZXNK78as1zUhofEmfutyIAn5BirRRyaI6ABSkQe9eXoTmlVV27ac2uCb0pRWmRBhqEivUSwiWBNZahrAGAoXvXCECOfDfCMvfv2rTG9tUXAFBVwIq5/rQw5bkf/ZjYwNAFcmg+gN/bnSKOLAB3ALjN7iCjSMdQg+DEzw4YyuaGc/MBQ+f1PgDAsDtIPFJamQOt7yLQcWxcG0eTzTKCujQjWlPN45+2O8topJSKo/NZprfnePWq3pN1K+zOEo8Z7ndDKMKpn6G0IqplhFxOzQcAUkq1de9vPyYgJvRDVrKYkQGvtGRuU83jcxJXJ5UAvJBWCJATujjXBVez+eoD5XdX+y0V1527+hGXgN+ytDdqf1x2aLxz7PpRecPSr2x/QlfldRCiKFG9BPoUVWzd9cCaA+OdI1bt5tVvld/9Zgi663ppyVFvbCmFMKWU1bU/XrMTDznj97C05JRoKycgLM0baZjI69nA0AWyqhrAVXaniKMBwH8A+JHdQUbxEIZWD1bZHWQUcwHsA5Brd5Ax+AFcDWCv3UHiEYryZs6cq92zr/+XZ+zOEs/x1++v8DfWXr34jqfutzvLaGp/svbfln7xhW/bnWM0e/7zA9+YVnbHa0XLbq+1O0s89U9+4TbNlZE576ObHrM7SzztB/8w49SbP7vTyd/j2ofXfXfBxx9+0JM7s9fuLPHU/89df6e504/Pu3XTi3ZniWUENW9z7bTKkH8Leo5uuWC/rilDTbrUt0aPVa8xru9LzeaKRkD+svzva+ZaqjVHSFEiFJFx5od/A1IOWBDNQlGPpGcNHNpSuW7C/zD21k+uPA3gV8vv3jFHVcRcKGqJkKZPQgzNITAoYDWbquuI9ItDux9ZEZnoHCPf09UH1lbWnwx0di+Cql0ihZUFKdIgEBFS9loCRzTId6o2re7Cpr9mptHVTVtuVnRXD38/IhFzzFPhlt9XO0WakeEbcZqQ9TXfv6p7InOygSEiIiKilFG36epmAM1/2auFrHkI7wF4b/ihykoFlZXW6K+ZuLrNa44AODKZc0RtqVzYD6D6zBcgpYBI4kpLpbCqgVEvcnAu3YzMiH4QUghTurSdiV4jhXDFvCODVyEjIiIiovevSWoskj5HVDKbl7+AZcnS6FiB+U7dv69IuIImYi4DLSBCbGCIiIiIiCgJpJBCRPeEGpoux3lRAemLjixp9rKBISIiIiKiSVd+T02BEPAAgFTkvh33X9mX6DVlX901HVKkRY9VRWnhHhgiIiIiIpp03pxA70AbfgUAgwUFce+ts7byDc1o1XwBl/Cpil4AaVTEXnxaGuJdNjBERERERDTptlSuCwJoGasm2OMpsdy4TQUAaWHEnXOkPFazeVUjGxgiolQgDdFzoiY/3Nvsg+oyfYXzO735lyRceiciIroYSGmd1hTxAsDLKBMROZqMBNQjf/zeNb0nqivM8EBW7FPuzKKThUtv/2PR0tsO2xaQiIhoEgjIMIQyKKXVJkyjYddDVx2MXmGNDQwRkUNFAl2uA098/vMhf8vMOE+LkL+l9OTWTV8YbDv40uwbvvVmsvMREVFy7Hr4uk4Ajr3h8IVUvWnVccR7r5vPDtnAEBE51KHfb9wQbV60tNzWqcs+8VL27CsbzVC/3rbvd5d3Nrx2vbRMvePgqx9055S2F6/87EGbIxMREU06NjBERA7Utu+Z2YNtDYsBQPX4uhZ88tGfeTKnBaLPZ0xd/KZ3ytzWU9sf/hwgRcueJz40beknGoTuNe1LTURENPl4HxgiIgdq2ffba6LjoiUbXoxtXqKmrvjfh9Ly5+4HADPoz2vc9fiiZGYkIiKyAxsYIiKHifS3uUPdp+YCgKJ7+qeV3XFgtNq8eTfsjo57T9SwgSEiooseGxgiIofpaPhTqZSmBgCe7JJjQnNZo9VOWfjBYxCKCQDBrpNzkpWRiIjILmxgiIgcJtBxtCA69mRPbx6rVvfmhjVvZgcAWEYwPdB9LH2y8xEREdmJDQwRkcOE/C1TomNXen5vonrNk9UTHfc37Z8yVi0REVGqYwNDROQwlhF0R8eqN3swUb2qeYY3+Bthv3usWiIiolTHBoaIyGGkGXJFx4ruMRLVK6oeiY6t0AAbGCIiuqixgSEicjAhIMdRNflBiIiIHIINDBGRwwjVHY6OzXBQT1RvmeHhGsWdHpqsXERERE7ABoaIyGEUzTPchJiBnrRE9aYR9EbHujc7OFm5iIiInIANDBGRw7gzizqi4/BAe1aieiPYmx0dpxct6pysXERERE7ABoaIyGG8U2a3RcfBnlNTx6qNBLpcRsA/BQAUzTPgzSkdmOx8REREdmIDQ0TkMFMuXX9CCNUAgGB34yxphEf9u7qj/qVZkJYKAN7cGYeTlZGIiMgubGCIiBxGzygIuXOmHwYAywhmnN79ywWj1XYeerUsOs4srahPRj4iIiI7sYEhInKgoiUf3xodt+x7+qag/7T33Jrm2t/MG2w/vAgAVE9mZ8nKz+5PZkYiIiI7aHYHICKi8xUs+djRtv3Pvz3Y3rDYDPblHnji839beMXHX86dffUpI9Svt77z+8Xd7/15PYZuAiOLln7yBaF7TbtzExERTTY2MEREDjXvow8+feCJL2SG/M0zjUBPQVPVY3c0VT12TpWQU+Z/4MXi8s8dsCUkERFRkvEUMiIih9K9ueHFn3nyP3PnrX9ZdWX0nPO0dGdOPTZz3X2PzL7hm9tsCUhERGQDrsAQETmY0FzW3Bu/swXS2Np7si4v1NOYqbg8Rnrh/C5v7ux+u/MRERElGxsYIqJUIDSZVVregdLyjsTFREREFy+eQkZERERERCmDDQwREREREaUMNjBERERERJQy2MAQEREREVHKYANDREREREQpgw0MERERERGlDDYwRERERESUMoTdAc7RCKAYwHIAe2zOQmOSzwG45ezxDglcGbEtzuhcAMwzX06kYejPoRM/O2Aomw4gbHeQMbgAGAAsu4PEI4SqC1UFIByZD5YppBCKEIpT/4xAWqYqFNW5+aRUhRAWAGl3lnikaShCUQHh0N+DkJDSUoVw/PfY0fkgLSkU1YHfY1UFJKQ1H9KqA4C7APGY3akotfFGlnSBlFcDuN7uFHHsBfBzAJvtDjKKHwBYBuBau4OMYhaAagCFdgcZQzOA9QD22x0kLkW8mjN3nXvGuq8+a3eUeJre3Fzmb9p31fzbH/uR3VlGs+/RW7695K7nK+3OMZp3fnHbfUXLbn8jf/FHHPkPbw2/u/djmjsjc/ZN333c7izxdDe8Nr1x52OfufyzT37P7iyj2ffYh785/+M/2+TKnua3O0s8Db//6v9RXWkn5tz03VfszhLLDOnetn2l/xz2b0PPse2QDmyvKDWxgaELRDMB9NudIg4LQAjOzAYMrbxYcG6+wJn/OjUfMPSv3kE4N6MpFNXU3ZnOXMVSdBMClmPzneHwfFJRXYZjMwrFBBTH/h4Umh4BIJ2aL0rVPRHHZhTCEorzvsdCaqoQHkDocN5JP5TKuAeGiIiIiIhSBhsYIiIiIiJKGWxgiIiIiIgoZbCBISIiIiKilMEGhoiIiIiIUgYbGCIiIiIiShlsYIiIiIiIKGXwPjBERA4X9J/2tuz+1ZL+1oNzzKA/Uyh6RE/P7cqec83+qUs3vAehOfIO8ERERJOBDQwRkYM11Ty+oHn3Lz9uGaH02MeDPafQ17SvvG3fM0fn3PidJzOKFvTalZGIiCiZeAoZEZFDNdf+Zl5T9aOfjjYvroz8xszpy3f4pi6qVTRPPwCEeptmNzx33xeC/tNee9MSERElB1dgiIgcKNLX6mmqfuyTkFIBhCxY8tHfzVz3tV3R541gt/7u01/51GDn0QVGoKfg2Mvfunn+Jx592s7MREREycAVGCIiBzq25cGrLCOUBgC+kiuqY5sXANA8OZF5H3nwSdWV3gMAfS31y3pPVOfbkZWIiCiZ2MAQETlQX9OeZUMjIaev+dLWeDV6RkEoa9bqnQAAKZXWt393RdICEhER2YQNDBGRw/QcfbPQDPblAoAro+BUxtTF3aPV5l9+y/7oeLDl4IJk5CMiIrITGxgiIofxN+6bFh17cqefHKs2q2RFZ3RDf3iwq1BGAupk5yMiIrITGxgiIocJ9pwoiI5dvsKuRPV6WnYnAEBaam/TnrxJjEZERGQ7NjBERA5jBvy+6NidUeBPVK+6M4Zrwr3NvrFqiYiIUh0bGCIih7HMkCs6VnRPJFG9UN3h6DgS6neNVUtERJTq2MAQETmMNA09OhaqbiaqV1R1uMaKBNjAEBHRRY0NDBGRwwhVG151kWYk4aZ8yzSHaxTdGx6rloiIKNWxgSEichgl5pQwMzyYcEVFxpxyprsz2MAQEdFFjQ0MEZHDqN7Mvug43N+emajeDPUP17iypvaNVUtERJTq2MAQETmMJ7u0LToO97XlJqqPDPYMXTpZKGZW8bLOSYxGRERkOzYwREQOk1my9HR0HOw+MWOs2t7G2jzLCGYAgCstt1Xo3oSb/omIiFIZGxgiIofJnn1lq+bN7ACAcH9HSX/z2zmj1ba/8/zl0XFa0cIDychHRERkJzYwREQOlFm89K2hkRSntv/H2ng1kf42d++xnasAAEJYhYs/8lay8hEREdmFDQwRkQOVXrNxu6K5BwGgr+mt8uOvf78i9vlIoMt18Hf3fMoMD2QDgK9oYV1WaXmHHVmJiIiSSbM7ABERnU/3FQaLV9/1xKltD38OUipt7zz3kZ6j28vd2TNOWmbQHeg4eqllhNIBQEvLbp1147dftDszERFRMrCBISJyqKnL/lcDLPOXTdWPb7CMYEZ4oHNaeKBzWmyNJ7vk8Jybvvs/nsxpAbtyEhERJRMbGCIiB5u64jPvTpl3ww+a6n5z+UBL/Rwj0JMtVHdIT8vtzrtk3TsFi289CqFJu3MSERElCxsYIiKH032FwZlr79sNYLfdWYiIiOzGTfxERERERJQy2MAQEREREVHKYANDREREREQpgw0MERERERGlDDYwRERERESUMtjAEBERERFRyhB2BzhHI4BiAMsB7LE5C41JPgfglrPHtYNA2XG70ozhUgA9ANrsDjKKYgAeAEfsDjIKN4DZAA7aHWQM8wEcB+DMGzkKZY7mzpCK6uqxO0o8ZiSQLqWVrrnSnfpnBJFgb5HuyWqxO8dojFBfgaKnDSiKOmB3lniMYF+Ooumqonk67M4Sj2VF3FYkmK25fa12ZxmNEfQXKm5fhyKEaXeWeMxIIF9aRlhz+3rtzhJLQhGQUwqlFYAZmQVpvg4AdwHiMbuzUWrjfWDoAslrB/CE3SniuA/AXgBb7Q4yilsBTIMzPzsAmALg7+DcfADwTQCvADhtd5B4hBBf8uTNUnxFi96xO0s8faf3zQj7W2fmXXb923ZnGU3r3qcK8y67wbH52t559hpf8eJTnqySRruzxNPV8Ppi1Z3hziotd+RnGPI35fSerF3q5O9x675nrsu9dO1BVfUE7c4ST/fRbasglO6cWWvetTtLLClVLdy3oDAyeBgDrb3gHXfpQmEDQxfIrFMAvmt3ijg+A+BlAD+yO8goCgCUwZmfHQDMBXAXnJsPAL4O4BEMNarOI8T1nqxi9/SrvvK63VHiOf76/RVGsDffqfkAoHXfb69zcr72Ay+U+aYtqS9adnut3Vni8TftzdNcGZlO/QzbD/5hhr9x3yKn5gOA1refWVe0+OPbPbkzHbXCEeU/ve8yzZ1+3GmfoRHUvM210/4GYguALTanoYsJ98AQEREREVHKYANDREREREQpgw0MERERERGlDDYwRERERESUMtjAEBERERFRymADQ0REREREKYOXUSYicrieI1uLWvb+duVg59E5VnjAJ4Rqat6sTl/J0v3TV32xVvcVOvLeFERERJOBDQwRkYMdfaXy6o5Df/oApKXGPm5GBjNDB5pndR/dtmbm3/zDb/IuXd9kV0YiIqJkYgNDRORQx1//fkXHu6/eBABCKGZa4fy93rzZjTDDmr9x7+Xh/tYZZrAv99gf/9+d7vT8n2QUX9Ftd2YiIqLJxgaGiMiB+lsOZLXXv3AzAAhFNUqv2fjzgiUfOzpcIK1t7/7+npv9J2uvtIxgxtHX//3WxZ954nHbAhMRESUJN/ETETlQ4/aH10rL1AEgZ87Vfx7RvACAUOS8Wx54UUvLbQGAYNfxyzoPvjLdhqhERERJxQaGiMhppCH6Ww8sBoZWX0rWfKkqXpnQXFbu3HU7osftB19ekqyIREREdmEDQ0TkMJ2HXi+2IsEMAHD5ik56smcMjlabf/mH3o2OB9sPzU9GPiIiIjuxgSEicpi+lv1To2NvzoxTY9Wm58/zq670HgAwAv48I+jXJzsfERGRndjAEBE5TKjnVEF07PIVdCWq17yZZ64+JoX/VN2UyUtGRERkPzYwREQOY4UG0qJjPS2vP1G96vb1Rcfh/vb0ycpFRETkBGxgiIgcxjTCruhY0b2RRPVC0YdrzHCfa6xaIiKiVMcGhojIaSxj+B5dQlWtROWKqprRsTQivL8XERFd1NjAEBE5jFD1cHQszYiaqN4yI8Mb91V3WnisWiIiolTHBoaIyGEU3T3chBihfneiehk5e8qZqqezgSEioosaGxgiIofRvbm90XGkvz0rUb0R7M2Ojr15s3smKxcREZETsIEhInIYT25pW3Qc8jePfVlkaYhIsDcPAISiRnzFl3dPcjwiIiJbsYEhInKY7Fmrh29eGeg+NXOs2q7D24qkGfEAgCujoBFCk5Mcj4iIyFZsYIiIHCZj6uJuV3reaQAwBrsKOxv+PG202o76P1wRHfuKr6hPRj4iIiI7sYEhInKg7Fmrd0XHzTU/Xx+vZqD9UKb/VF05AAhFi0xddvveZOUjIiKyCxsYIiIHmn7Nxl2qJ7MTAAY7jy5495m7bzGC3cOXS+5trM1779n77rTMsBcAsmaWb/PmX9JnV14iIqJksfOGZ3kAVgJ4OUHdbABFAHZOeiIiIodQda85Z/0//+q9l/7ly9KMePynatfsffTWZXp6Xos0I67wYOdUSKkAgCe75PAlN/7ra3ZnJiIiSgY7V2BUAM8D2A3gZgDpMc8pAJYB+A2AdwGUJT0dEZHNsudc03LJTd/9qSt9ShMAWGbYG/I3zwoPdBQPNS9C+kqWVS345M9/IXSvaXdeIiKiZLBzBaYNQB2Acgw1KkEA0cuFvgLAOnPcDuDXdgQkIrJb9uyrW6+YdeXm9voXZ/SeqJkTCXRnCkUzPJlTO/OXfKQ+PX+e3+6MREREyWRnAwMADwJ4FEDWma+ovJjxQQBdyQxFROQoQpH5iz50In/Rh07YHYWIiMhudm/ifw5AYIzn+zDU5BAREREREdnewAQBbLZvxYgAAAGqSURBVBnj+UEk3uRPRERERETvE3Y3MADwEIDOUZ77I4BwErMQEREREZGDOaGB2YGhlZZzdWCouSEiIiIiIgLgjAYGAJ4EcO4lQAcA1NqQhYiIiIiIHMruq5BF/RTAHQAKzhybAH5lXxz6C7gBWWp3iPNdogFFOcA2B2YDgOU+oN8NHHJovm8WA78WwDGH5gOAWQpw81Rgc7fdSeJb5DbDxe7+Zl+O3UniMYIlaZbVpjg135AZcHQ+q1QxBqamOTWjNEtdluHVnJov7J/qg5wunJoPACBLxWBHTpYR8jnlH35HkEaJZimZHqd9hmZE8ZhhFVYkHUO3/yO6MITdAWLsB7DwzLgLwBUATtkXh8YmnwNwi90piIiIyPkU9VuwzG8DwF2AeMzuPJTanPQvCQ8DkGfG7WDzQkRERERE53BSA/NfGNq4HwTwgM1ZKLHPAigGnt9qdxAiIiJyNkv2VwIoBvDfNkehi4CTTiEDgNcAlAGYhqFN/OR48h8BfN/uFERERORoCwFxwO4QdHFwyib+qPsBfA5sXlLJ7wEctjsEERERORq3BtAF8/8Be2iv3/VhZlcAAAAASUVORK5CYII=" } }, "cell_type": "markdown", - "id": "44639340", + "id": "0050b6c4", "metadata": {}, "source": [ "
\n", - "\n", - "
\n" + "\n", + "" ] }, { @@ -625,113 +568,26 @@ "id": "cf189776", "metadata": {}, "source": [ - "### Implementation\n", + "### Parallel implementation\n", "\n", - "The parallel implementation of this method is closely related to the Floyd's algorithm. But there are some differences.\n", "\n", "At iteration $k$,\n", "\n", - "1. The CPU owning row $k$ does the loop over $t$ to update row $k$\n", - "2. This CPU sends the " - ] - }, - { - "cell_type": "markdown", - "id": "9c553ada", - "metadata": {}, - "source": [ - "The computation of the complexity of computation and communication is left as an exercise.\n" - ] - }, - { - "cell_type": "markdown", - "id": "6b17aee4", - "metadata": {}, - "source": [ - "1. **Block-wise row partitioning**: Each processor gets a block of subsequent rows. \n", - "2. **Cyclic row partitioning**: The rows are alternately assigned to different processors." - ] - }, - { - "attachments": { - "fig-asp-1d-partition.png": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABL4AAAI0CAYAAAATGeCIAAAACXBIWXMAAB7CAAAewgFu0HU+AAAAGXRFWHRTb2Z0d2FyZQB3d3cuaW5rc2NhcGUub3Jnm+48GgAAIABJREFUeJzs3XmcXFWZ//HvU1XdnU5nIyEhCYRVGBYBWRwQERFk2JRVUBxEXAYXXEcUB3QE11FREcF12BQFQWRRGJBNVFBQdhAwkIXsezq9d1Xd5/fHrfzsVN1Oeq17cvN5v155Kae2p+69ffv09557jrm7AGy+zOxsSVdXNX/N3S+oYw3Nkjqrmue4+y71qmFzYmbtklr6NLW5+4S06gEAAEA2mdmnJX2jqvk8d/9WGvUAaSikXQC2XGZ2uqRJfZpud/elI/Teh2tgx3e7pF5JayV1S+p097UjUQMAAACyzcxOkbR1n6Y73X3hCL33oZLGDOCpHZJ6FPdnexT3Z9eMRA3YcpnZREn/lfDQbe7+53rXAwwHwRdSYWY5SVdpw1Evz0kakeBL0i3aMFQbMDNbJ+kFSX+X9Lyk+yQ97gyPBAAAwIZ+KGlqn/8+RtKIBF+SfiFp1lBeaGZtkl7UP/uz90v6K/1ZDMJ4SecntC+URPCFzQrBF9JyqDYMvUIyQdK/Vv6tt8DMbpf0fXf/ezplAQAAIBRmtr82DL1CMl7SgZV/6y02s99I+oG7P5VOWQBQf7m0C8CWx8yaJH0t7ToGaZakcyU9Y2a/NLM90y4IAAAA6TCzBtXOmxS6mZI+IOkJM7vFzPZNuyAAqAeCL9SVmc2U9FtJh6RdyxDlJJ0u6XEz+5SZWdoFAQAAoH7MbKqkX0s6Mu1ahsgknSTpb2Z2oZnl0y4IAEYTtzpi1JjZBMWTfU6TtI+kNyn+JTuQSTpHw/skJQ3rbpHUKGmypB0k7SLp1ZIOUv8/I02SLpH0ejM7w917Rr5cAAAApMnMxkuaImkbxf3DwyWdrPSm7PiokudXGqu4f7qV/tmf3UvSwZIa+nmvgqQvSzrUzE519+oVurFl65D044T25+pdCDBcBF8YFWY2W9Kr0q6jyovu/thAn1xZyeTNkj6k/q/onSzpDjN7q7t3jUCNAAAACICZPSHpNWnXUWX2IPuz4xX3Y89RPPF+0t0Kx0j6nZkd6+5tI1MmNneVlUE/kHYdwEjgVkeMls3+2HL3Vne/2d3fLOm1ild3THKkpCu57REAACBTstCfbXP3W939OEn7Sbqzn6e+XtJ1lZXXASBTOLEBA+Duf5N0lKSPSColPOUMSZ+oa1EAAADAALn7U+5+vOLpP5Km6ThB0oX1rQoARh+3OmK03KB4fq/+nKR47q/Nhru7pCvMbK7iCU2bqp7yZTO71d3n1r+6gTOzaZK2U7yyT0HSMknz3H1JqoX1ozLh6s6Kj5epklzSCklLFdcd1bGOrSv/xkhaK2k5twQAAJBZN0v6y0YeP17StnWqZcS4+1WV/uxvFc8N1tfnzOxX7v58CqVtkpmNUdwXmyqpLGm1pBVZnG/XzJr1z75nJr+rmTXqn98xr39+R+abw4gi+MKocPeNXi0ys320mQVf67n7nWb2QUlXVz00VtK3JJ1S/6o2rhJ2fVjxyLTd+nnO3yT9QtIP3L27juUl1VJQHI6erHjeicn9PHWZmd2hOIi8sxJOjmQdhyju1B6t+PaAmlGyZjZPcaf4Pkm3uPuqkaxhE/Vto3ikYfVttt2SvkGnAQCAoXP3L27scTO7R5th8CVJ7v6AmZ0t6ZfasB/RKOm7kv4tjbqqVYKuExTXc7Tii7fVSmb2tOJJ/++QdK+7FxPe61TF05f09aK7V/fph1Ln8ZLeUNX8F3e/dRDv0awNv2vSsVXs811/K+n+pO86UszsI6rd5l9z99Yhvl9e8Xc7VvH3TPq7JDKz5yU9Iun/FPfx6dNiWAi+gCFw92vM7C2STq166EQz+xd3fzGNuqqZ2ThJn5J0nqRxm3j6gZV/55jZe909acWgUWdmR0u6XANbHGEbSe+t/HvSzD7g7o+OQA2vl/QVSW8cwNN3rPx7h6QfmNndkr7r7vcMt46NMbOtJd2reIWpvroknUQHAQAAbIy731QJbN5d9dBRZra/uz+eRl2SZGYNivt3n1Ny2NVXQdL+lX/nSlptZtcp7o/N6fO8LknnV722s3LHxpph1JqTdJniOxT66m9xrOrXNyq+/fRCbTpIbZB0QOXfRyStMrOfSbpslO46ebfivw/6ulzSoIKvylzIp0r6oqQ9NvH0nOIVSfdSfAx0mNmvJF3q7k8O5nOB9ZjjCxi6/5RUfYUlJ+ljKdRSw8wOlvS0pIu06dCrr90l3W9mR4xGXRtjZp9RfGVnKCuCvkbSn8zsXcP4/LyZXSrpTxpY6FWtoHiE2O/M7KKh1rEpZraVpHuUHHqd6O6/G63PBgAAmXK+4v5DtY/Xu5D1zGxbxaPpf6hNh15JJivuj//DzPbt036XpJernjtW0tlD+Iy+jlFt6PWcpAc29UIzm6V4ZNP3NbTRg1MUj/6fbWbV/cIgmNkExaPTbtKmQ68kLYoDuCfM7OSRrA1bDoIvYIjc/RXFt9hVOymAFR5PlvRHSTsN8fVjJN1mZnVbwtvMviHp60peZluK5zZYqnhOsv5uaWyQdK2ZDXqhgcpy37dr5Dp6LSP0Phsws4mS7lbt8uqdkk4Y7ZFmAAAgO9x9meKpLqq9tTL1RF2Z2f6SHlU8emu48pKa1/9HZV7YHyY874PD7Lufm9B2+aam4DCzAxWHXiPR384r7r8Hxcx2kPSQpONG6C0HczEf+P8IvoDh+XlC20yNzC/r4dhdtbcyr5V0naTPSnqXpLMq//9+xaFStXGSflKPZa3N7CxJn054qFvSpZJeJ6nR3We4+3TFAdfhkn6i2lU2TdK3zOyoQXx+QdKvlPxLuaz4CtW/S9pT8VXEqZL2lnS64rnelg/0s4ajcuvqnaqdn2J96HVvPeoAAACZktSf3UrS6+tZhJntJul3ivvS1ZZL+rbieaF2kjRB8WiwgxQHT3creaXKalepdoTbbpLePMSad1Y84quvtZJ+tonX7a74u85IeHiZ4nmDj1I8ncb673qwpI9WXhf8BPdmNkXJdyhIUrukHyue02w3xd9xhuJbON+jeGGJ9vpUii0Bc3wBw/N7xbc7NlS1HyzpsbpXk+yvkr6qeGLI3oTHv14ZBn6dan8xHSjp/Yp/MY0KM9tJ0vcSHnpa0inuXj0kXe5elvSgpAfN7PuSbpW0Q5+n5CRdY2b7DHCy+c8peRLXRyS9392fTXhspaRnJd1UmYfi3xUHif8ygM8bNDMbq3iY+CFVD3VKequ73z8anwsAADLvIUkdqh2tfrDi/taoq8xz9UvFt+5Vu0zSfydMqN4maZHiEWLfryz685+SPiRpfNLnuPtqM7te8dxRfX1YcUgzWB9S7WCSq9y9o78XmFmTpBsVh4vVLpX0BXdfV9W+/rs+IulyM5uueB7fDyrcUVBXSto1of1Xkj7u7our2tsU393xuOJ+/HjF++U/tZkuioZwMOILGAZ3b5OUNJH9nvWuJcFixZOc/6u739pP6CVJcvenJB0hKWlSzNGe4+Griq/y9PWCpCOTQq9qlUkuD5e0pOqhmYonCd0oM3uVpAsSHvqdpCP6Cb2qayi6+zWK9/snlTxXxpBVVjS6TbXzjnVIeguhFwAAGKpKH/GZhIfq2Z/9mJJv+fuku398IKsIuvsydz9f8XxbN27kqVcktL2lMt/WgFVWYXxPVXOkeL6ujfmk4jsH+nJJH3P3TyaEXjXcfam7f1rSLopHRwXFzE6UdGLCQ5dLOj0h9Krh7m3u/nXFI/y+q3jbAkNC8AUM3+yEtqSleevpAUmvdvfbBvoCd1+h+KpVtT0r8y2MuMrkpdUrY0aKR1mtHOj7uPs8JS8q8N7K1aKN+ZxqR+wtlPT2wa6M6O6Ru18qaT/FV+SGrXIF9GbVDsHvkHS8u29y4lQAAIBNSOrPJo3WGXGVAOmzCQ9dU+lXDYq7r3T3t0t6u6Sakf+V1SqrVy8vSDpnkB/1DtWOULtzYxduzaxF0mcSHrrS3ZPugNgod1/u7m+T9E5JQ16ZchRcnND2R8UjvTY691k1d+9090+o/4v0wCYRfAHDtyyhbVLdq9jQX4ayLLO7363kWzTfNvySEp2j2tDpN+7+0GDfyN1/pfi2zr4mKp7PLJGZTVLcKar2CXdfO9ga+tTyYqWeYancQvlL1c491i7pOHevy+0HAAAg85L6s0m34o2GU1UbIK1VvFrhkLn7je6eFOhJyaOy3l+54DhQH05o21R4dZpqt+tqxbctDpm7Xz+QOyXqobKy/L5VzesvbA951Ja7P+jufxpWcdhiEXwBw5c08eKmRhmFLGmlygNG6bOS5tW6bhjvl/TajU1yf7hqV8BZovi2wlSZWV7StZJOqnqoQ/FE9n+of1UAACCjkuakqld/9tiEtp8P5PbGYbhRtWHfdEmnDOTFlXDnwKrmf2jT84QlfdefDeT2xs1I9WT/knSPu/+j7pUAFQRfwPAlrYi4OS8ckbQy4Egss7yByrxV+1U1u+JVeYbqjoS2QzayRHX1nFmS9Et3r14psq4qK2leI+mMqofaJB3D7Y0AAGCEJfV96tWfPSyh7YbR/MDKvGZXJjyUNO1HkqTnXTaA2/jq/l1TkPQdr697FUAfBF/A8FWvgCNJm/NVmxcS2qZVliQeSa+R1FTVNreyYMBQzVEcDvU1TfGkmEkOTWh7dBifP2yVkO4nks6seqhN0rEM8QYAAKMglf5sZXXv7aqaS4pX9httP1LtBezDzKx6lfMNmNlUSadXNa+T9NNNvG5XxaPK+uqV9MSmS908VKbpODjhoerpSIC6IvgChi9p/oPRHJo9qipDrVckPDTS8zzMTGhLCt0GrHKVLWmVzW37eUl1R0uSnhpODcNRCb2uUO0S2+sUj/Qa9NxnAAAAA5BWfzapL/aPwS4wNBTu/oqk3yQ8lDR3V1/vVe1UGdcM4OJt0nd9wd17NvG6zckUSc1Vbd0aZh8fGC6CL2D4dk5oe6nuVYyspI7OhBH+jNHqYCVNSt9faDc5oa1m9Z86+rZqh863Kw69Hk6hHgAAsGXYJaGtv4nhR1LSHQUDXtl7BFyR0PYuM0vs91amo/hAVbMrebL8aml/13pI+o6rhzOpPTASCL6AYaj88tsj4aFn613LCKvHhP1JYdRwbnPc2HvUfJaZjZOUtHJPKqP1zOx/lLx6UbNqh8UDAACMpD0T2p6rw+cm9QfrOWXIfaodjTROtVNOrHe8aqfQuMvdk+44qJb2d62HLeE7YjNE8AUMz2skTUpof6TehYywfEJb1wh/Rn8Tzg9X0qSiSZ/V3/lvU5OSjobxks7v57G8pOvN7Ig61gMAALYQZrabkqegqEd/NqmPVre+WGWajB8kPNTfJPfnJrRdPsCPS/W71klS/zpr3xGbIYIvYHhOSmhbqpQnSB8BExPaRnoo9pqEtpEYVZY0ND3ps9okFQf4+nqrnuuhSdKtZvbaNIoBAACZltSfXSvpwTp89uqEtqR+6Gi6VrV3O7zazDZYnbAyOf2/VT1vtqS7Bvg5IXzX0ZY0ZUjWviM2QwRfwBBVVi15T8JDt2TgPvakYcojPfdVUhiVNHpusJLeo+azKlf4kjogI7165WC44tsdT1S8yk9f4yXdaWZJtyIAAAAMWmXajvcnPPQbd0+6QDjSkvpiSXOwjhp3b5V0XcJD1ZPcf0i1o7auGES/P/XvWgdJ33GrynEGpIYDEBi6D6t2dRbXwIc7B8nMZql25NU6jfz9+UsT2pLmSxuwyi/Vf0l4aEk/L0kaxbbvcGoYhrKk/3D377r73ZLeLam6I7W1pLvNbIe6VwcAALLoPZJ2TWi/rE6fn9QX+xczq141cbQlTU5/splNlyQzGyvp7KrH2yVdM4jPSFo1fQ8zS5pzdnO1WrX912YlH2NA3RB8AUNgZrtIujjhod+6+9/rXc8I2y+h7fHKCKmR9LhqbzXcwcz6W4FxIHZRbWi3Sv2vsvlMQlsatxNGks509yvXN7j7DZI+nvDc7ST9zsym1as4AACQPWa2naSvJTz0gLv/rU5lzJbUXdXWoHge3bpx92ck/aGquVH/HA33TtXeEfHTymixgfqHakf0N0naZxDvETR371H8PasxXQdSRfAFDFIlmLlZtfer90r6TP0rGnEnJLTdO9If4u5dkp6oajbFq+UM1VsS2v68kdDu4YS201IYjt1RCbo24O6XS/piwvN3k3SXmTFnAgAAGDQzGy/pV5KmVj1UlvSpetVRuZ3yrwkPvb1eNfRxRULbOWZWUO2k9oO+y6MSCiUFiml819GU1L/O2nfEZobgCxgEM9tW8bLHSbfDfcPdq5dD3qxUOkGnVzW7pF+P0kfel9B21jDeL+m1GwvtfqPalWa21/DCtxHl7l9Q8mpD+0m63cya61wSAADYjJnZNpJ+J+mghIe/5+7VFyZH220Jbe+q9Evr6RZJi6vaZikeFVc9Au1ed39+CJ+R9F3PMrOWIbxXqJK+47FmtlPdKwEqCL6AAbDY2yU9qeRbAf+o5JE5m5uvqPZWwbuH+It9IH6k+MpiX0eZ2VGDfSMze6dqOyXtilfqSeTu85Qcvl06nA6Ime1kZqcO9fUJPiLpxoT2wyTdWFloAQAAoF+V/uxJivuzByc85a+S/qu+VUmKJ5avvgVwipJvwxwwMzuxshLjgFRGn/044aHzEtq+N8SyrpLUUdU2TXEffMjM7JTKVCwh+D/Vzq+bV/I8agNmZgeb2aHDeQ9suQi+gI0ws4ZKB+EJSTconly82lxJp9Vp5ZtRY2anqXYYtyR9e7Q+093nK/mq0A/XTyY6EGa2s5LrvNbd127i5V9PaNtZ0k8HO9momeXN7BzFx0tSh3JIKqsFvUvJo9feIukqVssBAABJKv2T4yU9onhUU1Ifa5GkU929er6tUefuy5Q8SfyHzCxpBfWNMrOtzewnkm7V4Ffr/olq56CtNkfSHYOtS5LcfaXiC7/VPmpm7xrs+5nZVDO7UvE0LMOZJ3fEVP4mSuqXH2NmXxrs+5lZi5l9WfFAA0aNYUj4QwmoMLOcmc0ys8PN7Bwzu1Hx6iu3qP+V/l6QdFjlF3ZIjjazYwYShphZo5l9VtL1qj0n3KFRmN+ryoWSOqvadpZ030Cu0pnZvpIekLRN1UMrJH15U69393uVHL6dIunOgVw9qxw7b5H0mOLOzIjPveXuvZJOVvI8GGdKunSkPxMAAGxeKqO6tjWzw8zsfWZ2vaTlkn6r/icYn6u4P7ugboXW+oLiBYn6ykm60sy+VFlVcaPMbKKZfVrxhPnv39Tzk7j7YsV9/435fuWi5FBdImlNVVtO0jVmdtFAprGofNfzFX/X9w6jltFyuaQXE9o/Z2ZXmtkmA0kzazKz9yn+e+tCSYURrhFbEA4ejAoze4ekCRt5SnVIIUknmNleG3nNjQMYvbMxN5pZ0lWsFsWrtkxSPLn6QN0h6ezKlZvQ7K94mPErZnaLpN9Lek7xktEdiq9+7SDp3xTPi5UU7iyX9L5RWM1xA+7+gpmdp9rhz3tKetrMrpB0vbs/tv6BSqB3kOJRUP+h5HPZ+9196QDLOEfSAYpXTOzrSEl/N7MbFHcYn1I8dNsVTwb7aklvVBySjfoVKHdvN7PjFF/x2r3q4Y+a2Wp3v2i06wAAYEtgZm+TNHkjT9k2oe1YM9thI6+5xd1XDKOsq82sK6F9rOIVAgfbn71P0rvcvfrWtLpy96Vm9n7FI5f6Xog1SZ+TdLaZ/VzSXZJeVtxPHat4btZ9JR2reBT8uBEo5wrVznm7Xofi2xWHzN2XVO4QuFEb7quc4gDwvVXfdYXiv1dmKZ7W41jF89GOxHcdFe7ebWb/rnilzOrQ8r2STjaz6xT/vfK84v3ZIGmG4v35ZkknKfluG2DQbJT/psUWysxeVjxqZyTtOdC5psxsjeJf/KNhmaSLJf1wtEOhgTCzsyVdPcJv2y7pLe7+4ABraFbtqK057j6guQbMzBRP4P6BjTytW/G2N8XBadNGnvtVd79wIJ/dp4a9FI9uG/Atlptwibt/up/PalfcgVmvzd03FhRXv357SQ+pNqiTpI+5+1DnnQAAABVm9pSkfUb4bf/V3ZNGbyd9/iuKw47RsFLSVyV9d5ijl0aUmX1I8Wihkboz6XXu/pch1PG0pL0THvqRu39w+GVJZvZRSd/V4ILKjXmtu9esGlkZBfeNqubz3P1bm3pDM/urpAOrmme5+8KBFFS5xfZXksYM5PkDcJa7/2yE3gtbEG51BAZuieLlnXd29x+EEHqNklWSjhxo6DUSPPZBbfzWxDGKR6ltr/5Dr0jSBYMNvSo1PCfpECUvMz0UwxmduFHu/oqko1V7S4AUT8x/5mh9NgAA2KytkHSB4v7sd0IKvSTJ3X8g6TSNTD+qV7UTyQ/UFf20Xz7E96tRuVD5dkmtI/B2Paq9CJ06d79D8eitkbiNNtLIbCtsgQi+gP4VFd8e+E1Jb1B8dePb7h7cL5UE1yi+FXOw4dxvJB3g7o+OeEUD4O6fV3zb4FB+OT4v6Qh3H/IKQO4+V3H49UHF810MVrfiudIOdvdhrc6zKe7+d8VD+qs7dDnFk92/dTQ/HwAAbBZKiudI+o6kN0ma4e5fc/e2dMvqn7v/WtJeiucvHUq/e4ni1dZ3dPdnhljGvIS2B9z92SG+XyJ3v0nxd71MUtItrJuyWPGdKDtW+obBcfeHFI+eS5rHbSDWKt4+/+Lut49kbdhycKsjRoWZfUUjf0/2RQOdf8DMvqPa+8mTdCq+QtKquGOwVtJCxRNFznP30hBrrRsze52ks6uaL3P358zs1ZLerXhS9P5uO+yQdKeka9z9ziHW0KDaK2ArhzLyqvJ+jZLOkHSipKPU/xwGayTdrXg+iFvcvTyUz+unhoLiuQWOVDyP1x79PHWBpL8oDhpvdfdNXokys8u04ai1bnf/+BDrfLPiK6PVuiR9PuSOLQAAITOz/1byPF7D8TV3nzfAz/8fDWylvvX92XXasD/7kqS5m/PK42Y2VdI7FPfFDlM8x2q1kqRnJT2suE/44HD7hGZ2h6TjqppPcfdNTXw/nM+cpg2/a9LfUuu/658Uf9c/bGrUnpn9m6RTq5p/5e73DKCmCxTfcdHXZ929enL+ATGzcYpHuR2u+Hsm3crriifG/4vihQbudveeoXwesB7BF7CFMLNtFE8YP0XSeMVD3RdJesHdh3KFqS7MrEnSbpKmKZ5/yxVfyVsu6cV6hZNmNkbxtpuiOLRqVRzura7H5wMAAGzpzGyC4kBoiqSypNWSlrp70gJWQ/2MPRTf9dF37q35knYZyYusA6hjguKgb7LiwGuNRvi7ps3MWhTvy60l5fXP/TnUW1SBRARfAAAAAABIMrOfSHp/VfP57l49QTyAzQTBFwAAAABgi1e5tXK+pOY+zV2K5/odyvxUAALA5PYAAAAAAEjnasPQS5J+TugFbN4Y8QUAAAAA2KJV5pWdp3hO2b5e4+5P1b8iACOFEV8AAAAAgC3dWaoNvf5A6AVs/gi+AAAAAABbLDMzSZ9IeOh79a4FwMjjVkcAAAAAwBbLzI6VdGdV82JJO7p7MYWSAIwgRnwBAAAAALZk/5nQdgWhF5ANjPgCAAAAAGyRzOzVkp6WZH2aeyRt7+7L06kKwEgqpF0AAAAAAAApKUl6e1XbSkIvIDsY8QUAAAAAAIBMYo4vAAAAAAAAZBLBFwAAAAAAADKJ4AsAAAAAAACZRPAFAAAAAACATCL4AgAAAAAAQCYRfAEAAAAAACCTCL4AAAAAAACQSQRfAAAAAAAAyCSCLwAAAAAAAGQSwRcAAAAAAAAyieALAAAAAAAAmUTwBQAAAAAAgEwi+AIAAAAAAEAmEXwBAAAAAAAgkwi+AAAAAAAAkEkEXwAAAAAAAMgkgi8AAAAAAABkEsEXAAAAAAAAMongCwAAAAAAAJlE8AUAAAAAAIBMIvgCAAAAAABAJhF8AQAAAAAAIJMIvgAAAAAAAJBJhfX/x0wflrR9irX0NVGEcgAAhOYJd/0w7SIAM71L0l5p11ExXn361AAAIAgvu+sbkmTuLkky08OSXpdmVQAAIGi/dtepaRcBmOnXkk5Ouw4AABCsh931ekkqmOkd0oOzzHY6wD2UAV8AACA0lnv2WLP8h6Q9FrvrtrTrwZbHTCdJL063XPkYj/ZMuxwAABAos/kHms37tPTGBSZVhnwBAAAMzDJ3TU+7CGx5zLRM0rS06wAAAJuPmvkImlqkxjFplLJx7avnadzkHdMuo18daxd687iplis0pV1Kou725crlG9XYPCntUhKVip3q7VzrYyfOtLRr6U/4x+AiH9My2fINzWmXkqinY6WknDe1TA5yH0flXnW1LVPLpFlpl9Kv9jXzNW7SLMnCnAKxs3WxNzZPtEJjS9qlJOrtWqOoXPIx46YGeQzKXe1rXtG4yTukXUmNnk6ptyvtKoBajc1S09i0q6jVvnq+xm21vWRhnm46Wxd5Y/NWVmgMcONJ6ulcLXf3MS1TgtyAHpXU2bpYLVuFe7dM+5r5apm4nSyXT7uURJ2tS7xxzHgrNI1Lu5REvV2tKpd6vHn8tCCPQalyngmwz7Bex5oF3jxhuuXyDWmXkqirbakKDWPVMGZC2qUkKvW0q7en3cdOmB7wMRjm38e9XXHfta+aEV8HnSjtfXgdqxqgn1042d/1ldXB7vQbv7Jb8Yizrm/YetYBaZeS6P6fvkNTttsv2veI84P8i3nB83fq8bsuLp34yUeCnRz2pxds5Wd9ZbWF2om9+Zv7FF934ncaZu52ZNqlJHr45o8oX2gqHXTit4Lcx6uXPK37rj6tfNoFL4bZQ5T0889vE512wYu5UAPs2y49uLjvEZ9p2HGfU9IuJdHjd1+stlVzim9857VB9sBKxS7dcPGs6MwvrwzuPP3IbdIzv9+giRFfSEX1iK+93yQddEKKBfXjus9tHb3jCwtyhUAvRt3yrf03V+wPAAAgAElEQVR7Dzz2S42z9jw+7VISPfqbz6jU01485G3fD/J83b5mvn57+eHROz4/N7jz9Xq/+MLM8snnPZ5vHh/mqfo333tDac/Xf6iwy/7vTLuURM/cf4mWL3i0eOS7bwzyGFQU6br/nuZnfnllmH+YSLrhSzuWjvnAXYVJ03ZPu5REd//vW6NZux+T2/PQc9MuJdFLj/1csx+9unjsh+4N8xhUuBnNMw9Ij9y+YVuwJ2sAAAAAAABgOAi+AAAAAAAAkEkEXwAAAAAAAMgkgi8AAAAAAABkEsEXAAAAAAAAMongCwAAAAAAAJlE8AUAAAAAAIBMIvgCAAAAAABAJhF8AQAAAAAAIJMIvgAAAAAAAJBJBF8AAAAAAADIJIIvAAAAAAAAZBLBFwAAAAAAADKJ4AsAAAAAAACZRPAFAAAAAACATCL4AgAAAAAAQCYRfAEAAAAAACCTCL4AAAAAAACQSQRfAAAAAAAAyCSCLwAAAAAAAGQSwRcAAAAAAAAyieALAAAAAAAAmUTwBQAAAAAAgEwi+AIAAAAAAEAmEXwBAAAAAAAgkwi+AAAAAAAAkEkEXwAAAAAAAMgkgi8AAAAAAABkEsEXAAAAAAAAMongCwAAAAAAAJlE8AUAAAAAAIBMIvgCAAAAAABAJhF8AQAAAAAAIJMIvgAAAAAAAJBJBF8AAAAAAADIJIIvAAAAAAAAZFKhumH+s7dHna0PRmkUszFRuVh45LZPldKuoz+l3o7Cs3+4tNw8bpqnXUuS1Yueyne2LrbutuVBbsO21fOsY+3CfMj7WB4VHrn9vGDr6+1cW3j+4R9FC56/M7ifX0laNvfhvOVywe7jzral6u5YGfR5JvJy4bH/++9SLt+QdimJutYtLcz+60+jZXMfCvIYXD7vz7ne7nXB7mOPyvIoCrK+JS+dmJMO42IZgrPkpQejR267PbhzjkdR4W+//WzJcjVd7SD0dKxsePEvV0WLZ98f3LaTpKVz/piLSr1Bng8lqdjTpt6uNcHWJ0lRVCo8cfcXS/mG5rRLSdSxdmH+pcd+Ea1c8FiQx+CKBX/LdbUtC3ofl4pdQddXLnbnn77v6+WmsZOD/Pu4denz+XKxy9tWzSmnXUuStcteyLWueCnofRzqeXrFK4fnpLdu0G+t+W3sUTlXLvUE17mNSkUvl3rC7D1IKvV2RMWe9nzjmIlpl5KoVOpSsact2G1YKnaqVOoKtj5JKpd6gq6v1NsRFXvbgvz5leJ9bFKw2zAqFeXyYOuTJC+XvFTsKuQ9yD6iSsXOqLd7XcDHYJeKPe1RqPvYo7KiqBTkMeheTLsEING05Qty+7b9Mbhzzj+62/zVTz9UKAR6c8XCtlXRti8/mdtpwYIgC+zpmq/uqOj7dv4xuPOhJLVHPZrX3en7PhlmfZL0Umer7/bMw4Vxuca0S0m0pG1FtE3XM7ndFy8P8hh8qmuRVpTbo5D38exiUSHXt6CzzXd/4bH8hNyYtEtJtLx9uW/d0W37LF8X5DZ8qWeFOntXBn2emV3sDbK+v/fsoKVVbTVF7rjPydr78JPrVNLAvfz4L3TIqZenXUa/Fr7wu/J+R30ut/WsA9IuJVF3x0pN2W4/3/eI8y3tWpIseP5O9XSsLh9y6uXB/eCs99JjP9chp3xPsiA3oZbM+UN5n8PPy83c7ci0S0n08M0fUb7QVD7oxG8FuY9XL3laqxc/FR1y6uX5tGvpz9wnb/KDTvimNTZPSruURCsW/K281xs+kttxn1PSLiXR43dfrLZVc8qHnHp5kJ3sUrFLc5+6yQ859fLgTjKP3CatWpR2FUCtQ8burM9OPS7tMmrc0facf27qMTbGgvyVpye6FpbO3urgxje17Jp2KYm+vvIedZR7SxdNOy7IIc6LSq36a9crftG044I7X6/3u/YXovO3fnN+amFc2qUkerFnWXTGpANzJ4zfO+1SEv1kzcN6qmtx+aJpxwXZZ4gUn2dCPgYf6JhdPnfyYYVdGrdOu5REi4utfljLq+zMSa9Nu5REt7c9o5tanwz2PChJv2l7VhdNC+938P+u2V2Pd23YFuQPMgAAAAAAADBcBF8AAAAAAADIJIIvAAAAAAAAZBLBFwAAAAAAADKJ4AsAAAAAAACZRPAFAAAAAACATCL4AgAAAAAAQCYRfAEAAAAAACCTCL4AAAAAAACQSQRfAAAAAAAAyCSCLwAAAAAAAGQSwRcAAAAAAAAyieALAAAAAAAAmUTwBQAAAAAAgEwi+AIAAAAAAEAmEXwBAAAAAAAgkwi+AAAAAAAAkEkEXwAAAAAAAMgkgi8AAAAAAABkEsEXAAAAAAAAMongCwAAAAAAAJlE8AUAAAAAAIBMIvgCAAAAAABAJhF8AQAAAAAAIJMIvgAAAAAAAJBJBF8AAAAAAADIJIIvAAAAAAAAZBLBFwAAAAAAADKJ4AsAAAAAAACZRPAFAAAAAACATCL4AgAAAAAAQCYRfAEAAAAAACCTCL4AAAAAAACQSQRfAAAAAAAAyCSCLwAAAAAAAGQSwRcAAAAAAAAyieALAAAAAAAAmVSoblgy+wF59Nc0atmocm+Xnr7/G2mX0a/ertX5F//yv1o8+760S0m0ZvGz6m5fbiZLu5REq5c+p/Y18/Mh7+NyqUdPP/DNtMvoV2/H6vycJ2/UyoWPpV1KohXzH1W+oTkX6j7uaF2k3q61wdYnSeVyrz33x8uUL4xJu5REHWsX5uY88UutW/lS2qUkWvLSg+puXx7seSaKSiqXixZifSsWvEnSa9MuA6jxdM8i/XjNQ2mXUaPbi3bVmodVsHzapSRaUWrP/2bdM5rduzztUhI91rVAnVFvPsR9K0lry11qLXdZqPVJUmfUm/vZ2kc1Lt+UdimJFhfX5R5on62lpXVpl5Lozx1ztaLcngt5H/dExSDPf+t1R8XcTeue0OT82LRLSTSnuNJKHZE6vTftUhI93bVY83pXBXselKRiVAryGHy0c2ZNW03w1b52UXnlgseiulQ0GLlcw8oFjxXTLqM/lisU1q18udzTuTq8bSep2NOWt468hboNO9ctyXlUzoVanyTlcoWgj8GoXCy0rphd7u1aG+Qx2Nm2JF9obAn2GOzuWKlyqSfofWxmDasWPlnM5RvSLiWZe6GjdWEkqZx2KUm625fnS72dwR6D7mWZWZDHYNe6PfNilDgCtLbhlWjeuPuCO+c0tnrD/HG/L+bDvN6ofIcX1ox9Jpo39tngtp0kdfR6vuyyeeOWB3c+lKT2kqQ2b5g37r4g65OkxnXesKDlj6XmgnnatSTpbfPCijGtUfO4MI/B5b3Kd5rnQj0GJclXh30MWpsKC5v/XFrXqDCPwQ4vtI9Z7fPGvVxKu5Yka+S5qKxcyPtYa8I8BteU9s+pQxtceaoJvnZ97Zn5vQ8/M7jLUz+7cLIf8e5fBvrXnnTjV3YrvvYtX2vYetYBwW07Sbr/p+/QlO32i/Y94vwgt+GC5+/U43ddXAp5H//0gq38iLNuaJCF2Yu9+Zv7FPc76sKGmbsdGeQx+PDNH1G+0FQ66MRvBbmPVy95WvddfVo55GPw55/fJjrsjKsaGpsnpV1KotsuPbi49+Gfathxn1OCDEgev/tita2aU3zjO68Nch+Xil264eJZUYjH4CO3Sc/8Pu0qgFonzPLcN17rwZ1zpv5C0U8P84bmIH8jSwfcpt7P7K3G42eFt+0k6fy/SW1FFb//Og/ufChJ89ulN/2fohsOD7M+Sdr2BpV/9HoVpjcHmTnosDtU+uAeXnjnzmFeVLnkWenRFSqGuo8jSdv8Qh5qfZK0000qffsgFXafmHYlyU64R9HR2yl37h5hbsOfvyxd/VK4x6AkTQn0GLzk2UhPVd3EGOSJBgAAAAAAABgugi8AAAAAAABkEsEXAAAAAAAAMongCwAAAAAAAJlE8AUAAAAAAIBMIvgCAAAAAABAJhF8AQAAAAAAIJMIvgAAAAAAAJBJBF8AAAAAAADIJIIvAAAAAAAAZBLBFwAAAAAAADKJ4AsAAAAAAACZRPAFAAAAAACATCL4AgAAAAAAQCYRfAEAAAAAACCTCL4AAAAAAACQSQRfAAAAAAAAyCSCLwAAAAAAAGQSwRcAAAAAAAAyieALAAAAAAAAmUTwBQAAAAAAgEwi+AIAAAAAAEAmEXwBAAAAAAAgkwi+AAAAAAAAkEkEXwAAAAAAAMgkgi8AAAAAAABkEsEXAAAAAAAAMongCwAAAAAAAJlE8AUAAAAAAIBMIvgCAAAAAABAJhF8AQAAAAAAIJMIvgAAAAAAAJBJBF8AAAAAAADIJIIvAAAAAAAAZBLBFwAAAAAAADKJ4AsAAAAAAACZRPAFAAAAAACATCpUN0TlkkqlUhq1bFKp1J12CRvhisq9wdboUaQoKgZbX1Qqyj0Ktr71SuWetEvoX+SKyuHuY4/K8ijcfRyVeiV5sPWtF5V6Aq4x7PNgFJXkUTnc+krx+SXE+iIvKKHLAKSu5FJ3Oe0qkvWUJUu7iH64ZL0Bb7tSFPa+7Y0kV7j1rdcThVujSyoGXF/RpUjh1ueV/w21vvV6A97HkcI+zxRdKivc+tYLsb5SVNtmknvfhrG5C3xM7rJ61TRgbeVuG58f45t+Zjp6o5LlLed5C3MQXUe5RwXLW1OuEOQ2LHpZPVHRxgW8jzvKPdaSbwq2vm6PrCB5IdBjsL3co4LlbEyuIchtWPJInVGvTQj4GOyOSjYm0J9hSeqOipa3nBosH2SN3VFRLrfmXGOQ9UlSV1S05gB/Rjqjr1p39LG+TcvcNT2terDlMtMySdPW//fYpkvUMubTwf3MdHTLWprkoSZf3T2yfF7eEGie3dktyWRjmxTcvpUkj6TWTtmkcWHWJ0ldPbIxjXIL9Bjs7JYVClJjIcxt2NEVB8TjmsOsT5LWtMu2CvgY7O2VFQryXJh/mqitU2pskDU1hLkNe4pSb1E2fmyY9UlSa4dsYkt49XX2nKeO7m9ucPar+XX38SmH2/u2aqxfVQN0wMvf8Ed3Pi/QU7f05nnfK146/W0Nrx4zI+1SEn18ya+0V9PM6JzJhwR56vl9x2x9b9WDpZu3f3+gXTBp/5e+7o/sfF6o/QcdP/8HxQunHtNwyNid0i4l0UXL71STFUr/NfXfgtzHL/Qs00eX3FS+Z8eP5NOupT8HvXxJdM+OH8lNyI1Ju5REb3vlyuJ/TD6k4ehxewT5Y3LZqge1sHdN8RszTmpIu5Yk3V7SG+Z8J3p05/OCO09/bcWBunJN2lUAtT58rPTNs8OLl7Z+l6L5/6tcc3hdaknS/p9S75fOUOPxB6ZdSbLPXCu1d6n4/Q8qyPP1/BXS4RcqmvvjcKeNmfkelR//tvLTt0q7kmRvuEClDx2jwjsPC+/nV5IuuVV69B8q3viZMI/BKJKmvVu+/Nowt58k7XiOSnf9twq7b5d2Jcne+mVFx+wvO/e4MLfhzx+Urr5PxXu/GOYxKEmTzwzzGLzkVunT12zYFuzJGgAAAAAAABgOgi8AAAAAAABkEsEXAAAAAAAAMongCwAAAAAAAJlE8AUAAAAAAIBMIvgCAAAAAABAJhF8AQAAAAAAIJMIvgAAAAAAAJBJBF8AAAAAAADIJIIvAAAAAAAAZBLBFwAAAAAAADKJ4AsAAAAAAACZRPAFAAAAAACATCL4AgAAAAAAQCYRfAEAAAAAACCTCL4AAAAAAACQSQRfAAAAAAAAyCSCLwAAAAAAAGQSwRcAAAAAAAAyieALAAAAAAAAmUTwBQAAAAAAgEwi+AIAAAAAAEAmEXwBAAAAAAAgkwi+AAAAAAAAkEkEXwAAAAAAAMgkgi8AAAAAAABkEsEXAAAAAAAAMongCwAAAAAAAJlE8AUAAAAAAIBMIvgCAAAAAABAJhF8AQAAAAAAIJMIvgAAAAAAAJBJBF8AAAAAAADIJIIvAAAAAAAAZBLBFwAAAAAAADKJ4AsAAAAAAACZRPAFAAAAAACATCL4AgAAAAAAQCaZ5N63YUL+81FL7ntRWgX1p73cUxiXbyqlXUd/uqLeQpMVopzlgtt2ktQR9eSbVFAhly+nXUuSopet6OX82FxjsPs49GOwM+rNN1uDm1mQx+C6cle+2RrVEOgxWFLZusulfND7uNxTGJtvLEvmm352/XWWe/NNuYLnAz0PdkfFnEnWlGsI8hiUZB1RT74lF94xuK78lVxHdG7fi2XL3DU9tYKwxTLTMknT1v/3tInfjrbd+tPBnXNeWhwVdpmeK1tOQZ6v5y+PCpPHWTR+bJh9hiWrPB+5a9utc0Ger3uL0stLo8Ies3LBna/Xm7M0Kmy/tZULhTD7DPOXRfmJLaZJ4yzIfbx8ree7etx22Cbcffzc/Kiw1w7h1jdvWVSYvpWVxzSGeQzOXer5CWOlKRPCPAbXtHludbvndpkR7j5+fkGY58Fla8/LLV719Q0GeRWqn/TOiQfkTpt4VnAjwU6e/xO/bruzauoNxdkLrytfOPXo/K5NU4PbdpL05eV36VWNU/0dkw4Ichs+2jVf1655pHzFzNODrE8K/xj8j4W/KH14ymGF/Zq3C/IY/M7K+9Wcayp/cPLrg9yGL/eu1JeW3xVds92ZQdYnSae/cpX/aOYZ+ZZcY9qlJPrY4ptKp0/cv3Boyy5BHoM/XfOolpTWlc6f+uYg93Gvl3XGgquDPM/8cPUeuqk17SqAWuN2eltuxiH7BnfOee6qU3ybo67P5wtNaZeS6OVffrA0YZ8zC9N3OTS4bSdJqx/6gUo97eUZR3w6uPOhJHW2LdOcWz4RzTj6+iDrk6S/X/v2aOrh38+PaZmSdimJ5t38ifL4PY/Nz9jj6CC3Yefjv1Bx2QulGUd/Mcj6JNezV53qM47+daD1SS/87N/LU1//5fy4yTulXUqihb/9rI/d7gCb8ZrTgtyG5RfuUevz/1eecfS3g6xPkp658iSfcfStwdXX9eT2Wvzwhm01RW6VH6sdGibXq6YBM7Mg61ovbxZNL0zIh1rj2Fyjtsq3+A4Nky3tWpLM7V2lJit4qNtvve0bJivIDSipIZf3aYXxwf6cTMqPDXofd0VFFSwXbH0Vvl3DJJuQG5N2HYkarOBbF8YFewxOzDerrdwd7D7u9pJMFuR5OtRjDmjZanvN3HX7tMuokcs3+IxXvckKDc1pl5KooXl8NHX7AzVz1yPTLiXRwhfuVqmnPZq565H5tGtJ0r5mvvKNLcFuP0nK5xt9xi6HqXl8mINzG1sm+ZTtXhPsNly14An1drd5qPUpipTPNwS7/SQp3zDGp+10qCZN2z3tUhKNGT/dJ8/Y20Ldhp3rlmrVwr8Fex6UFOwxuGphbVuQV3kAAAAAAACA4SL4AgAAAAAAQCYRfAEAAAAAACCTCL4AAAAAAACQSQRfAAAAAAAAyCSCLwAAAAAAAGQSwRcAAAAAAAAyieALAAAAAAAAmUTwBQAAAAAAgEwi+AIAAAAAAEAmEXwBAAAAAAAgkwi+AAAAAAAAkEkEXwAAAAAAAMgkgi8AAAAAAABkEsEXAAAAAAAAMongCwAAAAAAAJlE8AUAAAAAAIBMIvgCAAAAAABAJhF8AQAAAAAAIJMIvgAAAAAAAJBJBF8AAAAAAADIJIIvAAAAAAAAZBLBFwAAAAAAADKJ4AsAAAAAAACZRPAFAAAAAACATCL4AgAAAAAAQCYRfAEAAAAAACCTCL4AAAAAAACQSQRfAAAAAAAAyCSCLwAAAAAAAGQSwRcAAAAAAAAyieALAAAAAAAAmUTwBQAAAAAAgEwi+AIAAAAAAEAmEXwBAAAAAAAgkwi+AAAAAAAAkEkEXwAAAAAAAMikQnXD9Wsfj/7Y8TNPo5iN6fZi7uyFPyunXUd/VpY6Cp9f/ttoYm5McNtOkp7vWZZ7snuRPdz5cpDbcFWp0xaU1uRD3sc9KuXeE3B9y4tthUtW3htNCPQY/EfvilyTFXIv9iwLchu2Rz1aUWoP+jzT46XcuYt/Wc4Hes1ibu/KwndWPuDXr/1blHYtSeYVV1tX1BvseSaSq9dLQR6Dc4uzctIhlnYdQLXlcx/2J+6+J7hzjrvnn7r3K+VcriHtUhL1dK5pePnx633lgjDP18vmPpwrl3oKT9x9cXDnQ0nq6Wq1YndrLtT6JCmKyrmnH/hW1Ng0Lsh+YWfrkvy8p3/t61bMDvIYXDr34Vxn66Jgj0FJKhe78yHXFxW788//6fvRmJYpQR6DbStm5xa6vKdjZZDH4KrFz1jbqrlBH4NRuRTkMbh07iEmHbXBH0w1wdeeY6blDh27V/2qGqAnuxfpuPF75dOuoz9ziquiN7a8KjezMDHtUhKti3o0szBRh7XsEuQ2/EfvCnW093jI+/ip7sXBH4P/2rxjbufGKWmXkqij9QmNyzfp2HF7BpnaLCq2alGpNehj8O89S/2ocXvkx1jNqTsIi0ut0cFjd8zt2TQ9yG14f8dsrS51RKHu46JHeq5naZDnmTvbpmhRMe0qgFoTFs+27VffEtzPzLNdrb7dn2/PFyzIX3l6qX1pNOnvf8zNang2uG0nSau7F6rHS759a3j7VpI6vEezu9p8+4fDrE+SnutY49v+9Y5cc64x7VISzelY4uM7um37uS8FuQ07epaqt9wR9D5+ttijkOt7uXOdz3zinty4XFPapSSa37HQx7aute0XLghyG5Z7V2lt76qgj8HneruCPAZ7eidokY7aoK3mr6d9x2yn0yfuX7eiBurrK+/10yfuH+zV5h+veaj85pbdc68eMyPtUhI91DlHezXNjE6fuH+QPbDfd8zWE10LyqdP3D/Mv+gl/c+Ke/y0iftbqAfhtWsfKR/W8qrcIWN3SruURH/vWaomKwS7j1/oWaY725+LTp+4f3An7/W+tfJ+P2nCPjYhNybtUhLd2PpE+XVjd8odPW6PtEtJtLTUpoW2phzqebDbS7p01QNBnqdf7p2mP3WmXQVQ640tu+qzU09Ku4wav++Y7V+bfoKFeqHixPk/Ln1g8qGNb2rZNe1SEn195T3qKPeWvrjN8UEOmVtUatVz3df4N6efFGq3UA91zom+MO24/NTCuLRLSXTGgqvLZ0w6sHDC+L3TLiXRT9Y8rKe6Fpe+Of2kII/BSPF5JuRj8I1zv1s+b+sjC7s0bp12KYnOWXS9H9byKjtz0mvTLiXR7W3P6KbWJ4M9BiXp/o5/BHkM/u+avfRs94ZtwXWuAQAAAAAAgJFA8AUAAAAAAIBMIvgCAAAAAABAJhF8AQAAAAAAIJMIvgAAAAAAAJBJBF8AAAAAAADIJIIvAAAAAAAAZBLBFwAAAAAAADKJ4AsAAAAAAACZRPAFAAAAAACATCL4AgAAAAAAQCYRfAEAAAAAACCTCL4AAAAAAACQSQRfAAAAAAAAyCSCLwAAAAAAAGQSwRcAAAAAAAAyieALAAAAAAAAmUTwBQAAAAAAgEwi+AIAAAAAAEAmEXwBAAAAAAAgkwi+AAAAAAAAkEkEXwAAAAAAAMgkgi8AAAAAAABkEsEXAAAAAAAAMongCwAAAAAAAJlE8AUAAAAAAIBMIvgCAAAAAABAJhF8AQAAAAAAIJMIvgAAAAAAAJBJBF8AAAAAAADIJIIvAAAAAAAAZBLBFwAAAAAAADKJ4AsAAAAAAACZRPAFAAAAAACATCL4AgAAAAAAQCYRfAEAAAAAACCTCL4AAAAAAACQSYXqhie6Fup6eyyNWjaqx0u6fm14da3XVu7O/bb9WT3TvTjtUhLN6V2l9qjHxq9tSruURM/3LNXS0rrc/2vn3qP1Kus7gX/3eznJyYUkXIPiFbVgNVXjjY4glHakxcuIrQupbWVcq2PV0VUR7Kpr7HjprKkG25mldqTt8o6o1UorqVZFsBWQa8QoUYEQLoaQkJCc5OSc8172/OFkLTBvqh1nsZ/Zfj7/Za/3j+96nt/7nL2/74aS93iQUS4pON+e0Xznin3fz5aFnU1HmeiW+XuzuOoXu8dbR3uydzxflZovSYb1uPrs7g1ZXPWbjjLRfcOZzuX7vp+dw9mmo0y0Ye6u7Bju65a6x8OMMqxHRc7gpvlfajoCTLRpfluR94fz9bD6zO4b00u36SgT3T/a1/3q3k25d7Cn6SgTbZzbmn3jhWLP612jfZkZzRU5ewfsHy9Un9uzIYd1ppuOMtF9w72dq2c3Z99ooekoE92w/86in03qlP98PDcedtbPfCdHdpc1HWWiLYOd1VWzm9Mt9F2gG+fuyt2DXcWeg0kyqEdFzuBN+x990LWDiq87uptG1dRl44cl0b9Bp1P3r5q6bNB0jkPp9Ovept7Vo3umUtzaJcnuTt2re8lVU7cVuYY7xuksdOpuyXvc7ZY9g4Nueht73xxvncqo6SyT3JO6u6RbVVdNbS5yDR9YSOaqsve46qV/7dQ/DXpV00kmG/Xr3ubehvHs1LeKnMGtc+nuT12VusfjOukUes7c0zmtG2+JU6B7OrePr5q6rLgzp9et+1f3vzjoFnpe1/26d1v/xvHuqZuKW7sk2datu6NOqqumfljceZgkc8NkVPizSa9f92/sXz6c6qZuOsskezvp/aC7c7x3akORM3jb/nTnqrpT8h6Py79v7W3oXzla0ivz+Xhvt+79sLejvmpq07DpLJNsHaYz1y17BlPoOXjH/JM7yUN/eTqo+Hr1k8bd855SF/fz1BEXp77s1+oyX3NI8gufzeDPn1v31x5R5k97Z1+RPOPwjC9YU+Yarr87ecdNGZa8x4d/IvUXfq3uF3oPmzV/l8Gfrk3/9GPLfDh9/TXJ4m49XPesFLnHN+9KXn55RiXP4OpPZvypU9NfOdV0kslO+ocMzl+T/lmPqYucwbdvSDbPZPDhk8vc4/2j5NGfyrjEGTz/ujoXbmw6BRzsZY+tO+9+VnlnzlEXZ/x3p9f96SLvCpO1l2bhbU/L1JmPKg36SeEAABmgSURBVG/tkuQt1yczgww+cFJ552GSbNmbnPaPZZ7XBzzykow+9vy6t7rMF75yymUZvubE9M55fJkzuG5jcu32DD59Wpl7PE5yTOHPx4/7TIZ/+cvpnbCizOfjF3854xccl87rTixzDT9xW/KhWzMoeY9L7WjWbRznguseeq3IgwYAAAAAflaKLwAAAABaSfEFAAAAQCspvgAAAABoJcUXAAAAAK2k+AIAAACglRRfAAAAALSS4gsAAACAVlJ8AQAAANBKii8AAAAAWknxBQAAAEArKb4AAAAAaCXFFwAAAACtpPgCAAAAoJUUXwAAAAC0kuILAAAAgFZSfAEAAADQSoovAAAAAFpJ8QUAAABAKym+AAAAAGglxRcAAAAAraT4AgAAAKCVFF8AAAAAtJLiCwAAAIBWUnwBAAAA0EqKLwAAAABaSfEFAAAAQCspvgAAAABoJcUXAAAAAK2k+AIAAACglRRfAAAAALSS4gsAAACAVlJ8AQAAANBKii8AAAAAWknxBQAAAEArKb4AAAAAaCXFFwAAAACtpPgCAAAAoJWqpK4ffGFJ78314u6FTeU5pH3DVEt7qX/yJ5sxHKeqqtTdqukkk80OU/U6yVSnzDUcjpOFcaolBe/x3CjV4m65+UZ1qiTpVmVm3DtIprqpSp3B0TjZP0q1rF9mviQZjFP1OqkLPWayME7VSdIrdI/nR0mdsr/HC+MyvyOzw3XV3Oi8B1/aVtdZ3VQefn5VVbYlOfrAvxf312XJovOL+87MD1MtKvieZmGYqttJugWeN0kyN0iqqtw1HNfJ7HyqZYvLzJckg9H/uWco9KZhfpCq2y33nmF2IelUqRYXfF84M5dqecEzOBqlqjqpO4XO4OxCqn436Rd6XzgYJcNRqumpMvMlyb75VEsXlZdvbvDmzM6/5yGT1/vxD7396anOe8rDF+qndcTFqXeck0K/NskvfDaDi09Nf+0RTSeZ7OwrkmccnvEFa8p8y2/93ck7bsrwmhcdPJOlOPwTqbefk1LvH7Lm7zL48+emf/qxZX5PXn9Nsrib4bpnlbnHN+9KXn55Rptelm7TWQ5l9Scz3vSydFZONZ1kspP+IYPz16R/1mPKnMG3b0g2z2Tw4ZPTbzrLJPtHyaM/lfH2c8o7p8+/LrlwY9Mp4GCvPzN5z6vKO3OO/J2M7/qbdKYLPa+fcV4W3vmKTJ35zPLWLkku+Eiyd38GH3hNmef1lu3JqW/NePNF5Z3XBzzi3IxufG+6q1c1nWSyk/84wz84I71zTilzBtd9Prn2+xl8+oIyZ3A8To7+vdQ7Plbm+iXJY38/wy++Lb0Tjms6yWQvelfGZzwjndf9Rplr+Ikrkw99NYOvvKPMGUySw1+Z+v6Pl7d+6z6fnP/hh14r9rAGAAAAgJ+F4gsAAACAVlJ8AQAAANBKii8AAAAAWknxBQAAAEArKb4AAAAAaCXFFwAAAACtpPgCAAAAoJUUXwAAAAC0kuILAAAAgFZSfAEAAADQSoovAAAAAFpJ8QUAAABAKym+AAAAAGglxRcAAAAAraT4AgAAAKCVFF8AAAAAtJLiCwAAAIBWUnwBAAAA0EqKLwAAAABaSfEFAAAAQCspvgAAAABoJcUXAAAAAK2k+AIAAACglRRfAAAAALSS4gsAAACAVlJ8AQAAANBKii8AAAAAWknxBQAAAEArKb4AAAAAaCXFFwAAAACtpPgCAAAAoJUUXwAAAAC0kuILAAAAgFZSfAEAAADQSoovAAAAAFpJ8QUAAABAKym+AAAAAGilKqnrB184YtH5o5VT68ZNBTqUHfPpH7kog6ZzHMquhfSW9VL3Oxk1nWWSXQvpLeokS3oZNp1lkrlxOnPDdFdOlbvH98+nf0ThM7i0l3qq0BncPpfe0n6ypFvsDFb7BumVvMc759NftSjDKql/8qcffrsW0lvSS72o0BmcGaSbKtXyQs/BOql2zpc5gzvmL+zuXnjTg38s21bXWd1YIH5uVVW2JTn6wL+XTP/leOnSPynuzNkzO+gvX9Iv9rzeu3+ht2hqqu53yzyvZ+cG3VTdasmiTpHn9biuq72zg95hS6eKO68PmJkd9JdO94edqtwZnOpP1VO9Mmdw/8KwOx5X1dLF3SJnMEl275vvr1i6qOgZXLK4P+p2Uly3kCQzs/O9qf6iLOqXeV+4MBh1FoZ1Z9l0r8h8SbJ730J/RYHn4Oz+13f27Xtb98HXej/+od97Yt393Sek++PXm3bq+tSfPT39pnMcyllfzehP16Z74soy36L7o+uSE1amftUTy1zDb2xL/nJTxh9/fpn5kvJn8OyvZfSmp6T77KPKnMF3bEiW9zL6w6eUuYabHkj+6PqMS97jf//F1B89Jb1lhSZ81dcz+t0npPsrjyhzBv/XpuSefRm9c22Ze7wwSn79n8o8Z967sc5Hb206BRzskU/5zc5TT/13xZ056z/wK/Xzfnd9r9OdajrKRF/72G+PTnzeH3RXP+55xa1dkmy88i8yHOwbPe1X31rceZgks3vuzT9f8h/rk89dX2S+JPnHD75g/NyzL+4tWnJE01Em+udLXj1+3NN+q3PcCWcUOYM/uO4j2bl14+g5L35PoXtc57L3n1affO5XCs2X/NNfvWj0zLPe11226jHFdQtJcvXn3lAf8/jnVY9/2suLXMO7blmfO7596ejkl3+wyHxJ8oX3Pb/IGfzBdUfl21c89NpBxdex08maVQ9Ton+Dqioz1wHdKuMnHJZuqRkPm0pWL069ZlWqprNMcve+ZEk34zWrynxgPuCpq1LmAibpVRk/bnm5M7h6OlncTV1qviSZ6pSdL0n95JWpVpb5HJVFnYwfvazcGTxmOpkdZrxmVXk/7iTJ/h/95l3kOX3U4qYTwGSLlx2Vwx9xVNMxJqlXrv7FqtefbjrHRJ1ef7R81WO6hz9iTdNRJlq87MgM5xePD3/EmiLP66npFam6/frwR6wp7rw+oEpVrzzmxEwvL/Pl3E5/8XjpyuM6pc7gkuXHZu8DdxU7gxmPU1WdlLp+SZJOVR921BOz8ugTmk4yUW/x8nrJYcdWpa7hzq3fztSipeXOYJKqqoqcwSWHHXyt6JIBAAAAAP5vKb4AAAAAaCXFFwAAAACtpPgCAAAAoJUUXwAAAAC0kuILAAAAgFZSfAEAAADQSoovAAAAAFpJ8QUAAABAKym+AAAAAGglxRcAAAAAraT4AgAAAKCVFF8AAAAAtJLiCwAAAIBWUnwBAAAA0EqKLwAAAABaSfEFAAAAQCspvgAAAABoJcUXAAAAAK2k+AIAAACglRRfAAAAALSS4gsAAACAVlJ8AQAAANBKii8AAAAAWknxBQAAAEArKb4AAAAAaCXFFwAAAACtpPgCAAAAoJUUXwAAAAC0kuILAAAAgFZSfAEAAADQSoovAAAAAFpJ8QUAAABAKym+AAAAAGglxRcAAAAAraT4AgAAAKCVFF8AAAAAtFLvxy985NbkG/c1EeVft3eQnHV50ykObetsen/4zeTIxU0nmeya+5Lrd6S6ZkfTSSb74Wzy3QfSLXmP9w2TlxWcb8u+9P74huSRS5pOMtkNO5I66d4+03SSyXbNJ3fuS6fkGdwzSHXO15PFhf5ksWlPuu/6VvLx25pOMtnGXcmehfRK3eNRncyNUpWYb+OuphPAZDvuuiEbr/znpmMcpK7rzi3/8v5UnYNutYswmNvd37Lx77N7+w+ajjLRjrtuyGg439t45V80HWWihdldGc7PdErNlyR1Pe5suvqv0l+0vOkoE83t3d69e9OXsn+mwAfPJPdu/pfs3XVHsTOY1BkNF6py8yXj4UL3B9d9NNPLjm46ykR777+j2nrblRmPBk1HmWjH3Tdm7wN3FzyDyXg8KnIG7719bZKTH3LtoL/GT3hSctpTH65IP73LL0512q81neLQbrw0ee5JyaOObDrJZHdenhx3ZKrT1jSdZLJb7k7uuzEpeY+v+GTZM/itf0ie88zkicc2nWSy+69O+t3ktGc3nWSyrTuT711e9gx+4zOpTj0tmZ5qOslk31mfau2TkzWPbTrJZPM3JffPJKed0nSSyYajH+1xiTO4+5vJrd9uOgUcbNGdN2fFtouajnGQev/uevnlf111qzJ/qaj33ZPejV/IiqnySsMk6cxtzbAeZcWOnU1HmWh2vJDx7AP1iq9eVDWd5VDGe+/P0q9/NNOdftNRJtu3JZ3dD2TFpuuaTjLR9vntqUezWfHV8s6XA6qFsvP1Zndl+VWfztJumTeu1eyWVDu3ZsVtG5uOMtGehV2pB7uK3uPOfJkzuGvh3PzE4ut5T07e8MKHK9JP779ekvoNL0yxf1zetz7Ds09Of+3xTSeZ7KpNydOPz/gNLyzzP29df0Ny4+0ZveGFB89kKf7kk6n/85mpqkKn8K+/nOF/eE76pxdabn7/h8mifrl7fPMdyeeuyfgNL0y36SyH8qd/m/F/ekE6K5c2nWSyi7+e4W+sTf+sk5pOMtmuvcnt2zJ8wwtT5FPA/oXkv/1tmef0nduTrym+KNCvLv2F/NFRL286xkGeddt76r849jerxVWRf/Lyki0XDd545KlTpy19YtNRJvqzHV/OvtHC8B3HnFnkeX3PcHfOuevD9fuPfXmhd4XJL9/+3vGfHfOS7lG9ZU1HmegVd31o9IqVz+y9eHmBb1wk+atdV+Vb+384fN+xv1nkDI6TPOe29xQ9g8/f/D9G/+XoM3rHT5X5Zsjv3/PJ+pSlT6heufJZTUeZ6O9nvp3P7N4wfP+xLy9yBpNk7W3vLnIG/3rXL+W/b3/oteJurgEAAADg/wXFFwAAAACtpPgCAAAAoJUUXwAAAAC0kuILAAAAgFZSfAEAAADQSoovAAAAAFpJ8QUAAABAKym+AAAAAGglxRcAAAAAraT4AgAAAKCVFF8AAAAAtJLiCwAAAIBWUnwBAAAA0EqKLwAAAABaSfEFAAAAQCspvgAAAABoJcUXAAAAAK2k+AIAAACglRRfAAAAALSS4gsAAACAVlJ8AQAAANBKii8AAAAAWknxBQAAAEArKb4AAAAAaCXFFwAAAACtpPgCAAAAoJUUXwAAAAC0kuILAAAAgFZSfAEAAADQSoovAAAAAFpJ8QUAAABAKym+AAAAAGglxRcAAAAAraT4AgAAAKCVFF8AAAAAtJLiCwAAAIBW6v34hQ2bk0/9SxNR/nULgzJzHTCzP53Lrk9u3dp0kslu35YMRqlKXcPrb03u3ZVOqfmSZDBMPv2NplMc2p7ZdK7YmOzY03SSyW65O1kyVe4e33Ffsneu3O9IkgxHyeeuSZYuajrJZNt3p/rat5PBqOkkk920Obl3Z7kzuDBMhuMyZ/B79zSdACa7fWFHLpv5TtMxDrJQD6svznw3/arbdJSJHhjNdq6avT2z44Wmo0z0/bn7MptBp8S9TZL7R/uydzRf5OwdMFcPqi/t25RVnemmo0y0Yzjb2bD/7nQLfQ9j49zWbBvuLnYG6yQL9bDoGVwYD6uv77s1m+a3NR1lonsGu6sb5+7KqpklTUeZ6LrZO7N1uLtb8h4P63GRM3jL/PEHXauSun7whcevPn/0qCPXjR+2VD+la7+f/rOflEHTOQ7lO3em95ijMl42neLWLkluuSu95dPJcUdm2HSWSXbNpLNle7pPe3y5e3zDremvfUK5+TZuSe+4I1OvXJoia4fv3pne9KLkcceUOYN79qf6wT3plbzH39qc/i8+JsNeJ/VP/vTD77t3pnf0itRHrihzBrfcl+78INWTHlnmDNZ1qg2b03t6gefgbVsv7N59/5se/HSyra6zurFA/NyqqmxLcvSBfx+39MLx8cvPL+7Muen+uv9Lh1fDTlXoef1A3Vs9nfrwRVVxa5ckt8/U3VGd6omHVUWe13OjVN/eVfeedWRV3Hl9wM076/4JK6rhVLfMGbx5Z91bvaTK0YvL/Jt8+0y686O6OnFlmTOYJNdsr/vPParcGdy4K/3jl2c03Svz+fi7D9S9VVPJsUvK3ONt+9O9b67uPHVVuXt87Y66/+wCz8G79p3fuX3mzx7yy9NBb3y99tfr7nkvSXE/Tx3+ytRXvCv9pnMcypNem8EHX5v+2uPLW7skOXtd8vTjM37LS8tcw/U3JG//VIYl7/Gq3079tXemX1VNJ5lszRszuPDc9E9fU+ZPZ6+/KFnUz/DCc8vc45vvSH7r3RmVPIPHvCrjL7w1vZVLm04y2XMvyOCCl6Z/1kllzuDbL0lu35bBR95Y5h7vX0ge9eqMS5zBN3+ozoWXNp0CDnb24+rOu59VF3fmHHVxxl98Qd2bLvKuMFl7aRbe8YxMnfmo8tYuSd5yfTIzyOADJ9XFnYdJsmVvcto/Zvy1Xy8zX5I88pKMPnt63Vtd5gtfOeWyDF9zYt075/Hl/c1LknUbk2u3Z/Dp08rc43GSYy5OXfIMPu4zGX74lPROWFHm8/GLv5zxC45L53UnlrmGn7gt+dCtGXzlBWXmS5IjCp3BdRvHueC6h14r8o8dAAAAAPysFF8AAAAAtJLiCwAAAIBWUnwBAAAA0EqKLwAAAABaSfEFAAAAQCspvgAAAABoJcUXAAAAAK2k+AIAAACglRRfAAAAALSS4gsAAACAVlJ8AQAAANBKii8AAAAAWknxBQAAAEArKb4AAAAAaCXFFwAAAACtpPgCAAAAoJUUXwAAAAC0kuILAAAAgFZSfAEAAADQSoovAAAAAFpJ8QUAAABAKym+AAAAAGglxRcAAAAAraT4AgAAAKCVFF8AAAAAtJLiCwAAAIBWUnwBAAAA0EqKLwAAAABaSfEFAAAAQCspvgAAAABoJcUXAAAAAK2k+AIAAACglRRfAAAAALSS4gsAAACAVlJ8AQAAANBKii8AAAAAWknxBQAAAEArVUldP/jC9KI314v7FzaV55DmFlItnkr9kz/ZjPE4VVWlrqqmk0w2t5Cq30u6nTLXcDRKhuNUi/pl5kuSwTBVv1duvvE4VaqkU5WZcXY+meql6nXLzDcaJwvDVNMFnzOjcapSv8NJMhil6nbKncGFYVKl7O/xcFTmd2T//LpqbnDegy9tq+usbioPP7+qKtuSHH3g34v76zI9dX5x35nBKFW/wO/yAcNxqk7B9wzzw6RTlbuGdZ3MDVNNF3zfOqpTdQvd3+RH91y9brkzuH8h6XZTTRU6g0kyu5BqScH3rXWdKlXqQh+PMzdINdUrdwaH4x/d+y8q+L51bpBqcYHn4Nzgzdm/8J6HjF7vxz/0znNSnfeShy/UT+vwV6be+fGU+r3Jk16bwSfPS3/t8U0nmezsdcnTj8/4LS8t8y2/9Tckb/9Uht9898EzWYpVv536/o+lKrXcXPPGDP781emfvqbM78nrL0oW9TO88Nwy9/jmO5LfendG3/tAuk1nOZRjXpXx996fzsqlTSeZ7LkXZHDBS9M/66QyZ/DtlyS3b8vgI29Mv+ksk+xfSB716ox3fKy8c/rNH0ouvLTpFHCw15+ZvOdV5Z05R/5Oxnf9TTrTU00nmewZ52Xhna/I1JnPLG/tkuSCjyR792fwgdeUeV5v2Z6c+taMN19U3nl9wCPOzejG96a7elXTSSY7+Y8z/IMz0jvnlDJncN3nk2u/n8GnLyhzBsfj5OjfS73jY2WuX5I89vcz/OLb0jvhuKaTTPaid2V8xjPSed1vlLmGn7gy+dBXM/jKO8qcwaTcjmbd55PzP/zQa8Ue1gAAAADws1B8AQAAANBKii8AAAAAWknxBQAAAEArKb4AAAAAaCXFFwAAAACtpPgCAAAAoJUUXwAAAAC0kuILAAAAgFZSfAEAAADQSoovAAAAAFpJ8QUAAABAKym+AAAAAGglxRcAAAAAraT4AgAAAKCVFF8AAAAAtJLiCwAAAIBWUnwBAAAA0EqKLwAAAABaSfEFAAAAQCspvgAAAABoJcUXAAAAAK2k+AIAAACglRRfAAAAALSS4gsAAACAVlJ8AQAAANBKii8AAAAAWknxBQAAAEArKb4AAAAAaCXFFwAAAACtpPgCAAAAoJUUXwAAAAC0kuILAAAAgFZSfAEAAADQSoovAAAAAFpJ8QUAAABAK/V+/MKVG5/fRI6faG6QXHhp0ykObdfeqvPxK+pcsbHpJJN9755kZi5Vr9Cq85a7k607q86Fl9ZNRzmk+f8zg1XVdJLJtu+uOp/5Rp0Nm5tOMtmGzUmnU+4eb92Z7NpbVaXmS5LZ+VTvW59MTzWdZLKtO6vO319bZ/N9TSeZ7KpNyc6ZcmdwMEz2L6Qq8W/d9bc+s+kIMNH1tz4z7730TU3HOMjcQqr/+YWk3206yWT3PVB1P//NOt+7p+kkk11/azK/UHXeW+h5vWtfsmc21XsLPK8P2DdXVR/8Up3l000nmeye+6vO+hvq3Lur6SSTff07yZ3by53Buk7mFpKSZ3DPbNX58OV1jl7RdJLJbtuW6vKbf/SMV6Ibb0u2FDyDyY86mhJn8OvfOeWga9WPvjYAAD+1bXWd1U2H4OdPVWVbkqObzgEA/P+jl+TqZPeyquo+pa6XFfouCwDQtKraVdf14puS6R82nYWfW9cl+4+tqrmn1/Uq960AwERVtbeu6+F3kpUzVV3XqapqWfLA1cmKpzQdDgAo1bYrktVn1HU933QSfn5VVbUo2fqlZHWZ/38OAKAAuzcmK3+5ruuZXpLUdb23qjLTdCwAoGTH7FR60bS6ruerKjubzgEAlGzF3rquZ5LkfwMsr/V0M+ypbQAAAABJRU5ErkJggg==" - } - }, - "cell_type": "markdown", - "id": "c518f863", - "metadata": {}, - "source": [ - "
\n", - "\n", - "
" - ] - }, - { - "cell_type": "markdown", - "id": "746e37f6", - "metadata": {}, - "source": [ - "### Block-wise partition" - ] - }, - { - "cell_type": "markdown", - "id": "102d6fa2", - "metadata": {}, - "source": [ - "To evaluate the efficiency of both partitioning schemes, consider how much work the processors do in the following example. \n", - "In any iteration k, which part of the matrix is updated in the inner loops? \n", + "1. The CPU owning row $k$ does the loop over $t$ to update row $k$.\n", + "2. The CPU owning row $k$ sets $B_{kk} = 1$.\n", + "2. This CPU sends the red cells in figure above to the other processors.\n", + "3. All processors receive the updated values in row $k$ and do the loop over i and j locally (blue cells).\n", "\n", - "### Block-wise partition" - ] - }, - { - "cell_type": "markdown", - "id": "d9d29899", - "metadata": {}, - "source": [ - "It is clear from the code that at any given iteration `k`, the matrix is updated from row `k` to `n` and from column `k` to `m`. If we look at how that reflects the distribution of work over the processes, we can see that CPU 1 does not have any work, whereas CPU 2 does a little work and CPU 3 and 4 do a lot of work. " - ] - }, - { - "cell_type": "markdown", - "id": "6409890d", - "metadata": {}, - "source": [ - "### Load imbalance\n", "\n", - "The block-wise partitioning scheme leads to load imbalance across the processes: CPUs with rows $\n", - "\n", - "" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "e0565e92", - "metadata": {}, - "outputs": [], - "source": [ - "answer = \"x\" # replace x with a, b, c, or d \n", - "ge_dep_check(answer)" + "As you probably see, the parallel implementation of this method is closely related to Floyd's algorithm. But there are some differences. \n", + "\n", + "1. The process that owns row $k$ updates its values before sending them.\n", + "2. We do not send the full row $k$, only the entries beyond column $k$.\n", + "3. We need a cyclic partition to balance the load properly.\n", + "\n", + "A key similarity between the two algorithms, however, is that they both suffer from synchronization problems. We need to make sure that the rows arrive in the right order. The strategies discussed for Floyd's algorithm also apply in this current case.\n", + "\n", + "The actual implementation of the parallel algorithm is left as an open exercise." ] }, { @@ -740,54 +596,9 @@ "metadata": {}, "source": [ "## Conclusion\n", - "Cyclic partitioning tends to work well in problems with predictable load imbalance. It is a form of **static load balancing** which means using a pre-defined load schedule based on prior information about the algorithm (as opposed to **dynamic load balancing** which can schedule loads flexibly during runtime). The data dependencies are the same as for the 1d block partitioning.\n", "\n", - "At the same time, cyclic partitioning is not suitable for all communication patterns. For example, it can lead to a large communication overhead in the parallel Jacobi method, since the computation of each value depends on its neighbouring elements." - ] - }, - { - "cell_type": "markdown", - "id": "20982b04", - "metadata": {}, - "source": [ - "## Exercise\n", - "The actual implementation of the parallel algorithm is left as an exercise. Implement both 1d block and 1d cyclic partitioning and compare their performance. The implementation is closely related to that of Floyd's algorithm. To test your algorithms, generate input matrices with the function below (a random matrix is not enough, we need a non singular matrix that does not require pivoting). " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "a65cf8e6", - "metadata": {}, - "outputs": [], - "source": [ - "function tridiagonal_matrix(n)\n", - " C = zeros(n,n)\n", - " stencil = [(-1,2,-1),(-1,0,1)]\n", - " for i in 1:n\n", - " for (coeff,o) in zip((-1,2,-1),(-1,0,1))\n", - " j = i+o\n", - " if j in 1:n\n", - " C[i,j] = coeff\n", - " end\n", - " end\n", - " end\n", - " C\n", - "end" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "31d8586a", - "metadata": {}, - "outputs": [], - "source": [ - "n = 12\n", - "C = tridiagonal_matrix(n)\n", - "b = ones(n)\n", - "B = [C b]\n", - "gaussian_elimination!(B)" + "\n", + "We studied the parallelization of an algorithm that leads to load imbalance. We fixed the problem using a cyclic partition. This is a form of static load balancing since we were able to distribute the load in advance without using runtime values. This is opposed to dynamic load balancing which can schedule loads flexibly during runtime. Note however that cyclic partitioning is not suitable for all communication patterns. For example, it can lead to a large communication overhead in the parallel Jacobi method, since the computation of each value depends on its neighboring elements.\n" ] }, { @@ -801,14 +612,6 @@ "\n", "This notebook is part of the course [Programming Large Scale Parallel Systems](https://www.francescverdugo.com/XM_40017) at Vrije Universiteit Amsterdam and may be used under a [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/) license." ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "8ab22f67", - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { diff --git a/notebooks/asp.ipynb b/notebooks/asp.ipynb index 33869e2..5c6a5e5 100644 --- a/notebooks/asp.ipynb +++ b/notebooks/asp.ipynb @@ -647,7 +647,7 @@ "- On the receive side $O(N)/O(N^2/P) = O(P/N)$\n", "\n", "\n", - "In summary, the send/computation ratio is $O(P^2/N)$ and the receive/computation ratio is $O(P/N)$. The algorithm is potentially scalable if $P^2<
u + u_new + -1 + -1 + 1 + 1 + -1 + 1 + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + -1 + 1 + i-1 + i+1 + i + -1 + 1 + -1 + 1 + i-1 + i+1 + i + -1 + 1 + "red" phase + "black" phase + n \ No newline at end of file + id="flowPara23600-0-7-3-1">nCPU 1CPU 2CPU 3CPU 4kk1111110000000loop tloop i,jmn \ No newline at end of file From 14c2a56994165c4e2a73508113a30c67f394bb7d Mon Sep 17 00:00:00 2001 From: Francesc Verdugo Date: Thu, 19 Sep 2024 10:38:04 +0200 Subject: [PATCH 4/4] Publishing ASP and LEQ --- docs/make.jl | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/docs/make.jl b/docs/make.jl index fe377fb..f34cb0a 100644 --- a/docs/make.jl +++ b/docs/make.jl @@ -124,8 +124,8 @@ makedocs(; "MPI (point-to-point)" => "julia_mpi.md", "MPI (collectives)" => "mpi_collectives.md", "Jacobi method" => "jacobi_method.md", - #"All pairs of shortest paths" => "asp.md", - #"Gaussian elimination" => "LEQ.md", + "All pairs of shortest paths" => "asp.md", + "Gaussian elimination" => "LEQ.md", #"Traveling salesperson problem" => "tsp.md", #"Partial differential equations" => "pdes.md", ],