In [1]:
using Distributed
In [2]:
if procs() == workers()
addprocs(4)
end
Out[2]:
4-element Vector{Int64}:
2
3
4
5
In [3]:
@everywhere function visited(city,hops,path)
for i = 1:hops
if path[i] == city
return true
end
end
return false
end
In [4]:
function tsp_serial_impl(connections,hops,path,current_distance,min_distance)
num_cities = length(connections)
if hops == num_cities
if current_distance < min_distance
return current_distance
end
else
current_city = path[hops]
next_hops = hops + 1
for (next_city,distance_increment) in connections[current_city]
if !visited(next_city,hops,path)
path[next_hops] = next_city
next_distance = current_distance + distance_increment
if next_distance < min_distance
return tsp_serial_impl(connections,next_hops,path,next_distance,min_distance)
end
end
end
end
min_distance
end
Out[4]:
tsp_serial_impl (generic function with 1 method)
In [5]:
function tsp_serial(connections,city)
num_cities = length(connections)
path=zeros(Int,num_cities)
hops = 1
path[hops] = city
current_distance = 0
min_distance = typemax(Int)
min_distance = tsp_serial_impl(connections,hops,path,current_distance,min_distance)
(;path=path,distance=min_distance)
end
Out[5]:
tsp_serial (generic function with 1 method)
In [6]:
connections = [
[(1,0),(4,39),(5,76), (6,78),(3,94),(2,97)],
[(2,0),(5,25),(4,58),(3,62),(1,97),(6,109)],
[(3,0),(6,58),(2,62),(4,68),(5,70),(1,94)],
[(4,0),(5,38),(1,39),(2,58),(3,68),(6,78)],
[(5,0),(2,25),(4,38),(3,70),(1,76),(6,104)],
[(6,0),(3,58),(1,78),(4,78),(5,104),(2,109)]
]
city = 1
tsp_serial(connections,city)
Out[6]:
(path = [1, 4, 5, 2, 3, 6], distance = 222)
In [ ]:
@everywhere function tsp_dist_impl(connections,hops,path,current_distance,min_distance,max_hops,jobs_chnl,ftr_result)
num_cities = length(connections)
if hops == num_cities
if current_distance < min_distance
if ftr_result !== nothing
@spawnat 1 begin
result = fetch(ftr_result)
result.path .= path
result.min_distance_ref[] = current_distance
end |> wait
end
return current_distance
end
elseif hops <= max_hops
current_city = path[hops]
next_hops = hops + 1
for (next_city,distance_increment) in connections[current_city]
if !visited(next_city,hops,path)
path[next_hops] = next_city
next_distance = current_distance + distance_increment
if next_distance < min_distance
return tsp_dist_impl(connections,next_hops,path,next_distance,min_distance,max_hops,jobs_chnl,ftr_result)
end
end
end
else
if jobs_channel !== nothing
put!(jobs_chnl,(;hops,path,current_distance))
end
end
min_distance
end
function tsp_dist(connections,city)
max_hops = 2
num_cities = length(connections)
path=zeros(Int,num_cities)
hops = 1
path[hops] = city
current_distance = 0
min_distance = typemax(Int)
jobs_chnl = RemoteChannel(()->Channel{Any}(10))
ftr_result = @spawnat 1 (;path,min_distance_ref=Ref(min_distance))
task = @async begin
tsp_dist_impl(connections,hops,path,current_distance,min_distance,max_hops,jobs_chnl,nothing)
for w in workers()
put!(job_chnl,nothing)
end
end
@sync for w in workers()
@spawnat w begin
max_hops = typemax(Int)
jobs_channel = nothing
while true
job = take!(jobs_chnl)
if job == nothing
break
end
hobs = job.hobs
path = job.path
current_distance = job.current_distance
tsp_dist_impl(connections,hops,path,current_distance,min_distance,max_hops,jobs_chnl,ftr_result)
end
end
end
(;path=path,distance=min_distance)
end
city = 1
tsp_dist(connections,city)
In [ ]: