mirror of
https://github.com/fverdugo/XM_40017.git
synced 2025-11-09 07:04:25 +01:00
2360 lines
999 KiB
Plaintext
2360 lines
999 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "480af594",
|
|
"metadata": {},
|
|
"source": [
|
|
"<div class=\"alert alert-block alert-info\">\n",
|
|
"<b>Note:</b> Do not forget to execute the cells below before starting this notebook!\n",
|
|
"</div>"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 11,
|
|
"id": "2f8ba040",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"alg_2_deps_check (generic function with 1 method)"
|
|
]
|
|
},
|
|
"execution_count": 11,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"function answer_checker(answer,solution)\n",
|
|
" if answer == solution\n",
|
|
" \"🥳 Well done! \"\n",
|
|
" else\n",
|
|
" \"It's not correct. Keep trying! 💪\"\n",
|
|
" end |> println\n",
|
|
"end\n",
|
|
"alg_2_deps_check(answer) = answer_checker(answer,\"d\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "038e5442",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Distributed matrix-matrix multiplication"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "f70e2f35",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Contents\n",
|
|
"\n",
|
|
"In this notebook, we will:\n",
|
|
"\n",
|
|
"- Parallelize a simple algorithm\n",
|
|
"- Study the performance of different parallelization strategies\n",
|
|
"- Implement them using Julia Distributed\n",
|
|
"- Learn concepts such as communication overhead and parallel speedup. "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "96d2693d",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Problem Statement\n",
|
|
"\n",
|
|
"Let us consider the (dense) matrix-matrix product `C=A*B`. Our goal is to compute the product in parallel using more than one process (distributed implementation)."
|
|
]
|
|
},
|
|
{
|
|
"attachments": {
|
|
"fig_matmul_intro_0.png": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAyIAAADBCAYAAAAzdQTvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAACAASURBVHic7J15nFXFlce/1YBgXIJOlDgxZnHJxC2rmsmi0awak5lEbRDcMUFQiTug0n27AfcVFSQRUREENJNFo04yiRqzqEkmE1GTGJeMyxg0UVSIINA1f5z7mvvq1H193+v37r0N9f18/Hyk7rv16vV7davOqXN+xwCbAbvTP/4BLO1nH4HAQOVDwCb97ON/gNVNGMuGxHuAbfvZx1+AZf0fSiAw4BgOvK+ffbwK/LEJYykjQ4EP9rOPN4HfNWEsgcBAZA/gLf3s4xGAfQDbz/+CERLYmHmB/s+h9+Y+6vLzbfr/d/1m7qMOBMrBwfR//vw091Hnx3vp/9/nhdxHHQiUh6X0fw7tMzjR4VrgmQYH82yD9wUCGwJ/QU4FG+E9gGneUDZIXgaWN3hvo/cFAgOdlcBTDd67Of0/jRwoWODpBu99sZkDCQQGGM/S+InIDkCvDVI5EWl0IgYCgcZZQTgRSaNyInJO0QMJBDYyRrHxnIisKHoggcBGyNPEJyJtRY8kEAgEAoFAIBAIbHwM7vslTaKL/bHsXNVmeJ5OfthQfxGHAls7rQ8T8UBjA8xIF4dh2aqqrY3f08GDdfc1hyH8laOwDHKu/JSIJ/oxytpEbAIcBVQbooP4CVN5su7+ZjCCNfybah/GYibzaoOj7JuItwNf8VxZRMRrdffXzW708ImqNsNqLPOJ6GlskIEyY2EIMhfcOfgTQ/1zwUo4y797Li0xLQwTszACPHMQFhvqn4MWdgU+6TS/CdxkaN1csLAbOHNQRBxuMuI9q7e/fYF/cZpfMHB7g0PM+r6fBnZxmv/PwB0N9ncI8E9O81IDv2qkv0Ce2I8BezqNfwfznQb7Oxj4Z6fxcTD3NtZf5vf9MrCd0/gnMPc10JdBnrtDnQu/BPNIQ8PL9r5twJGe9/0FmEcb6G9L5PTQ5ftgWiiSYocD7Z4L3wPTQLig3RH4jNPYA9wIZk39/dVHfoZIG8+xju8DW/S2WXro4ot08uO6+opoBxY7rS8j6kWtxfJG/N7r4/p7WM40PszUOsPbXuA84Ayn9WHgpn6OsjYRbxKxAzC1qn0djxCxD1Ed+Q4RbaxhPvA558otTOZb/R5r7fdeRsRB6A3YZ4CRdfY1nB5uR3I2kkwMRsiGi4E1Ft4JdDqXHrWwt6kj98eKYT8f+LxzaZGhxXNBYtUPRBtBn8W/YKViRW3pDvRc+GYrjZCY/wVuQxsPI4CL6ukoNmruojqGuQf9/bSC54HvA1sm39vCgQZ+VE9HFg4FbnWaXyGP9S7QDJ5DDN+3VTfbMWAW1teV3R/4HtWOk5XAXv0ZYEZeBf6D6n3jKjG0zO/r7OtM4EKn7QngI/0YXwZMD9i3Alc6F54B+yEwL9fZ4SxgjNN2JxJW3ELMcrAfB452LowC+zkw67L3ZYchz1xXQa47DyMEXI94K5nKn4FvqPe33EykrPt0InZCf8kWOJao4WT77ETcAcx0WoezjsXxSUM2ujgQON1pXcEg2olY1c9RZiECfuK07Q5cUVcvhnPQRsjjbMq4hkeWHctQjkU2L0naidRvrRYGuB698bqDTq7uzwADA4Ju4L+ctt3Qi1VfTEFvcn3PvaYTnxYchwgnJDnMwgl1djcX31yAqxobXXaMxOu3A284l2ZYfVKSihVZ+iXoRMrI6Ode0zH+770NmG+1NzsVCzsC1+lmjjX6uRcoJeY5xPvvGvFzwNYhr2xHAAvQp7fjwfyhPyPMhvkZsm9IMgxYAnYL/fo07N7ANKdxNTASTP2RDHVjZiIGVZIdgBvjk5qM2BPQRshzwNFg6j69bYATgcectv2ByXX2cxXaCPkZsi7mQr45IhGLgHlO67bAApaoyaWZyVDkNGJL58rFRPygKWPMwnaciT4S3ws4L9P9EdtjuQmtljSOqfyp/wPMNIYehjAG+Ktz5etEHJGxj32xypO8ijbamcTrzRhmn0zhFdoYCbiW+5V0Z/QYdjER+KrT+izibcjjgRIokNjLfwRaivN4K8f4fWLhU+hFehXQbshnLhjxko9EQqiSXGEzes8tnAx8zWl+FjimkdCoRjAiCXma0zwYWGSVVzmVa5DwsiT3kvUZ3QSMrFVzneZtgYVWbyYVlt717q3OpUuNnLYEBgzmLuASp3FzZBM/rO/7bRtwMzo06now85sxwoycjz7R2wWYk+12uxXym3adtqeB+e/+Dq4OxqIFmg4GTsp2u90DuMxpXAscDuZv/R1cNsxKxGnjntp3gz0gWx+2HTjeaXwJGF3fqUr/KCJZfQLgHuN9mscyKOO8zGXAh53Wh3BDjFrNONYgcYHuMd5pdHnjtNcTMRi4Bb2gXktEnce0/eQcliEWvfuDm02kQiOqOY9tgIXoBfVkOtT321okP6fDaR1GD4uJlNFaTcRHseqIWL7fSH2/gQ0UQ+pcmGXh/bXutZKrdjM61PWbRgpV5obxPw+HAkusduBUYSWO3Q1/WguMMvD35o2ybwxci3h/k2wP3Gj7kLu2cDg6ZOFFYLTR32+rOQm93u1HtjXrYnSoykMEFbmByjnAL5w235zz0YGEWSZ5FHEc5IjpQZwz/+dcOBzsMbXvtZXIg3c7F24DM6s548uKWY7faXNpnNNTAxsbkGzqXJgK5ufNGmE2zKPoWlltwAKwb699r02LLhoL5vlmjTAL+RsiEnbUjvYSdhKpiZa871DEiEkiHsBI/ZhaT8QzGI6h2ktosMwjUhMtyTR0EuhStlQewHyI+Ck6VlMm2mVqolXuaeNN5gPvcK4sIVJhBPkQcSGoU7GdqRWbfwFvRbwzbuLaZCJ+2dTxBUqPgXsQj1+SzZFNvHcuxJviecjRfpIlOeSFpHEx2mPuW3R6sb3eWVzv7BRDYXPhBFAnxAcBp6bdYP3e2R7gCFNA8TlD6no31eqQ1l4sfBntnV2OGIX5r3eBJmDWIg5M12N+MthD0u+z+wHnOo2rEK91o/Wr+oF5Ud5bGfVXg3VPIZOcis5hewZyCeP2YH6NDmMaAtwc55GkMRudw/ZT6sxhax7mOiQ3McnbgXnxSZoHG4fUKefUBWBaKuThoxj53ojHgYlOqxw9ihJSNdN5F3pxkZjoSMVE50cntyMhAEm2AhYxhyHq9REHAGc5rXK8dpqKic6PXelA68XvwWtc6n29YRLwBaf1CeDrzR9cZiRPSBflHEkXY713rGI2un7HnURc3vzhBQYInfhzp9J+E2ehlduepMC5YNbPBZU7ZdPHNQdw49XvgpRnQA7UyBe5wMLH3dfb3nh13Hj1GYY6BVGaiIHHSc8XcUNtsGLU3kD1yY8FjjOh3tcAx8Q5BCrM8TqwnlpSdlv8kQcTwDzcihFmw9yHziGI87Ksp8Cd3Qvt5IkjS+pOEG8mVwDfddp8eVkx9uugQtfj03RTpKjNeMDNE/oiIgrg4wp0uO6DaNGWXCiujkjEDcCNTusIYGFVvsgchrCWRWip3iuI+F5Lx5iFrTkD+K3Tug8vOMlYM6gkmlX/zQ3jifhjK4fYJ+2sYzBHoT0144kYXdUS8TEsXc7rJNGsEcncZhLxMm0cgYSTrMdyNd18oKqtixOREI4kaYtEYCMhzhfx5U6Ns05iopVisL6ky3ZDsXMhzhcZhc6dmmmdxEQri9ho53XPAUfllReShhEVQXcxHYLki7hytteAM88l6dJ9XuWOgUWIcZFkBLAgmS8Sy0n71ruZRm+YAgMScyc6v2A4sBhsInfCVlT4XHGDxWDcXNsimI428HdDiVrY+LOpvJCzwBQsP20qIh+ugX8o2PHVTdYn5hOvF8ZdL3KmN1/EddpMB+tE4NjD0KdQcX5hPipZLsUWNNwsJev/MSb1/usFLgHcmL3fUL8yQGuYyGoGMRKt1X8WUewpFYnbBaBOe+bSqY7UiuFcnsekKHtMiz2l58enPTinPYZTicgz0SydDu7HeJQ9eljChbGnNGJPLBc7r5FEs0gZY4GNjES+iDsXrrXxqYElZS7A6YZyzAUDD6A9XMOQULMtACzsgT71WIvkU5RiLhgxMG5xmt8J3FDJF7ES732c85qXKCYvJI0JiGGVZH9Eba3CRcC/Oq/5LSTWxMCGwGR0yONHqQ6TPpuCVPiyYdJEPo4De1Ti3z4Vvh9SvyphizDLEaeNG/J4Odg4J9mmqfB1gWm5Cl82zCPosNU4J9nGOcl2R9JUZzGFqfAVa4icyUraUrL+Iw4g4mB0MpYkGRWRF5LGVJ7EqJAHiR2Xeh1d6GIxj6LD04qlE7+yx7o4X2Q184B3Oddvo5PZ+QwwIzZF2eMN5hCRnmgWkXOiWaCsGH/MbzJfZB466fJ2RFe+TFyALt63M/CtRF6IOxc6DNyfx+DqYBwS4pTkYOBk688Fs8BYI/U8SoERb+Vo9HrXZeEzFr6ETjx9HTGmVucxxkBe9OaLuCIQ3wT7VbD7op0Iq8hN4jYrqfkis8C+H+xE/Cp8eUncZsT4RCBi1Tq7JfJcd0VL7gVmtH5s9WDmkCLykcgLcfNfLgNTqApfsYYIQAePYtSGfBBS1M8ncft1Ip7KZWz10MmtoDbkWyNx1mc77XKMVk/hwPzwK3u8xkPowoFPMUxJvxWPFCBMUfbgV+hY+LspLNEsUGKmgjJO9wTvXHiaEoQyuZheFRS1IR+FzAU36fJHaPGKwoklkMegN+QXI95VN+nyolZXT28EIw4oNwm9jfT1bqzRBlhgg8A8i8zNasEbOUG4Ba3CdwqY3+U0uDow96I35JshghnuuroGMaZyVeHLyKVIvaQkOyH7oaOc9mWIVG9ZTluTjEdOzpIcBPwarTr7INUnsoVQvCEC0MlcdNb/O5DwhyTXEHFbPoNqgK05FR2WsSv673wSkQpJKwcRacoeuzv/XgOMYbIKSSsHES/S5vXUuJ9jGVIMM1RPD1RhenXhs80FI6e1pcP06sI7uVP+uXB0DtXTG8JISK4r9rEJciKS5EHylnSvAyOnaTc5zf+MzguZbXRF9cAGhfk+OkRpK3ReyK2xt7usdKGLwu6MVqQ8p/i8kDSMRQyOvzgX3Odkj7yu6LyQNMzrwCHofBH3cyxHjKlC8kKSlMMQAdjMm/Wf5GG2TFUAKAcTK9VBayaqLooT9ctLlCFp23AmEQ/kNqZG6MCn7JGkB8MYIpWYHAgAYOKkbWqfdEwyusBpqTB9J21XJG5LPRcM+KoiJ3kFkbgtfHHtgwnUXu+WAqfnNJZAsZxF7edHoSp82ejNF6n1/PCFfpcMkybykeQ8MG7od8kwS4Ez+njRWDClUOErjyEi+SKH4/fGvc4gDi1U4jYrEU94Qs0q/JHSP1BiIu4Erk65+j06mZnncPrBdNLi3Q0RnUqqNRCowsgCmvZ7/wFaSaWsnIcYJD66jfZolpWx6LBLEGPxaKM9mqXDSHjuSPyJ9K8Dhxrt0QxskBiJLvB/37Fz05Qz8qAKswxSpPIlNPSocuWFpGEeRKshViiFCl82zCx0bbUKV4Gp5dDJlfIYIgCWffGP6TUGDaAq15ZPp1xZxq4DZHGZyVA8Wv0x/0vJYuFTGcx26Dh4wao6C4GAwkr4T+pcKFteSA3eTtpc0DVHysxuwLae9jWUKDk9A/ui60OAGCIDZ70LNIN98BdN/QfwYs5j6Q+fTmn/G1IXaABg25C56eO5WGhgAGC3QsuZVyjV8748hohIqqYlDL+DN72JfOUjYhRwTMrV/XisvLHLVbzMRcBHUq5OJFIVUstHRBtruQnYJuUVs4hSN2aBQIULgb1Srp1k4at5DqYR7PqEaN8GHuBqq1VhSkcsm7wAncgLYjAusTpxvXTEssmuhHiFfwZusgNhvQs0AbsjumBzha2AW8HqAsmlwx5IejjQByh9WFYv5wCfTbk2GqwrE15CbEX0wFU5rXA+WFcmvDDKYYisl1QdVuNVBxEpjeRyMc0rI+kylSj1R14O/LLJSQxwPZGSLy0bXcABNa6LNvhlXk9UIECKpGoSA1xvtU5+2ehES4gn2Yz10sSlxFYk0dMXV5CqyK5OfqmoIZuc5EBCjshGgB2K/BZqGc/7UPpwILs9ftW3JCeCdYsIlwy7L9DRx4uuAbtnHqPpBxOp7SCLC6daVyCjEMphiMjC4Uqq/hJdYOZ8IvbOZ0h1chmbso7biAuFJbjX+bd4JqNUz2SxTOdd6AeKBe5zXimeycjrmSyeLj6Dlk1+HVHeSbIHr6mCboEAFnYg21wYjlTILqXX0oox7mrkr0DPhd2By3MZVGOcipZN/jMiKJCk3Zam6JuXOegQuV+hpYnPs7qYb2DD4hK0pOpvkLUqySSwX8hnSPViBwMLgbc5F+5Dh63OAltSp43dBvkc7p7mXuffw+R11i1uWBKsWxgTZC/tFtDcgfSTuFwp3hDpYhyiUpDkOTbhKxhVPX0T4FYiJXNYPK9xBVJjIMl97Mpn0dLE2wGLWOKNDy6OiMGsZSFaNvlytuYLaGnij5Oe1FUcEdtimY/7+zaciHgJXDnW8USMzml0gQGAlcVoIVpS9UrwzoV/RYQRSoWVUKz56FyEE4F/R8+FcZbyzQUroXHnO82rkbXDJ018pU2Pjy4MK2Il7t/3OeAraGniIcgpVfnWu0ATsF9G5mGSV4BD0aI2bcB8sK6sbxnoAj7ltC1FTvVcIY/hSJHATfIYWHasAa5DykYkWYycJLtCHrtRmsrwSezmSOiqK5s8CSkA+xen/VCw43MYWE2KNUQidsdymdO6ljZGcTZ/p5MrgO8513eg7/CnfIloR3vgRLu/nXWxNPEfnev78we18BTN+eik3N8AU2pIE0+iiy/nMbhMRLQBNyPGXpK5dDK/hjTxtUTskscQAwOCGcAnnLbfApPjKtft6LlwppUNZSmwvZsXVZNgnoGbTK+SjZoLc6w+oS4M27t5wd28nGHgv+Mq8K5M9zBkE++eUBeGlc2LuzFbhyh9/S2WJv6uc/2dwI0hX2RDw+4A3IA+bT0WzP+CWQxc79wUe+xtiRyYdn9kk5tkBdAO5o34mitN7HMqFM1Z6Gf3E8A3akgTHw/2yDwGVwdzQO1jfghcWUOa+HKwH8pjcGkUZ4hcHMfng3u8NZWO3srelqEch7biDqFLeRKKYZo3JrkHw5FEscSkSBO348rzWbqJ+GQu4+yLLm9M8qvASKI4RC7iCbSnxmCZS6Q2O8VgOAf4nNP6GCQklUWa2A1B2QIJNSuZpyaQNxa+iE66XAGMjo0QjF/b3wDz4pCuMjAF+LzT9jiJnJdYmtgNTdwcCTVzvWpFMRedg3MHcE3i3zOAHzuv2YV02eVcsaSud50Gfpr493GAq+1/MLoae2DAYuP4fHXSdVlc4LDCicDDzmv2A85t4eDqwI5AvO+uYTQeTOx4NWuQza+rAncqWDfMsiDs3mhHRuxsMrGzySxDJJbd8hKzwJZE8MaOx3/aevR62WTzIJIvmCTOU7KFiXwUZ4isZBZapeU/wVHOmsIrtHmsOMulRCq2Ml9mMpR13kSzC+nkP6taOvAVmBkM3EKkYivzZTrvwHoSzQzjiXiqqi1iCbIxSCKemqJDzSL2xapJtoo2RhPxj6rW7ZiM9tR8FLighSMMlBwLI5CEaPfZOM7IJr4XIxtL1wmxNTDf+mVZc8NKqETkNK8C2o2OP5+Cjh/+CDrOOHesiGZ8zWl+FjlF6D3JiavBHwG84Lz2GCunPkVzNbCr03YPzvPGSLXjUej8yIutziUIDEwuQEI5k/waldNoViEby384r+0AW0t4IgdsWuTBdWBurm4yzwDjnNfFwhO2lvBEDtit8J+2ngrmd9VN5qe4+9Ne4QlbsMiH3R3tUFoLjALzd6f9AsSRk2QnCow0KsYQiTgGvTgsA44h8hQ07OBBtJLBUGAxUYFSjS97E80eZDu1GRYiZiFx50m2B26kqKP3JQyKJW5dY2gWndySctdJwO+dtmKlic+rHFt7YuE71FhhHGmemlMGhDRxoOnEoUwLkHobSa41et5WmAj8j9OWRXmlZcQ5BfPRSZcnGz1vMb0LFu6CNbFIaWIrOXeuMbQGqZyu6mwYqbcwBl0kcFaR0sQWr6T7MmCM8RQ0NPAQ2us9lAEiTRyohT0IlPrncqRooWt8AuZRUAWS4+eUdZ9TeTIVLXH7KKkKg+Y2YLbTGBsBRUkTW1H/RKl/3gbGHWuFqcDPnbZaUtw5YCunra4xdC6YX+jXG4ucvLpFYUcWJU2cvyESeY/LezCMIVIxeMn7LgRud1p3oiipRpG41YlmgxkZb3L9bMoJOJ5V4CC6OKXJI8zGY16J26VsmaoHDhFpnpqipIkNbzIXX6JZpOJs1xPxDEbl9gwUaeJA84nQErePAKel3WDiUwb0KcO5VocItpwaErdLjCRjejFyynAM1fkiFWnidzd5mH1SQ+J2itGnN70YOWVw488Lkya2eCXde4AjjT69SXIJuipy6aWJA7WwaU7H8WDccLwEZi5a8CY+ubUFOJPtfqCcjvGewLh7giSnAs4pA/ugT27z4hRQTsengOPTbzFrgcPRIh9FShPPRjta7qamcWQkh1k7QgqRJs73RxxJAiFuAqGhm05+0sfdlk0Yi7bi2ulibPMGmYGIHdAPFIvhWM7to2LlJF5HvHbV3g/LhXSr49rW0sX+oJTJJNHstD4qwEc8hq41Ise1kfIot5YuzgKVMB8nmvVBJ9+hOtYcxFOziDnllGMNNB8rFYFdueeVSChTzblgRELW57Wcb3XoQqs5A3/SpZvPojByXH+10zwcWGx16EKruRadMH8XKHETH51U512ASBNnubdpWFLWO5hudD5LFaY3cZlnnEvtNsN3GSgbVsKwdeTB1WAWZehgAlrw5ovAmU0YXB3YtMiDCWDcfBYHkybyMRmsm8vWYqwvDHsNMAbMq7XvNWmCNwVIE9vjADdhfhkieqCji6ow96GVHguRJs7bmr4KLal4H+/PKHt5Ni/R5rHiLFfTnZNU4xzSEs0up5Pve+7QRPzGI008hB4W5SZNPIMRWE+imWECkXrg+ZHTBp+nJr98kYi9sZ5EszbaidQDz8/WnI6WY92HF1S/gQ2QWOLWu7ga+EOWPowo4NzkNI9Akr5zmQsW9kYvLKuBkUYv/mmciZ4LvmTOlhHXABnjND8HHGX04q+I80WOQnstT8hZmvhK4INO28/I+LeMw8+OQEsTzyyjNHGgJtNACdMsRUs2p2BiJSrlFJkO1lX3axE2TYVvMZh52fowPgdhztLE9q3480LOAvNAtj7MnRQuTWx3Q/bUSXoQYyo9uqiabkogTZyfISISt+6R13qJ26x04LfielhIpBRJms8L3kQzkbithyKliSPaWMN80iRu66FIaeLzSUs0O40OdQSczkCRJg40HUuq3PM8ow2LvpiANlx8p45NJ5a4XUSKxG3WfmpIE59l9alj07H+ooq9ErdZ++lDmrjlMt0Wr6T7y0hIVub1bqBIEwdqYQ9AGxxJiduMmKXoE5DBSIXsf+rPCDMyCamhlCRb5EEVXmni2BmUizTxbOC9TlsscVsXadLE5zU4rjqww5B8RnfP2w2mr+iiBDWliY/ozwjrIR9DJPLmclRL3NaHz4rblVZLNUb4Es2qJW6zky5NHDGhwRFmwzCVviRus1KcNLFhtTfR7DuxKEB9DARp4kAr8Mk9V0ncZsXEoVxor2WX1XlYTcNW8pr6lrjNRA1p4rlW52E1jTokbjNRQ5p4YSulia0/l8MCxxodapWFNGniEhZUC1TTK3Hr7rUSErf1YK4BJSIT557YFgre2H2QwoVJHInbukiTJj6ngb7qwE5AcjySOBK3WUmVJj4tB2nia/BFFzVUVDdVmnh2XtLErqpKq2gDDnHaXqOThxrqLaKH8xjFm+giLBGbNGAUZOVFXF3+QTzPVEfiNitTeIVpHMA6dnSurGpseJkwSHhA9eZrMH/gXJV8no0OlhLxMcSrsZ42lcDbPC7mLazkGvRGq7HfFIg0sRjGw6raB5WmnkKgicQb+PvRhsgfPRK3mTDwiMUzF7QiVTN5CzAr/i/JQ1lCmXwY8bjrudDaXJEt0M4QiySgN8rZ4Eipr3+v1f3otxaD0Ovd6wYebKQzAz1WNk9qvbOwidFSv4Hy8BZ0DP8qMK7yUj2cgD5RqLzXyn70W4tVwEFO24t954WkYVbFCmJukvU6MajqNQoy8zD6ef+kR+I2I+YZsJ9EO2iWN9ZfFuwmiDHqGqS/A5M9uqgK81Ow/4pW5WvV96DYJ36zGqoNgUCgRaxA5p97VBwQr7Kl5V6yQCDgMAqZe3WfRA0g3ot8xhVFDyQQ2Ah5Gpl/+xRX0DAQCAQCgUAgEAhstARDJBAIBAKBQCAQCOROMEQCgUAgEAgEAoFA7gRDJBAIBAKBQCAQCOROMEQCgUAgEAgEAoFA7gRDJBAIBAKBQCAQCOROMEQCgUAgEAgEAoFA7uRV0BAi9kQX+fobEf/TUH/d7EUPb3VanyOigWqldb3vJ+hhU6f1KaKGihoaIvZHG4SPNVhxPhtzGMIL7Oe58j9E/K3u/iI2R4q4VbMpDzKphUUNI7YGPqzat+Z+JjZQrEwqqO/qtPYQcQ85FvYJ5IeVZ+CnPZd+b+ClBvrzzwV4sNEiiRnf1z8X4H7TQOE+S8pcgHsaLZKY8X3fBezsNL9ppAhrI/29D3in0/ya6U/h02zvuwcwwmn+m6Gx9c7CXqDXO0OL17tAE7D/glQ/T/IqmF832N8Hgbc5jcvALG2sv8zvuze64N2zYP7UYH+fAlUs+Akwf2msv0zvaSBlz4VpYM9lhwKf8lz4bzBuxfUmYrdAagC6PACmgbo49m3ABz0X7osryLeU/AwRqdD7Q6or866mm0/QwW/r6qmL/enhx0gF2worGcRe/R9mH/SwGzDHaX2eiA/WvYnv4gwsFzmtTzKMj/RniH0yjjVEHAZ8w7lyPxEHugSWfgAAIABJREFUELG2zh6vBcY4bXcxiS81PMZsvAZEwCeqWl9mJvDNunqKen+f7mSczoZd1GujxsBaK1WwT3AuPWBhXwP1PoRnA0c4bXdDQXMBrgZOrqcjK8/qO9CVvGeY1s+FN4AbEUMoOaZjDdxQT0dWDJBfAP/kXDqEFhsi+Ne7NfFv6oF6OrKwH/AT3PUO9u73KAN50AP8B7BFdZv9Ipgf19eV/Qjym05u4NeA17HYbLYFfgCYRNsrYD9cv/FgjwHmOY3L0M+cJmMs2APQRXIfEUPLvFFnh5cAJzltD+E3TprJCuS5/hWnfQkwsr6u7CBgMXCAc+FaMP/V4PjqIr/QrIiH0F/+UHpYzAXK05PODEZgWUD1QxlgAlP5Qz9H2TcR3wJudlrfAdxEVMffM2JvLNOd1tVAO5N5tX+DzMQ3gd85bZ9CNjPZ6WIc2gh5HjiKVp8iRKxlMIcDf3euTCTia3X2NhNthNwPdDU6vMCA4RT0XPgYdc4FC19HGyHLkE10T8Ojy4CBtUg1bNcZcpKFw+vs7gr0huB+6n02NICBF4HRwDrn0mwLe2btJz7pugVthFxlZFPYUgz8GpjiNA8BFlh9spGKlc3fQvR6d5KBx/o3ykA+mMeBcU5jGzAf7HbZ+7FbIL8F9xRhMphf9WeE2TB3II6NJFsBi8Fu4rkhBbsLst4m6QGOAPNCf0aYkQ60Q2V34PL6urFfBk50Gl8BRoJ5s9HBZcNY4FjgGedCO9iv19lZN9oIeQQ4rcHB1U2+OSIRlwLfd1p3ZBXfznh/G2uYD7iT9wYibmrCCLMyHn0kfiBwRqa7z69MXtzJewYR/93v0WUhYhWDGIl4UpNMIeLzGfvYHasm7zrgqIZCvBrhXJ7FcDTa6JnLNN6TqY+IdmQTmeRl4IgGTocCAwxTcQDouTDZwhey9GFlIbvCae4Bxhj4a/9H2TcGngPvXJhl4b1Z+rBwGHrT9DJwZGzstBwD9wHTnOZhwEILb8nYzXno06GHgUn9HF49XA58z2l7L3Bdlptt72a1+nQIWFTv6VCgaMwt6O9sBLAg9khn4VpgF6ftTureQPeL09EnenuDcqqmYIchXvstnAvT8vK+g+lBnKfuc3kcWNepmoLdAfk+k6dDFjiutaFlSYzsUfRzeWYcvpcBuz/6mbgSaG/gdKhh8k5WtwzlWOAvTvthRCo0QmOYCnzOaX2cTZnYnOFlJGIFbbQjYQRJZtCtFj8Xw2quB97ttN9OxDXNGmImpvJnjArPksUvUotfNRezGfJAcfNlOohyDmXq5IfoTeBw1rGYSBl71UTsBMoQFm9DpLwNgQ0UA0+gjdE2YL7VG8EqLL1zwd0kdxoJqckNIxuTy5zm4cBiqx0fVVjYkZS5YOB/mzfKTEwD3LCV3YCr+rrR+p1CK4B2o5/ZLcP0bkzUeneohQkZujgblFPoz+iQ2sDA4CT0Kdb+6JMzD3YCclKYJHY8mBzzF80aZBPvRm2cAfbfMnRwDfABp83neGgx5q/IiYJ7Un0t2PfVvtcOARYheXlJrgDjOh5ajLkf6HQaY2PPusaegx2B/7R1PJjWRxclyF81awqv0MYodOz1FXTXiA/sZj8sU53WVbTR3tKE6DQ6WIrhdKd1MD0sIlKJZOvp4hTg353WZ4BjKCIhupPFwFynVcIBlqgf6HpWMht4v9N6D7tyYXMHmJHtmAS4x9N7Aeen3jOTocjJlJuAdxERP2jq+AKlx4gx4W7Et0E88bW8lrPQc+Feav32Wstk4JdO20chfW5aCfdYgg4busSQ/1wwvaEauKEax1kJ+/RiJSn4Jqo9lQAnGGgwqbZxTG+oBm6oxmXWLy4AgIV90RuMVYgxlf96F2gCJvY08w/nQhfYz6TfZ/dAchGSrAUOB5NP5EEV5ingeLcRmAf2Xen32ZGIYZ7kJWA0GDcUMwfM3aBydDdHNvGugzXJRcC/Om2/QZ67RXAB8J9O287At9JvsW1IisHbnQvXg5nfzMFloRj53g4ejE83kgylhyVEalMIEdvS47HcDCfRwe9bN9A+6GQ2YlEm2R5JtnQXQlH6slzgtK6hjVFEtFBhoU9OAvV33I/H1HckdDEWONJpXcYQxtCuYrvzYRxrkBh59+94KpEy/ISXuRy9GXgIiSENbJxMRCsb7UfKb8KKV83dGL8IjDY6zyEXEvkibu7UNy18NeW2S/HPhXObPLzM1MgXmWW14VfJC1mIVhSaY2BBa0bZN8b/dxyKnFKp9c7Gxi9aTGZio6pbgbJgHkWLR7QhIVruphCw8cZYRR6cC+bnrRhhNsxtiAMmyVbAovjEwMH6NsY9wJGNqVU1jamA+3fcE7jY/3L7JbQQznJyyQtJw8R/R6W0OgrssSk3dQKfddp8v81cKK6OSCcXoT1tOkwmSo2TXUKn8uQXwTi0p+0gIk6taokYTo8nL8QwiQ7lyc+XSDxtaE/bVLqcULhudsOmJJqdo7yX+SKhVG6MvAGuJ3JC4SIORXJ9koj3MlLey8BGgqF3Lrj5IudaJyzUSrz2lc7reoAjjPbk54qBZ9GnrAa43lKdO2Xhy+hQoeXASKM9+bli5GRphtO8GbDEky/SjVareQScZ3ExXILOj1TrnZXvaC4igJJkidGndYEBibkeVE5rJV/E3ZPNBv7Fabub1I1yrpwGKqf1YyiBFzsMf+TBBWBcT37OmPhkSeW0ngjWEfmw78TvZJ4QnxIViIlPlrTTBqwTCmc/jRaOWiX3G/e0LheKLGhYyfp3Y4/biRLHfoYp6DhZXzx3MUQSe4yOPb6A7qrju7mgkqfvpFPlNhRDxOPo2OM2LPOZEYsDXMxm9Hhj4acRkVOiWR9E3IGOIxdxgEq+SORNGJV47kjFcwc2Mow/Dr8NuNnGQhm2Nw5XJV1ONzq3oRCMSPC6htJwYFElX8RCatKl0bkNRdEF6vmyO4lcGCuqL2c5r1lJznkhaZga652t/q1NQgzDJOVZ7wLNYgIolU/nN2y/QYoKX+wFLxhTEflw80Umx4pSFXwqfA+QgwpfNsxz+FU+Z4ONRT5smgrfNbEQQQkw96FVPocBC8HGezabpsI3AczDrR5hGsVWVpdwJF++yFV08wG6+RRW/VhX00Y7kfJYFkfEw+hFcEicL7I1ESeBkpNNU7gpjohF+JQ91rCAJQxiJVeji5zdx655J5r1wXacgV/ZYxpzREITHQt/BZFSuAlspBjx4F3vNG/L+nwRX9LlzxCvfJk4C507tTcww4qcrC/p8koD381jcFlI5IsolRsLY2yvN1kvrkZv9gojkS/irndXWviglQJl7u9nNXIyVZ71LtAEUvNFpoH9JFifnGys9mRyUeHLhnkSbSTHp3r2HWB9KnyvAKPyKJSXHXMXOg/nrayXJj4frcK3FDgzh8HVwwy0I2xX4KpEXoirOrsYjFvTJVeKNUQAIh7AeLL+e1gU54VUx8kaTqVDaf4XT8TVwHec1h0Q+UZfotnI3CRu6+NEfMoej3E3EuqR5EWGcHhheSFpSL6IT9njTF7gLnTl64coLtEsUF5ORkJ7knwaCY3wJV0eXlReSBpxQcYxSKhVktOBu/AnXeYpcZsJI57go9EqN7OQEF83vn6e0eEvhWPgQVC5d8MQg/BWxDhMcrrR4S+BDQLzCDrfoOJ5vxUdeRCByVWFLxvmVkRaOMk2SL0eX+TBUWDyVuHLwjn4RT7uBCVM9DpwSJ4St9nozRdxjdXjkIR2V3X2T2jhgdwp3hABsFyIzvr/FyTxO8ltcYJ4WTkecGMFP4VbgMhwLpH6wZeDiH/E0sSup8ZNbJIffNF5IWlEpCl7uOokyxnEqJAXEnAxMgcOQedOuXPBAmONThYsBQaeRoce+ObC60jdk1LOBQM/QiuRbYmuMP44eoNXJnz5ke9DKsEn+Y4hZ0n3QM6Y65Ac2CTbo/NC7kVq45SVU9FFYfdG54VcGhdGLCGmInjjOog/gz8v5M+5DKtuzDIk78V1irnr1ip5nVmRy7BqUA5DJKKHTTgSqcidxlMMK95yq0lUUU9gdY1X3Y0tRaJZOh08iuGkPl51ARE/ymU8jRJxG30t5IYJTOXpfAYUGGgY2dS6oQUuFxq4PY/xNEo8Prcqssu4+POWGV9V5CSll7hN5IvUqlP0DKFeyMbCBHSB5CSxelwRErdZMWkiH0l+jU6SLhnmWfoOmf8WmJtzGlCDmHvpu8jkKWBKEV1UDkME4Gxeoo0x6KN3EA/dSCarUJvyEdXUk36eTTiKyPsZy0Un89Cemgq+IjrlZGtOR3tqKlxNJyVJNAuUFSOhEjemXP4FOtSmrJxJepjPrPhzlpo4X+QotNeywklGS5GXDhNXq8cfyvcmcJjRUuSBDRKzAvHE+xyYlbyQckYeVGGeIL1Q5ytIte5SnrZWY+5EF0iusBQ4JcfB9IdpyEmaj8Vg5uQ4lpqUxxAB6GEE/jE9h85bKDNuMlCF33E2L+U6kkYR2WSPrjkA9xCxNs/hNMzLbIooBfkohbpRoNxYas+FuG7HQGAYG8ZcGI6OnwfZwN+b71D6xQj8hTKfRzT9AxsP26Dzg0AM7oGUI5S29/kjIik+UEj7HD8vX15IKpugVb4qlOp5Xx5DZBo7kl4J8r1oSdZy0sWBwBkpVw8mSvUYlAuRTXYTmyqcTcQn8xxOP/DJJle4jkjVpwkEXCYBX0i5NiWWjh0IzEaepT7mxlK+pSaWTV6A3xDZBCkSONRzrVRYeBc6wbfCe+g7jC6wwWC3RYQVfPux+JrVBZJLh90bXfOnwr9SYHHU+rDfQE6ofJwA9t/yHE0/uBLYI+XaFWDdPKTCKIchMochrPNKqiY5ji5VzbtcTOcd2NQHSoXL6Faa2uXCL5ucRJQ9IlXBuFx0cTJaNjmJVDBe4vVKBgLEkqquNnuSQcCNVlfzLhVW1PAOr/GSrYH51u+hLxM+2eQkHwEuzGksDVFDNjnJMVZC0AIbNKmSqkl81bxLhh2O/KY3qfGiDrCuQEbJ8MomJzHAPLDvymlADWLbqV17aHNgCdhNcxpQTcphiLzAJciCn+RPuPkilllM4315DasuljCItSxEb0hcHfuh9LCIC1UhtHIQ8TavbLL+HNsjdRbK6amJ+LBHFOBN4EmnbT8eGzAx/oEcsXKs7ZNU9c2FG2xJ54KVYmKuhPgapFBekn0pce6XlVoirmzyX5H48yQTLfx7PqNqiIvQEuJ6vYNZVqsnBTYszkFHHjyJVq67EOxe+QypXmy8OVeRB+5zsg053dk2l2HVjd0Mv2yy+zm2AhbERQ5LiN0J+LbT2IM8Y5LsgV4XCqF4QyTiYESvP8krDOYLaM/W5qzjVi6jFFZcFY8RIQt5kqWIDrWrqLMLb6gfShmICxEp2eTFbMo+aEWdL9NVwsStiM2R6qGubPJk4CC0os5UIiVtF9iIsevngiupugSRpXQf6l8CTsthaHVh6Z0Lw5xLU/DPhXNsekhmYVjYCa2AV0lc90kTz7Pw7nxGlx3r924vB76IlmfdDLjVUsL1LtAErM/wXwl8BZmfSTYBFoGtFTVSFBPRhv9TSDiWK3jzz8CN8UlQ2ZiFNvzvRk5ZXcGbT1D7pLwg7FCkGK8rm3wBIt/rinxMAFvrpDwXiv0xTOedSCXvpCfRYjiWc/lfRKrx585de/BaOay4XiI+jX5wrADaifgHmzAWXWNgJF2MzWN4meniDOQhmOQJ4BtMkhoDuJ4ay4V0q6JoRXMtqJOzO+nkCiIeR6teyPF4lJqQHNj4OA1wY4GfAL5uZG6PQavcXGDh43kMrg5moxfXu4DLDPwZ2UQkaUNCtGqFiuRKnBeyBL24TjfwYwN3oHMqhiP5IrVCRXLFilF7I+56B8cZ+AuyKXWliXcHLstlgIEcsRIWrEMhTwbzGBIe9H3n2nvRBQILxvpCIeMiquZV/NLEX6R0FcntMehQyGXAsXFyuk+aeDLYz+cwuHq4BPiw0/YgUgzzOfzSxLPApuXR5kJxhkjEYNayCJ3Vfzmd8QQUZabD8VlxXTXjnfMjYlt8DxTDBKJ4Aoo08WhcqUbL1XTXjHfOj4i9sUp3ejVttBPFEzDiN/GpQpIh9LCIqGa8c350MQ7ZJCapnoAR16M9NSMI+SIBwMJeaO/0amCkiRcjA79FVyAfDCyytWP/c8NKjPARTvNzwFFxLQuMOILcCuQjgAUlyhe5HFRe3c+A7sS/fdLEezuvKQy7vmK2u97NNPBdqClNfIKF0a0fZSAfbOW09R3OhcVg5sn/mkqtGbcC+aFgx7d6hNmw/sgDOAvMA/K/Rhyy4CpNTQf7iVaPMBt2F2Cm01iRTY4rlBtxyFbTBswHWxLBG/tlJBcwySvAyLhYIynSxMOBxWALc9oUeSJyPtp7+Bvck4UIvxVnmU2UqgCTDxFpiWZz6XQ2uh3chy4wM4weFhJ5FWDyIyIt0ew0OpwjyU6uAL7nvG4H0hXP8iNid6zyHooxGzmL+2aMR3tq9ucPnNXCEQZKju19KKu5cIbRG92ZxJvIBO9EktcLzRexsBt6wVkHHG28x/MqDnp/tKGVOxYOA05wml8CRpuEY8eIoejzWp5l4cutHWUmZiDhHEmUMWtEutcNNQOYY2GX1g0vkCNnoX+Tno2uiTeRrHFeeznYMgjezEH/Jn+IqDUlMEvRJyCxYW7T5GVzwlZOW92c3W4wP6luMouRvNgksSPaFuy0sTvgiy6SEx3XmJ0E/Mpp8znfcqMYQ0Qkbk93Wl8FRhKpJC2I8FlxbwUWExV49G68iWaPocMdKnQD/+W07Yq2xvPEIJPLPZr7DhGzPK+3DOU4JJQgySGFShNfzGbIA6XaqDN0EKnwPjiTlbR5PDWW7gEkTRxoPj655zvQ+QmVCtm+uXAw2jOVG5aUuQCdxlOV3Ehcus9r2WUpbi5Y2BGddGmB4+MNexVGknxdpRiDSBO73ufcsHgl3VcAY4yniJ2R0LlLnebNgYUDQZo4UAu7N1JoLklsRBtPVXITh9VUMRRRPHJDFXPEjkef0sVOY+OpSm6uQRdMjUMVC5UmvgqtwudzGlc4EXjYaduPQivG2zQVvsvBuOF9xKcjo9AFU08rSpo4f0MkYvtY4rb6x2cYT8RTqfdt57XiPook4eRPxL5YlWi2ijZGE/GPlHt6GMIRiNJLkrGFSRN3MRH4qtP6DPoYcj1TeIU2RqE9NcVJE69kFvB+p/Ue3s9Fqfd0sBS9QRgY0sSBpmPxyj0/i5wieBZXMJJoPBKtcnOJ1bG6eXEN4uBIcg81npUGHkEn2w8GbilCmjiWuL0ZLel+sYEfpN1nxABzjZdtkE187l5LK4Uw56HX2hOMFjxIMgX4pdNWemniQC3sVshpq6vCdyoYNxk6yQXAj5y2nSgsCsHugTaU1wKjwPy9xo0TgKedti+R7rhtMbYdON5pfAkYDWad5wbArJLrao/XWaA08QWg8nR1dFEV5hlgnNtIQdLE+RoiEn9/I3phm0WnsparGUeaFXcKUc5SjefhTzQznEQHv6957zksQ3IYtDRxlLNUYzcfwXoSzdoYRaT+ztV08CBGGWJD6WEJkUoqbS1dHIs/0Ww07aQ8UGLk1Mf97W2PTioNbMBY2BO9yVsLjDL6mVOFgYcQYY0kQ5Fk6VzngpVn5NFO84uI973mXDAi8rDQad4euKmAULNL0BK3D0Emqe2JoJ7D+6K/o5ZiZX1dgOTcJJljpD0V07uxU7+9iVY7jgKlx1YiD97tXLgNzOza95oe4Eh8gjfYY5s0wIzYymmrq+Q2Fcwvat9r0pw2F4N153qLSZW4PRKM+3d2MI+ile/iuW5zFryxBwGnOo0SXYTR0UVVmNsQMZMksbFsXWO5peRriDxGN7oK8VK2TK1EXk1EmhV3PVFuUo2GN7kOX6JZJ3Mz9RDxU1Ceeikwk5c0ccTm9LAALXE7iQ518uSnkwvQ0sT5emoidsG6Man0AEcQqZMnP5syDi1NfFAppYkDTcf2FndSc2+y0V7pNC5Ce+p9i13LsLAzeu71AEcYeCFjN+PQnvoDyVGa2OKVdF+OGIV9LK5gYBUSauZKE5+bszRxF3q98508eTHxaRxamvj6MkoTB2pyCn6JW9cjn4J5ETyCN6J4tGd/B1cHPhW+u9H7mRTMr9Ge+iHIJj4naeJUidsLwfxntj7MdfgFb+blJ01s0xym48GkRxdVcypamngfdDhgS8nPEOnyJj+KosJpKjY5nYjbQOUubAUsYo468mw+XZxFmsRtfUylWGniOaRJ3GbHpkoTR6rwWPOJSEs0m0akcnHSGVjSxIHm45N7vos6ZFPj0K3j0bkL7TbzZqNxEhK37lyYbuDHWfupIU18vtXH/00nlri9Ab/ErRvWkYoRx0Jh0sQWr6T7SqDd6LCOVAaKNHGgFtYXQp6UuM2I8QveSLJ0DoI3diyoEPKKxK1bjLMWRUsTX4Zf4rbeYq4FShPbigqfG110DZja0UVVmDSRj1ylifMxRGYwAssCaknc1sPWnIbPinuhxQVmROLWlYOslrjN3ldx0sQRJ5CaaOaPhU8lTZoYrslBmvhqfIlmu6pkwL4ZCNLEgaZjxYHgk3vulbjNiumNL1Zz4Sqrf6fNZibwQafNlbjNRIo08RBaLE0cS9z6JN17JW7roShpYkuKpDtMMFqdLAulliYO1MKmqfAlJG7rohtw1JzYDaVU1WzsbvQpcZuVmtLErkJek7GHghLVcSRus1KoNPE0tJCIT50sA8VLE+dTon4N70If9SynkyUN9TeR1UzjENapY/YeZjKUiVqJpEm8DTdkwPBnJXGblYjn6OYgelSCdz3ehXoxiEeuOsStjV/RoYyibHRwHxFfwa3I3qM2FM3jQrbgDR5C4sbXM4Tb+8wLSaOTK+jib1gVorM9feQJBAYecd7DG+hwzwc8EreZMPCzWC7WrcjesoTvOLTsN/F/SW7vKy+kBjOR33yec6FS8O/GRFsPOgSiHk4EfLHrI9Anuc3Ct969amRDWjcGVls4BHA9lNbCUJ/yVqA07IDOPXsDEWJoANMD9ki8ktR2CzBuOGKzGIHORXhOS9xmxbwS171wT1lXST6NT3mrKQxCP+9/55G4zYhZCvZLSFhskhaGmdmhiEKg+zl+HBdfbACzWB4nDHcubE/rnpNV7IN4/jIfewcCgaaxApl/xdbEKSffRv42BUojBgIbJaOQuafknpvIlxBP7LAWvkct3ot8xhUFvX8gsDHzNDL/9imyoGEgEAgEAoGNk1OQXEU3rykQCGxEBEMkEAgEAoFAIBAI5E4+OSKBQCBvNie9Omyj3IROmg0EAoFa7Ab8M9nV296B5A7c1rIRBQKB0hAMkUBgw+Qt6KJL/eUhgiESCATq42pEzvhWpIbKcymvG4KEa3Uge5PfEnJXA4ENnhCaFQgEAoFAoFVMBu4DDkOKZUa4hXRhP8TJcRFSkDIiJ7WeQCBQLOFEJBDYMPkbWkK2v/y9yf0FAoENnweRE5GvAOcjhePaWV9b43rgYOD1+NplBCWrQGCjIRgigcCGSQ/pIRCBQCCQNz9AKsUfgtTWeE/c/gXgW4gRUmdxvEAgMNDJzxCJeDsSt76eIazkHJY11N8MtmONU2xrE17nbF5qdIiZmM67WKsq5r5MxPKG+ot4NzpE7m91V2qv7z0HI4WWqtmSFzhNVQntmzkM4QWv9/3/iFhV/wAzEvEW4O2eK38haqAoZMTmSFVkt72idx3YwIgrbL/Lc+kFoyvmZulvCP6TqP8ztG4uWNLngmmgQKqFzZAiZi5P11txvs733Qr5L8laA8802N/W6CJdb5oWG+kWz3oHKw2NrXcWtkMXl3zd0OL1rvn0AG9SPRdWI2FYG+gpiN0GLVH8BpgXGuxvBDI/k/yj/grndb/v9ugK8cvBNFjg1L4TeV4meUWKHbYKa1hvACd5Ma6UXm9/bcC7PRf+CuYf9feX+X2HIQIQLs/WXyEewG6KPGNcngGztv7+6iO/HBHDh4AnkIqQ8t8anmAa76u7r4g9WcNTVX3Bn3hTVbdsPms50nnfJ4GHuLABLfQuDkeS8ZJ9/Yoh6iHTXCLWAhfjfo7XWIJUm66PF7hU9QWLaG2FeNgMA9yu3tswpe6+ItqA76u+YBID0wgxwD81+T93ERrwxJXHL0J/70tsI3PBN6/ymAukzIUGikFaUufC5FYaITFbIbkCyff9i4V/q7cj6+/rSSQMqNV8EPiz875PWPiXejuysAf6M/wJ2KVpo82HjwM/B76HbKQr1ax/h+SEPAFMQG9OBzrvAf5A9ff3NNgP19+V3Ql43OnrCWCvJo21Fl9C/w5/D/Zt9XdlD0S+f6cvtmnSWFMwFslZcj/HD8G6DuYsnOPp6y5Qzupmsw6Y73nvi+vvyhpggaevK+P3aTn5GSKd3AVc4rRuzjqWENVRWVW81kvQ1VinEPHL/g0yE+cBP3LaduYNvlVXL9PYGcscp7UHwxGcQ4OekroYi1YkOZiIk+vqJeJg4CSndTmDGEnEm/0YX9+cyUraaAeqPQ+WbiIOqLO3LlD3PAKc2vgAC2UbJE+kmf8dmusnyI/jgaectoOBifV0YmWhdu9ZDow0tHYuGFgJnrkAkYXP1NldJ/qeRxFFo5Zi5Hs4Xjczz/pPrrzERuQ89D23Gri2f6PsGwN3ozcFmyMGrnuykYqld71z7znHwC/6N8rceB/yGX4O7A3MBHZHDDWQUK2vICeQ18TtR9GYI6CEmIeAc53GocBisFtm78fG9+DecxGY2/szwmyYOciGNcn2wE3xZjYjNr5Hfb/jwDzenxFmZCLwP07bvohaWx3YfZFnZZJVQDuY1xsdXDbMGmAUOm9zItiv1tnZRMC95xng6Nhwazl5q2adjX547ol4JLNyLahTlLuIuLQ/A8uMhPwciVb0GEUXR2fsYxjrWII+rp1BZ2ZZIwc4AAAgAElEQVSt9f4RsZw2RqI3SJcQ8bFMfUznncANVD9QLIbjmJqT7GIHj6JlatuABXE4YN90sT+oU5SVDKKdSG3sAhsYJjYW0HPhYiv1DPrESjjWjejFdazJSYLUiLHgOhLagAXWH7alsJJU7J6irATajTZyWoKR+hGznOatgEU2u7f8dPQpypPA1/s5vHo4F9l8J9mD+ryWs9GnKD6nXpmZhyhm/RRZ77+JJKYnuR0xTs5HQkSuA3bKcYyt5hLklDHJTsC36+jjUsA9RXkQmNqPcdXLCchpXJIDkfmWATsYWAi4pyizwSzs7+CyYWJjQf0GzwX7uWx92G2Qz+GefJwE5vf9HWE2zLPAMVSfUhvgerC+8DMP9qNIvlaS2MhpNOSufvI1RCLWMpjDEe9qkpOJ+FqG+08AxjitzyHek/zCZyJepI3RuMdWlmuI2DVDD1chR/dJfsaudDVphNno4NfoDfgQ4GYu4K01753DENayCAnZSTKTTr7bvEFmIOI65JgyyduBeXHIVTozGIFlAfqBMoGp/KF5g8ydN5C/STP/c08NNhgM/AYJw0syBNn8bl3rXiu5dreg58JVBv6jeaPsGyMKRDc5zSMQY6RmuICV/Cjf4nqigceaN8pMnIauWfMx6PsZacXrPsNpXgOMMfBqc4bXNwbWgne9O9FKe00sfAM4wml+HjiqkbyfApmIeG8/C/yxxutWIs7KPYHxrD8x2QAwFjiW9eFoFdrBfqPv++0hwIlO4yvIhrGBnIBGMSuQTbybP3c+2E9k6KAb+JTTtpTMhkyzMH9G5leSNuBmsL5ciQTWAHORwptJloCZ26wRZsPcgZwwJhkOLALbRyi13QI54XKltCeD+VWzRpgFA+wDPAD8BX8ST/OJOAhRz0h6D5cziA+netK72YMeHqT6iHotbRxAB/e3brA16KITS+S0PgrsnepJj2hHjleTvMRgPsS5PN/8QfaJIeI/gH932m8j4rDUu+QE6jSn9bdszSeYyOomj7FvLmYzVvJr4P1V7YbJdCqLXxAj5W7A9YLMI+K4VgzTwwokXnpHNuCNfoN8GwnTORe9sWw6cTjPd9DH1N8xNcLSrHi4z3CaHwb2aWWCeo3xbAaeuQBnG/E4++5Jmwu3GBjd/FH2jZU58VuocopY4N+MeNB99wxHDBh3LZtoxAGUO1Y8xj+ker17HfiokXh/3z27I97uZMJ7D/A5IycLrWYUYlzfgw5ZbRY/RoyTbSkm6f69yCnZSiQELgfsPsD9VJ/srQI+DuZ3KffsgOTRJB0iFvgamO+1Zpx9YScgYXRJngU+BCZF5t0egIS1Jx0dK4C9wNQyUFuInQtqrb8X+CyYlPwIOwUJ0U/yBPARMK0TGUrFDkHq9Lin95eAObPGfQvRDpE7gYNzCsl6Gkn0/1gxBQ0j7gQud1qHs47FRJ6E2IjN6fHEyRo6CjNCACzTQIVS7Ya2UIXIexRrMYwtyAiR9x/KcYghmuRQuhjvvUMMSTd34nVgdCFGCEi+iM9TY5lOxCe99ximojdej7Np0yuSBwYAcSL2cehQqkOs9kYCvZtM15u3Agllyt0IgZr5It1WeyMrnINvLsC4Jg8vM8YfSmWAuVZ7IyuG5PVoI+QOpLp3IRgJpXJDh7dATqlcb2TFkFyCVt3qyMkICbQM8yA6F2EYqfkidggiduGeyl5enBECYGYhp6dJ4vBUX76IHQEpkQeFGSGAPNfdUKpPIydzHqzvVHY1khdSgBECiXwRN5TqdLApIh/2RLQR8hw55oUkKa6y+nZMBpVcvhdwgefVs9Bxsvfw/rpyS5pPRA9DOBJUcvlYujiyqmUmQ5HFxX3YXEin37uXG1N4BV+MvOVyIicmNWJ7/LHwJxD5vXu5EfEIRhlIEjYTOTGp3eyHVbG1q2ijnUkqdjSwkVAjX+RS68Rn295ETT0XjI6jzhUjQgtucvlgYKF14rOtJGp6ky6NjqPOFQO3ghL12Ab5HO6m5pvo06xngaNzUPvqiyno/EhffDbIeueeZt2Df20cyFyHKBitLHogOXMh+kRvZ/AK3lyM9nT7QqqL4AT0id6XUDmbVnI2dZ7adWDckOqcSc0XicA6gh12K8QodPPUTk0/zcoL8ww61CwW7LCOYIfdE52nthYJ83PDSHOhOENkHGsY7M36P4UoESYUcTw4m3rRYh9Nez7SYjU5h2UYxqDzRWYzLbGYvMwVwIecux9ku3qVGlpExEOYFGWPKDaepP7IInSi2Swi5R0phk7SlD3WG08R29LjiYU3nESH8o4ENjKMLPSuR2woonj0VqjKC3HnwrVG//4Kwcjp681O8/bATRVpYhtv6tGb+pON9hQWxSlIaEqSKuPJ+jf1a4BRRnsKcyeRL6JUbmzCeLJyIneU85plSH5L8etdc1mMfGcbmSCIsYhqpRsFMRJsIkzI+pT7YkeJaa0iZSaMREGgoiAuAps0niL8KnwliTwwj6P/zrHxZGPjyaap8N0GZnarR5gN8x10uNxWyGlbbDzZNBW+c8EUpsJXnCECcC7pWf8R76ab3RAt4yQ9wBFEJarA2sk96JjBzVjHEi5jU7o4DPEeJJFEs3HkmGjWB519KnvMANyEtKVsqeLji+YEdFLkQXRxWpwXMh9dDGgxneScaBYoMZch9Q6S7Mj6uTANVMjfI+i8qaIZj54LBwJnxHkh8/EkXRrxVpcC0yuJqYq8nmPhc3FeyGJ0nZvJRp+6F4aJT2fwrHcW3mMlrNfNY+kBjjT61D0woDEvIZt4t1jcNWA/EBf7uwGPCh+YfBQpM2F+C5zlNMbhZHZrsJ9GO3Xi0NFWFvyrF3MD4qxMEoeT2UFIDqBPhc+VGi+a05G8uiT7ICIB4Fed9UmN50qxhghAhC/rfyvgFnq4FTdO1tBNxH/lNLrsiOLVvU7r7rzGfKxa1C2Go4lUXkbRWDZhLLJgJmknYh7gJj69DhzaUDX2VhKxIlY1q47Rt5yPPGw+79zxOOV7oAQKJA7lGYuu6H2YlQ2Cu/iuAA5tpBp7KzEyrlHofJUZyOf4gtP+Z0o4F4wkg7o5axVDagGSeJzkDnQeYuEYSVq/wmkejpyu+fJCphudhxjYIDA/AyV2Mww5obwVrcJ3NZhcVfiyYWai1QF3QObmLfglbvNW4cvCiWh1wAOQ56QrlvImEsqUmwpfNsxqJLTYddqcBXYeWnX2/4CjwBSqwle8IQKwHWcCrlzYx9BxsvfxfqbnM6g6aWcdQxgF6qTmEHReyGWF54WkcTZ/p43DQJ3UHIP2zkwoPC8kjQ5+h04iHoKWw1xFG6OIWJHPwAIDhTik5zB0vsjR6GfnhKLzQtKIQ6zc3Kkh6JDX1UgoUylzpIxs0FynzgjgIKftOeDYEuSFpDEJvd7tA0r6/T7WezIDGybnowsk74r8HpI8jHZ+lAlfgeSD0Hkhi+LThxJi0kQ+jkDnhZwJ5je5DKtujO+kpg3ZwyXpQYyQIhTrqiiHITKOtKz/JC9SlryQNM6RWF5qx/L64s/LRQc+ZQ+XbxOp+PNyEeFT9nA5NTZaAgGFgYfou2DYXKPr2JSKuJp4X7krpxpdu6NsnIyuipxkLXC40bU7SoMh03r3EjB6A8wLCVRh0gokJ4lrd5hSnbZWY9JEPpL4aneUDPMoOl/E5Q4KkgLPjrkVeebXohPMT/IYTV+UwxABiHgGo/JFKshkjWpO1nIQ8VP8SiggtVJGEtWcrOUg4kLgBylXH0Ur8pSTTb2VYCvcStTnZA0ELkbnTlXIsnCVhVpz4TYjVbxLTSJfJO3UZqrR1cxLh5GQPzdfpEIlL6T8612gCRhxsqYbnSeAKeVpazXm14gKmo943ppSnrZWY+aii8JWiPOa85e4bYBTSHcs3UtKTakiKI8hAmBZif/B/ATbcU/ew2kYk+rp+lFqwcbyYUmTVTTMTy3YWDbeYA1a1aOCTy4xEKgiDvFJC91bYAaO6s9a0nNY3PpGZWYVOnQUxBvrJpyWmbT17klCvZCNjdfRiesgod7fzXks/SGlmCG/AlPrJLNsLE9pX5xesLF0rCV93fpWesHG/CmPIRKxLSI16RvTLrwwQGJlu9kLqxS0KrQTFVOluG66+Dq64I1giejmA/kOqGGuAPZMuTaXSBWKCgSqsBL/7Cb5Veiw8ME8x9MPLiN9rNdZXTStdMSyyQvxj3UTpEigmxxbOmLZ5LT1bmcoaS5koAXYzZHftCpuieRY+Asklw67M+mFQ/cH6y+QXDrswUgIqI9TwLrKoWUlQmTOfVwJ1lUOLYxyGCLrJVW3q/GqSXTx5ZxG1BgRw+nxykgmuZaIXfIaUkN0sxtWKbskGUYPC4mUwku5ENnkWpWhdyCcigRqEEuq1toIDEPqi2yR05AawsKhaNWpJO8EbrRakKJs+GSTk+xPenhIKUjIJtfaCJxp4Ss5DSlQLD5J1SRjwbrCEiXDDkNU32o9By8H69ZSKxmpsskV4lpq1lU0Kxl2f2oXvYzrR9lSOG3KYYgYpqAlVZepV1nmEtV8eBfNXOA9Tpv7ObYAbiaqaawUx8Vs5pVN1p9jV8qcsDWNHT2yyT1IEmiSQ+jixJxGFRhAWJkDi+l7LuxMib2WVqRttYS4ngsHAyflMqgGsCI17CoHvYYON4ssfCqfUTXEJLRssl7vYK7VNV4CGxT2G+jT1peQtSrJNWDL7MC8En3a6v6mhyKb+M3zGVK92CGIMeUaGe7n2B6pWF5Sp419O37ZZPdz7EffQiy5ULwh0s2nsEpLexVimLgF5sSKW1LCo/cuTga+5rQ+g4QFuVKNewEX5DGsulnJNWjZ5P9v79zDrarK/f8ZGxAK8yiWHo/msUxOamqmidWvi5qntOxyTgKKF9AMxAIlFUXYe+4N5gVTQ0UxRUVB4GhXL2Udy+5eqnM00czSvGRCISocIWGP3x9j7s1c4x1zrbnWXmvOudnv53l4Hhhz7cm7Yc85xjvG+/2+9zKE/ZHWxCfRKSxAi2cBQ9jELUjb5Itwi63K+nLLV4l4T07RKf2HK3EnIkl+BOyPbDA33sqO2IVjne3kLcQd4RNcjHsWfOOMuZbyPQvW2fTeiJyzTkVaEw8GlljZ9b5wrLOl7/SG1+MSE/909s2476N8853SBOy7kL1uNgKfxT2fSd4E3AbW74hdAuxopBvWSuAA4Pve+EhK1CzV4yu45zPJg8A+wJ+88aMoTWf4JLYNJ7Tf0btwHa67va9nnAXW73qfO8UmIhEj6OYW3MSR5DQiHsbtzv2vd+3DrChHFtdLxL5Y8eJ4Pe5PsZKwVePpRHwmnwAzEjEW5+SSxFkSn8cLmICzh+VqIt6ZU4TZeIFLkC+U+9mJDiIeQFoTDwWWEYnERRmgWGdFOcEbfhEYF3e5Dtl0z7cyiS+ai4H3eWMPAO0p1sRDgWVWJvGFEZcyLUb2JLjGwBIDC5DWxLsAi8pUamZdo96lyJ4EU+JeL1OR1sQforaVutLvsMMJN7CcCebnuOfy5961fSi4A7bE7o40uogtic3zhK2Jx4D1360FY49A9h2LLYnNKsLWxBeD9dcZRTMTONwbexSYmmJNHL9brf9uzZUiExED3ICr00+yjIiFAESsp41xhLK4iI+2PsQMRGyNe6EMqxg3TKc9Pglx1sT+joEBFhKxWw5R1mY2eyB35LqB44jik5AOfoTcqXEv1Espx05NREho9hIwNu5X02NN7DeUfAf9yzlIaRHW/SyEnoXj4yQE405G/FPN4Ti9SCmeBQufQO7arQHGmM2T6lykTXfZnoUO3G5ekt8B0xJ/DlkTH+F9pjDs5vnuX71Ly038b13FmnimlYsLpX8zH7lp8T16Ew2zEbeB6Ts0nQY2bCKTO3Yobu3jb1pcCCZu0mhWEbYmng82zUQmZ+wuuFME2bAZE7ucmoeQmoshuEW8f9pcEDa0abEeOBZMvIY21yN7Xu2IKzUrLB8oLhHp5EykGO9J/CO+dh7FBLO4W4jEDlkRhIRmd9Hhib07uB338knidsgWiB2yfIkYxqag0Gw2ET/0xtqRPv378AqXtCy+rMwhJDSzwElEPF0xthUnI3dqRtPJyS2NUSk1NhafIyfXOQZ+4I11IG1W34VzpyoUG4vPCTwLhs3PQmxNPAFXRppktJXdeXPHujrm87zhdcBok9CGGGdTOQ5p1X2BlSdCRTAN+LQ39kfglOSAcU3fQvPdzba6mYvSb7ATkGWcLwIT4gaHMeY5wr1m5oP1tahFcAmyjPN+8EvtzX1IF7hhOLF0wYY3dhDuPemXcV4F5lZv7DJkP6mQ/q4AbCw+F2Wcp4F52BubDDzujX0cOKtFwdWkmEQk4iCs+MHcQBujiXhFfL6DtCxucey4VQydTEQKzdJeHjCCaSC6eI/iBVEznDchodl97MVs8cnIdS5Gdi6eTGeK3W8eRAxmI0uRQrPLifiW+PwMVtEWLDW7sh9ZEyvN5zKcBiTJT0Dah8ddr09EPguTLMXZdMcWt7cin4V5JtCTwLiy0eORu5ZXWIp7FizsQHhynWzgMf/zBn6NE4InGQIsLdKa2DpNoG/pvgGXTIn5zrjNFL+h2o70E2tipRp2JG6+TdINjAPjazABc2fg89sCy8AWaHhjjwJh8vISrpQp1OOnC/C7eO8NVd0586ALONQbe4Tgotz0bNr82bvwObCTWhFcNqzB6al9Y4tlYBbKz5u1uJNX3+RjTlHWxPkv4iO2xdXJ+g/RNNrFIj1JKIs7FOmikg8R78KKnU+3SI/EwsQxxU0+yMlnOp3CRSUfIkJCM3ecOjql02uUkmw5vcjbWxBlFi4A3u+NPUQ1K892wjs1/cGaWGk6Fo7GlfgkWY0ryQo+C8ZtPJyA3HhYYCnMpvt8wJ9QQov0Xkw42SrMmriKxe2NJr3rMTj3Mj/Z2hW4sQi9iO1dNIr57iyT3vUY3HznJ1uHUOX/UCk7qRa3XWD8RXqSs4FfeWOh5DYn7K6EKw8mgPEX6TEmTraE4c0pYI9rfoxZsKHnKV6km5TGryZOtkRD1SKtic8G0dpCVhdVYELJVryBlb81cd6JiNNFSIvb24lE2VIlEWtpC2Zxs+kSk25rmUtYaGZoJxJlS5VEPBnQi7RhuTl3a+LZhIRmFsPJRKJsqZKIu5C7Gf+E0/jku1PTSUho9iowjkgIzHy6QJSf7UWJ7ViV5mNJeRZggpFlSxUYuBtZjrU1zvEo1KSsZVinizjTG16LE9n7ZUs+c5DlZyMpZtcyZOkeKluqwPSUYlJRigluop7crODqIGTpfgfpjd8AMHH5GXK+67TV+6go5eVK5AljaDPMw7yOW8S/7F2YBtYv92sxdghuI9k/YbwMjF+25GHi8jNhTXw12Gp9VFqAdRU1gdNWMP6Gt4cJlJ8xDHdKlfOmjT0IROVKvOFtZHVRBeYq3Ml5krikN19r4nwTkU6m4KzpkjxD1cwtQTuPYAJZXDdLiXK0alwXFJr9iD2FkDtMB8sA/8gsX2vieQyNdSHS4rZDCLnD7MR0pDXxgbjTiXyI2AUbFJpNIuKJDF/fzRCOQ+7UnFxKa2Kl6VSxuJ1rpJA7jXORz8IB5GjTHfecWIR8r08yUsgtML1uN8Ka+KQ8rYnjHiCRN7weV8rkC7kFptftRmxCfDVPa2JL0NL9WWC8CZXuehgpyId417KM1sRKNexoEPrDWMhtwpUHFZg/ITVbsQGC9Q0QWsmFSM1VSMidgkkI8nuJDX/ysia2TmMsNVfXg/ElAGlcCNzjjYUMf1qI3Q532uprjKeBqVZdlGQy8JQ39glqbPg0m/wSkS4OwHKRN9pjcetb26bTQSiL2wUpzGwNEeMJC83SS5nCnAb4IqIP8xgz+xBddlYHhWYPsFMdVpHOhSpkTXwGnUKY2Xwi1y8AOSlfTcSSzPc5L7Yo9ndqLPNLZ02stIKQ3XPI2jYVQ+qzMNXSepvuuJRpEfJZWGCktW0qht5noRBr4ljLcTPS0n2qkda2qcTWxEGb7jysia3rH+XPdxuBsUY6IaVinBmK/y4rnTWxUg0bcqHrsbitXnlQgbkN9/OQJLaEtjkY3tgjkT17XsbpQmpVHiSZibQm3hfpyNkqZoFwXV1BXYtv07Np4///jc3Hmtj2VBft5l24HUz16qIKTNqmzdw8rYnzSUQitqabJcgyhXN6LW7rI5TFHUknpzcUX1YiRiJLdiotbrPfa30slq60Jra00ymsKpuLs7gNC80mitrHWvd6BpjojRosNzBHWFU2m05kB+XfsY0o06pNxL3IF6HbqSmLNbHSdCxBu+c1uAVjPZMrcQnXeCp3uw2w0MoJo9l0IkWXoR31msTWxP4iuuXWxFUsbv/LNLbTeDEF2HTb3h1e8W81w8AvGrjlRBCnu6WxJlaqkWpxexEYv9lfFs5AGt4cjHPwayE2bbP31Pi0pg5Mj+GNn5B/Eax/gthkbKibuGdxmxWzkrA18RVg92o0woycjtzgyl5dVIF5EJjhDeZqTezvOrUGwyisEBCuJhJdRbMRsYYu/pNuxlSMW7ZjHkNjUXgrOBhpwfu7gMVtNtp5lIgx+DW/lr2RDhPNwuAsRi/2Rr9Ph6irzkbEbXQyCevVQm/iQKTDRHNwzQcNcsG0kGmirjors3A12ZXan1fYDykWVPo58cJ3b2QCeo+RGx2ZMPBd6wTvvmnDgUjdQlOId/gHIZ+FG4zswZSVDlytsW/a8G5kCVqzGIkTaCdF2t00WN5mwFpXDiM2JizsWkv70wcOAuHUtwYaszg3sNY6vYjvSvhPFobF/UeUcrI/roQnWcbzfzQsNDfrwY7F6aCStIHdprYuoGFG4fROSZ4KWNxmxDwL9mgQJj0j3W6/qVm62CD7IZ/Dn4HxG2dnxNwHdjxuTZXkQNwpSwuwQ3EnYf77fhmY7NVFlVyKm0N87c+BtG4tWsEo3A5eQxOvoih9Yi3u+SvKbazMfB33b+P3kVAUpbWMxT17fp+cLYm3477HtUUHoigDkKdwz9+oIjurK4qiKIqiKIoyQNFERFEURVEURVGU3NFERFEURVEURVGU3NFERFEURVEURVGU3NFERFEURVEURVGU3NFERFEURVEURVGU3NFERFEURVEURVGU3NFERFEURVEURVGU3MmnszpAxHjgBm/0RYawP+fxQl33ms3ubOLXQLL9vMXwWTr4dt8CrUHEFcAXvdEHgA8S8Y+67tXJEVjuoDIhXMsgDmQWv+9boFVYziBWcA9wqHdlARGT6r5fJ+dhmeON/oE3cADTebXRMGsSMQL4LbCrd+UUIq5r4H63A//hjd5BxKdwjXeULQzrnr17gMO8S9camNjA/c5Fdk1+EjjAQKu6HmNdp93fAv/qXZpo4NoG7rcE2cn7TuAo08JnwcK+wK+ANySGNwIfMfDzOu81LL7Xft6lDgNdfQq09t89FvC7Tq8E9jfwlzrvtSvu/3ZE5TCfNbR4vlOagD0SuAMwicFXgQPBPFHnvXYA/gfYybtwIphFfQgyy9/dDnR6g0/gvo8653l7EPBTYKvE4Abg/WB+04cga/29Brgd+Kx34bvAp+vv6G6/ACzwBp8D9gfztwaDzPL3DgceBPb0LswAc0ED91sAfMEb/AlwGJiNjURYD/mdiETcCNzkje7I6yxmOYMy32ceQ9nEMiqTEIBLWp6EAIzgTODX3uhBIBbi1ZnDzlgW4f8fGCa1NAkBGM0mBnMCsMq7MpFOxtV1ry4+iCXyRtcDo1uahABErKaN43ALlSRXEPHuuu7VyZeQScizbMV4NAnZYjHQDYwD/upd+oKF4+q5l4WDkRP1emB0K5MQAAMv4Ra/r3uXvmZh/3ruZeE0ZBLyLHBiK5MQAAMPA2d5w4OBWy1sX+ft5iOTkB8D5zcWXXYMLEVuvO0ALLZkn+8sDMHda4R36VJNQvoL5i7gq97gm4DFYIdmv49tA25BJiE3tD4JAdwa5wfe2Ejga/Xdxm6L+5neyrvw5dYmIRAnGifhunonOQqYXN+97LuAy7zBTbiksIVJCIBZB4wG/s+70AX2g/Xdy45GJiGrgGPzSEIg79Ks4ZwGrPBGD2EF52a+x2ouAQ7wRh8AZvYtuIxMYQODGAO87F05k04+nekeyxnERhYBb/auLKCDxU2IsjYzeR44AbcQ24zlGmbzb5nuETGCbm5BnqxNJeJ/mhFmTdr5KdDhjQ4DlnMRb8p0j4h9sVzsjW4ExjKDv/c9SKXMGHgRl4xs8i5dbeGdWe4Rn0gsxS0ck5xh3G52yzFu97/dGx4GLLOwTZZ7xCcSc73hjcAxhnyeBQNX4U5kkrwVuMlW7iqnEp9ITPCGVwLjjPx/bhWTgf/1xj4CnFfHPeYC7/PGHgRmNB6WUgDnIk/0DgQuquMeM4HDvbEngKl9iKsOTDduc8avYJkA9sRs97AGWAi8zbvwXdzGQQ6YNcAYEBUsXwX7nmz3sMOB5cAbvQvtYO7ta4TZML8DzvAGBwNLwPpryxTsO4Cv+4PAyWCe72uEWck3ETmLdbQFs7hOOkVphKSTo3C7dUnWMIixdZdF9YVZ/BH4vDdqsNzAHFEaIVlBF7Is6nfAtOYEmJGI7yEXHVuzieVcWlEaEcLgdvz8sqjlRPWXgvSRC4Hve2N78FqGOCK2xr1QhnlXziXiF80JTyk7Bu4FkYxuDSy3VH8W7OZnwX/2/8vANc2LMhMX4Sb1JHuQoTzL0vss+N/vjHrLoprAJNwiK8knyLDosuHvtxs4vt6yqL5g3GnYOOR812Hho7W+3sIngSne8BpgjJGLKKXUmI24U0Y/mZ8K1j+JD2A/jNxkcJUHdZdF9QWzEjgWmcxfBXavDDeYiiyLegYYX39ZVF8woWR+KLAcrF9tE+JqZFnUj6gvsWwC5lrcKVmSXYBFcdJXBTsUWIbcpLoYjD+HtJT8xertPIoRL9c2LIuJ+OfUr4vYFYtjYOAAAB5iSURBVMuNVO6IWQwnMUscs7WeiNtwP4xJtmMjS1kgdkU308khwHRvdB2DGE0kJqw8mAn8zBvbl1dEglJJJ2cDn/JGnwROaV5oGYnoZiuORy4yxtIpdkV9FoA4AbqbSBylK1s+7bi65ST7IMsqfM4EcRr6Rwp4Fkzvbhb+btYY68arcQ2hZwEuaVJ4mTGuhv5YXN14koutPCHoxfachiJOQ79inBYoVww8itQUtgG3WNLnO+tOgG5EngCdbGRZidIvMM8CJyLLG68H658QJLBvwZ0Q+iV9p4HxT9xywPwYWd4YnxBY/4QggQ2dAL0OjAWzuokBZuVSZHnj7sgTAg97MnC8N/girpQpr9PWJKcCj3tjR+DmpWpcBvgnQPcDs5oUV2aKcc3q4HrAr2ncEVhMFIhpQWqd7Nfo4JstiTELIzgD8GsaD+YFUSfuOJ8dscEXymRm8VgLIqxNRM9OjV/TeBqdok7c0cUoLLO90Q3AGKLW1sKnMoNVtAV2aizz6RJ14o5OTsUtdpI8hytZU13IAMO4EqRjkc/CqVb+nABgw/qwDbhda798MxdMb32v0E5daaVmAgDrhPm+Pux54IRW60LSME6Ld7Y3PARYauVc0MMVIPRhP0Vqd3LDuNMyqY+EJSG9SEIX4mti5hn4RmuiVPLB3Alc7g1uCywD62smiHUhNwP/4l1YBmZhKyLMSCfwQ29sb1L1Ijb+HoUuZDqYXzY7uGwYiyvffNq7cDTYFKMSuzcwzxuMS9aMrzPMCbMWpxd5zbvwFbAfCH+N/RwugUkS6wyNrzNsOcXZ9w5nMojF96HIiQde4GLkLthDjOCc1gSXkSnx4lsKUc+Jy8g2E9HG69yC3AVbSCSSsnyJeA4TWHxbFhAxsmLsArajO1ALb/gykUjK8qWd+zBiwTGMbpYQebWcXeyDFTvdLimLxEJUGSCYzYlot3dpgfVOC2JdSGhyPctIQ4tcMc7xJPKGh+FKzSpOCyykiS5PMDIpyxXjJn1/8b0rcKOvF7FuMvZLZlcDxxmZlOVNWB8pT8fBlZq+3xt7OOWzSv9jOuAvvt8LhNyOzgE+5o09iRQX50yqXuTzYP3TAoDrgLd7Y6GkLGfMS4T1IpeD9Uw+UnUhXWD8pCxnzCPAl73BwcCtYL0NDbs7CFfRWMRvnm5RgFUpLhE5izTV/2wi/l/vnzqDdcGvAuPiRKBYomA5ksFyPXPYOTHWgawLXgF8qZXhZaaDu0lz9phHj7OHYQM3ALt5n7udDq5qcYTZsJyPdPbYC7iy908RW9MdqIU3tBOJMjVlgGHC5Ug9epFh0KsLWYh8Fu4g+bNWLBcgy5FGkrCbtL0lFUIX0h7rZsrAyYRdbnr1ghbSRJcTjKtBLxRD6nzXZRN6QQtHIgWoa3HOa+tbG6WSDyYuR8IvRzoD7Gc2/9F+kBQXPjDFVB5UYNJMPuaDTZh82C8C/+l9Ji5Ty1MXkoZ5AFmOFJd42qR+4ircWiLJfdTrmNoyzNWkmHxs1ovYIThNia+DuQzMt1odYRrFNjSMSFP930rEm5nDW7HchF8na5hIJISMxRGxHCmOfAsbWcJyBhEFnVLW08axBelC0gg7e6yO6zo7mYashX+GwndnEkSkO3tEnBD//mqkG9K97CnEysrA5Tzks7AvmwXtpwOf8a4/Qw4Wt1mJrYlD2qljrKtVh9KILtMxsUAbuWt5iYUDbK/IVIouDXwnjxizEOtF/E21QcAiC2+2TmQq5zvXC6a1lu5KzphnkHqReHPD7gZ2BK4ky3ekPANMLi582TA/wp3gJYlNL+wbwCbfmT3E5eCmTI6Uc5HvinfQu66zx7D5ndlDLNwvRBeSxkTku+ITuPkK3Gbzwd71B6EO59oWUHxndeew5Dd+ci/kjSxH1snOp0N8vgxMRVo1fogVzMN9f1Jo1i4+XyxRb428v1MzhYjZWHF0/A/a+ByR+HyxRKzEJSNypybiQmR/iL8AxzA6N1tPpeSY3slSuNx8ycJs5OT7D9yudameBRNb1hJwubHuxMQvo3gBZ9VbqmfBuMnSL03qcX1ZgOyV8ksKEF3WwriSCN+ifWfconMZ0tL9GiN3OZUtAnMHTtOUZDvc//ctSBe+5WDyduHLQgfuZCDJPjjzi9uRp60zweTtwlcD02Py8Zx3YQzYC5GnrfEmj8nNhS8bZi1hk48Lwc5GGmfEmzymUBe+4hMRxxeQqv8jkZnbI2xT0wmgGCLWM4ijkXqRyUhdyDIiihSapRPxTEAvYnDuWr4b2HTaeTC32Ooh4l7kkelw5GKmG8MJcfKiKL0YVz4QMi6YidSFnGuc40jpMK6Jn28uMRyExq4bpwt5MY+4GuBrIMxJdkfuVL4EHGtkc8eyMAmpj/w4UhfyCHlbuit5cyau/0+S9+Fcj5L8kTJVHlRgNuFKzXyx9gm4U4UkdyNbBpQE8zfgaOR7YzrufZnkAjC5u/Blw/wG2RR2K9y8JVz4wBTuwleORCRibdxfxFf9J3HOANOqfqZYZvEHTM2XxR8o7QslpiOTiOxOono7quZOF9LZw6eTDv47j2CU/oeBu3A2j9W4Cyn2Lhuzkdop8RlT+3kpDNMrqKxqX2uBk4x0wikNpmcuqz7frcOdsJV3vlOagHkdd2JZzWEv/owpxIUvG+avOAcq3+QjSfwZU+0zBWN+hWyQ7PNTpBFIyTBX4E6jqnEFmFK48JUjEQFo5xGMUP0nOZVInJqUjw6WAdenXF1PW4EWt/WwU9DZo4dn2Sroh14uIroZEtSL9PBj9hJ+6Iricw6kNrd8jhLpQtIwpGqnergPeWpSOmK9yFjSG/pdbqAw0WVWDEF9ZJJTjawSULZIzJ+Qbm9JvgymlKetlZjvIfUgPXTjkqmynrYmuQjZILmH1biSrKJd+LLweeBPKddK5cJXnkQEwPArwrXJjxGJutryYlK7EN9OOyUSmlVhIq8je6Q4DJcxQ9TOl5M9+BvpD2OH6kKUWsR6kTQ73suLtritg7/jSjxCRGXThVThSaR2B1xd9FdyjqUv3E/43/z3yG7JypbNbwmffv0Vp7XoL6Rt2PwATFlc+GpguknfhF0A5s95RtMHXkZahvfQBaY0p63lSUScpWpI1A2wJ1HV3aPyMJs9sKklS8cQCQvfcuJskycHr1lmEQnb0nKygnYgpakPV3KpENIpSgWxpaov8uthppUWvmVlFiSs0Su5wkpRaemIbZOvB3YKXB4KJbERr4F1zkJp892/IXsCKFssdgjOwCD0/P0zpS8D6sHuDKna14/FzlP9APtBnJ4ixBmxE1h/4EvAJ1OuXRo7s5WC8iQizkby36pcv5Au0dSwXEQMYxPL8BqGJWgDbiES4vVykWabvJntgKVxx/vyErZNTrIPr4h+EYrSSxVL1R62BZZZKV4vFRY+TPrkCq6pYS0tTBkI2SYnGW1lX6cyMh9pIZ7kAivF68qWyVeBUVWunwP23/MKpjFsG7AI6fqWZD7Yt+UUUIOk2ib3MAxYAtZvalgy7L5Ut2DflUQ/qaIpRyLSySlIS1W/v8YQullMxLY5RdUIlyNtJP3vY0fgRqKS/Nv7LGAIG1mGtE32v49RvEBXTlHVz/nsSHjH0f8+JtPJ0fkEpfQnrJuMliInV/9n6CBKrK+wsAPZnoVJ1vXrKCXWdZ/2bZM3IMubvmadfWgpsc4m1LdN9v8vBgOLrdv0UbZY7GeRp63+z0IbcDPY0ClgWegk0Zgzxv8+tgWWgi3ppo01uCTEt032v4+9gXm5hNQQdhucUH2Yd8H/Pj4H9tR8YqpO8YvhiHdhhUPTRuBjwLe98bchW9OXA7eYneiNrsIlJr7o8GOY8giFKniB80GcPD1EGwchrYmn08lR+QRWBxFtvM4ipG3yQpw9X6Ww2HI9ESNzik7pP8xBlvX9Grcg9p+Fsyx8Kpeo6sC6d/wiZCnTjcDnkCL76yzlexZs7yJGnDydBWJD5A3AbTb9ZLowbHgR04372fGtiXfDNTtMO41T+jX2rbj+FMn/X4vrA3GD9+F4M8GGSvkKxh6CbIi3Ftd+wbcmPojy6rjOxJXhJnkSeDfSmvhksP7meVmYj7RNvgs4DGlNfBlYf/M8d4pNROYyHNcR1z/mmkXEzxjKBKQN438SpWgXimI2u2NFwxuL4WQinghaE1u6iFLrtYuhkyNA9Gl5GRhDO48GrIlNvIj/l3wCzMwMwD/KXgF8iYi7kNbEbwIWE5W7vEbJD+v6Ovhe7GuBccb9LPnlPwa3iN85j/jq4Bzcpk6SJ4Apxnn6++VYWwNL4m7lZWI+8HZv7A7gSlzC6FsTj4Ry2YtbUue7dgP/Tdia+JPAaTmEp+SK7Tlt9SsPLgPzbdz/+cPetVrllQVgd8DpW/wEaTKYR3AOd36T12lgP51HdNmxByH7jm0ARoP5A2Fr4qvBViuvLAA7CWcHneQ54MQUa+KhwPL4FKUwik1E1nEVsKc3ei89FnDn8hJtjEVmcZcS8Z7WB5iBeQyNdSH/5F25kA6+CzhrYrnAHwzcSlS1pjI/5rAzlkX4u2+GU4li16mwNfFbgCUsD4ou86eLDyIftvW0cSxRfDQZtiY+EFn2oQxArCufvAH5fpxonKMRxi0o/c2Ht+AW8aV4FqzbkYy84fW4/hSvxn8OWRMfQPX64lyxblHmC12fJbZNrmJNPMG6pmpl4QpgL2/sR8TvnSrWxJdYSjLfKc3iQqQG6EF6TxbMa7iTEb+cph3sYa0OLhvWaV7laet1YG52vzV/RlaKGOAGsH4JVEHYtNPWM8DELqdBa+KtcYv4kph82JDObyMwNm7WCGFr4ncA17Y4uKoUl4h0cgyyI+6LwDiiRObZzv2YYBa3jIhCszgAVjMXN3EnuZ+dvJgj5uPqtJPUEsLmQ0QbG4NCs/l0iJi/CPyvN/ZhVjCrZfFlJWIE3dyCLzQzfJH2RMzOmji0U3M6UVUhrLKFE5cyLUaW9V1jYIk3NgX5LHwIaG9ReJmxPYYSCEOJKSYRs+mdqMSzMMXCZ1sbZW1irYffiXkjMNYkYjawErcT6OtF5lu52ZU71v0bT/CGV+JO2HpjNvAAiHfpUGC5pQTzndIE7BHANG9wDTAGTCIJNY8CU73Pxe8nWwbDm5nA4d5YIGZzG86MKMl2wLLYMaxArMGVbPsi+tvA+DHPAtGaIfR+KgDbc9rqJ0WzwCRiNt04fdpfvM+NAXtSKyOsRjGJiLO49RX7blcrErV4YFOzOH9HMl8iPokUmr0EjI0Xu5UM41RkT4sj6eT01gSYmZDQ7BG2Eac4ELGeNsYhd2pmFWxNHO+ysKs3vpyOQIPJiGeCpWawsN9YEyutoANXS5vkd8iFAyY+XWDz6UIPM62coHPDbn4W/B3H5SbwzjTx6QKVehEDLCzSmtj27jiKyfVcE+hXYBKnCwmG4xbxhe1aWtgDuePYDRxnwg0m5wLf8cZ2p+j5TmkCdhcIVB64Uia/LA8w1yF7ysQntrbAihYb2nBZDxwLxl8bgGve6fdQG0Xx1sRTkBsuzyBPcYibGI5F9jA6rQTWxPOpVl1UgVmFO23zN22uKsqaOP8fZGdxuxwpJJxNxA9TvqabrYJZ3Gg6ObkFUdZmDm/FCT59odlJRELX4jgn1lv4R++WiwqzJu4kJDRbB4xmWrDBErFeZIo3Wqw1ccRZSLHwk1Sz8uzgdtwDnKR/WBMrTccStHtehytlCj4LxuktQruWN9twr4s8+DLg12D/kSrPgnF6C78HR9HWxFcjLW7vxtmdptGBm4CTFGZNbJ1zTcjS/XwjdS0AGDePTMAtiJL0F2tiJYh15diy8uAqMH7lQZJTkYY3IQ1bTlhXji1LUE8D4+taYkystxAmHwVaE9sDkSWocbWE8U+IY0ystxAmHwVaE9sJyBJUV13kTkACmPuQmpjCrImLyKjn4VwIktzHXjXsL2ewirZAFme5ki72a2qEtYgYzMag0OxyIr5V42sfQi78h9DNUiLybTATsQM2IDRzuhD/xVeJO2W42RvdEVicu14kCtqnbgDGEIkXXyUjmEZop6bM1sRK04ktbkOT62QDj1X7WuNOHxZ5wzvi7FdzfRZii9vzveENuGSq+rPgdGy/8cYOQrpStRwLX0Bauj8PnGDkIqCXuMzpRGS3+0nW7QLmTcjS/afU+DeNy86OR+5azrPkPN8pzaIL2VD0EWomFGYtBAxvYA7YtGa9LcL2NBT1TTmWgUlrZhhjngRRhdBjTZyz4Y11BjXSlGM6mLSu6jHmTqQRxra4UrOcN21syJQj1swZWV1USRfOJCPJ3oH7tZx8E5GI0cgdHXdMNFq8cCXthLO4bpYQCSeSVhISmj2EE37WJuIyEAnLruQpGIpIE5otpEMkGGlMRu7UHMpjnN3X8DJzQU+tqdi1nUYkFlWSKaTt1JTTmlhpOrZ3MpQWt0YmGGlMRiYsh5D1ndAEbO9kKJ6FM41MMASmJ3mXz8LZlvyeBetOMC7zhjfhkhA/wRAY5xJzAjJhWZCnNbElaOm+GleStbHW1xv4Ca5sNskwXKlZ6ayJlWrYQ0HMi3GCYcKVBxWYUMISO29Zf0O0lUxHvgtCCUYKZhlha+IlOVsTX4N8F9yJdNRM42yk4c17ydWa2A6DYHVRF5hwdVEFphunq/MTls/nbU2cXyISBTUdPaVMfslVNbpAlHDtRV4NZpzFrV8v7kquIuF2koZlKCdRrDVxSGjmLG6zErG2YGtiwwYWIuvYb4/NAbIRBUu4ympNrDSfkN3zEyDKD1MxPeWMctey00r9VasIiS5DJVepmHA5owGuz8OauIrFbYeRJVepmHAJV27WxDas6bDABCNLrqpxPv3AmliphnWVAvJ09FQw1SsPKjBXkWp4Y3MwvLGjkCd5PRa3tU5bk0wmbE3sl8W2CDsZeTraY3GbetpaiUkzvMnTmvhK5OloaLO+CuZFYDwFWxPnk4jMi12upOvHhUTcUde9IroZwnGEGsx0im61zSVil5oWt1mpZk3cJY7ym0sUdPaptLjNSpHWxBFTQbhcPUPm3ZmKey2n7NbEStOxpNg9V1rcZsKERe2DgJusrAtvKjYsuuy1uK3nXgVbE4cs3UMi9CycS9iauKU23Zbe+c63dJ9rpAi9Kv3ImlgJ0mtx62snrwPji9CzMBnZa+YTSJ1ak7FpLnwJi9usmFjULtYaHa23Jrb7AJd4gz0Wt74IvQYmJGrPyZrYjgGhj45F6KZ2dVEF5vsUbE08uPZHmsBqPoArXXooMfoKjdpcnseLRByD7y1v2Y8FLA06VjWHjwLfqBgxPB6wuM1GO/fTySlYr8zLcihSt9BMPoJcdH+/wuK2HiLm08n2WHYJ/D23NXTPWsxlOOvYHVnO9nUisUuRlSm4l2PljukKDsDZaipbHh/BnSQkucdIW95MGLgmTjre6l06FLfAbzrWnR6EvOCvM3LHLitTcac7w7zxA4H7G7xnVaxrWLiByu/D4k5D6pxcnTWxdaUHvibvDRZ2SnGsagbvB34d/+rhVRpsRmdgpXVznb+Lu5+FrYzsO6KUhwNxTpnJn+kNNFyyadaADZW47+4sXM26xu5bk8OAe7yx5wIWtxkxj4I9Htls9QNI3UIz+XektvUXlRa39WBuAzsNaapxCM7MqAXYIbgyMP99fyuYeqqLkszC5QP+YcH7qOMkui+Mwr3sA9ZxiqK0mLW458/vGq24XXlLbkf2iqLEjMU9e7ksQgri7bjvcW3RgSjKAOQp3PM3qtjO6oqiKIqiKIqiDEiSpVnb01jDpIeBK5oTjqL0W2YghcJZaLlwdgvgMzTWWG8+rS1xVJSyszONNY0bSCe0Q2ls7fMUubokKUop+RLQSCPECre3ntKsRn/d2VjsirJF8QB9e44G0sSflZ7SrEZ/+eJtRRlo7EvfnqGBUJrV6C/VDSqKywH68hyNGoxzGZrRhyCe7MPXKsqWwlXQJ6vfRkXFWzLfgDrd6Cp5tFmBKEo/5QX6Nr8/3aQ4yshq+vZv06gwWFG2JG4EftaHr6/HzlxRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRlGZhig5A6QPzGMoaDsJyMJYdgRHAcGANsBLDw1h+ScRzxQaqKIqiKIqiKJVoItIfiXg3cA7wKeANNT5tgd8ACxnOTZzFulaHpyjKwMTC9cB+KZdXAUca905SFEVJwR4BzM7wwZeBfwB/A54C/ge4F8yaFganNJnBRQeg1MFFvInXWACMJXsSaYADgANYxyHA0a0KT1GUgYuFnYETgUFVPvZ+4Of5RKQoSj9lBG7d0givg10MnAfmL02MSWkRbUUHoGRkNnvwGg8Ax9D4SVa1BYKiKEpfOIHa75gT8whEUZQByxBgPHA/2N0LjkXJgCYi/YGIN7OJu4F31vjkSuBR4EnQEixFUXLlhAyfGWPhjS2PRFGUgc4uwNeLDkKpjZZmlR8D/BeQltmvBb4KLCLiTxVfF7EnhiOwTAT2aHGciqIMUCyMovZGCcA2OG3b0tZGpCjKFsgq3Hqnh8HASGAMMDTw+UPA7gHmD3kEpzSGJiJlp5NPYflIytWngI8T8UTgmiViBbCCiMswHI/l4JbFqSjKQCbtNKQbefI+Hk1EFEWpn7+DuUgO268DPyZcGvpeQBOREqOJSNmxdKRceY02jqI9mIRUEtEN3AQsamZoiqIoFrbC7Uj6/B63APikN364hV0MaiuuKEozMD8D+ziwd+Di9nlHo9SHakTKzGzeBuyfcnUe7Txa5x3VNlNRlGbzKcKT/VJgWWC8DWe6oSiK0izSjDL+mmsUSt1oIlJmNnF4lavX5BaHoihKOmlOWMuBbwOvBa6Nb1k0iqIMMOxhOK2Iz0bg/pyDUepES7PKTVpjsD8T8XSegSiKovhY2AH4WODSbw2siD9zJ/A57/peFg4w8OtWx6goyhbD9mCnJ/68NbAX7lQ2tLF+E5hncolMaRhNRMrNW1LGf59rFIqiKGHG4Xz7fZZ6v/cTEXAnKZqIKIqSlbcAF2b87K3A5BbGojQJLc0qN2kiq5dzjUJRFCVMqCzL4sqyeriT8DvrWBu23FQURekL9wLngvlH0YEotdFEpNyEaqtBJ29FUQrGwrsIl4/+0rC5dNTAeuA7gc9tDxzZmugURRnAHAo8DvbzRQei1EYTkXLz95TxtJItRVGUvDgpZfzWwFjIPQvShe6Koig+64AfJn7dCzyGE6X7DAOuBXtUfuEpjaCJSLl5PmV8PxYE67IVRVFajnX6wpAFbzfwjcD4PYQ3Vo60urGiKEo2ngVzeOLXYWD2AvYAvhf4vAEuBWvyDVOpBxWrl5sfA+cGxt/IC3wMuCPfcBRFUQD4OPDPgfFXgI6UhkXrkLq3IbiEZl4TY1MUZUBhngZ7DPAirsFqkncA+wAP5x2Vkg1NRMrMNvyUV1iPO2L0OYeIu+Ku6YqiKHmSVlK1LfCFBu6liYiiKH3ArAH7BE675vMONBEpLVqaVWam8RpwY8rVD2CYlfleEYOJeH8zwlIUZeBiYTugmXXX77GwbxPvpyjKwGSblPEdco1CqQtNRMrOYObgXGckloiIr3ERb0r9epeA/AfOr//MlsSoKMpAYizNd+47vsn3UxRlQGH3Bd6acnFVnpEo9aECnv5AxCTg6iqf+BvwTeBXGF7EMhTDTljeC3wU2Dn+3DfjpERRFKUhLPwSODhw6XlgQ40vbwN2C4y/AOxqwu43iqIMKOw44JbAhcfB7Jn43GDgX4B/Bzrj34ubAbtph/XyohqR/kDENUS8E5ia8ok3A6cAp9CjEk1RiyqKojSKhZHAqMCldcA7DazNcI8VwJ7e8E7A4cDdfQ5SUZQtlXeCrXd1c68mIeVGS7P6CxGnAxMB7RSqKEpRjCd8kv7tLElIzPKUce0poihKM3kJ+GLRQSjV0USkPxFxLW18CPhBA1+9irDPtqIoSk2smy+OS7kcamKYxtKU8U9b57qlKIrSVx4BPgLm8aIDUaqjGpH+SsR7gKOBDwPvJVxm9zSunvtbbMN3YxcuRVGUurFObxbaBFkN7GTqOK218Fvg3YFLEw1c22CIiqJsEaRqRGrxDG7Nsxz4NphNTQ1LaQmaiGwJLGcQK9ieQWyP5Y0Y1rAVK5nOq0WHpijKloF1Oo6QGPRVA0/Uea9/xWnbfP5u3AaKoigDFjsCeFvGD3cDLwOrwOiapx/y/wGkyNEq4Y3NkQAAAABJRU5ErkJggg=="
|
|
}
|
|
},
|
|
"cell_type": "markdown",
|
|
"id": "88bc2633",
|
|
"metadata": {},
|
|
"source": [
|
|
" <div>\n",
|
|
"<img src=\"attachment:fig_matmul_intro_0.png\" align=\"left\" width=\"450\"/>\n",
|
|
"</div>\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "495ef679",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Assumptions\n",
|
|
"\n",
|
|
"- All matrices `A`,`B`, and `C` are initially stored in the master process\n",
|
|
"- The result will be overwritten in `C`"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {
|
|
"fig_matmul_machines.png": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABkwAAAOBCAYAAACzvIyfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAACAASURBVHic7N13vBxl9fjxz6QAIZSE3gUJICIgXRFQBFQUsFCClCBFpPgDNCpdhIjSRIIIAoICUgIootQoLYiAgCCIgIr6pUnvJaTN74+za2Zmd+/dvXfLvXc/79frvnSe3dl5chNmZ+Y855yEkvvvv3/M7Nmzvw5sD6wGDEeSJEmSJEmSJGlomQ08Bvxy+PDhp66zzjqvAiQA995775rAdcBynZufJEmSJEmSJElSWz0FfHr99dd/KHnwwQfHzpgx4y/A8p2elSRJkiRJkiRJUps9Oc8886w9bMaMGYdgsESSJEmSJEmSJHWn5WfMmHHIMGCHTs9EkiRJkiRJkiSpg3YYBqzc6VlIkiRJkiRJkiR10MrDgHk7PQtJkiRJkiRJkqQOmndYp2cgSZIkSZIkSZLUaQZMJEmSJEmSJElS1zNgIkmSJEmSJEmSup4BE0mSJEmSJEmS1PVGNPj+u4FbWzAPSZIkSZIkSZKkZvoYsFG9b24oYJIkyW3rrbfeYY3OSJIkSZIkSZIkqZ3uu+++E9M0rTtgYkkuSZIkSZIkSZLU9QyYSJIkSZIkSZKkrmfARJIkSZIkSZIkdT0DJpIkSZIkSZIkqesZMJEkSZIkSZIkSV3PgIkkSZIkSZIkSep6BkwkSZIkSZIkSVLXM2AiSZIkSZIkSZK63ohOT0CdlcL1wKpVXro4gW+3ez6SJEmSJEmSJHWCAZMulsIawKdqvLxfCpMSmNnOOUmSJEmSJEmS1AmW5OpuX+rhtcWpHUyRJEmSJEmSJGlIMWDSpVIYDuzay9v2aMdcJEmSJEmSJEnqNAMm3esTwNKFsdmF7W1SWLRN85EkSZIkSZIkqWMMmHSvatkjJxe25wXGt2EukiRJkiRJkiR1lAGTLpTCwsB2heH7gO8D0wvjluWSJEmSJEmSJA15Bky603hgVGFsSgKvAzcWxjdMYfX2TEuSJEmSJEmSpM4wYNKdJhS2U+CK0v+fUuX9u7d2OpIkSZIkSZIkdZYBky6Twjhg48LwHQn8p/T/rwbeKrw+IYXhrZ6bJEmSJEmSJEmdYsCk+0wAksLY/7JKEngbuKbw+rLA5i2elyRJkiRJkiRJHWPApIukESjZtTA8m7nluMqqleWy+bskSZIkSZIkacga0ekJqK0+Cry3MPZ3YM0U1syMzQRmkf/38YUUDkjgjRbPUZIkSZIkSZKktjNg0l2qZYmsDvyujn3nB3YAftbUGUmSJEmSJEmSNABYkqtLpDAa2L6fH2NZLkmSJEmSJEnSkGTApHt8AViwn5+xWVpZ0kuSJEmSJEmSpEHPklzdY0KVscnA33rYZ1tgm8x2AuwGHNfEeUmSJEmSJEmS1HEGTLpACssCmxeG3wKOTOJ/a+33V/IBE4DdU5iUQNrkaUqSJEmSJEmS1DGW5OoOE4DhhbFf9xQsKbkT+E9hbBywcZPmJUmSJEmSJEnSgGDApDtUK8d1aW87lbJILq/yks3fJUmSJEmSJElDiiW5hrg0+o5Uywh5rc6POBo4oTA2u1+TkiRJkiRJkiRpgDFgMsSVskRe6cf+M4gfSZIkSZIkSZKGLEtySZIkSZIkSZKkrmfARJIkSZIkSZIkdT0DJpIkSZIkSZIkqesZMJEkSZIkSZIkSV3PgIkkSZIkSZIkSep6BkwkSZIkSZIkSVLXM2AiSZIkSZIkSZK6ngETSZIkSZIkSZLU9QyYSJIkSZIkSZKkrmfARJIkSZIkSZIkdT0DJpIkSZIkSZIkqesZMJEkSZIkSZIkSV3PgIkkSZIkSZIkSep6Izo9gR4cCyzdh/1+ADzW5LlIvfkM8Nk+7Hc7cFGT5yJJkiRJkiRJatBADpiMB1brw36XYsBE7bce8OU+7JdgwESSJEmSJEmSOm4gB0wAngE+0uA+z7ZiIlIvJgMXNvD+ZYE/tGgukiRJkiRJkqQGDfSAyWzgP52ehFSH10o/9UpbNRFJkiRJkiRJUuMGesCkqVLYGdg8M/QCcHRS58PrFDYFdssMzQQOT+CNJs7xQ8CemaFZwBFJnQ/jU1geOKowfGrSxDJlafSWOYYoJ1V2egIP17n/fMD3gfkzw79MYGoT5zhP6RgLZIavTuC6Bj7jMGClzNC9CZzbpClKkiRJkiRJkgaQrgqYADcBpxDlkMpeB07qbccUlgAuA5bJDH+zmcGSknuA44GPZ8aWAHbsbcc0/j4vATbJDF/RzGAJQAL/TeFd4KDM8CYpbJDA23V8xA+AAzLbDwNfa/IcZ6Txu7w0M/zFFNZP4O+97Z9G0Or7maFXgROaOUdJkiRJkiRJ0sAxrNMTaKckMkp2IbI2yo5Pe+mTksbv6SLywZLriQf/zZ7jbGAC8GJmeIc0H2CoZRL5YMnj9K0ReT2+AdyV2X4/8KPedkphe/J/lreAneoMtDQkiQDXzzJDCwKXpDBvL3NclehJkrV3Av9u8hQlSZIkSZIkSQNEVwVMABKYBhybGRoBXJrCoj3sdjjwicz2U8CEekt5NSqBp4mgyZzM8KkprFtrnxQ+BXwrM/QuEYhopK9GI3OcCexK/vP3SmPetea4AnBOYfjABP7WgimWHQD8JbO9HnBirTeXyoVdTgRXys5I4FetmZ4kSZIkSZIkaSDouoBJyffI98tYHrggzffkAP7Xt+Q7maHZwB5JPgOk6ZLIYDklMzQvMCWFharMcUkikyL79/nNBP7c4jn+C9inMHxmCqsX35vCSCLjY5HM8GUJXNDCKZLAdCKwk81gOSiFz9fY5Qxg7cz2g+QDUZIkSZIkSZKkIagrAyZJZG7sDjyTGf4McEj2fWk83L+IfK+XYxK4ueWTDEcCd2S2x1FoOl4qF3YxsFRm+BriwX/LJXAlcFZmaDRweQqjCm89CfhwZvsfwL4tnh4ApWb0X80PcX6ab+hOCuOBvTNDbxJZOu+0fpaSJEmSJEmSpE7qyoAJQALPE/1MZmeGT0xLD/VL2SY/A96Tef0W2tj4O4leKzsDL2WGd0rzWR3fAbbIbD8JfKlV5cJq+Br5bJYPAKeWN9IIRh2ceX06EYh4oz3TgyT+Li/MDI0BLkthntIcx1FZLmz/BB5r0xQlSZIkSZIkSR3UtQETgARuA47PDI0kHqIvQjQ13y7z2nPArkk+wNJySfRL2YN8AORHKaydwseAIzLjs4Cdk3yApeWS6JcyHng9M7xfCrumpXJn5MudHZLAA+2cY8kBwCOZ7Q2B40tN4C8nX+7s3AR+0c7JSZIkSZIkSZI6p6sDJiXHEZkjZSsAvyEfSJkD7JLAf9s5sbIErgV+mBmaj+gHcikwPDN+eAJ/bOfcyhL4J7BfYfhM4NfAopmxKQmc3baJZSTwFhHYyZbYmgjcCKyTGfsr+YwYSZIkSZIkSdIQ1/UBk1LGyBeBZzPDHyGyTcq+28a+JbUcBtyZ2X4f+b4l1wM/aOuMCpII4Pw0M7QQsG5m+3HgK22dVEECD5HvVZMAH81svwWMt2+JJEmSJEmSJHWXEb2/ZehL4Lk0+pn8jnzGBsA0IguloxKYmUY/k/uJkmFZTwET2ty3pJb/B6wPfLAwPpMoafZa+6eUl8A5KWwK7Fbl5a8m8Ld2z0mSJGkAGQG8n7ieGweMJfq+vQG8TGTj3kX0BJSkgWx+YhHfOGBF4l563tJrrwAvEvfY9wGvdmB+kiRpgDFgMtc04FFgjcL4fu3uW1JLAk+kUZ5r98JLhydxoddxCUxP4efAaYWXzkrg7g5MqZazqAyY3JHE3CVJkrrNosD2wKeALcj3dqvlj8AZwBVELz1J6rSxwNbAh4APE4Hfep57zCKqNpxN3HNLkrrPs8CSdb73TWJR+NPAPcAdRFuCoVqxZhFgPWKR/HqlnxUL7/kTsFF7p9UaXV+SK+MoKoMlAMe2eyK1pHHhVy0r4rA0Vs50XAorUz0jZ0IKK7V7PtWkMBo4t8pLH07hk+2ejyRJUgetTtzcPUM8KPw89QVLADYGLiFuEFdvyewkqTEfAy5mbuWDeheJjgC2Ba4Bfgss04rJSZKGjAWAZYENgQOJa+Knge8Bozo4r2b6JnA58C/gJWAq8efbnspgyZBiwARIo4fF0TVe3jGFfds5n2pSWA64kOi5UbQG+abwHZFGavPlVL/JHgNMSaOcQ6f9mCgzUTQMuCj14liSJHWPDYDP0r9rtA2Be4HNmjIjSeqsbYgMupU7PRFJ0qAyFjicuC5etcNzaYbvAjsyQBbAt1PXl+RKYXEiCpjtXXIlES0rBydOS+HOUsPwtkvj7+kSYLHM8A1Ec/oFS9v7pnBLApe1e34ZJ5Nv8v4QcfO9Wml7AyIS+Y02z+t/UpgA7JEZepU4kW1Z2l6cCJp8YqCUYpMkSWqzlOjpNg14EHiO6F+yCLA28AXgfYV95gd+Q1zv/aNtM5Wknj1B9Fx6lDg3vUaUSxkFLE1koXwWWKKw33uAq4n72xntmqwkaUB5DfhnjddGE98V1bJJ3g/cSGRj/7c1U1MrdXXAJI2AyHnkMwquB3YCTgUOKY2NAq5MYf0kbhbb7ViiSXnZ48B4okRXNkBybgr3J/BYOycHkMYqnK9mht4i5jiC6F1SPoF8PYXbk7j4bKsUViHqbGftTwSf7mduOtnHgSOpXlpMkiRpqHocuIDo6fZkjfdcTmRmTwB+RJQjKFsYOJ24RpWkTniHCN7+hrjPe7qX959DlFL5OrGSNvuMZA3imcBJzZ+mJGkQuJ0o11jLPETVokOJHoBZKxL9kz/X5DmtQQT8y/4EvN7kY9TyCnBf5udoYM02Hbutur0k16Hk/+E/BUxIYlXdt4iVKGWrApPbODcAUticmGfZu8BOCbyewBTg/MxrCwAXl0pjtXOOyxM31tlyYQcm8EgpKyebUZIAP0sjCts2KcxH3OAvmBk+I4HLksgyGU9+5dAxaeXJTpIkaSh6BPgicb07idrBkrI5xLXfp6hsbPkpogmkJHXCDUTGyHn0HiwpmwmcSPV+oXs1aV6SpKFnBvA7YCsi6F70WZrfBP0bpWOWf4pZ3810M7FoYDxRpnIR4s96GHAF0fh+SOragEkatZazGQSzgT0SeBEgiYumXYn0q7I9SyWd2jXHJYmGddlyYd9M4M+Z7QOJUgll6xEXe21RKhd2GbBoZviyJFYnApDAmcClmdfHEmWv2pnhdBrwwcz2Q0RQDIAkIrLfzrw+jAg+Ldme6UmSJHXENcAHiOu5OQ3uewdwQpXxz/d3UpLUAVOA3xfGVqPNi/0kSYNOSmRbXFPltZ3bPJdm2ppYxF9u/N41ujJgksYD+ynAyMzwMUlEzv4niX8MXy7sfmYKq7d4iqSlBuTk06yuoVBSKoHpwC7A25nhg9L23ah+j6jJV/YPYN8q79uf/H9cm5IPULRMGg2KvpIZepPI0imuiDwJ+G1me0kiGyZBkiT1xQiiP1h/Gor3xcLENdQCvb2xh/2XoL3XAMOJa49FaW+28Ms0HijJOovKvm/r9+PzpIFqGHE+m6/Nx12QOJ8t1Mf9FyDOZ8N7e2MTJcTvanGq13YfyKqVjl6u7bOQNNQsSKzOb6d5Ssdcir4tWJ6H+P6Yv5mTqsNoYs5j2nzcZqiWZbJllTENcF3Xw6T08Pt85varALiV6qvjSOCKFM5m7gP30cDlKWxY5YF7Mx1FpDmVPQl8qVQurDjHh1M4GDh37hDnl/qZ/KdVE0wj0pgttzUdGF+tz0sCr6WRwnUHcx+aHFnqZ/K7Fs5xZeb+Xsr2T6LpX3GOaQp7Aw8wt69N+c94cqvmKEnSILMP+czS64jMTYjFKDsR5Z3WIQIA5Yd0zxLf+ZcQJVMasWjpuFmTiWsPiOuz3Ylm5OsTi2PKbgM+1sNnDyd6sX2GuKFZlrnXKrOB54n6xdcBVxJ92pph3cwx1yD/O4UoFftXYv7XA39p0nGb7QWi98mqmbGlOjQXqVHjyd8X/oG4X4EIkGxDnFs+RJzPygvuXiLuIS8Ffk1l0LAn8wBfK4ydT/y3VH59J2LR14eJoEPZv4j7m1oS4pyyLfBJYAXmBnhSoprCncw9n73UwLx7snrpmFsQ5/7FyAecnyfOZ7cTTXDvbNJxW6FaGa/RbZ+FpIFuNfK9Kd4EfpzZfi+wH1GqdCXmLuKZDvyNWLF/IY03BN+GuG4sux+Ymtlem7hm3hIYx9znvjNL872uh89+D/HdszVxnZoNWLwF/J24Jr0KuLfBedeyALBdab4fJZ7FZRcmTCdKx/6ZyAC8jvb16+iLe4g+H9l7kXEdmov64957703r/bnvvvvaVuqJeKD9RLM/NIVD0ngwXv55Ls1ncVTbZ74U7i/s9+Oe9unnHDdLYVbmWDNT+Egd+11UmOPdaT6LpplzXDaFFwrH26+O/SY2+vvvxxxHpnBn4Xg/rWO/j1b5/W/c234Nek8cqiKYI0nSQPcI8R1W/tmzNL4u8HDhtVo/N9BYiZPVq3xG+Ubk88AzPRzrvh4+91PEQ7x65pyWjrMP/cvS3oC42az3mOWfexm4ZWHuIT/Xv3Z2OlLdppL/t1vOgB8H/JH6/tu8i/zDq94sUOUzyg1TPwb8s4djPd/D5364gTmnxAOdb9C/DMD3EeX8Zjdw3JT4HlmnH8dtpQlUznftjs5I0kC0PZXXiBALcb5L9Lbo7Vz4GlGNpZGM5gsLn1F+NjmGqFLT0/G2r/GZY4AfEMGJes/jv6J/gYBRxHfQ8w0cMyUWaB/Vj+P25tnC8X7b89ureoDKefc1672anxU+e8Mmfnajitcdd3dwLj267777TmwkBtJVJbnSWHGYzSSZA+yW9BLRLZW92ol85sQBaayebPYcFydWXmZTpo9K5q506sn+wGOZ7WKflqZI4yHBhcTKobIrE/hJHbufSj7NeQmiV0grUsRPIVaDlf0NOKi3nZJYyZlNoxsBXJa2P31SkqTBYjNgGvD+Ot//SaJ/WH+bFB4M/JKeF1/Uut49mghcNPKgc2liscPF9O0h49eIldWf6sO+6zFwMzdWKGw3ulpSGkjWIB4AfLjO929EBE16XeDWi/FEAKe3DJJq9iayN+qdM8QDspOJ1boLNrBf2ReJlc3jaTyI/D56/nN20iaF7TeIxQCS1JthRObhkdS3eHkhoufvj+lfGdjFiAzJ3Xp5X7VjvIe4Nv06jZWE/TyxKGnzBvYpW46Y78nksyjrsQCRiTKQvVtlrJ3ldtUEXVOSK42LwIvJ/yP9Xr3loBL4RxoP23+WGT4rhbuTJjW+SePkdR5RCqLsBuosB5XAm2kEdu5ibq3YQ1P4Y9K3qGgtxwIfz2w/Qb5HSE9zTNNYiXo/c1dJbk40EfpesyaYRpri/8sMTQd2SfK9XnpyHHGxvEVpe3ngghS2q1YWTZKkLrYMsUihXLJkNnF9dTdR/mUx4mH/J8nfPC4B3EQ8bHyqD8f9NLEQI3vz93ein9qbRPmc1al+c3g8cESV8VeIh4ePA7OIG7qtieuArJ2Jm9xtqb//x2SqL9yYTfyu7iV+X7OJ7JnVid/NYlX2GUjeR/xdZj1U7Y3SILAAcd9UfoCTEg91bgOeIxZQfYC41xhV2O9aok9jX/79r0/0A8qeI58gHtS/TpTsex/V68jvT/WHbW8RQeFHiXuhpYFPAKsU3rcF0ctzM+ovOf0Nov9j8ZgpcZ93J1Fi7F3ifLYqsZhvGQa29wK7FsZ+QXwfSFJvvkOUtCp7GvgNcV05myjNtW3pf7P2B16l+rVpb4YTi4eyC4DeIbJ/nyOegS4HfJDKc/ayxHdctT5N9xCLB54jAuxrEWWzss+RFyK+Z7YhymXVY1XgFqp/HzxPfB/9m8i+GU1cz29IZGK2sxdXfyxZ2J5N3GNoEOmagAlxI5dN25pD9YZuNSXw8zQu/LIXqn1tvlfNWCKF7qLM2C1JA404E3gwjYve7AnvzSbNj1ImyANEYKbsgSQahtYlgVfSWFm5ZmZ4VgrDGvmz9mI6sdqp7P+SBmp/JzAnjYvlzQovLUScuCVJUjiMuWnmtxMLIx6v8r4ViDr9W2TGliEeEm7bh+NOZu6q5inAMeQzbSGudYsNyLcEDi+MzSCyS0+iclXYMKKHwWnkazl/GphIfQtb9qQyWDKL6JP3XSL9v5phxKr1XYE96jhOJxR7y0A8HJAGo/2Zez57iCjP9ECV9y1GrArOPhhbmFhc9yEaf8B+MnMX9k0lHpoVywkOozKDZE3gh+Qfgs0BfkTc+1a7D9yWqAyQfVi1PnAidWTjE8HvEwvHTIkqCUcTD7pqWY/ITPlyHcdptzWIfjTZe/0XaUHFBklD0ljmXl9OJ87jk6l8xnUIcV14GvnsvkOBa4ggRSN2YG4fvGeJc/8lVAbAlyefDZgAP6cyWPIgsBfVS9qWr9u3y4zNS1SgWYs4Z/ZkfqJ/VjFY8nfid/draj8TXIzoVbh/L8fotGWpLKH7LM171qk26ZqASRI37tVu3hv9nGubMJ1an/0ycEUTPqdlTfSSiIz+sgmf8yhVGq83S1J/dLunz3iOJvx9SJI0xJUfLt5MBBGqpaFDrJbemliwsnVmfBviBuhXDR53UeIh3deIG9JqZhGZt2XzEEGb7IO+2cQDvFrHnwNcQNxA3kp+scwk4rqop2zjlansffcOsbCjtwzgOUQQ6nYiw3dmL+9vt3HAAYWxvxHzlQaj8vnsQWLhVK2FUi8S/w2/ydw+ThABgQOA0xs8bvlh1ynAN2u8Zw6VZZrPp7LMx8HAGT0c67dEMOgO8g+tvkr0I+npYd1YIuMi+9BtNtHLstdekcQDuPuILL92NlKfj3xGEEQ2z5JE0OmzxPdQ9vnI66XxWgFtScoqNyqfRSwwrnWNlxLn7seJijLl/YYB5xCBh0Yerpe/Px4jFiU9XeN9Txa29yQWEWXdXRqrtej6GaJx/LlEKciypYnvry/1MtcTyS+chsg2/zz5FgjVvEj8fs6lsXK67Vat+o7XxYNQV/UwkSRJUku8Qjw8rBUsKZsJ7EJk7GYd3MfjnkftYEk1O1BZXutE6gvW3E/lTdC8xEPGnnyDygd1X6bxcqn/pfeVe+00jMiQKf7ZjiAeoEqD1Qwic6S3rPKUCBQUM9sOpm/32TdQO1hSzaZUZtBdRM/BkrL/EOfsbKnhhAhA9+QAKssEHkV9wZKsV+hbKca++iqxODH78xwRGLuYeLiZDZb8HliXxld6S9IPqO8a7zbg24WxNYCt+nDM6UQgo1awpJri+f51InDRW4Wa8ndfMfvyi/TcU3AZKrMLHyGyHnsLlhSP/9cG3t9OG1L9e/z6dk9E/WfARJIkSf11AvU/zH+VyMzI2pTGG8C/A3yrwX2KafzPEiud63UZlSu896QyaFC2OJWr7X5LPKAb7CaR72kHUYqroZK30gB0NlEepB4zqCzx917ypQfrkdJ44LiY3fUOjQVc/gBcXhj7HLX7jMxLZcmu+6iz3+Yg8XvigddWNKE6haSu8wqNXVdOpjLzY98+HPdMGqvgshnRjyvreGJxTj1mURlwmYeeyy3+PyozIvek/t5ZA9lIokTt75mbMVT2OHBp22ekfjNgIkmSpP6YTb7/Wj0uJh40liVEXfxG/IrGGiguQGX9/18Abzd43HMK22OADWq8dysqb5x+0ODxBqLxVD4kfpKoeS0Ndhc0+P7fEo1qsxo9n91O/UEaiHNmMSjzGyJrohFnF7ZHAJvXeO+GRF/QrNMYWhllWxJlFr9JvpeJJNXjShrLlphBXItmbUXjzc3Pa/D9xVJcM4keXI24lcoMy56yY7YrbN9BlAAb6N5DBLGKPwcSGZYXElmb55LvSQPx/XgQA6+krurQNT1MJEmS1BJ/pv4VaWUvE6VOPpYZ26jBz7i1wfdvQOUNaF+yIa4maktnFx59GJhW5b0fLWz/lyjBMJhtQTQJzfaBmU6UYnipExOSmuhZqje67cks4EZg98zYhg1+xi0Nvn9lIoMtqy/ns9uIwPPYzNiHqZ4FVzyfzaQJvS3b5P/I97gcBixMNOddqvDe5YGTiPr8OzBwS79IGniu68M+15BfhLIgsDr1n3ueJ/rHNaK4gOhOKsvl1uPXRLP6svWIbItigGBx4s+UdVkfjtcJa1K5uKAec4hykL39m1ibuIZuxHqF7QOJPlz1ehs4rsFjdh0DJpIkSeqPv/RxvwfIB0w+2OLjrl3YnkNl/eV6vEak16/Sw2eXFfsL3FX1XYPHJsRD2WzWzEyi/n+xVJk0GPXnfJYNmKzT4uNWO1/+ucHPgDgP3k++vF6t81kxk+4vDJ5SKleUfqpZmnjQdAgwLjO+GnAzUbqmkVI3krpXX75DHqRyIc4HqT9g0pdjFs/zffn+gMoFBqOIc2dx7uuTX2gDg/+auCf/JrKub63jvauTDzr1xYQG3/8yBkx6ZUkuSZIk9ce/mrRfsZFwbxptgL5oYfs5em9sWcs/e/nssuIK8GLpgsFkQ+BaYHRmbA6wB403sJcGqmadzxagshxfTxo9ny1SxxzqVe/5rHiOHszns6z/Aj+m+irixYFLiBXTktSTOUQ2W6PepLKsYyPXxI1mhiTkswqh7z2bit8fUP07pHg9DEMvEP0qkU2yExE0urWjs1G/dVWGSRpNN7+aGXoZ+EJS581yGg2MvpIZegHYPmm89nVPx9iIuGArmwPsltRZ0zaFjxCNo8pmAbsmTWxal0bt2l+Sb3B6bFLnzXIaq3iuIH8TcXQC1zdxjiOIxkorZYavSODEOvefB5hCpGSXXZLAqc2aoyRJQ0QjtZqzXi9sj+nn/r0pfn6j+2e9Wtgu3niWFR9qFvcbLNYBbgAWyoylwH7YyFJDS1/PC9X2G0OU+GrFcYvns7fpe430bjuf1TId2J8Idu2aGV8H2JEInEhSLW8Sz+/64nXy5QFrnYerafQ6fEEqnwX39bvvtSpj1eZe/P6YBbzVx2O220PAGVXG3yW+B18DniKe2AykTwAAIABJREFUuaZtnJdarKsCJkQzpS8DG2fGfgrs3NuOKaxFBCJGzR3is80MlgAkcHcaaW37ZoavTGGjpJeU5zROTBcTTYnKjmpmsKQ0x+fTaIZ4bmb4ghTWTaLZUU9zHEY0RfpIZvga4ia8mXOclUbt2T8QwQ+AdVL4cwK/q+Mjvg98LrP9D/J/XkmSFN7t437TC9sjiWvTWXXu3+hN6ajCdvH4jSj+mYufDbGCrzg+WMrXZK0BTKXyBvjreG2koadZ5zOofl6oZaCfz6CyCfpgPJ/1JgW+BmxPfnHfBAyYSOpZX78/qu3byPfH7AaPVS37sdXffdW+swZLcOH/gHNa+Pl3EFkpjTiAfFnjI6ie7VPLjAaP15W6KmBSeoi+M1GntZwmNj6FGxP4Wa390lhlcjn5/8hPqjejog8OJmrElmvfrgn8gPiPotYcE+LPkA2W3AKc0IoJJvDTNOq5lmv1jgWmpLBp0vN/fN8GtsxsPwl8KWnByTKBe1I4jLlZIcOAi1JYJ+mhOW0KnyYulMumAzslfV9BK0nSULZAH/dbsLD9FvUHS/qiuAquePxGFPettsIuJVaeZVfVLdyPY3bCqkSj5GJpiEOB09o/Hanl+npeqLZftfNCsxQ/u6/nYajvfAbRHH6FzPZgO5/V6wXgJuAzmbGNa7xXksqaeR5uZQZftXN8X+e+UJWxV6qMFf88o2lskdRQ9mTppxGfLmzfBPypOdNRWdf1MElKD+jJP6A/M63d3A7gJ0QNurI/EQ/+WyKJB/TjyafF7Z/CLj3s9nXgs5nt54lSXI1GmxtxAPm6gxvSQ+OgFD4KHJUZmgXsnMBLrZkeEDfzv85sLwlcnMLwam9OYTkieybbkOqQpG9NYSVJ6gbVaunXo1jjuNoNVjMVP7+v84bKAEKtub9c2K5Ww3mgWploeLxUYfxoIotXGoqadT6bQ2sDJsVzzjz0PdhTPJ8Vz1u1xgfT+axRxf4sC9K/ILukoW8UjWWGZLWz5OG7VGYI1upd1Ztq+1Wbe/GZX0LjvQultuq6gAlAEiWgTs8MzQdcklamGZNGaaxsDdNXgPG9ZFE0Y47/IF+WC+Anaaz0y0kjG+V7maFy35OaWRTNUOr9shP5k+23UtiuyhyXINKYs4GKIxL4Y4vnmAJ7kS8VtjlweJU5lvueZE/cVySVzf8kSdJc72/Sfo2urmrU04XtMeR7lTXiA4Xtp2q87z+F7XX7eLx2W4kIlixbGJ8EfLf905Haplnns2do7cK14vkMoipBXxT3q/bZMHjPZ31RrcxMV1XnkNQnffkOWZ7KTI0nmjCXnhTP88Xr2npV+96pdk38f1XGhvJ3iIaArgyYlHwTuCuz/X7gR9k3pHHS+GF+iL1669PRLEk0Hc+WCluQCOzMm5nQGOJ982Te9906+3Q0Y44PARPzQ/wszaRrl/qWXAQsk3nf9cApbZrjK0TGTjbIdWwKHy+8dRKwSWb7caLnjSRJqm0D8pmZ9dqwsN3qVPK7q4x9qA+fsxqVK+qqfTbA7YXtdelfyYZ2WIEIlqxQGD+RFmZYSwPEB+jbCuF2n8/uobLvSV/OZwtT+YCv3vPZCkRwdSgqBotnMPSa3Etqvg2atM89/Z1IL4rn+Y36+DkfLmw/TfWAyZ+pbPK+WR+PKbVF1wZMEphJ9DPJphbvlUZDN9KoqXc5+ayTyUm+vFM7HAD8JbO9HnHDWnYe+QvVafRQFqsVEjiLfBO8RYheIeVVOIcDn8i8/jQwoRV9S2pJ4qbl6MzQMKI011IAKXwK+Fbm9ZlESbNWptJLkjQULE/jN1prAe8rjNV6SNcsj1L5wGvnPnxOtRKpd9Z4722F7VHAbn04ZrssRwRLViyM/5DoCycNdaOAbRrcZwkigz2r1eez14BHCmN9OZ/tCIwsjNV7PgPYpw/HHOgSYIvC2JMMngbFkjpnxz7sM76w/W/guSbMpSfF8/yqNJ7xMT/wuV4+t2wm0dw8aw/yC7+lAaVrAyYASaSFfaUwfGYKqwNnEv9bdi8duFEs9TPZFXg7M3xQCp9P4SDgC5nxF4BdWty3pJavAH/PbG8GfDuFTYHvZMbnEMGSF9s4t7KTgd9ktpcismGWJjJ5sv89fCNp/Y2OJElDxUENvv+QwvYbRMnUVpoDXFEY24Z8n7reLEzlteP9VNa7L7ud/PURRMP0gVgLfxkiWLJyYfwM8tnE0lB3EI1lzX2VfLmmOUQFgFYrHmMDGluxOxL4WmHsv8QCvGr+BdxSGNufymyMwe6LRPA468ZOTETSoPMxeu6PXLQS+V7EEGXiW+0qIoiR9Y0GP2N/KkuJ9fTdd15heyni+1MakLo6YAKQwJXAjzNDo4kLwQmZsdeIviXvtnNuZQk8TP5EkgDnk2+4mQJ7JLVrzrZUqZ/JLuR/R0cCvyR/A3FMEjfjbVfKaNmbfIrgp4gHHdmGpr+mUJ5NkiT1aGcqV1jXsjGxqizrUiJo0mo/LmzPUxqrtzb9ScCShbEzenj/HGLBRtaKRHbuQLoOXwq4CVilMH428fDYldXqJptQfybYqlQ+ZLqR6vXam+1cKvtqnkHcz9bjUCrLcZ1d5TOzTixsjwUuIFMyusOWJ0pW99U65HudlhWD7ZJUzTDiWVI915UJMJn8+XMO8NMWzKvoGeBXhbGdgU/Wuf97qSzT+hQ9V+T5JfDPwtjxwPp1HlNqq4F0o9ZJE4maemXFG+EDklhR0zFJZEBcmBkaQ/7EelISfUE6JoH7yJe1GgYsntm+Ffh+O+dUVMps2ZF8ND379/0ksE87y4VJkjQEJMSN0Dq9vO8DwNXkr0HfAk5o0byK/kLMM2sLYiFKTw/8EqLk6b6F8UfJlyWt5kIqa1HvWtqv3kyTBYjr1dV7e2MfLEEES4ol0n5GlIb1mkjd6Bxgq17eszxx/5XteTKbfHZ9Kz1LVEXIWpM4x/V2bvkKlWWcn6MyqFw0lcpswC2A68jf9/VkXuJcuklvb+yDjxD9Ro+nsfPlvMDBxP1qsUfVdaVxSarHpkQ2RbHcYdYwotzptoXx84mSXO1wPPkFzwkRHO7t3LwS0TO5mF1yLDCrh/1mE1mN2evK+Yhr0E/XMd+y9Wk8G0ZqmAEToJQ5Mh54vcrLZyW93wi3ywFU1qqF6M8xIJpwJrEipxipBniezpULy0ngLqrfyMwCvpjAS+2dkSRJg9r9pf8dS9QuPo54kJi1DHAUcc2yWOG1Y2jfzSHAfsSDxqzdiYUf48n3rxtBZKPeTL4XGsTii92J8qk9mVH63FcK4+OJlXaHUbnKG2JBxzbETfeTwClU3pw2w9E1jv9B4u/r3j7+zF/5kdKAVz6fzQfcQKz+XbXwnkWJzKsHiVW2WWfQ+obvWUdQeX/4SeAhYE+ijGDZMKJk11XAT6gsO7YPvZdNTokMwWIGzceJ89kkog5+8bPHEgGoHwFPEJksS9EaCxO/l78Rv5tziGoNnwQ+BKxB9AXdiigpcz5Riuw0Ks+xz2PJGEn1eYUI2EJUrLkL+Az5wMlwIsh8KxGkzXqW/ALkVnuIyueICxJzm0wscspajrhm/QuV333XUF9mzDXADwpjCwHXll77HJUB/xFEmbODifuMe6g/E0b99zF6vt5fq/D+NXp5/8fbMelmqLf8QDd4gWgAX7xIOqsDc6nlHeKGubha5qyk59TpdivW6ga4MokL0YHi0Spj9wF/bPdEJEka5H5MPPzfililezRRlvNZ4mHT4kS/sGoLdS4hHlK104tED7hrgEUy42sAlxELKJ4jFnksRfWGlDOJMp/31nnMfxM3zVeTX4W9BJF9+32iX92Lpc9ejPyDzlaqdT/QW7ZQb4b3c3+pE35NBEL2IM5ZB5V+niXOC2OJAHC1/25uAg5vzzT/5x3ifDaVfKD6PUQg4KfEvN8lzmfzVfmMlHgIVm8fqZeBrYkHXCtlxhciAuNHEYHkF0vHHUNl1ka7vI/K7Ll6vUA82GxnQF/S4DWdCJT8nrh2XJc4r75NBIrnEOfpahmAbwLbU7m4ptVOIc6Re2bGhjP3u+9N4lp+YWqfx+8BvtTAMQ8nvhf2KYx/pvSTEt8frxMZnIsycMo+dqMxxCKDeo3u5f1j+zed9jHDZK6ziJrSRb9Iq19YdsK3gE9UGT81jYvijkujfvk3q7y0XxoXnB2XxpfUOVVe2ojKJrSSJKlnc4hyl7dlxoYRDxU/SDQErnbNeRHxULIT2ad3EiutH6/y2ghizitQPVjyCrEC7qI+HPPDwAM1Xp+/dMyVaV+wRFKlfYk+l1lLEStcV6B6sORGonHvO62dWlWPEqWo7q/y2jAiYL0i1e9p3wb2It8bsx6PENkaxSbwZfMRq5FXpnPBkv74JfH99ddOT0TSoHI70Qskm308PxGUeD/VgyUvERnFnVi8O4dYAHQ81a/HFyCySWqdx39LZAw0UqVlFvBl4vlmtSzthFhctDJxL2GwRB1hwARIo9TVF2u8vBaVze3aLoUNqawzWzYWuCjtcMZQGqUjLqb6isJhwMVp61Kv61L6HV1G7RP+iWk8zJAkSfV7jcgwOQp4tZf3/h+wA7EKr6dax632MJFV8g1iBXZv3iLqTY8jatr3xePEqqtdS8evx2ziBvxL1A62SGqeGcBOwIFUlu8rep7oB7I1cY7olCeBDYgVu/U0nJ9O9ClaFfh5H4/5PPGgbBuiDFk9/Y5SIjPvQCLI1Gy/JnoCnEt9v4est4ieU5sR31HPNHdqkrrEVcTzu1oB5bLZwKVEIOW2Xt7bSilx/f5BInOwnoVMDxDZINsRWSh9cTKwCnG+rvf78wWi9KULndVyyb333lt3I8ckSU5ab731Dm3lhDIeZe5Ku5ZJY6XQXcxdcTOHuHH+LnNrL6fA9kmc+NoujXIR95P/XZxIrObM1g48PokTXdulERCZSj6L5Cri97p1ZuwG4DNJ/J7bLo3VU9kMmEeJhx5fz4z9C1g3iYc/rfIeor7lT4nouiRJg8Uj5Euc7EU8eCsbTdQWXpvI6lycWHn2JHGtcAeNXwcMp7Js6qs0ryH5MKKJ5FbEaraliEUWLxAPzW4HppFvjtkMKxHZw6sRZbgWJ2483yT6ATxM3ES3skTD/LRm9V4z/36kVplKvrn7MeQXqc1LBAU2JDLPlib+e3yGeBh2E40HfhOixEXW6zQ3225t4tyyAlH6b37ifPYske12M80P8CxdOuaazD2fTSfOZ/8meorcRn0B6mZZhvi7W4XIslmcWOH9DnGv9zrxnXY/UYqtExlCkgan7clnI/6XOOdkrU58x6xEfIeMJK6HHyEy2Z7vw3FHk8+AfpfIFmyWRYnr+HWJc+ZixDXdC8A/gOuJZ2bNNC/RbH5T4jurXBL3TeL3+hhR+ut+Wv8scWHyyQUz6XtQqFWK/wbeoHWL0EYSmUbN8hYdailx3333nZimad19grq6h0ka/8guI5+efFICP0zj4qnctCgBzk/hgaTNNUzTOPZ55IMltxC1wa8kHjqU/0M5PIXbEvhdO+dYchT5YMmTxAqn4cRJbdnS+KeIgFSjad/9lkbg5huZoelEZtGDRDS93HzovcTf/Y5tnaAkSUPDW8CvSj/NMpvWBg3mECuk29msGeK68uw2H7PobZp7oy0NJe8SD4eub+JnprS+Tv1fSj/t9F/ggjYfszfPEFknktQJj5R+muktWpvR+BLRY/CSFh6j6F1iAcJNbTxmLa1cON0srf43kDWT9vfWGRC6vSTXWeRXSP4J+DZAEkGKX2ReGwNcllavZd1KBxN1ssueB3ZNYHYS6cyHZV4bRvRcWbqdE0wjbfnbmaFZwM4JvJxEFHoX8iumjk+jzm4757gskWKdZIYPSSIINoeoof5i5rUdUtivnXOUJEmSJEmSJHVO1wZM0igfsXtm6FVgfBLRs7L9iZJNZT31EWm6NEpDnJAZmgPslsTqnbLTgKsz20sQvUKq9RFpulK5sIvIH++IJNOwKokSFt/NvD4CuDRtUwPAUrmwC4lUwrIrk8yKzgSeImqpZ0tH/DCFddoxR0mSJEmSJElSZ3VlwCSNBp8/yg+xVxI9Jf4niTp1O5GvZfqtNBrJtXqOCxIN1LM1pb9XLLeVxNz3JN/UbnPymSetmmNC1CzPlgu7ATilytuPA36f2V4e+Hmaz/holWOZW24Lot7iPsU3JZFq/8PM0HzAlNLfhSRJkiRJkiRpCOu6gEkaD8EvZm5Dd4DTazV0T+Ah4ND8EOelc3tytMpPgFUz27cTD/4rJFFPbjz57Jhj03yQoBW+CWyX2X4O2DOp0uCzVPZqN6LRYNk2wFdbOcEUPgYcnhmaSZQ0q1WX8DCiEWLZKsA5rZmdJEmSJEmSJGmg6LqACXAGsHZm+0F6ycZIIhsl27h0ceCSVpW9SqMU2C6ZoVeA3ZPoDVJrjncD38kMDQcuSPNlqJo5xw2BSZmhOUQg4tkau5BEQOVLpfeWnZzCui2a4xJEo6rs39O3ErirhznOBHYGXs4M75xGjxOphdIFIR3by8+ITs9SkiRJkiRJGqq6KmCSRnmtvTNDbwI7JTC9jt33Bv6d2d4MOLqJ0wMghQ8AP8gPsWeSL7lVywnA1Mz2csCFzS57lcIY4DJgnszwsQnc1Nu+CdwInJwZmhe4PIWFmjzHYcAvgKUzw9cBk+uY4xPAvoXhH6ewevNmKFW4mgjU9fQzE9IXIJ0G6VGQLl3z0yRJkiRJkiQ1pGsCJimMA84tDO+XwGP17J+UmsIDMzLDR6ewZZOmSAqjgcuBUZnhU5N8U/ee5jiHaGSfbQq/NfC1Zs2x5Hxgpcz2bcDxDex/FHBHZntlKv9u+usIYKvM9lPAHtXKhVWTwC+BszJDo4nAzqgau0jtshiwKZHh9U9Id+7wfCRJkiRJkqQhoZvKu7wMrJPZnl1n1sb/JHBPGoGC+TLDbzVjchnbFLafaGTnBJ5PYU1g4cxwzVJejUrj38w3Sj9lzyUwu97PSGBWGoGcxQufPSzJl+vqj4uIclxlryb5Mlv1OITqDeylgWJ+4AJIH4Lk4U5PRlLXeJj89c+LnZqIJPXTP4BFMtvPdGoikqRB5RXgvsy218PSENI1AZNkbkmb/n5Oyy6ik3j48K8mfM5LxE/TlfqoNGOObxA/LdFoMKzGZ8ygCX9WqR8uZG421mhgE+Dz5MvszUOUkDu4vVOT1MV26PQEJKlJDuz0BCRJg9LNwPqdnoSk1uiagIkkDUK3QXJ+ZvuHkJ4F7Fd431ptnJMkSZIkSZI0JHVNDxNJGiLuqDI2su2zkCRJkiRJkoYYAyaSNLhsVGXskbbPQpIkSZIkSRpiLMklSQPXRyEtn6fnBT4E7Fx4z0zgzLbOSpIkSZIkSRqCDJhI0sA1ofRTywvAfpDc36b5SJIkSZIkSUNWVwVMUliQ/J95RgJvNbD/cGChwvAbCcxqxvxKx5ifWEleNieB1xr8jLGFoXcSmN7vyc39/HmA0YXhVxNIG/iMfv1d1PH51f6u3kxiNX69n9Hvvwupxe4Hnuj0JCRJkiRJkqShoNt6mGwDvJz5eSqF9zaw/48L+0+j+c2WxwFPZ47xSgrb1rtzCvsU5vgvYKkmz3E08aA2e5zDG5jjBsCLmX1fBDZu8hxT4PLCHH+VQlLnzosD/yjsv2+T5yj11yeAOyDdrtMTkSRJkiRJkga7rgqYJHApcEFmaAwwpZQx0aMUdgS+khl6C9gpgXeaPMcHgW/lhzgvhWXrmOMawOT8EHsl8J8mz/EVYDz5bI3jUvh4HXMcA0wh/zs/PoHfNXmOc4DdgGczw9sAX61jjsOAi4BlMsPXA6c0c45SHQ4DVi79jAM2B64svGce4OeQLtjeqUmSJEmSJElDS1cFTEoOBP6W2V4fOKGnHdJ4WHluYXj/BB5p8twASOAM4JeZocWBS0plpqpKI+vjcqKMVNnkBK5q0RzvBo7JDA0HLkhhsV52PRNYKbM9DTiuydMDIIHngF2A2Znhk1NYr5ddDwU+mdl+GpjQSMkxqUlegORfpZ/HIbmVCFb+qfC+scBObZ+dJEmSJEmSNIR0XcCk1CdjJ+DtzPAhKXyu2vvT6GExBVg4M3x+EhkIrbQP8O/M9mbAt3t4/xnA+zPb9xGr01vpBOC3me3lgAtrlb1KI7vji5mhl4Hdm9kDpiiBW4ATM0PzEllFC1d7fwobAcdmhuYQwZIXWzVHqTHJHOAPVV54X7tnIkmSJEmSJA0lXRcwAUjgYeDg/BDnp7BilbefTD4j4W/A/2vd7P43oVeJleQzMsNHpbBV8b0p7Ax8KTP0BrBLAu+2eI4psDeRgVG2NTCxyhzXAk7KD7Fn0p6G1d8Gbs5sV8sYIo1V+lPI96U5JsnvKw0ES1cZG932WUiSJEmSJElDSFcGTAAS+Cn5LJGxFPqZpJU9L6YTgYhsdkor53gP+SyRYcBFaeZhaQqrAOcUdt0vgb+3YYok8AKVZa++n2aauKewAFEubFTmPScn8Js2zXE2sAf5LJEd00xPmlJWzM+A92Tecwvw/XbMUapfuhWwfZUX/tPmiUiSJEmSJElDStcGTEoOAB7NbG9IqZ9GCssTDeKz5aW+msBf2jc9AE4Dfp3ZXhK4OIXhKcxHBCKyzZ7PSuCSdk4wqexDMgK4LIVFS9s/AVbLvP4n4Og2TQ+ABJ4CJpDvQ3JaCuuU/v/Xgc9mXnse2DXJB4Kkdtsf0stLP7+F9GFgKpnAbskc2hSAlCQNCAuQz4iVpIFkFFEKWZKkRgwDFur0JKSuDpgk8CbRz+SdzPC3UvgCcBmwSGZ8SgLntXN+8L+yV3uRXz2+OZF5cjrwwcz4Q1Qph9Um3wV+l9leHvh5KYtj18z4q8D4JF9qrC0SuB44JTM0H5FVtAXwvcz4HGC3BP7bzvlJVawP7Fj62YZ8n6KsUyF5tMZrkqSh46NEH6vXgVeIhTWL9LiHJLXPGsQinjeI89TFVC97LUlS1ijgKGLx8mvAX4EdOjojdbWuDpgAJBFk+Hp+iCvIlJQiylt9uZ3zykrihngXYGZm+Djyc3oT2DHJB3/aJik1RweezQxvA5yZ2S73LflPG6dWdCRwZ2Z7FSpX7H8vyQd/pIHqTeBw4FudnogkqaWWAy4kyoV+hLheHU305PsncCiV2YeS1C5jgROAPwPbAsOJc9IuwGPAZPJVESRJKtuW6Bc9ibmVatYgns3eSn6huNQWXR8wAUiiZNTFmaHs7+VdYOckVsl0TBIP+Y/MDBX/7g5I4mK0Y5IIlnyRfBmr7DxPT/LlxdouiaDTeOClzHB2jtOAY9s6KSn8Hbivl58/EJlSk4nMrWUhOQGStOonSpIGu/mB7xDfEbuTLxVbVn5Q+SDw6bbNTJKiFPO+xH1orcDtPMBBRCnsffEZhCQprAPcRmQmrljjPR8lnoVcSLQokNpiRKcnMIAcQGSVrFQY/1oC93dgPtWcQpSP+mRh/Pwk38C+YxK4NYUTgSMKL91LXER3XAJPprAPcFXhpReBXRKY1YFpqesl+3V6BpKkASMhAuMnAMvWuc9qwLXETedEIvNEklplS+CHwAfqfP8ywNnAnkR23J9aNC9J0sC2JFHWfy/qC6IPIxYObUtU2zmDfAUeqelc3THXUsDihbEUeLwDc6llNJUBHRhAN8Rp3OCvUeWlJ5PI1hkoql3Yv0j0WJEkSeqU9YDbicUw9QZLsrYjyhpMBhZu4rwkCWAccDlRwrjeYEnWh4C7Sp+xQhPnJUka2EYSAfPHiEXMjT6THgOcCjxM9HmVWsaACZDCvEST9wUKLyXARWmshhkIzgRWrTJ+XBr1rAeCg4HPVhn/fBpZPB2XwmbAMVVeeh/wozZPR5IkCWBp4OfAPfT/um4kc0vg1Lt6T5J6siCR9fZX+v+gKil9xsNEP775+vl5kqSBbVvinH8a/V/QswoRdL+WyLCWms6bp3AqUTuvLFuSaQkiaNLR31UaN7u7Z4aycxwBXJLCIu2dVV4K6xPluMrmxPD//CDtcLOmFBYDLiFfji77u9wzhd3aOytJktTF5iMeGP4d2IPqfUpyVl11Veaff/56Pnsp4Dyi9M1AWVwjaXAZRpTR+jtRYnne3nZYbrnlWGyxxer57AWA7xFZcV/oxxwlSQPT+4EbiZKxq/T25pEjR/KBD9SdvPhp4CHime6Yvk5QqqbrAyYp7EA+8+EtIgPhP5mxj5NvuN5WaZS4+lF+iJ2B32fGVgAuTOu4yW6FNC52Lybf6O+7xImrbD7gihQWaufcykq/m/PIl7e4nsoAyU/SyDaRJElqpfJqu+9RmelcYezYsRx33HHcdNNN3HHHHey2224MG1bX5fx6wB+A31K7qaYkFW1AnDvOJwKwPRo1ahQTJ05k2rRp3HXXXUycOJF55qnWB77CSsAvgVuAtfszYUnSgDCWyEq8H/hEPTtssskm3HDDDUydOpUpU6awyiq9xlcgsqq/RrRTOBgY3sf5SjldHTBJI8hwdmF4/wTuJAIS2SZC30kjcNJWaQQZLgayywgnJ3FBuRvwbGb8M0T5hU44m3y5sGlEM6bDid9n2TjgnDbOK+ubRF3vsqeBCQlMIT+n0cDlKYxq5+QkSVLXeB+xaOM3wHt7e/PIkSPZe++9ufPOO9lnn30YPnw4Sy65JCeddBLXXnst66+/fr3H3YZYyX0CdQRoJHWtZYELgbuBD/f25iRJ2HbbbbntttuYOHEi8803H/PPPz8TJ07k1ltvZdttt633uB8D/lw69hJ9nLskqXOGAROIsrCHkl9UXdVKK63E2WefzeWXX87qq68OwKabbsrvf/97jjvuOBZccMF6jrsIUe7rIeCTfZ28VNa1AZM0opCXkS9jdX4SDTZJ4uIw2+diGJHBUVducROdQX6VzX3AYQAJPAfsAszOvH5yChu1b3qQwn6leZS9DOyewOwkgk47l8bKxqeR1t22fOTjAAAgAElEQVTOOW4ITMoMzSGCJS+Wtg8GHsi8viZwcpumJ0mSusMiRDP2h4BP1bPDpptuytSpU5k0aRILLVSZpLv22mtz9dVXc/bZZ7PssnX1iB9F3MA+StzQdiQ7WdKAVD4/PEKUg+71/LDWWmtx1VVXcfbZZ7PccstVvL7iiitWPAjrxbDSsR+jzhJgkqQBYXMio+QC6gh6lwPrt9xyS9XA+siRI9lnn32488472XvvvRk+vK7kkdWBG4is6l4XJUm1dG3AhOi1kV0t83fgkCrvmZrZXpY2lr1KYSdg78zQm8AuCbxbHkgibfmkzHtGAhen/W+iVO8cP0C+7FYK7JnAE5k5PgHsW9j1R2nUMmy5NGoZXkY+sv2dBG4ubyQwnfh9v5F5z4FpBHskSZL6YwRxLfQYkQ08oue3w3vf+14uvPBCpkyZwmqr9dzPsry6e9q0aUycOJF5563r+eKyxA3tXcCH6tlB0pC2LXMz0HpdzlvOcrvuuuvYcMMNe/3wTTbZhBtvvJGTTjqJRRddtJ75jCnN5UEiO06SNDAtT2QG3gys1dubhw0bxg477MCdd95ZV+nGRRZZhEmTJnHdddex0UZ1rw/fhgj+T6ZDbQE0uHVlwCSNxkDZ4Mh0YKck/7CcJLIQdgeeyQxvDUxswxzHAecWhvdLIrBT9G3gjsz2ylX2bbq0VLqKfOmqU5IoL5FTKiF2ZmaoXPaqro6l/XQ+URe37DaiVnhOAv8gMk2yzkrz+0qSJDViC2K13dnUkam80EILceSRR3LLLbew5ZZbNnSgcv+AO+64gx122KHe3TYE/kjc6Pbao0DSkLMOcX/0G+rocVQuETht2rRG+igBMGLECHbbbTduv/129t57b0aM6DV2DFH2+bfA74jenpKkgWE08B3iOeXu9eywzjrrcPXVV3P66aez+OKLN3SwNddck6uuuooLLriA5Zdfvp5d5iEWKj1CLFzqymfg6puu+8eSwnLEarpslshBCfyl2vsTeJ7KslffT2HjFs5xXqKvRjYKenYSvUyqzXEWkQnxUmZ4x7Qyq6PZziTS3cruAY7q4f1fJx4YlK0B/LAF8/qfNE6On88MPU9k6cyu9v4EfkY8MCgbA0xJ66i7KEmSlLEKsbDk90RGbo/Kq+3+8Ic/cOCBBzJy5Mg+H3iZZZbh9NNP58orr+T9768roTchbnT/Sdz4ztfng0saLBYlVt7eA2xWzw5bbbUVt912G5MmTaq3pnxVY8aMYdKkSdx88818/ON1twndkriXnEzco0mSOiMBdiQCEcdQx3Xj0ksvzeTJk7nmmmtYb731+nXwrbbailtvvZUjjzyS0aNH17PLMsTCpbuBj/Tr4OoaXRUwSaP8waXkV/ddnvSSjZFUZiSMAC5L8/1PmulUYN3M9sNEsKGmBJ4C9iBKYpVNTvP9T5qm1INkQmboVWB8AjN6mOO7RNmr1zPD+6awa4vmuBZRVq1sDtFb5Zkau5QdQNT1LtsAOL7J05MkSUPTAkTQ4SHiZrJXH/nIR5g6dSqnn346iy3WvHZ5G2+8MVOnTmXy5Mn1fu5o4sa37rlLGnRGEln1jxOLy3otCj9u3DguvvhiLrjgAlZcccWmTWTcuHH84he/aORzRxJzfpz4M9RV0F6S1DQbAH8gFgX1muYxatQoDjzwQKZNm8aOO+5IkjSnw0H5c2+//XZ22GGHej93feB2Yu4rNGUiGrK6KmBCNP3eJLP9OPDlOvf9DpmeF8SJ4ZzmTGuuFLYnHtiXvUWUC3u7t30TuJZYcVM2H1H2qu/Lf6rPcdXCcQD2T+Dfve2bxMrFYubLT1LouTh3g9J4WHE5+Uj3CUm+J01VSel3DryTGZ6YwnbNnKMkSRpShhGLSf5JBB16bSSyzDLLMHnyZK644op6M0Ean9SwYey4446NZq6MI66jbgLWbMnEJHXClsADwGnU0fNyzJgxHHfccdx8881svvnmLZtUOXPluOOOqzdzZRHiz3Av8NGWTUySVLYMUY3lbuqsuFM+tzeQCdKwpZZaitNPP72RzJVsdsx3MKtaNXRNwCSF9YAdgH+Vfv5JBCJe73HHklI/kwnAXzOfsU4KX2jiHBcDjsh8/r+AA5JovlevQ4n6ruX9R9BLdkqDcxxONJl/IXOMU5Joql6XJMqNnZHZ/3lgUtrcf49HECuQyse4lnh4Ue8cHyL63JT3/zdwZGr6tyRJqvT/2bvz+Kaq9PHjnxMbaAuWlsWyKsgiKCCLiAr9Di79ztcZOvMdbQUVBWx1lMIoVgSsFEhAseDSikIdRauIgOJSEIUqS1vABb/juKGM/NzHcUZFURABub8/TkLvbVNyg7lJ2jzv14vXmJN70mfatEnOOc/zDEX3ASkH0oNdnJycfKTXSE5OZBI5zL1RMjMz7U47D/g/dBmD0ApNCyFiySnoz0OVQNDdWX+vkZqaGvLy8uz2GvlV3G43eXl5R3qjHHecreSRAcAmdI8T6TsphBDhl4ReZ3wfXb41aCpHv379ePbZZykvL6dz585OxwfU9kYpKSnhhBNOsDMlGb1GuBO91hue1BfRZKjt27cbwS/zXaxU8eDBg6c6GZDJ++gnsKRJiaboJOBj4EHsZzkJIYQQIrZ0RpdtHYOND1pKKUaOHElRURGdOnVyPLijqa6upqioiA8++MDulN3AbOA+dP88IUTsS0MvdE3GZk/G4cOH4/F46N27t6OBBfPWW29RVFTEa6+9ZnfKAWAxuqfmD44FJoQQ8SMLXV3G1oZ069atueGGGxg/frzdTW9H7Nu3j0WLFnHvvfdy4ECDXQPq2oQ+NB2wv7Vo/N544407DMO42e71cZNhIoQQQgghRJgkoxchd2DztN3pp5/Oc889R1lZWdQ3SwAyMjJYv349Ho+HlJQUO1PS0CVw3gEudDQ4IcSv5S8R+D76b1XQzZJu3bpRVlbGypUro75ZAtC/f3+eeeYZysrK7J5Qbobub/I+ugS0rHUIIcSxGYju5VyBjc0St9tNbm4u27ZtIy8vL6qbJVCbyb1p0yaysrLsThuBzqp+FLCVoiKaNskwESI6GnuGyXKg/zHMm4i1F5AQkTAGXaYvVC8SxpKGQogmQaFLvM5Hv5YHlZ6eTkFBAZdddhkuV2yu3+3evZu77rqLRx55hF9++cXutJfQi5M7nItMCHEMzkVvbtp6r96iRQuuvfZaJk2aRLNmtpJQIu6nn35iyZIl3HPPPezdu9futNfRp4W3OheZEEI0KW2AIiAfXY4/qMzMTGbPnk3Xrl2djOtXqampYebMmezYYfst63fAPPRr6c+OBSYiSjJMhBCR0A3oDaSE+M9Wp1khwqwZoT1PWwF90KV2hBDCbzBQhW6GHnSzxH/arrq6mjFjxsTsZglAWloaXq+XF154gbPOOsvutAvQZQtK0H87hRDR1QV9MnYDNjZLXC4X2dnZbN26lYKCgpjdLAFISkoiPz+fqqoqsrOzUcpWqfkhQA36b7YcwhRCiIa5geuBXejDMEE3S3r06MHSpUspLy+P6c0S0KUm161bR3FxMW3atLEzJRW9YfIWMNLR4ETMit1PbkKIWPcDekE5lH/rohKpiHdLCO15elp0whRCxKgO6KbnrwLD7UzIzMykuroar9dLy5YtHQ0unPr27cvTTz9NeXk5J55oa33Rjf5gvQv9QTu6NRiEiE8tgFnoxrVX2JkwaNAgnnvuOUpLS2nXrp2TsYVVhw4dKC0tZfXq1QwaNMjOFAXkAO+hv0eJDoYnhBCN0QXA39DZFK2CXdyqVSs8Hg8bNmzgvPPOczy4cElISGDMmDFUV1eTm5tLQkKCnWm9gNVAJbJGEHdkw0QIIYQQQoj6/Kft/PXwg24G9OzZk2XLloWy4RCTMjMz2bRpE4WFhXY3fNqiP2i/BmQ4GpwQws+/GbADmImNzYAOHTpQUlLC6tWrGTx4sNPxOWbQoEFUVFRQUlJid8OnBfp7tBPd20UIIeJdL2ANNjcD/BsONTU15OXl2d1wiDmpqal4vd5QN3z8m0ol6OwTEQdkw0QIESOMbDC2m/5tAsNWvqRv/qV15m8AI8wvZsZpYLxu+hqvgzEwhPkDAszvG+YYU8F4uc734tIQ5rf2fe/N83PCHKMLjEfrfA1viPOX1Zk/M7wxCiHiXBZ6EfIebJSbSk1NPXLabsSIEU7HFhGJiYnk5+eHWlJsELps2Wqgq5PxCRHnhgBb0OWmugS72FzSKicnx25Jq5jmcrnIyckJtaRYF6Acm2XLhBCiCfKXm3ob+L2dCcdQ0irmHUNJMcmqjjNx1fTdgH5Aumnoe6Wbwdmd3xYYUGd4q4J94YjP9zW6Aj1MQ4eBjQps/ZwMXav/v+oMv6PgX+GJEAxojf5AbPaKgh9DeIzhWE9Bfar0iZ+wMCABGFFn+D0F/wzhMU4HzEeWdit4IwzhQeNv+v4quodJ0JRN+wwXusl2pmlwLTASVJDnv9ET2I51UetyUMvCF9+Rr3UHYG4U9SEwGNSeIPNaov/e9DYNFoNy4G+qkQ08aRrYCwwBFaTLmaGAp4H/NQ1uAi4AZbsLsM0YT0OfRE72DwAXg3rGxtyZ6LIKfp8BA0F9E6bgUoHd6O/hJWF6TCFE49AbuAu40M7FbrebK6+8kilTppCS0rTbeLz55psUFRWxfft2u1P2AfcCcwjhPaIQ4qg6ohe6xqAzTILKzMxk7ty5dO7ctFuzffTRR8ybN4/Vq1fbnXIYeBy4Cfi3Y4EJIURscKFfO+YDJ9iZ0LVrV6ZPn05WVpajgUXbwYMHKS8vZ/78+fzwww92p+0AJiNl5xsNafp+dInA8+iUs0rgFUOnVgVl6O/VCtPcSuDacG6W+OxDn3rxf42XgRtDmF9cJ8b70Iul4bQHvVhp/joP2Z1swCig2jTXxgJpaBQcAv5UJ8Z1Ru3ibLAY+wHbTHPXA53CHacwU4fRL+BfmgZ/B9xw9HlGIvp307xStdiZzRIACtEn+vx6AH+1MW8R1s2S14AZYYzLRD3l+3p+LYCVYCQFmXgD1s2Sf6M3nsK8WQKg3gUmmQeAJWB0O/o84zdYv2+HgEvDuFkihIhPrdFp9m9jc7MkIyOD9evX4/V6m/xmCcCAAQN47rnnKCsro1MnW2+JkoGp6ENQV2JzcVcIEVAStb9PV2Dj96lfv348++yzlJeXN/nNEoBu3bpRVlbGypUr6d27d/AJ+vP9FcAH6O9t7Ha9F0KIX2cE8H/otcagmyXJyckUFBSwadOmJr9ZAvoAVF5eHlVVVYwZM4bjjrOVPNIHfeB3NRBkDUM0RnG1YeLLJik0DbmApQa0tzHdA5gL3H2KrmcdVkovUF4GmBcobzfgnGBzDRiJThHz2w9conRz7nDGeAgYDXxtGr7EsJEpYUBP4IE6w38OZ3aJyY3oFwW/vsDdwSYZ0BKd3m5eXJ6voCK84Yn6VKDn/x1gnH2USfcA5rJY7xDaJmOIlP/5b16gvwSMvIbnGHnozSC/7/RjqANOROgzmZCe/8YQ9IlFv8PAFaBsZ2WFTi0BHjUNpALLwWjgA6vRDliGNf21ENSWwNcLIURQCej3c++j30MFLch88sknU15ezooVKzjllFOcji+mKKXIyspi8+bNFBQU0Lx5czvTOqE/oL8CnOVogEI0TVnAu+j3accHuzg9PZ3i4mLWrl3LmWee6XhwsWb48OGsX7+e4uJiWrdubWdKyOVphBCikeiC/ry9EV1B5aiUUmRnZ4da6rDJ8L9+Pv/886G8fo5Ef44owcZrtGg84mrDxOdO4DnT7XRgmXGU+nMGnAtMMw0dBEYr+NaJABVsBuaahtzAcl8prIZi7AI8gvW00UQFf3coxs+BsVhLhZUa9UuWmWMMmAmg9AKoEzH+jM5mMZdKusaAy4NMjWAmgKhPbSLA81/31qjLyAH+bBrYC1wC6icHAwRUoOf/vWAEeBNinIZ+8TwyAFwF6iMnIwQV6Pn/ZzACPP+NVPTvpvkd0W2g1jsZoc8EdDqr35lYf/4+hgt4DF2Kwu9FYIGDsQkhmrbz0RvLZVhLcAaUkpJCYWEhGzZsIDMzM9jlTZr/5OGWLVvIzs62O+1MdIbmo9g7rCREvBuI/lxYgY3Tq263m9zc3FBPyDZJ5ubEubm5dpsTh9QAWQghYlgLdFWYnehMuqAGDhxIRUUFpaWlnHCCrYpdTVb//v155plnKCsrs5uh2Qx98Op99EGseFxrb3Li7ofo6wUyHvjENHwu1p4ERxh6Q+VxrBsqU5Uu1+Sk2cBLpttdgHIjQPq1r1/HE4C5+9JKFUKZrGOhdH8J84n1RGCl0fCuaoQzAUDp/hJ1M18WGxDwSKgBATMBFDiZCSDqm40uR+d3IvCIr8eGj9Gd+qWwJgTv0xEu6nn0c9ovEV32yvT8N3ylsCyl4Ert9ekIBxXw+Q9G3ef//Vg/iFejfwYRoHybXJg3uQrA+GOdC6cCvzXd/goY7yvlJoQQoeiB/tv8EroE51G5XC6ys7OpqakhPz8/7k7bHU3Hjh0pLS3lySefpE+fPnam+EvgfIj+IG8rRUWIONMGfdjmder3pgwoMzOTzZs34/V6Of54OeDql5qaitfrZcOGDZx77rl2p10A/A39Mwhjv0YhhHCcAnKA94CZWPsGB9S+fXtKSkpYs2YNgwcPdjq+RsOcVV1YWEiLFi3sTOuIPoj1KjaqBInYFncbJgBKN/Mdhc4U8fMYkGG+zte35DGgg2l4LdZFUqdi9PdzMDdrHwlMDHD57cAw0+1Ai6ROmYZ18yhQyS0M/Ue7XiaAsi6SOkLpRRHzwnpL9MaOpZ+DoU8S1csEUOBwJoCoTx1GZwKZn/9ZQL7+T6M5+udq/hDzMChzeadImIr1+d8LKDXdvg841XT7Dd+cCFIrgQdNA76Sc/5+JsZE4FLT/d+iS3EdilSEoN5BlxA7MgA8DMZJ+qYxFOsGju/5oczPDyGECMZ/2u4d9PuSoM455xzWr19PaWkpbdu2dTK2Rm3YsGFUVlZSUlJi9/vUAv1B3vbPQog44AauB3ahT6oGTRHp0aMHS5cupby8nK5duzocXuPVo0cPHn/8ccrLyznppJPsTHGjfwa70D+T+E3XEUI0FmcANeh1khODXZyYmEh+fj7V1dXk5OSglLSaCyQpKYn8/HyqqqrIzs62+30K6WchYlNcbpgAKL3jV2QaSkCX5jJ/yrsVMNdc+BwYq6xleByj9Anquv0c5htwZNvX0I1JC0z3/wyMUtYyPE7GeBDdz8Fcnmy0ocsV+WMMmAmgrGV4nPYX4E3T7f5Asf+GcaQptjUTQDnQkF7Ypb5Cb5qYn/8LwBik/5dBpvGd6A8zEaYCPf/HgTEWjEsx/R4AP6IX+X+OYIB+kwj4/DcsvwccycBT5gy8CFFl6Gw+vzR0KbYT0OXC3Kb7ZoEyZyAJIcTRuNBNxz9EL9IHzWro2LEjJSUlPPnkk5x66qnBLhfoTJycnByqq6vJz8/H7XYHnxRito8QTZg/q+EebGQ1tGrVCo/Hw4YNGzjvvPOCXS58MjMzqaqqwuPx2M3EaYP+mdjO9hFCiAgLOavBn5UYQuZE3OvQoQOlpaWsXr2aQYMGBZ9gzfaZhY1sHxFb4nbDxOcOYLXpdmfgUQOUod8QmTdUDqFLM5kbnTtO6eZMd5iGmgMrDGhl+OLFWqbrRmVt9ByJGD+lfj+H+ww41fDFS51MAGVt9ByJGPejy/78YBqeaNSerF9I1DMBRH1qA/Wf/y9gzbTaB1wMyvyzjSD1KfUzuu6j/iZhHqgPIhNTXWo/+rm+1zQ4EV2j2ZxpdSeoikhGVscE4B+m22ehG3CajwK+TMAeJ0IIEZC/b0Y5NvpmJCUlHenNIaftjk2rVq0oLCxk48aNXHDBBXanhdRPRogmJKS+GebeHHl5eXZ7cwgTt9tNXl7ekV4vLpetJRF/P5nV2OgnI4QQEdAMfWjUdt+Mfv368cwzz1BeXk6XLl2cjq9JGjRoEBUVFZSUlNCuna23rP6s6p3oA1yikYjrDRNfpkgu8IVp+ELgNnRPEHPq7QylP3BHw0x0TwG/7uiyV8uwZsQ8pXQvgohT+o3+QtNQC/RGSSmmjBj07uqkCIZ2hNILsfl1hu83dCbRONPYHnSWTjQyAUR9dZ//dTuQ/cVX0imK1NPUf/6bj2osBrUisjHVpd5H9+gxM38vXwMKIxdPIGoPkI21VJ85xn+jy4VJ3xIhRDCd0IczXkFvvh6Vv05xVVUVBQUFNG8urTV+rZNPPplHH32UFStW0KtXLztTEtAf+N9HLwDISrBoylKBeeiDIb+3M2H48OGsW7eO4uJi2rRpE3yCOKr09HSKi4tZu3YtQ4YMsTttJPAu+mcnzWKEENGShX6/dA82/halpaXh8XhYu3YtQ4cOdTy4ps6fVb1161YKCgrs9jfsgj7AtQE43dEARVjE9YYJgIL/UL/s1TR0Wpvfi1jL1kSU0tktl2LNbrkEa8+VT7H2CImGAvTChF9f9Adfv/3AZcp6yj2ilO5J87BpKBXw1rnsOqXr1YqYoA6hf0cDZXetBPVQhANqyE3ozKS63gFujHAsDVDLgUcC3PEdMBrUgcjGE4h6C5gS4A5fXyf1ZYQDEkI0LsnoDNH30c3Fg6aInH766Tz77LOUlZXRqVMnp+OLOxkZGVRWVuLxeEhJSbEzpTV6AeBt9EEmIZoSf4nAD9B/q4KusnTt2pWysjJWrlxJnz59nI4v7vTv3//Ia0Dnzp3tTEmi9nXmSmy8zgghRJj0Qa9PVmAj283tdpObm8u2bdvIy8vjuOOkHVM4tWjRgoKCAjZu3EhWVpbdaeeis6ofpf5hYBFD4n7DBEBBFdaGwmZfAeN9TdijRuksmCsJ3D/lILpc2LcB7osYXz+TMcD3DVwyScHfIxhSQ/KBtxq4b7HSmTsitnyL3tys695IB9Iw9TPwcYA7HgL1U4DxaHk/wNjzoD6KeCQNC1S67H30aQwhhGhIFrUnf1sGu9h/uvj5558P5XSxOAb+Ejjbtm0jNzfX7gf23sBadAmc7o4GKERk+BdJyrGxSJKcnExBQQGbNm0KZSFGHAN/luHmzZspKCggMdFWqfmO6J/lq8DZjgYohIh3rYES9GGS39qZ4D+w4vV67R5YEceoW7duRw429O7d284UF/pgl+3DEyLyZMOk1lz0SfC6LlXwr0gHE4jSvRuWBrjrFgXbIh1PIL7MjKIAd61U8GCk4wlE6XI/1wa4611iJhNA1FGKPk1R1xIwYiQd3rgOuDjAHV4wbL1qOs84E/AEuOMyMP430tEEZpxA4B5HpwIzIhyMEKJxGIQ+/FIBdA12sf+0XYj160UYpKWl4fV6eeGFFzjrrKCV0vxGAjvQCwXyiV80Rl3Q721sleFQSpGdnR1qqQ8RBuY+VtnZ2Xb7WA1Bl+5+FBu9soQQIgRudJnSXcBfsLYNCKh79+489thjoZREFWEyfPhw1q9fT3FxMa1bt7YzJeTynCJy5BNirf/G2vTbL2ZqyxlwIoF/ic6IdCwNMSARuCrAXaca1ubS0TYxwFgnID3SgYhgjEvQvYYC6Ynu5xNlRl/gzgbubAmsBCPKz38jFVhO4NMLCr351DWiIdVjuNCbwh0auGAGGLY7CAshmry26EX017CWKW1QZmYmVVVVeL1ejj8+Rvbb41Dfvn15+umnKS8v58QTT7QzxY1eKPA3NpWaEqIxaAHMQjd6vcLOhIEDB1JRUUFpaSknnCCVOqKlQ4cOlJaW8tRTT3HaaafZmaLQP+MP0T9zWykqQghxFBcAf0OXKU0NdnGrVq0oLCxkw4YNnH/++Y4HJwJLSEhgzJgx1NTUkJubS0KCrZZ8vdB9oSsBWy86wnmyYQIYepH8YQJ/P4oNG81CnWboD4rL0al4dY0yAm9SRMNCAm8yHW1BOaIMnV1yWYC7UoEVhqTDxRCjJ/Uzk6age274jQZjXMRCqsdoCTyFdUOwFH1KwK8fMD+SUVkZvg0RS53TlwBzI/o0YCkY0WyyOx3INN3+BJhjuu0CHvVloQgh4lfIp+169uzJsmXLKC8v56STTnI6PmFTZmYmmzZtorCwkJYtg1ZRA72hXoYugTPc0eCEOHYKyAHeA2ZiY/G8ffv2lJSUsGbNGgYPHux0fMKms88+m3Xr1lFSUkK7du3sTGmB/pnvRJfTFkKIUPVClyO1tXhuXqDPz8/H7XY7HqAILjU1Fa/Xy4YNGzj33HPtTvNvkpUArRwLTtgS9xsmhv6QvRxr+uw/Tf/tBh43ov9kvQNrbdS6jY/vNQJnyESMoTchzJkA32Nt8H6doT88RI0B/YG7rUOW7+WZ1G8CL6LCaI7+3TQfAV4EagGQV+fihWBEqwvmfcApptuvoTd1soEfTOP5YIyOZGAmk4A/mW7/G/0hLg9rv5BhNNzPyWFGBvpEnt8h4HJ0ib8K03gH4AlfNooQIv5cgO6Hdg82yjOlpqbi8XjYsGEDI0aMcDo2cQwSExPJz8+nqqoqlBI4g9Fl2FYCsgMmYskZQA36uRk0fSopKYn8/Hyqq6vJycmx+/wXEeRyucjJyaG6upr8/Hy7JdK6oPubbEB//hRCiGD85ZneQpcjDWr48OGsW7eO4uJi2rRp42hw4tj06NGDxx9/PJRDW/6s6l3oA2KSVR0lsuCka+KPMN3+FBiIfqPrdzJR7L9hwO+AG0xD+4EL0dkcfsnASkP/b8QZ0ANYVGd4AvVLX/3V0N/PiDP0iZ/lWE95zQf+B93XxG+KoRvHiui6E12X3u8doED/p1oF3G+6rwW67FWEn//GeKynx74DRoM6AGon+gXObBEY3Ygooz96w9XvMDAG1JegfkRvSvxsun8aGP8dyQjBSAMeA8zZLYWgtoAygPHov81+5wE3RzBAIUT0nQI8jz5tF3SD3O12Hzltl5eXZ7fJuFwzJvkAACAASURBVIii9u3bU1payvPPP2/3hL35FP88dAlMIaKlI7XZT+fYmWDOsGrRooWjwYlfLyUlhcLCQjZu3EhWlu2PiueiTws/CkiGtBAiEBd6TcHfALx5sAldu3Y90mS8T59onRsVofCXBfZ4PHbLArdBHxB7HfgvR4MTAcX1hokBvwFuNQ0dBEYrffr6UuBr033ZBvw5kvEBGNAZfTrFfNxootKnK28C/s80fhr6FyqiDP0HfQXWk56LFSxT8AjWBs6tiF7Zq/uxLrK8BsxQegd/qmlcAQ8Z+oOPiArjYiDfNLAXuASUeWPrRvQHEL++wF0RCM7H6IVOlTS7CtRHtTfVw+iNAL9UYAUYEXr+G77+KZZNwttAVdbeVG9gff67gMfAiNDz31Dokojm4xYvAgtqb6pvgTHorBM/LxjDIhCgECK60tB/a99BHyAJKiMj48hpO5sNF0UMGTBgABUVFZSUlNjt4ZCMfh3bgV5wkCP6IpKaoQ/I+PvrBP183a9fP5555hnKy8vp0qWL0/GJMOvWrRtlZWWsWLGC3r1725niQvc3eR/9t0rKPwsh/Eag1/TKsbGpmpycTEFBQagbtyJGuN1u8vLyqKqqYsyYMbhctpbkBwKb0WXaInz4Nr7F7YaJof8YLcOa3jRVwTYABZ8DY/WlR9xjwIAIxpgAPIFuauq3UsFDvhh/BkYBe0z3X23ohcVICpQJcKPp9gT0h1i/M4DbIxDXEQaMI0AmgIIDAAruBZ4x3d8OWGZI+lsUGCdSv5H7BFA7rEPqZ+ASrM//P4MRqD9NmBmJ6I0I89GAe0E9E+Di69AfkPyGYO3L4aTFWMuFVRO45FYp8Kzptu/voxGJ5/9NwB9Nt78CxoM6bL1MVQMe00ACsBwMyT0WomlKQC8+foBOSw/aX+kYFrFEjFJKkZOTw9atWykoKKB586CHLaH2kNE2YKijAQqhZaHf492D9T1hQK1bt8bj8bB27VqGDpWnaGN3DJvzadSW27F1AEAI0WR1QR8s3kDgHsAWSimys7NDfV8kYlR6ejrFxcWsXbuWIUOG2J02EngX/TpiK0VF/DpxuWFiHDlBbckgWEud7AxVfywRXfYqUk9OL9aGlh8CV5svUAHGgEWGdZHUMQYEzARQphJX6kh2gKXs1WTDukjqZIy90AvCZrkKPqozdhXWsboZSMJxhhtdNs38qaMc1KOBr1cfohfUzMp82R9OKsX6xqZulpKJCvT8vwmMPzgVnGb8GV1uy283cAWoQ/WvVQb6+f+xafA3wC3OxQdg1N08OgxcDupfDUyYiy7H4+dbHDPkNLEQTct56NN2ZegDDEd1jGVSRCPgP0lZU1NDdna23WlDga3ohYh0x4IT8WwAsAndYy3oaU+3201ubi7btm2TEoFNjLn8Y25urt2frbnEZFR7kAohIi4Z3bdzJzrzLOjnWH/mbWlpqd3MW9FI9O/fn2effZaysjI6d+5sZ0oSet3pfSSr2nFxuWECTAPMNfo/B8YqazaJ31TgFdPtnuhsBEcZ9Wv0/wyMUtbT9AAofdL9IdNQS/TGTmLda8McY8BMAGXNJgFAWfpP+Id42HC4Uafve1AvE0DB0wFi9PWf0FknPkUGnO9kjMJiHnC26fY/0A3Lj0KtQJd08muJzo5w6NiFcQnWTcofqV8urA71NroR/JEB4GFfNo0DjLrlyXx9QNQnDc9Ru9HP/4OmwVlgnOdAgIDhK09mKUvgAfVyw3PUYfQbyy9Ng79Hnz4XQjR+PdCv2S8D/YJd7HK5yM7ODrURr2iEOnXqRGlpKU8++aTdWt3+Ejgfohcm5CimCIfW6BKB29EHS4LKyMjgpZdewuv12q1ZLhqh1NRUvF4vGzZsYMSIEXanXQC8iX5OtXIqNiFETPD3XdsBzMTGWl379u0pKSkJpbebaISUUmRlZbF582YKCgpITLS1jNsRnVVtu2+aCF3cbZgY+tTZLNPQIeBSZe1XcoTSi4eXA9+bhsca1vJO4Y4xHXgc689nirL2K6lrIrqviV/dRs9hZUCgTIDlytqvxELppvDLTENpwGOGjTIbv0IImQCgdF+TItOQC3jcgPbOhCdqGb8DJpsG9qM3In6wMXkSuumr32D05kuYGd2Bv9YZvA7UB8HnqvvQJfb8WqN7hYT5mKHRAr3gmGwavAvUc8HnqlfRb+D8XMCjYLRtYMKv8RDWU5mbsVWqTH2F/pv8i2lwPhhnhTM4IUREtUC/N3sb/WEyqLPPPpt169ZRWlpKu3ZBk1BEEzFs2DAqKyspKSmhTRtbFRlbol/XbD+3hAjAje5Tsgt9SCPoe7fu3bvz2GOPsWLFCnr27Ol0fCJG9OzZk2XLllFeXs5JJ9k6F+hGP6d2oZ9jkn4kRNNzBro09kr0oeOjSkxMJD8/n6qqKnJyclBKkgjiQVJSEgUFBWzZsoXs7Gy7P/chQA36uSVN0cIsrjZMDL1AvwL9xsRvptJPsAYp+H9AXp3h+w1rA/Gw8JULW4p1gX4NsPBo85ReXL4c2Gca/osBfwp3jD63Uz8ToG5ppECuRacf+mVgXaANG0OXQaqXCaCspZECKUY3VPJLR2fDxNXvS2QZ/rrj5leFG0C9aW/+kbJX5uf/9WD8b7gi9GWsrARSTIMPgloawoNMwFr27b+wbtCFw31Y/zZtJ7TSWncA6023O6E3TcL4Ts2YBFxkGvgPcBmoXxqYUIfaiP499XMDS8GQ03lCNC4KfQDlQ2yetuvQoQMlJSU89dRTnHbaaU7HJ2KQy+UiJyeHmpoa8vPzcbvdwSfpDPGVwEtAX0cDFE3NBcDf0GWaU4Nd3KpVKwoLC9mwYQPnny9J6vEqMzOTqqoqPB6P3cyiNujn2Gvoz8dCiMavI7q87KvAMDsTMjMz2bx5M4WFhbRs2dLR4ERs6tChA6WlpaF81jFnL83C4UpD8URt3749UBmqwBcrVTx48OAGT+eH2fvoE9JhKVlj6CfRM1j7ZmwEMpX1pPLRHmMx8GfT0DvAmTYW4EOJcxbWDYTPgIEKvrE5Pxd40DT0nW/+x2GM8UJ03VX/Aup+4GylU4rtzD8D2EJtKZ7DwP8oa2+CXxtjd3RGjnlx+wqlN6PszG+H/v9j7nNzs4L5YQrxJPTP5EHq96BpDF4FehO29HEjFWu2kgGqbo8ZO4/THmtmxU+gvmzo6hAfOwnoUGfwc1AHAl19lMdJQ2/e+h0G9fGvCq32sV1A1zqD/7GZpWN+nBbUr/v+GaiDga4OndEF68b1HlABs/yO8hgJ1H99+Mq3efZrpaJ7vjyJ3ogTQoTfmegyJLayw5KSkpgwYQL5+fl2U9VFnNi1axezZs3i5ZePUtHR6hCwBCikgQxzIdA9EO9EN1kNKiEhgdGjRzN16lS72U8iTnz11VfceeedLFu2jMOHD9udtgadQf+xY4EJIZzSDLgO8GBdj2pQ37598Xg8nHWWFE0QtQ4fPsyqVauYM2cO//nPf+xO+wzdi7nB6j/x6o033rjDMIybg1+pxdOGST902SrTEDMVfBXCYySiT1+bP6k/qfRptXDEmIZuamxOxX3IVyYqlMeZjnXR9DVl7XFyzHxZFl7AXKLnJaUXFkN5nMuw1v79FzCrgT4yITN0JstA09A/FCwI8TGGYS29dhCYriDExeeAZMNEiNglGyZCOKcTOkt1DDYaFSqlGDlyJDNmzLDbDFHEqerqambMmMHOnTuDX6x9i17MuA+9iSIE6PcA04AbsNn7Zvjw4cyePdtufx0Rp/7+979TVFTE66+/bnfKT+jy0nPQlRKEELEvC50tdrKdi9PS0pg8eTLjx4/nuOOkIp8IbO/evSxevJh7772XAwdsn9fdiH4v85ZzkTUusmEiROMgGyZCxC7ZMBEi/JLQddpvRfeVCKp///54vV6GDBniaGCi6Th48CDl5eUsWLCAPXv22J32PrqH2ovORSYaARd6I3c+cIKdCV27dmX69OlkZWU5GphoOgzDYM2aNXg8Hr744gu7075Al9d9jDAdLhRChF0f4G7gt3YudrvdXHnllUyZMoWUFFtJKELw0UcfMW/ePFavXh38Yu0wuj/2TcC/HQuskQh1wyTWezK40JkMdv81C/wwQkREC+w/V9MaeAwhhBCiqckC3gPmYWOzJD09neLiYtauXSubJSIkbrebvLw8tm3bRm5urt3Tmr2BF9D962ydCBVNzgh0Kd9ybGyWJCcnU1BQwMaNG2WzRIREKUVWVhZVVVUUFBTQvLmtJKZO6Ofmq1h7iAohoq81usTs29jcLMnIyKCyshKv1yubJSIk3bp1o6ysjBUrVtC7d287U1zAFejDQVORNfOQxPqGSSd0M2C7//4QnTCFAHSJEbvP1b9FKUYhhBAiUgYBVUAF9fsr1eN2u8nNzaWqqooxY8bgcsX621QRq9LS0vB6vaxdu5ahQ4fanTYS3TCzBJs1x0Wj1wVd43sjcHqwi5VSZGdns3Xr1lAWu4WoJykpiYKCArZs2UJ2drbdaUPQfUAfBdo7FpwQwg43cA3wATqDOugJje7du/PYY4+xYsUKevXq5XR8ognLyMhg/fr1FBcX07p16+AT9IHteejyXL93NLgmJJZLci3A2nDbjnsIsd+HEGF0JfA/Ic7ZgC7L1dhISS7RlElJLiF+nTZAEZCPjQ+QAJmZmXg8Hk466SRHAxPxqbKykltvvZXPPvvM7pQvgVno92i2uzSLRiMZuBl92jIxyLUADBgwAK/Xy+DBgx0NTMSnrVu3UlRUxHvvvWd3yl70esk8YL9jgQkhArkAXX6rr52LW7VqxcSJE7nmmmtwu93ORibiznfffcedd97JI488wi+//GJ32kvA9egKAHGjKfUwEULELtkwEU2ZbJgIcWzcwARgNjZfH3r06MHs2bM599xzHQ1MiP379/PQQw9xzz33sHfvXrvT3kB/oNziXGQighSQjV5ottUns3379kyfPp3s7GyUUo4GJ+Lb4cOHWbVqFV6vl6+//trutA/R/U2edC4yIYRPT2AukGPnYpfLxUUXXURRURFt27Z1NjIR9/7xj38wc+ZMNm3aZHfKQWAR+pDb907FFUuaWg8TIUTcMFqCkWb6Z6spsGm+q878NDDCfITDSKrz+KnH8BipdR4jKcwxugN8H0L8W/9rfxZBHz/QzyrEeprh+FkIIcLoAuBNdLZv0M2S1NRUPB4PGzZskM0SERGJiYnk5+dTXV0dyuL3YKAaWAlI+lPjdgZQg/5ZBt0sMT9fcnJyZLNEOM7lcpGTk0NNTQ35+fk0a2brrXEP9HP6ZaC/owEKEb9aorNO38bmZsmwYcOorKyktLRUNktERPTs2ZNly5ZRXl5uN2PfjS4ntwt9OMhWVYB4IhsmQohYMQL4BvjW9+8/YAStJ21yu2nut+jyfGHejKAz8LHpa+wG4zL7041sPefI/M+wUdc/RM2BrVi/F7eHEONpwFd15v93mGM0gCV1vsaLYNh8kTaORy/MmuffFOYYhRD2nAI8D1QCpwa7OCEhgTFjxlBTU0NeXh4JCQmOByiEWfv27SktLWXNmjV2yysp9ALJe+gFk3C/txDO6giUobOjz7EzITMzk82bN1NYWEiLFi0cDU6IulJSUigsLGTDhg1kZmbanXYeOiOuDGjnWHBCxBcXuuz6h8BM9Ofso+rYsSMlJSU8+eST9OnTx+n4hKgnMzOTqqoqPB4Pxx9/vJ0pbdAH3l4H/svR4BoZ2TARQsQItQa41zSQCKz0LY4HYfwP1gXzn4FRoPaEM0JQ/0A3dzMrA8NG1zbjZOr3q5kAakd4YvNTP6LLSP1kGpwCxh+CzzUSgWXo2t5+94J6OpwRgjKAq9CbT37nAtNtPkAZYP6ev4IuASSEiBxz88Df2ZkwfPjwUBsUCuGYgQMHUlFRQUlJCSeccIKdKcnoBZOd6AUUSTmIbc3QJybfR793C/q5t1+/fjzzzDOUl5fTpUsXp+MT4qhOPvlkysvLWbFiBaeccoqdKQnUNqGeiv4dEEIcm9+gNyHLgfRgFycnJ1NQUMCWLVvIybGVhCKEY9xuN3l5eVRVVTFmzBhcLltL/wOBzcBqoJujATYSsmEihIglN6EXv/16ASVHn2K0Bx7G+vesANT/hTs4Ta3wfT2/lsAyMI5y4sRwA49jLVPzCKhHHQgQUG8DBeYB4GEwgpWguB9rOv9b6KaoDlC7gVHAAdPgbDDOO/o8YwJwqWlgNzAa1MFwRyiECMh/2s72gky3bt0oKytj5cqV9O7d2+n4hLBNKUVOTg5bt26loKCA5s2DHh4FnW1aDmwEBjgaoDhWWcAO9InJoAdv0tLS8Hg8rF27lqFDhzoenBChyMjIYP369Xg8HlJSUuxMCflAgxDiiM7Ao9h8jVdKkZWVRVVVVSjvI4SIiPT0dIqLi3n++ecZMmSI3WkjgXfRryO2UlSaKtkwEULEEHUQuBxr06nxYFwZ+HrDhd6IaG8aXAXqPqci9JkA/N10ezBwx1GuXwCcZbq9E10v0kFqETpbxK81sBSMBurfGKOA8aYBX6aK2u9UhKBeQzcZ8/P9PI32ga83+qG/l0cGgPGgPnEqQiGExXnA39CLxUFLfrRo0YKCggI2btxIVlaW48EJcaz8J0NDfK76T58+io3TpyIi+gAvAhXAycEudrvd5Obmsm3bNvLy8jjuOCnfLWKT/7TwK6+8Qm5urt3nqrlkptQGEuLoktFlN3cCV2Aji3TAgAFUVFRQVlZGx44dHQ5PiGN3+umn8+yzz1JWVkanTp3sTElCH4zbQRxnVcuGiRAixqj/B+TVGbwfjEBv9GejF/D8PqV+ySwHqP3ojZ19psG/gPGn+tcaI4FJpoH96I2IH5yM0Oda9Js+vwx0OZE6jJ7AA/Xnqg8ci6xWMXphw8+XMVS3Ub3REt3U0lw7/k5QzzkdoBCC7oTQVNblcpGdnX3k1L7NxrVCRF3Xrl2PZEPZrD3uQi+svI/+YClHS6OjNToj+W3gt3YmZGRkUFlZidfrtXtqX4ioS01Nxev18uKLL3L22WfbnXYB+qBXCdZsdyGEtU/ZTGz0KUtPT6ekpITnn3/ebi80IaLuGLOhOqEPyr0K2H7RaSpkw0QIEYPUU8Ai00ALdD8T0xsYo27Pi4Po0kzfRiJCUO8CE80DwBIwTPUejS7AI1h35CeBMmenOEj9AFyG7unidwsYpibuRiKwAjCvFpSBejwSEfr6mYxHb3b51e1JA/r5YK7l8zpQ6GxsQsS9FujTdu+gP0wGNWjQICoqKigtLaVdO+k7Kxqn4cOHs27dOoqLi2nTpo2dKano0gVvY/N3RYSFm9qeDX8Bgh677969O4899hgrVqygVy8bLeiEiEGnnXYaq1atory8nBNPDFZxF9C/K38BdqF7+0g6lRC6SkQ1+lDQScEuTkxMJD8/n+rqanJyclAqLg/di0YuKSmJgoICtm7dSnZ2tt3n8RBgCzqruoFqIE2PbJgIIWLVZMDch6QvcLf+TyMdXYrL/GZ/GqhtkQpOUw+jXzT8UoHlYDTzlb5aDphXWlaCqtv43WHqDax9SFzAY2D484bvQTf48nsHuDFCwfmob4ExwCHT4Fwwhun/NPJ89/t9B4wCZe5/IoQIHxd6I/ND9Gm7xGATOnfuzOLFi1mzZg2DBg1yOj4hHJeQkMCYMWOoqqpi/PjxJCQ0UNHSqid64eWf6D5swjkXons0lAFtg12cmprKnDlz2LhxI+eff77jwQkRCZmZmWzatImbb76Z5ORkO1PaoN/77wb+O8i1QjRVHdGHGl8HhtmZ8Ic//IGqqioKCwtp2bKlk7EJEREdOnSgtLSUJ598klNPPdXOFIXOqv4nsNTR4GKEbJgIIWKU+hndFHyPafDPYFwBPAZ0MI2v5chmSsRNQNd29DsTmIs+aXqOafxD4OoIxmWiSoGnTQMnoBvVjwb+bBrfiy4XZi41FiGqGn2S3c+34WT8Bl1CwCwX1EeRikyIOHMOOu16CTZOECUnJzNlyhSqqqr4wx/+4HhwQkRaWloac+fOZf369WRkZNid1gH9eyTCz9+XYS3WzNOAEhISGDduHFu2bOGqq66yu/ElRKORmJjIDTfcQE1NDRdddJHd08LHo3+PWjsbnRAxJRFdoeIDYCw2+jL07duXp59+msWLF9O5c2en4xMi4s455xzWrVvHHXfcYTerWqHL0893NrLokw0TIUQMUx+i+3CYPQJkmm5/BlzpK+0UBWovMBr4yTRYgDVL42f0RoR58yfS8oCPTbd/g87SMZsAagfRczu6MaVfZ2ADugmf372gnkYIEW6d0X8TaoAzgl2slOKiiy6iurqayZMnk5gYNAlFiEatd+/erFixgiVLltC1a1c7U1IBSWUIn1TgLnTZs9/ZmTB8+HDWr1/PbbfdRlpamqPBCRFt7du3Z+HChVRUVDBgwAA7UxLQGf1CxIOLgHeB24CgKSJt27Zl/vz5vPjii5x11lmOBydENB133HFcccUVbNmyhauvvhq3221n2lin44o22TARQsQ49QTwV9OA+e/WIeAyUN9ENqa61FvADeYBrCdWCkD9LbIx1aV2A5cA5jJW5u/lI6AeJarUYXTprX+aBs0xvoW1vJgQ4tdLAorQp+0uw8ZpuwEDBlBRUcHChQvp0KFDsMuFaFJ69uxpd8MErNmw4tgch+5TshO9uBv0U3zXrl1ZsmQJK1eupHfvoEkoQjQpXbp04ZRTTrF7ua3jxEI0Yv2Al4FVwMnBLna73Vx77bXU1NRw+eWX43LJkqmIHy1btuTUU08lJSUl+MU2SjY3dpKTLIRoDK5H1xetW1xxBqiaKMQTgHoAjAuo3+z1aVD3RSOi+tTrYNwKFNe5YwfWBvZRpP7tK7v2cp079gAXg9ofhaCEaIoU+u/VfMBWx9j09HSmTZtGTk6OfIAUcWfPnj3cfffdLFmyhIMHDx4Zd7lcHD58uKFpH0citibsN+h+C7aOy7ds2ZLrr7+eq6++mmbNmjkbmRAx5sCBAzz44IOUlJTwww8/WO5LSkrip59+CjTtg4gEJ0TktQU86A3344JcC+ieQDNnzuTkk4PuqwjR5Gzfvp0ZM2bw97//3TJ+/PHH13tN8dkdkcCiSD7tCiEag7ZAeoDxXZEOpGFGItAjwB0fRjqSIPoGGPsCa0mxaDstwNh3wNeRDkSIJmoQsBlYgY3NkmbNmjFx4kSqq6sZNWqUbJaIuPLLL7+wdOlShg0bRllZmWWz5JxzzmHt2rVHm97gToo4qq7Ak8AmbGyWuFwuRo0aRXV1Nfn5+bJZIuLOunXrGDFiBHPmzLEsbPXo0YOlS5eSnh7oYxQAP0YkQCEix40+bLkTuA4bmyU9e/Zk2bJllJeXy2aJiDtffvkl+fn5/PGPf7RsliQlJZGfn8+ECRMamvqfiAQYRZJhIoSIcUYCsIzAKeMPgLE9RhqALwAGBhifAkY1qDWRDqg+YxxwZYA7LgCmonuIRJnRn/oZMKAXdR8D4w/R61cjRKPXBl1+K58QTtvNnj07lBJEQjQZ27Zto6ioiHfffdcy3rFjR6ZNm0Z2drZlA0X8asno0ps3o8sFBjVgwAC8Xi+DBw92NDAhYtGuXbuYNWsWL79sTcxOTU2loKCAsWPHkpAgSz4ibpyPzkoMdECwnpSUFCZNmsQ111xjt2eDEE3G/v37eeihhygpKeHHH61755mZmcyZM4cuXbqwaNGihh6iya/JyKunECLWeYDhptuHqP3blQosB2M4qCiuWBgXoxcg/cwxKuAhMAaA+jLioR1h9AEWmgfQJ1/9i6Ye38ZOFEucGSno+rLmepjm7+VIYAIQIyXOhGg03OjfndlAKzsTevTowaxZszjvvPMcDUyIWPTll19y++23s2rVKgyj9vNgUlISEyZMYOLEiTRv3jyKETY5CshGlwg8yc6E9u3bM336dLKzs1EqaOslIZqU77//noULF/LAAw9YNm0TEhIYPXo0U6dOpU0baU8i4kZPYC71S2MH5HK5uOiiiygqKqJt27bORiZEDKqsrGTGjBl8+umnlvF+/frh8XgYOnRolCKLLbJhIoSIYcZ56MwHv5+BTKAM6OMbOxO4DZgS2dj8jBOBB+oM5gL/C/zJd/sE4Akwzgf1SySj04xE/fVpYRosRZe48vpuJ+hrjIGgolX66n6sZc2q0dkmz1FbQvJOMLaB+r9IBydEI3UBUEL9HlABpaamcuONNzJu3Dg5lSrizk8//cT999/Pfffdx/79tS2zlFKMHDmSoqIiOnXqFMUIm6TB6L9Rw+xcnJiYSG5uLtdffz0tW7Z0NjIhYsyhQ4dYvnw5d9xxB998843lvuHDhzN79mz69OnTwGwhmpyWwE3ANMDWKYZhw4Yxe/ZsTj3V1ttiIZqUd955h6KiIl555RXLeOvWrZk8eTLjxo3juONsFSGIC/JJWAgRo4x04HGsvZZuBFUNxiXAa9SWaygAowbUcxGO0Q0sB1qbBh8G9SgYFegSXV19478BCtEZM5FWCpxuuv0W+o3lAeC/0JtQAJ2BcjBGRr7slfFn4HLTwLfAGFCfgrEAXZ4D9JvhFWAMBrUnsjEK0aicAtwJ/N7OxXIqVcQzwzBYs2YNXq+Xzz//3HLf6aefjtfr5YwzzohSdE1WB2AWkIfNvpqZmZl4vV5OPDFo6yUhmpyamhpmzpzJjh07LONdu3Zl+vTpZGVlRSkyISLOBYxBH6xrsEGPWceOHZk6dSo5ObaSUIRoUnbv3s1dd93FI488wi+/1J7fdbvdjB07lilTpnD88cdHMcLYJBsmQogYZLiApUB70+AqUPfr/1TvgFGAzkgAXcrhYV/ZK2teobNuB8423f4HuskcoL4DYxQ6S8LffXQmGFtAWQsNO8q4BLjaNPAjcAko39FZYwzwJnrhAuB36P8P90Qwxr7AXeYB46sTBwAAIABJREFUYLzpZ1mILst2ju92D+CvwKiIhShE45GGzsybTO3fnqOSU6kinr311lvMmDGD119/3TKenp5OQUEBl112GS6XrfV8YU8zdCNeD5BiZ0Lfvn3xeDycddZZjgYmRCz6+OOPuf3221m9erVlPDk5meuuu45JkybRrJmtl3shmoKh6KxEWzWD/L8nUkpTxKODBw9SXl7OggUL2LPHetY0IyODOXPm0LNnzyhFF/tkw0QIEYuK0GVk/D4FrrFeohaBkQFc6htIA5bqMl7qkPMhGr8DbjQN7EdvRPxgivE1MIqAeb4BF/A4GKeD+ioCMXZHbyyYXQvqA1OM/wbjcqCS2n4mxWC8AuoVHGe0AFaiG7363QmqwhTjITBGA39DN60GuASMdaCWOB+jEI2C/7TdfHQZwKDkVKqIZ1999RV33nkny5Yt4/Dhw0fG/aftbr75Zin5FH5Z6AMZJ9u5OC0tjcmTJzN+/HgpESHizr59+1i0aBELFy7k559/PjLucrm4+OKLufXWW2nXrl0UIxQiojqjy3CPQR+WPCoppSniXXV1NTNmzGDnzp2W8e7duzNr1izOP//8KEXWeMiGiRAixhi/AW41DRwCRoP6NsDF16FPl/g/eGegN1uKHA0Rw1e6yvJm7XpQbwa4uBhdl9u/IpmOzob5vbNlr4zm6I0I8+nNB0A9Xv9atRGMO4BbfANu9MbOIFDfOxcjoBu4m4+1v47OKKkb42dgjAMqqP2+3wfGdlBvORyjELHuXPQiZH87F8upVBHP/Kft5s+fzw8//GC5LzMzE4/Hw0kn2eo7LuzrDdwN/I+di91uN1deeSVTpkwhJcVWEooQTYZhGDz11FPMnTuXf//735b7Bg4ciMfjYfDgwVGKToiISwYmodcHbJ1ikFKaIp7t2rWL2bNn89JLL1nGW7VqxcSJE7nmmmtwu91Riq5xkQ0TIUQMMdoBy6jNdACYDmpb4OvV976yV1uoLT1TCEY1qEqHYvQ1R6etafBJUHUbv/tjNMDIRZe96ugbvBDdoG6+MzGC77EHmW6/iy7R05CZ6H4mw323TwYeBBws9GqMBsaaBr4DRoE6EPh6tQaMheg3zQCJwDIwzgS1z7k4hYhZXYC5wBV2Lna5XFx00UXMmDFDTqWKuFRZWUlRURGffPKJZbxnz57Mnj2bESNGRCewpqs1+v3FBGx+7szIyMDr9dKrVy9HAxMiFr355pvMmDGDN954wzLevn17brnlFi6++GKUCnq4XoimQAHZ6M+0tk4xSClNEc++//57Fi5cyAMPPMDBgwePjEufymMnGyZCiBhhKOAhajcVAF5ANy0+CrUdjOmm63z9T4wBoL50INDZ1G4qAOzC2iMkUIz/AeMy4GVqN4Nu8/Uz2Rr+EI2RwETTwF50ubCjbCqoQ2Bcii575d8MytbN2FWZAzH2BOpuMl0H6qMgE6egM3b8m0GnoevYBvkZCNGktED/LkxFbxwGJadSRTz78MMPmTlzJhs3brSMp6amUlBQwLhx46TkU3glAFehN3TbBrkWgJNPPplZs2ZxwQUXBL9YiCbmX//6F7fddhurVq3CMGoT0JOSkrjqqqu44YYbaNGiRRQjFCKiBqMzp4cHuxBqsxKnTp0qpTRF3Dl8+DCrVq3C6/Xy9ddfW+6TPpW/jmyYCCFixTRqy1YBfAFcabNs1d3o7Ig/+m6fgC4plQnql/CFaJyLXqD0OwiMsVe2Sm0GYw76pCXov7/LfRs7gcqNHWuMXahfLmwSqPdsxPg5GGOBNab594DxagPlxo41xkR0ubDjTYP3gVpuI8affVlFb1BbbiwPjM2gloYvRiFikv+03Z3o7JKgOnTowLRp08jOzpZTqSLufPfdd9x5552Ul5dz6FBtezO3282oUaOYNm0arVu3jmKETdL56IWuvnYulhIRIp7t37+fhx56iHvuuYe9e/da7svMzGTOnDl06WLr5V6IpqADMAvIxVpxokGZmZl4vV5OPPFEJ+MSIiZt2bKFoqIiduzYYRmXPpXhIRsmQogYYPQGxgH/zzR4FaivA19f15GyV12AVN/gSeimcOVhivF49ElJcx2Pu0JsjO4FBgD9TGO3oMtzhYGh0A3mv/P9A6gE9bD9x1BrwZgHjDINzgXjjzoLJSwmozc7/D/vjwnpe6A+1JkvzDUN3gRGJaivwhSjELFmCHoR8hw7F8upVBHPDh06xPLly5k3bx7ffms9k5CRkYHH4+GUU06JUnRNVk/067KtUp7+EoFFRUW0bWsrCUWIJqWyspJbb72Vzz77zDLer18/PB4PQ4cOjVJkQkScG1260YO1/2aDpJSmiGf//Oc/mTdvHk899ZRl3N+ncuLEiTRv3jxK0TUdsmEihIgB6n3gV65cqG/Q6bsOUT9gc6HyKI/xC/C/4Yimgcc3gMvD8Di3UNsA3gHqduD2X/kYywEbGSlCNHod0ZlpeeiSg0HJqVQRz2pqaigqKuL999+3jHfr1o1Zs2aRmZkZpciarJboQw/TAFufzocNG4bH45ESESIuvfPOO8yYMYNXX33VMt66dWsmT54sJQJFvMlCV4vobufi1NRUbrzxRsaPHy+/JyLu7Nu3j0WLFrFw4UJ+/vnnI+NKKbKzsyksLOSEE06IYoRNi2yYCCGEEELEniTgL0Ah1vJ1DerXrx9er5czzzzT0cCEiEUfffQR8+bNY/Xq1ZbxlJQUJk2axNVXX02zZs2iFF2T5EJn8hYD6XYmdOzYkalTp5KTYysJRYgmZffu3dx111088sgj/PJLbcVgt9vN2LFjmTJlCscfb+vlXoimoDdwF3ChnYv9fUqmTJlCSoqtJBQhmgzDMFizZg0ej4cvvvjCct+AAQPwer3Sp9IBsmEihBBCCBFbJqNPa9s6ItS6dWtuuOEGOW0n4tLevXtZvHgx9957LwcOHDgy7nK5uPjii7n11ltp165dFCNsknLQ5bd62rlYSkSIeHbw4EHKy8tZsGABe/bssdyXkZHBnDlz6NnT1q+SEE3BicC9wO+x2adESmmKePbmm29SVFTE9u3bLePt27fnlltu4eKLL5Y+lQ6RDRMhhBBCiNjQEvgH0N7Oxc2aNePqq6/m+uuvp2XLls5GJkSMOXz4ME888QR33HEHX39tbXl29tln4/V6OfXUU6MUXZO2HZslUF0uF9nZ2UyfPp30dFtJKEI0KZWVlcyaNYuPPvrIMt69e3dmz57NeeedF6XIhIiKq4HF2Cwx26NHD2bNmiW/JyIuffnll8ydO5dnnnkGwzCOjCcmJpKbmyt9KiNANkyEEEIIIWLDE9jcLPntb3/LzJkz6dq1q7MRCRGDXnnlFYqKinjnnXcs4x06dGD69Oly2s45s7C5WTJ48GC8Xi8DBgxwNiIhYtDOnTuZOXMmmzdvtoy3atWKm266ibFjx5KQIEsxIq40A+7HxmZJSkoKBQUFjBs3Drfb7XxkQsSQ/fv3s3jxYhYuXMi+ffss90mfysiSV2khhBBCiNhwVrAL2rRpw/33309GRkYk4hEipnz++efMmTOHiooKy3hSUhITJkyQkk/Oywp2QbNmzViwYIFsWom49P3337NgwQLKy8s5dOjQkfGEhARGjx7N1KlTadOmTRQjFCJqzsXG+uPIkSO5/fbb5fdExKXVq1fj9Xr5/PPPLeN9+/bF6/UydOjQKEUWn2TDRAghhBAiNhwOdsE333zD4sWLad++vdQ8F3Fj37593HfffSxatIj9+/cfGVdKMXLkSGbMmEHnzp2jGGHc+CXYBQcOHOCvf/0rJ554ImeeeWYkYhIi6g4dOsTSpUuZP38+u3fvttw3fPhwZs+eTZ8+faIUnRAx4Wc7F23atIknnniCa665hmbNmjkdkxAx4d1332XGjBm88sorlvG0tDRuvPFGxo0bJ30qo0A2TIQQMcI4FehoGtgLalsI81OBM+oMvgZqT6Crj43RCTB/2jGATaCCLiD4Lj8OGAGYj1y+D+rzwNcfCyMFqLtCsR3UdyE8xtmAuSDmP0G99+tjO/L4LvT3wZySvRPUpyE8xmlAB9PAj6BeaehqIRqJL7DR6H3jxo3U1NQwduxYCgoKaNWqVQRCEyLyDMPg2WefZc6cOXz55ZeW+/r374/X62XIkCFRii4ufQAE/Ya//fbb/OlPfyIrK4sZM2bQqVOnCIQmRHTU1NQwc+ZMduzYYRnv2rUr06dPJysraGKWEPHA1mfRH3/8kdtuu43HH3+coqIiLrzwQqfjEiJqvv76a+644w6eeOIJDh+uPTfndrsZO3YsN910EykpKVGMML7Jhkm8W8lx7KQ9h2nNYZrj4icO8wmz+DHaoYm4o4DngGTfbQOMi0A9G3yqoYBHgD+aBjcCmeENkb3AA0A305gHmGlzfpHvn9+nwMDwhHbEj8BNwG9NYy+A8XtQRgNzTIzfA6up3dTZD5wd3hDVYTAuAKabBneBMRjU9zZi7AFsBczvHsYAsmEiGrsf7F548OBBHnzwQZ5++mluvvlmLr/8cjl5JJqUN998k6KiIrZv324ZT09Pp6CggMsuuwyXy1bfWBE+e+1eaBgGFRUVVFZWMmHCBCZMmEBSUpKTsQkRUR9//DFer5cXXnjBMp6cnMx1110nJQKF+BU++eQTcnNzJUNLNEkHDx5kyZIl3H333ezZYz3fm5GRgdfrpVevXlGKTvjJp4x4NItmzGY8/5+9O4+rqs4fP/46CLmkprZoi2WZlZUtY2WooFjo5Fp9UUopKpthGhqoKLJhuF4gpsYZmoGiyQmbTFoUqt+krZgbqKWZti+aUS5Ii1sqJng/vz8+XDgHLtyL3A14Px8PHzPncz/n8hbpcs75fN7vt50lfM5uatiOg4+B9Tj4FNiPnS+xk0MmQwIdrugojM+AZPMA8AyoAR6cnIJ1saQSmO555oenjL1ALHDENPgXUB4szKjRQJppoBq4CYzdXgwQvRjBLeid6k7Xob9Hbqj+wHysGTDJYGzyYoBONqDUdDwQeNr9aaozsAjrYsl/wHjem8EJ0Vbs3r2bWbNmERUVxfLlywMdjhCtVllZSWpqKpMmTbIsloSFhXHnnXeyatUq4uLiZLGkjaiqqiInJ4cRI0ZQVFSEUh7s3RAiiB06dIicnByioqIsiyWGYTB16lTWrFlDSkqKLJYI4QVlZWVER0eTlJTETz/9FOhwhGi10tJSxo4dS0ZGhmWxZODAgSxYsICFCxfKYkmQkDuNjiaDCcA3KJ4BJmB96OhkAOcD9+HgIzKI92eIoiMzCoBC00BvYCGoZgqYqquAbNOAA4gDY5cvIgRjPTDLNBACFII6tYkTAHUK8AJg3v79UMtKjrWE8SMwHWut8UdAjWj6HBUKvAiYO+wtAuM/vogQjBp0jOYr36mgEtyc+E+sWTmfAvd6OTghgo3b3iZbtmxhxowZxMfH89133/kjJiG8ypk1FRkZSWFhIUeP1v8Ki46OZtWqVWRmZtKjR48ARima4HaDyq5du0hOTmbChAls2LDBHzEJ4VVKKRYvXkxkZCQ5OTn8+mt9S4bLL7+c1157jdzcXE45xW1lTSFECzgcDoqLi4mIiCA/P5/q6upAhyREi23dupVbb72V2NhYvvrqq7rxE044gbS0NJYtW8Y111wTwAhFQ7Jg0pHY+TOKxUBLumIaKHr7KiQhXLgL+NJ0fBWQ5Xqq6gW8BJgXVLLAWOqr4Gr9CzCXCjsFeL62R0kDqnZBxdJv4w3gMR/GBxir0OXCnGoXRNSJTZyQDZgXVL4Bfuej4GoZ24Fb0b1gnP4FqokyZSoG/fPhdBCYBsYhX0UoRJD4D9aMrCaVlJQQGRlJeno6v/zicYUvIQKqpKSEUaNGYbPZLD+3gwYN4vnnn2f+/PmcddZZAYxQuLEEWID197lLmzZtYvLkySQlJfHDDz/4PjIhvMD5c5uQkMDOnTvrxvv160deXh5Llixh6NChAYxQiDbtXqyb6Fzat28f2dnZREVFsXSpr2/3hfCO/fv3u/y5DQkJYerUqZSWlpKYmEhYWFgAoxSuyIJJR2HnDvQDUcPFq5uBpzCwA38HigEf7c4Xwh3jADANqDINPgBqsnWeqi3ZZeknspImF1e8yVDAHUC5aTAKa08Opz9j7aWyHYj3rJ9Iqz0MlJiO+wPP1n7vTNR16L4nTr+iFyKsBTV9wngTyDENdEFnFTXIflMDgYIGJyeC8QVCtH8VQCQwGevnjkvV1dXMmzevbqe+uYmgEMFky5YtxMXFER8fT3l5ed14r169yMrKYtmyZURFRQUuQOGpQ+gNEGOAj9xNVkpRXFzM8OHDG+3UFyKYVFZWkpSU1CgzqkuXLiQmJlJaWkpMTAyG4eoWWwjhoWfRFU7ygBp3k8079b/++mtfxybEMXE4HBQVFTFy5MhGmVEjRoygpKSE3NxcTjrppABGKZojCyYdwcP0B/JdvLIfiMXO+di5i9lkYCcVO1OB04FJwHp/hiqEZnyCteeGAfwX1JmmsSTgBtNxbRkqb/ctaYqxh8b9TDJAjak/VJFYG8LXADeD4acCrEZteTIqTIMT0d+7Wqof8F+svw/uB+NDPwTo9BCw2nQ8CL2jvpYKQ2fpnGCa8yIY8/0RnBBBZDFwIbos4AF3k529IMaPH8+6det8HpwQntq3bx/p6emMGTOGZcuW1Y2HhoYSFxdHWVkZM2fOpFMnF4mbIpitAH4DxANu00fMvSAWL17s69iE8Njhw4fJz88nIiKC4uJiS++d6OhoVq5cSVpaGscff3wAoxSiXdmN7mc6BHjLkxNKS0uJjo4mPT29UeNsIQJpzZo1jB07luTkZEvvndNOO428vDyKiooYPHhwACMUnpAFk46ghj+jd21bR0MYj51FuEqft+PAzhLganSDZSH8zPg3uu+HUx90r5BQUFcAfzO9Vtvo3NiJXxnrgHTTQAi6NFc/UCej4w81vT4bjDJ/RgjGDzTuZ/J3UOG15cKeB/qaXluC6wVWHzJqF5L42TQYC+qO2v//D/RnkdNmwF2vEyHaqyr0598FeFgC5+OPP+aGG24gISGB7du3+zo+IZpUU1NDYWEhI0eOZN68edTU1G8kHTlyJO+88w5z5syhT58+AYxStJIDeA69W/hv6KzVZpWXl5OQkMC0adP44gtJHBWBVVJSwujRo8nOzubAgfq9CUOGDOHVV19l/vz59O/fP4ARCtGufQlch86q3upusjOrOjw8nIKCAkv/MyH8befOnSQlJRETE8Pnn39eN96tWzdSUlJYvXo1MTExAYxQtIQsmLR3i+iE3gXf0FPYLDu6XdMLJ35+CC1EnbvQvTScItAPz18COpvG54Dxtj8DM/k7uieJUz90qbD56Ewtp3eAR/0Yl4mxAl2Sz8mZsfEYunyGUzl64ckf5cIaMLahy5yZv/bjoGYBfzKNVQH/B4Y0ZxAdRo8ePTq7GN6BLoEzDFjr7j2czWpHjRpFTk4Ohw8f9naYQjSrrKyMcePGkZqays8/16+Pn3322cydO5dFixZxwQUXBDBCcaxOPvlkV/0O96Kz4S5Bb8Zwq6mfESH84dNPP+XGG28kPj6e77//vm68d+/eZGVl8cYbbzBs2LAARihEh7IYGAzcg66M0qw9e/Zgs9m47rrreO+993wenBBmVVVV5OTkMGLECIqLi+vGDcNg0qRJrFq1ipSUFDp3dnVLJ4KVLJi0d19yBbhs2v60v0MRouWM/cCNgPnJXjIw0HT8PmDzZ1RWhgJuAb4zDV5X+8epEt23JJCNBDKAd03H56C/l07VwAww9vo1KgvjNSDXNNANeARr76Xk2pJtQnQYgwcPHtDMy+uBEegSOG77j5kv6IuKiixlRoTwhaayB44//nhSUlJYvnw5kyZNCmCEorVOPfXUfs28/DW6zG808Jm79zJnITWs+S2EL+zZs4f09PRGD1rDwsK48847Wbt2rZQIFCIwjqDvDS9Al2t2ey/d1MKnEL7g3JAWGRnZqCfbZZddxmuvvcbcuXM57bTTAhilOFayYNLeKc51Mbof+NTfoQhxbIyPgdQmXqztI2IE+G7a2A3chF50aKi2j4jh9kGmbxkOYAZNP1B9CIw1fgyoKak0vVt+ERiy2Cs6nLPOOmugmykKXQLnXPTiqNv0kYqKCpKTk4mJieGzz9w+wxSixZz9KUaPHm3pTxESEsLUqVNZs2YNKSkpHHfccQGMUnjDiSee2NyCidNS4HL0bmG3mzP27dtHdnY2Y8aM4d1333U3XYgWq66upqCggPDwcObNm2cp5RMREUFJSQmZmZn07NkzgFEK0f49/fTT7q5zK9DlmK8CD6qk0HRpPSG85aOPPmLKlCkkJCSwY8eOuvG+ffuSl5fH66+/ztChQwMYoWgtWTBp/05xMVaJ3f3qvBDBw3gc1w/RbwfjOxfjAWC8Bzzl4oVHwFjq72hcMyqBB1288Ba6PFcQMKqBO2ncl+Fb4Hf+j0eIwDvllFPc3Ug6HQTs6IaZRZ6csHbtWsaNG0dSUhI//vjjMUYoRD2lFEVFRQwfPpycnByOHDlS99pvfvMbXnvtNXJzczn55JMDGKXwpp49e56ya9cuT7pfV6N3Cw8E8rD2V3Ppm2++4ZZbbiE2Npavv/66lZEKoZWWljJ27FhsNpulWfTAgQNZsGABCxcu5LzzzgtghEJ0HEOGDInycOoGdInuaVirO7h0+PBh8vPziYyMlKxq4TWVlZWkpqYyYcIEPvjgg7rxLl26kJiYSGlpKTExMRiG0cy7iLZAFkzaP1f/xrJYItoYdTVwhYsXLvN3JE1TfYGpLl64HFSQ/LZUYcAfXLxwLtDDz8E0516sZbhAL/6e7mKuEO1e165dT9q1a9fZLThlC/pm8hrgY3eTHQ4HxcXFLh9wC9ESGzduZPLkySQnJ/PDDz/UjZ966qnk5eWxePFifvOb3wQwQuELhmGEOByOiBacshtdFnQI4FEPutLSUqKjo0lPT7c84BaiJbZu3cqtt95KbGwsX331Vd34CSecQFpaGsuWLeOaa64JYIRCdDzdunXzdMEE9Ka6IuBCPMyq3rVrF8nJyUyYMIENGzYcY5Sio3NmJUZERFBYWIjDUf9YNTo6mhUrVpCWlkb37t0DGKXwJlkwaf9+cjEmW/pEG6J6o5u8h7l40QYqCO5qVAjwPLrhe0Pj0QsAweBRINzF+LkETV8jNQ2dYdLQ8cAiUF39HJAQQcHhcFx7DKctA4aiyxi4TR85ePAgOTk5REVFWUooCeHOrl27SEpKYuLEiZaHEV27diUlJYXVq1fLbrv2L/oYzvkC+C0wGZ1J2qzq6mrmzZtHeHg4BQUFlhJKQjRn//79ZGdnExUVxdKl9YnfzhKBZWVlJCYmEhbm6nZDCOFLoaGhkUqplv7HdwidVT0IWEDj6gSNbNq0icmTJ5OUlGTZ1CGEOyUlJURGRmKz2Swl3i6++GJeeeUV5s+fz5lnnhnACIUvyIJJe2dQ7mK0D1l4Wt5DiABSBrou/1mmwR2m/x+iX1eBXgS0oXdyO+3Cmsn1CKir/BtSQ2oi1oWbKnQPGKdpoFwtVPiRGgQUNBjcafr/FwP/9F88QgSVY3kYCVCDbpR5PvA3dAPNZn377bckJCQQGxvLl19+eYxfVnQEVVVV5OfnExERQXFxcV25C8MwmDRpEitXriQlJYUuXboEOFLhB2Nbce5idFPfe4Bf3E3es2cPNpuN8ePH8/7777fiy4r2zuFwUFRUxMiRI8nPz6e6ur7d4IgRIygpKSE3N5cTTzwxgFEK0bGFhIR0r6iouPoYT98O3ApEAZvcTVZKWbKqzU26hWho8+bNTJ8+nfj4eL77rr4KXO/evcnKyuLNN9/k6quP9UdXBDtZMGnvevEeevXd6ii3+D8YIVrsPmCi6bgSuBJ9Y+10GnrRJECfZ2oU8BfTQDVwI/BX09hxQBGoPv6MrJ46A/gv1jJXScAtWHfjPA7qUn9GVk91RmcSmUuDzQVGYX14kgBquj8jEyJIXKuU6tSK8/cAs4BLgDc8OaG0tJRx48aRmprK7t27W/GlRXtkbqh68ODBuvFLLrmEV199lblz53LGGWcEMELhZxdv3769Nf/gR9D9TS5AL/K6LSH8ySefcMMNNxAfH8+2bdta8aVFe7RmzRrGjh1LcnIyP/1UX3Th9NNPJy8vj6KiIgYPHhzACIUQJse6MchpJTqrOh79zKBZhw4dkqxq0aS9e/eSnp7OmDFjWLFiRd14WFgYd955J2vXrmXmzJl06tSaWzMR7GTBpL1L4ldgiYtX7sPOuR69x2NICRwRAOpKrIsODiAOjApgJtZMk98C9/sxuFrqZOAFwPyb8iEw1gKz0eVwnM5ELwD4mQoFXgROMg0uAqMAjNeBx03jXYAXQHXzZ4S1/gGYC9t/CtwHxhbg9w3mzgUlnThFR9O7srLSVS+nlvoKmIC+Mf3C3eTq6moKCwsZOXKklMARQNMPqfv27cucOXN44403uOqqACdVioDo1KnTsZQObGgnuozgMGCNJyeUlJQwatSoRot3omPauXMnSUlJxMTE8Pnnn9eNd+vWjZSUFMrKyoiJiQlghEIIF1qTpejkQFenuACdVe02faS8vJyEhASmTp3KF1+4vSwW7Zz5vmfevHmW+56IiAjeeecdMjMz6dmzZwCjFP4iCyYdQQiZNN6l1QNYip2mO2/aOQ87z/NLo4eVQviY6gUsRGdmOGWBUVt02PgRmA6Yn9xlgxrhrwhry4U9g85wcXoTeEz/X8OBTg829xGKAXWXnwJ0ygBGmo6/AX5nOr4fMNezuBDI80NcJmoikGgaOAhMA6M2O854CXjW9Hp34HlQ5p8PIdo9pZQ3biadlgKXokvg7HM3ee/evdhstkY7rUTHsWfPHtLT0xuVQXLutlu1ahVxcXGEhMjtRUellGrtDmGzD9AtElw1AAAgAElEQVTXL9OA791NPnz4cF15uKKiorrycKLjqKqqIicnhxEjRlBcXFw3bhgGU6dOZc2aNaSkpNC5c+cARimEaMIV27Zt81Y1hr3orOohuN483Mjq1auJjo4mKSmJn3/+2UthiLaktLSUsWPHNsqsP+ecc3juuedYuHAh559/fgAjFP4mdzQdgY3PgEdcvHIWsB47i8ngXjK4mQxux04mdlYBXwLTUUiHTuFvTwJnm45XAVnWKUbDsdpMCuWvIsSzsJYLq62fapju0I0desxS9uqfoC73R4CgooAHTQO/ohci9tcPGdXADMA0xkxQfirbp/oD87GWC0sEo+EWn7uBz03HV6Cb2AvRYXj5YSToEoK5wED0Qqnb9JGmavmK9qu6upqCggLCw8Mb7baLjo5m5cqVZGZm0qNHj2beRXQQY5XyaolUBRQBg9EbQA67O2HXrl0kJyczceJENmzY4MVQRLBSSrF48WIiIyMb9SS47LLLeO2118jNzeWUU04JYJRCCDc6hYaGXuN+WotsBiahs6o/czfZ4XBQXFzssueRaL+2bt1KfHw8sbGxfPXVV3XjPXv2JC0tjeXLl3Pttd5IoBVtjSyYdBR20oFCF6+EABNRPIbiBRTPAOlABMhCiQgElQjcbBqozSYxXD3Iy0LvknbqDzxbm/3hQ2oY+sbd6SgQD8ZPjecapqwTADoDC0H5+MmS6gs8j7Vc2ANgfNh4rtEw6wTgSVAX+Cw8AFQYum+JeTfRS2DMbzzXqM06sfRkugfU9b6MUIggE7579+4TfPC+PwPJwFVAqScnlJSUEBkZSXp6Or/84rZHs2ijSktLufbaa7HZbOzfX7+ufu6551JYWMj8+fMZMGBA4AIUweakioqKy3zwvocAO3AesMCTEzZu3MjkyZNJSkrihx9+8EFIIhh89NFHTJkyhYSEBHbsqK/W269fP/Ly8nj99dcZOnRoACMUQnjKBxuDnJYCl6PLPbq4X7fat28f2dnZjBkzhnfffddHIYlA279/f92/c0lJSd14SEgIU6dOpaysjMTERMLCwgIYpQgkWTDpOBR2bgVS8GB3VgNumy4K4R1qCPB38wAwszZTwwWjtq8Ju0yDE4E/+ShAQPVGP+Q3/+acDcayJk4AeAhYazoehG5o6iMqBL1AeqppcAnwRNPnGIuAp00D3YFFoHzZw+gRYLjpeDON+5WYGJ8B95oHgGdADfBBbEIEo9CqqqrRPnz/D4FIYDJQ7m5ydXU18+bNIzIyksLCQhwOuVxoL7755htuueUWYmNj2bx5c914r169yMrKYtmyZYwZMyaAEYog5s3SgQ1tQ2fuRgEfuZuslKK4uJjhw4eTk5PDkSNHfBia8KfKykpSU1OZMGECH3zwQd14ly5dSExMZNWqVcTExGAYsv9PiDbkOh++dzX6/vt8PMyqNl8Lff311z4MTfiTw+GgqKiIiIgI8vPzLdcGI0aM4J133iE3N5eTTjqpmXcRHYEsmHQsCjuPoUsd/Q3Y0szcw8DrwFQuJN8fwYmOTtU+oMf8gH4OGIubP8+oRPczMT+pmwOq6f48x6yub8kA0+AK3JaGMqqBm4DdpsGbQMV7Nbx66YA5b3QbcJu1XJhLSVgfQDRcwPIidR1wn2ngMLpcmJut6sZ/0JkzTrULWEq2foiOwle778wWAxehSw8ecDfZ/OBq/fr1Pg9O+E5TuypDQ0OJi4ujtLSUmTNnEhoaGsAoRTDz4Q5hsxXAb4B4wG36yKFDh8jJyWH06NEsXuzmslIENWeJwIiIiEYL9dHR0axYsYK0tDS6d+8ewCiFEMfojB07dvi6ScRudFb1EOBtT04oLS0lOjqa9PR0S7ataHvWrl3L2LFjSU5O5scff6wbP+2008jLy6OoqIgLL7wwgBGKYCILJh2RnV3YmYWdQYRyBnANEAvMBKYCQ4He2JmInWKmuV99F8IL/g2YS0CtA2yenWosB+aYBjqjsyN6eiu4WvcA5hJQP9B0ubAGjO9pnD2RD2qw16IDQEWiF0ycaoCbwfCge51Ru2iBedEiEdRN3owQ1BnAc1jL/t0LxiYP3+APwFem42HoUh1CtHuGYfhy97bZIfTmigvQJXDcdlD+6KOPuP766xuVRhHBr6amhsLCQpd1u0eOHMnbb7/NnDlzOPFEf7UJE22VYRgjf/jhB388rXagryXOR39WuU0fKS8vJyEhgWnTpvHFFw1bpYlgV1JSQkREBDabjQMH6tfyL774Yl555RXmz5/PmWeeGcAIhRBe4K/r3C+A36Kzqre6m+zMqg4PD6egoMDSz00Ev4qKCpKSkoiJieHzz+vbonbr1o2UlBRWr15NTExMACMUwUi2h3V0f2EHIE81RICpQeiHc+YyVX8FoyW1E9LRn2nmRZJR6J3SXqCOB87BGuPzYFR4/h7Gy6DuRTcvdboWfcHmLaOBeabjMjBWe3668XVt5stvTYOXgyrybGHII9cCr5iOt4HxlOenGwdA3YxeOHHqA+ok131khGhXBlVWVp7Tt29ftzd3XrIDXQLnCXSD+Kubm+xsvrt06VL++Mc/cvfdd9O5c2d/xCmOUVlZGbNnz270AHnAgAE89NBDTJo0KUCRiTbquKNHj0YCb/jp6+1FZ8M9g+4ZN8HdCWVlZYwbN46bbrqJBx98UBYCg9zmzZuZPXs2K1assIz37t2b++67j9tuu41OnTq5PlkI0aaEhIREA4/78UsuRmea3IXuj9psn9E9e/Zgs9koKioiMzOTYcOG+SNGcYyqqqp48skneeKJJ/j111/rxg3DYOLEidhsNk4//fQARiiCmSyYCCGCgLEZ3YStNe9RAzzgjWiaeP+DeKU3ivGv1r9Hs++f6YX3eBV4tfXv0+T7Pws828r32Eirf2aEaJuOHj0aDcz185ddh+45dAt6N3e/5iZXVVWRk5PDiy++yIMPPii15INQeXk5jzzySKMSRd26deOuu+7iT3/6E8cdd1yAohNtWW1ZLn8tmDh9je5jdy3wL3RZwSY5s6oWL15MSkoKt912m5SaCzJ79+4lJyeHZ5991rKbOywsjPj4eO6//3569vR2MrkQIpCUUmM2b97cedCgQb+6n+01R9CbgoqA2cCduKnG88knn3DDDTcQHR3Nww8/TP/+/f0QpvCUUoolS5aQlZXF9u3bLa9deumlZGVlccUVVwQoOtFWSEkuIYQQQoi2xR89AlxR6BI45wIZgNub2Z07d5KcnMzUqVMtKfAicJz9HKKioiyLJSEhIUydOpW1a9eSkpIiiyWiNfxVUsWVpcDl6DKq+9xN3rdvHzabjTFjxrBs2TKfByfcc/Ypufrqq5k3b55lsSQiIoKSkhIyMzNlsUSI9un47t27N5vN7EM70RvyhgFrPDmhpKSEUaNGkZ2dzcGDB30anPCMuUSwebGkb9++zJkzh9dff10WS4RHZMFECCGEEKJtuUYpFcit0AfRfYMuRu/Gc2vNmjWMHTuWpKQkfvpJKucFglKKoqIihg8fTk5OjqU0weWXX87//vc/cnNzOfnkkwMYpWgnLtyxY0cgt9tWo3cLDwTywH0/xi1bthAXF0d8fDzl5eU+Dk80pbS0lLFjx2Kz2SzNlc855xyee+45Fi5cyHnnnRfACIUQvlabpRhIHwAj0b09v3c3+fDhw+Tn5xMREUFRURFKuW37J3ygsrKS1NRUJkyYwPr16+vGw8LCuPPOOyktLSUuLo6QEHkMLjwjPylCCCGEEG1Lrx07dlwZ6CCALeibyWuAT9xNdjgcFBcX1zUWP3KkJW2qRGts2rSJyZMnk5yczA8//FA33q9fP/Ly8liyZAlDhw4NYISiHQr0Ay+An4Fk4EpglScnOHcLp6en88svv/g0OFFv69atxMfHExsby1dffVU33rNnT9LS0li+fDnXXnttACMUQvhRILMUnRR6U9BgdFb1YXcn7Nq1i+TkZCZOnMiGDRt8HZ+o5cxKjIyMpLCwEIfDUfdadHQ0paWlZGZm0r179wBGKdoiWTARQgghhGhjDMMYF+gYTJYBv0GXMfjR3eT9+/eTnZ3NmDFjKCkp8XlwHdmuXbtISkpiwoQJlpv3rl27kpiYSGlpqfSXET4REhISDA+8nDYCo4DJwLfuJldXVzNv3jzCw8MpKCiwlIQS3tXU7wNnicCysjISExMJCwsLYJRCCD8bWlFRESzprofQWdXnAQs8OWHjxo1MnjyZpKQkyyYV4X0lJSVERkZis9ksmxwuuugiXn75ZebPn8+ZZ54ZwAhFWyYLJkIIIYQQbYxhGMGwe9usBvgPcD66BE6NuxOa2lEsWs9cHqK4uNhSHiI6OpoVK1aQlpbG8ccfH8AoRXumlLpWKRVs95qL0c3gZwFu00d2796NzWZj/PjxrFu3zufBdSQOh4OioiKXGYcjRoygpKSE3NxcTjrppABGKYQIkBCHwzEm0EE0sA24FYgCPnI3WSlFcXFxXRlUyar2rs2bNzNjxgzi4+P57rvv6sZ79epFVlYWb731FuHh4QGMULQHwXYRK4QQQggh3Bv23Xff9Q50EC7sQZfAGQK86ckJzpr16enplpr14tg01YB0yJAhvPrqq8yfP5/+/QPZXkJ0ECfu2rUrGOu8VQF/Ay5A7xZ2W2z+k08+4frrryc+Pt7SQFYcG2dPq+TkZEtPq9NOO428vDyKiooYPHhwACMUQgRakGUpmq1AZ1XHA27TRw4dOkROTg6jR49m8eLFvo6t3du7dy/p6emMGTOG5cuX1407+5S89957zJw5k06dOgUwStFeBLJhqBBCmKjr0OUSnPYDj4LhaOKEhudfiN71UTcA/B2M3d6KENQQYEaDrzEHjD0ent8LeBAw1z55Hgy3tf89p/oADzT4GgvA+MzD80PQMZ5gGlwJhkcPPlvwNR4CepgGl4Pxdgve4zb0ww6nb8B42hvRCdFGdAoLC4sCXgl0IE34EhgPTAL+iW6+3CRnCZyXX36Z++67j9tvv11udlro008/JT09nffff98y3qdPH+69915uu+02+Z4Kv1JKjQXWu50YGDvR142PoxvEu92KWlJSQllZGXfccQf33HOPZGi1UEVFBY888ggvv/yyJeutW7du3HXXXdx999107tw5gBEKIYKFUiqYSs825ACeA15DZyzeCxzX3Anl5eUkJCSwYMECMjIyZFG4hWpqanjppZd49NFH2b3b+ngnIiKCzMxMzj///ABFJ9orWTARQgSL94B/A2c1GP+r+1PV8eimbBeaBv/p3cUSAD4DhgLmrpMXg5oMhtsdisA84EbT8SogzYvxof/OqjP6ws3pRlBDwfCke+ksINt0vB34hzcj1ItgajOw0DSYCOoKMDyoy6N+i/5eOrMkfwVGeDdGIdqEaIJ3wcRpMfAW8EcgE+jZ3OS9e/dis9nqbihHjx7thxDbtj179vDYY4/x7LPPWnothIWFER8fzwMPPECPHj2aeQchfCYa6zVFMFqPvoaIAXKAZtOvqqqqyM/P55VXXmHWrFnSA8gDVVVVPPnkkzzxxBP8+uuvdeOGYTBx4kRsNhunn356ACMUQgSh0ysqKi489dRTPw90IM3Yi753fgb9+2OiuxPKysoYN24cN910Ew8++CAnnniir2Ns80pLS5k9ezZffvmlZfycc85h9uzZREcHW5Vi0V5ISS4hRJAw9gA3AdWmwUxQntQvzce6WPIB+uLFywwHEAfsMg1OBO52f676E9bFkh+B6WD4opPog8Ba0/EgdG8BN9TV6KZ2TkeBeDB+cj2/NYxFQIFpoDuwCFTX5s9TfYH/Yv399QAYG5o4QYj27LeBDsBD1egd3BegP4vcfu5t3ryZ6dOnEx8fz/fff+/r+Nqk6upqCgoKCA8PZ968eZbFkujoaFauXElmZqYslohAGv7zzz83u0gaJBR6481gIAM47O6EiooKkpOTmThxIhs2yCWIK0opFi9eTGRkJDk5OZbFkssuu4z//e9/zJ07VxZLhBAu1WYptgVfozOqo9EbLJtVU1NDYWEhI0eOpKCggJoat23/OqRvv/2WhIQEYmNjLYslPXv2JC0tjWXLlsliifApWTARQgQR4z1gtmmgEzAfVDMdH9Vt6BqiTvuAWDB81FnNqASmY33g93edwdEUdQkwxzwAzARjhy8iBKMavfhkzrC5qfZ71QTVG3gJCDMNzgZjmQ8CdPoTsMl03PD71IAKAZ4H+pkGlwBP+CA2IdqCAdu2bTs30EG0QAWQAFwFlHlyQklJCREREaSnp3PgwAGfBteWlJaWEh0djc1ms/R9GThwIIWFhcyfP58BAwYELkAhtLDDhw+Pcj8taBxEbxw5D93fxK2NGzcyZcoUkpKS+PHHH30ZW5vy0Ucfcf3115OQkMCOHfWXu3379mXOnDksWbKEK664IoARCiHagLb2NHwpcDlwD/qZRLP27duHzWZjzJgxLFvmy1vutuXgwYPk5OQQFRVl6fsSEhLC1KlTKSsrIzExkeOOa7YKmhCtJgsmQohg8yi6hIvTGcBzoFzUO1DnAXkNBu8CY6vPogPAWI5uGOrUGVgI6oTGc1Vt5gRdTIN/A8PHXd+M79ELSeZSYU/U9nppQBnorA1zObTl6H8LHzIOA9MAc6mwu0Hd3MQJduAa0/E24DYPy6EJ0S6Fhoa2ld13Zh8CEcBk4Dt3k539TSIiIigsLMTh8LC1VTv0zTffcMsttxAbG8vXX39dN37CCSeQlZXF8uXLGTPGk8RMIfwjJCSkrT3wAn19cSswBvjY3WSHw0FxcTHh4eHk5ORw5IiP9uy0AZWVlaSmpjJhwgTWr69vX+NsyFtaWkpcXBwhIfIYQgjh1ujNmze3tcZGzqzqgejnFG6zqrds2UJcXBzx8fGUl5f7OLzg5XA4KCoqYvjw4Y1+lw4fPpx33nmH3NxcTjqpmb20QniRXKkIIYKMUZt9gTn74jrgfus81QW9EGGuNZIPxos+DtDJBpi3ggwEXDUdfwowdyBbV3uuHxgNsy+OR5e96tZg4v3AFNNxJTDDR+XCGjA2A79vMPgkqHOsQ2o08GfTQA1wExg/+zI6IYKdUqotPox0WowupzgLcJs+Yn4Q98EHH/g8uGCyb98+srOzGTNmDO+++27deGhoKHFxcZSVlTFz5kxCQ6U9oQgubaikiivL0buF44Ef3E0+dOiQy12xHYGzRGBkZGSjhe3o6GhKS0vJzMyke/fuAYxSCNHGdOvRo0db7VP5M5AMXInuW+pWSUkJo0aNIj09nV9+8aT1aPvx4YcfMnnyZJKTky3Zmqeddhp5eXkUFRVx4YUu9n0K4UPBtmByAjDqGP5cGYhghQCu5th+ZuVuoVlGbX8Py46Mv4IyXzA9AVxqOv4EeMAPwdUyjqJ3H5r7e0wFlVB/qP4AzDC9vgddLszcp8XXUoD3TMcXYcnKUVcBD5tedwC3gFHhj+A04yXgWdNAL3TGTm2erToFeAFdos3pITDW+ClAIYLZNUqpMPfTgtYhdMbeYHQJHLcZYx999BFTpkxpVOqlPXLutouIiCA/P5/q6vpfHyNHjuTtt99mzpw50jRUBLPzd+3adXagg2gFB/AcugfT3wC36SPOuuvTpk1r1KS2PSopKSEyMhKbzWZ5yHfRRRfx8ssvM3/+fM4888wARiiEaKscDkdb3hgEsBH9/Gcy8K27yc6s6vDwcAoKCiz96dqjiooKkpKSmDRpEh9++GHdeNeuXUlJSWH16tXExMRgGC6KjQjhY8G2YHI5sOIY/hT6KT4hGnqZY/uZvcBP8bVhxip0402nUOBFUCeCmobOQnE6AEwDo8qfEdb2ILkV6wO+f4G6HNTFwGOmcQXcAUa5HwOkdnEmDmsd1ZmgbgHVC923xFwA9GEwSvwZYa0/Yi17cQXwaG3fkkLgVNNrbwI5foxNiGDWo6KiYligg/CC7ejP03DgfXeTnc2ER40a1aiZcHuxevVqoqOjSU5O5qef6tfmBwwYwNy5c1m0aBGDBw8OYIRCeMbhcFwb6Bi8YA86G+4S4A1PTigrK2Ps2LGkpqaye/du9ye0MZs3b2b69OnEx8fz3Xf11RV79epFVlYWb731FuHh4QGMUAjRDrTlLEWzxeiNi7OwlqN2affu3dhsNsaPH8+6det8Hpy/VVVVkZOTw4gRIyguLkYp/TjFMAwmTZrEqlWrSElJoXPntlaRTbQnwZq3XwKsbMF8KckiAuVvWEtCuRON3mEgPJMNRALOG+3+QBH6YbpZAhgB2sJnvAnq70Bq7UAXwFkWrKtpYi4Y/8+vodUxvgH1O3QJM6cngdsB867PlUCmPyOrZ1SBmo4uWeYsGXYPcC7Whn+1D1Wlb4kQTrVluTxqot4GvA8MRy/0zgH6NjfZWQLnxRdf5MEHH2Tq1Kn+iNGndu7cyaOPPkpxcbFlvFu3btx1113cfffdcgMp2ppoXJctbYu+Aiagr01z0WUFm1RTU0NhYSFLlizhvvvu47bbbmvzpfP27t1LTk4Ozz77rGX3c1hYGPHx8dx///307NkzgBEKIdqRy3ft2nVKv3793JZFbAOq0M+PFgCzgTtxs4n9k08+4frrryc6OpqHH36Y/v37+yFM31FKsWTJErKysti+fbvltUsvvZTMzEyuvFIKCIngEKxXayuAvwY6CCE80LDhuDvHIwsmLWA4QM0ANlGfYRDVYFIBGC/4N65G0oARtX/A2rME4APgQb9G1IhRBOrfwF21A92xfi9/xG99S5pifAbqT8A85wAwyTThKBAPxk+NThWiYxuLvvFqL5wlcF5B91iaBTS7QrBz506Sk5NZuHAhmZmZbbLO8aFDh/j3v//NE088YcmYMQyDmJgY0tLSOOWUUwIYoRDH7FqlVCfDCOQ1htctBS5DZ8hmoEtLN2nv3r3YbDaee+45MjIyiIpqeDkb/GpqanjppZd49NFHG2XMREREkJmZyfnnN7wEFkKIVjFqsxQDfb/vTTuBBKAA+Bd6o1CzSkpKKCsr44477uCee+7h+OOP93WMXvfxxx+Tnp7O+vXrLeN9+/YlJSWF6dOnExISbEWQREcWrAsm3jOXMCq5xDLm4FvseJ4XncVAFL3qjg0OkM5XXosRIJMhmMviOKjEzvamT2ggm1M5ymmmEQc2NnovQFr/fbDTkxAGWca68zn34b0ySq39PtgJJcTSFwNCKefPksUUOMYPtZkHS7H2sAD4DN1MLcCMGlA3o2uUNiwkvw/dt8RtzWs/uBcYBvymwbgCZtaWGAsw4xlQo9CleRqygbHM3xEJEewMw7hy27Ztffr379/ear4cAOzA8+iMQ7fpI2vWrGHs2LHceOON2Gw2TjrpJB+H2HrO3XYZGRns3LnT8trll19OZmYmQ4cODVB0QnhF78rKyivwoNxeG1ONzjIpBGxAIo2vVS22bNnCjBkziI6OJiMjgwEDBvg+Si8oLS1l9uzZjXqynHPOOcyePZvo6LbeZkAIEaxqM6nb04KJ03pgJBCDLjfdbPpIVVUV+fn5vPLKK8yaNavN9PaorKwkJyeHF154AYfDUTfuzEp84IEH6NGjJUVbhPCP9r98l0A1DpJx8EHdH3gTu6Vmf9MyuYijfGw6fz2O5lOvj4ni2gYxbiDbUrO/aY9yAtWUWc538H8+iPEMHLxf9zWO8imZjHB/IqB3ihc2iPFh9uPdouPVdMLBW6av8SF2/tCCd7A3iHERIdR4NUZxDIwVuL7J/h0Yh/wcTBOMbeiHeg3ZwNjq72hcM34F/unihUIwFvs7mmY86mLssybGhRDQKTQ0dEygg/ChzcA0dAmcT91NdjgcFBcXM3LkyEaN0oPNpk2bmDx5MgkJCZbFkn79+pGXl8eSJUtksUS0C0qp9lKH3pWf0Rt4rgRWeXJCSUkJo0aNIj093dIoPdg4G9jHxsZaFkt69uxJWloay5Ytk8USIYRPGYbxW6VU8K8MHBuFLjk+GJ2teNjdCRUVFSQnJzNx4kQ2bNjg6/iOWXV1NQUFBURGRlJYWGhZLImOjmbVqlVkZmbKYokIWu1/wUT7I2DeDnMVkOX2rMfoioMXqK+nD5DHbF71bnjAbP4FmPsbnEI1L7Co+V1KABzm38A5ppFS9I5M77I16m8QioMX+WujHfWN2XkQa2mdSuB27DiaOOPY2NmO4aIJdyaXuz03gyh02Q+namAGsyzNskVAqN/hOlU1xd+RNE1dCS4X5xJBBclVgDoZXTe1oRtABUkNBRUK/MfFCxcCE/0cjBBtRu3uu/buXeBydBkDt6X59u/fT3Z2NlFRUSxdutTnwbVEZWUlSUlJTJgwwXKz26VLFxITEyktLW0zOweF8EQH+YzaiC69Oxkodze5urqaefPmuXyYFGgHDx4kJyeHqKgoFi+u31MTEhLC1KlTKSsrIzExkeOO82wPohBCtEK/ysrKiwIdhI8dRD/DOw/d48StjRs3MmXKFJKSkvjxxx99GVuLOTcF2Gw2y6aAQYMG8cILLzB//nzOOuusAEYohHsdY8HEzgFCmAaW0k8PYGdys+ftJx8s5bw20MdnfQgUnbkD68X1aL7gz82eZeePwM2mkT2Ecgt2n2VFPAyUmI77c4T56AwS1zIZhnWhxYHBDOzs8kmEs3kTndLo1BkHi7DTdPfBbPqieB5rGn0qdt7zSYyiBdRF6NqervwfqD/6MxrXVC9gIbjMXDsPXa4hwJSB7g1ymosXuwPPgwqGLsIZ6NTkhgzgv6DO9HM8QrQV4wIdgJ/UoBdVz0f3EXN7vbN161ZuvfVWYmNj+eor71ZUbanDhw+Tn59PREQExcXFKFW/vyM6OpqVK1eSlpbWJmtTC+FG+O7du5vt89GOLEZv9JgFuE0fqaysJDU1lfHjx7Nu3TqfB9cch8NBUVERw4cPJycnhyNH6ivKDh8+nHfeeYfc3Nw2Ue5QCNF+OByO9vQA98kAACAASURBVJylaLYNXZp6DPCxu8nOrOrw8PBGn9mB4Cw7GR8fT3l5ed14r169yMrKYtmyZYwePTpg8QnREh1jwQTAxifAfaYR/fDNjuuHb3ZuAm43jRygEzNI8nIJKbOH2APEAvWfcgo7GVzjcr7ue/IP04jC4Hb+wnc+i1FnhMQBFabRCWSQ5HL+I/TGwUtAWN2YgZ3ZvOuzGLWHgNWm43NxvWsd7IRQzQKwlEB7HXswPOTu6NTxwCKsWV4lWDOIckBd5tewGisAzjYdvweWzKTbQcX5N6RGGmZ5bQO+MB0PxXX2iR+psVizvH4FVpqO+wALQLnPvBOi4zlr+/bt5wU6CD/ajS6BMwR4y5MTSktLGTt2LOnp6ezfv9+nwblSUlLC6NGjyc7O5sCBA3XjQ4YM4dVXX2X+/Pn0799s+Woh2rLQqqqq0YEOwo+q0NdVg9G7hVXz03VD3BtuuIGEhAS2b/e8laW3fPjhh0yePJnk5GTLbuXTTjuNvLw8iouLufBC71emFkIID3SELEWz5eis6njgB3eTDx06RE5ODqNHj7ZkBfrL3r17SU9PZ8yYMSxfvrxuPCwsjLi4OMrKypg5cyadOsltvGg7Os6CCYCdp7A2i+oDFGIn1DIvi0E0fLhu8AevN3p3xc46DP5iGglB8Tx2+jWY1x0Hi4CuptF/MJv/+SHGH4DpwNG6McXfySS8wUyDX3kGGGAaW8Fg/uqHGGsI5WawNGuPxc4djeYapGP9BbyN44jHgxsb4XNPgKVn0Hp0WSZzBlEXoAhU0xlEPqUSwdIz6Mfa4981mPgUqAv8FpaFapjlVYP+b3gqYO4BkwTqen9GVk/1BZ7F+nvpfuB64FvTWCS6saoQogHDMDrK7juzL4Hr0CVw3PaLcpbACQ8Pp6CggKNHj7o7pdU+/fRTbrzxRuLj4/n+++/rxnv37k1WVhZvvPEGw4YN83kcQgSBjvbAC2AHerfwMGCtu8lKKRYvXsyoUaPIycnh8GG35exbraKigqSkJCZNmsSHH35YN961a1dSUlJYvXo1MTExPo9DCCGaMWrbtm1d3U9rVxzAc8AF6AV4t+kj5eXlJCQkMG3aNL744gt301utpqaGwsJCRo4cybx586ipqU/8joiI4O2332bOnDn06dPH57EI4W0da8FESwDLwkcEMLvuyE4XjrIIMPcceIrZLps5+8Zs/gGWhY++6GwY87/Xv9EfnE7rwLLQ4lt2VoBl4SMMBy9hp49pzr3oh51OPwAzmIbvn04A/IVtGI0WPvLJ5NK6o0xGoUg3vV5DCDfzZ8tCiwgIdRNwm2lgHxALxhF0BtEa02tNZxD5lBoC/N08AMwEYycYRQ1iqs2WUX6+0FO9oUGWF8wGowyMz4B7TOMG8AyoAX4MEFAhQCHWLK8lQD4Ye2mYeQd/gQ5RC12IFgkJCenI/10sRu/kvgdwmz6yZ88ebDYb1113He+955vqm3v27CE9Pb3R1wgLC+POO+9k7dq1sttOdCgddFHXaT0wAr1b2G1Z4qqqKnJychgxYgRFRUWW8n3eYv4a5hKBhmEwadIkVq1aRUpKCp07B0PFViFEB9c1JCRkRKCDCJA96CoMlwCve3JCWVkZ48aNIzU1ld27d/skqKa+xtlnn83cuXNZuHAhF1wQoP2iQnhBx1swsXMAmAaYt+v8GTvOC/hcwFze51N6Wkp5+YOiM7eDpbTWbzF4AAA7d6LLYjntpRM3YXe/4uxldrCU1joTmAtAJlcCj5hec2AQh52dfosOYDavY+0f0QUHL2CnG3/lZBy8gLVvSRo2SykvERCqcZYX3AVGbaaBUQPchC7J4hQL6nb8RnWHRllefwPDnAObDGwyHTdcYPExVbsAYsnyWo6l9JbxNFgWhHsDC0GZF1h8LR241nS8DYgHo/bpgLEeLP2cQtClucwLLEJ0eEqpKKX8+t9usDmC/p1/Afp3iNsOyk1lf7RGdXU1BQUFhIeHM2/ePEsWS0REBCUlJWRmZtKzZ4ASI4UInEGVlZXnBDqIAFLo3cLnonu2uU0fqaioIDk5uVH2R6uCaCaL5dJLL+X//b//x9y5czn99NO98vWEEMIbOvjGINAbvyeiszU/dzfZnP1RUFBgyf5ojW+//dZlFkvPnj1JS0tj+fLlTJo0qZl3EKJt6HgLJgB2PsYg1TQSAjxHBsnA703jB4Cp3GdpFu8fup9JHOZmpoqHsfN7rAsACoM7SLeUrPEP3c/kVqw1FWPI4CEcjRpgP8JsS7N4f3oQvavL6UIgnyMswNoA+03s/nyYLVxTXdAN1M1ZXk+C8aJ1nlH7UN2SQfQ4KH8VV36SxlleDUpFGYfRC7Tmhp+JoG72dXC17sFVlhdGwyyvP2DNvLsKawkvH1KR0CDLC24Co+FWmMdonHn3vPQzEcKiR0VFRcPymB1RBTqj+CrwbBNEU/1FWsrZJ8Vms1n6pAwcOJAFCxawcOFCzjuvI7WaEcLq6NGjHf2BF8BB9MazIUCRJyc4+4skJSVZ+ou01Mcff8z111/fqE9K3759mTNnDq+//jpXXnnlMb+/EEL4ilKqI2cpmi1Fb/K+B2vfVJf27t2LzWZr1F+kpZx9UqKioix9UkJCQpg6dSqlpaUkJiZy3HHHNfMuQrQdHXPBBGA2jwOvmEb6ovhXg1mJ2PnSj1FZ2SnDXC4MQtEZHOYG2I8zm1f9GpeZzhi5GfMuTsVfsTbALkXfFASGzryJwZqNcBswznS8C7gD6VsSDP6JbnDm9Am6l4ULxhL0woWTs+xVN9fzvUXNBG4xDdSWjTKqG881NgNJDQafBHV247nepK4AHjUNOIA4MCoazzVcZd49CGqiLyMEdTI0yvL6MxhrGs81FDTKvIsCy+K3EKJj9ghoygZ06dVpWD87XDp8+DD5+flERES0uATO1q1bufXWW4mNjeWrr+rXn0844QTS0tJYtmwZ11xzzTH8FYRod+Qzqt4W9OfTNcDH7iY7HA6Ki4sZPnw4OTk5HDnieXGByspKUlNTGT9+POvX1+8jc5YILC0tJS4ujpCQjvt4QAgR9C798ccfpcKAVo3eSD0QyAP3Ze+3bNnCjBkziI+Pp7y83OMv5HA4KCoqIjw8vNHvnvDwcN5++21yc3M5+eSTW/yXECKYdfQropnQZGbGf7HznD+DacKjwNtNvPYxOnsisOwsA+Y08epuIA473sn/O1Z2vsewZA+ZOYAZ2N3XExa+pmLQ2Q5OB4FpYDSX5ZUCmGsUXIRedPERdRH6oqRuALgDjPKmzzGeBcvnSS902Ssfbb9QPdBltszvnw1GM1leRsPPE2c/k9OaOKGVlAHMA8z1Ht4E/tH0OcYe9EKV+fMkE9RIHwQoRFslu++sFHoH94XoEjhus4YrKytJTk5mwoQJbNiwodm5+/fvJzs7m6ioKJYuXVo37txtV1ZWRmJiImFhHblSmhAW1yilQgMdRJBZBgxFZ8a5TR85ePCgy12+rjhLBEZGRlJYWIjDUb/HLTo6mlWrVpGZmUn37t1b+VcQQgifM6qrq2X3idXP6DLgVwKrPDmhpKSEUaNGkZ6ezi+//NLs3I0bNzJlyhSSk5Mt2Y2nnnoqeXl5FBcXc9FFF7UifCGCV8deMLGzF7jTxStfcjx/8nc4LtWXvWp4g/8LnbgRu/vat36SDnzmYvwW7HinKHhrzeZlrL0anDJqF31EQKlzgIIGg38Ew02Wl/Eruim4ucnv70HN8Gp4QG25sOexZnnlgeFJltcfgS9Mx1cC2V4MzuwpwFzzpRTPSmw9DpaMtdoMEJ+UvUoFzMVNdwC31vctaYpRin7o6RQKvAjqJG8HKEQbdcXOnTvlv4fGDqGzXc8DFuBBRummTZuYPHkyCQkJ7NxpbcHm3G03cuRI8vPzqa6uTzAcMWIEJSUl5ObmcuKJJ3r1LyFEO9Brx44dUvOpsRp076Xz0b3m3KaPOOvIx8bG8uWXjS+XnQ/FbDab5aHYoEGDeOGFF5g/fz5nnXWW9/4GQgjhe5Kl6NpGYBQwmaY3hdeprq5m3rx5LhfTQffPSkpKYuLEiZbNQ127diUlJYXVq1cTExODYRhe/msIETw69oKJdpuLsd4cIXg6cRrcjLWxNEBXjtI3EOG4FEI4+gK/oTP8HUqT7PTD2ljaSToaBpwKQy9EnGAa/C8YHmZ5GVuA3zUYfAqUq5/J1sgHLjUdfwzM8uxUozZbxrL4mQJqireC09RdwHTTgM7ywvAgy8uozZah3DQ4CviL9+IDUA17pNQuDBs/efgGfwVLT6QzgPm1WStCdHQhhmGMCXQQQWw7eiNKFLDJ3WRnc+TIyEhycnL49ddfWbNmDWPHjiU5OZmffqr/2Dr99NPJy8ujqKiIwYMH++5vIEQb16lTJ8mEa9oe9LXlJcAbnpzg7J2UmprK7t27myy70qtXL7Kysli2bBmjR4/2RexCCOFrY5WSe75mLEZX3JiFtY+qS+ZyjevWraOqqor8/HwiIyMpLi6uK09rGAaTJk1i5cqVpKSk0KVLF9/+LYQIAh07HdrOHVj7EDj1pZrnWUQ009zXAvSpTIbi4G8uXgkFXsLOZdhp2BzZv+z0wUEhrn+ecrGzDrv7hxI+ZScE/UDe1SLT78lgFbNdZp8I/zgT+G/tH6cW/nsYi0ApoLdpsC/WZuatoHoC79f+cXq7trG7h4xPQU0ABpkGvZi9oQx0GbME0+CHYLQgy8vYC2oSMNw0eFQvarnq0XJMTgJLFt82MFqQ5WU4QN0CNFxsOhnd2F6IDq22KeaiQMcR5FYCV6DLsz6M/vxokrPR5X/+859G5Qu6devGXXfdxd13303nzp19FrAQ7UXtZ1SG24kd21fABPS1zj+Ac5ubXFNTQ2FhIa+++ipVVVWW3cJhYWHExsYya9Ys+vTp49OghRDCx/pt3759CB70ferAqtCZii/U/u9N6HLbTfr444+54YYb6N69e6Pr3EsuuYSsrCyuvFKSQ0XH0nEXTOxcSOM+BHsA51VkFF+QCjzi79Dq2OmJg5cA8933bupj7A88Dfyfv0MzMdClLc40jZlj7AK8wN+5kgc46O/gTOyAecetOUZQPImd97Gzxc9xCQCMb4BvvPA+Ra1/jybfez+6VEJr32c5sLz17+PyvRV4o/eS8Snwaevfp8n392jHpJv3qMQr/x5CtEvjAh1AG3EU/TmyCLABdwPNNhsx30QahkFMTAxpaWmccsopvowzKCml+PTTT+nRowcDBgwIdDiibRn23Xff9T7rrLP2BDqQNuB/wFvoGvVp0HwVhIMHrbdbERERZGRkcMEFF/gswGC2ZcsWjhw5woUXXhjoUIQQXhIaGjoWWTDxxDZ05Yl8dIP4oc1NVkpZrnP79u1LSkoK06dPJySk4xUn2r9/P59//jmXXnopXbs2LPgjOoKO91MPYK99iA/Hm0bzCOF6zM2EFZnYCWQz4Sex7iYqJZRLgErT2I1kkOjfsEwyuB8YbxrZhS5Z9J5pbDAHecKvcZnZGQ382TRSjd6x9YxprCfwcu3PhvBMKHB9C/6c6fpthPCLC/D8Z3VCgGIUwlvO2Llzp9SE8txe4D50CQOPF97j4uLIzc3tkIslmzZtYsqUKYwbN44RI0bw9NNPBzok0bZ0CgsLiwp0EG3Ir8Ac4Bz0hj+PKiAMGzaMhQsXdsjFkvLycu644w4iIyO59tprmTXLwwq6Qoigp5SSPiYtsxrdPzUe/bzOrdDQUF599VXi4uI63GJJdXU1Tz31FFdddRU33ngjI0eOpKKiItBhiQDoWD/59R7H2odgA314EBulGJa6+rqZsB3/N0/NIAEwN63eA8TxF3ZgcDvmZqWKHOz8xs8RQiZXonjYNOIAZmBnOzr2fabXbsPOrX6ND8DOKejFMXPZo1TsvAckYt2ZcAnwqB+ja+u6oRuEe/pHLmxEIE3H85/VwgDFKIQ3SY+AltuM7jU1HmjcQbkBV02W27vKykruvfdeJk6cyAcffADoHYm5ubkBjky0QXJd2HI/ozNNrkY/AGvW119/7fOAgs2BAwfIzs5m9OjRvPXWW3XjCxYsYPfuwFaxFkJ4TeTOnTu7BTqINsZZieJ89AL8r81Nrqmp4ZNPPvFHXEGlpKSEqKgoMjMz2b9/PwAVFRUsXLgwwJGJQOh4JbnsTAPuNI0coBMzSKr9wFBkAxHUX8TXNhNmIuZFCt/GeDGKx0wjCoPbmY3uQzCbN7HzD+CB2tc7AwuxMxQ7+/0UYy8cLASOM41mYGdZ7etbyeB3KEsN9SfJYj3pfOGnGEPQ5cJONY2+jp3c2tcPk8l0HKxDP/wHSCKDlcz+/+zdeXgUZbr//3d1EiAGEBBZBFzBBRUVdxQEJTpzRsbv8QcBERQGl1EUlwyiYtJPB1BE4Aiu6KigghKZcQF1Digc1lnU0RkXHFHHMZgEVFBkE5Ku3x+VQFXSIU3o7upOf17X5XXZd9XTfFiMpO96npuXE5IxdU0h8jyYfan3GzuROFpIlE/UuOiIPklluYA+xW6YN4G3gJHAJIj84MyOHTsSmclXu3fvZs6cOTzwwAO1zrYGItZE6vELvwOksHeB84EBODtOjox00/bt2xMYyV+2bbNgwQImTZrExo21x9lVHzWjGS4ijUIznM/s/tfvICloCzAO52j/e4FBdd2YTv8P+fLLLzHG8NZbb0W8vnXr1gQnkmSQXg0TQ1ecLwx7WfyWAtdQaEOYSQxnN++z94P2/8JwC4YH457xAXLYRjF7P8AHmEaQV2vceTdwHnsHM1f/3AbHPaPjKeAo1+vldGeS544gL2GYxd4B1DlUUsx0zuJ24v8pg8Vd2J4nbNfThKtxN74K+ZgQt2LvmYVgYfM0hvcxfBX3jKnrD34HENlP71T9I5Iu+q5bt65pt27d9vkEmdRpN858kwXAKzjfmKelN998kwkTJvDVV1/5HUUalyNLSkq6dunSRQ8nNNxCnObuw8BvfM7im3fffZeCggL+8Y9/+B1FRBInFzVMDsTnOLuqL8R5UKjJvm9vnH788UemTZvGnDlz2L17t99xJMmkz5FcM6t2YXgH5T1BkLm17h3PBiyuxHs+7BQM58Q3JLCNRwH3uePv4Az48zJUkMkQnOHl1fIwCfjLsmEMcLmrshEYSl7E83RvBT5wvT6JLUyNZzwAiuiNjXFVKggwhLv5vta9QZ7EewRPK2A+s/Y9+FVERCSJ5TRv3rxX/bdJPTZBeu46/fzzzxk2bBijRo1Ss0TiompwrxyYHezH7KXGpLy8nDFjxnDZZZepWSKSfvT/j9hYCpT6HSLRwuEwL730Er179+b3v/+9miUSUfo0TDYxFTxzPj4Gbqvz/iDLgPtdlSzgeSZzcFzyARhGgGfOxw9kMBjDroj330MJ1NgxAY9g6BHHjD3w/rqEgeGYOr7IGnaSQR7gPqvhRkJcEbeM99GaMM/h3kFlUUjhPo+EugFcO43gLMo882xERERSioZiSkNs3ryZu+++mwsvvJClS5fWuh4IBOjTp48PyaSx0dcoaYidO3cyffp0zjvvPBYsWIBt1z41u2/fvokPJiKJdNLXX399mN8hJPWsWrWK3NxcbrnlFr777rta1zt06MDxxx/vQzJJNunRMDFcijPgu9o2nN0Y9R3KFwRWuV4fw84aR3rFygS64ZxB63YDBfx7n+sMi4BHXJVmwDwMsR+CZWgOFFf9GNXux7B4n+sKWIfFzZ6azWMYjo55RrD4mWeAI1y1ZZzAlH2uMmzF2ZK401UdR4gBsY8oIiKSEHr6TqJWUVHB888/T58+fZg9ezYVFRW17jnttNN49dVXKSgo8CGhNEIX2batHd0StSVLltC3b1+mTp0acY7U0UcfzbPPPsszzzzjQzoRSSArKytLTXeJWmlpKWPGjCEvL4+1a2uPVc7KymLUqFGsWLGCU045xYeEkmwaf8NkIl1whrZbrupNGD6pd62hArgCcLcdB2G4LqYZDc2opBho4ao+guHFqNa34XfA312VE4nPoNfHgeNcr/9KR4JRrQwyB3jWVTkYZ1B9bM9KNOQDl7kqG6j7uLCaa/+JMwCrmoXNUxj05IKIiKSi08rLy9v5HUKS36pVq7jkkku44447+P772qeXdujQgRkzZrBo0SJOP/10HxJKI9WirKzsbL9DSPL76KOPuPzyy7n66qv5+uuva11v2bIl48ePZ9myZfTv39+HhCKSaNqlKNHYvn0706ZN27MrMZLc3FxWrlzJhAkTaN68eYITSrJq/EPfKxgMvO2qrMUwO+r1hvUYhuMdpHcehnlVuxIOnMUvsVkHrKuqbAF+F/X6MfzMBIZQ6Rm6fjATOM4z0P5AOEdxNWHvGbk2MJbrif6wvxxuZBsA2XtqFhfhDJk6cPfRmp85De85vo9iKI/6PQwPYeiEd6D95TjDFEVERFJJoLKy8iLgBb+DSHL66quvuO+++1i4cGHE69nZ2fzmN7/h1ltvJScnJ8HpJB1UfeC1qt4bJS1t3ryZ6dOnM3v2bCoraz//FggEuPzyyyksLKRt27Y+JBQRH11i23bAsqyw30Ek+di2zaJFiygqKuKbb76JeE+3bt0IhUI6xlEiavwNExODAeOGPwF/OvAwdQjyMgc6ULSAdThHSsWHs/viwN5/LNtwZq7Ex11sBq48wHexMZ5dJiIiIikrEAjkooaJ1LB9+3Yee+wxHnroIXbtijwqLzc3l4kTJ9KlS5cEp5M0czFEuWNd0sbu3buZM2cOU6dOZcuWLRHvOe+88ygqKuKEE05IcDoRSRJtS0tLTwHe9zuIJJcPPviAwsJC3n333YjXW7Vqxe23387IkSPJyMhIcDpJFY2/YSIiIiKSpmzbvti2bcuyrNpTcSXthMNh/vCHPzBx4kS+/fbbiPecfPLJFBUVcfbZOilJ4s+yrDNLSkradOnSZZPfWSQ5rFy5koKCAj777LOI1w877DDGjRvHoEGDEpxMRJLQxahhIlU2bNjAtGnTmDdvHuFw7Y1HWVlZXHXVVYwdO5aWLVv6kFBSiRomIiIiIo1Xp/Ly8u7Ax34HEX+9//77FBYW8t5770W83qZNG2699VY9bSeJlpGZmXkhEPlgcUkbX3zxBaFQiLfeeivi9YMOOogbbriBm266iaZNmyY4nYgko6qd1Pf7nUP8Vb0rccqUKWzdGnlyQu/evSkqKuK4446LeF2kJjVMRERERBox27YvRg2TtFVWVsZ9993HH/7wB2y79kaj6qft7rjjDlq0aOFDQkl3VXNM1DBJUz/++CMPP/wwTzzxBLt31x6PaVkWl156KYWFhXTq1MmHhCKSrGzb7l1eXp7ToUOHbX5nEX8sWbKEgoICvv7664jXjz76aILBILm5uQlOJqlODRMRERGRxi0X+B+/Q0hi7dixg6effpoHH3yQbdsif47Qu3dvJk6cSLdu3RKcTsTjEr8DSOJVHxE4YcIEvvvuu4j3nHrqqRQVFXHGGWckOJ2IpIgmtm33Ad70O4gk1kcffURhYSF/+ctfIl5v2bIlN998M9deey1NmjRJcDppDNQwEREREWnc+paUlGR36dJlh99BJDGWLFnC+PHjWb9+fcTrxxxzDMYYLrroogQnE4noiPXr1x/buXPnyEMrpNFZvXo1hYWFrF27NuL19u3bk5+fz9ChQwkEAglOJyKppGqXohomaWLz5s1Mnz6d2bNnU1lZWet6IBDg8ssvp7CwkLZt2/qQUBoLNUxEREREGrdsy7J6AW/7HUTi68MPP6SgoIC//e1vEa8ffPDB5OfnM2LECDIz9W2AJA/Lsi4G1DBp5EpLS5k8eTILFkQ+ga36iMBx48bRvHnzBKcTkRR1sd8BJP6q55RMnTqVLVu2RLynV69eFBUV0b179wSnk8ao8X+nZGiCxc24f64Wb1FI5ImXkd9jKBZdXJXPCPJy7EICIUYC7VyVjwjyetTrDRdicaarsoUgjwO1D6tuKMMvsDjFVfmOIE/tx/ruWAzY89rGBh7FEHkqU8Mynorl2tZvUwk8jGFnVOvvozW7uM5TC7CAAr6IWUYREZEEy8jIyEUNk0Zrw4YNTJs2jRdeeCHi03aZmZkMGTKEcePGccghh/iQUGTfqgb3Pux3DomP7du389hjj/Hwww/z888/R7wnNzeXCRMmcPjhhyc4nYikuBO/+eabLp06dSrxO4jEx8qVKyksLORf//pXxOuHHXYY48aNY9CgQQlOJo1ZOjRMdmHIAu7bU7P5BsOpGCIfluoW4lfYPI+NVVXZSYBz4pD0K2yeBDKqXu/G0AdD5AP53AxdgZexabmnZjGMWDZLHJ9gMxdo4/qxKzHMjiJjc+AP2Bzvqk6NabPE8Sk2zwCnumpHAaOjWGvxM08B/+2qLec4psYyoIiISKJVDX6/0+8cElvVT9s98MAD/PTTTxHvOf/88wmFQpxwwgkJTicSPdu2+9m2nWVZVu2p35KybNtm0aJFhEIhSktLI95z4oknUlRUxLnnnpvgdCLSiPQHnvE7hMTWl19+SSgUYsmSJRGvZ2dnc+ONN3LTTTfRtGnTBKeTxi49DgQ13A8sdFU6Ac/CniZIZBPpgs0cz30WYyjkHzHPGGQZcL+rkgU8z2QO3ue6mTQFisHVLIEnCDI35hkNXwNX423EPIwhmv1uj4KnWfIOMD6G6RyGnWSQB7g/NbiREFdEsfYWvM2SjcBQ8qj9qKaIiEhqOXXjxo0d/A4hsbNkyRIuuOACCgsLIzZLjjzySGbNmkVxcbGaJZIKWpSVlekT80bkgw8+4LLLLuP666+P2Cxp3bo1RUVF/OlPf1KzREQOiGVZuX5nkNjZsmULkyZNol+/fhGbJZZlMWDAAFasWEF+fr6aJRIX6dEwAZsmjAK+cdV+SYjf1bnCkEkFLwDucwuKCfJknDJCdwqBpa7KMezk9/tcs4kHgdNcnNLopQAAIABJREFUlY+A22IfrophEd7t8jlAMYaD6lwTYhQw3FX5gQwGY9gVl4wFrIMax2rZzMJwbJ1rDGfgbViFgeEYIj8KJSIiklqsiooKTfhuBL788kvy8vK4+uqr+eqrr2pdb9GiBffccw/Lly9nwIABtd9AJHnpA69G4LvvvuOmm27iV7/6Fe+++26t61lZWVx//fX8+c9/5pprriEjIyPCu4iI7Jdc27bT5fPNRsu2bebOnUuvXr145JFH2L279qbTnj17snDhQmbNmkWnTp18SCnpIn2+oNzNt8BQcO0WsLmXIs6rY8W94Ln2OXBt3PIB5FFJJleB56iwgRh+G/F+w0DwXNtGBnkYtscxJXQkHzxHhZ0IzIx4bxEnYte6NooC/h2ndA7Di+A5KqwFMBdDk1r3Ort45oPn2n0YFsczooiISILpw8gU9+OPP/LrX/+aVatW1boWCAQYMmQIK1eu5MYbbyQrK8uHhCIHRIN7U1w4HGbw4MH88Y9/xLZrnw7dv39/li5dSjAYpGXLlhHeQUSkQdqWlZWdVv9tksxmz57N2LFj2bRpU61r7du3Z+bMmSxcuJCePXv6kE7STfo0TAAMK7AIuSqZhHmBe/FOvwzxS/DsPvkZGIxhS9wz3sM3WFyFs8Oh2oMU4f3iP4FjoMbuE4vRFLA27hmvZzcZDAN+dFVHEfLsIoEHyCFMMXh2nzyE4Y9xzwiQw03AJ65KzV0kjp08BhztqqwETDyjiYiI+OAS27b3fRypJLUPPvgg4jeRZ511Fm+88QbTp0+nXbt2PiQTiYkzSktL2/odQhquvLyctWtrfzvatWtX5s6dy7PPPssxxxzjQzIRSQNquqe4pUuX1qo1bdqUMWPGsHr1agYOHIhl6VsZSYz0apgA2EwC3IfgdWGXa07JRDph15hvYpGP4e8JyxjkTfAMGm9KmGJM1ZySWWRRyfPgmW8ymyBzEpaxgC+Aazw1m8cwrjkl23gYPPNN/gnckYh4AIxlGwHywLPj5hZCrjklIUaDZ77JZjIZjqEiQSlFREQSpcOGDRtO8juENFzNowkOOuggHnvsMV5++WV69OjhUyqRmAlYlnWh3yGk4SIdnxIMBnn77bfp16+fD4lEJI1oJ3WKq6jwfgx33nnnsXz5cu68804OOqjuKQAi8ZB+DRNDGBgGlLmqv8JwC8VkUMGzgPvJpoUEeTShGR3jgdWu112BJwAoYypwjuvaZ2QzJnHRqhgWAI+7Ks48k+lkYxgCjHBd21p1XNjOREakkI+xPL82FjZPYziSIk7G5gHXNRuLkdzDfxKaUUREJEFs277E7wwSO23btuWyyy7T03bSaNi2rSeEG5kRI0boiEARSYTzNm7c2NzvEBI7F198MYcffrjfMSRNpV/DBMCwEYvheI+9up9PmAu4n2r6N3AVUPsA1nhzdjgMBdznLgzG8Bxws6u2gwADGcdPCc23123AB67XJ7OFucCTNe67lgL+lbhYLkGeAp53VVoBLxDmD0C2qz6NIK8mNJuIiEgC2batp+9EJJmpqSsiIg3RpLKy8gK/Q4hI45CeDROAIG8Dk1yVJsBg1+vdBLgSww+JDeZi+Lpqnom7YTMM73Fht1DIh4mOtoezY2QQeOa7/Dfg7uzPqhrC7p8cfgue+S7nAN1cr9/B2dUjIiLSmPUpKSnJrv82ERFfdC4tLT3B7xAiIpJ69GCQiMRK+jZMHAZ4u45rd1LInxOYJbIgrwMP1nG1mGCtnRyJZ/gcuLaOqx8BtycwTWRj2QbkATsiXP2BDAZj2JXgVCIiIonWLCMjo7ffIURE9kHHcomISEPo/x8iEhPp3TAxhAkQjHBlDYb/SXieujQjRO0P+jeRXWPoup8MxThD3b0CDMN4hq77x/AR8EKtusXvKODfiQ8kIiKSeHr6TkSSnL5GiYhIQ5xQWlqqoRcicsDSu2EyiyzCnqHf1U7HcFrC89RlJw/gnbUB0IadXO5HnIhCXA/0qFUPMyrxYepQxJk4R5p52VzDLDSJUERE0kIgENDTdyKSzPquW7euqd8hREQk9ejBIBGJhfRumJQxGTg3wpWmwHwMLROcqDZDHnUdd2XzCBPw/4xfw0nYTK/j6s2E+O+E5onE0Iow83Fm1dR0DmURdxqJiIg0OrZtn/ztt9929DuHiEgdcpo3b97L7xAiIpKS9GCQiByw9G2YGC4FbnNVtgP/cL3uCjye0Ew1GbpCrRklf3H9ew6VvMj0WrtPEucBcoCXgINcVe/sF5unmMgRiYxVgwU8DRzlqr0Hnpkld2Hon9BUIiIi/rAqKir09J2IJC09ISwiIg1hWVaubdsZfucQkdSWng0TQ2fgGZwP0qvdQiYDgO9dtSsI+XSk1MyqXS54drnMAvoB77tqPdhS5+6O+NvGo8Dxrso7QF/geVetNRUUYyLu7og/w83g2eWyEfg1cJerFgDmMgk9cSsiIo2ePowUkSSnJ4RFRKQhWpeXl5/udwgRSW3p1zAxZOIM/m7rqhZj+D33UAKMAOw9V2wepohTEpoRYBNTgZ6uykfA7Rh2ksFg4CfXtd9iGJrQfACGEcBVrsoPZDAYwy7gBuBT17WzgAkJTOcw9ADud1XCwHAMpRj+B3jVda0du5lHMXoaQUREGrtc27at+m8TEfHFaeXl5e38DiEiIqnHtm013UXkgKRfwwRCwPmu11/gnhFiWAQ87LrejDDzMJ4jp+LLOS5stKuyjQzyMGwHoIB1wHU1Vj2O4dgEJYQJdANm1qiOooB/A2DYSoA8YIfr+lhCDEhQQjA0B4qBZq7qZAyLq/7dpikjgf+4rvdlLXcmKqKIiIhP2n/zzTeJfyBERCQ6gcrKyov8DiEiIilJO6lF5ICkV8MkRD9gnKvyM5CHYYvnvjaMBf7uqnSndnMgPibSBZiD+7gwi9EUsNZzn+HFqvuqtQDmJuTYK0MzKimu+jGrPYThj577CvkQuMNVsarmmXSKe0bH48Bxrtd/pSPGc8ddbCbAYGD3nppNCMOFiQgoIiLiF8uy9PSdiCStQCCgD7xERKQhen3//fct679NRCSy9GmYTKI9NnPBddySxViMpzHiGMPPZJAHnkbKKAzD4prRkEkFLwJtXNUXCXoaI3vlMBo8jZQzgMnxC7jHDOBU1+sPaelpRO1leBg8jZRDqUjAsVeG64ArXZXNZDKY612NkWqF/BU8jZQMYA7Gc2ybiIhIo2JZlj6MFJGkZdv2xTo6UEREGiBz586dff0OISKpKz0aJoYAu3kePAO9FxH0HL3lVVDjqC7HYxjPgPNYuw/o5Xq9juxaR2/tNZZtUOvYq1sJcVl84gEhBuE9DmwrkMftngw1jYKqo7ocffiEgnjEA6CIE4H/cVVsLEZyj+forZomw56jugA6A8/i3ukjIiLSuPQuLy/P8TuEiEgdOpWXl3f3O4SIiKQe7VIUkQORHg0TiwKgv6tSQpMaw90jMRQDv3dVnJkY08mOdURC/BLId1V2EmAw4zzD3SNldIbB72Vh8wwTOSLmGSdwDDZP1qjegPEMd6/N8EPVsVe7XNUCjOf3JDYeIIcwxeCZOfMgQc9w90gZnWHwUOaq/hLDbTHPKCIikhyahsPh3n6HEBGpiwb3iohIQ+j/HyJyIBp/w8TQB9uzm6GCAFdwN99H+Q43A/9wvT6ZLdwfu4CAoTN2rd0Mt1HI+1GufxyY56q0poL5zCIrZhln0pRK5gMHu6q/x/B8VOsLeQeLe1yVAPA8hg4xywiwjUdwZs5UexeiHOJu2AgMBSpd1ckUcW7M8omIiCQXPX0nIslMX6NERKQhji0vLz/K7xAikpoy/Q4QdxZHAONdlU8pZHXU6w07MeRh8d+e+mQO5k5+jE1Ijsdiquv1DwSZtV/v0Iwb2ck/sFxNl40cDfwrJgk30Q2Ll4CXqiphbB7Zr/cIMpUQ23F26jgsjgPKY5LR0BaLtbgbJAGKKfDsbKnvPf4PwxAsjtlTszkc+HNMMoqIiCQXPX0nIsnsgnXr1jXt1q3bz34HERGR1BIOh3OBJ/zOISKpp/E3TII8d8DvYfgMYryrxPv+bwFvHdB7OM2bKTHJE4lz9NdHB/guNsH9bLLsD8N3xOL3ybDgwMOIiIikhJPWr1/fuXPnzuv9DiIiEsFB2dnZ5wNv+x1ERERSjhomItIgjf9ILhERERGpU0ZGRuxniomIxEhGRoaO5RIRkYbob9t2ht8hRCT1qGEiIiIiksZs29aHkSKStDS4V0REGqjVhg0bzvQ7hIikHjVMRERERNLbxbZt6++EIpKsTt24cWMHv0OIiEjqUdNdRBpC3xyLiIiIpLe2ZWVlp/odQkSkDlZFRcVFfocQEZHUo53UItIQapiIiIiIiJ6+E5Fkpg+8RESkIc7ZtGnTwX6HEJHUooaJiIiISJrT03cikuQusW3b8juEiIiknMydO3f28zuEiKSWTL8DxN0ssihjJnDInprFywR5Iar1hgAwHTjMtf5/CfJUTHOGuAub01yVf2KYuB/rb8HmPFflcwx3xywfgCEPGOiqbAZuxrArqvUhBmAz3FXZBozGsD2GGc8A7nBVwsDtGEqjXN8dMDWqd2L4Mib5REREkpBlWedv3Lixebt27bb6nUVEJIIOGzZsOAn40O8gIiKSWqoeDHrF7xwikjoaf8PkenZjWAgsApynkmwGYFiL4YN611vchc0trsp6bG6MeU6bl4A7gZZVlUEYvsLwfL1rDb/AZjp7dwz9DPSKecYcXmcbBjjBVd0K5Ne71nA4NrOBNntqFiMIxrBZ4vw472LIAC53VTtQzEXkUVnP2mbAPOAUV/UhNUtERCQNNKmsrOwDvOF3EBGRSKoG96phIiIi+yUQCOjoWRHZL+lxJJfhDZxdItWaAcXcT4t9riuiN7Znt0EFcAWG7+KQ8XPg2hrVxzAcv891k2gPPIP799JiLIa/xzoiY9kG5IGnyXEbIS7b57pZZAEv4m6WwIsEmRPzjI5RwL9dry/gEwqiWPcw3mbJP2nJuJgmExERSVJVH0aKiCQlfY0SEZGGsG2764YNG472O4eIpI70aJgAdOQuYI2r0o0dPFHn/YY2hHkO7y6cIIZVcUoIhmLwZGoOFDOd7DruD7CbuUAHV3URQR6OY8aPsLjVVbGweQbDkXWuKeMB4FxXZR3ZXBenhGD4gQCDwXNUWAGhfQyLDDEYp9FSbSsZ5HE7O+KUUkREJNnow0gRSWZ9SkpKIn9fJCIisg+VlZX6e66IRC19GibXs5tMhgDfu6pDCDEywt0Wzq6NI1y1ZXTn/nhGrHILeI4KO5ktTK3jXgNc5HpdAlwN2PGJViXIk+A5Kqw18GLVThKvEL8CxrgqO4E8xvFTXDMW8g6WZ4ZLAJvnmETHWvcaumLXaJ5Z/JYC/hXXjCIiIsnlhNLS0sP9DiEiUodmGRkZvf0OISIiKanuB2hFRGpIn4YJwD2UACNwNxRsHsXQw3OfYSzwa1dlAzC03hkYsWDYSQZ54Gko3EiIK2rc1xc8DYEKYAiGTXHP6LgB+NT1+mzKKPLcMZEu2MyhenaM45aoZsfEQpDpwKuuSnt2M5diMvZUZtIUKGbv7BiAJwgyNyEZRUREkkjVUEwRkaSkr1EiItJA/W3brv2Qr4hIBOnVMAEwLAIeclWcQd+Gg6qunwVMcF0PA8MwlCcsYwHroMaRVTazMBwLgKEdznDyvR/8W9yJ8Rw5Fl+GrQTIA8+RVeMIMaDqeiYVvAAc4rpejNnHMWixZ9OUkcBXrlo/1nLnnlebeBA4zXX9I+C2hKQTERFJMoFAQB9GikjS0uBeERFpoJalpaVn+h1CRFJD+jVMADryO+AvrsqJwEzuozUwH2jiujYBw1uJjAeA4UWcY8GqtQDmVs0zeR48R0u9WbWbIrEK+RD4natiYfMUE+kE3Auc57r2BbWH2sffXWwmwBBg956aTQjDhYQYBPzWdfc2MsjDeIbai4iIpA3btvvbtp2efz8UkaRn2/bJ3377be0jdkVEROqnpruIRCU9vyG+nt1kMAz40VUdxc+sBs/w8v+ju2e3SaLdBHzsen0GW3gP79mL64GriPfckroYHgVeclUOpYK38DZSfgbyMGxJaLZqhfwViwJXJQN4DpsnPfdZjKaAtQnNJiIiklwOKS8vP93vECIidbAqKiq0E05ERPabZVn6/4eIRCU9GyYABXwBXFOjeoLr378FrkzI3JK6GLYTYDB4djy4M1YAV2D4LrHBashmFPCZq3I83rklv8Pw98SGqiHIFOA1V+Uw4GDX69kEmZPYUCIiIsnHtm09fSciSUtzTEREpIHOLikpaeN3CBFJfunbMAEwLAAei3DFxmIUhtJER6qlkI+xuKmOq0EMqxKaJ5Jx/ESAoTg7SWpahOGRREeKwAZGAl9HuLaObMYkOI+IiEiy0oeRIpLMcm3btuq/TURExCMjIyOjn98hRCT5pXfDxPFahNoKgixMeJK62CzBO1wdYBNtmOZHnIha8RHw71r1DO7Ar+PCajJsAv5Wq24xgXH8lPhAIiIiSanX999/39LvECIidWj/zTffnOJ3CBERSUl6MEhE6pXeDZN7ORR4KsKVCwhxZaLjRGTIBF4AsmtcacMmX+ereG1iKs5RXF6VPEoxGYkPFIFhBDCwVt1mEvdySMLziIiIJKesnTt3XuB3CBGRuliWpaMDRUSkIS7xO4CIJL90bphY7OJpnFkWtdk8juHYxEaKKAScX8e132H4dSLDRGS4FBhdx9W+rOXuRMaJaALdgJl1XO3CLubgnbsiIiKStgKBgJ6+E5GkpcG9IiLSQEeWlJR08zuEiCS39G2YGMYBl7oqJUCx63VzYB6GJgnN5RYiF7jTVfkZeNj12gKeYiKdEprLzXAk8BzeZsMMnIH0Dpsghj6JDeYynWwq+QPQwlV9Dtjoev0rQppjIiIiAhr8LiJJr3d5eXmO3yFERCT1ZGZm6u+5IrJP6dkwKeJsoMhVqQCGksNvgE9c9dOB+xMZbY9JtMdmDt7fo99huBl40VVrSwXzfDn2yjkubC7QylWdjeFWLApdtQyc5lPbhOartoUHgZNdlX8C12ExBKjcU7V5oOrPhoiISLo7rry8/Ci/Q4iI1KFpOBzu7XcIERFJPbZta5eiiOxT+jVM7qM1YV4EslzVIIZVjGUbAfKA7a5rt2D4fwnNaAiwm+eAjq7qIgyPVP37DXgHrPfhE0+DIlHuA3q5Xq8ju2qXhs39wGLXtU7AsyT62KsQg4DrXJWtZJCHYSdBlgEPuK5lEWYukzk4oRlFRESSUDgc7u93BhGRfdAHXiIi0hAX2radVf9tIpKu0q1hYvEzTwNHumrL6O7aRVLIx1jc7lkDT1cdPZUo9+D9BqCEJowAbAAMPxBgMLDLsyaUwG8aQvwSyHdVdgJ5jOOnqoxhYDhQ6rrnlxjPmviawDHYPFmjegMF/Mv1ugBY7Xp9DDtrrREREUlH+jBSRJKZjlQREZGGaFFWVnaO3yFEJHmlV8MkxK3g2S2ykSyuJM91LBNAkFk4R01Vaw28yCzi34F2Zn24d4tUAEO4m+899xXyDjDeVQlg8xyGDgnI2Bm7xm4Ri1sxfFDjvo0EGAqeX9/7KOLcuGecSVMqKQbPbpHfY3i+Rkbn1xfPr+8gQlwb94wiIiLJrb9t24k/8lNEJDonrV+/vrPfIUREJCXpwSARqVP6NEwMZ2Az2VUJYzGM8ZTVseK34NmJcDZlhOIXELiXQ4F54JpHYnE3hjUR7zdMA15zVdpDnOeZOO89BzzzSF6qajLVVshyYJKrkkmYFzG0iVtGgE08APR0VT4Gbol4r2E9FldTvYMHwGYmRZwSz4giIiJJrvWGDRvO8DuEiEhdMjIydHSgiOzL4cBVNf7pEeXaEyOsjXa+29kR1voz01Xqol2KIlKn9GiY3E8LnB0jTVzVSQRZUucaw1YCXAn87KqOw8Tti6rFLp7CmfVR7U2CTN3HGhsYCXztqvVjLXfEIyAAnxACLnRVvqBZvbsxQsDbrteHA0/EOtoehkuBm1yVncBQjGc2jVeQ14EZrkozwhRX/dkRERFJS7Zt65tJEUlaGtwrIvU4E+eBT/c/0c6o/VWEtedFuXZkhLXdok4tiXBGSUlJfB/kFZGUlR4Nkx08DhzrqqwEiupdV8h7WIxzVQLAcxgOi21AIMQdwABXZQNZjMS96yESwyYCDMM5usthU4Th/Dhk7Afc6arsBoZxJz/WkzFMFlcCG1zV/48Qo2OecSJdgNl4h8uPxvDPetd25A7gL67KsezwNFFERETSij6MFJEkd7Ft2+nxPa2IiMRSRmZm5kV+hxCR5NT4/3IZ4gZgqKuyGRhWNbuifkFmAq+4Ku2I9bFXhrOwPQ2cMBZXMt7TYKhbISuxPOszgRe4l0NimLEdNnPB8/O+A+NpMNRtPBuwajSAbKZRxGkxzJhJBS+C5+ddjOHpqNZfz24yGAaeBtBIQgyPWUYREZHUcu6mTZsOrv82ERFftC0rKzvV7xAiIpJ69GCQiNQl0+8AcWezkgB7z98O8y3Gc4RV/e+QzVX87NmhAp/QFPZxxNP+yOBbbHq5Mm4jyKf79R42kwjwhqe2y7PL4sBkYVHp2gETxsbw/n69R5A3KeJkoNmeWoBNsYoINCPAGE8lzNr9eocCvsBwKgFX08WK0e+ziIhI6sncsWNHX+BVv4OIiNThYuDvfocQEZGUo6NnRSSixt8wMXx0wO8xjp+A9w48TB0K+Dfw7wN6D0OYeGZ0drtEt+NlXwr5+MDD1MGwlVj8Ghi+Ar464PcRERFpHHJRw0REklTVE8KT/c4hIiIp54hvvvnmuE6dOv3L7yAiklwaf8NERBqLg4HzgS3AaiDsbxwRkfRgWZaevhORpGVZ1vkbN25s3q5du61+ZxGRpPMBcEuNWnTHisNbEda+E+Xa+cAnNWoH9pCsxMvFgBomIuKhhomIJLumwK3AXThNE4CPgXzgf/0KJSKSRrpt2LDh6Pbt23/pdxARkQiaVFZW9oEaxxOLiMAXwMwGrv07DT/ub1nVP5LkAoFALvCQ3zlEJLk0/qHvIpLKBuA0Ryazt1kCcCLwJ2BJ1b+LiEgcVVZWaiimiCQt27a1E05ERPabbdsXrlu3rqnfOUQkuahhIiLJ6CScZshrwDH7uK8/zlM/U/E2VEREJLb0YaSIJDN9jRIRkYbIad68+Tl+hxCR5KKGiYgkk9bADOB9nGZINJrgHM/1Bc4ZsxnxiSYiktYutG1bR7mKSLI6obS09HC/Q4iISOqxbVs7qUXEQw0TEUkGmcB1OMPWxtCw+UqHAA/iDOLrE7toIiICtCotLT3L7xAiInXRB14iItJA2qUoIh6N/0lBQxPgLZwjfqrNwXBblOtbAiuBLntqFg8Q5L4YpgTDY8BgV+XvwC8wVESx2sKwAOjnqr2FYTBgxyxjiOuxPT/v74DzMWyMar2hEGd4d7X/AL0xbI1ZxiLOJcxC9jYDK4FfYfhblBkvBZ51VXYA/TB8FrOMUlMu8D/EbhbJacByoBi4A+fPmYiIHLiLgTV+hxARiaRqcO9TfucQEZGUc3pZWdmhHTt2/NbvICKSHBr/DhPDLuAanOZQ66p/bsVweZTv8CjQw7V2HR2YGoekY4GNrh/nIiAU1coQtwOXu9buIotbiGWzBCDIE8AK14/TDXgBE8WfoyIuAApda1sAo2PaLAEo5M84v2fVP05b4CUMbepda+gMPONa2xoIqVkSN12BV4HFRNEsycjI4IorruD000+P9v3zgLVAEZDT0JAiIuKwLEtPb4tI0rJtu79t243/+1sREYm1QDgcvtDvECKSPNLjL5TOB95jalSfYgJH1bPuOuBKV2UzMJjr2R3bgFDVOMgDdrqqdxLikn2uK+JMbO51VcJYDGc8ZTHPCDZNGYn3if0LcZ7ir5uhHWHm4Z0tcRcmbk+pGuBt1+vDgdmAtY8VmcALOA2Wai9heCL28dJeDs7v0UfAr6NZcO655/KnP/2JadOm8dprrzFr1iw6d+4czdJsoAD4DOfIr/T4miciEh9n/+c//2ntdwgRkTocUl5eHvWTNSIiItX0YJCIuKXPh4eG2cAcV6UVlcyvOrIr0v0n4RwTVM0GfoPhq3hFxPBPLE/zIYDNcxgOq+P+VoSZD56fw0SCLIlbxrvYDAwBT9NoAobz68gYAJ4Dz8/hTQzT4pbRECaLK4FyV3UAhtH7WDURPD+HL2jGtXHJl74s4CrgcyAINK1vQceOHZkxYwYLFizgxBOdTSiWZTFgwACWL19Ofn4+zZo1i+bHPgyYBfwF6NXQn4CISJrLyMrK6lf/bSIi/rBtW+fQi4hIQ+z7YWURSSvp0zAByGE08ImrciZEmEXyADk48w8OclUfxPBKXPMBBHkI+KOrcigwj2LP7oxqT4Fnl8wKulMUz3gAGP6Cs0OgmrM7w3h2Zzgs7sI7QGs9zofmsT0urKbxbMDZHRR2Vadi6FnrXsMvcI5Eq/YzAQZzJz/GNWN6OQvn3Ps5QIf6bs7OziY/P581a9YwaNAgLKv25qDqe1avXs3AgQMj3hPBmcAqnP++D9+vn4GIiIAzd0pEJFnpa5SIiDRE59LS0hP8DiEiySG9GiZj2UaAPGC7q3obIS7z3LeNRwH3F8p3gTvjH3CPUcC/Xa8v4BMKPHcYxoBnDsu3ZDKUPCoTkA9gMvC/rtedcT4M3/updRG9sT2NlUrgagzfJSIghqXAFFelKVCMoeWeyiTa48wt2fvfgsVYCnkvIRkbv07Aszg7O86p7+aau0eaNq13EwodO3Zk5syZLFy4kJ49a/fDIv0wwCCc5qkBotqiIiIiAPzC7wAiIvvQ6/vvv29Z/20iIiK1aJeiiADp1jABKORjLG51VSxsnsFwJAAhRuLsgKj2IzC4anh8Yhh+IMBDtwOUAAAgAElEQVRg8PyYBYSqnpgy9ADud12zsRjFPXyTwIxhmjAcKHVV/6tqAD0Y2hDmOZzdJw6LYFUTI5EKcHYUVDsGeBJwjgvbzVy8Ox4WEeThxMVrtLKBccCnwHD2NT+mSo8ePXjllVf2Zz6JR8+ePXnttdeYMWMGhx56aDRLcnCOBvsM73/zIiJStyNLSkq6+h1CRKQOWTt37rzA7xAiIpKS1DARESAdGyYAQZ4EnndVWgMvYjgJmxmeey1uwPBlIuMBUMg7WJ5dLc48kwl0wzlOyP1U/BSCLExsQOBuviXAUHDtarGZTBHn4ezaOMJ19zJOYHKCE4KhArgCPLta8jBcB4SAi1z1EpowgngfF9b4DcDZvTEZaF7fze3bt2fKlCm88cYbnHnmmQf0AwcCAQYNGsSaNWvIz8+nSZPII4pq6IKzO2op0OOAAoiIpIHMzEx9MykiSSsQCOhYLhERaYi+69atq/+YCxFp9NKzYQKQzY04T5ZXOxv4K9DCVXuMIC8kNJdbkAeB11yV9lTyAXCcq7aGjjWO60qkQpaDZ25KJmEWA7921crJ4ooEHhfmZViPVasRMgO42/V6NwEGcTffJzRb49ITWIHzZ/bI+m7Oyspi1KhRrFixgmHDhhEIxO7LUU5ODvn5+SxbtowBAwZEu6wf8D7OEWLtYhZGRKSRsW1bH0aKSNLS4HcREWmgg1q0aHGe3yFExH/p2zAZx08EGAjscFXdQ94/pCX5CU5Vk01TRgBfuWrujJuBK7me3YkMFcFEYInrtTtjGIurqoaw+yfI68A0V6UZ3j//d1PIXxMbqtE4BKcB9TegdzQLcnNzWbFiBRMmTKBFixb1L2igo446ilmzZjF//nyOP/74aJYEcI4Q+xTnSLGotqiIiKSZi2zbzvI7hIhIHY4rLy8/yu8QIiKSesLhsB4MEpE0bpgAFPIh8LsIV7YCedzuaab44y42Q615JuDslvgNxtNM8YchTBbDgbIIVycS9DRT/HQXsCZC/U2Mp5ki0ckCbgG+AMYAGfUt6NatG3PnzmXOnDkcccQR9d0eM71792bx4sVMmTKFNm3aRLOkNc6RYh8Cv4prOBGR1NOirKzsbL9DiIjUJRwO9/c7g4iIpCTtUhSRNG+Y1O1T4HO/Q7hkUvv3ajNNWO1HmDoEiPTnKcAbiY9Sh45YRPpQ3+J1NLdkf/UHPgAeBA6u7+ZWrVpRVFTE0qVL6devX9zDRZKZmcmwYcNYtWoVo0aNIiOj3v4OwLHAIpwdVN3jGlBEJIXoWC4RSXL6GiUiIg1xWnl5uY7oFklz6d0wKeJkYGqEK2cAwQSniew+WgNzcZombm3YxbOAlfhQNRgC7GYO0L7WtTDzmFz/B+oJUca9OLNqvGymYjTsO0rHAa8TZQPB3aS45pprom1SxFWrVq2YMGHC/jZvqhtEM4iiQSQikgb09J2IJLP+tm37/xdPERFJNZZ2KYpI+jZMDM0JUwxk13HH3YR8fzLJ4meepu4B2r8gFPFIsUS7h7qf4jqanTyZyDARhfgl1DmTphkwD+OZvSJe1UdU/RP4r2gWnH/++ft7DFZCNeB4sCyco8e+wDmKTN+Ei0jasizrzJKSkuT74i4i4mi9YcOGM/wOISIiqUc7qUUkfRsm8CjgngL9Vyzudr0OYPM8k+iY4Fx7hbgV+H+uygbgCqByT8XmXgy9EpxsL0MfoNBVqcCZufKdqzaIENcnNJeboTN2jd04FmOAv7vuOhHneCnxygSuA/5FlEPQqwetFxcXRzto3VfVA+iLioqiHUB/CM6flXeAPnENJyKSvDIyMzMv9DuEiEhdbNvWTjgREdlvlmX9wrZt/09zERHfpGfDJMQoYLirshkYQpDJwKuuejt2M5diH54kN5yBzWRXJYzFcAwvAhNd9UzgRe7lkMQGBO7lUGAe3ift78JQDFyNey6IzYMYTk1sQKj6vZsDtHVVXyLIQziNnS2u+rUYhiUyXpK7EHgPmAUcWt/NOTk55Ofns2zZMgYMGBD3cLGUlZXFNddcw4oVKxg2bBiBQFRfGk8DlgMLgaPiGlBEJAnp6TsRSWb6GiUiIg3UYcOGDSf6HUJE/JN+DZMiTsRmpqtiA7/B8BVg05SRwH9c1/vxCeMSGZH7aYEzt8T9NP9Egiyp+vci4G3XtS7sYjaJnWdisYungE6u2psYpgFgeAPvjo1mQHHVzy1xPiGE88F/tS9oxrUAGD6Hqn/f6zEmcFyC0iWrrkAxzp+xeme7BAIBBg4cyJo1a8jPz6dJk3o3oSSt9u3bM2XKFF5//XXOPPPMaJddCnyMc2RZYv98i4j46xK/A4iI7MO5mzZt0uw5ERHZb+FwWLsURdJYejVMDM0IMxc8sypmYHhlz6u72EyA4ThHS1ULYTg/QSlhB48Dx7oqK+hO0Z5XhjBZXAmUu+65FMPoBCWEEHcA7m0E3wBX4d5V0pFxwJ9d93Rjh6dZFV8h+gF3uiq7CXAld/LjnoqzG+Yp1z3NqaQYQ7MEpUwmOYABPgQGRbOgZ8+evPbaa8ycOZNDD613E0rKOOWUU3jllVeYNWsWnTt3jmZJNs6RZWtx/jvQ9l0RSQdHrF+//tj6bxMR8UXmjh07+vodQkREUpJ2KYqksfRqmMAjwCmu1+/RxvOBuqOQlUDIVckEXsB4jnWKjxA3AENdlU3AcPJcc0sAxrMBGAmEXdWpGHrGPaPhLGxXA8fJcBXGM7cErmc3MATnyLNqIzBclYCM7bCZi/u4MIuxFPLXCHffhDPMvFoP4P74BkwqFs6H/J8DQai/WdSxY0dmzJjBwoUL6dkz/n/k/GBZFgMGDGD58uXk5+fTtGnTaJZ1wjkC7q/AuXENKCKSBCzL0tN3IpLM9IGXiIg0xAUlJSXZfocQEX+kT8MkxGDgN67KVmAoY/i5jhX3wp4jsAA643wQGr8nxw0nYVcdaeWwgZEYvq7j/j8BU12VpsB8DC3jmLEVMB/3cWEWBsPSOu7/GmdouNujTOCEeEXEEACeBzq6qq8TrGN3i2EnAYYC213VMYT477hlTB5nAqtx/mx3qO/m7Oxs8vPzWb16NYMGDcKyGv9Giuqf85o1axg4cGC0P+fqX9dnieLXVUQkVQUCAX0YKSJJS01dERFpoOxAIHCe3yFExB/p0TAxdMXmiRrV6zF8to81YWAYUOaq/heGW+KQEB4gB2duhLuDPRXDa/WsHA+scb3uCjwZ43TVLOBp4EhX7f84gXv3ucqwAHjcVcmhkmKmE59uvcV4vE+TradJjSH0NRXyMdT4vbV5GuP5uTYmnXA+zI9qJ0TN3RbNmqXfiWUdO3Zk5syZLFiwgO7du0ezxAKG4+zcMUSxc0dEJNXYtt3Ptu0sv3OIiNSh24YNG472O4SIiKQePRgkkr4af8NkJk1xGhHuXRezMMyrd61hIxZXguc4rCkYzoltSGAbj4Jn18U7wD31rjNUkMkQ4HtXNY8Qo2IbEAgxBjy7LjYCV9Y6Liyy24D3Xa9PYotnN01sGPpgU+iqVBBgCHd7fn3qWvt7nJ0p1ZzdNIbUnWJem3vWxnCi2DHVo0cPXn755f2Z59GonXvuuSxevJgZM2ZEO7clB+eos4+IcjaMiEgKaVFWVqYjCEUkaVVWVuoDLxER2W+2bWuXokiaavwNk01MB05zVT4Cbo96fZBlwGRXJQuYy2QOjkk+AMNvwDPX4wcyGIxhV1Tr76EEGIF7B4XNwxR55rUcmCJOx/bM9QgDwzGURrXesJMMBgM/uao3YDzzWg6MoQ3wHM7MmWoFFLJ6P97lBuBT1+uzwDOvJZUNAD7B+fPcor6b27dvz5QpU3jjjTc466yz4h4ulQQCAQYNGsTKlSsZPXo0TZpE1VM7Bqd5uxRnTo6ISGOhbyZFJJnpa5SIiDTEKd9++23H+m8TkcYms/5bUpxhNDD6AN/jHqLZ7dHw938a56irA3mPRcSzAVbIexzokUIFrIO4zlfZBBxxgO+xFeI4X8UfpwEPAn2iuTkrK4urrrqKO+64gxYt6u2rpLWWLVsyfvx4hg4dijGGJUuW1L8I+uHstpoL5APfxjOjiEgCXEw8/54kInJgLrRtO9OyrAq/g4iISEqxdu/efRHek0hEJA00/h0mIunrEGAGzvFuUTVLcnNzWb58ORMmTFCzZD8cddRRzJkzh/nz53PcccdFsySAcyTav3COSGtMx76JSPo5vaysLKozCkVEfNCqtLRU26VFRKQhdKyjSBpK1h0mI4ALorx3C5oLIP5aSPQfeHeLZ5AqWcCNQAiiOzqua9euhEIh+vXrF9dgjV3v3r1ZvHgx8+fPZ/LkyWzatKm+Ja1xjkgbiXNU4BvxzigiEgeBcDh8ITDf7yAiInW4GFjjdwgREUk5F9u2bVmWZdd/q4g0FsnaMOlG9B8s1/uJpEicXUzy7BDoj7OrpHs0N7dq1Yrbb7+dESNGkJmZrF8OUktWVhbDhg3j0ksvZdq0acyePZvKysr6lh0HvA68BdyCM2tGRCRlWJaVixomIpKkqr5GGb9ziIhIyumwfv36k4F/+h1ERBIn2Y7k+j+cTPvzzyF+BBVxacr+/7l9N8YZqj9wX0IUzZLMzEyGDRvGqlWruOaaa9QsiYNWrVoxYcIEli5dSt++faNd1h/4AKfpFdXuIBGRJHGJ3wFERPbh7P/85z+t/Q4hIiKpJzMz82K/M4hIYiVbwwTA3s9/RJKBX39uq490+ifwX9EsOP/881m8eDFTpkyhTZs2MYwikXTr1o158+YxZ84cjjjiiGiWZAFjgC9wdptkxDOfiEiMdC4tLT3B7xAiInXIyMrK0tmzIiKy32zb1hwTkTSTjA0TEalfALgK+JQoh4YfddRRzJo1i+LiYo4//vh455MacnNzWbFiBUVFRTRv3jyaJYcADwJ/A3rHNZyISGzo6TsRSWb6wEtERBqiT0lJSbbfIUQkcdQwEUk9/YD3gTlAu/puPuigg8jPz2fZsmUMGDAg7uGkbllZWVxzzTWsXLmSYcOGEQhE9SW4J7ACWAgcGc98IiIHSB9Gikgy+4XfAUREJCU1y8jI0EOMImlEDROR1NEFeBZYCvSo7+ZAIMDAgQP585//TH5+Pk2aJMtcemnfvj1Tpkzh9ddf54wzzoh22aU4w+AnA1FtURERSbC+69ata+p3CBGROhxZUlLS1e8QIiKSenQsl0h6UcNEJPnlAAb4DBgezYKePXvy6quvMnPmTA499NB4ZpMDcMopp/Dqq68ya9YsOnXqFM2SbJwj2D7FOZLNimc+EZH9lNO8efNefocQEamLBveKiEhDBAIB/f9DJI2oYSKSvCxgELAWCALN6lvQsWNHZsyYwcKFCzn99NPjnU9iwLIsBgwYwIoVK8jPz6dp06gezu6EcyTbX4Bz4hpQRGQ/6Ok7EUlm+holIiINYdv2yV9//fVhfucQkcRQw0QkOZ0JrAaKcY7i2qfs7GxGjx7NihUrGDRoEJaljQepJjs7m/z8fFavXs3AgQOjXXYWsAbnqLYOcQsnIhI9PX0nIsnsItu2s/wOISIiKcfKyspS010kTahhIpJcDsP58PuvwLnRLMjNzWX58uWMHz+enJycuIaT+DvssMOYOXMmCxYsoHv37tEssXCOavsc5+i2enciiYjE0Wnl5eXt/A4hIlKHFmVlZWf7HUJERFKPdimKpA81TESSg3s2xXCimE1x8skn88orrzBnzhw6d+4c73ySYL169WLx4sXMmDGDtm3bRrMkB+fotg9xjnITEfFDoLKy8iK/Q4iI1EUfeImISANdYtu2PkcVSQP6D13EfwOAj4HJQIv6bm7fvj1TpkzhjTfe4Kyzzop7OPFPIBBg0KBBrFq1itGjR5OVFdUJEl1xjnJ7Gzg5rgFFRCIIBAL6MFJEkpmODhQRkYZoW1paeorfIUQk/v5/9u48oIkz/x/4ewJREQVvEC+8a1usV9WqbL2C/e5q+12PHi71qNbWqx6Uq5JJMgFBERXBo1pdqf4sVuy2K9tv23htQa2tt1ZbQUVRLkUBRVAg8/sD465lAtEZMjk+r//M50mez241mWc+83weKpgQIp++AP4N4J8AOtc1WKlUYsaMGfjxxx8RGBgIFxeXek+Q2AYPDw8sWbIEBw4cgEpl8X3IkQBOAPgUQOt6S44QQv6A5/kAnufpMC1CiE1iGObl7OzsFnLnQQghxC5R0Z0QJ0AFE0KsryWAeAC/APiTJW8wnVOi1+vRtGmdm1CIg+rSpQuSkpKwc+dO9OzZ05K3uAKYBeB3AAse/ZkQQupbu7y8PIsOYSKEEBm4uLq6jpQ7CUIIIfaHdlIT4hyoYEKI9ShRfdP6EoCPANS5RaRbt27Yvn07kpKS4OvrW8/pEXvh7++PH374ARzHwcPDw5K3NAewGsA5AH+u1+QIIQTVu0zkzoHUn6KiIrlTIEQUOsfEsdF3FCGkvvA875+Xl+cudx6kfvA8j+LiYrnTIDaACiaEWMdoACdRfdPas67Bnp6e4DgO+/fvx8iR9AAcqUmpVGLmzJk4cuQIZsyYYWmLtp4A/gXAAKBXvSZICHF2dDPSAZWWliI6OhqBgYFyp0KIWGPkToBIr6KiAp999hmGDx8udyqEEMfVgOd5izqFEPty+vRpvPHGG/juu+/kToXYACqYEFK/egBIRfUN6hfqGuzq6orAwECkp6dj5syZcHWlDkqkds2bN4der8d3332HwYMHW/q20QBOo7o1nEVbVAgh5CkNz87OdpM7CSINnufx5ZdfYtiwYUhISMCDBw+eiLdr106mzAh5Zp2uX7/eQ+4kiHQOHDiA0aNHg2XZGk8HN2zYEK1atZIpM0KIo6Fdio4lPz8fixYtwl/+8hccO3asRpyuc50TFUwIqR/NAMQAOAvgL5a8YdiwYfj++++xfPlytGzZsl6TI47nhRdewFdffYWkpCR07NjRkrcoUd0a7hKqW8VZtEWFEEIs5MYwzBC5kyDiHT9+HGPHjsXChQuRn59fI96qVSvExsbKkBkh4jAMQ60DHcDly5cxZcoU/O1vf0NGRkaNeOPGjbF8+XK4u1MHHUKIZOj3wwE8fPgQa9euhb+/P3bu3Amj0VhjjEqlwjvvvCNDdkRuVDAhRFoKAFNQfch2KIAGdb3B19cXn376Kb788kv06kVdkog4KpUKBw8exJIlS9CkSRNL3tIK1a3ifgbgX6/JEUKciouLCz19Z8fy8/MREhKCN954AydPnqwRVyqVmDFjBtLT0zF06FAZMiREHDq4176VlpYiLi4OI0eOxN69ewXHmK6LJ02aZOXsCCEO7oUbN250kDsJ8uwMBgOGDx+OqKgo3Lt3r0bcdJ8uKSkJjRo1kiFDIjcqmBAinREATgBIAtCmrsGNGzdGUFAQDh48iHHjxtV7csR5NGrUCHPnzkVaWhoCAwOhUFj0Vd8PwI8A9gDwrc/8CCHOgQ5+t0+mMwD8/f2xfft2waft/P398cMPP0Cv18PDgzo7EvvE8/wInueVcudBno7RaMSuXbswZMgQxMXF4eHDhzXG9O7dG19//TWSkpLQvn17GbIkhDiB0XInQJ5eZmYmAgMDMXXqVGRlZdWI0306YkIFE0LE6wDgcwD7AbxU12CGYTBx4kQcPnwYQUFBaNCgzk0ohDwTLy8vLF++HKmpqRgwYIClbxsL4FdUt5SzaIsKIYSY0aegoMBb7iSI5QwGA/z9/cGyrODTdl26dEFSUhJ27tyJnj17ypAhIZJqmpub+4rcSRDLnThxAq+//joWLFiAmzdv1oibrn3/9a9/YeDAgTJkSAhxFgzD0C5FO1JUVAS1Wo2RI0di//79NeJ0n478EZ0oTcizcwcQjOrWWxbt0evbty84jkP//v3rNTFC/lufPn3wzTffIDU1FRzH4caNG3W9pTGq/14HAvgEwDYAfD2nSQhxPExlZeUoAP9P7kRI7X799VewLIsjR44Ixj08PDB//ny8//77tIAkjiYA1TtsiQ3Lzc1FdHQ0du/eDZ6veUmqVCoxZcoUhISEoGnTpjJkSAhxQiqe5xUMw9TciktsRmVlJZKTk7Fs2TIUFhYKjqH7dEQIFUwIeXoMgIkAVgCw6HRtb29vhIeHY+LEiWAYpl6TI0QIwzAYN24cRo0ahfXr1yMxMREPHjyo623tUN1ibi6qD4b/qb7zJIQ4nABQwcRmFRUVIS4uDlu3bkVVVVWNuEKhwPjx48GyLFq1aiVDhoTUuwAAEXInQYSVlZVh3bp1WLt2LcrLywXHqFQq6HQ6+Pr6Wjc5Qoiza5Wbm9sXwHG5EyHC0tPTodFocOHCBcE43acjtaGWXIQ8nQEA0gF8CQuKJW5ubo/Pkpg0aRJ9CRPZmXpyHjp0CBMnTrT0bQMBHEJ16zlqr0MIeRoBPM/Tj5+NMZ1TMnjwYGzevFmwWDJkyBD88MMPWLNmDRVLiCPrn5ub21ruJMiTeJ7Hnj178OqrryIuLk6wWNKtWzds374dSUlJVCwhhMiFzuuzQVlZWfjggw/w5ptvChZL/vvMV7pPR8yhHSaEWMYHgAbATFhYaFSpVIiMjESHDh3qNTFCnoWPjw/WrFmDt956CyzLmn3q4r8oALwLYDyqd1dFA6hziwohxOl5X79+3Q/AGbkTIdXS0tLAsix+//13wXjbtm0RFhZGT9sRZ6EwGo0jAeyUOxFS7cyZM2BZFj///LNgvFmzZli8eDGmTZsGV1e6nUEIkZUK1etiYgPu37+P9evXIyEhAQ8fPhQcQ/fpiKVohwkhtWuA6lZEvwGYBQv+zfj5+eEf//gHkpKS6EuY2LyhQ4fCYDAgPj7e0ieI3VFdPDwHYFK9JkcIcQiurq709J0NuHz5MqZOnYq33npLsFji5uaGoKAgHD58mJ62I06FDu61Dfn5+QgJCcGf//xnwWKJq6srAgMDkZaWhpkzZ1KxhBBiC4YWFBQ0kTsJZ2c0GrFr1y4MGTIEcXFxgsUSuk9HnhZdZRBi3jgA8QA6WzK4efPmWLRoEaZPnw4XF5f6zYwQCSkUCkyaNAkBAQFITEzExo0bUVFRUdfbuqG6Nd0+AIsAnK3vPAkh9onneRWqd6YRGZSUlCAhIQGbNm0SXEAyDIOxY8eCZVm0a9dOhgwJkd0YuRNwZhUVFUhKSkJsbCzu3r0rOGbYsGHQ6XTo1auXlbMjhJBaNaiqqnoVwL/kTsRZnTx5EizL4vhx4aNk6D4deVa0w4SQmvoAOAjgn7CgWKJUKjFjxgwcOXIEM2fOpC9hYrc8PT2xZMkSHDhwAKNHj7b0baMAnATwDQB6VIMQIuRP2dnZbnIn4WxMT9sNGzYMa9euFSyWvPTSS/j666/x6aefUrGEOLP2OTk5dCdeBgaDAa+++ipYlhUslvj6+uLTTz/Fl19+ScUSQohNevRgELGyvLw8fPTRRxg7dqxgsYTu0xGxaIcJIf/RGkAkgBkALPo2HTNmDDQaDR00SBxKly5d8Pnnn8NgMECr1eLKlSt1vcUFwOsAxgL4CMDa+s6REGJXGrm4uPgD+EHuRJzF4cOHwbIszp8/Lxj38vJCUFAQJk+eDIWCnp8iBNUH99Z5oBuRRmZmJrRaLfbv3y8Yb9y4MWbPno358+ejQYMGVs6OEEKeCrWetaKysjJs2bIFq1evRmlpqeAYf39/REZGonv37lbOjjgSWiERAigBLAZwEdXnlNRZLOnZsyeSk5Px97//nYolxGGpVCocPHgQarUaTZs2teQtCgBrADSr38wIIfaGnr6zjpycHHz00UeYOHGiYLHE9LTdjz/+iMDAQCqWmHHx4kUkJyfj2rVrcqdCrIe+o6ygqKgIarUaI0eOFCyWKBQKTJw4EYcPH0ZQUBAVS8zIzc1FcnKy2aI4IcSqeuXk5HSUOwlnYDAYMHz4cERFRQkWS7p27Ypt27Zh586dVCwxo6KiAt999x1SU1MtacPu1GiHCXF2fwawEkBPSwY3a9YMwcHBePfdd+mgQeIUlEolZs+ejYkTJ0Kn0+Grr76q6y0KAO8AWF//2RFC7IVCoQgAECx3Ho6qrKwM69atQ2JiIh48eCA4RqVSgeM4dOrUycrZ2Y9bt24hJiYGycnJMBqNcHNzw7/+9S8899xzcqdG6t/wjIyMht27dxf+B0REqaysRHJyMmJiYnD79m3BMX379gXHcejfv7+Vs7Mf9+/fR2JiIjZs2IDy8nIoFAr8/e9/h0pF9T5C5PTowaDNcufhqM6ePQuWZXH06FHBuKenJ+bNm4dZs2ZBqVRaOTv7cfDgQWg0GmRkZACoXhskJSXJnJXtoju+xFk9h+pCyf9YMtjV1RXvvvsugoOD0awZPTxPnAvP80hPT8eRI0csfYuxPvMhhNgfnuf9bt682bZ169a5cufiSHieR0pKCqKiopCfny84plevXuA4DkOHDrVydvajoqICn332GeLj41FSUvL49bKyMuzZs4cKJs7BvUmTJkMAHJA7EUfz73//G1FRUY9v0PxRu3btoFarMW7cODAMY+Xs7APP8/jqq68QFRWFvLy8x6+bzqqiggkh8lIoFFQwqQcFBQVYtGgRdu3aBaOx5i0Guk9nmcuXL0On08FgMDzxusFgwO3bt9GiRQuZMrNtVDAhzqYZAA2AuahuxVUnf39/cByHnj0t2oRCiEM5ffo01Go1jh079sTrXl5eKCwsRGVlpdDbsqyRGyHErjCVlZUqAJ/LnYgjyc7OxkcffSQYa9asGRYvXozp06fTQZe1SEtLg1qtxsWLFwXj5nbsEMfz6AlhKphIbNq0aYKvu7m54b333sPChQvh7u5u3aTsyJkzZ6BWq/HLL78Ixuk7ihD58TwfwPO8C8MwVXLn4kjWrjV/NOqwYcOg0+nQq1cvK2ZkX0pLS7FhwwYkJCTg4cOHgmPoN8Q8KpgQZ+ECYCaqD3VvZckbfH19ochInigAACAASURBVNFoMGbMmHpNjBBbVFBQgOjo6BpPcyiVSkydOhXBwcHw8/OTMUNCiL15dDOSCib1TKlUYtq0aQgKCoKHh4fc6disjIwMaDQaHDx4UO5UiO0IAPCJ3Ek4OoZh8MYbbyAiIgI+Pj5yp2Oz8vPzH1+L8zwvdzqEkNo1z8vL6wdAuLJJJEP36epmNBrxxRdfYNmyZbh165bc6dgtKpgQZzAcwGoAL1kyuHHjxpg9ezbmzZuHhg0b1mtihNiaiooKJCUlITY2Fnfv3n0iRv3vCSEiqXieZxiGoTs/9cTf3x86nY5aSNWiuLgYiYmJ2LhxIx12Sf6ob15eXhtvb+8CuRNxVH5+fuA4DoMGDZI7FZtV27U4IcR28TwfACqY1Bu6T2eZEydOgGVZnDhxQu5U7B4VTIgj6wAgCsC7lgxmGAYTJkxAREQE2rRpU7+ZEWKDDAYDNBoNsrKynni9W7du0Ol0GDFihDyJEUIchdeNGzdeAnBK7kTslbnWWl27doVGo8Ho0aOtnJH9qKqqwvbt2xEbG2v20On+/fvDxcUFP//8s5WzIzZCUVVVNQrAF3InYq/MfUe1adMG4eHhmDRpEhQKhZWzsh/ffvst9Ho9rl69Khjv0qULunXrhh9++MHKmRFCLBCA6vtP5BkJ/YYoFAq8+eabCAsLo/t0tbh+/ToiIyPxz3/+UzDeoEEDBAYGYsuWLVbOzH7R1QpxRI0BaAFchIXFkj59+uCf//wn1qxZQ1/CxOlkZmYiMDAQU6dOfaJY0qxZM+j1euzfv5+KJYQQSTAMEyB3DvbsxRdfROPGjR//2cPDAxqNBvv376diSS0OHTqEgIAAhIeHCxZLvLy8sHz5cnzzzTfo3LmzDBkSW/Ho4F7yjLy9vdGxY8fHf27QoAHmzJmD9PR0vPXWW1QsMSMzMxN/+9vfMHPmTMFiibu7O4KCgrB//34MHDhQhgwJIRYYUlhYSL1QRXj55Zdr/Pnbb7/FypUr6T6dGWVlZVi7di1GjBhhtliiUqlw8OBBhIaGWjk7+0Y7TIgjYQBMBLACQMc6xgKovqgPDw/HxIkTwTBMvSZHiK0pLi7GihUrkJSU9MTh7a6urnj77bcRFhaGFi1ayJghIcTRMAyjArBc7jzsVevWrbFz5058/vnnaNOmDT744AO0amXR0WxOKScnBzExMUhJSRGMK5VKTJkyBaGhoWjSpImVsyO26NHBvdQ68Bm5uroiOTkZa9euRYMGDfD+++/D19dX7rRsVlFREeLi4mpci5soFAqMHz8earUarVu3liFDQshTcC0vLx8OQPiuNanT3LlzoVQqce7cObz22msYN24c3aczg+d5pKamQq/X4/r164JjunXrBq1Wi5EjRwIAtXl8SlQwIY5iAIB4AEMsGdyoUSPMmDEDCxcuhLu7e/1mRoiNqaysRHJyMpYtW4bCwsInYsOGDQPHcdT/nhBSX/zz8vLcvb29S+VOxF71798f/fv3lzsNm3b//n2sX78eiYmJePDggeAYlUoFvV7/xNPwhABol5eX9zyAX+VOxF75+voiNjZW7jRsmulaPCYmxmyLwH79+kGn09H3PSF25NEuRSqYPCNXV1fMmTNH7jRs3pkzZ8CyrNkWsp6enggKCsK0adPg6kq3/Z8V/T9H7J0PAA2AmbCwxZxKpUJkZCQ6dOhQr4kRYovS09Oh0Whw4cKFJ17v3LkzwsLCMG7cOJkyI4Q4iYZGo9EfwHdyJ0Icj+lpO47jcOPGDcEx3bt3h06nw/Dhw62bHLEbjw7upYIJqRfp6elgWRa//fabYLxt27YICwujDgiE2KFHvx+E1Iv8/HzExcXhiy++QFVVVY24qVNIaGgoWrZsKUOGjoUKJsReNQAwG4AeQFNL3uDn5weO4zBo0KB6TYwQW5SVlYXo6Gjs2bPnidfd3d3x4YcfYv78+WjQoIFM2RFCnIwKVDAhEjt16hRYlsWxY8cE482aNcPixYsxffp0swdTE/KICsAquZMgjuXKlSuIiYmpcS1u4ubmhvfee486IBBi33rk5eV19vb2viJ3IsRxVFRUICkpCbGxsWbbag0bNgw6nQ69evWycnaOiwomxB6NA7AaQBdLBjdv3hyLFi2iBTJxSqa2JAkJCXj48OHj1xUKBSZMmICIiAjqiUwIsTZ6+o5IxvS03Y4dO2A0GmvETeeUBAcHw8ODzmIlFhmenZ3t1qFDhzK5EyH2r7S0FBs2bKhxLf7fVCoVoqKi0L59eytnRwiRmtFoVAHYKHcexDEYDAZoNBpkZWUJxn19fREeHk6dQuoBFUyIPemF6qe9xlgymBbIxJnxPI+UlBRERUWhoKDgiVi/fv3AcRz69esnU3aEECf34vXr19u3b99e+IRCQixQXl6OzZs3Iz4+Hvfu3RMc4+/vD47j0LNnTytnR+ycG8MwQwDskzsRYr+MRiN2796NyMhI3Lx5U3CMn58f9Ho9Bg4caOXsCCH1iAomRLTMzExotVrs379fMN64cWPMnj2bOoXUIyqYEHvQAtXnlMwFYNEWEX9/f+j1evTo0aNeEyPEFp08eRIsy+L48eNPvN62bVuEh4djwoQJ1BOZECIrFxeX0QC2yp0HsU8GgwFqtRrXrl0TjHfp0gUajQYqlcrKmRFH4eLiogIVTMgzOnHiBFiWxYkTJwTjXl5eCAoKwjvvvEMdEAhxPKN5nndhGKbmIROE1KGoqAhxcXFISkpCZWVljTjDMI87hbRp00aGDJ0HFUyILVMCmA4gCkArS97QtWtXaLVajBo1ql4TI8QW5eXlYenSpdi9ezd4nn/8OvVEJoTYGp7nVaCCCXlKv/76K9RqNX766SfBuIeHB+bPn4/333+fnrYjojw6uDdM7jyIfcnNzUV0dHSNa3ETUweEkJAQNG1q0TGchBD70yw/P/9lAMIXK4QIqKysRHJyMpYtW4bCwkLBMX379gXHcejfv7+Vs3NOVDAhtmo0qs8pecGSwZ6enpg3bx5mzZoFpVJZv5kRYmNMbUlWr16N0tLSx68zDIOxY8dCrVZTT2RCiK0J4HlewTBMzUMnCPmDW7duYfny5fjiiy9QVVXzgU0XFxdMnjwZoaGhaNGihQwZEgfUp6CgwLtNmzZ5cidCbN/9+/exdu1arF+/HuXl5YJjXnvtNbAsC19fX+smRwixukdFdyqYEIv8+9//hkajwcWLFwXj7dq1Q0REBF5//XXqFGJFVDAhtqY7qneUTLJksEKhwPjx46HRaNCyZcv6zYwQG2QwGBAREYHs7OwnXu/duzc4jqOeyIQQW9UqNze3DwDhfiWEAKioqMCWLVuwatUqlJSUCI4ZMmQIOI7D888/L3q+AwcO4NChQ6I/hzgEprKychSA/yd3IsR28TyPr7/+GpGRkcjNzRUc89xzz4HjOAwbNkz0fGfOnME333wj+nMIIfXr0U5qTu48iG27cuUKtFotDAaDYNzNzQ1z5szBnDlz4ObmJmque/fuYfXq1aI+w9lQwYTYinYAtgP4EwCFJW8YNmwYOI7Dc889V6+JEWKLzpw5A5Zl8fPPPz/xOvVEJoTYkTGgggkxY+/evdDpdLh06ZJgvGPHjlCr1fjLX/4ieq5Lly5Bp9Nh7969NWK0c9mpBYAKJsSMU6dOgWVZHDt2TDDevHlzBAcHIzAwEK6u4m673Lx5EzExMdi5cyeMxic3ZtJ3FCE2afDt27c9W7RoUSx3IsT23L17F/Hx8di0aRMqKipqxBmGweuvvw61Wg0fHx9RcxmNRuzatQvR0dEoKCioEaffEPOoYEJsQWcAvwGwqNm0r68vWJbFa6+9Vr9ZEWKDCgoKEBMTgy+//PKJBZNSqcTUqVMRHBxMPZEJIfZCBSBa7iSIbcnMzIRGo8GBAwcE4+7u7pg/fz4++OADNGzYUNRcJSUlWLVqFbZs2SK4YFUqlRgzZoyoOYhdC+B5nmEYpuZhFMRp5efnIyYmBrt27apRvAAAV1dXTJkyBR9//DGaNWsmaq6Kigps2rQJ8fHxuHv3ruCYsWPHipqDEFIvXMvLy0cA+FruRIjtMBqN2LlzJ2JiYnDz5k3BMb1794Zer8fLL78ser5jx45BrVbj9OnTgvFXXnkFrVpZdFy0U6KCCbEFW2FBsaRJkyZYsGABHeRJnFJtCyaVSgWdTkc9kQkh9mZoQUFBkzZt2tyTOxEiv+LiYqxcuRJbt241+7TdhAkTsGTJEnh5eYmaq6qqCl988QWWL1+OW7duCY7p06cPoqKi0KdPH1FzEbvmff36dT8AZ+ROhMjv4cOH2LhxI9asWYN794R/tl599VXodDr06NFD9Hw//PADtFotsrKyBOO+vr7Q6XRQqVSi5yKESO9RWy4qmBAAwM8//wy1Wo2zZ88Kxtu0aYOwsDC8+eabUCgsarpjVm5uLiIjI/H111+D52s+86FUKjFz5kwEBQWJmsfRUcGE2ILudQ3w8PDAN998g549e1ojH0JsirkFU7du3aDVajFy5Eh5EiOEEHEaVFVVvQrgX3InQuRjNBqxe/du6PV6s8WLl156CRzHSfK03ZEjR8CyLH799VfBuKm15eTJk0UvWIn9c3V1DQAVTJyewWCARqOptXgRHh6OcePGiZ7r0qVL0Gq12Ldvn2C8cePGmD17NubNmyd6lx0hpP4oFIoAuXMg8svLy8PSpUuxe/dus8WLKVOmIDg4GB4eHqLmKi8vx+bNmxEfH2+2sO/v7w+9Xi9JYd/RUcGE2ILSugaUlJRg/Pjx+Pjjj/Huu++K7gNLiD34/fffodFo8OOPPz7xerNmzRAUFISpU6fSvwVCiF179PQdFUyc1OHDh8GyLM6fPy8Yl7J4kZubi+jo6DoXrCEhIdTakjz26Dtqhdx5EHlkZmZCq9Vi//79gnFT8WL+/PmiOyAUFxcjMTERGzdurHWXXUREBNq0aSNqLkJI/eN5vlt+fn4XLy+vy3LnQqyvrKwMW7ZswerVq1FaKnzL09/fH5GRkejevc5nyOtkMBigVqtx7do1wXiXLl2g1WoxevRo0XM5C7rTRmzBFQDd6hp0584dLFmyBNu2bYNOp4O/v78VUiPE+oqKihAbG4tt27ahsrLy8euurq54++23ERoaipYtW8qYISGESIaevnNCOTk5iImJQUpKimDcVLwIDQ1FkyZNRM1VVlaGdevWYe3atSgvLxccQ60tSS3+lJ2d7dahQ4cyuRMh1lNUVIS4uDgkJSU9cS1uImXxwrTLjuM4FBYWCo7p06cP9Ho9+vfvL2ouQoh1VVVVBQDYIHcexLoMBgMiIiKQnZ0tGO/atSu0Wi1GjRoleq5z586BZVn89NNPgnEPDw/Mnz8fs2bNogPenxIVTIgtePg0g3/77Te89dZbGDNmDDQaDS1uicOorKzEtm3bsGLFCty5c+eJ2LBhw6DT6dCrVy+ZsiOEkHrRKycnp6OPj4/w41DEoZiKF4mJiXjw4IHgGJVKBY7j0KlTJ1Fz8TyP1NRU6PV6XL9+XXAMtbYkFmjk4uLiD+AHuRMh9a+yshLJyclYtmyZ2eJF3759wXGcJMWL9PR0aDQaXLhwQTDu7e2N8PBwTJw4EQzDiJ6PEGJ1KlDBxGmcPXsWLMvi6NGjgnFPT0/MmzdPkuLFnTt3Hp/9V1VVVSOuUCgwfvx4sCxLB7s/IyqYELv1/fffY//+/dQ+gTgEcwsmKXsiE0KILXrU8maz3HmQ+mMqXnAchxs3bgiO6d69O3Q6HYYPHy56vjNnzkCtVuOXX34RjDdr1gyLFy/GtGnTqLUlqdOj7ygqmDg4axYvsrKyEB0djT179gjGGzVqhBkzZmDBggWid9kRQmQ1mud5JcMwNfvsEYdx+/ZtrFq1ymzxQspOIRUVFUhKSsKKFStQUlIiOGbo0KHgOI4ethWJVgjElhUD8KxtQEVFBTZv3ox//OMfWLhwIaZPnw4XFxcrpUeIeOYWTFL2RCaEEFumUCioYOLATp8+DbVajWPHjgnGTcULKa7h8vPzERcXhx07dsBoNNaImxasYWFhaNGihai5iPN4dHBvsNx5kPpRV/HCzc0N7733HhYuXAh3d3dRc92/fx/r16+vc5edXq9Hx44dRc1FCLEJHjk5OS8DOCx3IkR6puJFbGws7t69KzhGyk4haWlpUKvVuHjxomDcx8cHoaGhmDRpkui5CBVMiG3bDOAaAD2AWreP3L59GyzLYteuXeA4DoMGDbJKgoQ8K3MLJoZhMHHiRCxZsoQOdCSEOAWe50fzPK9gGKbmHW5it+oqXiiVSrz11luSFC+svWAlzoXneb+bN2+2bd26da7cuRDpmK7FExIS8PChcIdolUqFyMhIdOjQQdRcPM8jJSUFUVFRKCgoEBzz4osvguM4DB48WNRchBCbEwAqmDictLQ0REREICMjQzAuZaeQS5cuQafTYe/evYJx08O28+bNQ8OGDUXPR6pRwYTYsioA8QB2AdAAmAlAUdsbzp49i7/+9a+SXdwSIrXaFkxS9kQmhBA70jIvL68/AOH+ScSumIoXy5cvx7179wTH+Pv7g+M49OzZU/R8BoMBLMvi6tWrgnFqbUkkwFRWVqoAfC53IkQ80yHrtRUv/Pz8JHsI79SpU1Cr1Th+/LhgvHnz5li0aBF1SiDEQTEMowKglTsPIo1Lly5Bq9Vi3759gnEpixfFxcVITEzExo0bUVFRs6sbwzAYO3YsWJZFu3btRM1FaqKCCbEHOQA+ALAJ1QWUIXW9wWAwID09XbLt04RIwdyCydvbG5988gkmTJhABzoSQpwSz/MBoIKJ3aureNG5c2eEhYVJUrzIzMyERqPBgQMHBOPU2pJI6dE5JlQwsXMnT54Ey7JmixctWrSQrM1zXl4eli5dit27d4Pn+RpxpVKJKVOmIDg4GB4eHqLmIoTYtEFXr15t3qlTpztyJ0KeXXFxMVasWIGkpCRUVlbWiDMMgwkTJiAiIkJ0pxBTYV+v1+PWrVuCY/r06QOO4zBgwABRcxHzqGBC7MkxAMMATASwAkCtjV3Lysqwdu1a7N69W7ID+gh5FuYWTFL2RCaEEDunAhAldxLk2WRkZECj0eDgwYOCcQ8PD8yfPx/vv/++6OJFUVER4uLizC5YFQoFxo8fD7VajdatW4uai5D/ouJ5nmEYpuadb2LzLC1ehISEoGnTWjtB16m8vBybN29GfHx8rbvs9Ho9evToIWouQohdcFEqlSMAfCV3IuTpVVZWIjk5GcuWLUNhYaHgmD59+kCv10vSKeTQoUNgWRYXLlwQjHt5eSEoKAiTJ0+GQlFrAx4iEhVMiM1q27Zt89zcGq2CeVS36PoW1YcvhgJoVNvn5OXlYcGCBdi6dSu1OyJWVduCidrGEULIE4YUFhZ6tGzZskTuRIjlTMWLrVu3oqqqqkZcyuKFacEaExOD27dvC46h1pakHnnduHHjJQCn5E6EWK6srAxbtmzB6tWrUVpaKjjG398fkZGR6N69u+j5DAYDIiIikJ2dLRjv0qULtFotRo8eLXouQohdUYEKJnYnPT0dGo3GbPHC29tbsoezc3JyEBMTg5SUFMG4qbAfGhqKJk2aiJqLWIbKUcRmdevWzbeWcCmq+0D2ALDNks87efIkXn/9dXz00Udm+9USIhWDwYDhw4cjKirqiWKJn58f/vGPfyApKYmKJYQQ8h/K8vLyV+VOglimoqIC27dvx7Bhw7B582bBYskrr7yC77//HmvWrBFdLElPT0dAQABCQkIEiyVt27ZFfHw8UlNTRRdLsrKy8OGHH6JPnz4IDQ0V7BlNnBPDMAFy50As99/X4kLFkq5du2Lbtm3YuXOn6GLJuXPnMH78eEydOlWwWOLp6YklS5bgwIEDooslhYWFCA8PR9++ffHee++huLhY1OcRQqziNbkTIJbLysrCBx98gDfffFOwWNKoUSPMnTsXaWlpmDRpkqhiyf379xEXF4ehQ4eaLZaoVCqkpaVBr9eLKpaYztMdOXIk/vSnP2H//v3P/FnOgHaYEJvl7e3ta8GwbABTAPwdwGoAvWsbbPqC+Pbbb6mvNakX586dA8uy+Omnn554vUWLFli0aBGmTZtGBzoSQogAhUKhArBH7jxI7dLS0sCyLH7//XfBeNu2bREWFibJ03ZXrlxBTEwM9uwR/mshZWvLu3fvIj4+Hp999hkePnwIANi2bRv8/PwQGBgo6rOJY3h0cO9yufMgtTt79ixYlsXRo0cF456enggKCsK0adPg6irudsidO3ewcuXKOnfZsSyLVq1aiZqroqICW7ZswapVq1BSUr0Z87vvvkOHDh2g0+lEfTYhpN75Zmdnd+/QoUOG3IkQ8+7fv4/169cjMTERDx48EBwjVacQnueRmpoKnU6HnJwcwTEvvPAC9Ho9Bg8eLGouADhx4gRYlsWJEycevzZnzhycPXsWSqVS9Oc7IiqYEJvVvHnzjjzPKxmGseTRvgMA+gIIBBALoNZTlkxVXNP5JlIcPkqcm7kFk1KpxNSpUxEcHCy6JzIhhDiyRwe/Ext15coVaLVaGAwGwbibmxvmzJmDuXPnolGjWrul1qm0tBQbNmxAQkLC4+LFH0m1YDUajfjyyy8RExMjuAM5KytL1OcTh+Kfl5fn7u3tLdzbicjq9u3bWLVqldnihaurK95++22EhoaiZcuWouaqqKhAUlISVqxY8bh48UdDhw4Fx3Ho1auXqLkAYN++fdBqtbh06VKNGH1HEWIfXF1dAwBQwcQGmR6sjoqKMtuN5sUXX4Rer8egQYNEz3fq1CmwLItjx44Jxps3b45FixZh+vTpoh+2zc/PR1RUlOAZXiUlJSgsLIS3t7eoORwVFUyIzXJ1dW2Qm5s7GECahW8xAvgcwD8BhAFYBKDW7SOmrXbbtm2DTqeT5IKWOJfaFkxS9kQmhBAn0DMvL6+zt7f3FbkTIf9RUlKChIQEbNq0SbB4wTAMxo4dC7Vajfbt24uay2g0Yvfu3YiMjMTNmzcFx/j5+UGv12PgwIGi5gKAX375BWq1GmfOnBH9WcQpNDQajf4AvpM7EfIfpmvx2NhY3L17V3DMsGHDJFvrpaWlQa1W4+LFi4JxHx8fhIaGYtKkSaLnyszMhFarpbYphDgAnudVANbKnQd50qlTp6BWq3H8+HHBuNTFi7i4OOzYsQNGo7FG3HROSXBwMDw8PETN9eDBA3z66adISEgwe4YXgBpFFPIfVDAhtk4FywsmJkWoLphsAbASwF/qekN6ejrGjBkj2VNHxDmYWzB17doVWq0Wo0aNkikzQgixT0ajcTSATXLnQSwrXvTu3Rt6vR4vv/yy6PmEWgX8txYtWmDhwoWSLFjz8vKwdOlSwaftCKmDClQwsRlpaWmIiIhARobwQ9u+vr6SdRO4dOkStFot9u3bJxhv3LgxZs+ejXnz5qFhw4ai5qqrUE0IsUsjn6KDCqlndV0LSlm8KC8vx+bNmxEfH//E+bb/zd/fHxzHoWfPnqLmAqrP8GJZFlevXhX9Wc6MCibE1o0BwD7jey8CGAtgNKrPN3mhtsGVlZXYvn079uzZI1lfW+KYLl26BJ1Oh7179z7xuqenJz7++GNMnTqV/u4QQsizUYEKJrI7cuQI1Go1zp8/Lxj38vJCUFAQJk+eDIVCIWqu3NxcREdH17lgDQkJEd3asqysDOvWrcO6detQVlYmOMbd3b3WJ/GI06PWgTbg0qVL0Gg0ZndeSFm8KC4uRmJiIjZu3IiKipr3OU277FiWRbt27UTNVVVVhR07dmD58uUoLCwUHEPfUYTYraZP2UGF1ANT8WL16tVmv0v9/f2h1+vRo0cP0fMZDAao1Wpcu3ZNMN6lSxdoNBqoVCrRc50/fx4ajQaHDh0SjNPvx9OhO3rE1vW/fv16y/bt2wtfMVpmL6rPN5kDQAfAs7bBxcXFYFkWn3/+ObRaLUaOHCliauJIzC2YpOyJTAghTm40z/MuDMPUbEBP6p21ixdbtmypdcGqUqmg0+ng6+srai6gesEaERGB7Oxswbhpd2hqaip27twpej7isF68fv16+/bt21+XOxFnVFxcjBUrViApKQmVlZU14gzDYMKECYiIiECbNrUeaVkn0y47vV6PW7duCY7p06cPOI7DgAEDRM0FAIcPHwbLsnUWqouKirB06VLR8xFCZPEsHVSIRCy9FpSiU8i5c+fAsix++uknwbiHhwfmz5+P999/Hw0a1HqSQJ2KiooQFxdn9gwvhUKB8ePHY9GiRRg6dKiouZwJFUyIrXNxcXEZBeBLkZ9TASAewHZU71iZC6DWfg6ZmZkIDAyUdLFO7FNtCyYpeyITQghB8/z8/AEAjsqdiDMx7bxITEzEgwcPBMeoVCpwHIdOnTqJns9gMGDJkiW4fl34nnO3bt0ke2jl7NmzYFkWR48K/5Xy9PTEvHnzMGvWLCiVSqSmpoqekzg2FxeX0QC2yp2HM6msrERycjKWLVtmdudF3759wXEc+vfvL3q+Q4cOgWVZXLhwQTAu5S67nJwcxMTEWFyoXrdunaj5CCGyCsCzd1Ahz+hprwXFuHPnDlauXFln8YJlWbRq1UrUXBUVFdi5cydiYmJw+/ZtwTH9+vUDx3Ho16+f2XO+iDAqmBCb9+hwLLEFE5NCAAtQvchZDeBPdb3BYDDg4MGDkj1RSeyLuQWTlD2RCSGE/AfP8wGggolV8DyP1NRU6PX6WosXOp0OI0aMED3fmTNnwLIsfv75Z8G4p6enZG1RrblgJc7l0dpkq9x5OIv09HRoNBqzxQtvb2+Eh4dj4sSJYBhG1Fym4kVKSopgvFGjRpgxYwYWLFiAJk2aiJrL2oVqQohNGJCdnd2iQ4cOwne3iaSsXbxISkrCihUrUFJSIjhmyJAh4DgOzz//vKi5gOozvDQaDX777TfBeNu2bREWFibJb6OzooIJsQevYPkCmAAAIABJREFU1cNnngTwKoBxqN550rm2wRUVFdi8eTNSU1MRFBSEd955R/SBo8S2mVswSdkTmRBCSE2Pbkbq5c7D0Z0+fRosy+KXX34RjDdr1gyLFy+WpHiRn5+PuLg4fPHFF4ILVilbW1qyYB06dCg4jqPdoeRZBfA8r2AYxih3Io4sKysL0dHR2LNnj2DcVLxYuHAh3N3dRc11//59rF+/vs7ihV6vR8eOHUXNZSpUcxyHGzduCI7p3r07dDodhg8fLmouQojNcXF1dR0FYJfciTgya18LpqWlgWVZ/P7774JxHx8fhIaGYtKkSaLnunLlCmJiYsz+Nrq5uWHOnDmYO3cuGjVqJHo+Z0YFE2IP2ufk5Dzn4+MjXDoVZw+qzzj5CMASALVuH8nPz0dISAi2b98OjuMwcODAekiJyMncgolhGEycOBFLliwR3ROZEEJIrV65ffu2Z4sWLYrlTsQRmYoXO3bsgNFY836vqXgRFhaGFi1aiJrLtGCNjY012wZAytaWaWlpUKvVuHjxomBcygUrcWqtcnNz+wA4IXcijsh0LZ6QkICHDx8KjlGpVIiMjESHDh1EzWUqXuh0OuTk5AiOefHFF8FxHAYPHixqLsDyQvX06dPp4TxCHNSjB4OoYFJPrHktePnyZWi1Wuzdu1cwbipeSPGwbWlpKTZs2GD2t5FhGIwdOxZqtRrt27cXNRepRgUTYi8CANRHwQQAygAsA7ANQAyAQAC17lk7c+YM/vd//xcqlQpRUVH0heQAanvaq0+fPtDr9ZL0RCaEEFIn17KysuEAvpE7EUdiafGC4zg899xzouczGAzQaDTIysoSjEvZ2vLSpUvQarXYt2+fYJx2h5J6EAAqmEiK53mkpKQgKioKBQUFgmP8/PzAcRwGDRoker5Tp05BrVbj+PHjgvHmzZtj0aJFkhQvrFmoJoTYvAC5E3BE1rwWLCkpQUJCAjZu3IiKiooacVPxgmVZtGvXTtRcpvN0IyMjcfPmTcExvXv3pge66wEVTIhdeFSFX1PP0+QAmAIgAdVtul6p6w0GgwHp6el47733JNkOTuRx6tQpsCyLY8eOPfG6t7c3PvnkE0yYMIH6PhJCiHUFgAomkjEYDGBZFlevXhWMd+7cGWFhYZIULzIzM6HVarF//37BuGnBOn/+fDRo0EDUXMXFxUhMTKxzwarRaODj4yNqLkL+IADVD1oRCZw8eRIsy1qteBEVFVXnIevBwcHw8PAQNZclhWp/f3/odDpJCtWEELvQ6caNGz3btWsn3L+JPBVrXguaihd6vR63bt0SHPPSSy9Br9djwIABouYCgCNHjoBlWfz666+CcS8vLwQFBWHy5MlQKBSi5yNPooIJsQsMw4zIyMho2L17d+GmstL6BcBQAO+ieueJd22Dy8rKsHbtWnz11Vd0qJKdMfe0l5Q9kQkhhDw9hUJBT99JICMjA1qtFgcOHBCMu7u748MPP5SkeFFUVIS4uDgkJSWhsrKyRpxhGEyYMAERERGiW1uaFqwcx6GwsFBwDO0OJfVsaEFBQZM2bdrckzsRe5aXl4elS5dapXhRXl6OzZs3Iz4+HvfuCf9n8/f3B8dx6Nmzp6i5AOsWqgkhdicAABVMRLD2teDhw4fBsizOnz8vGJeyeJGbm4vo6Og6fxtDQkLQtGmtpwoQEahgQuyFe5MmTV4BcNBK8/EAPgewG0AwgFAAtZ6YlJubiwULFiApKQkcx6Ffv35WSJM8i9oWTFL1RCaEEPLseJ7vlp+f38XLy+uy3LnYI1PxYuvWrYKHrCsUCowfPx5qtRqtW7cWNVdlZSWSk5OxbNkyswvWvn37guM4SRashw4dAsuyuHDhgmDcy8sLn3zyCT3AQupbg6qqqlcB/EvuROyR6Vp89erVKC0tFRzj7+8PvV6PHj16iJ7PYDBArVbj2rVrgvEuXbpAo9FApVKJnisjIwMajQYHDx4UjEtZqCaE2CeFQqFCdWcT8gyseS2Yk5ODmJgYpKSkCMZNxYvQ0FA0adJE1FxlZWVYt24d1q5di/LycsExKpUKOp0Ovr6+ouYidaOCCbEbj9pyHbTytKUAtAA2A4hC9a6TWp04cQKvv/66ZDciiLTMLZik7IlMCCFEvKqqqgAAG+TOw56YihcxMTG4ffu24Jh+/fpJ9mBHeno6NBqN2QWrt7c3wsPDJVmw3rhxA8uWLTO7YDXtDl2wYIHoBSshlni0NqGCyVMyGAyIiIhAdna2YLxr167QarUYNWqU6LnOnTsHlmXx008/CcY9PDwwf/58zJo1C0qlUtRc1ixUE0LsG8/zI63YQcVh1FW8kPJa0FS8SExMxIMHwv+ZVCoVOI5Dp06dRM1lOk9Xr9fj+vXrgmO6desGnU6HESNGiJqLWI4KJsSeBABYItPc2ag+3+TvAFYD6F3bYKPRiJSUFPzf//0fPUFkI8wtmJo3b47Fixdj2rRponsiE0IIkZQKVDCxWFpaGjQaDX777TfBeNu2bSVrHZqVlYXo6Gjs2bNHMC5la8t79+4hPj4emzZtwsOHDwXHvP7664iIiED79u1FzcXzPO7cuSPqM4hTodaBT+Hs2bNgWRZHjx4VjHt6emLevHmSFC/u3LmDlStX1lm8YFkWrVq1EjVXRUUFtm7diri4OJSUlAiOeeWVV8BxHF544QVRcwEwWwwnhNgV9yZNmgwG8G+5E7EH9+/fx/r16+ssXuj1enTs2FHUXKbiBcdxuHHjhuCY7t27Q6fTYfjw4aLmAiw7wyskJASBgYGi71fRNe7ToYIJsSf9cnNzW7dt2/amjDkcANAXQCCAWAC1NuEuLS1FXFzc4/NNqEet9ZlbMCmVSkydOhUff/yx6J7IhBBC6sVInuddGYapeSAGeezKlSuIiYkxW7xwc3PDnDlzMHfuXDRqVGt30TqZFqwJCQlmixdStbY0Go3YtWsXYmJikJ+fLzjmxRdfBMdxGDx4sKi5AOD48eNgWRYnT54U/VnEafTKycnp6OPjI9zniQCwvHih0WjQsmVLUXOZDllfsWKF2eLFkCFDwHEcnn/+eVFzAcD+/fuh1WqRmZkpGO/QoQMiIiIkWQNeuXIFWq0WBoNB9GcRQuT3aJciFUxqwfM8UlJSEBUVhYKCAsExUl4Lnj59Gmq1GseOHROMN2vWDIsXL8b06dNFFy/y8/MRHR2NXbt21XpOyccffwxPT09Rcz18+BCbNm1CfHy8qM9xNlQwIfZEYTQaRwFIljkPI6rPN9mD6rNNFgGodfvIlStX8MEHH2Dbtm3gOA7PPfecFdJ0brUtmKTsiUwIIaTeNMvJyRkI4LDcidii0tJSbNiwwWzxgmEYjB07Fmq1WvTOC9PBmrUtWKVsbXns2DGo1WqcPn1aMN6qVSuEhobinXfeEX2wZl2HTrdr107U5xPH9uiG12a587BFlhQvhg4dCo7j0KtXL9HzpaWlgWVZ/P678DnKPj4+CA0NxaRJk0TPdenSJWi1Wuzbt08w3rhxY8ybNw8ffvih6EL13bt3sXr1anz22WeoqKioERf7/U4IkU0AgAi5k7BVp06dglqtrnXnxaJFiyQrXsTFxWHHjh0wGo014kqlEm+99RbCwsLQokULUXM9ePAAGzduxJo1a8ye4TV8+HDodDp0795d1FwA8P3330On0yErK6tGzN3dXfT/HkdGBRNiVx4djiV3wcTkDoAwVLfpWgngz3W9IT09HQEBAXj77bcl+bIlwswtmKTsiUwIIcQqAkAFkyeYiheRkZG4eVN4023v3r3BcRwGDhwoej5LWgVItWDNzc1FZGQkvv76a7NP25lafYndHfrgwYPHBaf79+8Ljvmf//kfvPPOO6LmIY7t0dqECiZ/kJaWBrVajYsXLwrGfX19ER4eLsnOi8uXL0Or1WLv3r2CcdMuu3nz5qFhw4ai5iopKcGqVauwZcsWweIFwzD461//ioiICHh7e4uay2g0Ijk5GcuWLTP7Xd+vXz8sWLBA1DyEENn0t4EOKjYnPz8fUVFRZh9kMe28CA4OFn0taCrsL1++HPfu3RMc4+/vD47j0LNnT1FzAcC3334LvV6Pq1evCsa7dOkCjUYDlUoleq7ffvsNGo0GaWlpgvGmTZsiNjZW9O+iI6OCCbErPM+PkTsHAb8D+AuA0QDiAdS6v7uyshLbt29Hamrq47MzXF3pn6IULl++DJ1OV2OrupQ9kQkhhFgPwzAqAFq587AVJ06cAMuyOHHihGDcy8sLQUFBmDx5cr3vvJBywVpeXo7NmzcjPj7eKgtWg8EAlmXNLlg7d+5MrVSJRXieH83zvIJhmJqPpDohS3ZezJ49W7LiRUJCAjZu3Gi2eDF27FiwLCt6p5itFapbtGiBhQsXSlKoJoTIRmE0GkcC2Cl3IrZAjmtBtVqNa9eEu2p27twZWq1WkuJFZmYmNBoNDhw4IBg3/TZKcfZxcXExVqxYgaSkJFRW1uxqzDAMJkyYgIiICLRpU+sJA06P7tISe9MuNzf3+bZt256XOxEBewH0ATAHgA5ArY0Gi4qKwLIsPv/8c+h0OowYMcIaOTokcwsmhUKBCRMmQK1Wiz7QkRBCiCwGXb16tXmnTp2c+pTC3NxcREdH11m8CAkJQdOmTUXNVVZWhi1btmD16tVmWwX4+/sjMjJSklYBdS1Yu3TpAq1Wi9GjR4ueKyMjAxqNBgcPHhSMe3h4YP78+Xj//fdFL1iJ02iZl5fXH8Avcicip+LiYiQmJtZavJDqBo2peKHX63Hr1i3BMS+99BL0ej0GDBggai4AOHLkCFiWxa+//ioYl6NQLcV3PSFEfo8eDHL6gomjXgsWFRUhLi7ObPHCdIaXWq1G69atRc1VWVn5eFdiYWGh4Jg+ffpAr9ejf//+ouZyFlQwIXaH5/kAALZYMAGAClTvMtkOgAUwF0Ctj/1kZmbib3/7G1QqFTiOQ6dOnayQpmOobcEkZU9kQgghsnFRKpUjAHwldyJyKCsrw7p167B27VqUl5cLjlGpVNDpdPD19RU9n8FgQEREBLKzswXjUra2PHfuHFiWxU8//SQYNy1Ypdgdalqw1nXotBQLVuJ8Hq1NnLJgYroW5zjOKjdoDh06BI1Gg/PnhZeCUhYvHLlQTQixGbbYQcVqHPVa0FS8iImJwe3btwXH9OvXDzqdTpLfxvT0dGg0Gly4cEEw7u3tjfDwcEycOBEMw4iez1lQwYTYIxWA1XInUYdCAAsAJKE6V/+63mAwGHDw4EF6ashChw8fBsuyNRZMPj4+CAsLw8SJE2XKjBBCiMRUcLKCCc/zSE1NhV6vx/Xr1wXHdOvWTbIdqmfPngXLsjh69KhgXMrWlnfu3MHKlSvrXLCyLCt6d2hFRQV27txZ64L1lVdeAcdxeOGFF0TNRZyaCkCU3ElYmzVv0OTk5CAmJgYpKSmCcVPxIjQ0FE2aNBE1l6WFaqkedLNmoZoQYnPa5+Tk9PLx8RH+InVQ1r4WTEpKwooVK1BSUiI4RsprwfT0dLAsi99++00w3rZt28f3q8T+NmZlZSE6Ohp79uwRjDdq1Ojx2X/u7u6i5nJGVDAh9mh4RkZGw+7duz+QOxELnADwJwDjAKwB4Fvb4IqKCmzevBmpqamSPR3laMwtmKTsiUwIIcSmvCZ3AtZ05swZqNVq/PKL8APrzZo1k+wMtNu3b2PVqlVmF6yurq54++23ERoaipYtW4qay5IFq5S7Q9PS0sCyLH7//XfBuJQLVuL0hhQWFnq0bNlS+C+2g7H0Bs2CBQtEFy/u37+P9evXIzExEQ8eCC/9pCpe2GKhOigoiM67JMTxBQBwioKJpdeCOp0Ozz9f69HAFrHmteCVK1cQExNj9rfRzc0N7733niTFC0t/GyMjI9GhQwdRczkz+uUl9qhx06ZNhwLYL3ciT2EPqs84+QhABIBaVw/5+fkICQnB9u3bJTs80N6Znvb644+C6UBHjUYDHx8fGTMkhBBST3yzs7O7dejQIVPuROpTfn4+4uLisGPHDhiNNc+PNhUvwsLC0KJFC1FzmRassbGxuHv3ruCYYcOGQafTSVa8UKvVuHjxomDcx8cHoaGhmDRpkui5Ll++DJ1OB4PBIBh3c3PDnDlzMHfuXDRq1Ej0fIQAUJaXl7+K6ut9h2XpDRq9Xo+OHTuKmstUvOA4Djdu3BAc0717d+h0OgwfPlzUXIDjFqoJIXZBheq27g6truKFvV4LlpaWYsOGDUhISMDDhw8Fx6hUKkRFRaF9+/ai5uJ5HikpKYiKikJBQYHgGD8/P3Ach0GDBomai1DBhNgpo9Gogn0VTACgDMAyVJ9vEg0gEECtZewzZ87gr3/9K8aOHQu1Wi36C9Ye1bZgokOrCCHEObi6ugYAcMiCiaXFC47j8Nxzz4meLy0tDREREcjIyBCM+/r6Ijw8HOPGjRM91+XLl6HVarF3717BuJS7Q0tKSpCQkIBNmzYJLlhND1g46/UUqV8KhUIFBy2YWHKD5sUXXwTHcRg8eLDo+U6fPg21Wo1jx44Jxk3Fi+nTp8PFpdajIuvkyIVqQojdsKcOKk/NUa8FTWd4RUZG4ubNm4Jj/Pz8oNfrJXkA+uTJk2BZFsePHxeMN2/eHIsWLZLkt5FUo4IJsVcBAMLlTuIZ3QAwBUACqp8keKW2wTzPY8+ePdi7d6/TPRFpbsHk5eWFJUuWYMKECdRGgxBCnADP8yoA6+TOQ2oGgwEajQZZWVmC8c6dOyMsLEyS4sWlS5eg1Wqxb98+wbiUC9bi4mIkJiZi48aNqKioqBE3LVhZlkW7du1EzWXJgrV3797Q6/V4+eWXRc1FiDmPDn53OKdOnYJarbbKDZq6ihemc0qCg4Ph4eEhai5rF6rr+q6XslBNCLE77k2aNBkC4IDciUjJVLyw5rWgXq/HrVu3BMdIeS144sQJsCyLEydOCMa9vLwQFBSEd955R/RvY15eHpYuXYrdu3eD5/kacSl/G8mTqGBC7FXfvLy8Nt7e3sKPOdmHXwAMBfAuqneeeNc2uKys7PEiwtF7bptbMEnZE5kQQohdGcXzvJJhmJorLjv17rvvmi1eeHh4YMGCBZg5c6boQ9aLiooQGxuLbdu2obKyskZcoVBg0qRJCA8PR5s2bUTNZcmCtU+fPuA4DgMGDBA1FwAcOXIEarUa58+fF4ybFqx0Jhyxgp55eXmdvb29r8idiFR0Oh02btxo9gbNzJkzsWDBAtE3aMrLy7FhwwYkJibi/v37gmNGjRoFrVaLrl27ipoLqC5esCyLq1evCsalLlRrNBrs3y/cGIHOYCSEAI+L7g5TMDl+/DimTp2K27dvC8b79+8PjuPQt29f0XMdPnwYLMvWei34ySefSHL/LDc3F9HR0XUWL0JCQtC0aVNRc5WXl2Pz5s1YvXo1SktLBcf4+/tDr9ejR48eouYiwqhgQuwVYzQaRwPYIXciIvEAPgewG0AwgFAAtW4fyc3NxYIFC5CcnAyO4/DCCy9YIU3rMD3ttXz5cty7d++JmFQ9kQkhhNilprm5uYMApMudiFSEeuUrFIrHvetbt24t6vMrKyuxbds2xMbGoqioSHDMyy+/DI7j8NJLL4maCwAOHToElmVx4YLwuaVSFi+suWAlxFKP1iab5M5DKseOHRP896VSqaDVatG5c2fRc+zZsweRkZHIzs4WjHfr1g1arRYjR44UPVdmZiY0Gg0OHBC+J+nu7o4PP/wQ8+fPR4MGDUTNVVxcjBUrViApKUmwUM0wDCZMmICIiAjRhWpCiEOw5w4qNVy+fFmwWOLt7Y0lS5Zg/PjxoosX165dQ2RkJFJTUwXjDRs2xKxZs/DRRx+JPmS9rKwMW7ZsqbV4oVKpoNPp4OvrK2ouoLqwHxERYfa3sWvXrtBqtRg1apTouYh5VDAhdutRew57L5iYlALQovp8k6UA6jzp6siRIxgzZgzGjx8PtVot+saK3Mw97SVlT2RCCCH269HvvsMUTP5o4MCB0Ov18PPzE/1ZP/74IzQaTa0Ha0ZEROCNN94QvWDNyclBTEwMUlJSBOOm4kVoaKjo3aFlZWVYt25dnYdOcxyHTp06iZqLkGegggMVTP6oW7du4DhOkkPWf/31V7AsiyNHjgjGPTw8Hp9TIsUuu7i4OLPFC4VCIdl6qrKyEsnJyVi2bBkKCwsFx9AZjIQQAY7QQcWsBg0aYM6cOZg3bx4aN24s6rPu37+PhIQEbNiwwey14J///GewLCvJw7YGgwFLlizB9evXBeNSFvbPnj0LlmVx9OhRwbinpyfmzZuHWbNmif5tJHWjggmxWwzDvMbzPMMwTM1Hn+xXJoA3AYwEsBpArXdNjEYjUlJS8H//93+SPRFlbRkZGdBoNDh48OATrzdv3hyLFy/GtGnT6NAqQgghQPXTdxq5k6gvERERooslWVlZ0Gq1+OGHHwTjjRo1wty5czFnzhy4ubmJmuv+/ftY///Zu/O4pq68f+CfsCiIoqDIUlFccN+tK9JxC22f6jwdrXWZqXX5qbWFilJZWnKT3IDgQl1Q62h1ahetI7Yz1ZlpG7VOQdu6L21dUETZtSKoiJUlvz9C+rTlhATPTUKS7/v1ev7h3OT7fZyZ3Hvu595z3nnHZHghxduhOp0O+/fvh0ajaXDCqlarMXbsWK5aAHDhwgWcPn0ao0aN4n1ScCoA/rXHmo6+tm6giZug0+lcZTJZja0bsYRFixZxhyW3b9/GihUrsGvXLtTU1P9ncnV1xcyZMxEbG4u2bdty1TKEF6mpqUaXhRk8eDBEUcTgwYO5agFAVlYWlEql0bfsAgICkJCQIMmyMPn5+cjMzESfPn3Qv39/k8ez9oSpMx4A36PXhJiHb5MKx+coK6gw9erVC7GxsVzfodPpsHfvXixfvhzFxcVG64iiiLCwMK5agD68UCgUOHbsGHO8devWiImJwezZs+Hmxndr/c6dO3j77bfx3nvvMc+NhmBfEAS0a9eOq1ZVVRW+/PJL1NTU4Nlnn6XgpQEUmBB7FlBSUtIXwHlbN2IBhwAMBjAXQBKABh93qqioQFpaGj755BPJ1ty1NMPTXr8/Kbi7u+Pll1/GG2+8QZtWEUII+YVMJhual5fnGxwczL7z5cTMDS+SkpIQHBzMVcsQXoiiiIKCAuYxffr0gSiKGDlyJFctADh79iwEQWAuYQYAbdq0+eUBC94Ja0lJCVJTU7Fnzx7U1tbCw8MD//rXv9CrV6/H/cporoaIvfEpKSl5EgD70VAnZlh2d/Xq1bh79y7zmFGjRkEURfTu3Zu7XlZWFgRBwMWLF5njgYGBku0JmZubi5SUFOzbt485btiDMTo6mntZmPv372P9+vXYsmULHj16BJlMhu3bt+Ppp59u8HOsN2vqzKj7P0KIjTnYCiqSsva1YFpamtFg383N7Zflc3mDfXPOjWFhYRBFkeda9BcHDhyASqVCTk4OAP3+YB988AH39zoqCkyIXavbHMsRAxMAqAawBcAe6JfrehUm/jd77do1LFy4EB9++CHUajV69uxp+S4bqaqqCrt372Y+7RUeHg5RFNGjRw8bdUcIIaQJc3VzcxsHgL32kxPS6XTIyMhAcnIybt5kr+LQt29faDQaDB8+nLvemTNnIAgCTpw4wRw3TFjnzJnD/XaoYcK6c+dO5tPRhglrfHw8fH19uWo9evQIW7duxbp1636zh9rDhw+xb98+SSapxDnUzU0oMPmVzMxMCIJgdIlAKcOLa9euITU11Wh44enpiblz50oSXhiC6vT0dDx69Ih5jFRBdW1tLfbs2YPU1FSUlJT88nfDOcBUYEIIafpcXFwiHHAFFS7WvBY0hBerVq3CvXv3mMeMHj0aarVakuvCzMxMKBQKXL58mTkeFBSEuLg4TJ1qcrV+k7Kzs6FSqert4XXw4EGUlpZy/9s5KgpMiF2rS+HTbN2Hhd0BsBjAJgBvA/gfUx/IzMzE008/jWnTpkly8pCKsQlTly5doFKpMGHCBBt1RgghxB7UnfcpMAFw+vRpCIKAkydPMsd9fHywZMkSq4QXhn1Kli1bxv12qLkTVlEUJXkwRKvVQqlUIjc3lzlu7EYoISx1v1EaW/fRFOTk5ECtVkOr1TLHPT09f1nTvnnz5ly1KioqsHnzZqPhhUwmw8SJE6FQKNChQweuWuYE1f369YMoipIF1QqFwuhvPf1GEeIYdDpdUElJSR8A39u6F1trateCISEhSEhIkGQll6tXr0KlUuHgwYPM8RYtWmDRokWSnBvv3r2L9PR0bNmyBVVVVcxjjL2ZTigwIfbvD3l5eZ7BwcGVtm7ECi4BeA7ABADrATQYa1dVVeHDDz/E/v37JXva83Fdu3YNKpWq3oTJ29sbUVFRtGkVIYQQczn9Y7TFxcVYvnw59u7dC52u/kOIUoYXDx8+xLZt2+q9efFrUr4dqtVqIQgCrl+/zhzv3LmzZEuPXrx4EYIgICsri/u7GnACQLklC1hZT9A69KaMLC0tbe3r6+tI/7k3iuEGzdatWxsMLwRBwBNP8P3Xqba2Fnv37kVSUhJu3brFPKZ///4QRRHDhg3jqgVYN6guKipCcnIyPv30U+ZvfWO4uLgYG7oAoJDrywkxTysA/P8jdHC1tbURcPLAxJrXgleuXIFKpcKhQ4eY44bwQoq9gsvLy7Fhwwaj4YXh3KhUKhEUFMRVq6amBh999BFWrlxpdA8vYhoFJsTeebi4uIwGwH50yTEdADAA+iW6RAAN3g0pKyuDIAj44IMPoFaruTdrbAxjEyYXFxdMmTIFCoWCe9MqQgghTqVTfn5+9w4dOrDfX3dghvBi7dq1qKioYB4THh4OjUaD7t27c9fTarVQKBS4ceMGc7xLly5QKpWQy+XctYwtFWDg5eWFV155RbIJ6+rVq7Fjx46G1vWXymIARy1dxIo2A1ho6yaaOLfKysrFvU+NAAAgAElEQVQxAP5p60aszRBeaDQa/PTTT8xjBgwYAFEUMXToUO56p06dgiAIOHXqFHPc398fMTExmDFjBnd40dSC6sZqYE3/NADbJClCSMMGAjht6ybsgBz6VUWcTnZ2NpRKJQ4fPswct+a1oEwmw5QpU5CYmIj27dtz1TKcG0VRxO3bt5nHDBw4EBqNBkOGDOGqBQBHjx6FIAj48ccfub/L2VFgQhyBHM4VmABAFYB1AD4CoADwGoAGZwLZ2dmYOXMm5HI5RFFEp06dLNZcQ097hYWFQa1WS7KhIyGEEOcjk8meBuBUgYlWq0ViYiLy8vKY4127doVKpcL48eO5a/3www9QKBT49ttvmeOGt0Pnz5/PPWEtKytDWloa3nvvPebGmi4uLpg8eTIUCgX8/Py4alVXV+P999/H6tWrUVZWxjxm2LBhkMlk+O472oKCcImAkwUmpm7QGMKLmTNnNvS2g1mKioqQkpJiMryIjY1Fq1atuGpZO6j+7LPPkJSUhPz8fOZ4t27d0K1bN3z++efctQghTZIzraACwPrXgh9//DFWrFhhNLwYNGgQRFGUJLw4cuQIBEHAhQsXmOP+/v548803JdnD68aNGxBFEf/+97+Z482bN8esWbOwdetWrjrOhAITYvdkMlkEgFhb92EjP0H/9OIOAGsBhJv6gFarxeHDhyWbSPzeN998A0EQ8MMPP/zm70FBQb9s6EgIIYQ8LhcXFzmAdFv3YQ3nz5+HIAhGb+C3bt0akZGRkixteefOHbz99tsmJ6yCIHC/HWqYsKamphpdKmDw4MEQRRGDBw/mqgUAWVlZUCqVRiesAQEBSEhIwAsvvIClS5dSYEK4uLi4RNi6B2spLCxEamoqMjLYW0tJGV5UVlZi+/btDYYXcrkcarUaISEhXLUA6wbV33//PQRBMBlUL1iwAFu3bqXAhBDH5eni4hIG/aoiDq2qqgq7d+9ukteCvOFFQUEBVqxYYfTc6OHhgXnz5mHx4sVo2bIlV63Kykps2rQJGzZsMLofieGhaV9fXwpMGoECE+II+t+6dSvQz8+vyNaN2NApAE8BmAT9/iYhDR1cVVWFbdu2Yf/+/RZ/2kvKTasIIYQQnU43Ljs7u3loaKjD7lJozfDCsLHm6tWrcffuXeYxo0aNgiiKkrwdmpmZCaVSiYsXLzLHAwMDf3nAgnfCmpubi5SUFOzbt485bpiwRkdHw8vLi6sWIQY6na5bSUlJF39//xxb92IpjblBw/tWu06nw/79+6HRaBp880KlUmHcuHFctQDHDaoJIfah7sEghw5MHPVa8MGDB3jnnXdMnhs1Gg06duzIVctwbhRFEQUFBcxjQkNDf7Ms/71797hqOhsKTIgjkFVVVU0A8IGtG2kC9gE4CCAKQCKABuPqkpISxMbG4qOPPnrs9YSNTZik3NCREEII+RWvli1bjgDwX1s3IjVzwouwsDCIoohevXpx18vMzIQgCLh06RJzPCgoCHFxcZg6dSp3rWvXriE1NdXohNXT0xNz586VdMKanp7O3HQa0E9Yk5KSEBwczFWLEJaampoI6Pd8cSiPc4OGx7lz5yAIAo4dO8Ycb9OmDZYuXYrZs2c3tE+HWcwNL5RKJdq2bctVy9pBNSHEfuh0uggAcbbuwxLMuRZ89dVX8dprr8HDw4OrljWvBXU6HTIyMpCcnIybN28yj+nbty9EUcSIESO4agHA2bNnoVAocOLECea44dw4Z84c7j28nBkFJsRRyEGBicEDACsAfAggBcBfADQYy589exbPP/98owKOhp72GjBgADQaDZ588snH/n+CEEIIMUan08nhYIHJoUOHsHjxYly7do05HhISAkEQ8Mwzz3DXysnJgVqthlbL3gLOMGGV4u3QiooKbN682eiE1fCAhUKhQIcOHbhqmTNh7devH0RRxPDhw7lqEWKCHA4WmJw/fx4fffSR0U3WfX19ERsbiz//+c/cN2hKSkqQlpaGXbt2McMLNzc3TJ8+HXFxcVYJL+w1qCaE2KUBjraCyoMHD6BWq7F9+3ZUVVXVG5fJZPjTn/6Et956C4GBgVy1rH0teObMGSgUCpw8eZI57uPjgyVLlkgSXhjOjTt37kRtbW29cXd3d0ybNg3x8fHw9fXlqkUoMCGOI0Kn08lkMln9nf+cVwGAWQA2QL9BfINRtk6nw759+3DgwAGTN0nOnTsHhUKB48eP/+bvUm7oSAghhDQgAvo3KR3G2rVrmX+XcmnLu3fvIj09HVu2bDE6YZXq7dDa2lrs3bsXSUlJuHXrFvOY/v37QxRFDBs2jKsWAJw+fRqCIFhlwkqIGcbpdDo3mUxWbetGpPLee+8x/y7lDRpDeLFq1SqjS4eMHj0aarVasvBCoVDg8uXLzHEpw4ucnByoVCocOMBeaUfKoJoQYtdkVVVV46F/ANYhZGdnIzs7mzlmr9eCxcXFWL58eb0l6Q0Me3gtW7YM3t7eXLUM58aVK1fi/v37zGPCw8MhiiJ69OjBVYv8HwpMiKPwLygo6A/grK0baYKOARgF4CXo3zwJaOjgysrKX57oiouL+826kcYSbXd3d7z88suIjY3l3rSKEEIIMcOQoqIiv8DAQPadeAfg4uKCqVOnIj4+Hv7+/lzfZQgvNBoNfvrpJ+YxUr4deurUKQiCYPRJdMMDFjNmzLCrCSshjdCmsLBwGICjtm7EksaNGweVSoVu3bpxf5dWq4VSqURubi5zPCQkBAkJCZg0aRJ3ratXr0KlUuHgwYPMcXsNqgkhDkMOBwpMWPz9/REfH4+pU6dyP2xrzWvBhw8fYtu2bVi3bp1VwgutVgtBEHD9+nXmeOfOnaFSqSCXy7lrkd+iwIQ4DFdX1whQYGKMDsD7AP4BQAHgdQDNGvpAYWEhFi9ejL///e948803kZWVhfXr16OiouI3x0m1aRUhhBDSCC61tbXjAOy2dSOWMHDgQGg0GgwZMoT7u44ePQpBEPDjjz8yx6V8O7SoqAgpKSkmJ6yxsbFo1aoVV63Kykps374da9eurXdtYhAeHg6NRoPu3btz1SLkMUXAQQOTzp07Iz4+XpLw4sqVK1CpVDh06BBz3BBeREVFoVmzBqcvJpWXl2PDhg0NhhdTpkxBYmIi2rdvz1XL2kE1IcShOOwKKra4FkxKSkJoaChXLUAfXigUCty4cYM53qVLF6hUKkyYMIG7VnZ2NpRKJQ4fPswc9/b2RlRUFObPn899biRsFJgQh1G3nvkqW/fRxN0FsAzAFgBpAEzOco4cOYLnnnuu3t+l3NCREEIIaSyZTCaHHQcm7u7u9f4WGBiIxMREPP/887+83fm4CgsLkZqaioyMDKP1Z82ahbi4OO63QysrK7Fp0yZs3LgRDx8+ZB4jl8uhVqsREhLCVQvQT1gTExORl5fHHO/atStUKhXGjx/PXYuQx1X3G6WydR+Pi/Ub5e3tjSVLlmDu3LnM8cYoKytDWloaduzYgerq+iuXGTZZlzK8EEURt2/fZh5jr0E1IcQhBeTn5/cDcM7WjTwOYzfwn332WQiCgE6dOnHXsOa14Pfffw9BEPDtt98yxw3hxYIFCyQ7N7733nvMPbwM50aFQgE/Pz+uWqRhFJgQRxJeWFjYIigo6IGtG7ED2QD+CGA8gDUA+pn7QW9vbyxbtgyzZ892yjXAy8rK8Omnn6J58+aYMmUKrTFMCCG287StG+ARERGBXbt2AQA8PDywaNEivPbaa2jRogXX9xrCiw0bNuDnn39mHiOXyyGKIveEVafTYf/+/dBoNMjPz2ce061bN6hUKowbN46rFqDfdFoQBHz33XfM8datWyMyMlKSCSshEhh+/fp1n06dOt2xdSOPIyIi4pebQ66urpgxY4Ykm6xXV1fj448/xooVK4yGF4MGDYIoipKEF1lZWVAqlbhw4QJzPCAgAAkJCb9ZhvhxWTOoJoQ4Njc3twjYaWAyYsQIeHt74+7duwCAXr16Qa1WY/To0dzfbc1rwTt37uDtt982GV4IgoB27dpx1aqqqsLu3buRmpqK0tJS5jEjR46EKIro06cPVy1iHgpMiCPxABAO4AtbN2JHDgIYDGAugCQAJiPqMWPGYN68eZbuq8mprq7GBx98gFWrVqGsrAwAcPDgQWzbts3GnRFCiNPqUFhY2CsoKIh9F6yJS01NxYABA3Dnzh288MIL3GvXG8ILURRRUFDAPEbKt0PPnTsHhUKB48ePM8fbtGmDpUuXYvbs2XBz45ty3Lx5E6mpqfj73//+mz3UDNzc3PDSSy/hjTfegI+PD1ctQiTk6u7uPhbAJ7Zu5HEsXLgQQUFBuHz5Mp577jlJNlm3ZniRm5uLlJQU7Nu3jznu4eGBefPmYfHixdzhRUVFBdavX48tW7YYDaonTpwIhUKB4OBgrlqEEOdQt4LKalv38Tj8/f2xf/9+/POf/0RISAief/557odtTYUXbm5umD59uiTBvmGT9dWrV/8S+vxeWFgY1Go1evfuzVUL0N9XUqlUuHr1KnM8ODgYCoUCEydO5K5FzEeBCXE0clBg0ljV0C/RtReACGABGvhtMDbBcWSZmZlQKpW4ePHib/7+5Zdforq6mvtGECGEkMcWAcAuT0yGJ42lcPbsWSgUCpw4cYI5bggv5syZwz1hLSkpQVpaGnbu3Gk0vJBqwvro0SO8++67WLduHe7du8c8Jjw8HGq1Gj179uSqBeiXd8jMzOT+HkJ+RQ47DUxkMhn++Mc/SvJdpsILT09PzJ07F9HR0fDy8uKq9eDBA7zzzjsm37KTYg9GnU6HjIwMLF++HCUlJcxjevfuDVEUMWrUKK5aAHD69Gl8+umn3N9DCLELT+Xl5XkGBwdX2rqRx9GtWzfExMRwf4854cXo0aOhVqslCfYzMzOhUChw+fJl5nhQUBDi4uIwdepU7lpXr16FUqlscA+vqKgovPLKK9wrm9y9exdpaWlc3+Fs6C4fcTQRtm7Ajt0G8BqAdABvA3iWdRBrg0RHZWpyV1NTw7xZRAghxGrkANbZuglbMRVeuLu7Y9q0aYiPj4evry9XLcOEddWqVUbDCyknrF988QXUajVyc3OZ4yEhIVAqlXj6af6V2RraWJOW9iKcnrF1A7ZkCC/S09Px6NEj5jFyuRxJSUncb14Ywovk5GTcvHmTeUzfvn0hiiJGjBjBVQsATp48CUEQcPr0aeZ427ZtERsbi5kzZ0oSVC9fvhwZGRnQ6X67BzT9RhHisDxcXV3DAXxp60ZsJTMzE4mJicjOzmaOh4SEICEhAZMmmdya16ScnByoVCocOHCAOd6iRQssWrQIkZGRkoQXb7/9Nv72t78x76/JZDJMnjwZb731FgICArhq1dbWYteuXVixYgV++umneuO0YbxxFJgQR9MvPz+/Q4cOHdgLaRNzXATwP9AHJ5E27sUm7t+/j3Xr1mHr1q1GJ3eEEEKahDHZ2dnNQ0ND2Y8ROyhDeLFy5Urcv3+feUx4eDhEUUSPHj2462m1WiiVygbDC6kmrJcuXYJSqcTXX3/NHG/ZsiUWL16M+fPnc0/yysvLsXr1arz//vvMCau7uzuefZb5/Agh5grJy8vrFhwcfMXWjViTYZP1hsKLfv36QRRFDB8+nLvemTNnoFAocPLkSea4j48PlixZIslbdsXFxUhOTsYnn3xSL7wA9L8bc+bMwdKlS+Ht7c1V6+eff8aWLVuwfv16VFRUMI+R6i0gQkjTU7csl9MFJlevXoVKpcLBgweZ41KHF+np6diyZYvR8GLixIkQBIF7+dyamhrs3LkTK1eutMoeXt9++y0EQcD333/PHA8LC+N+G9yRUWBCHI6rq+t4ADts3YcDOGvrBqzNnCfTCCGENCleLVu2HAXgK1s3Yi1arRaCIOD69evM8c6dO0OlUkEul3PXunLlCpRKJb76iv3Pa5iwRkVFcYcXZWVlWLVqFT744ANUV1fXG3dxccHUqVORkJCA9u3bc9WqqanBhx9+iJUrV+LOHfZ+3EOGDEFycjL69+/PVYuQuo17nSYwOX36NARBMBpe+Pr6Ijo6WrLwYvny5di7d6/R8GLWrFlYtmyZJOHF5s2bkZ6ejgcPHjCPGTduHNRqNbp27cpVCwD+/e9/Q6PRGP2t79KlC0RRxLhx47hrEUKaJhcXlwgAy2zdh7WUl5djw4YNDYYXU6ZMQWJiIve1oCHY12g0zDcvAGDAgAHQaDR48sknuWoBwNGjRyEIAn788UfmuL+/P958801J9vDKz89HUlISPvvsM+Z4s2bNMH/+fCxdupSrjqOjwIQ4nLoUngIT0ijHjx+HIAg4e5adE/n5+eEvf/kL1qxZY+XOCCGENKTuvO/wgUlDy0YBgLe3N6KioiR586KsrAxpaWnYsWOH0fBi8uTJkkxYq6ur8fHHH2PFihVGn7YbOHAgNBqNJE/bHTlyBIIgGN2Tzd/fHzExMZg5cyZcXFy46xFS9xu1ydZ9WJq54UVsbCxatWrFVevhw4fYtm0b1q1bZ7W37BQKBW7cuMEct2ZQ7eXlhVdeeUWSoJoQ0rTpdLp+t27dCvTz8yuydS+W5MjXgkVFRUhJSbHKubGyshLbt2/H2rVrjb6VKJfLoVarERISwlXLGVBgQhzR0zqdzkUmk9HmEsSkxjyZVlpaSoEJIYQ0PREA3rR1E5ZiCC/ee+891NTU1Bs3hBcKhQJ+fn5ctQwT1tTUVJSWljKPkXKpgKysLCiVSqMT1oCAACQkJEjytF1hYSFSU1ORkZHBHDec7+Pi4tCyZUuuWoT8znidTucuk8kcciNAc27QhIeHIykpCaGhodz1TIUXXbp0gUqlwoQJE7hrNcWgWorfekKI3ZBVV1fLAbxv60YsxVGvBSsrK7Fp0yZs2LABP//MXjlYLpdDFEV06tSJq5ZOp8P+/fuh0WiQn8/enaBbt25QqVT0VmIjUGBCHFG7wsLCAQDYO/ARAvOfTNNoNOjevTsAGL15RAghxKYGFRcXtw8ICHCotRSrqqqwe/fuBsOLkSNHQhRF9OnTh7teVlYWBEHAxYsXmeNSTlhzc3ORkpKCffv2Mcc9PDwwb948LF68mHvCath02tSEVaPRoGPHjly1CDGiVVFR0XAAWbZuRGparRaJiYnIy8tjjnft2hUqlQrjx4/nrvX9999DEAR8++23zHFDeLFgwQLujdCbWlA9ePBgiKKIwYMHc9UihNifurcUHS4wMfdaMDo6Gl5eXly1rHktaG54oVarMXbsWK5aAHDu3DkIgoBjx44xx1u3bo2YmBjMnj0bbm4UATQG/WsRRxUBCkyIEaYmd1I+mUYIIcTiXGpqasYD2GXrRqSSmZkJQRBw6dIl5nhgYCDi4+MlCS+uXbuG1NRUoxNWT09PzJ0716oT1qSkJAQHB3PVMkxYRVFEQUEB85g+ffpAFEWMHDmSqxYhptTd8HKYwOT8+fMQBAHfffcdc1zKGzR37tzB22+/bTK8EAQB7dq146pVVVWFHTt2YPXq1bh79y7zmJEjR0Kj0aB3795ctQDTQbWUv/WEELvlUCuoNLVrwdDQUKjVaowZM4arFqAPLxQKBY4fP84cb9OmDZYuXSrJubGkpARpaWnYtWsX89zo5uaG6dOnIy4ujjZ2f0wUmBBHFQFgha2bIE2LqSfTWrdujcjISEmeTCOEEGI9Li4ucjhAYJKTkwO1Wg2tVssc9/T0xKuvvorIyEg0b96cq5Zhwpqeno5Hjx4xj5FywpqRkYHk5GTcvMl+Eahv374QRREjRozgqgUAZ86cgSAIOHHiBHPcMGGVYtNpQswUAUBp6yZ4GZanNRZeSHmDxpzwIiwsDKIoolevXly1AMcNqgkhds/PEVZQMfdaUKPRYPjw4dz1rHktaAgvdu7cidra+rmW4dwYHx8PX19frlqGc+OqVatw79495jGjR4+GWq2W5NzozCgwIQ5JJpONvnnzZsv27duz11oiTsWaT6YRQgixPp1OF6HT6WQymaz+ZlR24O7du0hPT8fWrVuZ4YVMJsPEiROhUCjQoUMHrlq1tbXYu3cvkpKScOvWLeYx/fr1gyiKkk1YFQoFTp48yRz38fHBkiVLrDJh/fW+ZN7e3ly1CGkMmUw2NC8vzzc4ONgu13e19g2azMxMKBQKXL58mTkeFBSEuLg4TJ06lbuWNYPqiooKbN682WRQnZyczP1bTwhxKHa9goqjXguae24URRE9e/bkqgXoV0pRKpXIzc1ljoeEhCAhIQGTJk3irkUoMCGOq1lNTc1TAP5t60aI7Vj7yTRCCCE280RxcXFvAD/YupHGMCe86N+/PzQaDYYOHcpd7/Tp0xAEweiE1dfXF9HR0ZJMWIuLi7F8+XLs3bsXOl39HEvKCau5+5KJoogePXpw1SLkMbm6ubmNA8DeabYJs+YNmpycHKhUKhw4cIA53qJFCyxatEiS8KIpBtUajQbDhg3jqkUIcTx1b1Lb3Qoq1rwWNNz7WblypVWuBbVaLQRBwPXr15njnTt3Rnx8vCTnxitXrkClUuHQoUPMccO5MSoqCs2aNeOuR/QoMCEOq26tYApMnJQ1n0wjhBBiezqdLgJ2FJh88803UCgU+PHHH5nj/v7+iImJwcyZM+Hi4sJVq6ioCCkpKSYnrLGxsWjVqhVXLUN4sXbtWlRUVDCPCQ8Ph0ajQffu3blqAfoJq0KhwI0bN5jjXbp0gVKphFwu565FCI+6uYndBCZXr16FUqk0eYNGivCivLwcGzZswJYtW1BVVVVv3BBeCIKAJ554gquWIbzQaDT46aefmMdIGVSfOnUKgiDg1KlTzHHDb/2MGTNoiUBCCJNOpwsvLi72CggIYF9YNTGOfC2YnZ0NlUqFr776ijnu5eWFV155RZLwoqysDGlpadixYweqq6vrjctkMkyZMgWJiYlo3749Vy1SHwUmxJFF2LoBYn1Xr16FSqXCwYMHmeNSTu4IIYQ0KXIAa2zdhLnmzJnDfPtRyvCisrIS27dvNzlhTUpKQmhoKFctQD9hTUxMRF5eHnO8a9euUCqVmDBhAnctU/uSeXt7IyoqCvPnz6en7UhT8bStG2iM6Oho5ttoUt6gMSe8GDBgADQaDZ588kmuWgBw9OhRCILgcEE1IcThNdPpdE8B+I+tGzHHvn37kJyczBzr2rUrVCoVxo8fz13nhx9+gCAI+Oabb5jjUl4LGsILU8u8KxQK+Pn5cdWqrq7Gxx9/jBUrVuD27dvMYwYNGgRRFDFkyBCuWsQ4CkyII+tdUFAQ/MQTT7Bn7cShWPPJNEIIIU3SmLy8PM/g4OBKWzfyuJ577jkoFAp07NiR63t0Oh3+8Y9/ICkpCUVFRcxjevToAVEUER4ezlUL0IcXCoUC3333HXO8devWiIyMxIIFC+Du7s5Vi/YlI3asU35+fvcOHTqwX3+2A0OHDoVGo0H//v25vysrKwtKpRIXLlxgjgcEBOCtt97C5MmTuTdZt2Z4YU5QLZfLoVarERISwlWLEOI86t5StIvAhKVNmzZ44403MGvWLLi58d2Kvn37NlasWIFdu3YxrwVdXV0xc+ZMxMbGom3btly1DOFFamoqSkvZ25ANHjwYoihi8ODBXLUA886NCQkJeOGFF7jPjaRhFJgQRycHsN3WTRDLMefJtIEDB0IURUmeTCOEENJkecpkslEA2K8YNnFr167Fiy++yP09Z8+ehUKhwIkTJ5jjbdq0wbJly/DSSy9xT1itGV6Ysy/ZqFGjIIoievfuzVWLEEuRyWQRAOwyMImMjERCQgL3DZrr169DFEX85z/s+34eHh545ZVXEBkZiRYtWnDVqqysxKZNm7Bhwwb8/PPPzGPkcjlEUUSnTp24aul0Ouzfvx8ajQb5+fnMY7p16waVSoVx48Zx1SKEOCW7XUGlY8eO+M9//gMfHx+u76mqqsL27duxZs0aq1wLZmVlQRAEXLx4kTkeGBiI+Ph4ScKL3NxcpKSkYN++fcxxT09PzJ07F9HR0fDy8uKqRcxDgQlxaHWbY1Fg4qCOHDkCQRCMpu9SvlZPCCGk6XN1dY2AnQYmXbp04fp8aWkp1qxZYzS8cHNzw/Tp0xEXF8f9tJ054UVYWBhEUUSvXr24agH6fckEQcClS5eY47QvGbEXLi4uEQA22LqPx9G5c2euG0IPHjzAO++8YzK80Gg0krxlt3//foiiiIKCAuYxoaGhUKlUGDt2LFctADh37hwEQcCxY8eY461bt0ZMTAxmz57NHVQTQpxWH3tdQcXHx4c7LDF1LShleHHt2jWkpqZaJbwwnBvT09Px6NEj5jFyuRxJSUkIDg7mqkUah87WxKHpdDq5TqdzkclktbbuhUinsLAQqampyMhg75vp4eGBefPmYfHixWjZsqWVuyOEEGIrdRu/x9m6D2syhBerVq3CvXv3mMeMHj0aarVasvBCoVDg8mX2Q/JShhc5OTlQq9XQarXMcU9PT7z66qu0LxmxGzqdblx2dnbz0NBQdmLggMwJL/r06QNRFDFy5EjuemfPnoUgCDh+/DhzvE2bNli6dCnmzJnDvcl6SUkJ0tLSjC4LI2VQTQghACYA+Jutm7Ama14LVlRUYPPmzUbDC8My7wqFAh06dOCqZVgpJTk5GTdv3mQe069fP4iiiOHDh3PVIo+HAhPi6NoWFRUNBsBel4LYFWs+mUYIIcQuDbh161agn58fe+MOB6PVaqFUKpGbm8scDwkJQUJCAiZNmsRd6+rVq1CpVDh4kP0CT4sWLbBo0SJJJqx3795Feno67UtGHJFXy5YtRwD4r60bsYYzZ85AEIQGlwiUOrzYuXMnamvrPytnCC/i4+Ph6+vLVcvaQTUhhACATCaTw0kCE8O14NatWxsML6S4FjSEF0lJSbh16xbzmP79+0MURQwbNoyrFgCcPn0agiDg5MmTzHEfHx8sWbJEknMjeXwUmHQSLIgAACAASURBVBBnEAEKTOyeVqtFbGwsSkpKmON9+vSBRqPBiBEjrNwZIYSQJkRWVVU1HsCHtm7Ekq5cuQKVSoVDhw4xx6UML8rLy7FhwwaT4YVSqURQUBBXLXP2JRswYABEUcTQoUO5ahFiK3Ub9zp0YGIqvDBssr5s2TJ4e3tz1TI3vBBFET179uSqBVg3qCaEkN9x+BVUrH0teOrUKQiCgFOnTjHHDcu8z5gxgzu8KC4uxvLly7F3717odLp641KeGwk/CkyIM5ADWG7rJsjj++mnnzB//nzmkwXt2rVDXFwcpk+fTuk7IYQQQH/ed8jApLy8HKtXr8aOHTtQXV1db1wmk2HKlClITExE+/btuWqZM2EdOHAgRFHEk08+yVULAI4ePQpBEPDjjz8yx2lfMuJAIgAk2roJS3j48CG2bduGdevW4f79+8xjwsPDIYoievTowV1Pq9VCEARcv36dOd65c2fEx8dLEl6YG1RHRUWhWbNm3PUIIYShXVFR0SAA7FcT7Jw1rwWLioqQkpJiMryIjY1Fq1atuGpVVlZi+/btWLt2LSoqKpjHhIeHIykpCaGhoVy1iHQoMCHOYNTNmzdbtm/fnn3VTpq8q1ev1gtL3N3dMXfuXCxZsoTSd0IIIb8WodPpZDKZrP7sx05VV1fj448/xooVK3D79m3mMYMGDYIoihgyZAh3vSNHjkAQBFy4cIE57u/vjzfffFOSjTVN7UtmmLDGxcXRvmTEUQwpKiryCwwMZK/7Yae0Wi0UCgVu3LjBHO/SpQuUSiXkcjl3rezsbKhUKnz11VfMcS8vL7zyyiuShBdlZWVIS0uzSlBNCCFmiICDBSbmXgtKFV5s2rQJGzduxMOHD5nHyOVyqNVqhISEcNUC9OfGxMRE5OXlMce7du0KlUqF8ePHc9ci0qLAhDiDZrW1tWMA7Ld1I+Tx/D7xb9GiBb744gt07drVRh0RQghpwgLy8/P7AThn60akkJWVBaVSaTS8CAgIQEJCglXCCw8PD8ybNw+LFy/mDi8ME1ZT+5KJoohOnTpx1SKkiXGpra0dB2C3rRuRwvfffw9BEPDtt98yx729vREVFYX58+dLFl689957zE3WXVxcMHnyZCgUCvj5+XHVsnZQTQghZpIDSLF1E1Kw5rWgTqfD/v37odFokJ+fzzymW7duUKlUGDduHFctADh//jwEQcB3333HHG/dujUiIyOxYMECuLu7c9cj0qPAhDiF2tpaOSgwcRgeHh4UlhBCCDHKzc0tAnYemOTm5iIlJQX79u1jjhvCi+joaHh5eXHVevDgAd555x2TE1aNRoOOHTty1TJMWEVRREFBAfOY0NBQqNVqjBkzhqsWIU1V3ca9dh2Y3LlzB2+//bbJ8EIQBLRr146rliG8SE1NRWlpKfOYwYMHQxRFDB48mKsWYN2gmhBCGinM3ldQsfa14Llz5yAIAo4dO8Ycb9OmDZYuXYrZs2fDzY3vNnlpaSnWrFlj9Nzo5uaG6dOnIy4uDm3btuWqRSyLAhPiLCJs3QAhhBBCrKNuU+XVtu7jcRjCi/T0dObeXYA+vEhKSkJwcDBXLcOEVa1Wo7CwkHlM3759IYoiRowYwVULAM6ePQuFQoETJ04wxw0T1jlz5tjFvmQPHjzAhg0bbN0GsU9P27qBx2XYZH316tW4e/cu85hRo0ZBFEX07t2bu15mZiaUSiUuXrzIHA8MDER8fLwk4YWpoNrT0xNz586VJKi2hurqanzwwQcoLi62dSuEEOk0q6mp+QOAf9m6kcdx9uxZCIKA48ePM8elvBYsKSlBWloadu3aZfHwwnBuXLVqFe7du8c8ZvTo0VCr1ejVqxdXLWv5/vvv8dlnn9m6DZuhwIQ4i55FRUUhgYGBubZuhBBCCCEW91ReXp5ncHBwpa0bMZdOp8OePXuQnJyMmzdvMo/p168fRFHE8OHDueudOXMGCoUCJ0+yl8H28fHBkiVLJJ2w7ty5E7W1tfXG3d3dMW3aNMTHx8PX15erljWYs6wDISZ0KCws7BUUFMR+haGJyszMhCAIuHTpEnM8KCgIcXFxmDp1Kneta9euITU1tcHw4tVXX8Vrr70GDw8PrlrWDKqtxdReVIQQ+1X3YJBdBSamrgUN4YUU14LWDi8yMzORmJiI7Oxs5nhISAgSEhIwadIk7lrWYOoNUmdBgQlxGjqdbgKAd23dByGEEEIszsPV1TUcwJe2bsRcCxcuNPoUsJ+fH+Lj4zFt2jS4uLhw1SkpKUFycjL27t1bb48w4P821ly2bBm8vb25ahkmrCtXrsT9++yVI8LDw6FWq9GzZ0+uWtZiKmj6nTuW7ofYtQgAdnM3e9WqVUZ/o7y8vBAVFYWFCxeiefPmXHUqKiqwefNmo+GFTCbDxIkToVAo0KFDB65atbW12Lt3r9WCamvIzc2FKIr4/PPPzTmcfqMIsU92tYLKtWvXMHr0aFRUVDDHx44dC7VajW7dunHX0mq1UCqVyM3NZY5LGV5cvXoVKpUKBw8eZI63aNECixYtQmRkJPe50Rqqqqqwbds2rF271ugbpL9SZo2ebIkCE+I06lJ4CkwIIYQQJ1B33rebwIR1I1LK8OLhw4fYtm0b1q1b12B4IYoievTowVUL0E9YBUHA9evXmeOdO3dGfHy83TxtV1JSgtTUVOzZs4f5ZCTDGQDsNYQI0ZMDWGfrJszF+o0yhBeCIOCJJ57g+n5DeJGUlIRbt24xj+nfvz9EUcSwYcO4agHA6dOnIQiC0fDT19cX0dHRdrNE4P3797Fu3Tps3brV6Fsyv3MLAPsuHyGkqetVWFjYMSgo6IatGzGHsZvvUl4LXrlyBSqVCocOHWKOG8KLqKgoNGvWjKtWeXk5Vq9ejR07dqC6urreuEwmw5QpU5CYmIj27dtz1bIWrVYLtVqNnJwccz/ysSX7aQooMCFOQyaTyXU6natMJnPed8oIIYQQJ+Hi4hIBYJmt+3hcERERUCqV6Ny5M/d3abVaKBQK3LjBnld36dIFKpUKEyZM4K6VnZ0NpVKJw4cPM8e9vb0RFRWF+fPnc09YreHRo0fYsmUL1q9fbzRoYjgNYAqA+q/wEPJ/xmRnZzcPDQ392daNPA4pN1k/deoUBEHAqVOnmOP+/v6IiYnBzJkzud+yKy4uxvLly02+ZRcbG4tWrVpx1bKG2tpa7NmzB6mpqSgpKTH3Y9cBTANQbrnOCCGWVPdg0DZb9/E4vL29sWTJEsydOxfu7u5c31VWVoa0tDSj4YWLiwsmT54sSXhRXV2Njz/+GCtWrMDt27eZxwwcOBAajQZDhgzhqmUtpq7bGaoBrACw3WJNNREUmBBn4lNcXDwEwDFbN0IIIYQQy9LpdP1u3boV6OfnV2TrXhqje/fuEEURTz31FPd3ff/99xAEAd9++y1z3BBeLFiwQLIJq7H1jg0TVoVCAT8/P65a1mJqWQeG2wA0ADYAoAd0iCleLVu2HAXgK1s30hj+/v546623MGXKFO5N1ouKipCSkmKV8KKyshLbt2/H2rVrjS4LEx4ejqSkJISGhnLVspZGLhEIAA8ApANIAmB2AkwIaXpcXFzsLjBxdXXFjBkzEBsbi3bt2nF9lznhxaBBgyCKoiThRVZWFpRKpdF9oQICApCQkIAXXniB+9xoDXfv3kV6ejq2bNmCqqoqcz92CEA0gPOW66zpoMCEOBWdThcBCkwIIYQQZyCrrq6WA3jf1o2wBAUF/WaJgjZt2uCNN97ArFmz4ObGd4luarNGQ3ghCAL3hLWqqgq7d+9GamoqSktLmceMHDkSoiiiT58+XLWsxdSyDgxVAN4BIICe2CaNUPeEcJMMTIKCgn5zI7558+ZYuHAhoqKi4OXlxfXdlZWV2LRpEzZu3IiHDx8yj5HL5VCr1QgJCeGqBejDz8TEROTl5THHu3btCpVKhfHjx3PXsgZTb8kw6ABkQP/WJXudREKIXdHpdBFNdQWVwMDAen+T8lrQmuFFbm4uUlJSsG/fPua4h4cH5s2bh8WLF6Nly5ZctazBsPylRqPBTz/9ZO7HrgB4E8Aey3XW9FBgQpyNHPonagghhBDi4OpuRjbJwESj0SAyMhLl5eWYMWMG3njjDfj4+HB9p2GT9dWrVxtdL3rUqFEQRRG9e/fmqgUAmZmZEAQBly5dYo4HBgYiPj7ebp62M7WsgxEHoH/a7gfLdUYcWAT0NyGanNjYWFy6dAk5OTl49tln8dZbb6Fjx45c36nT6bB//35oNBrk5+czj+nWrRvUajXGjh3LVQsAzp8/D0EQ8N133zHHW7dujcjISEnesrMGc/aiYjgJ/W9UluU6I4TYgE9xcfFgAMdt3cjvhYWFYdasWdi5cyeCg4Ml26fEVHjh6emJuXPnIjo6mjvYf/DgAd555x1s2LABP//MXjlTLpcjKSkJwcHBXLWs5ciRI1Aqlfjxxx/N/UgFgNUAUgDY5fKhPCgwIc5m1O3bt73btm3LvotACCGEEEci1+l0MplM1uT2kggLC8Pp06cl+z5T4UVQUBDi4uIwdepU7lrXrl2DSqWCVqtljnt6euLVV1/Fa6+9Bg8PD+56lmZY1qGht2QYLgOIAbDfcp0RJzCouLi4fUBAwE1bN/J7Xbt2bcya5iadO3cOCoUCx4+z7+21adMGS5cuxezZs7nfsistLcWaNWuMvmXn5uaG6dOnIy4uDm3btuWqZS2m9qJiKAKggn7Jnib3BDohhF/dCipNLjCRyWRITU1FamqqJN9nCC/S09Px6NEj5jFShRc6nQ4ZGRlITk7GzZvsU3Pfvn0hiiJGjBjBVctaCgsLkZqaioyMDHM/ogPwIYBYAMUWa6yJo8CEOBu3hw8fjgHwma0bIYQQQojF+RcUFAwAcMbWjVhKTk4OVCoVDhw4wBw3hBeRkZFo3rw5Vy3Desdbt25lTlhlMhkmTpwIhUKBDh06cNWyFlPLOjCUAUgFsAYAe9ZOiPlcampqxgPYZetGLKWkpARpaWnYuXMnamtr640bwov4+Hj4+vpy1TK8Zbdq1Srcu3ePeczo0aOhVqvRq1cvrlrWYmovKgbDEoEKAPSQICGOTQ4g2dZNWIph+aiGwot+/fpBFEUMHz6cu56pfaF8fHywZMkSzJkzB66urtz1LM2ct2QYjgFYDMDsk46josCEOJ26zbEoMCGEEEKcgEwmi4ADBiamNms0hBeCIOCJJ57gqmWYsCYlJeHWrVvMY/r37w+NRoOhQ4dy1bIWU8s6MNQC+AjAGwCa3NsAxH7VzU0cLjCxdniRmZmJxMREZGdnM8dDQkKQkJAgybIw1mBqLyoj9kO//NZVy3VGCGlCHHYFldOnT0MQBKPhha+vL6KjoyUJL0ztC+Xu7o5Zs2Zh2bJl8Pb25qplDYblL0VRREFBgbkfK4B+idAPoH/DxOlRYEKcjk6ne9rWPRBCCCHEOmQymRzASlv3IRVzNmscMGAANBoNnnzySe5633zzDQRBwA8/sLfo8Pf3R0xMDGbOnAkXFxfuepZmzrIODIehvwl51mKNEadVt3Fvk1w68HFptVoolUrk5uYyxzt37izZmvZXr16FSqXCwYMHmeMtWrTAokWLJHnLzhrM2YuK4SKApQD+Y7nOCCFNkPvDhw//AMDspz+aOnPDi9jYWLRq1YqrlmFfqLVr16KiooJ5THh4ODQaDbp3785Vy1rOnj0LhUKBEydOmPuRSgDrod/r2ezNsZwBBSbEGYWWlJR08ff3z7F1I4QQQgixuPDi4mKvgIAA9kzIjhw9ehSCIBjdrFHK8KKoqAgpKSlWmbBagzlvyTDkAUgE8L7lOiMETxQXF/cGwE4l7ciVK1egVCrx1VdfMccN4UVUVBSaNWvGVau8vByrV6/Gjh07UF1dXW9cJpNhypQpSExMRPv27blqWUtmZiYUCgUuX75s7kdKAYgANgKo/49ACHF4Li4uEXCAwKSyshLbt283GV4kJSUhNDSUu55Wq0ViYiLy8vKY4127doVKpcL48eO5a1mDqeUvjdgPIApArsUas2MUmBCnVFNTIwfwV1v3QQghhBCLa15bWxsO4HNbN/K4TG3WaAgv4uLi0LJlS65alZWV2LRpU4PrHcvlcoiiiE6dOnHVshZTyzowPACwCvq9Sh5arDFC6tRt3Gu3gUlZWRnS0tKMhhcuLi6YPHkyFAoF/Pz8uGpVV1fj448/xooVK3D79m3mMQMHDoRGo8GQIUO4almLqb2oGKoBbIc+0DU7ASaEOJ6684dds2Z4cf78eQiCgO+++4453rp1a0RGRmLBggVwd3fnrmdphrcSV65cifv3zX5B5BT0b05nWq4z+0eBCXFWFJgQQgghzkMOOwxMzA0vNBoNOnbsyFXLsN6xRqNBfn4+85hu3bpBrVZj7NixXLWsxdRbMgw6ABnQ71Nyw6LNEfJbcgBrbN1EYxnCi9TUVJSWljKPGTRoEERRlCS8yMrKglKpxIULF5jjAQEBSEhIwAsvvACZTMZdz9LKy8uxYcMGo3tRGXEQwBIA5y3XGSHEjnQvLi7uHBAQcM3WjTSWOeFFTEwMZs+eDTc3vtvXpvaFMgT7giCgXbt2XLWsRavVQqFQ4MYNsy9ZbwPQANgAwOzNsZwVBSbEWY3X6XRuMpmMXl0mhBBCHJ9dPX1nzmaNoaGhUKvVGDNmDHe9c+fOQaFQ4Pjx48zxNm3aYOnSpZJMWK3BnGUdGE4AWAzgqOU6I8SoMXl5eZ7BwcGVtm7EXKbCi8DAQMTHx0sSXuTm5iIlJQX79rFXnfHw8MC8efMQHR0NLy8vrlrWYM5eVAxXoN+Qd4/lOiOE2KPa2lo5gC227sNcpaWlWLNmjdHwws3NDdOnT0dcXBzatm3LVcucfaHCwsIgiiJ69erFVctasrOzoVQqcfjwYXM/UgXgHQACgHJL9eVomv6MhxDLaFNQUDAUwDe2boQQQgghFte3oKAg+IknnmC/69+EmNqs0RBezJkzB66urly1TK13bJiwxsfHw9fXl6uWtZha1oGhEIAawLsAzF70mRCJecpkslHQvz3QpF27dg2pqalGwwtPT0/MnTtXkvDiwYMHeOedd0y+ZZeUlITg4GCuWtZy5MgRCIJgNGhiqACwGkAKAPY/AiHE2dlFYGIIL1atWoV79+4xjxk9ejTUarUk4YWpfaGCgoIQFxeHqVOncteyBsPyl8aCJiMOAHgdgNknHaJHgQlxWq6urhGgwIQQQghxFhMA/M3WTRhjKrww7FOybNkyeHt7c9Uyd8IqiiJ69uzJVctazp8/D4VCgWPHjpn7kUcANkO/BwD7H4EQK6qbmzTZwMQQXqSnp+PRo0fMY6QKL3Q6HTIyMpCcnIybN28yj+nbty80Gg2GDx/OVctaTO1FxVAL4CMAsQCKLdYYIcQRTNDpdK4ymazJLrOUmZmJxMREZGdnM8dDQkKQkJCASZMmcde6evUqVCoVDh5kn1JbtGiBRYsWITIyEs2bN+euZ2nmvCXDcAnAUgD/tlxnjo0CE+K0dDqdHPonCgkhhBDi4GQymRxNMDAxZ7PG8PBwiKKIHj16cNfTarUQBAHXr19njnfu3Bnx8fGSTFitwdSyDkbsh375rRzLdUZI49Rt3Btn6z5+z7B8VFJSEm7dYu8v3q9fP2g0GgwbNoy73unTpyEIAk6ePMkc9/HxwZIlSyR5y84azHlLhuEY9L9R31quM0KIA2lTUlIyFE3wN8Oa4YWpfaFkMhkmTpwIpVKJoKAgrlrWkpmZCUEQcOnSJXM/cgfACuj3RWM/3UDMQoEJcWbDS0tLW/v6+tIafoQQQposMzerJqbJdTqdi0wmazLLLpnarLFLly5QKpWQy+XctbKzs6FSqfDVV18xx728vPDKK68gKioKzZo1465naea8JcNwAfrNkr+wXGfOh/VGFHksA27duhXo5+dXZOtGDEyFF76+voiOjpYkvCguLsby5cuxd+9e5nlPyrfsrMGcvagYCqDfp+QDAHTyJ06BziHSqAvdm0xgUl5ejtWrV2PHjh2orq6/dbBMJsOUKVOQmJiI9u3bc9UyZ1+ogQMHQhRFPPnkk1y1rCUnJwdqtRpardbcj1QD2A79m9PspxtIo1BgQpyZ28OHD8cB+NTWjRBCCCHGrF+/HmVlZYiNjUWrVq1s3Y49a1dUVDQIAPvOn5XNnDnT6GaN3t7ev+xT4u7uzlWntLQUK1euxEcffcR8A8PFxQUzZsxAXFwc2rVrx1XLWrRaLZRKJXJzc839SCkAEcAGAE12uQp7tW/fPjRr1kySmx5OTlZVVTUewIe2bgQABEHAtm3bmOFFs2bNMH/+fCxevBgtW7bkqlNZWYlNmzZh06ZNqKxk73kvl8uhUqnQuXNnrlrWcubMGQiCYHQvKoYHANIBJAFgv2pIiIOaNGkSVCoVxo8fb+tW7FrdCiqirfsAgJMnT+Kll15CWVkZc3zo0KHQaDTo378/d62srCwIgoCLFy8yxwMDA/HWW2/hT3/6E2QyGXc9S7t79y7S09OxdetWo8tfMhyC/oGgc5brzPm42LoBQmyM/5FNQgghRBrMp0mrqqqwbds2PPXUU8jIyKA3TvhE2LoBg1OnTtX7m6urK1566SUcOXIECxYs4ApLqqqq8O677yIsLAzvv/8+MywZMWIEPv/8c6xatcouwpIrV67gL3/5C15++WVzw5Iq6DdB7QFgHSgs4cX88THsNxEeHo5NmzYxl8EgZmsyv1GnT59mnm+eeeYZHD58GG+99RZXWKLT6fDPf/4T4eHhSEtLY4Yl3bt3x65du7Bjxw67CEtKSkoQGxuLiRMnNiYs2Q+gD4B4UFhCHJfR10iuXr2Kl156CbNnz8a1a9es2ZOjGVFaWtra1k0A+rcjWGFJUFAQNm3ahH/84x/cYUlubi7mzp2LF198kRmWeHh4YMmSJcjMzMTkyZObfFhSW1uLPXv2YPTo0di4caO5YckVAC8CGA8KSyRHgQlxds/YugFCCCGkToOzxJKSErz++uuYNGkS82Y7MUuTfVBixIgR+OKLL7BixQq0bduW67u++uorjB8/HoIgoLy8/sqjHTp0wObNm/HJJ5+gb9++XLWsoby8HAqFAuPGjcOhQ4fM/dgBAIMALATAXp+BNFaDv1H37t1DUlISxowZgy+//NJaPTkauU6na5J3dbp3747du3dj+/btCAkJ4fquc+fO4U9/+hMWLVqEwsLCeuNt2rRBUlISDhw4gD/84Q9ctazh4cOH2LhxI8LDw/Hhhx+au8TQKQBPAZgEINeS/RHSBORDv2SQUV9++SXGjBmDpKSkxiy1Sf6P28OHD8faugmW5s2bIyYmBpmZmXj++ee5wov79+9j+fLlGDNmDD7//HPmMZMmTcLXX3+NZcuWoUWLFo9dy1qOHj2KiIgILF682OiSYr9TAf1+zP0A7LFoc06MAhPi7DqXlJR0tXUThBBCCIC1ANjrkfzKqVOnMGnSJLz++usoKSmxQlsOJezmzZt868dYyJtvvonevXtzfUdOTg5mzZqFP//5z7hy5Uq98RYtWmDZsmX4+uuv8cc//pGrljVUV1fjww8/xOjRo7Ft2zbmGtgM2dDfgJQD+MGiDTqfvwEwub/GtWvXMHv2bEyfPh2XL1+2QlsOJSA/P7+frZtgWbhwIcLDw7m+49atW4iJicH//M//4NixY/XG3dzcMHv2bBw5cgRz586Fm1vTX0Fcq9VizJgxSE5Oxv37Zr0g8hOAaADDAGRatDlCmo5SAJtNHVRVVYVNmzZh9OjR2LVrF+1v0kh1y3I1OT179kRMTAw8PT0f+ztqa2uxe/duhIeHY8OGDcw3MPr27YtPPvkEf/3rX9GhQweelq2isLAQr7/+Ol544QX8+OOP5nxEB/0eV90AqAA8tGB7To8CE+L0amtrm8yr74QQQpzaWQB/gP6p0wYZlsAJCwvD+vXr8fPPP1u+O8fQrKampuk/rtxIFRUVSEtLw7hx43DgwIF64zKZDJMmTcLhw4exZMkSeHh42KDLxsnKysLTTz+N2NhY3L5925yPlEG/pE0/6Je4IdK7BSAMwBfmHPz1119jwoQJSExMNLqOOanPzc3N4eYmhiUCw8PDjd4EDQsLwxdffIHly5fDx8fHBl02zg8//IDJkyfj5Zdfxo0bN8z5SBWA9QC6gpYIJM5pMYA3oX86vkGmwlXC5uLi4nDnD0C/L9T//u//YsmSJcyHxXx8fCCKIv7zn/9gxIgRNuiwcSorK5GWloawsDBkZGSY+7Hj0F+DzQJQbLHmyC8oMCFOr6mm8IQQQpzScQBPAngZZlwMP3jwAKmpqRg1ahT27NlD+5uYwZHO+4b1jkeNGoW0tDTm03b9+/fHp59+ajdP2+Xm5mLhwoV48cUXceHCBXM+Ugv903Y9AawAQOmhZV2Dfklbs97gqa6uxvbt2zFy5Ei8++675r4l5NQc6TcKADIzMyGXyyEIAu7evVtvPCgoCOvWrcOePXvQq1cvG3TYOHfu3IFCocAzzzyDb7/91tyPHQAwAPobxvX/EQhxDrUAUgB0h35/MZOvj5w7dw7PP/88Xn75ZeTl5Vm6P7un0+m6lZSUdLF1H1IxLEf83HPP4eTJk/XG3d3dMW/ePHzzzTf4f//v/8HV1dUGXZpPp9Nh3759eOqpp5CWlmbuA28F0M8LhwP4xqINkt+gwIQQYLxOp3v8XVUJIYQQaekAvA/969ZqmHEDuKioCIsXL8YLL7yAH36gVYhMcIin706dOoU//vGPWLx4MW7dulVv3N/fHytXrsS//vUvDBs2zAYdNs6DBw+QlpaGMWPGYN++feZ+7L8AhkD/tB2tT2ddhj1iogHU3yjnd8rLyyEIAsaOHYuDBw9avDk791ReXt7jr1vSRBg2cp42bRpzabYWLVogJiYGR44cwdSpU23QYeMY3pIZ9GXLhQAAIABJREFUOXIktm3bhpoas14QuQTgOegDRrMSYEKcQCH0+4sNB3DEnA9otVr84Q9/QHJyMioqTL6g4tRqamrs/jr31/tCZWRkMB8ICw8Px5dffgmNRgNvb28bdNk4Z8+exfPPP4+FCxeioKDAnI9UQv8gUE/o54X0VJyVUWBCCOBdWFjY9O8kEEIIcTYV0K9P2xdmbuj3zTff4Omnn8brr7/OvIlOAAC9CgsLO9q6icdVVFSE119/HZMmTcKpU/VXbzM8bff111/jL3/5i108bWfqLRmGfOifthsL4IxFGyQNqYJ+aaGu0C81ZPIO8q9vomdnZ1u6P3vl4erqyrdZiA2Vl5cjOTkZ48aNY4ZjhiUCv/76a8TExKB58+Y26LJxMjMzERERYfQtGYY70IeJfQH826LNEWK/TgAIB/AiAJPr2v36Jjq9Vd0gu35L0dS+UF26dMH777+P3bt3o0ePHjbosHFKSkoQGxuL5557DsePHzf3Y/sB9IZ+qVmzNsci0qPAhBA9uz6pEEIIcWhXoJ9Mjgdw3tTBtbW1yMjIQHh4ODZu3GjuDWinYo9L3vx+vWPWjQK5XI7//ve/0Gg0aNWqlQ26bJzTp0//8pbMzZs3zfnIA+jfugoFPW3XlNyGfqmhoQC+NucDmZmZmDBhAhQKBe7du2fR5uyRPf5GGZYIHD16NDZu3Iiqqqp6xwwcOBCfffYZ/vrXvyIoKMgGXTZOTk4OXn75ZUybNg3/n717D4+qPPf//56EiMhJRcVjRUUEK55QEUgCRAIqJw8g1gNpbX+lnhJbvo3wqxkgEI+dflXEursTd7HZtt0J3bWh7tqgsEsEFQkCykFAgkAOICGgIciEWd8/HgdQVpg1mcysSfJ5Xde+rg3PWlm3JM3MPPdz3/fGjRud3NKIaTV0GSaZqB50IidmYQ4F9cO8voccYl1dXU1WVlaTbZqEEa2xg8rHH398wrlQ3bp141e/+hWLFy9mxIgRLkQYnmBVYmpqKoWFhbazu2ysAlKBsUBFNOOT0JQwEaHtDscSEZE25R3gWkwbg5DlI/v37ycvL4/hw4dTWloa9eBak4SEhFazGRnsdzx06FB8Ph8HDx6/l9C7d28KCwuZP38+vXr1in2QYaquriYzM5MxY8Y43ewIbqhcjqm6CrmhIq5YBQwFxmFmnZyQ3++noKDgyHwThy2O2oXW9tnk3XffJT09naysLPbs2XPces+ePXnhhRf4+9//zoABA1yIMDzNfP0M6zVaRL7lAOb1vQ9mLlnIAxEfffQR48aNIzMz0+mhi/aiW2Vl5fVuB+FUcC7ULbfcYjsXKiEhgQkTJlBWVsbDDz9MUlL854JKS0tJTU3F6/U6PRSyB1OVeD2wNKrBiWNKmIgAlmXdsH379tPdjkNERCSEY0+vvoiD06tbt24N94Rsm2dZ1gjLsuL+ffCaNWu4/fbbmTJlCjt27Dhu/dRTTyU3N5d33nmHtLQ0FyIMj5Oe1DZWcrRlx7aoBigtpQT4PqaVRMidgtraWrxeL7feeivvv/9+1INrDSzL6r979+5z3I4jlJ07d5KZmcnEiRNZv/74ER0nn3wyDz/8MEuXLmXixIl4PB4XonTOSZWMjbCqQEXkhLZj5pKlAatDXWxZFsXFxUfaejocot0exH3S3clcqMGDB/PPf/6TF198kTPOOMOFKMOzadMm7rnnHjIyMti2zdFbVj/m89wlmKpEnRyJI3H/QVEkRhITExOHux2EiIiIQ3sxLXD6A//j5IZgD/bs7Gxqa2ujGlwr0KO6ujpujzkH+x3feuutfPDBB8etd+jQgfvuu4+lS5fyk5/8hA4dOrgQZXiaMbC1CnNS+wYcDoWVuHLssNLfASF7Uaxdu5bbb7+djIwMtm/fHu344p2nsbExbivhDhw4gM/nIzk5meLiYttr0tPTWbJkCb/61a/o0qVLjCMM37Jlyxg5ciRZWVl88cUXTm6px7QQ6o/DOWMi4tgSTMVWBhCyfCT4O2n48OGUlJREO7a45/F44vb1A0LPhTr33HN54YUXKC4u5vLLL3chwvDU1dWRk5NDWloaS5YscXrbIuBqzOe5fdGKTZpPCRORo+L6RUVERMTGBuBWTAucLaEu9vv9FBYWkpyc3O5b4FiWFXen75z0O05OTuatt97i2WefpUePHi5EGZ5mbIIfwpy2c7zRLnGtEpP4uhFY5uSGYwe+OkyutUnxOMfEsiyKiopOeJr7iiuu4C9/+Qvz58/ne9/7ngtRhqeyspLMzEwmTJjAunXrnNxiYVoG9UYtAkWiKYCZV3YZJgEfsnykoqKCKVOmcNddd9lWvbUjA7dt23aa20F812effcbkyZObrHrv1KkTU6dO5d1332XixIkuRBieYz9XNVUlY2MjMBqz/+joRUfcoYSJyFGj3A5ARESkmUowAzMfA44/qvUddXV1eL3ecE9CtTVxtRm5aNGiE/Y7vuiii5g/fz7/9V//Rb9+/VyIMDzBntRhtllaiPk5zsLBz7G0KiuAZEzrouOnuX5HQ0PDkfZtRUVFTtu3tTXplmXFTQ+r1atXc+utt5KVlWU7L+CMM87gueee4x//+Ac33nijCxGGp6GhAZ/Px5AhQ5qskrHxATAE0zKoOmrBicix6jAtHq/EvE8IqaysjFGjRpGdnW07V6kdSExKSoqbDir19fV4vV6GDx/OokWLjlv3eDxMnDiRZcuWMXXqVDp27OhClOFZunTpkZ8xh5X7ezn6c/xmVIOTFqGEichRvbZv336p20GIiIg0kx/T//YSzAn9kMecmtFrty0ZvGfPnm5uBxH04osv2n4PTjnlFKZOncrixYtJT4+rHI8tJz2pbawHbgHGAp9FNUBxk4VpXXQ5ppVRyJP51dXVZGVlMWbMGFauXBnt+OJNz507d17ldhBBr732GqtXHz9SICkpiR//+MeUlZVx7733kpAQ31sMlmVRUlJCampqODMPdmJaA90ILI9qgCLSlE8x7xPSgU9CXdzY2Hjk9H8YM4nakrh507h582by8/NtvwdXXXUVb7zxBi+88AI9e/Z0IbrwbN26lSlTpjBp0iQ2bNjg5JYApiqxL6ZS6lA045OWE9/vZkRirEOHDnHXnkNERCRMX2BO6N8AlDm5obS0lNTUVHJycvjqq6+iGlwcSTp48OBQt4NoSkJCAj/4wQ9Yvnw5U6dO5aSTTnI7pJCWLl1Kenp6kz2pbdRiqqL6A/+IanAST+oxrYz6YDYRQlq1ahXjx48nMzPTtrqhrfJ4PHH92SQ9PZ3Fixcze/ZsunWLm/xzk1avXs348eOZMmUKO3fudHLLsbN4XsMk/UTEXYuAazDvH+pCXbxv3z7y8vJIS0vj7bffjnpwceRmtwM4kbPPPpu5c+fy5ptvct1117kdTkj79+8nLy8v3Dk5izE/q5NxMItH4osSJiLHiMdewSIiIs1UDqRg5puEfJPu9/spKCggJSWlyfkZbU1CQkJcvu5fc801vPHGG/h8Ps4880y3wwlpy5Yt3H///UyaNIlPP/3UyS2NmPkkl2GqotrvMJ32bTtmEyENWBPq4kAgQHFx8ZH5GYcOtf1DmvE6uPfiiy/mtddeY/78+Vx88cVuhxNSTU0N2dnZjB49mg8//NDpbQsx1VDTgHZzkkCklQi7qvrY9yqbNm2KdnzxoNf27dt7ux3EdwWrEv/1r39x55134vHETedJW4FAgKKiIlJSUpg3b57T9x7bMVWJjt7fSHxSwkTk29Isy0pyOwgREZEWcj5mQ/Ispzc0c2OpVXJz8HtS0vFvN8477zxeeeUVFi5cyIABA1yIKjzNPLX5Nua03RRMNZRI8ARmBg6SuwcOHMDn8zFs2LBwTnm2VinV1dWd3Xiw3e+o7t27k5uby+LFixkxYoQLUYUn2CIwzIMA5UAqpvVPRTTjE5GI1WKqqvsDbzm5YenSpYwYMYKcnByn1bCtllsdVJqqih4zZgxlZWXMnj2bLl26xDiq8C1fvpxRo0aRlZXF7t27ndxSj2k52gdTlSitmBImIt/WtaqqapDbQYiIiEQoCfMBcj0woTlfoBmtS1qjy6qrqy9y48E333y0U0KnTp2YOnUqS5cuZdy4ca3mtF2YfcE3YQZ+jwA+jmqA0hoFMJsLjnt8V1RUMGXKFO666y7Wr18f7fjc0jEQCKS48eBRo0Yd+f8TExPJyMjg3Xff5Sc/+YltMiXeBFtNer1ep60m92Ba/NwALI1qcCLS0tZjWlCNA7aGujhYVT1o0CDy8/OdzltrddzqoHLjjTd+q03j5ZdfTnFxMb/73e+44IIL3AgpLFVVVWRmZjJhwgQ++STkuBww7Rr/APTGtBwNOaNN4l8HtwMQiUPpwL/cDkJERKSZhgIvY1qJ2FkCvILZGLrxRF8oOBx30aJFPPTQQzzyyCN07NixRYN1WyAQGAH8e6yf++STT3L11VdTW1vLnXfeybnnnhvrEJqlrKyMGTNmhLNB/RXgA54CHE1XlnZtL6YF0qvAb4DRoW4oKytj1KhR3H333Tz++OP06NEj2jHGWjouzPj56U9/ynnnncfGjRsZPXo0ffv2jXUIzbJp0yZmzJjBkiVLnN7iB34LeIF90YpLRGKiBFNp8iAwG+h6oov37t2L1+ulqKiI3NxcBg4cGIsYY+kmy7KSPB5PTCfe9+zZkzfffJP//u//pnfv3owZM4bExMRYhtAsDQ0NvPzyy8ybN4+DBx3nPFZgDqktj15k4gZVmIgcL66HK4qIiDThbMwJ7cXYJ0uqOdpP98/AkG/+XBPqCzc0NODz+RgyZAhFRUUtF3F8cOX0XVJSEvfeey+PPvpoq0iWNOM0f4Bvn7ZTskTC8SkwBvO/z3WhLm5sbKSwsJCUlBTy8/NpbGyMeoAx5MpnE4/Hw5gxY5g6dWqrSJbU1dWRk5NDWlpaOMmSRcDVmM0uJUtE2oZDmPkmfTHz0kL24lu7di233347GRkZbN++PdrxxVLXqqqqEx6OipaLL76YqVOnMn78+LhPlgQPiA0dOhSfz+c0WbIT8zlqIEqWtElKmIgcb8COHTva3NE0ERFpsxIwc0o+Bu4HvtvPKcDRAduvYcrGg3//GmZg5iwcbGhXVlaSlZXFhAkTWLcu5B5mazHCsqz4/iTnouC8iOHDh4czL+J9YDDm5zJkQk7kBIIb2o/hYEO7rq4Or9dLWloa77zzTtSDi5ErduzYcb7bQcQrv99PYWEhycnJFBQUOG2tsxFTveQoIScirVIlZl7aQGCZkxtKS0sZNmwYeXl51NfXRzW4GHLlYFBrsWbNGm677TamTJnCjh07nNzSgGkd2o9vf66SNkYJE5HjJSYmJt7kdhAiIiIOXIP5EDgfsEv2lwODMB8Ym5psWY+pALgCcFQ+smzZMkaOHElmZiZffNHq53afVlNTc53bQcQby7IoKipi8ODB+Hw+vv7aUYHIDsxpu0GYpIlIS/BjTgtfArwIhNwR37x5M/fddx8ZGRlUVFREObzoS0xMjP8J6y5YunQpI0eOJDs7m9raWie3BFu+XQm8GdXgRCRefAgkY+aofR7q4oaGBubNm0dKSgpFRUVYVqvfD1cHFRs1NTVkZ2dz6623smLFCqe3LQS+j3kd+TJqwUlcUMJExIZbw7FEREQcOhWzgbgCc3Luu+o4Orz2A4dfczNHh3KvDXVxIBCguLj4yODvQ4dCzmiOW5ZljQp9Vfvx0UcfMW7cOLKysti1a5eTWw5gqpT6oNN2Ej17MK2TrsfhvMHS0lKGDh1KTk4OX37Zevc2LMvShtcxtm7dSkZGBpMmTWLjxo1Obgm2CLwMczK49b5giUhzWJhDQZdj3q+E7LlUXV1NVlYWY8aMYeXKldGOL5qu2759++luBxEv/H4/+fn5pKamUlhYSCAQsmMbwCrMjMixwNaoBihxQwkTEXs3ux2AiIhIEyYCG4BM4LutpCyObgq9gIOT2DbeBq7FVKXsDnXx/v37ycvLIy0tjdLS0mY8zn06KGFUV1eTmZnJ6NGjnW4OHLsBMRPTpkAk2oIbF+NwsHHh9/spKCg4sjnisGVTvEm3LKvdf3YPvt4MHz48nNebxZhqzMk4eE0TkTYtWFXdB/N+OaRVq1Yxbtw4MjMznR4iiTeJHTp0UAcVzCGK1NRUvF6v00MUezAH0Bwf1JC2o92/6RJpwvmVlZXxP91QRETak0uBfwL/BfS0Wf8UU3Y/GYj0E10jZu5JX0wLnJATlD/77LNwT/zGkxtra2u7ux2EWw4ePMi8efNITU2luLjYafuJlUAqpippW1QDFLFXQhitMYLtN0aPHs0HHzgtvIsbZ1RVVV3jdhBuCQQCFBUVkZKSEk5F4xbM76c0YE1UAxSR1mY75v1yGrA61MWWZVFcXHykTWlrq6pu7weDNm/ezL333ktGRgbbtjl6y+rHfP65hOYfQJNWTgkTkaap9F1EROJBJ8xpuLXYD24MtkPqjxmQ3JJqMS1w+gP/4+SGYE/5nJwc9u9vamxK3Olw8ODB4W4H4YZjB5x+9dVXTm6pwlQf3QCURTU4kdCOHb76Bxy0g1uzZg233357OANe40W7/GyyfPlyRo0aRVZWFrt3OyoQqce8JjqeyyUi7dZiTFV1Bg4OGx04cACfz8ewYcMoKSmJenAtqF2+ftTV1ZGTk0NaWhqLFy92etsiTFViFrAvasFJ3FPCRKQJ7T0LLyIicWEssA6YAXS0WV/I0XZI0TzutgG4FdMCZ0uoi4MtcAYNGkR+fn6raIHT3l73P/74Y+644w4yMjL4/POQM1Dh6Gm7vpjqI0dNn0ViZCfmtPBAYHmoiy3LoqSkhKFDh5KXl0d9fX3UA2wB7ep3VFVVFZmZmUyYMIFPPvnEyS3BlpS9Ma+JIWcUiIhg3s+8RhgzjioqKpgyZQp33XUX69evj3Z8LeHCnTt3XuZ2ELHS2NhIYWEhycnJFBQU0NgYslAeTKX+GMxrraMXHWnblDARaYLH4xm+adMmu80pERGRaDsPczL2b0Avm/WtmDf1Y4ltO6QSzEnux4CQ5SN79+7F6/Vy8803s3x5yD1MVyUkJLSL03d79+4lJyeHW265hffee8/pbQsx3/csHHzfRVy0AhiCOS1cHerihoaGI+3oioqKnLajc8uQXbt2dXE7iGhraGjA5/MxePDgcFoEBr/vk3HwfRcRsVGHafHYH/i7kxvKysoYNWoU2dnZ7NmzJ6rBtYB28T63rKyMkSNHkp2dTW1trZNbwv6+S/ughIlI0zp36dJlkNtBiIhIu5KE2ZTeAEywWQ+e8r8S997U+zH9fIOVBiHLRz755BPuvPPOcKoZYs6yrN41NTUXux1HtPj9fvLz8xk0aBAFBQVOq342ALdgEnMhK4tE4oSFOS3cG9OaKWSlQVVVFVlZWYwdO5by8vJox9dcJx0+fHio20FEy7FVPz6fj6+//trJbTsxyTFHlUUiIg6EVWlwbDVDfn6+02qGmEtISGjTVYpbt249UvWzYcMGJ7cEMFWJjiuLpH1RwkTkBNpbew4REXFVKrAKeB6wO0X8v8DVmISKo2ETURacZTEQh7MsSktLSUlJIScnx+m8jJg6fPhwmzx9t3TpUtLT0/F6vU7nytRiqoj6A/+IanAi0VOPac3UB7MpElJ5eTnjxo0jMzPT6byMmGqrn03WrFnDbbfdFs5cmWNn17yGg9k1IiJhCs6yeAwHsyz27duH1+slLS2Nd955J+rBhcuyrLS22EGlvr4en8/H8OHDw5krsxjzvZ2Mg9k10j4pYSJyYm1y40REROJKT8yGzxLg+zbr1ZgTtMMx80zizUpMsucuHLQHC843SUlJobCwkEAgrkZhtKnNyC1btjB58mQmTZrEp59+6uSWRkzV0GWYKqL4PCYpEp7tmE2RNGBNqIsDgQDFxcUMHjwYn8/HoUNxdei0TX02qampITs7m1tvvZUVK1Y4vW0h5rVyGvBl1IITETlaVX0JpsI7ZHnu5s2bue+++8jIyKCioiLK4YWlc5cuXW50O4iWEggEKCoqCve1ejvmM5Wj9wPSvilhInJi11ZVVZ3pdhAiItImJWA28T4B7gc831kPlopfQfyfoLUwM1cux2xihSwfCW6UjRkzhg8//DDa8Tk1wrKsJLeDiNS+ffvIy8sjLS2NRYsWOb3tbeBaTNXQF1ELTsQ9wROlGUDI8pFmnlqNtn6VlZXfczuISAVbBKampoaTOF8FDMW0CNwa1QBFRL5tD6bC+3rgX05uKC0tZejQoeTk5PDll/GR220rVYrBatCsrCyn1aD1mBadfTCfqURCUsJE5MQSAoHATW4HISIibc41wLvAfKCHzXo5MAiTUIn7KZLHOMDRNil/wEGS56OPPmL8+PFMmTKFnTt3Rju+ULpVVlZe73YQzRU8bZeSksK8efPw+/1ObtuEqQ4aAayNaoAi7gtgNksc9yxvRl/0qGrtG16lpaWkpqbi9XqdbiLuwbTEcbxRKSISJcHE7TgcJG6DVdXB5LDD+XHR1KqrFKuqqsjMzAxn3tixB7pm4mCmmUiQEiYiIbT14VgiIhJT3TGl/SsAu7L4OszG0A3ABzGMq6XtwCR7BgHvh7q4mcN+o6VVfph89913SU9PJysriy++cFQgEjxt1x/zYVKkPdmLqYa7EnjTyQ1lZWWMHDmS7OxsamtroxrcibTWzyabNm3i3nvvJSMjg23bQnZvBNMK50VMK5wXcNAKR0QkRkoIozXgse0HP/jA1bf3A1pjB5WGhgZ8Ph9DhgyhuLgYy3JUdL8CSMYcCvo8qgFKm6SEiUgIlmWNcjsGERFpE8YCHwOZQKLNehHQl7a1MfQ+MBjTAqcm1MUHDhw48oGoqMidPXyPx9OqNiMrKyvJzMxk4sSJrF+/3sktwVZvl2BO27manRJx2UZgNGZ+UcgZUY2NjRQWFpKcnEx+fj6NjbEf82NZ1gjLslrN5/i6ujpycnJIS0tj8eLFTm9bBFyNaYETctiyiIgLGjCVin1xWFW9du1abrvtNjIyMtixY0e047OTEAgE0tx4cHN890DVwYOOCkQqMe1lbwSWRTVAadNazRstERedV1VVdbnbQYiISKt1KfAW8DfgfJv1TzGbdXfhIKnQCgVb4PTGVDSE3KCvrKwkKysrnCRASxq4bdu202L90HAdm1wqLi52etsHwBBM9U9b/FkTaa7gBv1jONigr6urw+v1hpsEaCk9qqurB8T6oeE6NrlUUFDgtBXNp8AYHCawRETiQCXmfdVAYLmTG4LzTfLy8qivr49qcN/VWg4GrVmzhttvv50pU6Y4TS4dwlQl9gV+h/n8IdJsSpiIOGBZVqtszyEiIq7qhDnBvxb7Nk8HMAmEKzGbdW3dV5h/D8ctoIJtpjIzM522mWoJiUlJScNj9bBwBU/bpaamhtO+bAemyudG4L2oBijSevkxFX6XYDZdQu7wb968Odw2Uy0i3j+bNKN9WbBFWn/g71ENTkQkOlZgDqXcBWwPdXFDQwPz5s0jNTWVoqIip22mWkJcd1BpZvuyhZhESRYOWqSJOKGEiYgzrSILLyIicWMM8AkwA+hos74Q0/t4Ju2vJdKxQ8Y/DnVxIBCguLiY5OTkcAaZRyouX/c/+ugjxo8fz5QpU6isrHRyywFMu4h+mCqfmH0aF2nF9mA2XW4Aljq5ITjIPCcnx+kg80jF5e+orVu3MmXKFO666y42bNjg5JZgi8C+mN9Vh6IZn4hIlAWHjPfDHIoK2UOqqqqKrKwsxo4dy8qVK6MdH8D5lZWV/WLxoHD4/X7y8/NJTU2lsLCQQMBRgchHwFBM2+OtUQ1Q2h0lTEScGbZp0ya7DS8REZFjnYfZmC4BLrJZ3wFMxLyxr4hdWHHpbeAaTJ/hkOUj+/fvJy8vj+HDh7NoUdQLcm6O9gPCUVNTQ2ZmJqNHj+bDDz90elswKTcNU90jIuEpB1KBcTj4fe33+ykoKAh3s6e5Bu/Zs6dbNB8Qjvr6enw+H8OHD6ekpMTpbYsxrwGTgV1RC05EJPbqMYei+mCSwiGVl5czfvx4MjMz2b17dzRjA/vKd9cEW5R5vV6nhw72YFpoXgf8K6rBSbulhImIM6d07dp1iNtBiIhI3ErCnEjeANxvs+7HtHjpBzgeONEONGL6DF+G+fcJOUH5s88+Y/LkyUyaNImNGzdGK65e27dv7x2tL+7UwYMHmTdvHikpKRQXFztt11AOpKCknEhLKQEux2HysZntRMKVdPDgwaHR+uJOBQIBioqKGDx4MD6fj0OHHBWIbMe0CEwD1kQ1QBERd23HJIUd/b4LVlUPGjQonN+pzREXVYqbN2/mvvvuIyMjg4qKCie3BD9PXYJpoeloOJZIcyhhIuJQIBCIixcVERGJOymYTerngS426//CnKLNQif9m1KL+ffpD/zDyQ1Lly5l5MiR5OTksH///hYPqEOHDq6evistLWXYsGHk5eXx1VeOfmy+wJy2uwEoi2pwIu1PA6ZlVF/MaeGQ2ctmDKwNS0JCgqufTcrLyxk3bhxZWVlOT0PXY1rU9MFUYoqItBfBiroMHFTUHThwoDlVe+FwtYNKXV0dOTk5pKWl8c477zi9bRFHP0/ti1pwIt9QwkTEubgejiUiIjF3OvBvwP8CV9isV2M+GA3DzDOR0DYAt2Ba4HwW6uJgC5xBgwaRn5/P4cMtd9DMsixXNiM//vhj7rjjDjIyMvj888+d3KLTdiKxsxNzWnggsDzUxZZlUVJSwtChQ/H5fBw8GLKdvWNuDX6vqqoiMzOTsWPHUl5e7uSWYE//yzEtalruH0FEpPUIYJLFjmc2NWMulFOdu3TpMrglv6ATjY2NFBYWkpycTEFBAY2NIQvLAT7FVE2no89TEkNKmIg4d/WuXbvOdjsIERFxnQezYbYR+Ok3fz5WcIjtFWjQdnOVYNouvm1TAAAgAElEQVSXPQaELB/Zu3cvXq+XW265hffee6+lYrjJsqyklvpioezdu5ecnJxw/xsWYv6dsnDw7yQiLWYFMASTFK8OdXFDQwM+n48hQ4ZQVFTktL1eKJdVV1fbzcqKimP/G8JoEbgCSAbuAhxlgEVE2ri9mBaPVwJvOrmhrKyMkSNHkp2dTW1tbYsEEeuDQWVlZYwaNSqc/4Y6jv47LYxqcCI2lDARcc7T2Nh4k9tBiIiIq64GlgHzgTNs1lcBgzEJlT0xjKstOoSpmOiLmXMScoJyM6ozTqRrVVXVwEi/SCh+v5/8/HwGDRpEQUGB0yqZDcCtmBN3W6IaoIg0xcIkxXtjWk2FrJyoqqoiKyuLCRMm8MknkR+UDQQCIyL+IiE0s0qmEpgC3Ih5zRQRkW/bCIzGVE6sC3XxsdUZ+fn5TqszTiQmVYoVFRVHqmTWr1/v5JbgwbPLMJU4X0czPpGmKGEiEh7NMRERaZ+6YzbvP8RsAH1XHaYa4nrg/RjG1R5UYTbebgDedXJDM+Z/2Ir26bvgHBav1+t0DstezM9Zf+B/ohmbiDhWj2k11R/Teiqk5cuXM2rUKDIzM53O/2hKVH9HNWMOy7GzXhwlukVE2rlFmANZj+FgNkddXR1er5e0tDQWL14cyXOvqa6uPiuSL3AiwTksw4YNC2cOyxLgWszBs5CzXkSiSQkTkfCMsizru61XRESkbRsLfAxkAok260WYzSHNj4iulUAKprXLtlAXHzx4kHnz5pGSkhJJC5yonL777LPPmDx5MpMmTWLjxo1ObmnEbD5ehvk5i/hYoYi0uM2Y3083AWtCXRwIBCguLmbw4MH4fD4OHQrZzt7OiFNOOaXFP9PX1NSQnZ3NrbfeygcffOD0toXA9zEtVL5s6ZhERNowP+b93SWYuXQhP09s3ryZe++9l4yMDCoqKprzzITDhw+3eAeVQCBAUVERgwYNCue1bTumxeVwYHVLxyTSHEqYiITn7JqaGrvBviIi0vb0Bt4C/gacb7O+CbOhfhdQE8O42rNjhwfPwpxmPqGamhqysrIYPXo0K1euDOthHo/n+osuuuiUZkVqY//+/eTl5TF8+HAWLVrk9LZ3MKftpgARHUUXkZh4BxiAw//N1tfX4/P5GD58eDincINOe/DBBy9tRoy2gi0CU1NTKSwsJBBwVCCyChiKOVywtaViERFph/Zg5tJdD/zLyQ2lpaUMHTqUnJwcvvwy7Fx1ix4MWrVqFePHjycrK8tp9eQBzPv5PpgWlyJxQwkTkTBZlhWTXo8iIuKaTpj2Kh9j/0GiAfPmvj9QGruw5BgHMN+jPpg+xyHLRz766CPGjRvHlClTqKysdPqcxHvuuSfizcjgabvk5GTmzZuH3+93ctuxp9XXRhqDiMTUsVVhz2BmMp3Q1q1bmTJlCpMmTWLDhg2OHzRs2LABzY7yGMFNN6/X63TTbQ9HW1E62tgTERFHgonocUBFqIv9fj8FBQXhJrtJSEgY6fFE3kClqqqKzMxMxowZ4/RwUvAAVD/M+3lHw7FEYkkJE5EwRbufuYiIuGoM8AkwA+hos74QU90wEw0hjAc7MH2OhwMfhbo4OLw4NTUVn8/H11+H/hYOHDjwskgCXLZsGSNHjiQrK4svvvjCyS31mITcFTichyAicWsvpkXVlcCbTm4IzjbKzs6mtrY25PUXXXTRtZEE2Iy2Ln5My5hLUCtKEZFoKsF87nDU6jDcdoqWZZ17xRVXnNTc4BoaGpg3bx6pqakUFxc7bX/7IZCMORT0eXOfLRJtSpiIhG/o9u3bO7kdhIiItKhzMaXgJcBFNus7Mb11x+LgpJfE3P9iWuBk4KA9WnAQ5ZAhQygqOnFOok+fPs1KmFRWVpKZmcmECRNYt26dk1ssTLVMb5SQE2lrNgKjMUPa14e6uLGxkcLCQpKTk8nPz+fw4aZzEqeddlrfbt26hR1QXV0dOTk54Q4OXgRcg2kZE3I4sYiIRKwBU6nYD4dV1WvWrOH2229nypQp7Nix44TXpqWlndycoEpLSxk2bBh5eXnU19c7uaUS06pyILCsOc8UiSUlTETCd3JCQkKy20GIiEiL6IDZ+NkA3G+zHjxJ2xf11o13Acz3qC/mg2XIhENlZSVZWVlMnDiR9evt9zC7det22iWXXOI4iIaGhiPJmOLiYqe3fQAMxlTLVDt+mIi0NouAqzCtrEImHOrq6vB6vaSlpbFkyRLbazweT+LgwYMdB3BsMqagoIDGxkYnt32KOTCQjqnCFBGR2NqJeZ84EFge6uJgVfXQoUPx+XwcPGjf9So5OTmsw8Br167ltttuIyMjg+3btzu55RBHP0v9DvN+XSTuKWEi0jxqyyUi0vqlYHoEPw90tVn/F0dP0n4Vw7gkMnWY1gX9cdjS6t133yU9PZ3MzEzbtllDhw4N+TWa0+6Lo5VLNwLvOblBRFo9P6aV1SWYTaSQLa02bdrEPffcQ0ZGBtu2bTtuPTU11dGDy8rKGDVqlON2X3z79+lCRw8REZFoWgEMwbx/DHnI5tiDPEVFRce1zbruuutOPvnk0EUmtbW15OTkOG739Y2FmMqYLBy0FBOJJ0qYiDSDx+PR4HcRkdbrdODfMG2crrBZr8WUjA9DJ2lbs02Y/sjpwMehLg4EAhQXF5OSknLcYPZQCZPVq1czfvx4pkyZws6dO53EFmyvEKxcctT0WUTalD2YTaQbgKVObigtLSU1NZWcnJxvDWYfNmzYCe8LDpS/6667mqym+44ApvWL46H1IiISMxbm/WNvzNy7kEPTq6qqyMrKYuzYsZSXlx/5+44dO3quv/76Ju/z+/3k5+czaNAgCgoKTtgi8hjrgZsxlYmfOblBJN4oYSLSPFfu3r37HLeDEBGRsHgwpewbgZ9+8+djBTeI+mBKxrWJ3TYsAq7FJMFCTl3ft28feXl5pKWl8fbbbwMwZMgQTjrp+JmYweGao0eP5sMPP3Qaz0KODvBU5ZKIlAOpwDgczMjy+/0UFBSQmppKYWEhgUCAXr16ceGFFx53bXBe0/DhwykpKXEazxLM78zJwC6nN4mISMzVY+beOa6qLi8vZ9y4cWRmZrJ7926g6YNBpaWlDB06FK/X+60k/QnUYlpO9gfecnKDSLxSwkSkeTx+v3+E20GIiIhjVwPvAvOBM2zWP8KUt0/GnPqVtsWPSYJdhsMWOFu2bOH+++9n0qRJ7NixgwEDBnxrfdu2bQwZMuTIhqUDKzFt4MbiYFNURNqdEuD7OEymHpuwXbFixXEbXo2NjQwaNAifz8ehQ44KRLYCE4DhwOqwoxcREbdsxlRV3wSsCXVxsKp68ODB+Hw+7OZgPf3002RkZFBRUeHk+X7g/2JaTb6Ag/fZIvFOCROR5tMcExGR+NcZeBr4EBhks74PcxLqOjRDoj2oxbTAcXzybenSpaSnpx+34fjll19y4MABJ19iD+ZnbCBQFla0ItLeHOBou74/4KDScfXq1dx2222sW7fuW39/+PDhI6eHHTxzFqbybUG4AYuISNx4BxiAqaoO+QJQX1+Pz+fj4Ycfpnv37t9aq6mpcfrMRZiZj7/AzL0SaROUMBFpvpGWZX23nYuIiMSPsZgeuo8DiTbrCzEzTHQSqv0J9lYeh4Peyn6/n5UrV4b7DD+mmkWn7UQkXDsxFY834iCZb1lWOG0Bj9yGaeHSD9PSJWQPfBERiXuNHK2qdjSDauvWrezbty/c52zCfNZKRzMfpQ1SwkSk+Xru3LnzSreDEBGR4/QG/gH8DbjAZn0TMArzJn9HDOOS+BNsgfMEpg90S/kb5rR2FqaKSUSkOT7AtIv8CeD4uK8D72GSMXcBn7fg1xURkfiwF9Pi8VpMFUhLqcNUk3wfc/hMpE1SwkQkAomJiSPdjkFERI7ohDkl+zEmIfJdDZi2I/2Bf8YuLIlzB4E8zEk8Ry1wTmAjMBoYj+knLSISqQBQAPQBnsPBaeETqMS0ahmCScaIiEjb9gmmCuQ2IntvGsC8T+6LmVfijzw0kfilhIlIBCzL0hwTEZH4kAasAmYAHW3WF2JOQs0Evo5dWNKKBFvgDALeD/PeWuBRTIu3N1s4LhERgP1ANub3TEmY9wYTw30wrVoCLRuaiIjEuTcwrx+PY15PwrEEU6kymZatdhSJW0qYiEQmpbKy8hS3gxARacfOBV4D3sZUCHzXTiAD035rawzjktbrfUzSJANzGvtEGoF5mE3Il775s4hING3CzF8aBawLcS1AMWZOSUu3HhQRkdbla+BZzGemVwmdPK8AJgLDgdVRjUwkzihhIhKZk4EUt4MQEWmHOmDmQ2wA7rdZb8QM3O6HSaiIhMPC/NxchvlgademayVwDfAIsCd2oYmIAKa15FVAJvatUbZjNrkmYja9REREAKqBHwMDgfU26wHAi/kcVRzDuETihhImIpFTWy4RkdhKBsqB54GuNutLMRvZWcCXMYxL2p6vMK0LBmLmkxzCtN96ArgOMy9HRMQtjcBc4GLMTJKvMb+38oGLMG1URERE7HyIaVn8DLAP8z53LWbe42xMO0eRdqmD2wGItAEa/C4iEhunY2aUPIL9oY9aYDrw70Q2uFvku1ZghlyKiMSjHZjEroiISDgsYNo3/yci31CFiUjk+u/YseN8t4MQEWnDPJghgxsxrUe++/7FAv6AaZ/0O5QsEREREREREZFmUMJEpAUkJibe5HYMIiJt1FVAGTAfOMNm/SNgCCah8kUM4xIRERERERGRNkYJE5EWYFmW5piIiLSszsDTmN66g23W9wGPYeZILI9hXCIiIiIiIiLSRmmGiUjLGGVZVoLH4wm4HYiISBswFpgHXNDE+kLgQUzPdhERERERERGRFqEKE5GWcUZVVdXVbgchItLKXQL8D/A37JMlm4GbMQkVJUtEREREREREpEUpYSLScka6HYCISCt1MjAT+BiTEPmuBmAWcAXwVuzCEhEREREREZH2RAkTkRaiOSYiIs2SBqwCZmASJ9/1NnANJqHydezCEhEREREREZH2RgkTkRbi8XiSd+3a1cXtOEREWolzgdcwCZG+NuuVQAYwAtgYw7hEREREREREpJ1SwkSk5Zx0+PDhVLeDEBGJcx2ALGA9cL/NeiPwIiaJ8loM4xIRERERERGRdk4JE5EWpLZcbdt7773ndggird11wHLgeaCbzXoZpv1WFvBlDOMSEREREREREaGD2wGItDEa/N4GrV+/Hq/Xy7vvvnvcmsfjcSEikVbnNMwMkkewP6xRC+QCc4FA7MISERERERERETlKCRORlnX5zp07LzjvvPO2ux2IRK62tpZnn32W//zP/+Tw4cPHrV9++eUkJSW5EJlIq+HBtN36NXCmzboFFAK/AL6IYVwiIiIiIiIiIsdRSy6Rlqe2XK2c3+/n3//93xkyZAivvfaabbJk0KBBFBQUuBCdSKtxJabF1nzskyWrgSHAZJQsEREREREREZE4oAoTkRaWkJCQDrzqdhzSPEuXLmXGjBls2LDBdv2cc85h2rRpTJgwQe24ROx1Bn4JTAdOslmvB2YDPsyAdxERERERERGRuKCEiUgLsywr3bKsBI/Hoz78rcjWrVt5+umnKSkpsV3v1KkTDzzwAI899hidO3eOcXQircZY4CXge02sLwQeAtS2UERERERERETijhImIi2vR1VV1bXAh24HIqHV19fzyiuvMHfuXA4dOnTcusfjYcyYMeTk5HD++ee7EKFIq3AJZmD7LU2sb8YMfH8rZhGJiIiIiIiIiIRJCROR6BiJEiZxLRAIsGDBAubMmcPu3bttr7nyyivJzc3lhhtuiHF0Iq1GEmZg+0zgZJv1BuBZ4GngYOzCEhEREREREREJnxImItGRDjzpdhBir7y8HK/XS3l5ue16z549mTp1Kj/4wQ9ITEyMcXQircZw4GWgbxPr7wAPA/YDgURERERERERE4owSJiLRMXjXrl1dzjrrrK/cDkSOqqqq4qmnnmLBggVYlnXcelJSEpMnTyY7O5uuXbu6EKFIq3AO8AxwfxPrlZiB76/FLCIRERERERERkRaghIlIdJwUCASGYQYci8saGhp4+eWXmTdvHgcP2ncFSk9PZ9asWfTq1Su2wYm0Hh0wFSO5QDeb9UZMxckTwJcxjEtEREREREREpEUoYSISJYFAIB0lTFxlWRYLFy5k9uzZ7Nixw/aa3r17M3PmTNLS0mIcnUirMgD4LXB9E+tlwEPA2phFJCIiIiIiIiLSwpQwEYmekW4H0J6tWbOGnJwcVqxYYbt+6qmn8otf/IIf/vCHdOigX4UiTTgNM9D9ESDBZn0vMAuYCwRiF5aIiIiIiIiISMvTLqFI9PStqqrqdc4551S4HUh7UlNTg8/n4/XXXycQOH7/tkOHDtx99908/vjj9OjRw4UIRVoFD2ZGya+BM23WLaAQmArsjmFcIiIiIiIiIiJRo4SJSBRZljUCyHc7jvbA7/czf/58nnvuOb780n58QnJyMrNmzaJfv34xjk6kVbkSM4tkSBPrqzHtt5bFLCIRERERERERkRhQwkQkiizLSkcJk6grLS1lxowZVFRU2K736tWL6dOnM3bs2NgG1oocPnyY4uJili5dytChQ5k4caLbIUnsnQJkA9OBk2zW64HZgA8z4F1EREREREREpE1RwkQkijweT7plWYkej+ew27G0RZs3b2bGjBksXrzYdv2UU07hwQcf5NFHH+Wkk+z2fwVg2bJleL1e1q1bB8Bf/vIXOnbsyLhx41yOTGJoLPAS8L0m1hcCDwOfxywiEREREREREZEYU8JEJLpOq66uHgB84HYgbUljYyPTp0+nsLCQw4ePz0UlJCQcmVNy5pl24xcE4PPPP2f27Nn8/e9/P27t/fffV8KkfbgYM7D91ibWt2AGvv8jZhGJiIiIiIiIiLhECRORKLMsayRKmLSo/fv3M3/+fNu1a665htzcXAYMGBDjqFqPhoYGXn75ZV566SW+/vpr22vsElHSpiQBvwBmAifbrB8C/u836wdjFpWIiIiIiIiIiIuUMBGJvpHAHLeDaOvOO+88cnJyGDt2LB6Px+1w4pJlWSxYsIC8vDxqamrcDkfcMwwz1L1fE+uLMUPdN8QqIBERERERERGReKCEiUj0Daqtre1++umn73M7kLaoU6dOPPDAAzz22GN07tzZ7XDiVnl5OV6vl/LycrdDEfecAzwD3N/EehUwDXgtZhGJiIiIiIiIiMQRJUxEoq9DQ0PDMOANtwNprTp27Hjc33k8HsaPH88TTzzBueee60JUrUNNTQ0+n4/XX3+dQCBw3HqHDh24++67+eqrr/jrX//qQoQSAwnAT4DngG42642YipMcYH8M4xIRERERERERiSsJbgcg0k6kux1Aa3bFFVfQt2/fI3++6qqr+Otf/8rLL7+sZEkT/H4/+fn5pKamUlhYaJssSUlJ4Z///CfPPvssPXr0cCFKiYEBwHvAv2GfLPkQGARkoWSJiIiIiIiIiLRzqjARiQGPxzPS7Rhas6SkJN544w3eeustunfvzk033URCgvK9TSktLcXr9bJt2zbb9Ysuuohp06YxduzYGEcmMXQaZmD7w0CizfpeYBYwFzg+myYiIiIiIiIi0g4pYSISG5fW1NRc3LNnz8/cDqS16tq1KxMmTHA7jLi2adMmZsyYwZIlS2zXO3fuzM9+9jMeffRRTjrppNgGJ7HiwcwoeQ44y2bdAgqBqcDuGMYlIiIiIiIiIhL3lDARiZHDhw+nY9riiLSouro6fD4fv//97zl8+PBx6wkJCdxxxx3k5ORw5plnuhChxMhlwDzgpibW1wAPAstiFpGIiIiIiIiISCuihIlI7ChhIi3K7/fz5z//maeffpra2lrba6699lpyc3O59tprYxydxNApQDYwHbArHTqAqTh5EjgUw7hERERERERERFoVJUxEYucmy7I6eDyeRrcDkdZv6dKlzJgxgw0bNtiun3POOUybNo0JEybg8XhiHJ3E0FjMHJILm1hfiJlj8nnMIhIRERERERERaaWUMBGJnVN37tx5PbDc7UCk9dq6dStPP/00JSUltuudOnXioYce4uGHH+bkk0+OcXQSQxdjEiW3NrG+BXgU+J+YRSQiIiIiIiIi0sopYSISQ4mJiSNRwkSaob6+nldeeYW5c+dy6NDxXZU8Hg9jxowhJyeH888/34UIJUaSgIeAPKCzzbof+A0wEzgYu7BERERERERERFo/JUxEYsiyrHRglttxSOsRCARYsGABc+bMYffu3bbXXHnlleTm5nLDDTfEODqJsWGYoe6XN7G+GNN+a32sAhIRERERERERaUuUMBGJrYG1tbXdTz/99H1uByLxb/ny5Xi9Xj755BPb9Z49ezJ9+nQmTJhAQkJCRM+yLCui+yWqzgaeBe4D7AbSVAHTgNdiGZSIiIiIiIiISFujhIlIbHU4ePBgGvDfbgci8auqqoqnnnqKBQsW2CYykpKSmDx5MtnZ2XTt2jWiZzU0NPDqq6/y5z//OaKvI1GRAPwEeA7oZrPeCLwM5AD7YxiXiIiIiIiIiEibpISJSOylo4SJ2Dhw4AAvvfQSr7zyCgcP2o+fuOWWW/B6vVx44YURPcuyLN544w3mzJlDZWXlceuRJmIkYtcCvwWa6rO2EngQWBGziERERERERERE2jglTERi72a3A5D4YlkWf/nLX8jLy6O6utr2mn79+jFr1iySk5Mjft7q1avxer2sWGG/137WWWdx7733RvwcaZZTMXOOHgYSbdb3frM+FwjEMC4RERERERERkTZPCROR2Luopqbmkp49e25xOxBx36pVq/B6vaxcudJ2/bTTTiM7O5v77ruPxES7/XPndu3axVNPPUVRURGBwPF77R06dOD+++/nl7/8JaeeempEz5KweYD7Me23zrJZt4BC4P8Au2IYl4iIiIiIiIhIu6GEiYgLAoHASEy7HWmnampq8Pl8vP76600mL+6++26mTZvG6aefHtGz/H4/8+fP57nnnuPLL7+0vSY5OZlZs2bRr1+/iJ4lzdIHmAeMaGJ9I6bi5O2YRSQiIiIiIiIi0g4pYSLiAsuy0lHCpF1ymrzIzc2lb9++ET+vtLSUGTNmUFFRYbveq1cvpk+fztixYyN+loTtFCAbmA6cZLN+AFNx8iRwKIZxiYiIiIiIiIi0S0qYiLjjJsuykjwej9/tQCR2SktL8Xq9bNu2zXb9oosuYtq0aS2SvNiyZQszZszgnXfesV0/5ZRTePDBB3nkkUfo2LFjxM+TsI3FzCG5sIn1hcAjgP0Pi4iIiIiIiIiItDglTETc0a2ysvIG4F23A5Ho27x5MzNmzGDx4sW26507d+ZnP/sZjz76KCedZFdo4Ny+ffv49a9/zfz582lsbDxu3ePxcOedd/LEE09w1ll2ozIkyi7CJEpGN7H+GfAo8GbMIhIREREREREREUAJExE3paOESZtWV1eHz+drMnmRkJDAHXfcQU5ODmeeeWZEz2psbORPf/oTzzzzDHv27LG95uqrr2b27NkMGDAgomdJsyQBDwFzgC42635Mm77/H6iPYVwiIiIiIiIiIvINJUxEXJKQkDASmOl2HNLygsmLp59+mtraWttrrr32WmbNmtUiyYuysjJmzJjB+vXrbdfPPvtspk+fzoQJE/B4PBE/T8I2FHgZuLyJ9SWYZIr9N1BERERERERERGJCCRMRl1iWdcP27dtPv+CCC+x31KVVKisrw+v1smHDBtv1c845h2nTprVI8qKiooKnnnqKkpIS2/WTTz6ZH//4xzz22GN07tw5omdJs5wNPAvcB9h9s6uAacBrsQxKRERERERERETsKWEi4p7ExMTE4cACtwORyG3dupWnn366yeRFp06deOCBB1okeXHgwAF++9vfMnfuXA4dOmR7TXp6OnPmzOGCCy6I6FnSLAmYJMlvgB426wEgH/glsD+GcYmIiIiIiIiIyAkoYSLirnSUMGnV6uvreeWVV0ImL/Ly8jj//PMjepZlWRQXF5OXl8euXbtsr+nfvz+5ubkMHDgwomdJs12LmUVyQxPr5cCDwAcxi0hERERERERERBxRwkTEXaPcDkCaJxAIsGDBAubMmcPu3bttr+nfvz+zZ8/mhhua2jt3btWqVXi9XlauXGm7ftppp/Hzn/+cH/3oRyQmJkb8PAnbqcAs4GHA7htQh5lZ9BJwOHZhiYiIiIiIiIiIU0qYiLir144dO/qcf/75n7odiDhXXl6O1+ulvLzcdr1nz55MnTqVH/zgBxEnL6qrq3nyySdZsGABlmUdt56UlMTkyZP55S9/Sbdu3SJ61uHDh9m5cyfnnnsuHTro5SEME4G5QE+bNQsoBP4PYF8WJCIiIiIiIiIicUE7YiIu83g8IwElTFqBqqoqnnrqqZDJi+zsbLp27RrRsw4ePEhBQQHPP/889fX1ttekpKQwe/Zs+vTpE9GzAEpKSpg9ezY7duygV69eLFiwgHPOOSfir9vG9QHmASOaWP8UU3GyKGYRiYiIiIiIiIhIsylhIuKyhISEdEybHolTDQ0NvPrqqydMXqSnpzNr1ix69eoV8fNKS0t54okn2L59u+36JZdcwsyZM7npppsiftbHH3+M1+vlvffeO/J3FRUVvPbaazz++OMRf/026hQgG5gGdLRZPwA8BzwJ2A+2ERERERERERGRuKOEiYjLLMsabllWksfj8bsdi3ybZVksXLjwSOWFnd69ezNz5kzS0tIift7atWvxer28//77tuvdu3fnkUce4ac//SlJSUkRPWvv3r385je/4fe//z2HDx8/UmPv3r0Rff02bCzwItCrifWFwCPAtlgFJCIiIiIiIiIiLUMJExH3da2qqhoE/MvtQOSoNWvW4PV6+eCDD2zXu3fvztSpU/nhD38Y8byPUMmLhIQE7tSMeHQAACAASURBVLjjDmbMmEGPHj0iepbf7z/S6mv//v0Rfa125jzgeWBCE+ufAY8Cb8YsIhERERERERERaVFKmIjEh3SUMIkLNTU1+Hw+/vjHP9omLzp06MDdd9/N448/3iLJi/nz5/PrX/+6yeTFkCFDyM3NpV+/fhE9C2Dp0qV4vV42btwY8ddqR5KAh4A5QBebdT/wW+BXwFcxjEtERERERERERFqYEiYi8WEkkON2EO1ZMHnx3HPP8eWXX9pek5yczKxZs1oseZGTk8Onn35qu37eeeeRnZ3NxIkTI37Wpk2bmDlzJosXL7Zd79y5M2effTZbtmyJ+FltTCrwMvD9Jtb/F5NMWReziEREREREREREJGqUMBGJDwN27NjR4/zzz9/jdiDtUWlpKTNmzKCiosJ2vVevXkyfPp2xY8dG/KwtW7Ywc+ZM3n77bdv1U045hQcffJBHHnmEjh3t5ok7t3//fubOncvvfvc7/P7jR+R4PB7GjBmD1+vllVdeUcLkqLOBZ4H7AI/NejXwOPAHwIphXCIiIiIiIiIiEkVKmIjEh8TExMSbgP9yO5D2ZPPmzcycOZN33nnHdj2YvHj00Uc56aSTInrWvn37eOmll06YvLjzzjt54oknOOussyJ6ViAQYMGCBcyePZsvvvjC9pqrrrqK2bNnc91110X0rDYmAZMk+Q1g128tAOQD2cC+GMYlIiIiIiIiIiIxoISJSJywLCsdJUxioq6uDp/Px/z582lsbDxuPRrJi9zcXPbssS8guvrqq5k9ezYDBgyI6FkAy5Ytw+v1sm6dfZeonj17MnXqVO655x4SEhIifl4bcg1mFsnAJtbLgQeBD2IWkYiIiIiIiIiIxJQSJiLx42a3A2jrGhsb+dOf/sQzzzzTZPLimmuuITc3t0WSF2VlZcyYMYP169fbrp999tlMnz6dCRMm4PHYdX5yrrKykqeffpri4mLb9aSkJCZPnszjjz9Oly52s8vbrVOBWcDDQKLNeh0wE3gJOBy7sEREREREREREJNaUMBGJH+dXVlb2Pffccze4HUhbFMvkRUVFBU899RQlJSW26yeffDI//vGPycrKijh50dDQwMsvv8xLL73E119/bXtNeno6ubm5XHjhhRE9qw2aCMwFejaxXgQ8AuyKWUQiIiIiIiIiIuIaJUxE4stIQAmTFhQqedGpUyceeOABHnvsMTp37hzRsw4cOMBvf/vbkMmL2bNn873vfS+iZ1mWxcKFC8nNzWXnzp2211x66aXMmjWLYcOGRfSsNuhSYB6Q3sT6p5iKk0Uxi0hERERERERERFynhIlIHPlmjsmLbsfRFgSTF3PnzuXQoUO216SnpzNnzhwuuOCCiJ5lWRbFxcXk5eWxa5d9McIVV1xBbm4uN954Y0TPAli9ejU5OTl8+OGHtuunnnoqv/jFL/jRj35EYqJdl6l2qxPwODAN6GizfgB4DngSsP+hERERERERERGRNksJE5E44vF4hm/atKnjpZdeal+eICEFh6yfKHnRv39/cnNzGTiwqfnezn300Ufk5OSwcuVK2/XTTjuNn//85y2SvKipqcHn8/H6668TCASOW09KSmLSpElMmzaN008/PaJntUFjMcnIXk2sLwQeBSpiFI+IiIiIiIiIiMQZJUxE4kvnLl26DAKWuB1Ia7Rq1Sq8Xm+TyYvTTz+dxx57rEWSF9XV1Tz55JMsWLAAy7KOWw8OWf/lL39Jt27dInqW3+9n/vz5PPvss3z11Ve216SkpJCbm8tll10W0bPaoPOAp4D7m1jfAfwcKI5ZRCIiIiIiIiIiEpeUMBGJM9+05VridhytidPkRXZ2Nl27do3oWQcPHqSgoIAXXnjhhMmL2bNn06dPn4ieBbBw4UJmz57N9u3bbdcvueQSZs6cyU033RTxs9qYJOAhYA7QxWbdD/wW+BVg/40UEREREREREZF2RQkTkfgzErOJKyE0NDTw6quv8vzzz1NfX297TUpKCnPmzOHSSy+N+HmlpaU88cQTTSYvLr74YmbOnMmIESMifta6devwer0sW7bMdr1bt25H5pQkJSVF9Kza2lrWrVsX0deIM6nAy8D3m1j/X8xQ909iFpGIiIiIiIiIiMQ9JUxE4s+1VVVVZ55zzjm73Q4knoVKXrRk5cXHH3+M1+vlvffes13v3r07jzzyCD/96U8jTl7s2bOHZ555hj/+8Y8cPnz4uPXExETuuecesrOz6dGjR0TPCrb68vl87Nu371trCQkJEX1tl5yOab/1/wEem/VqzND3PwDHlyKJiIiIiIiIiEi7poSJSPxJCAQCNwF/cjuQeLR27Vq8Xi/vv/++7Xr37t2ZOnUqP/zhD+nQIbJfcXv37uU3v/kNv//9722TFwkJCdxxxx14vV7OOOOMiJ7l9/v5j//4D37z/9i78/goy3v//68JoCyKVgVcT3Gr4lZcihugoMEehbYiitpT0fqouLEoRwinzCSZQMFCrAqIpeBPKrX2EM7pVzxLT1Rsg7tSxV1QQFkElCUsARJmfn+MaSm5MRPuTCYJr+fjwaNmPtd1fz5Q5Y+8c93XAw9QXl4euOaiiy4iHo9z2mmnheoF8MILL5Cfn8/ixYsD69/97ndD92hAOcC/AA8AQSlSAvgdqbtKvmrAuSRJkiRJktSEGJhIjVBOTk4uBib/YP369fzqV7/aa3jRsmVLrr/+ekaNGlVvJy8mTZq01/Di4osvJh6P06VLl1C9AJ577jkKCgr45JNPAuvHHXcc0WiUvn37hu716aefUlhYSGlpaWC9TZs23HPPPVx33XWhezWQrqTuIrlgL/W/AncAwQmbJEmSJEmS9DUDE6kRSiaTV2R7hsaiOryYOHEimzdvDlzTvXt3CgsL6yW8KCsrIxqN8vHHHwfWjz76aEaNGsW1114bulc64cWdd97J3XffzYEHHhiq19atW3n00UeZPHkyO3fuDFyTm5vLuHHjOPbYY0P1aiCHAHFSd5G0CKhvBAqAKUDNhE2SJEmSJEnag4GJ1Dgds3r16tOOOuqoZnUTd12VlZUxZsyYvb42qnPnzowePZp+/fqF7vXJJ59QUFDAc889F1hv27Ytd9xxR72EF+Xl5UyePJnf/OY3geFFJBKhb9++RKPR0OFFIpFg7ty5jB07lnXrgq/FOfPMMykqKqJbt26hejWgfqQudd/bH84cYAiwpsEmkiRJkiRJUpNnYCI1Uslksg+wXwYmDRlebNq0iSlTpjB9+nQqKytr1KvDi1gsxjHHHBOqVzrhxVlnnUVRURHf+973QvUCWLhwIbFYjIULFwbWO3XqxIgRI7jhhhto0SLokEajczKpEyN99lJfTOrESfCRHUmSJEmSJOkbGJhIjVcf4MFsD9GQNm3axKRJk5g1axZVVVU16pFIhGuuuYYxY8bQsWPHUL2qw4uioiK+/PLLwDVdu3YlHo9z3nnnheoF8NJLLxGLxXj//eAMrDq8uPHGG8nJyQnVa/Xq1YwfP565c+eSTCZr1Fu1asVNN93EyJEjOfjgg0P1aiBtgFFAHhCUkFUAvwTGAzsacC5JkiRJkiQ1IwYmUuN1yeLFiw88+eSTm/03gKuqqnjqqae4//77+eqrrwLXnH322cTjcc4999zQ/V588UVisRgffPBBYL2phhcVFRU89thjPPjgg2zdujVwTW5uLoWFhXTu3DlUrwbUF3gYOH4v9WdIvX5rWUMNJEmSJEmSpObJwERqvNq2adOmOxD8XqpmYsGCBeTn5+81vDjyyCMZPXo0AwYMIBKJhOq1atUqJkyYQElJSWC9devW3HrrrQwbNoyDDjooVK+KigoeeeQRpkyZwo4dwZlXbm4u8Xicb3/726F6JZNJnnnmGYqKilixYkXgmpNOOomCggJ69+4dqlcDOobUiZGf7KW+EriH1H0lkiRJkiRJUmgGJlIj1qJFi1yaaWCybNkyxo8fz7x58wLr1eHF8OHDadeuXahe27ZtY9q0abWGF0VFRfzTP/1TqF7V4UU8HmflypWBa04++WQKCgro1atXqF4AixYtIhaL8dprrwXWDznkEEaMGMHNN99My5ZN4q/8lqTuISkCgo7cVALTgJ8DWxpwLkmSJEmSJDVzTeK7Z9L+6uuL3/OyPUd9Sje8GDt2LMcdd1yoXtXhRWFhIatWrQpcc8YZZxCPx7ngggtC9QJ4++23icVivP7664H1Qw89lHvvvZdbbrkl9CXra9asobi4mN///vfs2rWrRr1ly5Zcf/31jBo1isMPPzxUrwbUA3gEOGMv9b8AdwLvNdhEkiRJkiRJ2m8YmEiNW9e1a9ce2bFjxy+yPUh96du3Lx9++GFg7ayzziIej9OtW7fQfd544w1isRhvvfVWYP2II45g1KhR3HDDDaHvKakOL5588kkSiUSNenV4kZeXx2GHHRaqV2VlJbNmzWLixIls3rw5cE337t0pLCykS5cuoXo1oMNIvX7rZ0DQe9fWACOBJ4CaF8FIkiRJkiRJ9cDARGrcIlVVVZcBv8v2IPWlvLy8xmcdOnQgLy+PgQMH1ssl62PHjuWPf/zjXi9Z/+lPf8o999xD+/btQ/VKN7yIx+OceuqpoXoBlJaWkp+fz7JlywLrnTt3ZvTo0fTr1y90rwYSIXVHSTFwREA9Qerf/XuArxpwLkmSJEmSJO2HDEykxi+XZhSY7OmGG26goKCAgw8Ouq4ifdu3b2fatGlMnTqVbdu2Ba65/PLLKSgo4IQTTgjVC1LhRSwWY/ny5YH1448/nry8vHoJL5YsWUJBQQHPP/98YL1t27bccccdDBkyhAMOOCB0vwbSldTrty7cS/2vpF6/9UqDTSRJkiRJkqT9moGJ1PhdkUwmI5FIpFm+iqhfv36hw5Knn36asWPHsmLFisD6SSedRGFhYb1csr548WIKCgqYP39+YL1du3bcfvvt9RJebNy4keLiYmbNmkVVVVWNeiQS4ZprrmHMmDF07NgxVK+qqir+8Ic/8OKLL9KzZ0+uv/76UM/7BocAcVIXuwdd5LIJyAemADUvZ5EkSZIkSZIyxMBEavyOXLNmzRnAO9kepLF59913icVivPJK8CGE9u3bM2TIEG677TZatWoVqld1ePH4448HXrKek5ND//79iUajdOjQIVSvqqoqnnrqKe6//36++ir4TVRnn3028Xicc889N1QvgLKyMvLz8/92t8wf//hH2rRpww9/+MPQz95DP2AqcNxe6s8AdwDByZckSZIkSZKUQQYmUhOQTCb7YGDyNxs2bOCBBx6oNbyIxWIccUTQ1Rjpqw4vJkyYwPr16wPXnHPOOcTjcc4555xQvQAWLFhAfn4+H3zwQWD9yCOPZPTo0QwYMIBIJOh+9PQtW7aMwsJC/vSnP9Wovfrqq/UZmJxE6sTIFXupLwbuBv6vvhpKkiRJkiRJdWVgIjUByWQyl9TF2Pu16kvWJ02aFHh5PMBFF11EPB7ntNNOC91vz5MXezrqqKPIy8urt/Bi/PjxzJs3L7Depk0bfvrTnzJ8+HDatWsXqte2bduYNm0aU6ZMYceOHYFrEolEqB5fawOMAvKAAwPqFcAvgfFA8CCSJEmSJElSAzEwkZqGSz7//PM2xx13XEW2B8mWsrIyYrEYH330UWD96KOPZtSoUVx77bWhey1dupQJEyZ8Y3hx5513ctddd9G6detQvarDi8mTJ7Nz587ANbm5uYwdO5bjjtvbm6zSk0gkmDNnDuPHj2ft2rWhnpWGy0i9fuuUvdSfAYYCSzM9iCRJkiRJkpQOAxOpaWidk5PTHSjN9iAN7dNPP6WgoIBnn302sF4dXtx9990ceGDQIYb0bd26lUcffXSv4UUkEqFv375Eo1GOPfbYUL0SiQRz585l3Lhxew0vzjzzTOLxOOeff36oXgBvvPEG0WiUt99+O/Sz0nAfqcAkyErg34DfNsQgkiRJkiRJUroMTKSmI5f9KDApLy9n8uTJTJ8+ncrKyhr16vAiFotxzDHHhOpVHV6MHTuWdevWBa4566yziMfjdOvWLVQvgL/+9a/EYjHefPPNwPq3vvUt7rnnHm655RZatGgRqtcXX3zBL37xC+bOnUsymaxRb9WqFTfddBPl5eXMmTMnVK/dBIUllcA04OfAlvpqJEmSJEmSJNUXAxOpiYhEIn2AkdmeI9Oqw4uioiK+/PLLwDXf/e53KSoq4rzzzgvdb+HChcRiMRYuXBhY79SpEyNGjODGG28kJycnVK90w4v77ruP9u3bh+q1fft2Zs6cyUMPPcSWLcH5RI8ePSgqKuI73/kO0Wg0VL9alAF3Au9msokkSZIkSZIUhoGJ1HSctW7duqM6dOiwOtuDZMqLL75Ifn4+77//fmC9PsOL1atXM378+FrDi5EjR3LwwQeH6lVRUcFjjz3Ggw8+yNatWwPX9OjRg7Fjx3LyySeH6gVQWlpKNBrls88+C6yfcMIJFBQUcPnll4fuVYv1wGjgN0DNP2RJkiRJkiSpETEwkZqOSGVl5eXAE9kepL6tWrWKCRMmUFJSElivDi9GjRrFQQcdFKpXRUUFjzzyCFOnTmX79u2Ba3JzcyksLKRz586hekEqvBgzZgyff/55YP3EE0+koKCAyy7b25Uf6Xv33XeJxWK88sorgfVDDjmEu+++m9tuu41WrVqF7vcNksBs4F4g+JiQJEmSJEmS1MgYmEhNSy7NLDCZMWMGL774Ijt27AisV1+yftxxx4Xqk0wmeeaZZygqKmLFihWBa0466SQKCgro3bt3qF4A77zzDrFYjFdffTWwXp/hxYYNG3jggQd4/PHH2bVrV416Tk4O/fv3JxaLccQRR4TqlaZ7gIcaopEkSZIkSZJUXwxMpKalTzKZjEQikWbzeqPnn38+8POTTz6ZwsJCLr300tA9Fi1aRCwW47XXXgusH3roodx7773cfPPNtGwZ7q/F9evX86tf/Wqv4UXLli25/vrrGTVqFIcffnioXpWVlcyaNYtJkyZRXl4euObiiy8mHo/TpUuXUL3q6MOGbCZJkiRJkiTVBwMTqWnptHLlyrOAt7M9SKYcfvjhjBo1ihtuuIEWLVqEetaaNWsoLi7mySefJJFI1KhXhxd5eXkcdthhoXpVhxcTJ05k8+bNgWu6d+9OYWFhvYQXZWVlRKNRPv7448D60UcfzahRo7j22mtD95IkSZIkSZL2BwYmUhPTokWLPjTDwKT6npL77ruP9u3bh3pWNsKLMWPGsHjx4sB6586dGT16NP369Qvd65NPPqGwsJBnn302sN62bVvuuOMO7r77bg488MDQ/SRJkiRJkqT9hYGJ1MQkk8lcYGK259hXQZe2X3bZZRQUFHDiiSeGfn5paSn5+fksW7YssF7f4UVBQQHPPfdcYL0+w4tNmzYxZcoUpk+fTmVlZY16JBKhb9++xGIxjjnmmFC9JEmSJEmSpP2RgYnU9PRYtWpV26OPPnpbtgfZF7fffjv/+q//SiKRqNdL1pcsWUJ+fj7z588PrFeHF0OGDOGAAw4I1WvTpk1MmjSJWbNmUVVVVaMeiUS45pprGDNmDB07dgzVK5FIMHfuXIqKivjyyy8D13Tt2pV4PM55550XqpckSZIkSZK0PzMwkZqe1kAP4E/ZHmRfXH/99Zx//vl8+eWXdO3alVatWoV63saNGykuLt5reJGTk0P//v2JRqN06NAhVK+qqiqeeuop7r//fr766qvANV27dqWoqIhzzz03VC+ABQsWkJ+fzwcffBBYP/LIIxkzZgxXX301kUgkVK9kMhlqvyRJkiRJktTUGZhITVMuTTQwATj++OM5/vjjQz2jOryYMGEC69evD1xz9tlnE4/HGyy8GD16NAMGDAgdXqxatYoJEyZQUlISWK++72XUqFGBrziri4qKCh555BF+97vfhXqOJEmSJEmS1NQZmEhN0xXAv2Z7iGypLbw46qijyMvLq5fwYtmyZYwfP5558+YF1lu3bs2tt97K8OHDadeuXaheW7Zs4eGHH2b69Ons3LkzcE2/fv0YM2YMxx13XKheyWSSuXPnMm7cONasWVOjfvDBB4d6viRJkiRJktTUGJhITdMZK1asOPbYY49dke1BGlJt4UWbNm346U9/Wi/hxbZt25g2bRpTpkxhx44dgWtyc3MZO3Zs6PAikUhQUlLC+PHjA8MLgNNPP514PM6FF14YqhfAwoULicViLFy4MLDeqVMnfvKTn4TuI0mSJEmSJDUlBiZSE9WiRYvLgcezPUdDqA4vJk+evNeTF/UVXiSTSUpKShg3bhxr164NXHPGGWdQVFTE+eefH6oXwJtvvkk0GuWtt94KrB9xxBGMHDmSG264gRYtWoTqtWbNGsaNG8fcuXMD7yxp1aoVN998MyNGjKB9+/ahekmSJEmSJElNjYGJ1EQlk8lcmnlgkkgkmDt3LmPHjmXdunWBa84880yKioro1q1b6H5//etficVivPnmm4H1b33rW9xzzz3ccsst9RJeFBcX8+STT5JIJGrUq+8pue+++0KHF5WVlcyaNYuJEyeyefPmwDU9evSgsLCQU089NVQvSZIkSZIkqakyMJGarj7JZDInEonU/G57M1BbeHHYYYcxfPjwegkvvvjiC37xi19848mL+govtm/fzsyZM3nooYfYsmVL4JoePXoQj8c55ZRTQvUCKC0tJRaLsXz58sD68ccfT15eHv369QvdS5IkSZIkSWrKDEykpuuI1atXdwWCL6JoolavXs348eNrDS9GjhwZ+mLy6vDiwQcfZOvWrYFrevToQVFREd/5zndC9YJUeBGNRvnss88C6yeccAL5+fnk5uaG7rV48WLy8/N54YUXAuvt2rXj9ttvZ8iQIRxwwAGh+0mSJEmSJElNnYGJ1LT1oZkEJhUVFTz22GPfGF7k5uZSWFhI586dQ/crLS1lzJgxfP7554H1E088kYKCAi677LLQvd59911isRivvPJKYL19+/YMGTKE2267jVatWoXqtXHjRoqLi3n88cfZtWtXjXpOTg79+/cnGo3SoUOHUL0kSZIkSZKk5sTARGrCvr7HZEK25wirtvDipJNOoqCggN69e4fu9c477xCLxXj11VcD64cccgh33313vYQXGzZs4IEHHqg1vIjFYhxxxBGhelVWVvKHP/yBCRMmsH79+sA1F154IfF4nNNPPz1UL0mSJEmSJKk5MjCRmrBIJNJ97dq1B3Xs2DH4MoxG7p133iEajfLaa68F1g855BBGjBjBzTffTMuW4f66aujwYtasWUyaNIny8vLANRdddBHxeJzTTjstVC+AsrIy8vPz+fDDDwPrRx11FHl5eQwYMIBIJBK6nyRJkiRJktQcGZhITdsBu3bt6gn8d7YHqYv169fzq1/9aq/hRcuWLbn++usZNWoUhx9+eKhe6YQXF198MfF4nC5duoTqBanwIhaL8dFHHwXWjz76aEaNGsW1114butfSpUuZMGEC8+bNC6y3adOGO++8k7vuuovWrVuH7idJkiRJkiQ1ZwYmUhP39Wu5mkxgMn36dCZNmsSWLcGHYnr27ElhYSGnnHJK6F6lpaUUFBSwdOnSwHrnzp2JxWJ8//vfD93r008/pbCwkNLS0sB6dXhx9913c+CBB4bqVV5ezuTJk/nNb37Dzp07a9QjkQh9+/YlGo1y7LHHhuolSZIkSZIk7S8MTKSmr0+2B6iL6dOnB4YlnTt3pqCggD59wv92Pv74Y/Lz8/nzn/8cWD/ooIMYOnQot912GwcccECoXtXhxfTp06msrKxRrw4vYrEYxxxzTKheiUSCuXPnMnbsWNatWxe45qyzziIej9OtW7dQvSRJkiRJkqT9jYGJ1PSdtnLlyuOOOeaY4BvTG7m2bdtyxx13MGTIkNDhxaZNm5gyZUqt4UV+fj5HH310qF7V4UVRURFffvll4Jrvfve7FBUVcd5554XqBfDyyy8Ti8V47733AuudOnVixIgR3HjjjeTk5ITuJ0mSJEmSJO1vDEyk5iEXeCzbQ+yLadOmkZubG+oZVVVVPPHEE0yaNIkNGzYErjnvvPOIx+N07do1VC+Al156iVgsxvvvvx9Yr8/wYvXq1YwfP565c+eSTCZr1Fu1asVNN93EyJEjOfjgg0P1kiRJkiRJkvZnBiZSM5CTk9NkA5NWrVqF2v/iiy8Si8X44IMPAuudOnXi3/7t3xgwYACRSCRUr1WrVjFhwgRKSkoC69XhxahRozjooINC9aqoqOCRRx5h6tSpbN++PXBNbm4u8Xicb3/726F6SZIkSZIkSTIwkZqFZDKZm0wmcyKRSCLbszSUlStXcv/99+81vGjdujW33norw4YNq7fwYsqUKezYsSNwTX2FF8lkkmeeeYaioiJWrFgRuOakk06isLCQXr16heolSZIkSZIk6e8MTKTm4fDVq1efA7yR7UEybdu2bUybNq3W8KKoqIh/+qd/CtWrOryIx+OsXLkycM3JJ59MYWEhl156aaheAIsWLSIajfL6668H1g899FDuvfdebr75Zlq29K9vSZIkSZIkqT75HTep+ehDMw5MkskkJSUljBs3jrVr1wauOeOMM4jH41xwwQWh+7399ttEo1HeeCP4j7Q6vLjlllto0aJFqF5r1qyhuLiYJ598kkSi5iGhli1bcv3115OXl8dhhx0WqpckSZIkSZKkYAYmUvORC/wi20NkwltvvUU0GuXNN98MrH/rW9/innvuaZDwolWrVgwcOLBewovKykpmzZrFxIkT2bx5c+Ca7t27E4/HOfXUU0P1kiRJkiRJkvTNDEyk5uOitWvXHtSxY8ct2R6kvnzxxRf84he/YO7cuSSTyRr16kvW77vvPtq3bx+qV3V48ctf/pItW4L/CHv06EE8HueUU04J1QugtLSUWCzG8uXLA+vHH388eXl59OvXL3QvSZIkSZIkSbUzJoG2wAAAIABJREFUMJGajwMSicSlwDPZHiSs7du3M3PmTB566KFmF14sWbKE/Px85s+fH1hv164dt99+O0OGDOGAAw4I3U+SJEmSJElSegxMpGYkkUjk0sQDk9LSUqLRKJ999llg/YQTTqCgoIDLL788dK/FixeTn5/PCy+8EFhv3749Q4YM4Wc/+1no8GLjxo0UFxcza9YsqqqqatRzcnLo378/0WiUDh06hOolSZIkSZIkqe4MTKTmpU+2B9hX7777LrFYjFdeeSWwXh1e3HbbbbRq1SpUr+rw4vHHH2fXrl016vUZXlRVVfHUU08xYcIE1q9fH7jmnHPOobCwkHPPPTdUr4byySefUFBQwM6dO7M9iiRJkiRJklRvDEyk5uXU1atXdz7qqKOWZXuQdG3YsIFoNFpreBGLxTjiiCNC9aqsrOQPf/jDN4YXF154IfF4nNNPPz1UL4AFCxYQi8X48MMPA+tHHXUUeXl5DBgwgEgkErpfpm3cuJGJEyfyxBNPBJ6S2U3NC2ckSZIkSZKkRs7ARGpmksnk5cCMbM+RriFDhpBIJAJr3bt3p7CwkC5duoTuU1ZWRiwW46OPPgqs12d4sXTpUiZMmMC8efMC623atOGnP/0pw4cPp127dqF6NYSqqiqeeOIJJk6cyMaNG9PZ8nmmZ5IkSZIkSZLqm4GJ1Pz0oQkFJkFhybe//W2i0ShXXnll6OcvXbqUgoICSktLA+tt2rThzjvv5K677qJ169ahem3dupVHH32UyZMn7/V1Vbm5uYwbN45jjz02VK+GUlvQFOB/gA8yOJIkSZIkSZKUEQYmUvNzeTKZbBGJRGq+36qRa9u2LXfccQd33303Bx54YKhnlZeXM3nyZH7zm98EhheRSIS+ffsSjUZDhxeJRIK5c+cyduxY1q1bF7jmzDPPpKioiG7duoXq1VCWLVtGYWEhf/rTn9LdsotUUDcic1NJkiRJkiRJmWNgIjU/31qzZs15wKvZHiRI0OuuIpEI1157LaNHj6ZTp06hnp9OeHHWWWdRVFTE9773vVC9ABYuXEgsFmPhwoWB9U6dOjFixAhuuOEGWrRoEbpfpm3bto1p06YxZcoUduzYke62PwPDgbcyN5kkSZIkSZKUWQYmUjOUTCb70EgDkzPOOIOVK1f+7etzzz2XeDzO2WefHfrZL7/8MrFYjPfeey+wXh1e3HjjjeTk5ITqtXr1asaPH8/cuXNJJmvecd6qVStuuukmRo4cycEHHxyqV0NIJpOUlJQwbtw41q5dm+62FcDPgSfwondJkiRJkiQ1cQYmUjOUTCZzgaJszxHkl7/8Je3bt2fVqlXccMMNXH311aEvWW/I8KKiooLHHnuMBx98kK1btwauyc3NpbCwkM6dO4fq1VDeeustotEob775ZrpbtgETgfuBiowNJkmSJEmSJDUgAxOpebpw/fr1hxx22GGbsj3Injp06MBDDz1UL8+qqKjgkUceYerUqWzfvj1wTW5uLvF4nG9/+9uheiWTSZ555hmKiopYsWJF4JqTTjqJgoICevfuHapXQ/niiy/4xS9+sdegKUASKAHuA5ZndDhJkiRJkiSpgRmYSM1Ty4qKikuB/5ftQTIh3fCisLCQXr16he63aNEiYrEYr732WmD9kEMOYcSIEdx88820bNn4/1rdvn07M2fO/MZTMgHeJHVPyYLMTSZJkiRJkiRlT+P/zp6kfZVLMwxMFi1aRDQa5fXXXw+sH3roodx77731El6sWbOG4uJifv/737Nr164a9ZYtW3L99dczatQoDj/88FC9GkppaSljxozh888/T3fLaqAAmAEkMjWXJEmSJEmSlG0GJlIzFYlE+mR7hvpUHV48+eSTJBI1v29fHV7k5eVx2GGHhepVWVnJrFmzmDhxIps3bw5c0717dwoLC+nSpUuoXg3lnXfeIRaL8eqrr6a7ZSfwKBAFyjM2mCRJkiRJktRIGJhIzdfJa9asOaFTp06fZnuQMNINL+LxOKeeemrofqWlpeTn57Ns2bLAeufOnRk9ejT9+vUL3ashbNiwgQceeIDHH3888JTMXjwDDAOa9L87kiRJkiRJUl0YmEjN2K5du3KBX2d7jn1VWlpKLBZj+fLg+8WPP/548vLy6iW8WLJkCQUFBTz//POB9bZt23LHHXcwZMgQDjjggND9Mq06aJo0aRLl5WkfEPkQuAf438xNJkmSJEmSJDVOBiZS89YkA5MlS5aQn5/P/PnzA+vt2rXj9ttvr5fwYuPGjRQXFzNr1iyqqqpq1CORCNdccw1jxoyhY8eOoXo1lLKyMqLRKB9//HG6W9YDcWAqUPMPQZIkSZIkSdoPGJhIzdtlyWSyZSQSaRLfBK8tvMjJyaF///5Eo1E6dOgQqldVVRVPPfUU999/P1999VXgmrPPPpt4PM65554bqldD+eSTTygoKOC5555Ld0sV8Bjwc+DLjA0mSZIkSZIkNQEGJlLzdujKlSu/B7yc7UG+SXV4MWHCBNavXx+45pxzziEej3POOeeE7rdgwQLy8/P54IMPAutHHnkko0ePZsCAAUQikdD9Mm3Tpk1MmTKF6dOnU1lZme6254DhwLuZm0ySJEmSJElqOgxMpGauRYsWfWjEgcmCBQuIxWJ8+OGHgfWjjjqKvLy8egkvli1bxvjx45k3b15gvXXr1tx6660MHz6cdu3aherVEBKJBHPnziUej+/1lEyAxaROlMzJ3GSSJEmSJElS02NgIjVzyWQyFyjM9hx7Wrp0KRMmTNhreNGmTRvuvPNO7rrrLlq3bh2q17Zt25g2bRqTJ09m586dgWtyc3MZO3Ysxx13XKheDeXFF18kFovt9ZRMgC1AMTAe2JGxwSRJkiRJkqQmysBEjdYXX3xBIpEgJycn26M0deevX7/+kMMOO2xTtgcB2Lp1K48++uhew4tIJELfvn2JRqMce+yxoXolk0lKSkoYN24ca9euDVxz5plnEo/HOf/880P1aiirVq1iwoQJlJSUpLslAfwOuA9Yk7HBJEmSJEmSpCbOwESN1n/8x3+wePFiioqK6NatW7bHacpabt++vTfwn9keBKBv37589NFHgbWuXbtSVFRUL5esv/baa0SjUd55553AeseOHcnLy+O6665rEqFc9SmZKVOmsGNH2gdEXgWGff2/kiRJkiRJkr6BgYkag6q9Fd555x2uvvpqfvSjHzFmzBiOOuqohpyrOelDIwlMNm/eXOOzTp06kZeXx7XXXhs6vFi5ciVFRUXMmzePZDJZo96qVSt+9rOfMWzYMA4++OBQvRpCOqdkAqwgdU/JE0DNPwRJkiRJkiRJNTT+H6vW/uCv31RMJpP853/+Jz169OBXv/oV27dvb6i5mpMrsj3A3vz4xz+mrKyMgQMHhgpLKioqKC4upmfPnjz99NOBYUmfPn3485//zJgxY5pEWPLWW2/xgx/8gGHDhqUblmwD7ge6AL/FsESSJEmSJElKm4GJGoMHgfdqW7Rt2zYmTpz4t2+Iq06OX7NmzYnZHiLIVVddxUEHHbTP+5PJJH/84x/p0aMHxcXFVFRU1Fhzyimn8NRTT/H444/TuXPnENM2jC+++IKhQ4dy1VVX8eabb6azJQnMAU4D8khd8C5JkiRJkiSpDgxM1BhsAi4g9ZPxtV7OsGLFCm6//Xb69+/Pu+++m/HhmotEItEn2zPUt3feeYf+/ftz5513smrVqhr1Qw45hJ///Of83//9Hz179szChHWzfft2pk6dSs+ePSkpKQk8JRPgTaAncB2wPKMDSpIkSZIkSc2YgYkaiy2kfjL+ZFL3LtTqlVde4fvf/z5Dhw5l3bp1GR2uOUgmk7nZnqG+rF+/nmg0ypVXXsmrr9a8z7xly5b8y7/8CwsWLOCuu+6iVatWWZiybkpLS7n00ksZN24cW7akdUBkNTAYOB9YkNHhJEmSJEmSpP2AgYkam8+Bm4DewKLaFicSCUpKSrjwwgspLi5m586dGR+wCbssmUw2/uTgG1RWVjJjxgwuvPBCZs6cya5du2qs6d69O3/605/45S9/yeGHH56FKevm3XffpX///gwaNIjPPvssnS2VwMPAqcB0oOYfgiRJkiRJkqQ6MzBRYzUfOBsYBNR62/W2bdsoLi6mV69ezJs3L+PDNVHtV61a1S3bQ+yrsrIyLr/8cmKxGJs3b65R79y5M7/+9a/593//d7p06ZKFCetmw4YNRKNR/vmf/5lXXnkl3W3PkLrQfRhQnrHhJEmSJEmSpP2QgYkaswTwW1I/SX8/UOvxkaVLlzJ48GCuu+46Pvjgg0zP1xQ1uddyffLJJ/zkJz9h4MCBLF68uEa9bdu2jBgxgvnz59OvX78sTFg36ZySCfAhcCXQD/gkowNKkiRJkiRJ+ykDEzUFG0jdb3IW8F/pbFiwYAFXXHEFI0eOZP369Rkdrom5ItsDpGvTpk1Eo1F69erFc889V6MeiUQYMGAAL730EiNGjODAAw/MwpR1U1ZWRm5uLrFYjPLytA6IrAeGA2cC/5PR4SRJkiRJkqT9nIGJmpKPgL6kTkm8X9viqqoqZs+eTffu3ZkxYwZVVVUZH7Cxi0Qi3/v8888Py/Yc32T3/99mzpwZ+P9b165defrpp3n44Yfp2LFjFqasm08//ZSbbrqJgQMH8vHHH6ezpYrU/SSnAg99/bUkSZIkSZKkDDIwUVP0LNCV1E/eb6pt8caNG4nFYvTu3Zv58+dnfLhGrkXLli17Z3uIvdn9ZNBXX31Vo37kkUfy0EMP8V//9V+ce+65WZiwbsrLyxk3bhy9evXi2WefTXfbc8A5wGBgXcaGkyRJkiRJkvQPDEzUVFWS+sn7E4GHgVovgliyZAk//vGPGTRoEMuWLcvweI1XMplsdPeYLFu27BvvnmndujV33XUXf/nLX7j22muJRCJZmDJ9iUSCOXPm0L17d6ZOnUplZWU625YA1wGXA+9kdEBJkiRJkiRJNbTM9gBSSF8Bw4DHgQeBnrVtKC0t5YUXXuCmm25i5MiRHHzwwRkesdFpVPeYTJ8+nZdeeomdO3fWqEUiEfr160c0GuWYY47JwnR19+KLLxKLxQKDn73YCkwCxgM7MjaYJEmSJEmSpG/kCRM1F38FLgF+ACytbXFlZSUzZ86kZ8+ezJ49m0QikfEBG5Fvr1ix4jvZHqLaCy+8EBiWnHHGGcydO5dHH320SYQlq1atYujQoVx77bXphiVJ4AngJKAAwxJJkiRJkiQpqwxM1NzMA04H8oDNtS1es2YNI0eO5Morr+S1117L+HCNRSQS6ZPtGfamQ4cOTJo0if/93//lggsuyPY4tdq2bRvFxcVcfPHFlJSUpLvtNeAi4Cbgi4wNJ0mSJEmSJCltBiZqjiqA+4EupH6CP1nbhkWLFnH11VczePBgVqxYken5si4nJ6fR3WPSqlUrbr31VsrKyrjxxhvJyWncfz0lk0nmzZvHJZdcQnFxMTt2pHVAZCUwCLgAeCWjA0qSJEmSJEmqk8b9HUkpnJWkfoL/fODl2hbv+Q3w7du3Z3zAbEkmk72SyWSrbPQ+6KCDanyWm5vLCy+8QFFREe3bt8/CVHXz1ltv8cMf/pDBgwezcuXKdLZsIxXinQr8ljRCPEmSJEmSJEkNy8BE+4PXgYtJ/WR/ra8/qqio+NsrlubMmUMy2Sy/t33w6tWrL8xG4zvuuIMWLVoA8J3vfIff//73zJo1i+OPPz4b49RJ9Svc+vbtyxtvvJHutmf4+2vitmRsOEmSJEmSJEmhGJhof5Ek9ZP9JwGFQK3HR1avXs2wYcPo168fCxcuzPR82ZCV13INHDiQsrIynn76aZ599lkuueSSbIxRJ5WVlcyYMYMePXowe/ZsEolEOtsWAj2BfsCyTM4nSZIkSZIkKTwDE+1vtgIFwBnAnHQ2LFy4kB/84AcMHTqUdevWZXK2hpa1i987d+7MeeedR8uWLbM1QtpKS0vp0aMHsViMLVvSOiDyJTAc6AaUZXQ4SZIkSZIkSfXGwET7q0+A64DLgEW1LU4kEpSUlHDRRRdRXFzMzp07Mz5gAzhv1apVR2R7iMbqvffe45prrmHQoEF89tln6WypBB4GTgQeAnZlcj5JkiRJkiRJ9cvARPu754GzSd1vUuvxka1bt1JcXEyvXr2YN29exofLsJxIJNI720M0Nhs2bCAajfL973+fl19+Od1tzwLfBYYB5RkbTpIkSZIkSVLGGJhIkCB1v8kpwP1ArcdHli5dyuDBg7nuuuv48MMPMz1fxiSTyazcY9IYVd9TcuGFFzJz5kx27UrrgMhHwFWk7oP5IKMDSpIkSZIkScooAxPp7zYAecBZwH+ns2HBggX06dOHkSNHsn79+owOlyHfz/YAjUFZWRl9+vQhFotRXp7WAZENpO4pOYM0/12RJEmSJEmS1LgZmEg17X5q4P3aFldVVTF79my6d+/OjBkzqKqqyviA9ejYVatWnZrtIbLl008/ZdCgQQwcOJCPPvoonS1VwHRSp5Ee+vprSZIkSZIkSc2AgYm0d88CXUmdJNhU2+KNGzcSi8Xo3bs38+fPz/hw9ahPtgdoaOXl5YwbN47evXtTWlqa7rbngXOAwaRx340kSZIkSZKkpsXARPpmlaROEpwIPAzUerHFkiVL+PGPf8ygQYNYvnx5pucLbX+6xySRSDBnzhy6d+/O1KlT2bmz1utqAJYA1wGXAe9kdEBJkiRJkiRJWWNgIqXnK2AY0A0oS2dDaWkpPXv2JBqNsnnz5owOF0YkEum1ePHiA7M9R6a99NJL9OnTh2HDhvHll1+ms2UrUAicCczJ6HCSJEmSJEmSss7ARKqbhUBP4AfAstoWV1ZWMnPmTHr27Mns2bNJJBKZnm9ftDvooIMuzPYQmbJq1SqGDh3KgAEDeP/9Wq+kAUgCTwAnAQXA9gyOJ0mSJEmSJKmRMDCR9s084DQgD9hS2+I1a9YwcuRIrrzySl5//fWMD1dXzfG1XBUVFRQXF3PxxRdTUlKS7rbXgIuBm4AvMjacJEmSJEmSpEbHwETadxXA/cCppE4kJGvbsGjRIn70ox8xePBgVqxYken56qLZXPyeTCaZN28ePXv2pLi4mB07dqSzbSUwCLgAeDmjA0qSJEmSJElqlAxMpPBWkjqRcAHwSm2Lq7+hf8kll1BcXMz27Y3ijU/nrF69ukO2hwjr7bff5oc//CGDBw9m5cqV6WzZPfT6LWmEXpIkSZIkSZKaJwMTqf68BlxE6qRCra9z2v2VUXPmzCGZzOr36nMSicRl2RwgjOpXnl111VW88cYb6W57hjq8Vk2SJEmSJElS82ZgItWvJKmTCicBhUCt74NavXo1w4YNY8CAAbz33nuZnm+vcnJymtxruSorK5kxYwY9evRg9uzZJBKJdLYtBHoC/YBlmZxPkiRJkiRJUtNhYCJlxlagADgDmJPOhpdffpkrrriCoUOHsm7dukzOFiiZTPZJJpORBm+8j0pLS+nZsyexWIwtW9I6IPIVMBzoBpRldDhJkiRJkiRJTY6BiZRZS4DrgMuAd2pbnEgkKCkpoUePHkydOpWdO3dmfMDdHPPFF1+c1pAN98XixYu58cYbGTRoEMuXL09nSyXwMHAi8BCwK5PzSZIkSZIkSWqaDEykhvE8cA4wGKj1+Eh5eTnjxo2jV69ezJs3L+PDVUsmk432tVwbN24kGo3Su3dvXnjhhXS3PQt0BYYBmzI1myRJkiRJkqSmz8BEajhVwHTgFFInHqpq27B06VIGDx7MwIED+fDDDzM9H0BuQzSpi8rKSmbPnk337t2ZOXMmu3aldUDkI+AqUr+f9zM6oCRJkiRJkqRmwcBEangbSJ14OAP4n3Q2lJWVccUVVzBy5EjWr1+fydkuWbx48YGZbFAXZWVl9OnTpy6/7w1AHnAW8N8ZHU6SJEmSJElSs2JgImXPR8CVpE5BfFDb4t1PWsyYMSPdkxZ11bZNmzbdM/Hgutj9ZM1HH32UzpYE8ASp0zv3Aw16+YskSZIkSZKkps/ARMq+Z4HvAsOB8toWb9y4kVgsVte7PNLWokWLrL2Wax/vbpkPnA3cRBr3w0iSJEmSJElSEAMTqXGoBB4CTiR1v0mtx0cWL17MjTfeyKBBg1i+fHm9DZKNi98TiQRz5syhR48eTJ06lZ070zog8hkwCOgNLMrogJIkSZIkSZKaPQMTqXH5ktT9Jt2AsnQ2lJaW0rNnT6LRKFu2bKmPGbquXbv2yPp4UDpefvllrrjiCoYNG8a6dWkdENkKFJJ6/dZvMzqcJEmSJEmSpP2GgYnUOC0EegI/AJbVtriyspKZM2fSo0cPZs+eTSKRCNM7UlVVdVmYB6Rj9erVDB06lAEDBvDee++lsyVJ6p6Sk4ACYHsGx5MkSZIkSZK0nzEwkRq3ecDpQB5Q6/GRNWvWMHLkSK666ipef/31MH0zdo9JRUUFxcXFXHzxxZSUlJBMJtPZ9jpwMal7Sr7I1GySJEmSJEmS9l8GJlLjtw24HziV1AmLWhOGt99+mx/96EcMHjyYlStX7kvPK1q0aBHZl417k0wmmTdvHpdccgnFxcVs357WAZGVpO4pOR94uT7nkSRJkiRJkqTdGZhITcdKUicsLgBeqW1xdUDRs2dPiouL2bFjR116HfnDH/7w6H2cs4ZFixb9LcBZsWJFOlsqSIVEXUjdU5LWMRRJkiRJkiRJ2lcGJlLT8xqp11MNIo3XU+3+Cqw5c+ak3eTKK688fd9HTKl+RdiVV15Zl1eEPcPfX0O2OewMkiRJkiRJkpQOAxOpaUqQOnlxElAI1Hp8ZNWqVQwbNowBAwbw/vvv19rgjDPOOG1fh6usrGTGjBn07NmzLpfQ/xW4BOgHLN3X3pIkSZIkSZK0LwxMpKZtK1AAnAGkdXzkpZdeok+fPgwdOpQvv/xyr+uOOeaY77Ru3brOA5WWltKzZ09isRibN6d1QOQrYDjwPeAvdW4oSZIkSZIkSfXAwERqHpYA1wGXA+/UtjiRSFBSUkL37t2ZOnUqO3furLGmRYsWrbp165b+AEuW8OMf/5hBgwaxfPnydLZUAg8DJwIPAbvSbiZJkiRJkiRJ9czARGpengPOAQYD62pbXF5ezrhx4+jduzelpaU16j179qy14caNG4lGo/Tu3Zv58+enO+ezQFdgGLAp3U2SJEmSJEmSlCkGJlLzUwVMB04ldYKjqrYNn376KYMGDWLgwIF89NFHf/v80ksv3XuTqipmz55N9+7dmTlzJlVVtbYB+BjoC+QCtV+kIkmSJEmSJEkNxMBEar7WkzrBcSbwP+lsKCsro0+fPkSjUcrLy+nSpQudOnWqsW7BggX06dOHkSNHsn79+nQevQHI+3qW/0r7dyBJkiRJkiRJDcTARGr+PgSuBH4AfFLb4srKSmbOnMkFF1zAzJkz6d69+z/UP/vsM6677jo+/PDDdHrvAqYB3wHuB2peliJJkiRJkiRJjYCBibT/mAd0AYYD5bUt3rhxI7FYjAULFvzD54lEIt1+80ndp3In8GWdJpUkSZIkSZKkBmZgIu1fKoGHSN1v8jhQa/qxZs2auvb4FOgP9AYW1XWzJEmSJEmSJGWDgYm0f1oN3AJcALxcT8/cChQCpwP/WU/PlCRJkiRJkqQGYWAi7d9eBy4G/gVYsY/PSAJzgNOAAmB7vUwmSZIkSZIkSQ3IwERSEvgdqdd0FQEVddj7MnA+cB3wWf2PJkmSJEmSJEkNw8BEUrWtQIzUxfBzalm7ktSplItJnVKRJEmSJEmSpCbNwETSnpaTOjFyCfDVHrUkMA04hdSplGTDjiZJkiRJkiRJmdEy2wNIarT+AnQCJgGXkwpP7sMTJZIkSZIkSZKaIQMTSd9kF3BPtoeQJEmSJEmSpEzzlVySJEmSJEmSJGm/Z2AiSZIkSZIkSZL2ewYmkiRJkiRJkiRpv2dgIkmSJEmSJEmS9nsGJpIkSZIkSZIkab9nYCJJkiRJkiRJkvZ7BiaSJEmSJEmSJGm/Z2AiSZIkSZIkSZL2ewYmkiRJkiRJkiRpv2dgIkmSJEmSJEmS9nsGJpIkSZIkSZIkab9nYCJJkiRJkiRJkvZ7BiaSJEmSJEmSJGm/Z2AiSZIkSZIkSZL2ewYmkiRJkiRJkiRpv2dgIkmSJEmSJEmS9nsGJpL2F+2B7sAw4LfAe0ACSO726z+yNp0kSZIkSZKkrGqZ7QEkKUMOBIYC537966TsjiNJkiRJkiSpMTMwkdRctQd+me0hJEmSJEmSJDUNvpJLkiRJkiRJkiTt9zxhIml/shFYCLwJvAE8BByZ1YkkSZIkSZIkNQoGJpKaq13A86TCkepfn5C63L3axCzMJUmSJEmSJKkRMjCR1FytBy7L9hCSJEmSJEmSmgbvMJHqLgc4JAt92wHfAlrs4/6DgDb1N05aIqRmbtfAfSVJkiRJkiSpTjxhIkEr4N49PnsMWPf1P7cFBgE/Ak4HOpH6b2c7sAx4Gvgt8F4d+54O9N3t643Ar3f7+nDgFuAqoCtw6NefVwEPAKO+4dltgB8AVwI9SN3TUR2WbAGWk3pd1TPAs0CijrPvTQ+gD3A5cAJwBH8PZiuBj4G3v+7938DqeuorSZIkSZIkSaEYmEhwADBhj8/+h1RgchUwHTg6YF9r4NSvf40AJgNjgK1p9j17j76f8vfAZAgwDjg4YF9LUqc2gkSAnwBjgeP2suYgUmHN6V/3eRP4V+CFNOcO8n2gEOj2DWta7db3RlLBz38DV1N/gY0kSZIkSZIk7RNfySXt3S3A/yM4LNlTC2A4qZMT7UP0jJAKTR4mOCypFvTfbitg1te/9haWBDmX1Nwj6rCnWktgCqmA6ZvCkr3t/QH+PSRJkiRJkiSpEfCEiRTsYlKhRfV9ITuAP5F6ndQWUq+4upTUKZHddSP1mqvLSL2Cqq7uA262qj1BAAAJT0lEQVTb47MPSL36aydwLKkTGpE91kSAOcAPA565Bvg/Uq/hOoDUq7K+T+qkye77J5F6/VhRmrO2AuYBVwTUKoEFwPvAl1+vPQI4i9TrxVqn2UOSJEmSJEmSGoSBiRRsAn//7+Pfgbv5+50mu+sBPE4qhNj9s5GkXqlVF0cA8a//uRJ4FJgIfL7HukOB7+zx2TBqhiWbSL1q6/8Ddu1RawdEv67vfol8AfAX4M9pzPtLaoYlW0kFL7/6un+QtqTubrmZVHAjSZIkSZIkSVnnq3CkYNWv1fo1MJDgsASgjNRplE/3+HwM/xiipNvzQFKXyV8NDKVmWAKpy+Ff2+3rzsD4PdaUA72AGdQMSyAVbOSReu1YcrfPc0gFQK1qmfWfSYU0u1tDKiwqYO9hCcA2UiHUlaReB+b9JZIkSZIkSZKyzsBE2rtFpE6W1OYLUqHK7t/4bw3csY99RwL/VYf1d1LzFVe3AX9NY+8TwEN7fNYZuKaWfTH+8bVglcBVafbc3V8xMJEkSZIkSZLUCBiYSHs3EqhKc+0bwO/3+GwQqTtD6uIDYGod1h8I/HSPz/4C/KEOzygAvtrjszu/YX0P4II9PrsfeLMOPSVJkiRJkiSpUTEwkYKtAErruGfmHl93AL5Xx2c8Rt1OXJwLHL7HZ9Pr2HMTNcOei4CD97L+B3t8vQOYXMeekiRJkiRJktSoGJhIwf6bur8q6s+k7g7ZXbc6PuP5Oq7f86RHAni6js8A+M89vm7B3sOennt8/Rywdh96SpIkSZIkSVKjYWAiBXt7H/YkSN17sruz67B/F/BuHXt23ePrxcDmOj4DYCH/ePk7BM/eEjhnj89e2Yd+kiRJkiRJktSoGJhIwT7Zx32f7vF1hzrsLQd21rHfnq/jWlLH/dU2AutqeTbAt0iFJrv7cB97SpIkSZIkSVKjYWAiBdvz1Vrp2rjH14dmuOe39vh60z48o9qes+/5bAgOUTaE6ClJkiRJkiRJjYKBiRRsez3ta1OHvbv2od+ez9/XuYP2tg1YE/RZRYiekiRJkiRJktQoGJhIwQ7ax33t9/g6zImPdOz5/H2dG2rOHnRyJOizQ0L0lCRJkiRJkqRGwcBECnZYPe3b8zVX9W3P5+/r3EF7g2ZfH/DZESF6SpIkSZIkSVKjYGAiBTutnvZ9HnaQWqzc4+v/v717C/G8rOM4/t7TVKRkUasJYRShFQ6sGXZTdLiRNrrIouiiiKIDRBcSdNERC+oqtqIDYmFnCA1KpEAIiaK21raDF1oY6RphWhpa21bjdvGbje23c/jPOON/5Pd6wY/h/53neX5fBmYu5sPzPBdvcp0LOnOHyXjtGu5ZGe8yuWST7wQAAAAA2DEEJrCyF25iztnVhaPaz7egl7X8bPT53OqZm1jnRTOsXXWy+tGo9uJNvA8AAAAAYEcRmMDKLm8IQDbiNdW+Ue3w1rSzqp+sUHv9JtZ54+jzg9Wtq4z94ejzJdllAgAAAAA8xglMYGVPqN66gfG7q3ePar+sbtuyjlb22+pXo9q7Gvqf1fOrV45q11dLq4z/enViVLtqA+8DAAAAANhxBCawug9V58849m3VpaPa1Vvbzqo+O/p8QfXhGefuqz5X7R3VP7PGnD9VXx3VDnZmYAQAAAAA8JghMIHVPbn6XvXUdcZd3pkBw++rL29HUyv4WvW7Ue191XvWmfe46ivVS0b171S/WGfuVdVfRrVPL7931r8rT6s+Vu2ZcTwAAAAAwLYRmMDKfr38dbH6TfWW6qzRmGdVh6obq4XR995Z/WM7GzzN8epN1X9G9U9VNzQEIqf/rj++uqK6pXrDaM6fq3fM8M5j1ZsbLoE/ZVf1ierocj/7V5j39Ia7Xr5Z3Vm9f3nednlddWSN57zR+JetM/7ibewVAAAAAJij8TE8wODK6osNx1udV32p+nzDzpEHl2vPaOV/9n+wuunRafN/ftpwd8kX+v8dG69afh6q7m7YVXL+8texv1Wvre6Z8Z03Vm9v+Lmc/rdksWF3zcnq3uVnX8NOnafMuPZW2V+9YAPjz1ln/BMfWTsAAAAAwE4lMIGV3dtw1Nb3G0KTGkKG564x5+HqIw3HTM3DNdVfq2urs0ffO6u6aI25d1Wv7swL5Gd5550Nx4KNd5TsWq6ttNMEAAAAAGBHcSQXrO62hovcr+3M467Gbm04+uqj29zTer5dPadhp8k/Zxh/f8OxWBe18bDklJuqZzfsrLlvxjn/bgijrqiWNvleAAAAAIAtY4cJrO2+hvtLPlAdrJ7XcKTVkxqOrvpD9d2G+y026lsNx1qd8vAjafQ09zQcz/Xe6uUNQc65DZesLzXsnrmr+kH149YPg2bxUMPOmo83hEyvaNiZs79hd8vx6oHq9ob7YW5uONpsu11TfWML13s0egYAAAAA5kBgArP5Y3X1Fq/5r+Vnu/y94dL3G7bxHWNL1eHlZyc4sfwAAAAAAKzJkVwAAAAAAMDkCUwAAAAAAIDJE5gAAAAAAACTJzABAAAAAAAmT2ACAAAAAABMnsAEAAAAAACYPIEJAAAAAAAweXvn3QDsAA9Xt4xqx+fRCAAAAAAA8yEwgSEcuXTeTQAAAAAAMD+O5AIAAAAAACZPYAIAAAAAAEyewAQAAAAAAJg8gQkAAAAAADB5AhMAAAAAAGDyBCYAAAAAAMDkCUwAAAAAAIDJE5gAAAAAAACTJzABAAAAAAAmT2ACAAAAAABMnsAEAAAAAACYPIEJAAAAAAAweQITAAAAAABg8gQmAAAAAADA5AlMAAAAAACAyROYAAAAAAAAkycwAQAAAAAAJk9gAgAAAAAATJ7ABAAAAAAAmDyBCQAAAAAAMHkCEwAAAAAAYPIEJgAAAAAAwOQJTAAAAAAAgMnbdeTIkZMbGH+4unmbegEAAAAAANgqL60um3Xw3g0uftlGFgcAAAAAAHgscCQXAAAAAAAweQITAAAAAABg8gQmAAAAAADA5AlMAAAAAACAydtdnZh3EwAAAAAAAHN0Ynd1x7y7AAAAAAAAmKM7dlfXzbsLAAAAAACAObpu98LCwqHq2Lw7AQAAAAAAmINjCwsLh3YvLi7eXx2s7p53RwAAAAAAAI+iu6uDi4uL9+86VTl69Og5S0tLV1ZXVBdWe+bVHQAAAAAAwDZZqm6vrt+zZ88nDxw48EDVfwG/FzQ3ws+2hgAAAABJRU5ErkJggg=="
|
|
}
|
|
},
|
|
"cell_type": "markdown",
|
|
"id": "5828e243",
|
|
"metadata": {},
|
|
"source": [
|
|
" <div>\n",
|
|
"<img src=\"attachment:fig_matmul_machines.png\" align=\"left\" width=\"450\"/>\n",
|
|
"</div>\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "c57f340c",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Steps\n",
|
|
"\n",
|
|
"To develop and study the parallel implementation, we will follow these steps:\n",
|
|
"\n",
|
|
"- Identify the parts of the sequential algorithm that can be parallelized\n",
|
|
"- Consider different parallelization strategies\n",
|
|
"- Discuss the (theoretical) performance of these implementations\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "ca56a7fe",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Serial implementation\n",
|
|
"\n",
|
|
"We start by considering the (naive) sequential algorithm:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "af8dfb37",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"function matmul_seq!(C,A,B)\n",
|
|
" m = size(A,1)\n",
|
|
" n = size(A,2)\n",
|
|
" l = size(B,2)\n",
|
|
" z = zero(eltype(C))\n",
|
|
" for j in 1:l\n",
|
|
" for i in 1:m\n",
|
|
" Cij = z\n",
|
|
" for k in 1:n\n",
|
|
" @inbounds Cij += A[i,k]*B[k,j]\n",
|
|
" end\n",
|
|
" C[i,j] = Cij\n",
|
|
" end\n",
|
|
" end\n",
|
|
" C\n",
|
|
"end"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "f967d2ea",
|
|
"metadata": {},
|
|
"source": [
|
|
"<div class=\"alert alert-block alert-info\">\n",
|
|
"<b>Note:</b> The matrix-matrix multiplication naively implemented with 3 nested loops as above is known to be very inefficient (memory bound). Libraries such as BLAS provide much more efficient implementations, which are the ones used in practice (e.g., by the `*` operator in Julia). We consider, our hand-written implementation as a simple way of expressing the algorithm we are interested in.\n",
|
|
"</div>"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "0eedd28a",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Where do we can exploit parallelism?\n",
|
|
"\n",
|
|
"Look at the three nested loops in the sequential implementation:\n",
|
|
"\n",
|
|
"```julia\n",
|
|
"for j in 1:l\n",
|
|
" for i in 1:m\n",
|
|
" Cij = z\n",
|
|
" for k in 1:n\n",
|
|
" @inbounds Cij += A[i,k]*B[k,j]\n",
|
|
" end\n",
|
|
" C[i,j] = Cij\n",
|
|
" end\n",
|
|
"end\n",
|
|
"```\n",
|
|
"- Loops over `i` and `j` are trivially parallelizable (i.e. the entries in the result matrix C can be computed in parallel).\n",
|
|
"- The loop over `k` can be parallelized but it requires a reduction."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "b50aecff",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Parallel algorithms\n",
|
|
"\n",
|
|
"All the entries of matrix C can be potentially computed in parallel, but *is it the most efficient solution to solve all these entries in parallel in a distributed system?* To find this we will consider different parallelization strategies:\n",
|
|
"\n",
|
|
"- Algorithm 1: each worker computes a single entry of C\n",
|
|
"- Algorithm 2: each worker computes a single row of C\n",
|
|
"- Algorithm 3: each worker computes a block of rows of C"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {
|
|
"fig_matmul_intro_algs.png": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA4wAAAFRCAYAAAA/9SN6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAACAASURBVHic7N13fBvl/cDxz3OS7ZgQQnZCEja0bEIoqy2zlE0pNBQolECskwlQRmmBMiJWgUJpS0piyVnsQijjx2iBlkIZpUASdtirYEKAhCwS29I9vz8eCd+dNU625bOd7/v18ivS6e7R14703LMfRc+xNVCbffwZ8HGIsfRUOwKR7OP/AYsr8B7bAP2yj+X/QYjeYxSwQfZxK/ByiLH0VBsCw7KPVwFvVOA9NsD8X4D8PwjRm2wKDMo+Xga8E2IsPdW3gf7Zx18AH1bgPTYD1s8+Xg68XYH3EN2sGvPlyv2s14m0XgV09ufazofWJy2j7W90ZoXeY6HrPX5foffoqyJ4vw/9i58uBArvZ2YQbY1C5bqItu+uNPTk10Db3+jZCr1HwvUeTRV6j75kXeB7wGRgCnAVcD5wIrAV5jsiRCFR2uehHXUnbd/dhzofWp/0DG1/o1SF3uOvrvf4e4Xeoy/ZBDgEmAj8CpOHXgz8AtiTLiqLRjt5/XXAqa7nLcBoTKuDCE8tbb2EDqaiKbqWBWwJjAd2zv47DlP4ybkLmND9oYle5LvAk75jcSp3IxbBRPA2gK4A0iHF0heNBI4FDsN8B6qLnPsOcEP2p7XyoYlexsZ8Ntx2p3INQiKYarwVla8wFUDRNU4FfgDshslPi/kamAtcBrzb0Te0OnohpkJyrO9YNfCzTqQpukYCWJL9mRduKH3Sb4ClmN7YWzC9vd/HW1kUIoiTAh4T3Wt72vLQJcBO4YbTp5yI6QG/DtiH4pVFgM2BPwD/xbSkC+EmeWjPdCzePLQm3HD6nF8DR1C6sgiwDibffYVOfDc608N4BDA4z/FJwJ86ka4QPd3GdG74tRBgGhiOznN8N8xQvIXdG44Q3WI47Yddfw28gJmbvwpTtvgubXNBwYzgeCx7XIb6CjANOzvnOf5T4CzM50qIvq4VMx//PeBzzMjC9TBrkmznOq8WmAk0A7eV+yadqTC6a6nLgIHZx9thhudJz1bX24i2+RySEfYMGUzBfh4wH2ksEcFNoK1X2sEUlAdkn5+EaUEUXetszPw4kCGmYVuFGbZ/I/AU7YebRjC9FNfTNi9tY+CP5G9oEWsfdzl0OSb/VJjy6FHAzWEE1ccdQFvdoTnMQNZyC4F7gH8AjwMrC5z3bUy59IfZ5wqYipkbuqScN+zokNSxmLGzOb/B1GpzZDhAZXyFGQq5FPmihukJ4AzMQg0DMY0kEzFfQiGCOtn1+HHgVtfzE+j8HHPR3te05aErQo5lbbUS+B2m8jcR+Bf55yZmMEP+98PbQDoBM0xVrN38U6BmA/9xPZdyaGWsoC0PlY6L8ByImQ71AIUri2B6Hg8BHnUdG4xpUClLRyuME13XrsF0bf7F9fqxtC26IkRfcyum1ftpTCu5EOXaEjO0Luem7E/OSODgbo1IiO4xHTiX4IvjLaD9yI1DujQi0RsdRtsWOdA+D90bmfMqBJjRNBf7ju1abiIdacFWmApjzn2Ynq8bgdOzxwYDPwLu6ED65doAOBKzj+NQTKvHR8C9wGuu89z7PC7GzJUIogrTk7QXpmd1AKaF5WNMT9OTBF+5bQwwIvt4jS++MdnfYzPMHI805m/6D9c5xfZhVLQtzOCeBFuDGSKcz2rg9YCxg5krcAhmaOy6mBv+C8D9eHuYi9mJtmG17t8hgmkx+R5mpd1+wAeYbvN/UXh1rV2AfTH7qw3NxvQM5nMpPQiip5pI2/dgFWYZ8ZXAW5jKJJgW8v/rhlj6Yb57e2LypwzwCeZ79Dfahm6OxHw3ofz9Bb8FHITJ34Zlr8/lHw8TvPLQHzPEJmchba3c/TCFyPGYuW/9gBeBK13nl9qHMbcP27d8x7+N+bvk8zomLw1iBGY45RaYv+cqzB5jDxD877kxMCT7eCXwpuu1rYAfY/LoQZh78zOYz1eh/HAUcHg2ptGY0SuvA3fTc/ahu5e2ocRg/p/E2s3dg/gKZkrIe5ghy/1oK6tO6YZY1seUecdjym9fY8o3j2AalnM2oW3tj3L2F7QwZaf9Md/twdn3+Cyb/j8J3ng9NJtGznzayleDMPnHttnfw8KUwdwV8VL7MOb28t7Yd3wcZieFfMqZwrY5pncs97dcDryEKYd+EDCNrTALwYApu37kem0PzLDbDTG/5yLMCKD7KVzWz93fNsHkp8swf9e7Mf9HPUHu/zlX7hjeHW+6N237o2i8reDuvRQfLjPdcvdhHIBpdUz74nH//BNTEQPzgcod/0OA9CNADDO5vlD6Gvg0e16QvdN+77ouV1AZjKlYZ/Kk7W8RKLYPY1WJOPP9vJonxnz7MG6JWaK6UDorgHMC/P5gCiO5607LHtsfk7kWSv/ftBVUczbHfIkLXdNE9/fQKF8Mc7v5/UXvEME0OOU+J+6b8QWu4y2Ul6l3ZB/G4zA3xGLfo0Oz557vOr4oYPrfwTSsFcuHWoFpBPtdd/FdOw7zvTsD01joT9vfIFZqH8a7SsSa72d7XxoJvH8/MAWoP2P+Twulcw/5F5Lzu9F1zVPZYyMxlftCaX9G2/9jTj/gGrx5sv//5Ro6t5p6V9kQb2wzww1HhGwDzOcz93lwlz/ucB3/gPI+v+XuwxjFzDVfReHv3quYxn4wo/Fyxx8JGNNheMtlhcpgF9FWCSqmzndtBNOxcB2mI8Oftr/jp9Q+jG+WiDXfj1++fRiHYRqOnAJptGJGflUF+BsscF03LXtsW0wDY6EYF9L2/5gzFLi9SEwrgPoA8XSHfnjjvKU73vQm1xt+ireX8leu1zKYHrmgyqkwDsQssR3kg7gYU/svp8JYQ/kFh79Setlgf4VxDKZ1plCaU3zXh1Fh3AvTghMkvStK/P7QvsIYI39l2f/zDm2t6jtjJuuWuqYZM/+lu0iFUQRxMN7PiXs++EZ4vw9nl5FuuRXGBKW/QxpzkzmN8iuMJ+It1JX6+QgzEqSYfBXGW4uk6V9pNowK4wBMT2qQtF6i9PY8/grjZpRu2NSYxtVcI9o6lK7I5378e9yFYXfKv9eIvus8vJ/rDVyv+fPX/ctIt5wKY9R3frGf1ZhFR8qpMCrMBuzl5EXP4R2mm4+/wjiA4uXpO33Xh1Fh3AxvI2uxn3to60UrxF9h3Jfilf7cz1eY3kkw5fd3AsbUEyqN++KN6bTip7dX7pDU9fBOlLwN70pzt2KG/0QwrTonApeXG1QJCjNfchfXsU8wC478G9PKPBIzxGoy5sszl/LmVN6E9/dcifliPILpgh+K6bKO0XZzPxJTYw+6UXsU0zKRazl9FNMr+ynmC7wDpoIYVAaz4XculgOyjz8HLixwzdISaW6M+dsNwBQQb8JkSMswQ6t+BPyEti/neZihVf/xJ1TArpjhWRZmONbNmAKeg2ntOQ3z9wGTYVwN/BJTqBuUjX8OJgP7CvMF/hltBfBqYAamEBp0yJgQleYeSvUxZquAnA8xBfl9XOdeV4EYTsTbIJUGZmGG0HyE+c6Px+Sh22Zj+FsZ6R+JWYTCfeN+AJNHfoBp4BqPybNyN+CxmFEDO2DywSDOwPSSghnOe1f2XwczPGiHMmIGSGLy+bF4880rKTzcqVjl3MLka+Mxf+O7MPl8E6aBcXdMYSK3Cuj2mM2VzwoYb202zVGYPHAOphK5DJMfHkdbgTmC6ZnbErPozJ6Ye8+9mP+bjzEVyX0xm6HnGkBPwdwHHg8YUyX4R4v8N5QoRE+g8Oahj+LdZuURTHklNzXnJLwLfnSVq/GW95ZjGlcexvToD8Z8x07HVGhvobytki7CzPXNSWfTuIe2hqjvY76fud/1O5jffzeCL4w4lbby9HOY6TwfYcqoWxOsx87tYkynzu54p6+dRvDpW27rYvKo0Ziy+C2YqWCLs+/zA8wCcrn9XI/A/J/PCpj+GExZfB3M7z0bM3xzDWYkW4y2nsWBmDLlnpj6z2aYv/MtmKlTn2E6Nn4EHEPb/e9aTAOEe+hrd1oXk+fnfIV3kb2KiOGtoea7GbuHxbxD6Zp+TtAexhN9MTxG4T3xNiJ/C0CxHsaf+c59m8ITpzfLk/4JRdL+Pe1j+Qzv4hfFFOthdLsa7/9BOfINfbiDwq3ex+Dt5i7Vq5Zv+FOC/MNGBmIqkrnzWjDjyDWm8DIkzzXQ/u98XIHzupr0MIpShuL9DlyZ5xx/HrdLnnPyCdrDOAJvD/3SIu9RhbmB+r+zxXoYR2AaqnLntmLyiXxq8qT/YJG0/T2MGpP//IZgDaClehhzxtGx/wPI33P7Ad79sNw2xDvSZBXF93l19zDmfp6hcM/C73zn3o35my3BFHzy+S7ez2l3zKUtZCCmASEXy5cEG3on+qbv4f08H5vnnGtdr6+mrUGmlKA9jLviHQnyFoVH1A3EdGb4v7PFehi/g3d0xlJMJTCfwXnSv6pI2v4extzfqFAe7VeqhzHHfx8rp9PG3cOY+/kPhTep3xVTmcyd+1qB83LcPYy5n1toW+fELUpbudOdh+b+3wut2Hyy75owRkX0xzRqvOaKI41p0K24/7je9MUC5xyL94+0V8C0g1QYFd4KTRNt+z8WsjXt540UqjAqvN3pX2MWAihmS8yXLXfN2xQeM++vyLTQtlBNEGFUGB+n9PxMdya7hraWnnz8FcZiGQ6YIaX+L/Z7FC9Q9cM7ROuvJd6jq0iFUZRyBt7PyFZ5zlkX781vesC0g1YYp/hiOLxEuhFMy7P7mmIVxkt95/4yQPr+4ZGFKmj5Koy/LZG+WxgVxpV4F+rJ50jfNT8tcq6/wvgRxQvENbQfzuXQti9XIdNc57cQXiXN/X+mCT5fXvRNM2n7LCwjfyF/e7yfmVMCph20wugeut5M+0Wy/AZhOgfcMRWrMN7rO/eAIueCKQd/5Dr/awrPh85XYcxX6S4kjArje5iFhYrx39eKTW/wVxj/TfFy7hjaT69Ygek0KuZJ1/n+Bda62tOYqQ8vYHpIP6D9Gi8fUN4Q7Q7byvfGhebW1GK6O3Pn3Rgw/SAVxj18MQQdg9vou65QhdFfOQlaEHFX0DSFb8T+CmMyYPo5YVQYxwW45lDfNcUqwe4K49eYHpdiLLy9FRr4eYCYkq7zPwhwfleQCqMoxT2p/rki57krBUvJXyjyC1ph/MB13lNFznP7Ad7PdqEKo4W3N+gtgvX87ehLv9BwIn+FcTGl5467hVFh/F3Rs40o3kV7ri5yrr/CWBcg/Rt81wQZXryP75pCPRyVdLwvhhcp7/9b9C3rYgrquc/DjCLnuisFzwdMP0iFcSjeToigDXpn4v0sF6owjsZb0L8vYPo/96VfaFi7v8IY9B6QE0aF8fgA12ziu6bYaD9/hTFI/u6u/JXKo3N+4To/gxlGXClf443P/bMG05Bb7vBij3JWj3JvMp3GjN/NZzXegvJRFO8NKod7+IxD8G07go7V3cf3POhKbP5Ma9+A13XLKkWdsBDzxSrFvyTyRgHT/yell9N38A4vSGOGA5TyiuvxWHrGSn9i7TYe7zD+mwqd6HttfcxS511hI7zfz9sDXvcYweYVbo132NCNeOe5F/IipmU0J2geeifB5+qEpdC90i2Nd1uNoHmoQ7CGqVd8z/0LWeTj3+Zj4yABdaHdMI29Oasww+Z6+v+3qJwJeKfHFMtD3Z0VO1N4SHi5dsdb8A6ah96OKbyXsife3q6g5dC5mHmUOUHz0GJ/w56gmWCjxN7HDLPPCZqHvk/xxtscf34YJA9157sWbWtydLcaTIPyMxSehlBS0EJ0FG8NPzepuBD3B7A/ZmGTruDeT/A9gu/99zzmxlqKeyPL/wHvBkz/bbwt+kFaYtN4C0g90fyA5/n/H0oNE84pNKzZ70vX43cwQ7xKcVdELSrbsiNEEO6FGlowi3cV8i+8e8WeXOjEMu3sex508RCHYDdV/2bATwRMH7yLqmxE4fkqbj198ZNW2lfWCnHvqxs0D32PYIuj+RvmguS9S/DeN4PG1BV2xPTw5HolWjFz0Ss9rEv0bO489H1Mr08ht+FdZOWkQieWyV0OzRC8HPcZJuZS3HmoJngeuhrvqImgG7P39Dx0IcEXLXTnoUE7qjpSDnUItm+uP9+tZB56KGa4ae7naOASzMrbOTtjyhbxdlcHELTCeDDem3epFomn8Fa2uuqLOsL1+L0yrltFsGXg3Uszl7OaFXj3+/LvGZjPF/T8lTuXlD4FMJVfd8YcdMjQl6VPAUx3ek7QmPyt0DKMSYSpH97Flx6ieO+6g1ldM2cfgreYFuPf67CcfDRIA9oGvuf+fRCL8Z8bJB/9X+lTQrUMU6gMwn0/CJpfdTQ/DHKdxrvRdnflodtgGqVz8zIdzGqLYS68I8K3BWbBm5ybKd5jt5i2PfzAdHoUW18hKHc5dBFmKGBQQfJbdx7aRHmr5btHYw0j2He2p+ehQfM48JYVu7oc6s5DVxBsxdfuLIc+BvzD9TMXMz1iR0zPfK732cLMT/9+uW8QtMLobt3+itJjqjXews4elJ70H4S7dr6izGuXlz7FM6n2qzLTd3+og6zIVW78YejIEsjlCDJUza/SMQlRCUfgzReCDANyn2PhXaK8o/wtnEHyxZwgBRf376gDXpPj3+anL+Sjlc6vOpp+T81Ht8BsgZBb8VVjth0JMqxX9G0n0bbqvr+MWYg7Dx0GHNIFcbjz0HLyTwiWH3amHOrPQ0stFAOSh3Yk/Z6afxZyF2Zxu9yIEYviK+nmFWQxghF490ByMEvMluJfoWkiZp++znBXMEqt3OkX5Hd1nxO0VTjf+UFiCzJEVgjRN/hHWZyJ2eOwlBbaWsVPxOzR15m8w99IE81zrJAgeag779OUF6s/zw3yfpKP9h2bYOa1j3IdOxvvPEaxdorgXeyuhWCLzfh7FE/G7GPYGe78sty9zLuzHBr0/SQPXTs8gRmlcUT2+R6Y1V+LLZDnEeTDdDzeCb6DadsYvRw/x2yE3JFepRx3a0vQfXVyCi0x7E8/N2Sr3IV63C05/lYeIcTaa0Pa55kdmXi+CbA3ZuhJR/lbrAcRbDEbCJ6H5li0rWoYhL/3U/LRtcdYTGXRvZfducAfwwlH9DA/xDtEvYaOlUMPxDRIBM3z8umOcmhOueVQyUNFMf+krcIIZhG+wBXGIENSu2qxhVGYL2tnfOh6XGyPFb+RBPuiuifMltpfxc+9eefigmcJIdY2J9J1q/R2Nj/+0Pc83z6QhQTJc/15X6FNjfPxnyv56NphNKYRZBPXsQsJth2JWDt0VTk0SvHtFoJw56FDaT8vvJgg+a073xtNedtRuPPQlZQ3v1L0ff75oGUtBlmqh3FXvIWEmwk2HDXHwiwJ3D/7/CTggTKu9/svbUO7hmEmx79W+PRv+LfLKGQebZOqt8BUMoNMuB2aPT8n7NVP3RPBZTsJIcKj8M49fI/yh+bbtLWmH4lpRS5nbqDb85j8ITcXaB+C9ViuS7C9qvxb7OxKsK15wLu69Bd03/6p+fgX01B5zxKdNQrT6u0u6F4KXBFOOKIHGoqZf5XzOGbRjnJcDmyZfXwSnWuM8K8qujfBtljYntL7ToM3D63C7Gv9TIDrLLwro/akcihIWbQn8K88XmpbO49SFUZ/q86VlL966I+AY7OPD8VU9IJuh+H3CGa8de6DF6P4BvY5dsD0nwLOyD6OAD8l2Dj5Y/F+GcrdCLWruVuVyh0yIYToOnsDm7qe30KwffPc1tBWYazF7EWX7GA8XwH/wcxfANPafjml97Y7nraGv2IWYFalzp17HNAQ4LpRwH6u508TbM+ySvG3zEs+2vVGYCqL33IduwqYEk44oof6Gd65iH8m2L58blti8jkwCzDuQbBKWD7PY1bWHJJ9HiNYhTHoVgb+8uNxBIt1H7zDdntSORTMtC3p8QyXf5TnO+VcXKzGvw6mwpQzn/IriwC3uh5XY778HfU+ptKYcwqm9aWY4zGFtiAewFuZPZ/ShaT1suflfEnpVWQrzd1qMJDyhjQIIbqOf7Gbjqz2+DDepb87u01RyvV4I8yGvsVsgNnPKYhmvHn+94EDAlx3Kd4GzKCbVVeKf6n1IHtCiuCGYZZ+dw/Ruw7vvVQI8OZ3y4AHO5DGbXgboDqThzYDN7qe/wBvWTmfXQjecbEQ736Kk/A2OuZj0VYhBtOxMjvg+1WKv/dK8tBwHYbZnzHnFcocxVOswpgb+pRza6ETS3gEbyWss4Wd39C2cE418Ddg3zznqex75QoeQZbBXQNc73o+Fridwnv31AB34F3V7XrC31/RvaGoAo4KKxAh1mID8X73XgDe7EA6LXh7Jf1TBcp1G97Nii/A7NdUlefc7TAF++EEX0r8j3j377uJ4tsqxTGFopxX6VihsCt9iXcxgKOQYaldZQhm64xtXcemAueEE47owcZjFubI+SvevfaCeh8zsiLnaIKNmCjkaryNSjfiXcXVbX9MfhYleB7qHjLbD7ibwutwKOBPeIf030V5e+xWwit4K+k/CSuQPiiJGQ0ZZNsUC6jD1FXcri33TYsNSXUPR80Afyk38axWTGEnt4T89sDOdHx89QJMa/dl2efDMQWaZ4F/Y1aFGoVZVSvXenkjMC773qVcjVlFaHz2+WHZWC/B3OSWY3oVf4gpZG3ji63svU0q4FnMKmC5iuxsTAPAW3hX4PqC8Fvye6P1CDYkZk/MZ8ZvAfDrLo1I9EQ/xYzUyOlooxuYSl696/lJwK86mFZr9vonMXMTwQwDnISZo/4xppCyK6YxLgp8ghl2dVaA9Bdi8svcPLThwHPAbzE3rfcxldNxwOmYUSA5LZhFgnrCUu/3YOIDM53iOczQsEV445tFx6dZrI2uwlsJSGMaQB7Jf3pebwKndWVQokfqihEaObfSNhR/PUwjUJD9cPNZjMmP78AUyGsw5cxzMZ/jRZhh7Hth8lGFqbB+QrCK0z2YMvcx2ec7YDoCEpitERZj8ujvY3rl3et0LKYt3wrTl5gy+V7Z5+djyv6v0H5Bs6u7Ma6+YDSmx/p3mDm9/wVex5Tpl2IqkiMwIzCPxLugGMBDBNvHNJBNMDdEnf35RyfT28OVlgZuyHPOq67Xg9R8f+uLsdDPQ5hCmzv9UhPqx2AW08mX3poCx1/DuyR4Pr93nf9GgN/Rb5nr+lJzN39eIE73z6t5rlvoev33ZcTW4rqu2Fj9Ztd5QW/4t7queTzgNT/G+7uWs5JZKUMo/bct9tPZ75PoHf5D2/95Gu9IhHIpzPCRXHqLaN8jeJHr9SBLZX8fc3Mp9Xn9BHOjv8B1rFTrdQQz/ztfes3kz7vXUHo0xC6+a8YF+D3dGlzXPlvi3NGYgk2pv4+/ITLheq2pjNhucl1XbCGiG13nBZ2ndBjemDcIeN1q1zW/CHhNKTdT+m9a6se/8Ijoe/phFh1050OdWThlGN5yyuN5zrnT9fpDAdKc6Euz0M+LmHLlHa5j95ZIe11M5TNfeoXKoZ9h8upi6nzXlLun+TOua1Mlzt2NYH8fv7+6Xvt7GbEtcF33p4DnBV1AyX3/C9pAuCXe3zPoApylPEDpv2mhnwcwayGUrdCXbyLe4TedadUBU3ByFzCOpfPz6n6DWSThWfJ/4N7BtIYfiplo6x5eW2qFwY8xhalZtG/prvE9d7LnfR/4X5DAu8lNmMLXK2EHIsRaaGu8Q4Qeo3N7f2m8+fAI4OBOpAemh3FrTAUk32IEKzAjEMZhRlm481D/fo5+Gcwc81NoP5elmvbDO+dj5pqXu5hFJX2C+T+8l+BDyYQQXeMIvItN3U7nRh58jrcXe0/K3z7Nbw4mf3yI/HuML8L0qO+OKVeWk4euxJRff0v7aU7+ciiY6Vl7EP7qqG7PYv7O/yZ/OV10zNOUucIp8C5m9M5hdHDaXKEhqfPx9hLd1ZHEXTRmiKt7NbT1MV+mnEtoyxzcc/CK+RfmizgGM9dmKKZF6gNM92zuA1qLKWDlBCm4LcEM0boG01uVW4FqEKZV/hNMC9XdBO8tvIu2OUylMot8zqBtPuV/ip2YdXf2ZwxmvshAvBlWvk1dp9A2LrqcyuZk2hognixy3qmu854OmPZM4Ins46CF7gV4P8NBNw8PYhXBVzzL55OuCkT0WBbez8jzXZDmNLyT1P03jAcxLcxgPqNBfIppIJyMaZkeg+kBbAJewluRdA9rcefdxTRgKrpHYha/2RKTFzdnY52PafHMrYBdygd4/67lNtLdmn1PCLbP43uY/H8AJg8dk33svnf6e3Pvp61nsZxVAWfT1mNYrGdyDm15Z9D/h5fx/t2C3n9Oo60HoqOrSvrNovg9IgjZo7Pva8L7mX24C9K8ADOkM8e/PkWKthFAQfOW14BDMCOPdsT03i/D3OdfwluRLDcPbcnGPA2Th/4gm8ZQzPSozzB5wX0E73V/Cu/ftdxK+NW0laeDlH2fxQxLHYoZjTEEU8YsNie8gbb/78Aby2MW/smtXptvBF2+814PmPZDtPUsBp1H+xnev3VH1jDI50rMcNTvYOpA4zBb+w3HDLdenv35CHO/+xcmz5VKewD74e2S7cyCEUIIsbaJYApwuTz0suKnCyGEcBmFdyj+hHDDEULkczfeMd6ygagQQgQ3AW+j2/7FTxdCCOFyGW35Z5rg84iFEJ1QaJuLfPyLv1xZkYiEEKL3UATPRzfEDF3N5aHvIY1uQoi1WxXBt9rZA++Cf/9X/HQhRFc5HrOIxFEUXu1nGGb+YYa2L+mXSKuOEEJEMfMbzsHMy8snAhyHmWvjbnQ7sTsCFEKIHmwcZo7iJLyL87j1B36Jmcucyz9bMXPPhOhVeutGxMfTtofIasyE/ncwCz30BzbH7KPoXpggjdms9Z7uC1MIIXok9ybSDib/fB2zmEgVMBIzmd6/MfBtwM+6KUYhhOipxtG2gFYrJv98E7OgVD/MyIxdad+pcT49Y79uIdYKx1PeviOfY1boE0IIYSqMBMW28QAAIABJREFU5eShacyIjXL37BJCiL5oHOXloZ1dXV2IUPXWm//HwPuYQsy6mGVk/Vowy/lOBU7AbEgvhBDCFGBewOz1VYMZUpXvfvAWZjPrn2P2QZNluYUQwvQkLsRssdCf/FtFOJhhq7Mxw/ufQIheqrcOSfWLYvZ4GZp9vASzGmpzmEEJIUQvsj5mH6cBmD2cFmP2ExNCCFGcoq0cug5t5dBy9mIVQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQqxtVNgBrI0mTJgQGThw4JbAUKXUUGCNUmpJTU3NwqlTpy4POz4hhBDhqaur2yQSiYwEhgJorZdGo9F3pk2btijk0IQQoserq6sbEY1GN9JaD3UcpwZYEo1G/zd9+vT3wo6tt5IKYzeKxWKHK6VOBPYF1s9zSgZ4DbjTsqw5DQ0NnxRIZ65Sar8Cb9MCLAc+01ovAB4cPXr0o4lEwimQ1kSl1HUASqk3k8nk7kF/n3g8PklrfU322leTyeSeQa8tQk2aNGmzaDQ6Xms9HtgZ2AaoAtBa/7GxsfHSLngfIYToMerr68c5jnMa8ENgTIHTPlBK3QfMTiaTL+U7wbbtXwHnF7jeAZZprb9QSr2mlHqsubn5rjlz5qzJd3I8Ht9aa/2U69AmqVRqWZDfp66ubnvLsh53HRqTSqW+DnJtMZMnTx7Z2tq6s1JqPDAeGAf0B1BKPZ1MJg/r7HsIIXqfyZMnj02n02cABwFbFzhtMfCI4zizZ8yY8S9A+0+IxWIHKKVuL/JWX2HK2W8AT1VVVd1+ww03fFnoZNu2FwHVAI7j/GjGjBlPBvuNwLbtLwALQGt9aGNj4zNBry2S5kBgJ631eKXUzph8dEj25VWpVGpsvuuinX1jUZpt29sppVJa691KnBoBtge2dxznYtu2/5ROpy+bNWvWCvdJSql1gUFF0hkBbKGU+h5welNT08u2bR+fSqVe8Z+olKrJpaW1Xq+c30tr3a+j1+aTrVDfCKyvdbvvMACWZfXr7PsIIURPceqppw5Jp9PTHMeZQOlG3I211mcAZ8Risbscxzln5syZH7pP0FrXKqWK3R+GKKU2BXbRWp9UXV39+3g8bieTyfv8J2qtI7juNS0tLYEbmaPRaMRxnG+uXb16dacaqCdNmrRRJBJ5Op1Oj1Yqf1Ja6wGdeQ8hRO9j23YVcEU6nT4dKFVGHA4cb1nW8fF4/FnHcX7R2Nj4vO+cKoqXsXOv7QD8tLW19Xe2bV+USqWuI08FNHt+tSvtcgwiW2G0LKvTdTbbtl8GtgVUgXy0YHxSYaywWCx2AHCnr0L1EfB34BWt9ReWZUW11iOA7wAHYHofq4FfVVVVPQ20u5G7vJf9cRsObEXbf/z2wJO2bX8/X6WxBxlK/p5XIYTocyZNmrR5a2vrQ8AWrsNLlVKPaq2fVUp9DmS01sO01lsppQ4BxgIopX4SiUTeoXBvIsCXwALfsYHAt4Fc5Wq41vrueDx+fDKZLNaqHqpIJFILjA47DiFEzzFx4sT1gbsA96i7NUqpJxzHeUIp1QR8DQxXSm2stT4IM2qNbCfOFZhRHYW0Ak/4jq0DbI4pawPUAtfatj0ilUr9utO/VGVtSgdHl0qFsYLi8fjOWuv7gJrsocVa63NHjx59U6EhotmWkpOBiwh2c7w5lUol8qQzUCl1rtb6XEzrxEBgJrAr+VtAeopm4GWt9Tyl1DzLsuY5jnMhcGTYgQkhRFeZNGnS4Egk8g9go+yhVuCKaDT6+2nTpq0sdF0sFjtIKXU5sFOAt5mXSqUO8B+0bbtKa32CUuqPmIqjpbVusG370VQq9UUHfp3u4gBvAvOyPy8Ae2IKfUKItciECRMi1dXVnsqiUmpOa2vrBbNmzWoqcNmvYrHYjtk89JAAb7M8lUrtn+8F27Z/CCSBjXNpx+Pxe5LJ5H+C/xah+JBsHqq1nmdZVj+t9b2lLpIKY4XYtj1Qa30nbZXFD5VS+6dSqbeLXZdKpVqB5Mknn3xbNBqd09H3z84z+U0sFssopS7MHv5OLBbbvSvGQFdCJpOZG41Gb87+Db5h23ZroWuEEKI3ikajN2qtc5XF1VrroxobG/9W6rrGxsa/JRKJhz/99NMplD+8CfjmPjMrHo8v0lo/mD28ntZ6InBtR9KstKVLl743YMCA9f1TNGKx2PhCQ1SFEH3XoEGDLsJbWfxlMpm8rtR1jY2NLwKHxuPxY7XWP+3o+6dSqUdOOeWU/TKZzMtk51E7jnM60GMrjJlMZsOZM2cucR+zbft7Qa61KhOS0FpPBjbJPk0DP00mk0Uri26zZs1akUqlftLc3OzvCi9LJpP5HabXDgCl1D6dSa+Ssr+zVA6FEH1afX393lrrQ3PPlVLnBqks5iQSCSeZTE6xLOuazsSRTCYfwvTS5eLYuzPpVdLcuXNb/JVFIcTaqb6+fjjwzfBPpdScIJVFt2QyeXs0Gj2pM3FkV129xRVHjy1jA/gri+WQCmMFnH766TVKqV/kniulZqdSqf92ICk9Z86crzoTS/YGu9B1SOaACCFEiBzHOcf19JVkMvnnjqQzffr0pZ2NRSn1nOtpodVZhRCix9Ban4qZOwiwyrKsszuSTlfkoVprdx46Iju1rM+RCmMFrF69+rvAyNxzpdT0EMMBWO16LKuMCiFESCZPnrwuZnGznCQhzit3HMe9pUZNwROFEKKH0Fr/xPX0jq6o+HWUUsqdh6rVq1dXFzy5F5MKYwVYluXej3BxQ0ODf5W67qQwqyLl9OQFDYQQok9Lp9N74Fo/IJPJPBxiOGS32ABAa11wLzEhhOgJTjrppGGYnQAA0Fr3mDwUWH3zzTevCi2YCpIKY2W4V6/z7+/SrWKx2H6YfRkBUErNCzEcIYRY27nvD0tmzpz5bliBZOcBfbMCoNwfhBA9XTQa3QnX1hBa69DK2RMmTIhorY9xHeqzeahUGCtjqOvxJ2EFEYvFtlRKzXQdWtbc3BxqS4wQQqzl3PeHJkIajjpx4sT1tda3k13dD8CyrDvDiEUIIYJSSg1xP1+2bFko5exEIhEdNGjQVLL7OmbNDSOW7iDbalTGYNfjZRV+r61t257gPqCUGuI4zu5KqaPxzlm8pLOL6AghhOiUb+4PWutK3x9G5rk/rAvsoLU+Tms9zBXLXQ0NDU9XOB4hhOgsdxl79dy5c1sq+F7V/jxUa91PKbVFU1PTMcAWrpcWtrS0pCoYS6ikwtj7Tcj+fENrjW9fKq2U+n0ymfxDt0YmhBDCQymltO62TsXtAU+vYYH3fmTNmjUTuyMgIYTojG7OQwfgy0ML7Pu60HGcQ+bMmbMm34t9gQxJrQz3PicDQ4vCrI56r1Jq72Qy+asQ4xBCCAE4jvPN/UEpFeb9IQM8o5Q6IZVKHdhXF2oQQvQt7jwUqJ0wYUKYq5K+DpzTv3//8TNmzHg/xDgqTnoYK0Ap9aWr9aPS+x7OxTVmWmvtWJb1leM4i0aPHv1mIpFIl5FW3maTLjxfCCHWdu6VqjfA5KOVai5/Gbjcd2yZ4zhfNjc3v1FuJbG2tjZwnu84jtwfhBCV4Fntf+DAgaOBSlXWVgCT3Ae01isty/oqnU6/OXPmzCUFrssrEomUky8qelA5WyqMFaC1ngccmn26S4Xf7vVUKtXhSbZKqdWuyu06ZV7b33Xt1x2NQQgh1iLzXY8H27a9aSqVqtRKqYs6c3/IZDKrI5HIN8+11usAgfY7cxynv2V9M4jJWbNmTZ8dqiWE6D7pdHp+VVWVJluZsixrZypXYWzpTB6atRrI9YIGLmfbtl2Lq8KYyWRCHQUiQ1IrwHGcf7ueDquvrx8XWjCluW/+QyivNeOb1f601qFtmiqEEL1FJpN5BnCP/DgwrFhK6devnydf11oPLXSun1LKfe7yuXPnZrosMCHEWmv27NmfAwtzz7XWB4QYThDfLDbpOM6QYie6ZTKZYe7nlmWFumilVBgroLa29mlgUe654zj1IYZTlNb6A9fTdevr6zcKeq3jOFvnHiul+vTYbSGE6AqzZs1aobV+xHUoTg8aduQ2bNiwpXhX+t660Ll+lmW5l5qX+4MQoiv9NfdAKXXMKaecMijMYIrRWn+T//nyxaKi0aj73JaWlpbQtukDqTBWxNSpU5uBqa5DJ8dise90ICll23ZFF0XYYIMNXsNVIHAc56Ag151wwgn9lVJ7uQ4909WxCSFEXxSJRK5xPd3Otu3JHUln4sSJ63dRSHklEglHKfVs7rnWOtD9Ic+5cn8QQnQZy7L+jBnqCdA/nU5fU+z8QiqdhwIopb7J/7TWBwe9zp2HKqXmh70Cq1QYK+cG4IPs46hS6g7btjcLevHJJ588wLbtuUqpvSsRXE4ikXBwtdQAZ5x++uk1pa6rra09lbYNn1dGIpG/VSI+IYToaxoaGh4HHnQd+l08Ht8/6PWJRMKybTtRU1Pz6y4PzkdrfZfr6U+C3Mfq6uq+D+zuSqPPbmYthOh+DQ0Ni5VS31QSlVKTbNv+RTlpxOPxY6urq2d3fXRelmW589CtY7HYoQVPzpo8efJI4ATXodDzUKkwdoBt2yXncaRSqWWWZf0UyG0ougnwdCwWOyGRSBT8u9u2XRWPx+1oNLoQOKprIi5Oa30dbXNqvtXc3Hzb5MmT1y10fiwWOwa41HV9avr06TKHUQix1gtyfwCoqqo6Efhf9uk6WusHbNu+6IQTTuhf7LpYLHZQU1PT88AUrXXFh7K2tLTcAuSGQtUC99bX129c6HzbtneyLOt2ssNslVLPNjY2PlHpOIUQfcOkSZMGFysn5yxZsuRSrfXjrkN/isViM2zbHlXsung8vkM8Hr9fa32b1rpoftsVGhoaFmitH809V0rNjsViexQ6/+STT96gtbX1Ptq25fuiurp6RqXjLEVWSS2Psm27QSm1PvDTUic3NDQ8Z9v2kcDtmM0/RyilbmpqarrMtu2HgVeUUp87jhO1LGuE1noX4ACtdcW7yN0aGxtfs237AuDq7KEj0+n0923bvl0p9bzjOF8C6yilttBaH6qU+q7r8leUUhd1VSy2bT+qlPKMRddab+p6fFI8Hv+h+3XHcV5rbGw8satiEEKIjojFYicDFwMblzr3hhtu+NK27R8CDwCbYVbRu7S2tvbMeDz+D631s1rrxZZlpYHhWuutgEOADSv3G7Q3Z86cNbFY7GdKqX8CEWBbx3EW2rZ9F/CEUuozwNJaj1FK7ae1Pjx7HsBy4OddFYtt29cppfZ0H9NaD3c93Skej7/gv27JkiW7yqI7QvR8tm3vCjz24Ycfbgx8XuzcuXPnZiZNmnRUJBK5C9gHTE8jcJxt209orf+tlGrCrOI/FNNxc6DWertK/g75VFVVTUqn0/OzcQxVSj1l2/ZDwCPAR1rrtGVZw7TW38PUL3IVWa2UOnHq1KnLuyKOWCwWsywr7j6mtXZ3EK2TLw91HOdEqTAGVFdXt71lWZcARziO83TQ61Kp1IN1dXXfsywrBeyaPbwRYANorVFK4dqeIme11vr3q1ev/kdXxB8gzmts29bAlZib/TDgF7n4cnyPn8xkMhNmzJjRlVtq7KC1Hlbk9ZFa65G+Y1IQEEKExrbtUUqps7XWvwTWTJw4sV+Q+SapVOoN27Z3A6YBP8H0yg3WWh8NHF3g3gCmEHGbUurPXfl7FNLY2PhELBY7TCl1G7A+0A84HjjeHZ8v1o+AHyeTybe7MJTNtNbji7w+IN/r22yzjZo7N/QRXUKIAmzbXgeoA64CamtqasZQosIIMHPmzCUTJkw4cPDgwVdorU8HajAjIQ5USpVagfrfkUjk3M7GHsS0adP+F4vF9lZK3QNsgcnrD8n+FKoHrFRKnZhMJh/qqjiUUhuUyEOtfK9HIpH+UmEs4ayzzqpdtWrVucCvMR/CNZZlNZSTxowZM14GdovFYocrpU4E9sXcdP0ymB67v0QikRunTZu2KM85KKUWaa3fgy7dzkKnUqlr4vH4g8CvtNaHYbbZ8EsDzyml/rxkyZI7K9Bq+yFmo9TALMsKdeUoIcTaKxaLTQSu0FpvkD00rZzFCVKp1BfA0fX19eMcxzkN2B8YW+D097TW91qWNTOZTL6e7wTLspa67g957yEd0djY+Lf6+vpvOY5zBnAchXtRFwKz0+l0w6xZs8rKy0tRSn2W+93K8dprr+WtdQshwldXV7cv8Adg++yhv69Zs2ZhkUs85s6d2wL8avLkyden0+kzgIMovKLzZ1rrh7XWM2bMmPFkvhO01l8rpXL5TJdtZZEdzbejUmqS1joGbEv+FbI/Bu5Ip9PXzZo1q6mr3j9rKVB2Hqq1bu6RS3n3FLFY7DuWZU131bbnRiKRi6ZPn/5mZ9KdMGFCZNCgQVs4jjMsEokMA9Yopb6wLOv1adOmrex85F1CnXLKKVtmMpkNtNaDga8jkciXPSxGIYQIRV1d3QilVFIp9aPsofmO45xZqBBSjvr6+o211qMcxxkGEIlEvkyn0+/MmDHjs86m3VUmT548tqWlZeNIJDIYcJRSS4C3GxoaFocdmxCi5zv99NNrWlpartNan4wZtfCZUmrykiVL7utsZ0R9ff1wYGOt9VDHcWqAJVrrj2bMmNFjtviZNGnSYMuyvg0MBqosy/pSKfVRQ0PDByGHlpdUGPOwbbsK+A1wAVAFrFBK/SyZTN4fbmRCCCHCZtv2BKARsyhBWmt98VdfffU7mScnhBClxePxnbXWdwC5NSpuXL169ak333zzqjDjEoVJhdFn8uTJY9Pp9HTMuGIN3JnJZCbPnDlzScihCSGECNHkyZPXzWQyU7TW5wAopeZZlvWzzo46EUKItcGECRMigwcPjmmt/4RZ6Ot/WuuTGxsbu2W9DtFxUmF0icViBymlbsKsYrRCa31qY2PjzWHHJYQQIlynnHLKtzKZzF+BbTCNib9dunTppdn5M0IIIYqYOHHi+jU1NX/RWh8AoLW+PRKJnCnD2HsHqTDyzZzCM4HfYlo8/us4jp1drEYIIcRazLbtQ4BZwHCgCbBTqdSD4UYlhBC9Q319/baO49yBWYxmtdb6nNGjRzckEgkn7NhEMGv9Kqm2bW8I3ATslT00G4jPmDGjNbyohBBChO2EE07oX1tbex1t2yA9V11dffANN9zwZcihCSFEj5dIJKympqZfOo5zOaZDpkkptX8qlcq7yrPoudbqHsbsENTbMQsXLAd+mUqlZoQclhBCiJDFYrEtlVL3A1sCjtb6j6NHjz43kUikw45NCCF6uuwqoH9RSu2fPXRvVVVVnTS49U5ra4VR2bb9G+AyQGmtn9Zan9CTltsVQggRjng8/iOt9c3AAOBDrfWJjY2NT4QdlxBC9AbZfWXvwqyCulwpdWYymZwddlyi49a6CuPEiRP7VVdXTwXqsoemL1269ExZuEAIIYRt26cC1wOW1vpxrfUxPWn/QyGE6Mni8fj+Wuu5mNF7bzuO8xNZE6T3W+vmMFZXV/8RU1nMKKXiyWRyZtgxCSGECJ9t2ycCf84+veGrr746WxoThRAimGzP4oOYPcz/kclkfirb0vUNa02F8ayzzqr9+uuv/6S1rsNstHx4KpX6W9hxCSGECF8sFjsDuBpAaz2lsbHxMsz2GUIIIUqIxWIHOY5zE1CllLqzubn5xDlz5qwJOy7RNSJhB9AdJkyYEIlEIg8CEwAH+FVjY+MtIYclhBCiB4jFYpcppX4LRJVSt6ZSqTORyqIQQgQSj8d/AtwNrKu1fg44eubMmatCDkt0oT5fYTzrrLNqI5HIQ8APgGVa68MbGxtvCzsuIYQQ4YvH49cA52FWQj0rlUqdG3ZMQgjRW8Tj8eO11rdg6hSp1tbWn0plse/p60NS1apVq64H9sNUFo9tbGz8R9hBCSGECF8sFjtZa30OZuTJeY2NjX8KOyYhhOgtbNveVWvdiKks3rJ06dLJc+fOzYQdl+h6fXqV1FgsdoZS6o9ABjg4lUo9EnZMQgghwhePx3fXWj8JRJRSFyWTycvDjkkIIXqLk08+eYNoNDofGKGUuieZTB6FDOXvs6ywA6iU+vr6vZVSV2WfnimVRSGEEACTJ08eq7W+HdMqfptUFoUQIjjbtteJRqO3ASOAl5qbm49DKot9Wp+sMNbV1Y1xHOcvQD/gL6lU6s+lrhFCCNH32bZdlU6n7wA2AhauXr3aDjsmIYToZa4D9gKWaq2PltVQ+74+V2GcMGFCxLKsWzGtHvOBn4cckhBCiJ7jCmB3YEkmkzno5ptvlsUZhBAioFgsdgxgA2ml1ITGxsa3wo5JVF6fW/Rm8ODB07XWewJfZTcMbQ07JiGEEOGLx+MnZRe5QWt90syZMz8MOyYhhOgtbNveFZiFWQPlimQy+c+QQxLdpFdVGG3bvshxnFuam5sX52sVrqur21drXYdp9fjZzJkz3wkhTCGEEN3Mtu1TlFJPKKW+aGhoWOx/ffLkySPT6fR1mILOJY2Njf/X/VEKIUTPFIvFjgK+0Fq/MWPGjM/8rycSiWhTU1MKqFVK3TNq1CiZ+70W6TVDUhOJRBQ4w7KshbW1tbf7Xz/hhBP6W5Z1C6C01tOTyeRD3R+lEEKIkBymtX7FcZz/nHXWWbX+F9Pp9Cxgfa31c0uXLr0shPiEEKIn21Ep9bhlWW/U1dVt4n/xk08+mQJsD3wejUZjiUQi3f0hirD0pgpjWil1JFADHDhx4sR+7tf79et3LTAKeCOTyVwQRoxCCCHCkU6n64AvgU1XrFixs/u1eDz+c+AgYHU0Gv257BMmhBBe/fr1uxx4HljfsqwD3a/V19ePU0r9OvvUvuGGG77s9gBFqHpNhRFg1KhRzwCfAVXRaHSb3HHbtkcppU7MPp08a9asFaEEKIQQIhSzZs1qAp4FsCxrh9zxRCJhaa1zBZ0rpk+f/mYY8QkhRE82derUZuAhAKXULu7XtNa/BKqBu1Op1L0hhCdC1qsqjIlEIq21XggQiUQ2d730B8yY6idTqdS/wolOCCFEyF7J/rtF7sAnn3xyOrANsKSmpmZqKFEJIUQvoJR6GUBr/U0Zu76+fm+t9TGAtixL5i2upXpVhTHrXQCt9UYAkyZN2gg4Cmh1HOeXYQYmhBAiPFrrd7MPNwaYOHFiP6XUKdnXLpo6derysGITQoieLpPJ5BaL/GYOo9b6F0AEmN3Q0LAglMBE6HrVKqlZ84FJSqnxAJFI5GrgWa31442Njc+HG5oQQogQzc/+Ow5Q1dXVNpDRWt/V2Ng4LcS4hBCixxszZszrTU1NLcDourq6EdFodHPHcb4L3B+NRmV9kLVYb+xhfB5Aa71FfX39tsDRwO6RSOSOcMMSQggRptGjR78KrAbGnnnmmQOBC4CtlVIPhxuZEEL0fNkFJucDRCKRbzmOcxkwXGv9ybRp0xaFHJ4IUa/rYayqqlqYTqcBvu04zumYbTQeaGhoeNV/7sSJE9evrq7+ltb6+0qp2lQqJUupCyFEH5VIJNK2bb8NbL9y5cqzLcsaDnxcU1Nzs//ciRMn9qupqdlUa72X1nqj6urqa2TlPyHE2s5xnLeUUrs5jnOgUmofoEUpda3/vEQiYS1atGjDTCazt1Jqc6XU3GQy+VIIIYtu0OsqjNOmTVtp23YzUAscC2BZ1g0Ap5566pCWlpa9lVK7Antj9oupUUoBNAFSYRRCiL7tSwDLso7JPp8xderU5okTJ/arrq7eE/iOUuoArfXWWushAEopMplMQ+5aIYRYW1mWtVhrjVLq4Oyhh1Op1LuJRCK6aNGinRzH+a5S6oCmpqatgbHZMjaO4ywApMLYR/W6CqPPAOCvwKh4PH5/a2vrgUop/+/0ptb6DaXUoyHEJ4QQIhxbAC8ppd6wbXsO8GNgPQCtde6cj7Mrbz+1Zs2ar0KJUgghehCttco+3A74yLKsu23b/kNTU9PRwAbZc3KnLwFeBZ6JRqPtRvqJvqO3VhiXAcMBDRyutT4qe9wBXgOeAv6ulHormUy+HlKMQgghuplS6itXYWYLrfVfXC9/CDwJPAHMX7p06Utz587NdHeMQgjRg32R/dfSWg9xHGe267UlWuvHLMt6AfhnJBJ5Y9q0aStDiFF0s15ZYdRaNymlhgMKqAJe1VrPBf7S2Nj4VrjRCSGECIvjOJ/khkgB6wCfYEaizE2lUk+FFpgQQvQOuf1sUUr1x3TS/J9Saq7W+u+NjY2t4YUmwtIrK4xKqeXAm0qpu7XWd6VSqfklLxJCCLE2WAUsAu5TSt07atSoRxKJhBN2UEII0RsopWqB5Vrrh5RS/9fc3HzPnDlz1oQdlxBls217aNgxCCGE6HlOPfXUIZjRJ0IIIcpk2/bARCLRKzuUhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEL0VQrYEDirk+k0Ade4DyxYsGDjdDq9n1IqjC0wlluW9cROO+30egjvLdY+lwP9O5lGArM5rujzmE87AAAgAElEQVS56oFvdTKNmcCrXRCLEL3NXsARnUzjaeCuLohFhOMQ4AedTONh4O9dEIsQvc1mwGmdTOND4I8duVABuwLPdjKAV4DtAZ555pna6urqPwGTAKuT6XbWvZlMpm7XXXf9MuQ4RN+2BBjUyTTGAJ90QSyich6l84WdI4D7Xnjhhc201mcppfYCRgKRTkcnRHiagY+A+9Pp9PW77bbb8jznnA38vpPv0wCc0sk0RHiuAs7tZBqXAlP++9//DolEImcAB2Pun9WdDU6IEKWBT7XWj2mtr9tll13+l+ecvYDHO/k+zwO7dORC98acy4DpHQzgU4A777wzUlVVdTdwYAfT6WpHRCKRTV566aXv7rDDDqvCDkb0WX8A1ungtb8m/IYVUZ77gdc6eO1bzz///FHALUqpfl0YkxBhGwnsEo1G6+bNm3fQ+PHjF/pefw5TYeiI72V/RN/wPPDPDl775PPPPz9OKfUgMKoLYxIibMOUUtsrpSbNmzfv6PHjx/t70j+i43noZsCEzgTnrjAuBc7vTGKbbrrp8fScymLODq2trb8GpoQdiOizLuvEtecgFcbe5g7g1o5c+Nxzz+2olLoVqOnakIToMTbSWj/wwgsvbLfzzjt/7Tr+VPanI6YgFca+5Ck6WN58+eWXB7W0tLyGVBZF3zVAa33XggULxo0bN+5t1/H36Xg97VA6WWHs6oLqxC5Or6ucFHYAQghhWdbFSGVR9H2bAnVhByH6npaWllORyqLo+/pnMpnfhB2EW7T0KWXZutAL9//vfv72yd88x0bWjuTCHS7EKrPe2uK0MOXFKSxr8a4Rcswmx7DniD3zXTL22WefXa/AvIryJPgt8B3PMcVjTOHKDqS1MZDEW3HXwC9I8EbHgyzhempYwmxgmOe4ooEp/LXs9BL8gPbzElZSy885lxUdjrP0+44BZtB+/tdZJDqwsMglnIputyjDWyQ4DfP/IkSHaa3VvHnzDih2zsr0Si5ecDFrMms8xydtMYnxQ8aX/Z6PND3CvR/d6zk2pGYIU3acQlR1dfbf5t0V7/L717zT1SIqwkU7XMTwfsPLTq/xrUYWLFngObbdoO045VuVnc722KePcdeH3jVWBlUPYsqOU6i2ypsyldEZLnvpMhavWew5fuiYQzl4zMGdjrWY2e/M5vkvnvcc23r9rTnt2+Wvn7CkeQmXvHQJrU6r5/hpW53G1gPbigBKqQOB6zsUsBCFFR3F5miHq169io9Xfew5vv8G+/PjDX9c9pu9sewNrl/o/RhHVZQpO05hSM2QstMLakXrCqa8OKXdvaBuizp2GrJT2ek93PQw9310n+fY0H5DuXiHiyt6L3hnxTtc99p1nmNRK8qF21/YoXtB6q0ULy550XNsh8E7EN8y3qk4S/nnp//krx96i8eDawYzZYcpVFlVZaWV0RkufelSPl/zuef4YWMP46DRB7kPeZ6Eras/JQXncR0w+gBuf/923lr+luf4yNqR2FvaZb3Jta9ey6NNj3qOjRs8ju8O/27Ba6LRaH+g8xVGM+k+Dgz+5ohmPy7hdaZwX8Gr/BJEMcPa9vC98qeKVhYBfkEzCW4CHsRdWdXsxmW8ykW8GTitKxhBKzdj5q+4nVjRyiJAgo9J8BTth4T+lavZuaz3v5RdcfgD4P7mN2Pxa6SyKLrAK6+8sj4l5rquG12XvUfuzaUvXeo5/s7yd7h9r9vLKqB8tOojLn/pcr7OtI0KtJTF9btcX9ECAsBmAzZjw/4btqtsnTvvXBr3aCzr/Z/87ElSb6XQrq/hgKoBXLjDhV0WbyF7jdyLW9+7lZeWvuQ5PqhmEOdsc05ZaSXfSvLAxw94jm0+YHP222C/TsdZyo/G/og73r+DL5q/+ObYc188xybrbsIhYw4JnI6jHaa8OIX/fP4fz/EfbvBDT2URQGs9unNRC5FX0d5FS1kcMfYIJj0zydOoMf/L+Ww2YDO2H7R94Df6Ov01F8y/gA9Xfeg5fsZWZ1S0sggmj9tzxJ5c/vLlnuMdvRdc8dIV7e4FU3edWvF7weYDNmfMOmO4+6O7PccvmH8BDbs3EFHB13t7bNFjpN5KeY6tV7UeF25f+XvB3iP35tb3buXlpS97jg+uGczZW59dVlrT35zOgx8/6Dm2+YDN2XfUvv5Th7/wwgtVO++8c6v/hTB029ypaquaq8ZfxToRb3lpxtszeO6L5wKn849P/9Hug7de1XpcNu6ysj54HZbgI0yF0U2hmc3lbFRGSlfRvrI4j8GdXkEsmAR/x7cVCrAuGe7kOmoDpmHRyi20ryzOylZIu8NvMatXum3J6jJatq9kEA534K0sguIsLmZB/ouEKE9LS0ugDOrwsYe3K8QvaVnChQsuxMEJ9l5OC+fNO89TQAA4afOT2G3YbgEj7pyztzmbb63n3YXklaWvtLvhF7No9SKmvDjFU1lUKC7e4WI2qN2gy2ItJKIi/Hb8bxlYNdBz/C/v/4XHPn0scDovfPkCc96e4zlWG6nlqvFXUWNVfoTy4JrBXLHTFe1G81z1ylW8v/L9wOnc+O6N7SqLY/uP5YLtL8h3uqz8Kyqh5Odq6/W35vRvn+45ltZpfjP/NyxvDd5vcOUrV7arLO4xbA+O3/T4wGl0xhEbHsHBo72jD5a0mB5+R3fuXjBpi0nsOnTXLou1mHO2PafdvWDBkgVl3wsuf8lbef7mXrBO99wLrhx/Zbt7we3v3c6/Fv0rcDrPLH6Gm971Fo/Xia5T6F6gBg4c2GPWuOjWQDbsvyHnbOttlXW0w4XzL+TL5tI7X3z89cd5PzCJHROMrPXXWSoowV3ANN/RQaS5gySl+6Yv4SDMEuNuK4Hj+AXNXRNkIBdi9rVy257lXB3w+otpv83AW9RyZqcjCyqBAxxPdqVel4kk+HmAFBTNzIZ2lf27mNLhVYOF6JTztjuPTdbdxHPs+S+e58Z3bgx0/bWvXdtuNMe4wePKHs3RGblGwv5R7xalc96Zw7Ofl97JqVAB75hNjmGfkft0aazFjOg3gkvGXYJCeY5f9vJlNK1uKnn9kpYlXDD/gnaV/fO3P5+N1924K0MtavyQ8Zy0hXc6/+rMas6bd167YW/5vPrVqyTfTHqOFfo/FiJsx25ybLt8Il+lo5C7P7q73TSq4f2Gc+m4S1FKFbiq65233Xnt8olnFj/Dze/dHOj63736u3b3gp2G7ERsy1hXhVhStVXNleOvbJdPzH5nNv/94r8lry90Lzh2k2PZe+TeXRlqUSP6jSCxY8JzL9BoLn3p0sD3gnyV/fO2bf9/3BN1e821UOt5vhuqW4vTwvnzzmdleqXn+AmbnVBo3mJlDeZsYL7v6K58yiVFr0swBs1NgD/HiZPgrXyXVEyCNHAM8IXvldNJcGTRay9lL0yF020NFkdXfCiqX4LFwHFAxvfKNC5jq6LXXsLZwI98R/P1IgvRbXK9T/0i3p03Gt5saDd/w+/Rpke5+8P2ozAuHXdp94zCcBnbf2y74UKOdrj4xYvbzd/wm7pwarvhP1sN3IrTtzq9wBWV873h3+PYTY/1HFvRuoLzXjiv3Vw+t0INooePPbxdz0F3iG8ZZ5eh3i243l3xLte9fl2BK4zlrcs5f975pHXaczxfL7IQPYFS+UciPLboMeZ+MLfote+ueLfdvDtLWVyy4yWsX71+l8daTKHep2lvTGs3VN7v0aZH281hH1Q9iMvHXV722iGdtWH/DduNRHC0w0ULLip5L/h/9s47sIoq++OfeSn0AKEjINKEUKQEdS3rupbfFnd1LYCCBTug2CGBJO++EELAjoro2lABwV11bbuWtaxdaQoEkKICgoDSS0h58/tjEnlz77yWvDLR+/mPMyXnkZe5c879nnNmrpqprAVZLbKSshac2u5Uhh8z3GbbV7GP3MW5tVoLzutyXtxr2GNFUrY6nbLnTpKdQO4rvY9Ve+xjnfq26Bv3pgdBsXYCh6PWRU7Eh3NjC6tucT7QWjoyG8G8mPsYCYLNwOWodXqPM4VjHK4AQVv8zEOWhhjcQAGhn2DxQvAeMFWyNqGKhYggdWOFDMWkWLJW4GEEgp1x8FKjiZjuzbortRFVZhWTlkxid/lux2s2Hdik1LzUqDA6NEpOY8GzOp7FeV3svaR2Hg6dJPxo+0fM22B/JDZObUzR4KKom83EivF9xiv1T6V7Snlo9UNBr3EquejWrBsT+k2Ii4/h8BgeigYXKfVPL3z3Aq9vft3xGtM08S3zsfWQXcRxRoczuPDoC+Pmq0ZTV5qlNWPakGlKU5J7S+9l9R7nVhHBdt2vP/Z6hrYe6nhNvOnRrAe39lXXgtzFuVGvBbVtPBYLzu54Nn/t/Febbefh0OUWH27/kPkb5ttsTVObMm2w+ntNFDdn3Uz/lv1ttpW7V/LwmuCitEe/flRdC5p2i7oWPpkkJWAMlT2XO7mB1fRAzggFexAkFME6QN7X92DyDAInUXUh6iypFWQo8tTEIngda/h8IC2oYgGCdOlcD/AMKJ9vIV4ej5+TEeED3pZs/VA/GwhaVNctym+fEyjgE+V8jSYJnH/0+Ur2cXvZdgqWFmCa9hxPub+c3CW5HKg8YLMnTYURwIR+E+iV0ctmW7JzCY99/Zhy7vay7UrdIsCk/pM4ukk0ZeKxJdVIpXhwMRlpGTb73A1zeX/b+8r5Tp8v3ZNO0aAiZe1LJJnpmdYOgyHVM64oUeq1AJ7d8Kzy+Y5qfBT5x+XH1U+NJhb0bdGXsceOtdmCPSvBua43u1U2V/S4Ip5uhuWCoy+QO2geeVY6rAU5i3OUz3dZ98uSvhbk9M9R1oLFPy3m8a/V18dtZdvwLlXXgtwBuRzVOHk9tYKtBc+sf8ZxLVj802KeWPuEzRYsDnIzSSum7N6sO7f1vc1m82N1YAvMmDg1PQAS1vQgLIKFgFy52waYx8KAHTjB7wE5rXyAFIZxK4fi62QEdCAH+FiyDgVlXEgOcLZkcwqcE4/ATxqjgB+kI9cikKvUHwdlB/U1BPfHzT+Nphbk9MtRAqWPd3zM3G/m2mz3ld6nZM2TqsIIINKmZ8F2UC84+gL+cFTIbvoJoX2j9o41LL5lPrYcPFLDEmwHdWL/icrLUjIY2nool3W3l3gfrDxIzuIcDvuPlNGX7ill1hp7uX6qkUrRoCKapjZNiK8aTV0Z1W0Up7U7zWZz2oF7edPLSvfKzAaZFA1OvITTidz+ucpa8NH2j5j/rX0H7p6V97Bmr73Zfd8Wfbn+2Ovj7mM4gq0Ff1/7d3UtWDyJPRX28XkXdb2I/+sYcjpVQujQqIMisa1ZCwLVGMHWgjv63UG3Zt0S4musSOpfwN+6/C1k9twtTQ8i4CZALiw6jVIKAGv0hDVCQy4gGks+q3AD11FBKiMAufvQLYjq2YSCEwEhHbekuSImI0vqzmS2YTjWMz6MoDcAgvGg1GhuJt1RmqvRJJVgNSyBNX7v/PAOC79daDvuChVGAF2adFFGYdTUddSMe5i1epZSo9m9WXdFjpVMftvut1zU9SKbbW/FXiYtmUSlWRm0RvOsjmdxbme5XDp5jDl2DAMzB9psa/eu5f5SK2cWrEZzfJ/xihxLo3EzhmHgHehVZPlvbXmLFze+CMCG/RuYsWKG7bjH8DBl0BRaN5CriJJDzVogy/Jnlh6p8fvv1v8q44wy0jKSKuGU6dKkC3f0u8Nmk2v8Hlr9kFKj2aNZD27OSlxPxXCc0eGMsGtB/tJ82zgjcJbm1geSnjJx6g708Q6rA5RT04OeGT0Z32d8Aj2MAEEZKQwDpdlLHj7+jwrmoo6eeDKBoyciI49NwBXYgyYDeIJCBgHPIY+egFsRSvOf5OLlXVA6vTYFFlLICQ7HKvEwgklKsKzRuIKeGT25Kesmm62mhmXN3jWOnf9co8II4OyOZ/OXzn+x2XaW7yRvSR4fbf9I6fyXyNET0XBz1s30aW7vp7Vi9wpmr5nNU+vVLrBOzX+STYqRQvHgYqWJx8JvF/LGljccO/+d0vYULj7G3vxHo6kPZKRlUDy4WJk7eOeKO1m+azl5S/KUusUre1yZsNETkeK0FtRsrpTuLmXKl/ax1IkcPRENf+n8F87pdI7NVjM+6sPtH/LMevtaEGL0RFK5JesWejfvbbPVjI96Yt0TShdYp+Y/9YWkB4yNUxtTPLhYyZg8tPohpelBk9QmzBgyI2lND0KSz1oMxklWDyavAPJk5lKakPj2TpEgeBV4QLK2xM9nqKMn/olQxou4BS/wgWTrj58PALto3CCPAmW8iEbjKoZ1HcYZHeyPkm1l27j8g8vrgwrjZyb0m6BIcRb9tIjbvrhNaTeeOyBXaZDmBtI96RQPLlbaxD+9/mlmr56tnDt9yHRXjp5o27CtIrEF8C71KrPF2jdqn/CRAhpNLOnfsj/XHWtvgF7uL+eaj69xHD1x7bGJG0MUDcO7DleGvP9w6Aeu/OhKZZLAxd0SO3oiGib2n+g4Pur2L25X6xb7J3YMUaQEWwueWvcUj655VDm3Po8hSnrACNAroxe3ZN1is1WZVcoXJqd/Dp2bdE6ka9Hh5RngSckq78iV4eES7kCttnYLHbgdkAelyZ9jI+DOpylYI0NSuRh1ZIj8Of6DyZ0J8kqjqRP5x+Urxf7yqIM+zfu4T4URQLBif/lzJGv0RKR0btJZafziN/1KrcotWbe4om4xGKe0PYVR3e0l3vLvIsVIYergqUqTB42mvnF598v5TZvf2Gzy9z1ZoyeiIX9AvqIgkT9HVossbuztzr0JsNaC6dnTw64F53Y+V2n44ya6NOniOD5KXgtu63ubq9eCcLjmr+GirheFbGpwfpfzXf2FCWAs8FXQo8kcPREp11FBCqOAPUHOqB+jJ/L4HoPLCF6XuA0YjQgxAFSjcRHh2okne/REpHRr2k2pYQmkS5Mu3N7P/e3Gz+xwJud3CT6y1qnGxY3c0PsGZWRIION6j+O4lscl0CONJj54DA+Fgwpp07CN4/Fkj56IlGZpzSjJLgm+FqQ0pmhQkWvqFoPRrWk3pQGmfDzUWuEWzup4Fn/r8regx8/scCYXHH1BAj2KPa4JGAFu7HOj0uobrJeH2/oF/0K5CkEZRnWzG5UXXTB6IjLyWY8qTbUw8NWb0RNe/g28GeToZQilo6pG42qyWmQFTZ7d0feOpI6eiIZzO59Lj2Y9FLvH8DB9yHSli55bubHPjY4BeqsGrVxXtxiMFCMl6K704MzBjOomN5nWaOovLdNbMrrHaMdjF3W9KOmjJyIlq3lW0I6hE/tPpEuTLgn2qHb8rcvf6NZU7RjqMTxMGzKt3oyeCLYWtGnYRmn4Vh9xVcD44KoHlRoWgC0Ht/D1nq8drnAhgoaY+IIcPam6Y6r7EXTB2i1VMfk/BKmOx9yG4A/AWUGOulfvptEEYdWeVfzn+/84Hvtw+4cJ9qb2vLzpZdbtW6fY/aafT3bUj3wUwKw1syj3lyv2XeW7KN1TmgSPoqfKrOKBVc75wbX71vLDIZ1X0/xy2Fuxl6fXO/ccXPTjIqX5jVsp3V3KG1vecDz2wTa5hYN7+demf7Fh/wbF7jf9fLxdnvbmXh5a/ZDjWvDT4Z8o3V0/1oJQuCZgfGHjC/z7+387Hqs0K8lbmqcU87qUB4Bg2p12VPAk4O6uAY+QhtURNTPIGadC0F1U92AF508S/Hs+/ueRIRpNPeBg5UHyluQ5LkpgtVT/53f/TLBX0bPxwEbuWnFX0ONOLdXdyDs/vMPz3z7veCxYS3U3Mmv1rKD/3/sq9pG7JFepK9Jo6iOmaSKWiaBJkA37N3D3yrsT7FX0HKw6SN7SPGXsTQ1vb32bF757IcFeRc+G/Ru4c0XwNhIPrn5QmZbgRkKtvfLIkPqKKwLG9fvWc8/Ke0Ke8/3B75V2wa5DMAy4OsxZf8SHu4tztlIC/CbMWZPxBd25Sz4CT5BxJoFYI0MEXRPjlEZTN6Ytn8Z3B74Lec7dK+9Whja7iXJ/OTmLczhYdTDoOcGGNruJHw794DjOJJCdh62RIXLzAzfx8faPlXEmMit3r2T2mtkhz9Fo6gPPbHiG/237X8hzXtz4Iq9vfj1BHtWO4q+K2XhgY8hz7lp5l9L91U2U+8sdx5kEUjM+Su4E7iYiiU92lu9k8pLJrl4LwpH0gPFQ1SFyFucoX5jLu19Ou4Z29aars+dT6Ak8Jln9wB1Yw+2PYDIVwYkJ8iw6fPwFuEWy7sJAFmB7MHnaxRLbAtRxJl8Bj0q2lsDceiOx1fxqeeE7VYXRvlF7Lut+mc1W7i9n0uJJHKwMHpAlkztX3Km8xAxtPVRpE7+tbBtTvpyCaQbrWZU8KvwVTFw8UXmJGdZ1mNImftFPi3hq3VMJ9C5ydpTtwLvMq5SC3ND7BqWG9On1T9creZhGI7N813JmrbZPAkv3pHNTn5uU/hkly0vCBmTJ4p/f/VMpS+jQqIPjWjB5yWQOVR1KpHsRM335dGUtOL718coYkG1l2yj6KnRyLllU+CvIXZKrKCCHdx2u9BNY9NMi5qybk0j3YkrSA8bpy6fzzf5vbLaT2p7EuN7jmJ49XRmyevfKu92XMZlJA6p4DmgmHZmG4C4M5BZPacBCRFDJZ3IQdMLkCWTJrMFVeJkKyKL/9lQwn4WkJMrFiCjkNFAC3AOkMIJMxgNLpGMnAS7fvtb8mlm/bz33lNpVGDWjDm7ofQMntrHnn7478J0rF9i3trzFixtftNkyG2RSOLDQsU38ez+8x8LvFibSxYh4cPWDrNy90mbr26Ivt2Td4jgyZPbq2Sz6aVEiXQyL3/TjXeZlV/kum/3Coy/kih5XOI4M8S7zsqNsRyLd1Ghiwr6KfUxeMlmRVt/W9zYu7X4pl3a71GY/WHWQiYsnBpX/JwsnRV7gWnBC6xNsx77Z/w0zVsxIpIsR8daWt/jXpn/ZbJkNMikcVIj3OC8dG9vXgne2vsPCb923Fjyw+gGlPrFvi77c0vcWZmTPoIGnge3Y7DWz60W5hRNJDRjf3PImr25+1WbLTM/Ee5wXj+GhX4t+XNvLPuovEjlTwtnJXcBgyfopHaqb33h5AHhROt4ZmINb6hmtHbb5QGvpyAN4q31vwlhglXT8dEqZGH8HI6SYNviZB0oQO5Z8VjGew8BwQNY3TERwTkJ81GiiIJgKY8yxYziu5XFWm/iBhbRuYP/TfXPLm7yy6ZVEuhqSzQc3K0Fsje9tGrYJ2ib+/tL7Wb1ndSJdDclH2z9i3oZ5NluztGZMG2KNO+nerDu39r3VdtyPn4KlBewu351IV0Py2NrH+PzHz2227s26c0tfS2ByVsezOLfzubbju8p31XtZlebXSeGXhWw5tMVmO6PDGT+POhjbe6wyOmbt3rXMXDUzYT6Go2YtOOy3i9bG9R7HgJYD8BgepgyaoqwFr2x6hdc2v5ZIV0Oy6cAmx7Wgxvdmac0cx0fdV3qfq9aCD7d/yPwN8222Gt9TjVTb87SGGomtm8stgpG0gHHjgY1K/YfH8FA0uIhWDVr9bLuixxVK9tzp2qRhSTjHSdZdpDKC6wisRr4S+EY67xyEcm2yKAROkWxfkREQDN7BAWAYIOsbfAjl2sQj8FDOM0BH6chTiIDdUcE64BrpnJp6RvlajSapOKkwhrYeapMfZTbIZOrgqcqg6RkrZrBhn9p9LtHUJPoOVB6w2eXne1bzLMYcOyaia5PB9rLteJd5MaXRrvLu6PldzlfmCv98rQsktkt2LuGxr+0VFI1SGlEypMSWEZ/Yf6IyaNrpWo3GzTz3zXO8+8O7Nlv7Ru2ZPGDyz/9OMVIoHlJM87TmYa9NFiXLSxwVeYFjbzIbZFI0uEhZC5yuTQbl/nJyl+Qqz/PRPUbbdkf7tujL9cdeH9G1yWBb2Ta8S+1rgYFBwXEFtt3RC4++UBl9sr1su3WtC9aCaEhKwBhsl/DqnldzfOvjbbZQ2XN5dzLhCLpg8hT2XUITg9Hk8Z107m5gBCDrG+5CKLuTicXH6cAEybqfFIZxqxQcClYAt0rnWruTQtmdTDQ5gDyUaC2NUAeMCRYCT0jWNsA810lsNb9aXtn0iqMKo2hQkVJzM6TVEK7seaXNFmx3MtE4ZYadFCQAl3a7VJmD5rQ7mWiqzComLZmk7BIO7zpcqb8EmNR/kjIH7aPtHzHvm3nKuYlk52Hn5gs5/XOU+st0TzpFg4sUia3T7qRG40acdglTjVSKBxeTkZZhs7dr2A4xUGBIwi+n3clE8/Kml5VdwkBFXiDZrbK5oscVNluw3clEc2/pvcpaMChzkONacFm3y5S1wGl3MtEEa8o24pgRnN7+dOX83AG5HNX4KJvtw+0fMv+b+cq5biYpAaNT56bBrQZzdS/nBqPBsudOmfeEEXz0xL14+ZfDFSD4HMiXrA2ABQgyHK6IP1Nph+ko4RxDPs6tFgWzAfmtpxPJlNgWcgIgJGsZMIyJ7Aty1TisRjiBnEYpk51O1mgSycYDG5V2404qjECu7XUtQ1sPtdk27N8Qtgt1PPlg2wfK6ImMtAymDZmm1KgDGIaBGCho38je4PitLW/x0saX4uprKGavmc2ynctsth7NejA+y3ngfePUxkwdPFWRVT2w6oGktYn3m34KlhUodYjndDqHP3f6s+M13Zp2445+9jL8X0qbeM0vm4OVB8lZnKPUId7Y50YGtBzgeM2p7U5lWNdhNtu+in3kLs4NOsIi3jiNIQq3Flzf+3qyW2XbbOv3refelffGzc9wOI0hykjLoHBQISmGmqc3DIP84/Jp07CNzf7Wlrd4edPLcfU1FE5jiHpm9OTGPjc6nt80tamjxHbmqpks37U8bn7GmoQHjE6zYVqmt7Qy5iHcGdJqCKN7jrbZkpox2co01NETi4DckNcJ7gTkwqIewN9j5lukWKMnnkUdPfEYgmdDXtuI6wG5+9Cf8DzOv98AACAASURBVHFzDD2MjGm0xM8CrGZCRzC4GcEy54sAQRkeLgHkglgvPqXDqkaTMKJRYQTiMTz4Bvpokd7CZg815zaebCvbpkg4a2Q7HRp1CHpdRloGhQMLHSW2yWh65tTdrnFqY0XCKdOneR/lJaLSrGTSkklJaRP/1Lqn+HTHpzZblyZdmNBfFpjYObfzufyp059stp3lO/F96VM6rGo0bsFpDNHJbU/mkmMuCXndTVk30bt5b5stWaNlar0W4KFwUKGyFvzju38oHVYTgdMYIgMD70BvyLWgZXpLxw2jkuUlrN27Ni6+hsJpDFHNWpDuSQ96XVaLLMb1tlegVZqV5C/Nry8z5hMbMG4+uNnxC5N/XD5tG7YNe/11va5TsueRzHCMOT7+iCrL3AeMRCiSUxmTdK4Cvpfsw/BxVaxcjJAC4EzJthK4KeyVE6s/ryyxNZlOYdgZjrHE4DBPAkdL9ufx8kjYqwscP68Hk7mIkDMcNZq4Ea0KI5C2DdtSOKhQkVVFMsMxlgSbn3XxMRcrbdOdGNxqMNf0spcaJ6PpWbD5WTn9cujatGvY6y/uqn7eHw79wNSvpsbQy/Cs2L2CR7+2TxVK96RTMqREGaHhhNPn/Xj7xzy7IXRuUaNJBk5JsrYN2+Ib6MMwQguhav4umqQ2sdmfXv902BmOscYpSTY4M/K1wDfQp6wFkcxwjCXBkmQju43ktHanhb3e6fPWjAxJZLlFsCRZbv9cZYSGEyOPUT+vU1zkVhIWMFaaleQtyVMi6cu6qxrlYATLnjvNpIkb1uiJp1Gll9cjlB03ZyaxA7gEqLLZTR6kkOMcr4k1zqMnyoBLEMqOmzPCcUc1DT/PJWxkiOAW4FzJup6GSlObUPd4DJQd1XbAk4jkj57R/LpwUmEE23ELxkltTmJU91E228HKg+QtyUtYm/gHVz+oSC+zWmQFle04cVXPq5QsupM8K14Ek16e1+U8ZcctGIahNkIAa67wP777R8x8DcXeir3kLs5VRgrc3u92palNMILtqD60+qF62yZe88vEaSPBg/P7YzA6Ne5E3gD7K5KJyZQvp7C9bHvMfA2Fkww/2I5bME5uezKXdLPvqB6sOkje0ryESWydZPhZzdUdt1A47ahu2L+Bu1Ymdy04/+jz+eNRf4zoHobhvKP69ta3eWHjC0Gucg8Jexm+r/Q+VuxeYbM5dUEKR7DsefHyBGRMrGYoc1BHTzyMUGr6QiP4H4Yy+68hfuYhCJ/urQvBR0+MQyg1faER3AtKzWYXiGB3r64IsoFpkrUCGEUO0fYsHgNKzeYfMLittu5pNNESTIXhVNMXjht636DU6azas4oHVj1QZz/D8fGOj3l2vT0H0zi1MUWDipQ6jlAEq9N5edPLvP796zHxNRROzV26NevG7X1vj+o+GWkZFA8uVmo271l5D2v2OpeKxwrTNPEt87H10Fab/YwOZ3B+l/OjulePZj24KcsuyAjWAEKjSQbBGn1d3/t6RaEWjrM6nsV5Xc6z2XaV7yJvaV7cR8s4NXepUeTJNX3hcKrZLN1dmpC1wGkMUdPUpo4jlEIRbC14aeNLvL45SWtB027cmiWLDUMTbC24a4WqKnIbCQkYP9j2AQu+WWCzBc6tipaT2pzEyG4jbbaDlQnImJTiA+R2eCvIqGVQYTIFeFuyZgH31+p+kWFQzuOooycWIpSuoZFg0oDRgKx1uxBBdNmAaCihObAAkEXjExB86nBFaAT7sUaG2FcZk2IEJ9XSS40mYsr95eQuzlVUGJd2V7uGRkKKkeLYCfC5b57jvR/eq4urIdletp2CpQXK6AmnrqGRkJle3fTMUGtYvt3/bV1cDcmSn9TxEemedIoGqV1DIyHYXOHcxblxldjO+2Ye729732Y7qvFR5B8n91+LjGFdhyldYbeVbUMsE/WuTbzml4dTM8QhrYYoXUMjZUK/CepoGYdnQywJNj4iGkVeIMG6ws7/Zr7ybIglwcYQ5Q7ItY0hipRgXWFLVpTEtdwi1Bii2qwF/Vv2d0W5RbQYwAnAp8C3wDEhzw7DokWL9gFN6+5WXOiYnZ29NfxpGk1CqcAaS9IJta5V4y7ewqr5HQXMjfbiRYsWtQZ2hD1Ro/llsDI7O7tfjO7lxeqCPRtLDaKpn5QAE4F7UftARMSiRYu+Re1ZoNH8ImnevHnDnj17xqKz5zlYDTe/AIJ3SwpBrHcY5YHubsK9YbtGo/nFU1VVpbdfNL8m9Pddo9FofiHEOmBcHf6UpLAlOztbF1hoNJqkcfDgwT1AZdgTNZpfBj8m2wGNRqPRxIaYBoyGYTwT/qyk8HSyHdBoNL9uTj/99Ergk2T7odEkiMTOH9BoNBpN3IhpwLh3794nDcOIXwVt7VhdWVkpd9LUaDSaZDA92Q5oNAlgT2Vl5axkO6HRaDSa2BDTgPH000+vPHTo0F+A+bigfsEwjLeB35944ol7w56s0Wg0cSY7O/s1oDDZfmg0ceSQaZqXnHjiiduS7YhGo9FoYkNq+FOi45RTTtkHXPL5559PTUlJOcs0zeiGh8WGXaZpvpudnf15+FM1Go0mcWRnZ3u/+OKLxYZhTAaGgjRUVqOpnxwG/mOaZt7QoUNXhD1bo9FoNPWGmAeMNRx//PErgZXxur9Go9HUV4YOHfoy8PKiRYsaV1VVtfN4PDpo1NRbTNOsaNKkyba+ffuWJ9sXjUaj0cSeuAWMGo1GowlNdnb2QeCbsCdqNBqNRqPRJInEBYyCvwInSdbNCB6sxd0MfEzApKVkfQMv79bWxYgQjAW6SNZPEbwU9b1KaE4ZE5FrSVN4nHzW1trHcAjSgUlAQ+nIPxAsivp+U+hDFZdL1ipgGoL9tXMyAgQdgfEOR+5D8EPU9/NxFiZn2GwGP+HlLlxQk6v5FSDIAHJQ68ufQPB11Pcr5AT8/M1mMzhEe4q5jopa+xkOQW/gCsla+2eCjwswGSpZv0Uwu3YORojgTOBMm60uzwQfN2HSQbrfB3h5rQ5eRvJzR2NyrGT9CsG8qO8laAhMBtJsdg/zKeDLWvuo0cQA0zSZs34O+yr22ey/afsbsltlR32/7WXbWfDNAsU+sttIMhtk1trPcOyv3M+cdXPwm36b/dwu59KlifwKGp7lu5bz3g/v2WwNUxpyZc8rSTFS6uJqSL7Z/w2vbnrVZkvxpHBF9ytonNo46vv9d+t/Kd1darMd1fgozj/6/Lq4GZbPfvyMz3fYq9xapLdgVLdRGEb0AqF5G+bx0+GfbLbBrQZzctuT6+RnPElcwJjGZ1QwG6TFUrAXEeXYC8EdmJRI1nWYFNfNyYhYBNyHfbE8TCG/oYClUd2pjFnAJZL1dfJZVzcXwyAoR7AdeEg6cgnFDGISPzldFuReDaniOWCAzW4g8MYxWLR+9hYE7VBfTE9gIWcyjKqI7zWF7lTxPNA8wGoCf0MHi5pEYT0P/UCudOTP3MPx3MqhKO6ViZ+FqAmua+MaLFo/ew2CLOAv0pHuwIgo75WNyTwgPcBagYfT6uZkRCwCHgG6/WwxAR/leLk/qjv5uAqT+yTrNgdb7DH4HJMHgcA3ND+CHxC8E+Xd7gWul2yf0o78Ovmo0cQAwzDo3qw7t35xK2bA0v3ixhd59tRn6di4Y8T38uPHu8zLFz9+YbNfcPQFcQ0WAZqmNgVgzvo5NvtH2z9izqlzaOBpEPG9dpXvYsLiCewo22Gz5x+XH9dgEeDoJkfz9d6v+WSHfaLU5gObKR4c3St76Z5S8pbmUeE/snylGqk8etKjMfE1FFnNs5j65VS2HNpis6enpDO86/Co7vXixhe5p/Qem61Vg1Zc0k0OB9xFTLukhmQy2zAYCcpL/Cym0Cfi+wiOB6ZI1sPAcATx74Yq+BxDWRgb4Gdh9e5AZPgYgxosbgYuJxEBimAWVjfbQDpTzhyia8IxCzlYhPfpQ1Fd3IuYJtwAlErW31GqvHAH5xHSqOJZ7MEiwN14+VcdPdRooiMLLygv8f3Yyz1OpwfBAJ5EDRYX4uXvdXEvQkzSuQr4XrIPR3BlxHcpoTmwAHuwCJBDQQJmWgp2A8MBe22eyZ0IToz4PoX0xWSmZPVjMLJWaohoKWAlBjdLVg8wF0Hkjel8XIQaLO4ilRFxT0JoNBFyartTuajrRTbb3oq95C7JtQUb4Zi9ZrYSLHZv1p1b+94aEz/Dcf2x1zMwc6DNtm7fOu4rjTzHZJomU76cogSLZ3U8i3M7nxsTP0PhMTwUDiqkTcM2NvubW97klU2vRHyffRX7yFmUo/z+xvcZz4CW8ito7GmW1oyS7BLSPHZhxf2l97Nqz6qI77Nh/wbuXnm3zeYxPBQNKqJVg1Yx8TVeJC5gBKrlovLOYBOqWMg9NAp7vaAFzi8PtyNYEhsnI8DLDOBlydoDInwRK6Q/JndL1krgYgQ/1t3BCGnEdaDI3P6M4KaIrvcxHBgtWXcAl0S1u1cX7uAAHoYBBxXvBL+P6B5buQuUl78vsGRXGk1iGUYVqVwGyrPgeoSSZHLGxwTgr5J1HXBN3R2MkEnVzwI1SfgQhRwX0T3KeJjA3T2L1xHcW3cHI0SwCIMcyZoGzK0OaMNd3xA/87Dv7oFBIV7+GzM/w2ElCp6VrO2BJxERvAtMoTumssaZGIwmj+9i5KVGExNuzrqZPs3texErd69k9prIVOyLflrEU2ufstkapTSiZEhJVLt7dSHFSKF4cDEt0lvY7M9/+zxvbHkjons8tf4p/rftfzZb5yadyRuQFzM/w9EyvSVTB0/FIz1mZqyYwYZ9GyK6x5Svpii7e6e0PYWLj7k4Zn6GI6t5FuN6j7PZyv3l5C7OZX9leEHdoapD5CzOoayqzGa/tte1DG0tV1y4j8QGjBYFOGfPw70AGMATQFfJ/gpCkVbGGxMrUNoo2Yfh46qQVwqaVsvE5AA5H8GHsXMxAiayDxiJtUMbyAwK+U3Ia6fQExNZB+DH4FIEWxyviRdW9lyuZYwsey44B7hRsu4mheEIdMc/TXLI43sMLgP80pFHmKLUotkRHI+pzHpMnArD7sv/MPBJ1ob4Wch0moW5diwgvw0kToURiJf7QKlT70YZj0VwdXJVGHbGAKsl2x+A20NepVUYmnpGuiedaUOm/SztrOHp9U8rAZTMzvKd5C3Jwy89fnP653BM02Ni7mso2jZsS+GgQgxJ+DX1y6lsPCC/gtpZsXsFj6x5xGZL96RTMqSEJqlNYu5rKAZnDubqXlfbbMECKJmF3y7kna32sKFdw3b4BvlqVT9YF0YeM5LT2tmrITYf3EzRl+Ef59OXT1cC5CGthnBlz8hFN8kk8QGjVZ8zEhQZznX4GBniuptAat5gBWxXkIwaM8FOPIzC2hk8gsmDYbLns4Deku0dYEZsHYwQK3s+UbKm4ec5BM4ifatucQEoEtwSvESW9oo1Xh4HnpGsobPnRXQGnkKV4F5Fvu5cqUkyXv4N3CVZm1LFwurGIyrTaIkbVBiBmEwF3pKsvTgUogawkP6onz3xKowjmDTgSuBbyX5hdWDrjGAEqgpjO4lUYdj92V+tyJBrYadSSPBuC1u5G63C0NQzOjXuRN5x9p00ExOxTPDDIWcluN/0k7ckjx8P2x8zf+38V/7c6c9x8zUUJ7U5iVHdR9lsB6sOkrc0j3K/c157b8VechfnUmnaX1FvybqFYzNC5xzjxdU9r+aE1ifYbBv2b+DOFXcGvWbt3rXcX2pfKlKMFIqHFNM8LbzAI9YYhoF3oFephX1769v887t/Br3ujS1v8Opme/OfzAaZjjuvbiU5Xlo1G6ORs+cmsx2z54JsYLpkrcDDCAQ74+VmWAr4AKLInguuBi6VrNuAkdWBdHLwMhN4UbJ2AWUHsYb7gEGS7TM6IGLsWXQ0YQwgi8n/gMEdyrmCVCp5DpBF4w8geCFOHmo00TIZ+EiyDUB9HgIYHHaNCuMI1rNtFLBVOjIawWUO5zurMAwKEq7CCCSXXTjVM8I9CAYr50+hJ+oz1A9JUGEEUsByDG6TrKn4eY5i5XlYo8K4QbJqFYamXnBmhzO54OgLbLa9FXvJX5pPlanmbB5b+xif/2jvhtmlSRdu7xd6Ez7e3ND7BqVWr3R3KQ+uVgcNmKaJb5mPrYfsj9wzOpyh1HYmEo/hYcrgKbRu0Npm/9emf/H6968r5x+sPEjO4hwO++0iuLG9x3Jcy8iqGuJBRloGxYOLSTXsfUPvXnk3a/auUc7feGAjU7+carN5DA9TBqn/F24meWGt4D+AnFZoqtQzJrvpQXiKgTclWy8OSQ0OCukLSkbdepFKRNOD0JjAlajz4C5QsudW04PrpPN2kcrwpDc9uIMD4JA9NylyyJ6XoI55+YoMZbdVo0kegkpSuRiUzsXjEdj7iPu4GThPOi95KoxARPWuWmRNzx7GSYXRJ0kqjECspmdy8U8DYIGt6dkRFYacOCxBKOtF4vHyMCgjNTopTc+0CkPzC+C2vrcpu2pLdy7l0a/t+ZwlO5fw2Nd2lXmNhLNxSvQjIGJJipHCtCHTlF21+Rvm8+4P9mlyc7+Zy/vb3rfZ2jdqz+QByRcEZKZnUjS4SNlVK1lewrf7v7XZpi2fxncH7OXRJ7U9iUu7yfsuiadfi36M6T3GZiv3l5OzOIcDlQcU28Eqe5uN0T1GK7utbifZ+6B5oGSMB7A34MXADU0PQiGqM8YoGeMr8FXPJryTJtUZc7XpgeDtRLgZFsFuPGGy5/Wh6YFgBQa3SNbUaolt6+pz/gTIbc72k8KwqMYWaDSJII9NGI51e48zBaugppChDqOGkq/CCETwHjBVsjaplthaz0Yf12DtRgZiqTCSIeF0wprBKNftyU3P7kdVYXyadBWGnesAOR3+5+rEg1W36KzCmKlVGJr6RLC6vSfXPcmnOz4FYOfhnUxeMlmpW5zYfyK9MnolzNdQtGvYDjFQ2OoZTUwKvyz8uSFM6Z5SHlptF5SkGqkUDy4mIy3yRv7xJLtVNqN72pX68m7iCxtf4N/f/9t2TmZ6Jt7jvHiMZIcuFpd1u4zftvutzbbpwCamfnVkmZuxYgZf77X3lhyUOYhre12bEB9jSXL/10V1TYraDfAGBOfjYxxuaXoQCsF2PA7Zc5OHmEIfDvAgkCVdlaymB8Ep4AsMJklWK3teTBuqWIja9OAe1zU98PIIMFeydgLmVGfM1dEhBteTr7w8aTTuwBrsLvdSb0EVCxC0xe9qFUYgPlCSZP2Ae6pHT8if0S0qjEBMGjAalCTZMARXV6sw5LcB942eEOzHUmTYO06YTKeQ37CVaTipMNAqDE39o3OTzsoOm9/0U7CsgO1l2ylYVpC00RPRcGq7UxlxjH2U7b6KfeQuzmXn4Z1JHT0RDdf1uo7jWx9vs63bt457V97L+n3ruXuFw+iJwe4aPWEYBmKgoH0je2/FN7e8ycubXuatLW/x0kZ7r7SMtAymDJoS9/mX8SD5YbpgM1Y9oxwAPoHpqqYHoSngfVACwCZU8S7qYPntpHGxazLmgXi5B3hVsvagnOWg1Ol8DkqA6RbGYo0RCORPVPIFIIvGH8WrBJgajdvIwfqbC2Qo1ku83LrvVdeoMAKxFBmXYzV+CeQ6/PwXWYUBU1yjwgjEqmdUm57BTEylc6oJXOYaFUYggq8wmCBZ0/DzEqoKYy9WmULoloYajUs5u+PZSgC48/BORv1v1M87jTV0adKF/OPkkdvuYHyf8WQ1t+9BrNy9khHvj1BGT/y23W8TOnoiUjyGBzFQ0DK9pc3+j+/+wZhPxih1i9f0vEYJMN1ARloGhQMLlQBwxooZTPnSPjLewGDKoClKgFlfSH7ACCB4FZSh1M1B6gSY7KYH4SlEzZ63k/5tSVgnKw0g3IJJAy5DzZ7Ln2M3KYxwbdMDUf1yo3YDlD/HClAkrBqN+7D+1i4CRWIqf6eDJeHcgWALBiNQ6xnlz/E+WUzBrVhrkVeyNkLtHn139RrnTrw8AIrEtC2qCmMsQknCaTT1CieJ6c5y+yO1ZiRHsusWg5HmSWNG9gxFYip/jnYN2+Ed6E346IlIaduwLb6BPkViKn+OIa2GcFWv0BPrksngVoMViWlZVZlSt3hp90s5uW3wZtRuxx0BI0AHcoGPQ5zxriuaHoRC4CeNUagjQwJxR9ODUOSyq7qeMZR8yv1NDwRfgZI9D+QAKQxDcDDEORqNexBsJLQk370qjEC8vEvoUUI7SNboiegogZCjhOrL6ImrUJueBfKIVmFofglE0sQmmaMnIqV9o/bKyJBAkjl6IhrCNbHJbJBJ0SC1SY7bGN1jNCe2kScPHaFvi76MOXZM0OP1Aff8BqzajstRB1WD1Y59RD14eYDJbANuCnL0I9SMtDsp4DPUmqkaHqo3TQ8EDwLvOh4zGEe+MoZDo3E31m7VfMdj7ldhBFIAlDrY/RhJHj0RKVaS8HLkOkCL3Vh1je5UYQQi2I3BNUGOLidDqzA0vxy6NOnCdcfKzd4tkj16Ihp+3/73nN3xbMdjyR49EQ1je4/lmKZyVcWR0RNtGrZJglfR4TE8+Ab6SPfIrQQs2WrJkBLSPGlJ8Cx2uCdgtBiNs0+NUGtb3Ik1JP7KIEczyKB+fGMELYALgxytP4NjrHEmzr2LTaWBj0bjfgSdAOe3hPr0nfZwMjjM3bXWgMwEe1N7KhmFXD5h0RBVnupeTEYHOdKYcqWhkkZTbyn3lysdOGvYU75H6ZTqVraXbeezHZ85HttfsT/B3tSeL3d9yXf71RJvv+lnT/meJHhUO17b/BrlfjU/WOGvoKyq/pd+uydg9HE6wbuvtQAW8Eg9CLYMJgL/F+Rof/YqsyfdyizURho1DMcX9OXCPQQbZ3KEuygMEkxqNG5EkIq1uxgsaTMBH39JoEe1o5g2+JkHOLeKM3kYoYxTch/WOJPiIEcbAvN+HhniZgTXAiODHO1OmTJOSaOpt9xXeh+r96x2PLbop0XMWTcnwR5FT5VZRe7iXPZUOAdUc9bPURr5uJFg40xqmLZ8mtLIx42U7inl4TUPOx47VHWInMU59T5odEfAOJV2mMwl2MuDxfFspTBRLtWKQk7AxBfmrHH4lFEh7sJ5nIkdkwcQyqgQd+E8ziSQNPzMpaQe7cpofu34gFNCHDcweRxBx0Q5VAsMynkcQvrYHFiAcPHOlqBFkHEmgfQluLTfHVgqjHAddS+qDio1mnrNOz+8w8JvF4Y8Z/aa2SzbuSxBHtWOh9c8zJe7vgx6vGZkiDwqxE1E4uO+in2Oo0LcRCQ+rt+3nntWyr096xfJDxgFHiqYB3SQjrwE7JNsE/AF3b1LLoLM6t0seRf0GeQGFSazfh647TYEAx3GmVQAz0m2JsAC7qFRYhyLEh+Xoo4z2YraxbY7ZcxOiE8aTV3wcRbWaI1A9mI9KwNpA8xlYcgEXPLwMQGUXdBVWA1iAsnGairjVh5DVWH8B6thTyDXuDZJaKkwnkdVYcxD7WJ7H4X0T4xjGk3s2XJoi+Oogz91+pPNVmVWMXnJZPZW7E2kexHzyY5PeHr90zZbk9QmnNbuNJtt5+GdFCwrwG+6U2LrtAvarVk3+jTvY7OV7inlodUPJdK1qCj8slDZBT2pzUm0SG9hs72w8QXe3OLunpehSH7ACHnA7yXbSix5zNWS3YPJMy7MnhvA40AXyb4QwWXA/ZK9ZuC2u7LngqZYcjd5nEku1u/jv9IV/djrwuz5FHpiIj9d/MBlwHBgo3RsBL6gDR80muRjqTDmID+zDcZiqQHkVPPvWEXwFnrJQnA8pjIqowy4BKtmWh4ZcjM+3DU5G2pUGBdI1o1Yz8nLkJu3mTzKFMd6zeRiqTD6SNZ3gEsxFLVMI/z8g+k0S4xzGk3sqDQryVuSx74K+z7Epd0vpXBgIf/X0b4Xsa1sGwVLCzBNd00n2lm+E7FMKEFgbv9cigYX0a2ZXcn/xY9f8MS6JxLpYkSs2L2CR9Y8YrOle9IpGlTEtCHTaJra1HZs7oa5/G/b/xLpYkQs+HYB7/5g76vYvlF7igYXUTioEEOaTlT0VREbD8ivoPWD5AaMgt9idcoL5ABUjzoQLATkb3obYJ6rsuc+bgbOk6zroToI6cAEQBaTDwWmxt236HgY6C3Z/o2Xe6q7AY4EtknHr8UXtPYl8QgaUsUCUF5qrAHggp14GIWcPTeZSSH1o6WY5teFpcJ4BlWF8Xe8zEVQhoeRII2HMSnAxxmJcjMs02gJLEBVYdyEYFn1yBC5daGByZMUcXRCfIyEQvpjKrXolXgYgWAngv8Ad0vHm1LFQoRjc5zkIBiBqsLYBoxE4MdkKvCWdLwXh5QEqEbjeh5Y9QBf7frKZstqnvXzqIPcAbl0bGTfi/hw+4fM/8a5IXUy8Jt+8pbk8dPhn2z287uczx+O+gONUhpRMqSEhin2x8yjXz/KFz/KAo7ksbdiL7mLc6k0K232Cf0m0CujF50ad1JGhpiYiGWCHw6FmlqXWNbuXcvM0pk2W6qRSvHgYjLSMjipzUmM7GZ/PT5YeZDJSyY7NsdxO8kLGIurAz+5btHgRoSt1fo4wP5XDqe5JnsuyMZUZFMVeBhZPTzeGhmSwihArk6+zTXZc8HVwCjJ+j1WttxKsU1mG4bDQHCT2S7Knt8HDJJs/7MNAC/gA1DqYRviZ6HOnmtch0E+cJZkXQnc/PO/CliJOs7Hg8lcBO3j62BEGBzmCaCrZH8ewaM//0vwD1Ak4i2p5DlXND0TNK0uPZCl+LkU8EnAvyehzhUeAEyPp3sRM4WeEPD/buEHRiGq5whbScJLsaT8gYyuVs5oNPWCj7Z/xLwN82y2ZmnNKMk+MuqgaWpT279rmLlqJst3LU+Yr6F4bO1jfP7j5zZb92bdubXvrT//u1vTbtyadavtHL/px7vMy+7y3QnxMxSmaeJb5mPrIftj5ayOZ3FelyP7Lmd2l7luigAAIABJREFUOJPzjz7fds7eir3kL82nykz+hL2DlQfJWZzDYf9hm/3GPjcyoOWAn/99Q58bbP8GWLVnFQ+ufjAhfsaSZAWMNU0PjpLsC/DypM1iZc8vwY3Z85Lqxgxq04Pbq+cYHiGf9Q5zrqzsuVCkrInFanogZ40tCac8ANzLv3Fr9tzHRag7FDtIdRwAXoRaz6iz5xp3IfgtJvmS1ZJwCumZKHgMeFY6tx3wZPW4n+QRTIXR0FEKfgsgd5w4ka2umGHrrMIQ0jNRUEkqI4CfpHPH4+NvcfQvPJYKYyHBVBiBWEnCkaj1jLMQyv+DRuM6tpdtx7vMiynluXP7qzuKWc2zGNd7nM1WaVaStzSP/ZXJHVOxZOcSHvv6MZst2I7i+Uefzx+P+qPNtr1suysktnO/mcv729632To17kTeAHUP6Pa+t9Mro5fNtnTnUv7+dfKbNk9bPo3vDthHgZzc9mQuOeYSmy1wxzGQ+Rvm894P78XbzZiSnJcI56YH6yBIFza3Zs/LeBiU1u+vIXjA8XwvzwOPSNaWwLPV7fITj6BhdXt7uemBF8E7Qa7KxTl7nrwGFVPojqm0fjcxuIo8vlfOt7LnowBZ3zC6umGORpNcgqkwYBxCUV3UMAaQ+8X/AYM7Yu1exARTYcAochTVhZUkTGEYatOz3OrGP8khEhVGIHlswpJ8yoqMJxDKTmsiuQ8YKNnsKoxAvLyLujPaBFjo2qZnGg1W85pJSyYpO2vDug4LOvB+5DEjleYx3x/8nqIvi+LmZzh2le9yHD0xod8Ex4H3YAXERzexK/k/3vExz2x4Jm5+hsOpeU26J52SISU0SW2inF9zrHGK/fX0iXVP8NmPzvMnE8EL372gzPFs27AtvoE+DMNQzm/fqL2jxLbwy0K2HHT/yJAaEh8wWk0PZDngYTwM+1nC6Xydu7Ln4udmE4FsIp3LcXp5OMLNqNnzU1FrORPFLKxgL5D3yGJa0CuOZM/lBhXJyZ4/QhpVPAvKeIw78fJK0Ous7PklqPWMD+vsuSbJBFdhCKWu+wiC/XgYBhyy2U2KKOTkmHsZDkviPRdZhWFwB0Kp6z5CPmtRE4geTJ5lqlLLGX+iUWEEIngVlAZc1lzhZDQ9i06FEYgX+FCy9Wev0lFbo3ENj3z9iDIeo0ezHtyUJe8/HMEwDLwDvXRoZH/MvL31bV7Y+EJc/AyF3/RTsFQdPXF2x7P5S+fgI3cbpzamZEgJ6R77Y+ah1Q8ptZyJINjoiZuybqJ38+CvW12adOH2frfbbH7TT/6SfH48HPzRGy827N/APaX28RgePBQOKlS6ogby+/a/56KuF9lseyv2MmnJJKWW060kNtAS1QulKuG8lQKWRnCHMcAayfYHDG6LhXsRY7UWlxfKSjxczCRFgmQnePZ8csKz5z6GA6Ml63ZgZJiXh5rsuRwcG0nJnm/lTuBEyfo5KFI+FSt7Ljew0NlzTXKJVoURSAHLMZgoWVPxM59iWsXIw8g4xGygl2R9DS8znU63IXgOeFqytqUiwU3PgqkwDEQIFcYRMrkdWCJZj0eto44vwVQYcLWjCiMQQSVWglR+Qxvr2pEhml81i35axFNrn7LZaiScDTwNQl6bkZZB4aBCUgz7Y+auFXfx9d6vY+1qSOasn8MnOz6x2To36azsWDnRM6MnN/a50WarMqvIXZyb8JEhJctLlNETp7Y7lWFHDwt77V87/5U/HWUffbKzfCd5S/KUXdd4cqjqEDmLcyirKrPZr+99PdmtssNef0vWLRybYW/34dQt1q0kMmA0wLHpwT8RzIroDoL94Jg9L0ZwUt1djABrbpVT04N8CvgoontY2fPxktUaGZKo7LmgB6Zj04NLEUS2R25lz+XfnZUUSFSDCh9/Rv2/3E0KIxBE2oYqH5TfXX/2KoGkRhN/gqkwYHhIFUYgXh4A5HR4Z8p5ClA1M/HAxxiscRmBbI5AhXGEJozFmtEYyO9YpcyjjCcP4aTC6ENxRFePr/7dofzuJuBTkgLxIZQKQ/ByRPcQbEZNErp7rrDmV0mwYCJ3QC5dm3aN6B6DMgdxbS97fq7cX07O4hwOVh0MclVsCTZ6wkmmGYwRXUdwevvTbbZtZdusus4E1TMu/HYhb2x5w2Zr17AdYqBwlHA64fS7W/TTIuasmxMrN8MyY8UMNuzbYLNlt8rmih5XRHR9MPmt0zxKN5K4gNHHeFDkihuJJGMeiOArx+w5PJeQ7PkBx6YH7wAzorqP4CnU7Hk7KhIwcHsmDYCFQIZ0ZBqC6KaKZnIbTtnzrQnInhfRuXo2nf2JY3Al+XwT8X2s7LlTg4pxOnuuSSjBVBgGtyGUv7NwXAXK38E5CG50OjmmCPphKs2xrNET4VQYgdxRPWZJTRL6EMr83thjqTCulKyRqTACEawDx6ZnjydkrnBdVBiBCF4HZfauO+cKa36VBJMrOu1ShWN0j9Gc0PoEm23jgY3cuSL+ueRgcsVb+96q7FKFwjAMCo4roGNj+2Pmg20f8Px3z8fE11Cs27eO+0vtav4UI4XiIcU0T5PzV8EJtjs8e81sRXYcD97c8iavbLJXOGU2yKRocBGeKEKpzk06M3nAZJvNb/opWKbKjt1GYgLGQoZgKkXzFT/PrYoWK3v+omSNf/ZccCUoDVGOzK2KFufs+emsYkLtHIyQndyLOnriMzoog5rDEzx7PhHBObVzMAIEqVQyH5QkwQN4le9GJPfbjKGz55qkEkyF8SreCFUYgQh242E4KDvtMxAMrpWHkXBntaS7LiqMQAQrgFslawowB0HrWvkY2c+tuwrDfr+FwOOSNf5zhWOjwjhCBybiPFc4sh1XjSaOPL72caUhilMdXCR4DA9TBk2hdQP7Y+aVTa/w2ubX6uRnKEzTuSHK79v/nguPvjDq+zVLa8a0wdNINey9Fe8rvY/Ve+QeabEj2OiJcb3HcVzL6Mde92jWg5uzbrbZahob7alQ+6fFio0HNipNj4J9NyLh7I5n89fOf7XZdh7e6djYyE0kpjOnn5/wSA0X/OyjgLqIwS/D4zD7bybp1UFMPPgUD3ahsp9tP8+tipY7OMBUTqeKTtKR+FXACjx4eBz5xSWNDVxHhfNFYe+5jikMxCTTZjcilM/VjoZ4lM650IIVtb6jl9cQDMCDPYVVFbfvk0ZzhJmks5upwFSb3c8aIpVwyhTwBYL+eKQRCp4odvmipZJ0PA6dhv0R1ak7I5hNIZ8hJzlT4yqvLcMj7WL6OSTNCY6WG/DwsGItpQHy6KhYYbIWD0NtNg8/ksd3Qa4IzXVUUMw5VEqJDT8mVtIjuX37Nb9qTmt/Gqe0O8Vma9ewXcQSTpnMBpk8ferT/HTY/siUR1nEkgqzgqt6XsVVPa+y2eWup9HQt0VfFvxuAQcr7Y+Z5umR7/JFS6VZyZRB9ubLBoYyKiMaLup6EQMyB+A37YGV/O9Y0jClIY+c9IhiC9ahNhIm9p+oNMEBKK8qt323ysvLXfM8NYATsLKF34LeSdFoEkwFVuKmE4RpPKFJNm8BZ2KNVpibZF80ml8TXkAAs7Ga32nqJyXAROBeVNVARCxatGgp6lgYjeaXyP7s7Gx5Xm5tOQd4BfgCq+la1CR3mLNGo9FoNBqNRhMZ8gxojeaXiqu+6zpg1Gg0Go1Go9HUBx6AWpbPaDT1CNM0XTXnVgeMGo1Go9FoNBrXk52dvdo0zTEQRZdijab+UTR06NC3ku1EIDpg1Gg0Go1Go9HUC4YOHfo4cBZW/w3XNAXRaGJAKTAsOzs7upFHCSAxXVI1Go1Go9FoNJoYkJ2d/S7wm0WLFrX2eDxHmaap32c19Ra/3+83TXPr8ccfX7upCwlA/4FpNBqNRqPRaOod2dnZPwI/JtsPjeaXjpakajQajUaj0Wg0Go3GkcTtMAqOx8A+ddRkG4L/1fJ+Z2NgnzhqsgbBV7X2MRJ8/B+QYbMZrKaA5VHfS5AKnIchDZ82+QTB5jp4GZpHSGMr5yo/N4WPyavFLMBi2lDB7xR7Y17nDg7U1s2wCNpicJpiN3kNUYsh2IJeGBwn3eswgpdr7aNGEw3TaUYZf1DsabzDJH5yuCI0RXSmihMlqx+TfyGorKWX4RF0weAE5ef24SWG1aJZRSHHYWKf9myyB8GbdfAyPIKBGPSUfu4uBG/X8n6/w6CNdL9vECyqtY+R4ON0oLXNZrCBAhbX4m4GgnMxSLNZPSwhn/W1d1KjiQnO30+TpQjWRX03QVMM/qjYa/tMjpRga4HJfxHsjPp+wZ7J8V4LijiaKmXuX2zXAtiNl/g2iIn1WhDbZ3JCSKQk9SAmTwGNA2x+BGcheCeqO/m4AJN/SKXOu4DBdXUyLCbNgQWSbQdFDKpFsFUETJQ+x3IylD/q2HIdFQh+gykNzq1kEYKTEZRHfC+Bh3KeBc6WjjzHHTxfd2dD8iMm12INUw/kMeCaqO4kaAH8B5NjbHaD8XVxUKOJionsQ/BXYJTNXs6/gT8TTYOHmTRgJy+hPhdLEPyzjp6GYzsmk5AHbJdSiDWEPXKK6Ewl/wVa2ewGl9TNxYjYiclsIDPAZiI4H8FLUd1J8DvgbUxSAqwHqOUQ5agwMYDnCFQVmexHMBTB6qju5eN2TGZI38T1VCVg/dVowmMCPTC5U7Kvp4Qh5LAnyvvNwuRSyfYG5XF+hlprwbnASOnI61hD2CNfCwQNgZcwGSQdKY77WlDJNmAySMn4VQjAF9W9gq0FcEHtHYyQVHZR6bAW+PgbXv4V1b18nI7JWyCtBR6GxsDTuJE4SapgBQY3O/z8pxFSlB36Pl0weVSymsCVCL6tm5MR/fyFoPz8NlQyj4W2X364+/wBuEOy7geGcSuH6uZkBHQgB3UoaDZQEuWdJqEGi2tpxLW1dS1iBH7SGAXIRcJXI6QX7tAYwBMgBYvwKl4erIuLGk0tGAPKS/wf8XF7VHfZyT2oweJndKCgDr5FhqCMFIYB+6Qjefg4K4r7pFLJfNQXhIfwMr+OXkby8zdicAX2lzPreSHoGsV92gLzQFojDMYhKK2zn+F//jvADMnaFFjIPTSK4j7HY1IkWQ8DwxDsrZuTGk2MENwNykt8d8r4e1T38XEVKMHiNuAKBP7aOxgx1wNrJNuf8EnJ/vDcC0qw+CkdELV1LGIEZeCwFpgUIJRkf6j7pFLJc6hrwQMIXqirm2HJ4zvgOslqYPIkRZJ6MhSCtpjMRV4LYCz5rKqjl3ElsTWMXv4OPCtZj8IKGsP78ghpWFnSTOnIvVFne+vGTcBSyfZbSiPMnE+lHfAk6v//mKizvbXlOipIZQQokoqbEZwX0T0KORV1t8B6OExUXhTjw2S2Ve80yNKGhxH0jugePsYDf5Osm4DL0S27NYlGsB8Pw0BKHJkUU8jJEd7jQmCsZN0FjOC6BA29zmctKIkjDybPMJUOEd5lKiifeTkZSrItfnh5BXhIsrYEFlSvSaGx1rZnQPnMz+FlTkx8jIx84EPJ1p+9RDYc2lJhPAekS0duR7Ck7u5pNDHDpAGjge8k+0WICJPZhfTFZKZk9WMwEqEkqeODqN5EUNeCaQhOiugePi7CCjwD2UVqAtcCwdegqLU8wLMI2kd4l2mgfOavgAl19C5yBP8AZknWllRGtRY8i7oWPIng6dg4GT+S0fTGOXtOBNnzrUwHfiNZFwG5MfEsUqzs+XBQMqqTw2bPBR4qmAvKH8nfEUowHV/y2AS1zJ4LMvHzLLKs2eBmBMti6mc4vLwLTJeskWXPCxmCqVxbCYyoVZ2ARhMLrJpo+ZmYip/5FCsZVjuCLsAjkjVxKgy7L88BT0nWdlQwN6wiw1JhyP8HiVNhBJLJ7aDUlhzPVqZEcHXyVBiBWHVKF6N2lByLj4vDXB1chSGUYFqjST657MLDcFCCovsRklReRtAQP/Owl1CBQSFe/htTP8MhHIMia/NEKJsndqbQHVPZVTUxGF29Y5Y4BE+BkiBrBxGo83z8EbhNsu4nhWHVO5iJI5NbQUmQncDWiOS1eaDECF/TiJti4lucSXzAGCx7DlNDZs99/BkUSetuYHhUNXexIp+1GI7Z82fDZM8FcIZkW4n62RKD4FXgAclqZc+FkkmuwcDaIe0i2Z/Hq7yoJoYsCkCphQ2dPZ9Os+pFoYHNbpCDUOS6Gk1iEcwCRXbZmXKeAqlhVQ3uUWEcIYOxoDQjO51V5AS9xso6J1eFEch4DlcnCeX6pwnVNafOuEGFEYhgMwaXISsnTB5BKI0kjuCswtiIVmFo3EwBn2Eof38NgYVMp1mIK2cBAyTb+/RR5NiJQfAgKLLLzlgBWPC1oIpnQWoOCXdHXXMXK5owDhQJ/umsCrFLKOiEydPIn9PgevIVuW78Gc9hcNwwmljdFNMZwW9BKQcpw5OktaAWJGesRgHLMZRsQfDseRGdMR3+MAzGItgQP0fD4GUB1ktNIG2pCJIxsZoeTJKsB7DqP6Lv6hkrOnA78KlkPR6CZM8Fd4DykrSehlE2moklw6gilctwyp6LIM0xDjEblJekf+Plnjh4qNFETyOuA76WrOdUv8CrbOVO3KDCCORWDuHhEpCecSaFCH6vnG/Jdtyhwggkn/UYyjPOSp4JJXkWXIUBNyVchRGIl38Dd0vWZsBcZkrJMwBBtoMKowKPVmFo6gFeSoBXJGtPDim9KCwEI4DRknU7cEmtunrGjquAbyTbOfi4wfHsrdwNSofsL7Aa0CSHOzhQvWGkrgVWcs2O9R49B7mbKDyCl7nxcjMsVrddeS2wyi0EHZXzi2mDUw073EgBX8bHydiTvDmMXh7G+g8MpDPlUmCY7KYH4RkLyi/8d6ySAsNgTQ/ghoQ0PQiFpWMfiZo9v0PJngvHQLICDyNr0X0stuTxfXX2XC5Gn61kzwVjQQkkN4ND9l2jSRZW5nEkVmORI5jciZBeBiwVhhxIJk+FEUgBK4EbJWuwpmc+UALJ5KkwAvHyPDBbsmYCzyBsgWFwFYYI8qKaWHKBjyRbNjulpmfTqwNJVYWRSwGfxNNBjSZGmKRzFShd7EfgkwLDKfREbWroBy5FsCV+LkaAYHe1xNb+LDe5k0KGSOeeA0oguZsU16wFsgQzFT/zlLXA6qotrwUrIOqmP7EnWANMVWJrUM7jWP1aAlmI4LF4uhhrkhcwWjhlz/+MsH2Zkt/0IBSCMjyMRM2YCHzV0tPgha7PVeu6k4+1U3u1ZLVnz6dVS1Wdmh4U8FncfYwEK3suy1Dt2fNC+jucUwVcjlB2KDWa5CJYhMFEyZoGzKWkWm7kVhVGIIInsJq/BGJvembNppJ3Q5Ovwggkk5txanoWKD11owojEEElqVyM2vTsJnwB0lOtwtD8EpjEDnBojmcyC1EtPRU0pIoFoEhVS4j3vNdIKeALDEXK3wA/C2xrAY5lC1eRr+xQJgcrUJLVIp0gQHpqrQXyunegum7RHWuBFfjKapHTKA2QngomAn+RznHaoXQ9BnAClhzxW9SC9vhTyBD8fIQ9g1mBh9Pw0xx4DXtgux9qMTsq3vgYjckTknUbMBCDazAplI6tpRFDXKddtuqmxkjWD7CyPM+D0kH11epdSPfsylmZ/vdQEw33YXUK/AKUDqqTERTH3zmFCizJWifUDKjGXbyFNfNzFCRcDmP8f3t3HidHVS58/Fc9M0kgCEmAxMgmgihhUZFVXwTxqoi4XSALIWxBQ1jCGsg6fXomK5EthIRcZRMCSZCrXkFA9LKJsioKBAVBATESvCFEIllmut4/Tk+m+jxVPd093VXV4fl+PvzB6e7KCcz0qfPUc54H2y/LPUf2Q4ZyIit5APnzfi0mIl0pKfPozzqeBPZ2XrkUe5PzDDKwdlpqAmtdDHtii+BsGxjN43E0Pu9gvzODgbUNZPhs6poy2ycR/0PxzeUabAn+Y5DVYf8GfCqBwFoWe/7/OuT6pBrHHOzv+pUk8ZQox/SQe7HnsUdwrkC2TXiMoXwutmqi5fGwbSTce7E7GMpoVvIgsproNZiU9ZQ2bEP4vdhEWriFTTyDeyzB49SYK0v3rJ2P0snTFAca7FrgsZY8j0BRBdUNwGeIv7L0sdjU7Cepsvdv0k8YoZWn8cTTwhbyLMFGG9w5jkvdZhEgy43I6PkQ4G780KIHx6dus2hdiIyeH45NX3K/oF6lbwpTOG01wBNBnK85D1sYx/2Cup/K+08qFSefvowFUeX0eFbyK+Rm8RnKqTwdt4msA0Yii57NAO5FbhZvSd1mEbrOsLgbF3uGxQbWirMwPCambrMIXUXPrnZGB2B72LnnHG2VVc3CUI3KZybwC2d0H2yA2d0s/h/NDE/ZZhHs/dZYbNGpoBMKa4G7Wfwtg1KSkRdkW4aMAlHldBabuAd5hv3m1G0Woat9lNvCKoPPD8hzBzjtNjwuSmCzWBPJbxgBslyDrAC1OzYfOOj7GHHuMT36Mx5E480DkM2azy+USk6f7iarbgUoNyJhN2WTeTuWeVXKNtx2N7MecJDzzjdp4RTiacKrVPXs75o8wyJ/N+1CHHe58XIZ/oDHBc5oC7Kx9Etsxdkxzapydi263hkdgjy3eBdZFsQzqSoM5RIQ5xH3x1aTDMpiRB9HpRqHXedHAyudV9z7Ah+PsYXWY+lji02dQDlrQRMnFip7po/hGTzxpDlqLXDPwKeHLcbmFsD8ILaSbdCdZBu3DVE6NoxWWAWooLCDsukysXDWxj3PWCy51hPlCq8AVcxjSupbT2S5G5uGGiWPxximisVDqXQyPEHPVe6SaT1RCfsdWCqtdz0ZRqQ0CyPoHGTRs6DX6SN63aaLfYIyEpmREfQAw0SlVKUajylUPHXPMxa7IrHWE+Wya8H0ku9JqvVEJcILYAYl14aoMmEFMINeg5h779ZYejaMhjXYRSvsSc+/SVPRg1IMz+FFpoK9jCwsk062ApR7JrPLz8iW6G+YLpOQDbe7zCDL/XFORqleM1yOTd8M8/1EW09U5iyig4QX0CpS49PHsJ6m0LQqsOeThzNFFJZJH8NrRJ8NXEkLoxJuKaBU7RgehMgAyBPI9mfpZJgH3Bfx6n8l2nqiMuORxy26JNuGqFw2o+dE3Irm1kbghEZvQ5SeDSOAx36Ez2kV9rB9Y/D5RMQrL2FSHyWxbAPwYRGv/o40R8yLDcIWlAmT/htSpVxz2QbYI+LVxvmZbmIo8tgBQJ5MA/098nwct+2EtQZSUqG2PFHr1qtsaoBNr1Ll86BQHVV6NvHWE+UyfIAtYy3Yiai1QFYhTbPotaBPSirU9kJ6Noxt7IPP/IhXPwwN0q8kxwnIw9NdjsaIszvptJKZyKavXSZj+I84p1MVU+jzZs8VhbmBGewW44yU6r33WAh8NOLVy2mLvPFPD1vC/nZgm5BXM+S5A8OguKdVMdvO5HvIEvZgb4CWbm4ZkmbhJey7HIrtjanUliHHhdiqkWHGYkSP5rRaCOwZ8dqVDbQW3Ab0D3k1Aw2yFtj2c9+LeHUwGwPtoxpUOiZv6Eee24CtS7zrBHIp71vSzh6Fm4dS5tDGYbHMp1o5vkLpCou2r6QRVazSZhrwxRKvD6SDpYWnqUqln+EMbFuPKP3Is7zQcD3NrkQWNgjaBdkUOV0MzXSwFNi+xLs+D1wS04yqM5Mh+CzBLc5WbBKGL8U1JaXqpo2D8HtsobUYI/qPpovhO9gCPlHsfbUpeV+dBlcDnyzx+q6Q8rof9h5yKZTc2B5NGiuXVyAdG0bb68lND3gG2WT1agz7xjWpihj60MlSKDRP7eaen7MtQwwDYppZZWawE36geWo39+8xBLgptRETw+cg0DzVWgeiGMihrMTEMieleqONfZAtEDqQB+334r3IbI3k2SyMM53Rt5Bl4o8jl+IqqTALWcL+eeR5xnaMeF86GDJsYgmynYn7fW+zNdIfJFQqmmEAeZbhtr2RP+/bAEsw4n3pYO+D3YJ+YWvBMOCaWOZUjRwjkIVgVoGoTns8uRT3X13JbBAPgp5DnmeckfoHRiUkf7Nvf2BOd0ZX0cIxIBqsbgXcmdLo+WXAgc7YE9gbih8747uTxhRbQ4YOfgDs4LyyEDgSudn6ckgPzeTZ9IVbkO1MzqWJr4M4RzqJXMknkUolKyoLw8PQwpeRZeJPxXByXNMrm+EjIVkYtoS9LRO/yXnlctpKPolMRngWxjvA10OKnjUDy5hV8klkUqYBX3DGngc+B6L/5RDgdpaXfBKpVJotxN5/Bd3FUA5DtpY5kOjCOMmZR39gGfZ+uJtHa2Et+IfzidPJMSam2ZXPZuS5Tw7zeJxMJnQtuDLFa4HbGmQNTXw9osd8WteCHiW7YTTsiS/SjvJ4nFRodTADRBXLvXivZKuE+OX4KjDBGV0DjMCwkb6cjqwAdVwKIyYGOMoZe5ZtuRjDu2QYjttw22cGbaJpeJI8bD8ctxfaMrLcWGiy6ka0MvjcykwRZVcqLcKyMB5kb+YwlTfxGI0sE78Qw8fjmV4ZbNrOEmQWxmVk+WmhTLybFdCXPMsxbBvLHMsRlYXhMR7DK4U+W7c7n9qZjdwsPpOk8CwMW+nP8G/6cw6wwnn9SFYwOZb5KVVLNlthlDP6OnBKidYy52H4ZhzTK9s6FiALEj7A3lxWWAtOxe024KdwLegMXQvmkuU+WnkcROZXX/IsS9UDI8POERl545nOXyJ6zO/CRm4K+UzqJbdhnE9fYDmIG4FZm1sdGPK0MIY0R0xs0QP3RsDH43RMYZM4mbfJMJI0R0wMRyJLSdu+khcWNomtPIs8j9NMnttTEzExTAS+7oz+meAm0bAUuNl5z2A2cZtGz1XqRGdhnLi51UGWB7BZDkH9geVc4USik7KSy5CFtIo3iYa5wF3Oe/YkLecZo7MwFpEt2iSGtQz5KjkRWExGdBbGWRj+ANi+wpnQvsI5jAgsKpVebeyHzzxntAMYubnVgeE1PBHNN/jxAAAgAElEQVRM9oAbMHy4/pMsg2EkcKoz+iYtjA6sBfeB+LtuQ7rWgu8ChzijTzCUbODf5wA/d97zUd5LyVpg7xVvRq4F1xbuMbuE9Zg/lhzn1HN69ZDchnE1VyCLHjyCW43NRkxkk1WfRYlHTGzRg9uRRQ/mk+VHRSPREZPkC1QYBmMbp7qbpbNEA3DDAij6ZQAbMUk+em44GGh3RjeQYTiGtUWj/TkbeMF575G8wKQ6zlCpyvSchRHUCvzKGduPtSnomWqzMM5zRtfQxEinhL1PH04H/u68dwQ5TqvrHMtjkFkYz7EtFznvWkOGEeCU5/eZR5u4UYpb6SyMoFaexxPpVl3nGd0bJaXSx7ANeZYjUzinYPh10ViWO7Fpq0EDIQXF8dr5KDJwlsdjTMhaMA141Bnbj7UiqBg/w7HAuc7o28CIwpPervflgTHI4xYjyXFKXedYjhXkCM/IK05D7e4xL9cCwwH1nGKtJbNhzHEcNgIb9DbNjMHQId6f3uj5DBDpmH+AyE1HWMRkz0QjJqZQ8VQWPbgRww8iPjWesOi5EV8C8bFFhJYiD7NfGNoAfGLh6alMsdXouUqH6CyM2ZuzMILsd+co4J/OK2eRE6lY8bFpOzKg5HE600N6U03hLTKhQcKFmMjeafUXlYXRFMjCCGrlSWCqM2qLns0RqVjxKScLIyjLYhANwHeC0FQspdJmIYiHC/eSjQikDeJCZA/DQxItjmdbTywD8XBhZuRa0MwoEP1Tzyk8pUzGDHYBkY7pQyAjL8iwCkLXgmtpZ+96TbNHtg2Re5//LkSsBfa4xXRntC+wLFXHLXoQ/4bRsGtIxNzH4zSm8WqJT0ZFz91H7/EwHA3iQOu7NDEcI6rkdX2mK2LiRs9HYkSaQVymIFtPvMhW4mlAt6joOXw3wej5DcjD7HdiRLSwm+E55GFlm2ag0XOVtPAsjMcYWqInnuFvwCnYRbibzyLaxe9H/RmaIbT1hMzCCGrlIWCmM9oPEioTXyoLY7rIVAh+7nLgJ87oHqzvsf1SfVSShVHsTOBPzthXCv3slEqnHGNBHF96EzgN9zuyywQ2YIPJ7u9Dkq1lwtoQPYIsDNltGq/jhawFJLgWhGfkXY0RhSGDn3sQmO2M9qeT5YmtBWFtiLyQjLziz80D/scZ3ZPo3o2pE++GMbpXyRVkxaJarDt67kZMzo49YjKTIdiUnuL/fh5nMl0sqsUMq0Kj57Ag9ohJG4dDUc44wHoyDOdSUUm0WCtP4jHNGe1qGRJvxMQwAfiWM/oaURHz4s9eh70RDNoZjZ6rJEVnYYwsStsJY/gZsv3GdnSyLIEy8e2EZ2FENYkPygG/dMb2QZaTry+bhXELMgvjphJZGF18+nIasmVI/H2FK83CKP7su2QYjVsm3md2I5eJV1uwNvbBF+2F8niMxoi6GMUMfw45z2i/BwwfquU0e2Q4HtmGaDVwUmhGXlCWu5FtNQYktBbMRK4FTzOorGNAWeB/nbF9gStqMbGyRWfk3UCWW3r4tE8fzgDecMaHFwIbqRfvhnElc5C9Sp5EpvmEM/wt8YhJd98qtx/V98iKtJ1wNnruNo6NN2Iym4HkuQVb8j3oPFpFL59wNqXDjZjsQZwRE5ui5pa+3kQmcJi9Z+OAF52xr2C4oNfzU6pS1WdhdBvKJcBjzuhByO+d+snxZWSRrNJZGEG26Nlo7BOBoG+TK9mwurY8JoN4svASW5VZwMYWPTsJnJs7n/m08YmazLE8lWdhBLXyNDINq4U8SwtFdJRKB9uGaAluGyLIkRVBqHBZloFzphcGA0tiK45n+AiyBZsPnIYRQahwQ7kYeNwZPQh7pCoeJrRp/bs0MbrwRLenz+dp5mTkcYtxGE6s0Sx75jEVmZG3AnkmM9wU3iI8xXZBzGtBVeLbMBqOAXEDvoamQuuJctmIiRs9jzNi0kp436rzK7yOIbmIiccGbgR2c8bvwFR0ntJ+ccno+fBYouemUPnLpqp185hMq+ipVOo67wKjkSm2czR6rmIVnYVxZY9ZGEH2KeRobG/AoAvJ8Y1ezbEcMxmCz03INWZ8j1kYQbbomUwf87mOdj7W22n2yHAofkgWBmVkYQS18gieSB/rF1vRs95kYRRf52pkX+FdSUsVW6WsBSBuwB9imEhzL60/5xLWWuaFMh9y9EZ0G6LLMSJQH20cm2gKXQsuxoizzLXXm4y8oGm8gcfJyAdGizHs1dtp9qiNw/FD2hBlCm2IymV4GE8cC7B9lpNIsa1APBtGw84QWvTgrNCiBz2Jjp5X9mVQqTaOAJGG2d23qhKlIib1jp4bLgJx0/gy/arY5NmneGOQEZM4oufXgbhpvIdsFZtuw1N4Gj1XCQvPwngKquh9Z3gFOMMZ9fC5kRkiWFQ7NgvjVsKyMAy3Vny9LPeAKFCxTSEjo1/YR2pidqE6IqI64nkYnqn4ej4zCe8r7AZAa6s2WRhd/Mi+wkakUCsVP8NwECl+9snOcHEUqLSo1jI+pu7F8cLbEIUV0urZdF7GE/d3tlqyEdWSayc6I29x2Rl5QXYtcO/vtgFuKxSJqw/DIPLciszIO7fsjLwgn3bgF87oMBAp1Kni/uXrI8NAfLGYrC30i6ncODZhOAHPubHy8VlMS49nfHrDc6oN+rxKV9+qSk3jDdo4Cl9U8CpVfKC3PODPeAwvGvX5HZNEBKo8hodp4wv4DC4az9fxF3guH2A9P8EtKOHzS6IOs/cky1UY/oLn3CD6DEI29FWqthbTwkp+I343m/g10yrIwggy/BDDV/Ccp1j5Op4z7sP2bOK/cJ86+dxd9TWHMpWVPIHnBB2b2B55JqQ2OhiMJwqbrSfLT6u6niHPLEaziSNDXtu64qBjuTL0x+fkojGflRVlYQRN5m3aOZq8qFjbc5qxUvW3NuT+5gWMKDZYnlaeL9ynFW+s/B7OD/aGzZZ7FM9p+9GbtSDLHaFrgV/XmhM74LEYWFw0+gHRa7cSU4DHxFqwlh2o11oAg/FESm3v1gLDaDyOEK9dwVahlVZT4hDsDXblT/qUUr21Cfv7t1PSE1E9uh/7/yq+83NKKbBFL3xgUdITUb0yB/v/Md5iJUqpY7G/e09Ue4Fk+jAqpZRSSimllEo93TAqpZRSSimllAqlG0allFJKKaWUUqF0w6iUUkoppZRSKpRuGJVSSimllFJKhdINo1JKKaWUUkqpULphVEoppZRSSikVqjm2P8nwQWDrorEW1jGVN6u83oeAfs7oWgz/rOp65ZrBbnTQ5IyuxrCmquu1szudTgPSrXiLS/lXlTPsmaEZnCa0ANuysqqGobbJ7M5ifBBvMIENVcywPPPozzqGhLzyVwz5iq83lw/wHjsWjTXhM117lKqYzKcvq0N6cg7ldcaxqeLrGbYGPijGh/Eqw+msZopl/rnbAjs4o3kMf63qerMZyAYGOqMdGF6r6nrlmsWObHQaXbfwHlNZWdX1ar0Olv/n7gz0cUbXYFhd1fVqvQ4qVTseht1DxldheLfiqy2niRXsFvLKPzD8u+LrlUvXgnBJrQWGwcA2RWONuBb0QpxPGD8JvAS8vPmfTfwZw8crvlIbBwF/KboW/BHYs2azjdLJSc6f+zLwBHOdm4py5Pg2nbziXOth3qNv7SYcwtAJfBf377GWZeBsXsuzQFwLbmR1Hb+Eut0V8mdfUvFVFtPCe9wnrtXJhNpNVake2N+ZH+D+HK6sqtG1B9wmrgVz63qDYPUDfuX8uX8hxykVX8mwDRv4De7fw2NE7aYbYSO7Ay8U/bmb+AuGAyq+VjsfBV6k+O/xEh3sX7sJR/D4GvLn4PcYcSPXsxxfo0Osv08BA2o2X6Wq5wMTkT/v97OYloqvtoLWkGv9T60mGyl6LfhuFVeLWgvm1H0taGErwtYCw8kVXyt6LTihdhOOkGF37D6jeC1o41MVX8uwF2FrwSb2q92Eay++DaPhXmCeM7oNsJwr2KqC6wwgzzLcaKnHRAyP9XaaPfKZDfzcGf0o7/FfFV3HsC8+VzmjeeDkuj8ltV+op4N4cvY1DGdXdCXDcODbzuhqYAyGjqpnWI6JrAOGg3gq2o7h/1V0rZXMBQ5zRp8CLq16fkpVyv7OjATxHXAOOUZVdK0cFwLfcEZfoR9nVD/BMhlWASeCczPicy2GYRVe7TrgY87YPWSrunGqjOEJPKY5o32BZYXIebnX6Ucny0EEFmeQ5f5ezrJnWRZhbxiDdgZuppIgoWFXfG5yPmPXk2qfGChVa4M4H/idM3ooKzEVXcdwJDDVGbX3HfV8umj/7A6aGQX8n/PKBAz/WdG1clyMXAtepp+4d6u9qbyJx2jctQAW0s7eFV5tMeFrQTUB1cq08jge053RvuRZXvFaQOha0I7hF72cZV3FfYZxGjbSELQfa8VGspRFININ7ibL/F7NrFw21XEM8HfnlZEYTi3rGvPoj/2B2dp5JYvhf3s7xbIY1pBhBLDReeW7ZUfPDXsC33NGfeC0uqcHdM/hOTwucEabgdvLjp4bjgHOd0b/BYzGiP8+StWX4W/AKdjfpW4+C2kPTbWS2jgIn1nO6CZgNJN4pxbT7JHhQWCmM2q/+4z47guXYxww2hl9AzgZ979PvdiN6U+c0bDvvlLmY7Nsgh5mGG29mVqFxgF/csaOKQQWemafziwFBjmvXIXhx72fnlI1Yo/CDAfWOq9MwvClsq5hUxBvA5F6fQ6GFb2eYzmm8TpeyFoA15e9FhgOxmeGM7qBDCNiWwuyPADMdkb701nBA6Mc47FByKC/Ee9acBny6XKla8EC4BPO2EMMo703U4tDvBtGGz0fhYyen11W9NxwDjb6HvQ6fUJ/oerHsIpMSPQcFpQVPV/HtSAiKw8yTPxC1VcrT+IxxRntCyxnDtuV/Oz8QpQdEVmZh4khXSMoy2JgiTNaXvTcRL7vTAwv1mqKSlXE8DPgSmd0AJ0sK5wZLvXZZLMwiuVARE33AZFdIdksDDdyHFcWRpBPX04DXnXGh2P4To+fDs/CeItmTowhNTg4j3exN9Hri8Z9ZmP4TI+fj87CmFSjGSpVO4Y/I3/vMsAthRoYpT5r3wdDnVeWYripVlMsS5a7gaud0fLXAhvkkWtBK0/XcpplyAK/dMb2Za1Y56Q29sPncme0Ezgl9rUATgPxQGQ4pozMnRwjgLHO6FsQ81pQpfirpEZHzxdh+EiJz+0PXOaMdpBhFFPEI/v6a+UhEFGbnqPn9imke45nFS0J/cDYR/lu9HwP1vcQMVnN5SCeRD4B4pF9XM6k0ui5Lf6zFHkgexFGpG8pFa+hTAJ+44wehIzUuq4nySyMIEOeFk4C/uG88m0MJ0V+Lg1ZGEGTeRsbrHSLTVyNEU8Ou0VnYZzBNN6o6RzLYfgDnjjjbZ8cGvHkMPg5zcJQjcewHPi+M2qfHC4XTw6DpoB4EvkSW5URIKqHoVxC+FrgZnAEecANyLXgLrIsqOHsymPXgtHItWAcOZFF0m0e/cmzHMSTyNZE1gLDajKcBOLI1TW0iSeHwc/tiS+Orvl4jMWIjMVUSqatho2eu5Hj7SAiYmIKZx3lD8xUWnm0LnMsTxvh0XM3GmTZg67uTVsej5OqrrTUe13R87864ydERs9zHAfirOMaYERiNw/d0fPi84ylo+czgM86Y8+yLRfVfoJKVchWwhsJopLlBRi+GfqZHOeCON8SfxZGkD3DEpaRsSiy6Nk6FpKGLIwgw2N4ZJ1Rex4lrOhZdBbGZbFnYQRluQb4b2d0F6IyMqKyMDzGaRaGagDnAr93xo7gBXE22WrjcBC/5+uB4XWtXl9K9FpwETlxNtHKMQH4ljP6On04lSTXAvuErriKvc91tIuzidY6FoFYJx5gGHPrMcWytPIInjgP2498ybVgOXItmEOWn9ZnkrWXZB/GScCvnbEDIfSHIKzowb0QQ9GDUrqj5+5m7wxyjHHeG3XQdWYsRQ9KmczbZCKi524FKFv0ICxKknzRAxs9n+iM2uj5LLZ33ns0iPfaw+zVtBZRqh7sWWB3s2cjx4YPO+/dHz9FWRhB9gyL+90eXvQsx2kgKugll4UR5DMXuM8ZDS96tporCM/CaK3P5CoyFln07FhynFM0Ep2FsZAst9dvekrViCls9nA2ez6tGP7Dee8g8tyK23LO43wMz9R3oj0wvIYngvgePjcyw2n7YTiw8F0VZAuqJb0W2AKY7jq1Teh5xhxjwbmXhjdpYXQK1oKwAph78V5IJs9qrgJRTfVxhorARKolt2G0FaBGIitAnVcUPQ8vemCjFNX02qu1qApQPgud6Pk1yIOuj0CsRQ+itfI48kamH3mWbY6YRBc9mE+WH9V/kmXIci2IG5ld2Bio7DeTIcCNuD//HuMx/LH+k1SqAoa7QKQQDQSWbS4T352F4famTToLo9swWkGkEBUXPTPshS8yNJLOwuhmyNOnjKJnNgvjLOc9yWZhBEUVPfO5nDYOCYxEZWFcXOcZKlU7hhfxGOeMZoBbMZt7E3rY+wK3R/UdhToJyctyJ3CtMzqQjsBaYO/XloBozzYZIx7SJGU6sgDm/qwNbHLb2Ac/NCNvTGrWgvACmKcWtY8yHI89MhVkjzhU008zQUk+YbQVoBCPx7uj51FFDzxGY0QedHJs9HyOM9odPbdFD9wDsauBk6h364lKGOaCeDzeHT1fyWXIogdPMyh1rSfOAl5xxmz03JBhE0uQDWxvIMst8UxPqQoN5SIQBWsOZuXmymrpzMIIGl4oUhBV9Cw6C2NW4lkYQVN4K6Lo2SIM+6c6CyOolSeByc5oC3mWMIftIrIwbOq/ZmGoRmOfiN/sjA6h6zyjYSLwdef1eFpPVGIQFwG/dUYPYSU5AN7jOmAv5/V7MKJoTHKiC2Cei+E/uYKtyHMb8gx7PG2IyhVVALOrfVQ7eyDP0DZsG6JkN4zQFT13owgDsU+J7sD9gfEwZEWlpTQwwMPO2H6s5RbCf2DGEFfrifL59GEsiGIMIwuVwc5zxtfSxIhCCev0sNHzkcjo+TzgVuALzidWYM85KJVO49hEEyeBKIN+CYabCWs90YeTU5GFEVSq6JktYe9mYTwMhRuhNGnlITwxr37Yv8MPSXMWRpDhSmSZ+D1YzxJs03A3C+NMzcJQDas/ZwMvOKOfZwU3I4sYxtt6olz2fmsEsmXIpYW1INnWE+Wya8FphLUMWcttwP7O+EMxtyEqj10L3JYY/YGldLIMRMeBhm1DlPyGEWAoE5HR80ORB10fZG/RWywdbIrticiIyXHIiPm8QuGf9JlSKPErK0CdgiyIMJ7pvBzLvCplo+fuk8++INq3rCfDidS7Ca9SvTWdl/FEtNtDnvezrSfs73L62O8+98nndsgCDauxgbX0ZGEE+cwEEe3eB1u9MCiNWRhdfPpyKrLo2VeBHZ2x68mK9kVKNY6JrCPDCSDW+9FQSOnsdkkCrSfKE90yxF0Lkmg9UT77wMjNIhwAoqjbWzSn4NxiFJ92ZAHM/YBPO2MN3YYoHRvGcWwqnGd0K0AFrYIU/8AATOMNPE7GrQBVLMnWE+UxZUX1r0t96wnD1dBjVP9sWkUFNaXSKcsd2PTTaB4mkXLjlZkCJc9W2n5X6cvC6Gaf3oYVPQv6F3Bi6rIwgmzLEHmesdjzwIR4JqRUHbXyPDJbynUXhmvimE7VbMsQWWwryEuoDVFlwgpgBtnWE0m0ISpXdAHMoPScYa9SOjaMANN4FcSh5C626EEj9CrJcg/R54Ya6QdmFrICVJfn2LZEf8P0sLnishpgl2UYbohxPkr13iDOB34X8Wp6szCCbEbGKGTRsy7zEm09US7DKgg9z9jlzIZoPWFKBjLXg2ZhqC2I4fsQWbMg2dYTlTmP6LXgAfYWtTXSJ7oAZpe5DdF6IqoAZhePszCitkZDSc+G0VpN+NO5F/F5IO7JVM2LfPx/T8McdLXR8zURr97YQEUPNiLTT6yMqDamVPp9kA7cEvFdPK5LdRZGUAfvYTcjrjxN4tx3mr1L+E3C39k2hecWo0WtWw9j+EOsM1Gq/t6OGF+aeOuJ8nVgv38kj0UNsxZkWA+hWRiNtRZ4kWvB3/Abai0IlZ4No2EwtiBJ2Jw+DqJJZjoZDsYXh6e7jCInzumkk+FMbO+iMG20i6baaTUfe65IynMDRjRSVSrdVpAFPhf6ms98DB+Kd0JV8YDrgZ1CXsvQyRIMfWKeU+VsO5MlEDrXD7FWnM9Jpzb2gcgUvC9hOD3O6ShVV4ZjiS50dwGGz8Q5nV4wwOGhr/gsYCZDY51NdTw2cj2ErlsZOrltc8uQNJvDduRZSvhasDOkqEptldKxYTRksOkBpX64J5PjizHNqDqGARD5A2P5IQ2308awL/IgclD/0CaraWPbmYwt8Y496ekMgFJpYjgSe/4vymBgCctpimdCVcpxMbKEfdBBICrPpdFiZAn7oDMxomphuhj6kWcJsoR90LUYUbVQqcYzg10g0JdZagaWMovtY5tTNXJ8ntIFVAazqSHWgkuAr5V4x8GsTGF1VNd6FgEfKfGOs8iJoosNJR0bRvtD/yVnzK3wl8HnlkCT1bSx/SNhd2fc/XsMgBRHTGzE/A4Qm0H377FvqqPn7XwU2c4kj8yTH6HRc9UQZjIE227IvQFwfzePZIXor5cehkMLFUaD1iPTbCeS4ysxzapyOcYhS9j/E3n2aSGm5I1E0hYg25m4P1O2ZYgpualUKt0W00IHy0BsBt2f913YyPeI3lQmy/BB/LLWgs+zIrUVmqGNwwoVRoPC1oJLCn1h0ynHeGQF/reQ7aMW0i72CA0j+Q2j4VBkuul6MnyR8Cart6cyYmI4F1kW/jVa+ASyyephgYbbaXMtsp3JvTTzaeQZlzNTGTGZT186WUpYA/AMxyFzzDV6rtLNkGETPwARMLsBOAp5TjeH4ahY5lYJUwiYyRL2FwFnOGMePjczIzRtNVmGffG50hntIMM3QYxvhy2wlb4U2/AsjFU08ykQ/Y73Aa6OZV5K1cNKZgCHOaNP0cJ+yOJ438JwdjwTq4DNyPsB9n446PvYtcCtL5HD8P/imFpFDAPIh64FFyDXAvt3TuNxizb2wxfpph3Y1iDu9+UAOlO6FpQh2Q3jbAZiUzjdH5hzaeX3EU1Wj+SFlPUxsZuNuc7oJjKMZCorCW+yegm5ko/h42c4FdnH503gNKbxOlENt9MWPV/N5cABzugjQI5WHkI26NXouUo3j8nILIwX2YrzMTyHJ6oWdy2wO8QzwbJdj8zCuBPDwkKZ+O85r+1IB7elKkg4j/7ActwsDI9ptPIoQ5kE/Mb51IHA7HgmWCbDnsj/3rYi+TTeoIXRwD+c18/AcFI8E1SqhuwTqoud0X8Bo5nKm8BIZGuZ72LEvUSyPKaCOJ5lW4XYteAi57Vm4PaUrQVdGXkfdsZ/iOG6wlpwvfPajpDCtSAfuhZMwfBrhnIJssf8QSAybBpCkhtGjw3cCOzmjC8vlDy2TVZt4ZXiiImfoui5TeFcjt10dPO4lNbCTUN4k1UPn+tTEzEx7IUtEBOUx2M0pnDTYBtuX+W8J13R8xzHgYgKvk1zUQPwNsKj5+7fTank2RTOrDO6ngzDubSQupNlMYi+qDthI9HpSKvKcS7wn87oa8B3Av8+AURf1M+xIkW9a9exEETRr/vwmQfYvsKE9hW+gBzfqP8EyzCfvsAyEEW/ZpPlfoDCTfRpyMrli2jnY3Wfo1K1YtP5b0Te83a3vQlvLWN/T9JSHK+Nw/FpdUaL295kWYQ9uhC0MzZjLy1rwQRkRt4r9Ct6sngOiOrMR/AC0+o6t0qsYxFhGXnZQms9uxaMBt5x3nNRataCCiS3YcxxIYj/YC/jbqwMz4GInjcBN6ckYnIdiMXzZ2SdzUeaIyaGfthNr5vC2U7W2VgN5VLSGj037Iovitj4eJxW6PPZ9b58RPT82xo9V6kSlYXhMYFWsbEaB6Ln31cK37XJMuyPH5GFYQIbK8N6bJDQPcMyHcN/1HmWPYvOwji10Iqo632vIfsKe/jcyAwRJI1feBbGYwwlVzRiuBfZV3ibhih6phR0pfMvQabzX4dxgmyGeSB6/oU9iY+fYRB5bsU+MezmcY5oe9OP8SB6/h1DjvPrOsdytPHpiLXgJCYFNlaG9WQ4Efe4hU8rOb5Q/4n2wNa+GOOMdgXZ/MD7XsELfWCUjrWgAslsGNs4CF80l94ADMeI1E0wXIeMnu9M0tFzw3ew0YOgvxGWummdg4yepyFiMh9Z9OAhhoWcs+yOnrs9jJKNntsiQkuBQc4rV5DlJ+L9U0N+sS2Nnqu0iMrCuINsyA2M4d3CAlvcz8pnNm3i3E58urMw3LSdyZuzMIrf/yKIG5sMcGuiRc9sIS2ZhQEnbc7CCDL8EFjkjA6kg2WJFj2LzsIYWfh+d00FHnXG9metuOlTKo2yIDYYz7FtaCDNpw9jgTec8eHkSlZcrzcP+4R0V2d8OVnxIILCxmsEboqtz9zE1wJbkblv0XgwIy+otZBqWyyDz5JE1wLDMGQbouKMvKAsd2AragcNpINbME4AIMXi3zDag67LcFtPeEzEiOIwQeHRc8MFNZ5heWzfKre4QSdwCiaiAbKNmIwmTRETW/TAjX68BZwY2fTViDQySDpispLZyMPsT1KqBUGp6LlxUoyViltUFkY/8fvarZWnkaXWW8izFCOCKXFZhMzCuIdsiSrLhhuwrZaChgBLCkUf4mXoR2dEFobhF5GfG8QFwO+c0UNYKVKM41FuFkbxZzpoZhSywvS5DdNXWL0/tXEENuARtI4mhnOhKA5jTSnc/7jF8XwW0CYC6/EIb0MUdtSpm+EpENWyk14LysvIC7JH1G51Rm2KcVJrgX2A5da8yImMvGLnA884Y4eDSDFOrSSeMC5EFj24iywLSn6qO3ruHkqeE3vEpPuga2CqOLAAAA2SSURBVPEPjEcWw/+W/Gwrz+MxwRlNJmLSzh7IVAsfj7EY/l7yszZ6fp0zOpAOlsYePbel991o4Ts0MQIjfl5cU4BfO2NhRYyUik94FsYmMowuStsJY7ga+LEzuitJ9BzN8W0Qad5vYNM6w7Iwgs4C/uiMHQVcUpvJVeRq4JPO2MOhWRhBEwqZMzLFdjJGFDGqr+gsjCtDszCCbNGzU5FFz25o5DLxagtmGFyowll85MfjbKaLYoruZx/GE7/b/cgnUBzPrgVuob4N2JZgMiMvyHAliN/tXZFPu+rPtiGqJCMvaDzwJ2csrIhRHK4hPCOvdCEbw3qaQteCqanvMV8Q74Yxx9nIXiWv0ydkIQrTytN4KYier2MBMMwZfZC9mVPW520KQbIRE9t6Yjmy6MFlZEUOf5QLkBGTQ2ONnht2xg9JTfYYz3RRJjvs8x00hxaomKDRc5WIqCwMuJhWHi/jCj59OR34qzN+HIazajHFsrSxD76IHOeBkyOzMIJskFAWPYN22vhsjWbZsxwnIDMq3qK5RBZGkC165n4+A9zCTIbWZpJlCM/CCHsKEc5wF4jA7gA6WZqaomdKQVfriVtAFBVcSla0awtn+wO62QPDkGnp9VNqLSidkdfFpy+ngcgeOB7DmTWZYzlsGyI3o6QDGFX2WmADb+udV2Zi+ExtJlkGm5F3hjNaOiMvaDovQegDo1tjXQuqFN+G0fYqmeeMdpBhFFNEqks0++g6LHoeT8TEMBIbaQ1aRUuZPzDdxiOj5/FFTFYzD1n04AkqeTweHTGZHEvExOZ+3wai+NFCsqJKWLToliE3YETZZ6XqLSwL426MODMRbTJvk2EkiDNpV9DGp3o5v55FZWFQRhZGUCvPIp8oNpPndmaJ5tu1184e+BFZGNPEOadohqXATc7oYDbFVPTMcAxhWRiUlYXRbRATkX2FD8ZWnlYqLSYh2xC9xFYicBPNFsc7CVkcb2yMxfHC2hDdheHasq8wmbchdC24Mra1gMi14FdlX8cW9rnUGW0GlsayFkS3IRrTY0Ze8XVuwtZfCRrMJpYkXgCzB/FsGO1BV1n0AKbSKg7T9yQqen48OcZXO8Wy2KIHblqX7Vtl+y2WLzp6PrPu0XPDsdgCPEFrqPTmAboiJjJ6Hk/EJIfNAQ96lm2r2HTb6Ln7JTyANLUMUVs+wzmEZ2GUk7ZTrJXH8cTT/r7kWU69y8RHZWEMq6KasmEBNpUyaBc21rlMfHcWxnbOK5VkYXTrzznACmf0SFaU+YSvWiaipL7HeIyopFjaBDYUgoTp7yus3p8MhwLGGV1PhhGb2xCVaypv4nEqYa1ljGinUFuGCcg2ROVn5BVf6zE8pwKyTbFdxlxxLru2wtsQPcCwKo79GOYDP3JGd2EjN1HvtSC8DdFcstxX8fX6cxayx/znWSE2xKkSV3WeA7F51MFc6jWFEsaVm8zbtDGcPMcVjfsMYTEtEZXeeq+TQ7DR/6AVm/tWVaqVZ8kxGp9DisZ99kdWpasVD4998LnMGf85RmzCy2NYSo4d8dmpaLyDA5ElqmvD3vB6yLOGN0QeZu/JIC5mNW/jpn9k2AdZuEKp2rKBiR2QP9M/rCgLI8hnLh7gi03PAcCDVV2zJ7a37JvIv8dVFWZhBI3HBgmLbwoMexRSPmtvNZ8A7i/8Y3m8xwfF2dLyTGRdYd1yS7H3Yx79C32H6+FgZEunv1aUhRE0nZfJMRyfzzuv7FXV9ZSqJY9Pi/RHj9/QWuUanuU+DGOR/fYOQGaJ1YZdC7bH/Q7NcEcv1oLZ2I1m8aZnAwcAD1V1zZ7MYCc6WIn792jhyqrXgr6MZQN/Qq4Fu1ccACvXGj6JuxbY4pXVrwU2vdV9Ur01hq0xTmHMFDkE+0PU83kvpVStbcL+/u3U0xtV4u7H/r9yD+4rpeori/3dc9uUqMYyB/v/MbpCslKqHo7F/u49Ue0FkunDqJRSSimllFIq9YIpqYORxWTK8RSIkr9Kvd9ciTycXo5UH3JWoS4ATqjyc5rJod7PDkMWriiH27tNNbavAx+p4nMLkJVLlXo/GUJ1RT6H9PYPDm4Yt0Y2iS5HvD33lEqno7D9G9WW79OFfyrlFh1Q6v1mJ6q7z1Bblj0K/1TqrlpPRKkG05+EvkObgVeAcb24xms1motSjawNelXa+e1aTUTVzZXAHb34vH5Xqve7p+nd/YZbZVY1lv+GXhUmeaRWE1GqQb1F775DV9VqIkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUqgMv6QmoXjBsi8fh+BwMDAYGAf2BtcBK4FmaeJTpvJTkNJVSKkEebQzD50h89sR+Tw4C1gNr8XgR+C0+j2BYn+hMlVIqjWawGx0cAewHbI/9DvWx95t/weP39OFBJvN2ktNU9aMbxkbUxuHkmQR8GWgq4xMr8LiBvnyfSbxT59kppVTyDAPwOBufs4GhZXxiHfBT4GoMj9V3ckoplXKGPniMweciYO8yPtEBPIDHtfj8FEO+zjNUMdINYyOZxfZs5Gbgq1VeYTmGEbWcklJKpU6OUfhcB2xb1eeb2EszM5RS71uGQ4GlwG5VXmEUhqU1nJFKWCbpCagytbEfG3ma6jeLoAECpdSWzcNwFT63Ue1m0dK1USn1/pTj28BDVL9ZBP0O3eI0Jz0BVQbDh8jzM2DnEu/ygdeAfwL9gB2x5xqVUur9wWCA83p41zvAG8B7wEBgF6ClvhNTSqkGkONbheyMUhu+9cCrwLvAB4CdsPUz1BZMN4xpZ8gAPyJ6s7gajzk0cytTWel89iPAMcA4YN+6zlMppZKU4xv4TC/xjnuB2QzjUYbTuXnUsDUeh+EzBhiBDbgppdT7Szsfo5NbiN4s/gEPg899GP69edTQDBwAnACcji2Io7YwmqKYdoaRwO0Rr/4JOBrDX8u8ziEYLqjd5JRSKgWW08QKngM+HvKqD0zCcFmP15nBTnQwD/us8sUaz1IppdLLsAwYHvHqrQzldMaxqeQ15tGfdUwHnsLww1pPUSVHN4xpZ1hBeHWqd4FPYfhzzDNSSql0sUVubot4dSGGs2Odj1JKNZJ29qaT5wh/uvgr4PMYOmKelUoRPZSaZu18jOhSxpfrZlEppQCfb0a88g5bMSnWuSilVKPJ83Wi9wTn6mZR6YYxzTr5YsQrPs18L9a5KKVUGtlz3l+IePV2LuVfcU5HKaUajh95v/k4hmdinYtKJd0wptv+EeMvMY03Yp2JUkqlUTO7ANuHvubxYKxzUUqpxvSJiPEH45yESi/dMKbbDhHjmoqqlFIA+cjvSfB5KcaZKKVU47FZGgMjXtX7TQXohjHtokoTvxPrLJRSKq38EiXcm/S7UimlejAAaAp9xdPvUGXphjHd3osY7xvrLJRSKq38yO9J6NTvSqWU6sG/I1/x9TtUWbphTLd/RowPjnUWSimVXlHfk+AxJMZ5KKVU4zGsB9ZFvKr3mwrQDWPaRRW2+RSG5lhnopRS6fR3IB/x2oFxTkQppRpU1P3mQbHOQqWWbhjTzOOhiFf6A1+KcypKKZVKhrXA70Jf8/lWvJNRSqmG9GDE+JeZR/84J6LSSTeMabY1DwMbIl6dVKhspZRS73c/jxg/DMNRsc5EKaUaz/0R4wP5N2fGOhOVSrrhSLOJrANujnj1cDymln2txbTQxmdrMi+llEqX7wObIl67kZkMLftKbezHrIi+jkoptSUaxE+B10Nf85lBWwWpqTMZiuHjNZqZSgndMKZdMzOIesro04bhKubygcjPL6aFHCNYyTPkOa9Os1RKqeQYXgFuiHh1VzbxaI8BM8OeGK4lz2/pLNHbUSmltjQT2ADMiHi1H3l+SY5RgBd5jVnsSI6pbOKPwAF1mKVKUPT/eJUeOc7GZ0GJd/wT+DEej+HzJrA18EHsYeUvwuZKgXdgGF7fySqlVAJmsT0beQzYs8S7HgLuBf4KvAvsAOwFfA44jK4gahMfZzp/qud0lVIqVWwxxbuAL5d413PAT4A/AmuAAXjshs9ngaPobvs2GsNt9ZyuipduGBuFYT5wbi+vohtGpdSWq52P0cmvgUG9uo5uGJVS70dz2I71PArs08sr6YZxC6MpqY3CcB4e5xN9Tkcppd7fpvMnmjkAeDLpqSilVMOZxDvAZ4A7k56KShfdMDYOnyxXY1OnflHF51dhU7GUUmrLNY1X2ZYjgBywusJP+8A9dPJW7SemlFINwLAWwwl4fAd4pYor/JYMz9Z6WipZmpLaqAwHAscDR2CbUzc77/Cx53Qexeab34VhfZxTVEqpRBm2AU7Enq05Anu22/Uv4Fngbpq4U1NRlVKqwJ5r/CZwNPY7NOyM+EZgBXA/GX5EK7+JcYYqJrph3BLYX+hBNLE9PlvjsYY+rOJS/pX01JRSKjUM29DM9nSwPRk2kOcdDG9gA2xKKaVKuYKtWMv2wCAyeOR5B/gbho6kp6bq6/8DMDMME53VC4sAAAAASUVORK5CYII="
|
|
}
|
|
},
|
|
"cell_type": "markdown",
|
|
"id": "6a706283",
|
|
"metadata": {},
|
|
"source": [
|
|
" <div>\n",
|
|
"<img src=\"attachment:fig_matmul_intro_algs.png\" align=\"left\" width=\"450\"/>\n",
|
|
"</div>\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "bd759cb2",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Parallel algorithm 1"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "bdae0a02",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Data dependencies\n",
|
|
"\n",
|
|
"Moving data through the network is expensive. For this reasons, one of the key points in the implementation of a distributed algorithm is to determine which is the minimum data needed by a worker to perform its computations. For algorithm 1, we need to answer this question: which entries of A and B are strictly needed to compute entry C[i,j]?"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {
|
|
"fig_matmul_intro_q_1.png": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAyIAAAECCAYAAAACfmNBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAACAASURBVHic7J15mFxVtbffVd0ZgAAJMk8qk2KYZBK9VxH1ekXQ65SBeUo6CRGEMIZMp5PIPA8hnZCEmQyin/eieK8DOCOTgoADoAgECUNIgEiS7q71/bFPJ1V7n6qu6q46pzpZ7/PwkNqnzq5V1XXq7LX2Wr8lGJlw9tlnb7JmzZqt8/n81qq6pqmpafmsWbNezdouwzAMwzAMw0gDydqAjYlRo0btl8vlTgQ+D+yb8JQ3gN+KyOJNN9303muuuea9pHnGjBlzLfDvScdUNQ+sFJFl+Xz+D7lc7odtbW3PlLJp9OjRX87lclPjhy+2tbV9rdL3M3r06K/mcrlJAPl8/u9z584dVum55Tj55JMH9u/ff39VPUhEDgKGikgzgKreOWfOnGtr8TqGYRiGYRhGdjRnbcDGwKmnnrpjU1PTlSIyAsiVeerWwJdU9UurVq26tqWlJdpxxx1nR1HUUfgkVd0DOKjca6oqInKcql4xevToH6rqmFtuueXlpNdU1a65Nq/mfeVyuW26zhWRTao5N4kxY8Z8SlWvA4YC/UTW+8mq2vXPB3v7OoZhGIZhGEb2mCNSZ+JdkPuAXQqGVwO/AP4IvCYi/fP5/LYicihwCM5ZeR9ww9KlS5cC3yvzEiuA5d7YVsDgrgci8kUReXjs2LGfmD179gu9flP1Y1fggKyNMAzDMAzDMOqPOSJ1ZNy4cbt1dnY+CAyJh94TkSva29uvnD9//jtJ54waNWq7XC53JvAtYLNcLlc2fU5Vb5w7d+4Uf7ylpeXDwCTg+Hhoh87OzgXAET18O2nyhog8pqqPichjwCmqenTWRhmGYRiGYRi1wxyROnHGGWcMWLNmzRLWOyFv5XK5L82ePfvX5c675ZZblgGTxo4dOyufzy/u6evPmTPnz8AJY8aMeVtVTwcQkU+PGTPm4La2tkd7Om896ezs/LGqfmDevHn/KBxvaWn5SlY2GYZhGIZhGPWhXL2C0QvWrl17CnBg12NVPbE7J6SQ2bNnL33rrbeOaG9vf6g3dnR0dEwB2rse5/P5/+jNfPXklltuWeY7IYZhGIZhGMaGiTkidWDYsGFNqnpO12NV/c7cuXPvq3aeJUuWrJ0/f/4rvbFl3rx5y4Gnux6LyPt7M59hGIZhGIZh1AJzROrAlltueQiwR9fjpqammzI0B+Dtgn9vlpkVhmEYhmEYhhFjjkgdyOVynyp4+Pb222//i8yMcRQqdvkKW4ZhGIZhGIaROuaI1IdDu/4hIo9GUZTPypCxY8d+FPhggT1PZmWLYRiGYRiGYXRhjkgdEJFtu/6tqpkVX7e0tGydz+fnFwytaW9vvz8rewzDMAzDMAyjC5PvrQOqulXBw5V1frkdRo0aVdRlXUS2zeVyh6nqGGC7gvEbelv8bhiGYRiGYRi1wByR+lD4uXbW84VE5DQROc0fV1V/6N4ddthhYj1tMQzDMAzDMIxKMUekPqwrCBeRLbI0BHhCRK5ua2u7Awi8E8MwDMMwDMPIAnNE6sM6R0RVt6/nC4nIz4D/Kxhqz+fzK0RkWS6X+8Ps2bOXVjNdjc0zDMMwDMMwjETMEakPTwBHxf8+qNwTe0s+n//N3LlzL+vp+SKyuuDhJtWcq6qbFjxc01MbDMMwDMMwjI0PU82qA6pa2Ddkx1GjRu2dmTHdICIrCh4OprpdkcKifOtPYhiGYRiGYVSMOSJ1YPXq1b8C3up6nMvlWjI0pyydnZ0vFzwc1NLSskvJJ3uo6joHS0ReqqlhhmEYhmEYxgaNOSJ14I477lgF3FwwNKalpeXDPZlr2LBh/WtjVTIrV658Gni767Gqfq6S81paWvqJyKcLhn5bY9MMwzAMwzCMDRhzROpELpe7DngtfrgJsGjs2LHbljmliCiKmkePHn3V4MGDj+r+2T1nyZIlnar6g67HIvLNYcOGNXV3nqoeB2wdP2zv7Oz8Yb1sNAzDMAzDMDY8zBHpAZXsUsyePfs1ETkeyMdD++Xz+V+PGjXqM92dO3r06P985ZVXHhaRCblcru5KVrlc7mrWS/t+dMiQITdFUVRSyGD06NGfEJGrC4YW3nLLLS+Xer5hGIZhGIZh+JhqVpW0tLRMEpG9geO7e25bW9uPx4wZM0pV24B+wB65XO6nLS0tvwXuV9UngDdUtSmXy20PHAwcDXyknu8hwc5HR48efbmIXBAPjXnllVc+3dLSMk9VH25qanoT2FRVd1fVo4ERQNeuyUvAhFrZ0tLSshB4nzc8tODf32hpadnfO/78nDlzxtbKBsMwDMMwDKP+mCNSIS0tLTuIyAWqeqaq/hKnLtVtg8C2trYFY8eO/Xs+n58PfDAe/jjwcRG32dH1fw8F7ly7du0va/IGumHFihWThgwZMgA4Kx76EHC5iJDP50ud9hfgK3PmzHmjhqZ8EtixzPH3x/8VsnXSEw3DMAzDMIzGxRyRbhg2bFjT4MGDTwIuU9WtcalWP6CKLuWzZ89+cNiwYR8eMmTIaap6sogcxPodBZ83RWQRMKetre2JXr+BClmyZEkncHZLS8t/q+pEEflMGRuXAjd2dHTcNH/+/HfSstEwDMMwDMPYcLBO2mVoaWnZHbiOuDmhqv4amDR37tyf92be0047batcLncgsB2wtYisFpHXVfWZOXPm/IUqnJx6ceqpp27er1+/w4AdVHUr4D1VfQP449y5c/+asXmGYRiGYRhGH8cckWRkzJgxp6rqFcAQoAM4e8cdd5wdRVFHxrYZhmEYhmEYRp/HHBGPeCfgKlUdDSAiDwEntrW1PZuxaYZhGIZhGIaxwWCOSAGjRo06KJfLLQZ2A9qBaM6cORdnbJZhGIZhGIZhbHCYIxLT0tIyDJgLbAk8JyJj29rafpqxWYZhGIZhGIaxQbLROyItLS1bishNcadwgP9bu3btiFtvvXVFpoYZhmEYhmEYxgbMRt1ZfezYsR8FnoydkHYRmb7jjjseZU6IYRiGYRiGYdSXjXZHZMyYMSeq6hxgAPAscMKcOXN+l7FZhmEYhmEYhrFRsNE5IlEU5V555ZUpQBQP/feAAQNOuOGGG97O0CzDMAzDMAzD2KjY6DqrL126tFVEJgOIyPTly5dPj7uKG4ZhGIZhGIaREhuNIzJs2LCmrbbaaqKqXgioqo6aM2fO/KztMgzDMAzDMIyNkY3GERkyZMitqnp8/PCKuXPnmhNiGIZhGIZhGBmxwTsiw4YNaxoyZMgC4HhgraqOmjt37h1Z22UYhmEYhmEYGzMbvHzv4MGDI+AEYI2IjDYnxDAMwzAMwzCyZ4NWzRozZswxqno3gKoeP3fu3LuytskwDMMwDMMwjA14R6SlpWVfVb05fvhtc0IMwzAMwzAMo3HYIB2R8ePHvw/4PrCliPxsxx13nJq1TYZhGIZhGIZhrGeDdETa29vnAB8Enm9vb/9KFEX5rG0yDMMwDMMwDGM9G5wjMnr06BnA14D3gOHz589/J2OTDMMwDMMwDMPw6FPF6qNHjz61f//+329vb397zpw57f7xUaNGHZTL5X4H5FT11Llz596avpWGYRiGYRiGYXRHn9kRGTZsWJOIXNfe3v5noM0/3tLS0i+Xy90FNAF3mRNiGIZhGIZhGI1Ln3FElixZ0qmqxwFbA19raWnpV3hcRFqBDwEvtre3T8jCRsMwDMMwDMMwKqPPOCIAInI/8AZODesjXePjxo0boqrj4+ecvWDBgtezstEwDMMwDMMwjO7pU45IXBfyTPzww13j+Xx+JrAF8ERbW9v3srDNMAzDMAzDMIzK6VOOSMzfAfL5/C4AY8eO3VZVxwAqIucBmqVxhmEYhmEYhmF0T59zRFT19wAisj9APp+fAfwauLatre3HWdpmGIZhGIZhGEZlNGdtQLWIyEPxP/cbN27cbp2dnacCzao6MUu7DMMwDMMwDMOonD7niDQ3Nz/d0dEB8IGOjo7xItIM/HTu3Lm/8Z8bRVHzK6+8sqOqfjKXy23W1tY2J3WDDcMwDMMwDMMI6HOOyKxZs1a1tLSsBrYQkZEAqnozwLBhw/q/733vOySfzx8GfO6VV145GNhaRFDVVwFzRAzDMAzDMAyjAehzjgjFxeg7AD8RkXfGjBkzR1W/ls/n3+c9/x2c0tZPUrPQMAzDMAzDMIyy9EVHBFV9R0QGAgIcAvyv6jr/5A3g58ADIvJ8W1vb/2JKWoZhGIZhGIbRUPRJRySXyy1T1W3ih1sCrwPfVdV7VqxY8dslS5aszdA8wzAMwzAMwzC6oU86Iqr6JrBcRP47n8/fu2LFivuXLFnSmbVdhmEYhmEYhmFURl91RFp22mmn56Ioymdti2EYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhrEhIsAOwAm9nOd1YEHhwEMPPbRFc3PzJ4EdRCTXy/mrtqe5ufnX+++//2spv66xcXI6MKiXc7QBK2tgy4bEfwL793KOnwKP1cAWw+hr7A58vZdz/ANYVANbGpEtgTG9nONdYFYNbDGMvsgpwDbdPqs8dwjwMeChXk70FLAvwOLFi5t22223CDgH2KSX8/aGTlWd179//wn777//qgztMDZ8/gls38s5dgf+VgNbNiTmAqN6OcdZwHU1sMUw+hpHA//TyzkeAD5TA1sakd2A53s5x6u4YK5hbIz8Edinl3McVtjQ8F1gSQ8nehlAVeWxxx67HTi2l4bVgiYRaWlvb//Is88++7k999xzTdYGGRss9wCDe3juCfTRxqIp8jjwRA/PfbqWhhhGH+JFvEyFKvgg8OnamdLQdAB39PDcFbU0xDD6GN8DHunhucOIM0kKF0BvAKf2xqJHH3306yLSCE5IIf++cuXKs4FLszbE2GCZ0Itzh2OOSHd8F/h21kYYRh/jSXp+Tx/JxuOIrKGXax/D2EiZ2otzjyB2RGpauyEio2s5Xw1pydoAwzAMwzAMwzDWU+tIbMnC0gdefYDfvv7borGtB2zN6D1HIyJVvUindnLTn2/i3Y53i8Y/t8PnOHTrQ5NO+eBDDz20xWGHHfZ2VS+URCvfQvmIN/o7IuZXPdfFbMNapuM7hE1cyRSe7bmR3RDRDFyMK9YrZAkRP+nBfAcSFv21AxcS8W7CGbWh1p9fK19F+YI3+ioREaA9NdNoXBSacNeCn1r3HYEf92C+jwJjveF2YKLAOz2zsqLX3RqYQRhcukrgrz2Y77+AL3rDrwKR1PFaUDgAGOcN9/jzUzgTGOoNPywwr4cmVvq6XwGO9IZ79PnV+jtqpI1+DpeGUsgKYBJIR5VzCRAR1iTeD/L/emhgpa99GuAvsJ4Gub4Hcw3CZan08w7MBvl9j8yr7HUFmEZY19PDz0/3wtVDF5IHpoC80RMLK3zdGn9+id/RlcBF1X9Hq6fWjshmpQ4c/L6DufaZa1n6r6VF45v325xjPnhMVS8y+y+zuf3524vG9th8D84Z6n8f1jNw4MDNgd47IsJPUC4GNi0YHUUr/2AaP61qprXMA77kjS+uqxMCENFBxMOENUHDmMlHmcw/Kp7rMjbnPe4B9vKOnFNXJwTgIl4nYgVwYdF4Jx/naj7GBN6reK6IvVBuAzYvGM0jfAFzQjZYBDoVfgV83z1cxzCFAwVeqHQuddvM9wAf8g6dV08nBEDgDYXlwEXeoY8rfEyo/FpQ2BOXM198LcAX6umExDyBW2R92RvfGpcuVDHqirWvpfjvuoJ00nR/ClxG+Lu4Arimyrki4Hxv7Cng7B5ZZqTNr4DLcUGKQtYCU6qc6yzCdJh/ABN7ZlpV/B/uO/2+4mF9GeS7Vc41i1Ct9Uf0vBawQkRBH8Bdn00FB44DPRTkmcrn0gHAQsK/6yX1dUIA5F3QvwNXegc+C3oQSBUKnLoz7r61tXfg2DScEKhxalY5Nu+3OZcceAn9csUO3HXPXMeTbz1Z8TyPvPEItz13W9HYJk2bcOlBlzIgN6AmtpZlKk8jnOmN5lDuIqpCOSniAkIn5DkgnfS2iO8Qyg4OoYNFtAVedmneYzbhzfaHRFXfbHvKFNwPfSH78jZXVDxDxEBgMcULL4AZTLOI44aOOGWhm7zhIcBCDSNO5ZhN6ITcD1zVC/OqYSrwM29s32peXyl5LcxMI/oeOzqn4AqtCxmhcFql8yjsAtxKsROiwKkCf++tnd0RO57H4uoPCrlM4eOVzqMuj9pfZK4Chgv8q3dWGukgq3G1gH4g9CLQz1c+jx5C6ES3AyNBlvfGwsqQl4CTCIMR80A/WPk8ehqhE7IMOAUk3xsLK0N+Dsz0BjcDFoNumnBCKa4hdEJ+h9txSYOrcQG0QnbHqU1WiDaT7ITcBHJPb4yrhlT7e3xk8Ec4Y+8zisY6tIOLHr+It9u736xYvnY5k38/mTzF39WJ+03kA4M+UEtTyzONeYQqG9sBd7G4yMtOZjofA6Z7o2uAEUQ12LWplK2YgFMkKuRj/DOwLZmI0wkV0l4m+ceqPkR0AMfgxBYKGU8rlW613USYVvhzPsKM3ppn9BnOJelaoLLvgLp0rOO84ZeBE1PYRQDc7g7u2vOvhXFauZLhDbj0qEJ+Qfh7VTfE7eycgFMzKuRGraCvTOw8LiSI3HK9OJWXVBDXv+YCb7gfzsHdqrvzteueQnBPOV3gT7Wx0kgHeY6wVjUH3AG6Y/fn62BcP5f+3oHzQXrbfqEK5AeEcuixberbloAOBfxUrjxwHMirtbCwQqZDkIY+lIql3vUbhCmkbwEjQNp7a1xlSFfQxs9gGQbqpweXYibw797YH4HzemlcVaTdaJBjPnAMn97+00Vjr773KjOf8B3UYvKaZ/Ljk3lzzZtF41/e5ct8cSc/lTkFNmMc4c3gM/wp2EIv5hKGkGcRYaR1AlGwEKovZ8bOTxipuYDWYLemmOnsS7gt6JyCKFgI1ZeohPOj3EzEbmXPbWUEoWLK68CxDKezhlYaDYy4QMBwwqaS52uYJlSEOh31q73hTuAkCZ2CuiKx80Po/LRpuFtThLr37/dteR04NnZyUkOc89PqDQ8EFmu4W+NzKfAJbyzJKUiD6wmdn12B27R4t6YIXbdIDXLZbxW4PeEUo+GRRRDUkm4L3A3aXQBzHk5SuZAkpyANzgd+640dAlxS/jSNdx3wdx1aQapJa68BkgeOx9VtFTIK9Pjy5+ruwC3+IG5Hp/K09pogsfOD7/xcC+rv1njoFwgdjneB4SCVp7XXgNQdERFh6v5T2XHT4iDAz179GUteKN3GZO6zc3n4jYeLxnbbfDfO36f8ur9unOe2x/Fzr5XpRIGH2YWwhgXA+73x7xBl1J01SkwHE5R5zGSnEucMIs9iwoaVU4iCNKl0iPgh4WJwS2AR15OcsxexB8ocb1QRTiPilTpYaTQw4pqbhdcCLFC3eAzQdVv6wbUwVcI0qVQQlw7mBwkG4RbxA5POUdiDcEtfgdMEliackgYX4/LSC9mLMKK6DnUF9n7txLs4Zyr1XlLxbtiphOlgRwPjy5w6BfgPb+yvEKQFG32L8YR1EIcDk0ufot8EvuYNxmlSkkH9osTpYPjpYGeDfqXMiTdCIPTzczKTZpdluJ1iP8hyM+iHk8/RfsCdhEI/V4P4aVIpIb8jrBsagEs12yL5HN0e12PI9wHGgfy51hZ2R+qOCMAW/bZIrBe55plr+PPK8DN47M3HmPfXYpGT/rn+zPzoTAY2Jd5X0yHiKSS46bmcuyjIuYNWJuDUaAp5kVBxKl0iFhMuQrahg7tLpJrdDPgX6s9wBXlZciHwG2/sYJYnFKeurwvxL9RLmdbrbsRGH0WcgEObN7wVcKcmi3vcDOztjT2AK+rMkouAX3tj+5Fgl7qb1iLCa+Fy6X1n7h4jLmXjBAiCAier2wEtQmFn4DbCnYYxPVEOqxXiCtRH4IqTC7lS4SD/+eoWpn4R82pcXUhdRQ+MerOuXsT/O06NlYs8dD/C+2qcjixvhs9PC3kROJninVcB5oN+IHy+joyfX8hruILoDDMPJOm3ehBuEe8Hl8AFeA7zxh4hFAlJm8sIf6v3gCDQCmgOl/Lp1zTfAnJnPYzrjkwcEYChg4cy7kPFKXZr82uZ+PhEVnWsWje2fM1yJj0+KagLuXDfC9lrC79GOgOm0Yb7oxayM277fP0NcTqHxGpbhbSTYyRREFnIgjOBP3hjn+IZz9NuZTRuS7OQZcBxRKRQaFaGiA6aGQn4P9DfopWvemPJhWY7pFZoZjQuZwG+BOIn8YoQ4+LppKLL49JOZfKRdYuV4Fo4U8Po6tXAgd7Yw1Sv6FNzZN1iJfg8b9ICB1C7AkBh0eXNAnfX18rukeTFygBgkRZEVxW2wdnrB4DOkLorChnpIEk7WzngzjhSHaPxgjjYbZ0E4gcZMkBKinzEOwcxuifhgjgOMkgjZB6UEvnwdpX1aOAM73lxkEH8IEPKiOLuR/7u9YhYHKCQVuAz3tjTwLfqZFy3ZOaIAJyw2wkcvt3hRWMvrXqJmU+6epG85pn6h6m8saY4zfrzO36eL+9SNm07bcYCf/HGjox3QCBicFwXEhaaTQ1yLbMhYjVNiZGaybTGKQLTGYpyrXc8j3AcUZBrmQ2TeYmkSI0ynxlxjm0rwwh7PbxFMyMYE+RaGhsZEkefSVC5Ufg8gLrCxqSiy+MF/ll/K7tH1qVvhCo3GuebK3wDON07/hYwQsK840wQl76RqHKj6/PNk4ounyLU+M+Ssio3BXUhfvHyYglz0o0+jdyK270rZDuK60WSVPh+RJh2mSXn4uqvCikQ+dBSKnyXgPhplxkhnbi6Or+e73TQWORDk1T4AE4DqbsKX2WIq21NEPkAjUU+tKQKH0hmKnyZOiIiwrQDprHDJsX1eD9+5cd878XvseC5BTz0erEgxC6b7cKk/SalaWb3RF0FPkG9yKVM598oVWgWZVJoVhrXvyRU9lDuJGKPuC6kuNBMmF5l/5T6E3Ef4SJxMJ0sZAZ7owm58MIpVfVPMTZoxElpJ6rcKOyGi1r7RZczJFRiyRRxBa1+8GAwLhK/J2EaWpfE7QspmFcNSSo3+wDXKiQVXXZJ3KZadFmOAmniF7xDw9Sl514I/Kd3LD1JdyNtxgN+34ojgAtAxxCq8L1KahK3lSJdgjeByAfol3H3YV+F7yFCIYqMkaU4Z8T/bGfHSl9JKnw39qB/Sp2RkiIfcZF9kgrfN6vrn1J7MnVEwNWLzPjoDJqk+LO54qkrmPPX4t28/rn+XHbQZWzWXLJvYnZEPIkEN8Nm8vyIMBXiRZKVbbInYiHJyh6/Jyw0e4C9g0hlo3A+Lh2ikEPp5GHCQrNrmBZEKo2NHHF1E34keltcisx+3viDVCj1mwEX4lKtCjkEJ1fsy8heJ1DnDs3VE9eLnIhLfStkNK6ux7+XjW1EiVtxu03HEUYtryVcQHTVhaQn6W6kiKzCLeJ9Z7mVMHjQiesX0hiZB0XI84RBG8Eten0n+g1gWHoSt9Ug90PQf2xznOPkq/A9jtsNakQuJuz5tBcu9d5X4bsj3p3LlMwdEYADtjqAsR8qzpRZm19LpxanBZ8z9JzGqAspxTRuwuUpFzLIe9xBjmMbpC6kFEnKHv77eA04vmElbiPW4tJO/M/Zfx+PkE5XWqNvcgbdXwuv0wB1IaUQVyQ9jO6vhUfJRuK2IuKUt2MIP2f/fcwXp2zTkIgT1PBVkgYSiiGcI2GtkrFBIU8R1os0E6rbRXEjvgZFFuNSyQrxr0sFRoG8nI5NPWIyociH/z7exRXZp67CVxnrpIn9+hv/fTxLeeW+1GgIRwTgpN1P4uPblG44+9kdPsvX3//1FC3qIQMZB/ytzDMmMTX4ojcWEavJcRylO/e6QrNGl7iNeBEJIjWFrKCJEbHTYhgBBfUipdSKuiRuG/paELcLW67R6EpcXUhDXwviFMlCFbz1PENYUNqIXA78d5nj9woZSbobKSO3EDZILuRBuu3R0RAkiXwUcmV2EreVIh04aeJy/Z/Ggvg1wQ2GlBL56CK+r0lDqPA1jCOSkxyT9ptELsGkHTbZgSn7Zy7gUhkXspJQx76LHxMFW3+NyVSepnRR3JVEgb5/YzKNe4H7Shwdw5RA398wioilX68qcfiqLCVuq0HcdVDqWhgr5QMojUSEc6x81uJSmTIruqyUuF5kPMkLhRcJG0saGzZnkvy9fQMn1duQu63FyBpKR9gfBRqsuLcU8jKla1gWgPgqqQ2K/JzSO8PngvgqqZnRMI4IwILnFgQyvQBvrnmTV/7V0AHH9UQ0Q8nu6h8iYkia5vSYiG0pfTM8mKixvjslmc4hxEpHCfhFdIYREEuqltpZO0jD4r+GROFgwmLoLvrStXAiyQ0m+wP7p2xLb5hI8ndnW8Kmt8aGzQRC8QtwwhK7p2xLD1GhdGrnrrjf0T6ADgK+WeLgPqC++mmDonsS1id30VC/9w2zmPzpP3/Kvf+4N/HY2vxaJv9+Mqs7V6dsVY+YCfxbiWO7EqrUNB5RSRnJLj5DaWercSgtm9zFBbSWXJgZBuqKLudR+lqIVW4aG3VFl3dR+lo4X+FLKZrUI9QVXfqFvIW0xc9paBS+Tiib3MVAnDSxL3lqbJDopyndEC/uj6O+YlMjcg5hw+YutqVYmriRuZlQNrmLQyDoB9eAlJRN7mIUqN8PLjMawhFZ+q+lzHiivODM3975G1c81eBZTVGijKTPN2hlXDfPyZoLKb2L0MWMWJq4kZlFKJtcSA7lDqKSi0zDuIDuF+itGvawaDRmU36BLrj+IjulZE/V6DoZyrIL9EHA3XG3+IZEXUAqoeNxEXtBg8m7G3VA4wV62V3VXYDb4h2HBkUPAb7dzZMOp+HTszSpYbPPBNBSDlejcC3d73rcDPrhNIzpjswdkfZ8OxMfn8i7He8WjX9l168wpH9xFtP319cWXQAAIABJREFUX/o+9y+9P03zKsctZm8n/EyvwJdqVK5meoOmEET8O2F+5HuEUchm8txNFMh/NgatjMcp7BTyAqGq2TbAnSzuG+k1Rnqok2z0IyTJ14Jb/DZk1FJhHK5wsZB/EHYc3wa4s4FTzW4gTL36KaE08UGUL2jPDHU7UksIZZPnE0oTn6JwQiqGGRmgcTf1QFL1HsJeM0cRqms1CDoYFyDwd1uvJZQmngp6OA2J7kPo/HcQSvrGu+S6cypmVY0Ox/UlKuR1Qin6QbhdqsyDNpk7Itf/6XqeWVHcS2Xo4KFcuO+FtB7QSk6KTbzkj5fwwrsvpGhhBbhUptsJcyBnE3E+MM0bH0ie7xCxRSr2VcolDMH9MPoykmcScTauqU8hu+Led2NFaqazLxr8eDjZZDgVeNI7dgR/CuQ0jY0YhSG4VCb/WjhLnBiF79DuAtyuDXYtKOxLWGjfgXNMTiOUJv400HDKIOqUy/yatddwC/UkaeJvKXwlDduq5FLgUG/sEZyzmCRNfLNCQ0QtjZpzEfAf3tgzuO/5cEIFuytAD0vDsCqZB3zAG7sX5GzgW954E7AQdLs0DKsc3QzXN2oT78BUkPMJU+rfh1vE+/eHjNHdCXdbFfdbP45QmvijhI5W6mTqiPzqtV+x8O/Fa9vN+23OJQdeQrM084ltP8HxuxXvkv2r419c+NiFrMk3lITzNOCz3thTbMGE+N+XQqAytQfdb8+nibCGBYRFkouJ1nnS4yBQmTqK1gaK1EQMijvA+z8oE5nKb2Np4mPxFUqUqbQGf0NjIyR2JuYT3lyXyPprNkmm+4s4CcuGQGEzSLwWJgn8JpYmTpLpnqLwuTRsrAR1v5VzveE8cILAP2Np4qSGavM1/BtmhiZ/P1YQyybH0sSXe8c3w9WL+H9Do0+jnyQMUK7G9af4F8gjhL1m+gF3gvoNeTNEzyC5YXN8PcpcXECnkO2BBQ2WanYjSQ2b11+PZ+EaAhaS9DfMEO2H+6z978flIP8TSxMfA7zpHT8DtFRReypk5ogsW72Mab+fhhbI2gvC1P2nsuOm61P2x394PPsPKd6Nf+6d57jumQZJn52emPe4iiaGMyHelozivhuuIVchI4g4ue42VkIrEwgLzZ6nsDNqxApyjMCP1ChXENEokZqbCSOI9xMVRIWn8jQSLAhyKHcRsX29DTQanrMIo+lF14LEfTcIo5aXKZRuiJQuSdfCjyiQ5RZ4mjDlI4dL0cr8WohrPRZBsHt8iRQEdwTuJey7MQRYqG4BlykKOwO3Ee6YnSbFwZ2pwK+85+xLaSl1o8+hQ3BiMH40/QyQwh3KKwl7zexO6JRnhO4HXOYNtuM6wBfuUI4F/L4bR9Iwncl1JATrsGXAcetlk6VUP6mLQP1dray4EviYN/Yw7jclRl7CvVe/n9Q80HL1tHUlE0ekUzu56LGLWNm+smh85AdHcsT2RxSNNUkTFx90MVv2K3byFr+wmJ/982d1t7UsEduSTyw0O50p/Ml7bqkGMzcSBZ54ukznEDRQglgDDCfi7aLRqTxC6Hi5SM2lgSeeLhGjCAvNluLkPosvvGnMJdTY3g5Y0GekiY2aE0vc+vUF7cDxsfOxDnHa+BO95/bDLX4zrZ1Sl4Lo1xcsA04RijXSxaVW+A3VtgNu1ezTd68GDvTGHiJZ538CYUO1j5V4bmroOuUjtvYO3Sjw3cIBcWlzxxA2VDtdw5o3o8+hAiUyD1xjwwJEgVMIe+YMAy3XqDcFdBDJu60TQX5bPCTv4hbxvuzpxaCfqJeFlaF7EmamxIFj8QLH8izhzmtc56N+nU/K6NGEjVxXACNAvGCZ3IertytkMLAoK2niTG4ys/48iyfeKk5N3nvLvTlj7+SGuNsN3I7ogAjxgkkznpzBK+9l1F+ktMTtrUTcXuKcBwml31z6RJSoIV5/SkncCucR8XiJc64C/A6pu7M6w0jNdIYSFprlgROJSnZJHUcYqfkCDROpMdKkjMTteeIWv0lcQ3gtZCrTrTCU8EaTB44TeLXEaacDf/bG/pPuVQDrRgmJ27eAkeKcwyKkK3iCFzyBC7R7FcB6Mp1QVe2PlJBAF3gZOIkwanmzllcBNBqfcwkzD56jMPOgCFmOC651eAeuA82yF8RsQonb+3GBgwTkSUKZ82ZcvUhGQZuSErczQX6cfI4sxO1sFpKxNLHuAtxK8W6rAqeCvFDipHOB33ljh+DaT6RO6o7Ib177DXf8rTj4tmnzpsw8cCb9c6WdsU9u90lGfHBE0dg77e9w4aMX0p4P7klpkCRx+yybdFsvEQH+Vs5Q3IImC5Ikbu9jGjeWOUcZwCk45Z1ChtEaqDXUnyvYLK4L8Z25aUTBZ72eiK5Ija/s8e0+IE1s1J4kidsfANeXOiHukJ10LXwjVqtKlVji9i7Ca6FVnMJUIkLJa2Gmlu6LVDdKSNwqbkfH/6zXIW5RlxS1vENL94KpG5rcc+ldXAd4/7Neh8APCdXZtgQWaeleMEZDo0kLvTW4qLXvPBcgv8Q5s4XEi2jNoNeMtuBqywp5GTgx3sUpgVwPfM8bzFKaOEni9heEn7XPePAyXpzIx4W1MasatGu31VdsvB7E/6wLkHbc33Cld+Bc0C/X0sJKSNURWb52Oa1PtJLX4u7pE/edyPs3676R7FkfOYt9Bu9TNPbMyme4+S8319TObnH1EJE36nIILwhyCP1z8zRzIuHWewutwcVdXyK+Sbjd/xL9E3MIi5nIW+Q4gVCa+FqilLt2rkosNHuQj3BJt+dGPIkkRGry3MPFjSnHatQedZF3X+L2JeAk6eZaEBelH0EYpb9GnSpJmtxEKHH7c7rX+EdclN7fAWkG7klTmjiu6VhImN52tYS7TwHiakrme8Pb4iSWU4taqktvu4vwNcdJuPuUxAWAl+bSVxqqGcVonPoSOJHngiRnHhTzbcCP0u9JmSBJfdB9CIOmncBJIKUyDwo5lVDw5mjc4j5FdBihxO1yXEqWnz7vIatwQRtf5KMV9DO1srBCLiYMFD1GRU12pbgGOB7ECQnsWgvjKiU1RySveSY/Ppk31xQX7H9t169x5E5HVjRHszQz88CZDGoeVDR+x/N38Itlv6iZrWVxErcLCQsgv0UUqCokM5mlSELdgjKbGSU7etaW6exLqNDSAYzkokBVIZmp/JIw/9pFai5LqStwRFKh2Wv041iGB/U4yUzjBrxcbWAX1gbbncYGiCYXA3cAx0ioMJKIuG3uyBsegFM8SkWmW50zdKo3/BpwrIS1aYmIc2SSpIlvS1Ga+DLCgv9HKN19OonxhDLdqTVU03W540HB/y0S1qYlIusKfwNp4glauoO10ZjMJynzwF1vFSB5XIqWL3hzMuiJvbStQrRLhS/MPEAqLNiVFbjvtC/ycSWoXwtWJzSp4D/e2Ra/HqcE8hSsU0Xtogm3u+PXgtUJTSr4fxdXZF+hrKwsIdx53gq4I81Us9QckbnPzuXhN4r7Tu2++e5MGOr/Lcuz86Y7M3n/YlU7RYn+EPHqe6XSn2tGKYnbJURVSvFO437Cxc8gOllMxMBe2Ng9pSRuhYuI+E2Vs11MUqTmvRSkiWeQXGgmHM+k4Ae7O04jKVITBQVgxgZEGYnbyRJqrndHZjLdmvw6XRK31RbSnU6STHcKDdW6k7itdB5ZJ4UaRC2naSi1Xg+mEkogP03YV6EssTSxH7kVYIGG9yGjIdEzga96gy/hdhHKZx4UIa/h0mn8oMIs0L17Y2GF3AT4r/MAVTcPlYcJexXF6nha56BNSYnbK0B8hbJukDZCaeKdgdvrn2qmO5Hcw20siF/32h3fIpQm/hRFalv1JRVH5PHljzPvr/OKxjZp2oRLD7qUgU3Vr7k/t8Pn+Oquxdf12+1vM+X3U8gXC8LUllIStwNLFZp1y0UQLPyTJPFqTbKs57QeSEQ6aeKkSM1IIuoXqYkYSCeLCAvNLmFa4BhVMl+yNDFcThSo9hgbDknXwv/SgyZPQmmZbg137WpGLHG7mHDn5TIJHaNukXVqK2FDNQ3lIWtGGYnb0yV0jLpFkhf+OeCuOG2qLqjbefF7QKzG7Uz5jlG3CHwHV79UyBBc3UuDNVQzikmUuHWZB8UStxUiDyTMFwdTtI69ZnQkTkChkNgx6i6VKZErgP/xxpL6BdWaJInbR+h5E9exwF+9sSNxTW/rhHY10PZ3XuaA+I5RBZSUJp4Mmko/KcH9UR4CXqCXihyPPvroO7i28UW81/leUFDeLM1s2txzoahO7WRVx6pgfFC/QeQS/Kvm5uadDzjggKU9fkGAiC0Y4OX7DmD1un4hPeF6BrDK2+pcgxKxosdzlke4hMHB6BpWEVUecQyI2JQBDCgay9HRbc1Mz1+vmQEJ6V9rWBk7Rz2dN/wbr2ENUfULiAp5F3cj2Z2wQd7Gzlxcl+HJVFDjUC1xqlF4LcCqaqLvCfNuCt61AB0S/tDXhHgxmpQKudKX6q1y3i0I6xvW9GQxXeHrDSBM+9DYMerNvEMShnv1N+7m9TYjrAVojwUBejpnE8kpfm9XmnZXJSNxKXoP4AruN0R2w/UHWkXCuqU2aNJvQWf54vRu58wRRvQB3omb1tUB3ZzQ6V3jmi/2eM7+uGvFZ0V1O0VVveZgwkDHvypPZUqccxMIslh6+Tcu+3qlfgt6+ffXQYQlB2vjmph68Hdcw9nDah1NWUPCBb1J0yZs0lRbZ71JmtiiX+W7eGvWrPE1rKvH76lRC85kDe5zSwtlIm/VfFa3UK/XYj3p9TqgLu+jTj8eRqMRF6HX/DsUL9RTuxbi3hP1eB+pXgux/G7NfwulHr8T5V9vFe6/Ws7ZScrvw6gFUoffAsmT+ndB6hBEkbXUKRhQ5jXrEOCV9yijgFeH16vTb4H0OFDSW2qdmvVsjeerFW8ceuihPdgGNQzDMAzDMAyjHtTaEVlY4/lqgogsFKnXVp9hGIZhGIZhGNVSU0dkyy23nK2qj9Zyzhrwooh016DGMAzDMAzDMIwUqakjsueee64RkSNxqjONwOPAZw488MDXszbEMAzDMAzDMIz11Fz67+CDD34D+MJjjz32SVX9vKpuW+vXqICVwIMHH3zwj0Skjnq+hmEYhmEYhmH0hLppkB900EG/BH5Zr/kNwzAMwzAMw+i7pNZZ3TAMwzAMwzAMo4v0urJGfAFh/6IxZSkRd/ZwvhbEa1Ql/Iapdd6FaeUkYPuiMeUxIn5S9VxXswnv8E18h1D5HlHQrbN2tNGPf3IG4jWvUX5AxFNVzxexK8Ix3lwKzK5rX46I7ZGg2yso84h4owfzHYpwhDfXKiJuwvWcMDYw1DVw+iZhA7ofCvyxB/PtAhybcGi2uJTRuhB3Cj854dB8gapr5BQOIWxktwqY1ZsmiRW87n64zsSFrAFujPulVDvfl4CPeMN/F9eJvm4o/CdwgDf8isAdPZxvFPA+b/i3Ar/oyXxGmuingI97g8tBethFXI8HdvIG/wBS59pcHYZrAlnIMyB+h/RK5mrG/e76zR5/BPJEj8yr7HUFGE/YSPEBkId7MN82wKkJB24FWVb9fBW/7pa4ru4+94C82IP59gGO8gbbgRtA2hNOqCnpOSLNPE0Hd+L/mEb8i4jvVjVXK2NQZntLw6Uo83prZrco/wDmUdxxeBURhxLxTFVzvc11wGhv9BfAVb2ysTvG0E5EDuVS78hoLuUgLqxiwRTRDNyD8gnvyPV1bw4Y8SoR+wDHe0cOx11UlTsPEdsC/w9lh6Jx4eSq5jH6FALtcYf14FpQOKga5yHucH4P8G/eoRvr6YQACCxTGAqc4B36tMJR1TgPSnwtwI7eoVPq6YTE/AW4FfioN74NMKmaiWJn6jsUO5ntwKd6YV+lPAPchXe/U+gQ9x2pmNgJ8Rety4DbemWhkRZP4RzQXYuHVUFuqW4q/RJwO8Xdwd8CDuyNgRXyl/i1C7uIt4N+GuQ3Vc7VClzkjT0FXN9z8ypBFPRN4AbvwDLQj4L8s/K5VIBbgC97BxaDXNYrM7tFVoLujHPmCvka6CfjZpEVooNwv5Mf8g6cm4YTAmmmZk3mJUhc1M1jBh+seJ6IfVCu8UY7gRN7FAWvlogHgYu90c2AxURsWsU8wwmdkOXACXHX8PoScRXwfW90d1YHN7zuuBQCJ+RJ4IKemlYl44A/e2NH0sq5Fc8QkQPuBM8JgVuZZjf7jYBrcAvvQnbH3WSq4WJCJ+RJ4Pwe2lUtpxNeC18Azqt0AnX3hDsInZCF4hyEuhJ3Vx9O2NX9wniXoSIUBgOLCHe6zhV4qHdWdo/AS8BJhPe7WRpGlUsSO5fXecN54DiBV3tnpZEOshwXLPPv6zeA+rtmZdBdcddgoROiwKkgL/TKxIqQpN+yfsBCUH+3rgx6BOH6YBUwPO5SXmfkHkInfjvgLtCmhBNKcT6hE/Ic4bquXpwLPOaNHQrMrHKeNkIn5IfA1T20q2rSrRGJuI/Q4x1MJ4uIghtGyBXxgh82KRoXphHxs1qZWQER8FNvbChwbYVn70EY4VLgFCJ6sK3WI5QBnAL8wxsfRpS45RfSypHABG/0XZoYTsTqGtjYPRHvkmM4UPwDplzM9GBRWIrJwH94Y8+yCWfWwEKjwZF1N3Ne8A59Q52j2y3q0ol85/ddYLj43806IfHrEb7eTIV/r3Cai4DPe2PPAi29NK9iJPlmngPu0NBBKsU8CAJc9xFGQuuGwA8I7wmDgUUaOkgByrr7nR/giiS8/xgNjfwSt24oZCCwGHTz7s/XeMHPVt6Ba0H8IEodkRsgyGDZBbg13iHoBt0OuJvijBKAcSB/qoGBlTIeggyWI4CJlZ2uHwNmeINrgBEg9c0EWYfErxfstp8L6jtIJdBxhKnELwMnud2jdEi/WH0HzgN+640eQrjLELKKWcDe3ugD7B2kVdSXiDz9OI4wIjWaKEgTKuZ6BuAidVt4R64g4r9rZ2QFTOQtcozApSsUcg3Tg9SIYiJ2RoMtYhDGMoW/1NTO7pjKHwkXgc3kuYeLg7zqYiI+BUz1RlcDw7mAd2pnpNHIiEtvGAH4W9rXaJgmVIS6fO3wWoBxQrrXQlzX4gcHmoF7FLYud67CJ4Fp3vBqnDOV6rUQ13D4O1LbAHdruIgpQuFM4Gve8EvAyZJ+muUFhPe7gwlTAZO4ibC+5UEquVcajcglwP95Y3sCcyo49zLCOpNHgQtrYFe1nAb83Rs7Gjij/GnalXmwvXdgPkiPaqd6jsQ7MPzLO9AK6tfGeegQnFPYzzswAeTxWllYGfI8YdBGgAWg7y9/ru5LWAbQARwDUv/sogLSd0TG0A6MxKUhFTKBVv6r5HkRpwIneqPL6MdxDKeztkZWwCSWAcdB8No3E/Hhkuct52rCfM6HgSk1ta9SpvI7woX4QPIsJgqcJUe0LhfeX9jMZhp31d7ICoiYhYu0FLILa7mNcIHouNgtbPAXNsKZRPyhDlYaDYwkX4cDgMUaBg4AiBfFtxNeC3OEHgpx9BKB2RBchzsDt2mJa0FdpPVOwrrBbwmZXQtnEL724ZT5rYyL3f387A5gpMCbtTWve4SS97uzFL5S6jyFYyAQ4ngNOFbCe47RJ5A8robrFe/ASNBQdGUdehRwlje4Ehd9r6IWoFbICpKDNleCHlbmxKnA57yxZ+jWgakX8jQEWQ85XIqW7yzFqADzgQ94B+4FmVVjAytEluB+8wvZCpcy5ztLMTqIpOwimAryq1pb2B3ZyPdGvIgEW/2CsoCZhF7cdIYSbqnnEU5gElUUF9UYlw52uTfq/sBXB39gaOXruDzuQlwkNgou6vSIuAzwlS/2oHSkZjphqsdTbBFEYtNlE8ZCoDZ2FBHfSni2sJZ5hOoji5lWdZ2MseFwBQQ7k0mplF20EqpLPQWcXWO7qmUs4W7MF0mwS9dF0PxiWpZIZdHauiBdO5PhbswUDRc0aNdvb3ExLcBFAtUW09YMgRcJ60UEmK/hggaFvXB524XkgeOFDO93Rg2Q13CpML4zeROov/tFXJCcFEwbB/K3elhYGfII4W5MP+DOWNHJQw/HpUAXsho4FsTflUgRmUeoZLc9bkchaX18NmEA4UVSTF0twVnA772xwwh3uLuYBUHA/AHC9WwqZNdHZBr34raeCxlCB4toK9jyihhInrsI82RnMo0f19nKSphK2LhxX97myqKRiF3R4KbuctOjIDc9bZT+nAYs9cZHxDtR64n4DGHB2iqaGM6EdHLhS3IB75DjWFyuZiGXM93b1o64ACftWUiahWZGAyJdtVph7dTwWL1oHepyiv2b8SpcKlOGN9ey9SKXaigucR5h0WXSln/qSHJ9Sg64U0NxiaSiy/vB+y3OAHH1KTd6w0Pw6kV0Xd0Aft3AxUJD3O+MXiM/J6wviOuBtGCdo824FCA/vXhWXHCdNddSkciHbktyXcj4+kr1Vsw4wK9P+QJBurcegkuvKyTe8RR/xzNlpJTIx0RQr+ZPRxGqKy7DOYWZ7LZm29BwK84B/Jy6j/FPphc8ngVe/xH4BR8pek52OIWrYyFQ7DqdKC4CaqNUodl1RMGFnA0X8TruffjKHjcxPf78v92lLBH8oJzOlOBCzoapPEaSskeehUTx5z+dj0Hw/XGFX/WWHDYaHnFpNCMJa6du0Lg3hFLyWhgv4U0tEyRZsasfsFDjxY06lZWkosvh9ZYcrhRxv523esPbAXd11YvEogJ+0eVS4MQM6kJKcQ6hYpf/+d9IeL/7JW7nzdhwmEHoWA6lWMzn24QqfEn1kBkhJUU+4iJo4l2FJBW+RSDz62xghayrF/GDNt8GjT9/LaXCdwGIXwOWEVJS5AM0/vy1lArf8SCZqfBl64icyRqaGE54w7uAVr5ExEhcdLKQ12nm2EzqQkoR8TLCiYQ3vNlE7MU/uYLkQrO0JG4rI+IXhDc8Vy9yKVvSzl0kFZpF3J6OgRUScT2hsoeTPozYijyL8AvNhHOIAqfY2EiJJV4jb3ggrl5kS0rIPUuD9XYQt7D1o6e7ALfGdSFJN9fzJAwQZc03SVa5uVAhqegyj3NCUi26LEdcL3I84f3uPIUvq1sMneYdW45Lyaq/pLuRIuvqRfxUu9NATwAtqcKXjsRtpUhJkQ/Xl4OJhCp8z5F9KpOHJKXTxjtSujXJKnw/pFKl1NSQJJGPeEdKtyBZhW8GSPUNuWtIto4IwBSeRxjjjUrcnNDPy84DJzI5SCHKnmmJKQCbA/9LWBDlCs2yrAspzcWEkZq9WM3vgc964xkWmnXDAEYRRmq+hHMA/Tqke5kWpAkaxqUkq9z8nrBG4U+EzaUahdNJVrl5lLBG4XuEKUSZI+v6DAQpbxFOJjcouhRSlXSvCElOeRPcQsdfQChwQlxjYmxwyDKcAI/fJHQWTgDDX5+NBfH7BDUA8jBh/ccAXJ+yyBtfDQxLT+K2GqQNF5gpZGeciImvwvcicEKaErdVcCZu56yQw3HCH34d0gOEO+Kpk70jAjCNRYTFedvgig8LuZyIH6VjVI+4CPi1N/YBQonbcURkWGhWhqhrmy5Q9vCjAavJcSxRtrnwJXHSxMMJIzX++2iEQjOjARGquBbgmHix3HAIrICKroWXgFENlMpUhMDThIGPZtwOTyEPUJk8biYILAFu9oa3JqwLuUJc1NXYYJGfEMoxDyJU4bsFJBtFysq4krBB8i6EKnwTQBpZkXIUociH/zsZp+NnXRdSCnkP+DqhyIf/Pl7HpWRlnl3UGI6II6nqv5DfsUMgM9tYRHTQzDGUl4mcxbQgVaKxiHgtLvou9wUdz1QaodCsNFN5hPINitrJMZIokNY0DACEdbVT5a6FM4TGvhak+1TQdpzEbUNfC+KkM8ulgi7DdR3P/ObaDWdTPv0tO0l3I22mUb5B5dOQqPzYQEgpkY9CvgPiO+ANhpQS+ShkMogfcG4wpLsmtHFqoPhBtkxoHEck6pJyS7yBLAeGxz1IGpvJvISUTFf6A65gsfGZys+Ba0ocvYuIBik064aIayiVoiFcwNSg2ZhhFCHwc8IahC7ukTClplG5DiiVCzwxS4nbKhmP6/7rk8c5IQ0vcStOEKDU/e4tnFhAI6buGjVH8jh556Tsgn/h6kIaM/OgCHkLT1mwgL+VOdZgyJOEKWVd/Agn8d4HkIW43dckLgP53zStKUfjOCKOr5DcNbeDvlSspxxd4kg7YT5oYxIxEPiPEkf7wI9iTMQuxEpHAZqx3LDRJ4glVf2Cyy76zrXg8p1LdYnvS9fCIYRCAeB+W33p7kbmvyh9v2v8oJtRS75AWEQM7jvd6Lt7hfi1FF100lfWPk422Zf276KDBk1dDdFtCVXXumio3/vGcUSSJVW7cFX/ixN/tBuLiNMJZSS7OAQnydcXSJKR7GI0EcenaUyPKC2b3MU1TC+5MDOMLq6nlDMLp2moyd5w6DoFmKAnQRdXa2knpWFQdy9Ikk0G9x7v0TC/vuEoIZvcxTbA3Zr8Ho0NDvVlewuJm3Sq36SzAdFv4GS0k9iTDJujVskMwobNXRxNowr0FFFSNrmLCNRvxJsZjeGIXMIQ8izEl1Qt5nD+xEVpmdQjprMv3TfPOodW/isNc3pMlCgj6XMzM4LmYY3FP7mUUDa5kIHkWcRlQZGoYQAQS6p219hvloZdahuNSwgbGRYyACdNvEVK9lSNxo0MSd4N6WJn4DYNO1E3DAqlehIUktSJ2tjg0IG4Zn9JuyFd7Adclo49PUV3JRQc8hkJemIa1vQcTWrY7HM56IFpWNMLLqT0Lj6439LbY2nizGkER0RYw62EMpI/wd8+UqYxncPTMatKIgaRZwmhjOR93mNBuYWInVOyrDpmsCdhznueUL1lEJ3czfUMSMewKok4mlAX/C3gV97YnrzXeHKlRvYo7EGyhPgPvLFBuEh8Q0YtFY4irE1bgWuUV8ge0NAy1hcphqV4AAAgAElEQVQRpos+TShN/EUatLg3dpAWEN7vfkqY5jdF4dMpmGVkx004R6OQX+HuVYWcAfqVdEyqFu0PfIcw8+CHJEoTa4MGbXRHXM8lf13sr+EGAIvivhwNiP4bYT+49wjrA3cCbgPNPGiTvSPSylnAl73R5xnIN5BgIdlEnruIGnLrfRYEOwT3E/Flwi3JrYG7iQJpu2y5ngF0spBQRvJiXD6zX8x6IMsbsHDLOXkLCKOio3Cydn4x64m0clIaphl9A113swl2CC7F1bL5qikH0P1uaOqo2yG4lfBaOB34BqE08fEaNpHNHIVP4dSFCukSOElqqHa5wmFp2FYlZ+K+P4W8iNt5852nJmChhk1kjQ0CHYHrTF7Ia7jvgt8gOXZg9QPp2FYVl+HSzgt5GPgqbie2kM2AJaB+wDZjNIdrRrutd6ANtz79b288KUjVAOgQXOqqv7Y8C/f38KWJv0gDCChl64hEHIwGeu9ryDGCC1nJNNpwH2ohO+HkGzP34tYRcSphnvhS1v+YfAunmFXIJ6HB5IiXczXgbzn+EmiNpYlHEkoTn0ErX03Fvkpwzt09hHniNxDxXSJeI0mtRrmJGeydjpFGH+BKwmvhd0AUd7lOkukerzAyDeMqIa4xuI3wWrhJnNpX8rUAN2jY+Coz4g7wdxDeXMcLPCnwCARpu/2AuxS2TMPGSlA4iDDFZp1scqy+dqd3fDtggWZ9rzZqjO5BGKCM+xbJP0HuI9ydjFP6tFxKX8roUYQO9ApgJMhaXPDAV63cB7g6BeOqYSphk9qncH1PuqSJ/caiw0G7S9tNEe3abfUbNi8BmVMgTbzaO34JaLm03bqT3Y/bpWxJcp7s+UzlsYLHYwm9uCNp5dx6mlcx0xkK3OCNug7wEW8ATpq4ieGEDWYm0VpSmSpdWvk6LkpayFs0cwJRrFg2mZeAk/FVI5T5zAia5WTFdMJCsyfZoqCHQsSDJEVqOllMVDZX19gIUFeQON4bfgsYIbGakbjmfycRKqjcrGHjqKxoBfyCxD8C53U9iKWJfQGNzXD1IplfCwWpTLt6hxbFPUW6uJqwodpuNIi0srr0vbshSGW9QCiSEB8H+N2zv0DB38zo6+gAYDHhbuu3QX5c8Phcwl4zh1Ja1CdldGdcoMMPCp8KEqdLSifud/IN7zljQUuJ+qSMJtVjraJINlmW44LNftDmetBSoj5pMwGC+uPnKapxlCdx9SOFxEImWkrUp+5k54is5mbcjaKQ+4i8RX3Eu+Q4Dl+WUbmYqGzxZf2JGEieu/Bv2EJE5EUBpvAsblu+kBzKnXy7bPFl/YnYFQ2iM4pwCpO9BkUR90FQUzGYThYSlS2+rD8RSYVm79LEcCYEcnV9JVJjpIi6bsD+zVWBU8Rr1iWuVsRXuxkMLNLyhch1R+EIwhvOu7j+FP610ErYUG0ocG2dzKuG8whTd5/Da9YVd4NPaqj2DYUx9TOvYtqAvbyxH+J9xhL/jQj/RjO1tBSn0be4llCh7pcEDoaswaUdvu0993zQUvKyKaGlVPiuB/le8ZC8TJhqBtAG6l8TKaNOkTVUqBsP8qfiIfkFoRM4EKdqlrHgjR6CS6EvpB04DmSlN3494P2Nuu572dSLZOOIOInbY7zRl+ifEG0HmMpjSNAV2F0IUUlp1jRIkrh9kL2DL4Qj4lbCrsDb0s5dmUkTl5a4vYppQYTRsRXnkRypKSVHWX++zXYky3qOY0qwowYReZo5kTBSM4ZWjquPkUYjUyBx618L10gYbe/iPOAhbyxTmW6l5LVwuoTRdiRuBAi86h0arWR3LZSQuF2Dc6b8xRnidq1GEvbguFZLyy/XHXW7+n7092XgJEm434nbtfIDKl3SxKXkl40+gX4D930oZDkuJSuhV5o8R6jaJ8A80J3qYWGFzCR0jJ+EYJ0WI/cTBvkGAXdll2pWUuJ2IchtJU6aCfzYG9uLTIM2WkqF71yQ34XPF8XVJr3gHTiaMCsmFdJ3RJIlbjvIcQwXBTnX65lWzovLoF4kWeL2NeA4hpdpQLQZpwOep80R/CmIXqZDssTtI8CkkuecyZo41cxfDJwXF+enS0SOdu4kLOqcSxTkXK9nMkuRhEiNMrvhpYmNepAkcfsoMLHUCXGq1vGAH3U6R8Nt8roT1xLcQShxO0/ceCICy3A7Cr7KzWwNRTjqThmJ2wkCvy91njin0FeMGYhLNUs9aqnJu6wdwDESBkHWIS7I9V1veBfg1kaWJjbKoUmpgvFOnvj1BwXI4oTztgHuBs0ggKlJqYLxTp749QeFTKQ4DRHgYAjqhNMiSeL2Wbzd1mIkj0vR8gVvTgXNqp/ULMJ04PsISwYKkBUki3xclYU0cbqOiJO4XUwocTuJqYEKjU9pLy4K8rnrS1RS1vMEokCFppjzunIPA2ni1ji1KD0ivkgocbuCJkYQBV/QYqb4uYeAu0HewkzSjtQkFZo9jVOKKM807geu8kYH0cldDStNbNQchSMJ1UNW4upCyl4LEuThdg2zQMPCwXozmVDi9hnCtNAAgR8RBokG4RbxqUkTxwvt+YQSt/eKu+l2xyXA/3ljqTdU07jWhvB+N1VCGfEkTiOUJu4jDdWMYrQfbpfSF0+4EsRXZEriDOAJb+xTwJQaGFcFuh2uZstfO44FCTMPipB23I7lcu/AWelLE+vHgMgbXI1zpvxaXg9Zhtsp9gPON6cvTazjScougpPjnY8yyMOEgkmZSBOnvSMyi7DxV9LNL5mILi/O33q/kihQuKkPbnGaVGh2KVFw80sm6lJjKMIp3KQlTewkbpN2k8YxJbj5lZojOVLTwd2ppZpNT2z85WQ9o0CXvxRJkZqDWN7oTaSMWhBL3CYp8Y0T+FslcwgsIVzoDgHu0FDtqS7EErf+jWU1cKyEPSpKMYlQpjvthmpnQqDE9yJlI5Xrka6gUBi1HKmkKtM9CwIlvgeAyys5WaBU1PLyWIHL6DtcQSgn/QgVN62ULqnqoNcMqB+EqxOawzlTYeYB4qublkCSruM48JCWNLEOwe22+g20zwLx1U1LIEnXcRx4SEuaWPeFoH1CrOgopbOLirkc+B9vLHVp4vQckVZOI5S4dekAUZAOUJqI0l5clEJXYCdx6xea/Y4dAu+6PBGzcUVShZRaENWW0hK3NxGxsMrZkiM1z6QgTXwx25AvUWgW8WTF8zhVsKRIzZlEgea/sQFRRuL2ZnHXSDWUkun2+1/UHF2XqhFcC2dIeH2WJJYmTpLpPlND56DmdCdxW+k8ZaSJb9LQOag5cS8Wv4v0MuA4CW0qiSQvVgfgBBEatKGaUYweRbgjGTuZUj7zoAhJ2tnMAXeCptFrZhrwWW+sssyDIuRewp3NITjlJt85qDElJW6/A9JdZ3ifqYQ7m0mlB3VAB5G82zoZpLvsogJEcTuvfibPcFC/x03dSMcRmc5QNFCXySMcRxQUSHZPxGVk4cWVlrgdwZhgl6Z7NmEs8Fdv9EiiIF2q1iRJ3P6RLXogERl1bWcG0sSTiYJ0qdoRkWNtYqHZIqIiWc9K53sRCcQSXKQmClJEjA2HJInbp+hBkyeh5LVwkYbpUjVD1xWvBimRi6UH8rVCCZlumK9hulTNKCNxO1HCHctuEUrIdLtUs7pFLdUVr17nDeeBEyTcpamEKwkbqu1OQzZUM4rRUnWsp62XuK0GmUdY6xWLU2gd13N6OGHdqCdxWxUTCGu9ktKlak2SxO3fcM2Oq0S6+kn5tV6ng/rpUrXmZpKzi3rQYFpep0TQBnS/nhhXLel09hbyhH/8FUzj0R7OqAzgJNYkbE9HDIwXx7VHeQl/QdHES4HEbaVcwDvM5PN0sKd3pIooSZX8//bOO8yuqtz/nzVJSBBEiEpRioKiVEWlWBCwXQGvXgtJIHRUOlIltMyehB7pEHqTlgS8V6XZrhT1iiA/FQSVokgRA0oAE0lIMuv3x7tnsme9a5/Z58w5e++ZvJ/nyaOsfc4+a2bO2mu97fsmdAE/IZSuHcMjEYnbovd8LJVSHuiV6WogPjB0VkY26ND7ECoYFaebW0n4GKEc86iKFM2MjpIe4H+KHFizPBqRuC2Eg8c9kbWgIwztZGVEkjF09rS8FhzclsrFrhRc6uSe8SZ0/5ZeJJ2pVRLk7xseBN9Ii3/jAnQBXwrGXkmjG03jwKcpZR8Kr3lYsdXvqlEKK6CbnP4bXJj+2AwHodU3QZ4DSk2uTbyK9LPJ8vc0StMCblEaKdokuNArBpUrniXTHA+gnUKPRyRuC+KeBf8xREgiS6f+DoAfhxi3obLXg63/3tw94LdBREKyNO9gb5GtEc9XC9a5YRhDZD6y/sKeOoZ4fD2NFNwMw+gEk5C1F/ZaaidfRRSTQmO3LNZHfsb5FX2+YSzP/AVZf1tX19DQMAzDMIzllYlI34k3DPZCwzBGLmaIGIZhGIZhGIZROuXUiBiGUTZvgqYV0AbjDHQ9hWEYRiO2Q9SELqaYYtg2iBR1IZljwzCGN2aIGMbIZCy6uHCo5HbmNgzDyOFMYCukIfHB5CugvQWpGdkn/e//QTpdG4YxgrHULMMYmXhETaed/5aU+hMYhjES+BLS7HMz4BeI4tPqmesO6bnyKNLT4P8Bn8GMEMNYLrCIiGGMTF7EikANw6ie54D9EXnpU5HGxjsDi9LrP0VkXJ9EGuTOQfewMQxjhGIREcMwDMMwOs0jSD+xbZEmcmul429HDJCNgNmYEWIYyxXlRUQSNiXW8G6q6q5ZjGlsTS9vDEafJlGdytuLNO4LPc1PkfBEC/fqwrEDPmi2NYZHOKGlDrxFP3c0sH3kykMkvNDC/VZBcoAHshK/5BgWNH2/opzGatGmlvDzlppaJqxN2K3UsZRu7sY2xxGJh1HIWggb3j3kaH4teHLWAtznOtivwEsjKtXwDvhFKw3vvBwONwqGlwJ3uw6uBQ/rIp3Jsyx2cE+L99sI3XH+ZUfLzXSLfq7e7+AlJ2lHrdxvK+S7leUZB39q5X4VsgKwMbBeZuxNSHH6nUhUZITh30O04Z27v8X7bQG8ORj8O7jft3a/wp/7IXTDu+fA/aHF+20HjAkGHwP3dGv3K/SZDnneh02K/wDuuRbutyLS+DXk1+Bebv5+hT93JeDDkQv3g2uhmaJfHQi7qHvgbnBFBCaGRHmGSBdj6eU2pIhW6GUx09iOqbnFa3ESPksvtzMwojOfUdGNuN1sCFwdjM3lFLZo2nhwHIfn5GD0cUZHD9ftI2EJCV8ADgmu3E/CtiRNd3a/Gt1J+HaO4X9bnmMRNuBVHuU44BPBlUuAA5u61wxWYgE/RDbJZXi6GVpn56oYTfxgOhQep7MdwkvHwVIPnwcOCy7d72FbR9Nr4RJg12DsDuBzrc6xIK8CU4BPBuOXIWkxhfEwDrgdeF9wKXGdXwv/Aq5g4EEVD/s7+VkKkxo1PwfGDxzmi3TYEEH2pu8DK2bGlnjYzkFTXbW9PN9+xMDD03xgyyHPsjy6kJSsacjf5ZfAPxBD8TpgMhItmQmckl4bKSwFvsNAQ7IX/E7gftjcrfyWyHd6hczgIuAjQ5xjEVYHbmOg0+YV8B8A9+fmbuW/DlwaDD4HvH8oExwc58FvC/QEFx6V3637d5M3PBf4ejD2M/SZpN38GxF++K9g/DvAV5q7lR8N/DfaoDofXGfPcCnlpWZN5UHgm8HoGHqZRTJgo2hMwprIwTec+4GcVIJ3KOEa4NpgdA0WcwNzlJWdzzS2xZMEowvpYiLH8q+hTbIA4zkaeDAY3QqY3tR9Eg5BGyHPsAJ70ekowgSWMpo90ZvWASTs1tS9FnAhoRECd7MxpwxhhlUyHtns2/nvP0r9CcrjaOC+YGwrUE6Chng4CG2EPAvs1ckoAoCDXuQw9/fg0te9jDfDRWgj5B6a/H20goN5SFfvxcGl83wThxQvntZZoPaWcxx8b2izHBwHD6H3u9HALK+92bl4WAO4Ae3BPcjBH4c2y9L4FLLXXAOsDBwOfAw5eIKsvw8ixuHhSMfl00FlPAxT3BPA14LBLuA68G8rfh+/KpK6tkJw4WhwLUXamsPdAZwdDL5J5uTDOTXAbwqcEwwuBfYEV4YBejLw42BsY+CC5m7jd0EbIS8Bu4PrsLCL84gK3VPBhS+DP6jJm52KNkIeQpqNlkK5NSIJ5yOWV5Z1kYN9mBoRe38X8lAOQ96XkXB9O6ZYiJU4GFH4yLIDf2BKofcnjKeX6wgjUo7DW05Va5bDWMQoJgKvBFeOIeHzhe6RsDla630JXezK8SV5zk/kORx7IgexLJcynfcUukfCJGDvYPQFYDITCuneG8MYJ4feyei1cLQXL+2geFEE+lYwvASY5Ery7jqYi0ifhmvhEk+xteCl2/W+wfALwG6uWA+IIePEKOwOhscBc3zxw+mZ6NSFB4Djhji9wji4ELgpGF4HuMYX2O+87M/Xo/e7K9zwktI+AjFsr0NSX89Df0d/hxgneyHe3kOB1UqcY4dxc4DLg8G3AjeCL+DA9A64CnhncOE2xHFQFlPQEb0PIT2mCuBXQsQIwvT2bnA/HerkiuF6gd1BZbDsC37PYvfwG6D/nh7Yp7OpZVncPOR5HUbtz5YoVRH8jogjIMt8YAK45tPbW8QBWyMP/qfQX/L2k7Aqkic78LMch9E9iEWaMB04MRh9BNiKhGZDakNjGpvQy/0MXFC9wKdJaLSgHAnfBXXYv5mECe2e5qD0sAueOcHoS8AWJOQvqISVEQ/WwAOO45t0M6Pd0xyUhDPQHsiHgK0b1otM590s5UEGHnB6gR1J+FHb56mZD6wEbIAUcLaLN6AfMEPlv4EO5yEP4HLgq8ia73hkyktI++ZgeB6whYO/Nnjfysgh973BpSmu8AbdPjycBsop8hCwTaN6EQ/vQjzXQQoJOzpKWQvZuXQhKW1hFG6W01Gn8L07A7cy8LD/MvABJ9720khrdx4E1g8uHe7kQN7ovT3A1GD4EWArR8f3u0mIEXUXQ08z2QCJTD0QjP8YiZasjqj89TEeOdx2+ju3PlKTsgBZwx3Gj0Miy2Fkbxq40PAO3/sNJA0oyzNyL/dSu2ZYDL8O8BsGRvY88GVw/zPIe69FpJqz3AV8uoxahGAu2wM/YWC0cQGwZeO6Fz8WMcbCw/6Z4EqLImTmcwzaIfwE8MHG9SJ+beTv+Jbgwu7gbmjnDHP4C/AOZF8q2RABmMaW9EbyHLv4aJrCpelhBzw/Rn9ptiJR0YlySPgq2iqWPMckxwvawzF49aV5knF8kCnKI1sOCRcDBwSjkueY5PSOkAhUmPJxJwk7U0VhtxTg340OMV5AovL/+96TtzGcTMJJ7Z5iDp0yREYCpRoiAF68i2Fo+z7g406nC/W95zrEw5blB8DOTnt+O46XSOtdiIc5y0VO14X1vWccsrluEVw61cEJ7Z/l4HjxGP8GXWy+j5M0n9h7YockkIhOGJ0oBS+H6l8wcL9bjHynwpTAvvdsjz4kLQS2TtO+Ok07DZE88gyRsijZEAHw74ao4+uz4MJ0ob73fBD5/ozNDC4GtgfXVL1R+/CfQ2qglLEPLsfY93sTq6+FLcB1TpynIX4aqL3+98BW4HKcNv5CpD4jy/3AtuCarSlsA94hzT/D6P0ccBNz3jMKMfTDtX0puPAs2Cn6DZFq5HunRkPkY+llNqfzJvX6U1gDH8mTdRxcmRECkHAFOkT+duDbaRpZ+PqtIsXpi+hiYmVGCMB4DgeVErYtqBoWoYf90UbIc4inoxp1KTGYJqHTYA4lUTUsfZyPNkJ+hi5kM5YfjkQrG21DzlrwkvsdGiFzkcNy6UYIgJOUsF3Ra+Fgnx9NOBdthNxH3jOgBJwcTndDp4Rd7LXCS58BdhPaCLmwKiMEIFXoCj2lY4AbPHq/83Iwv5F4XUgZRojRMdzj6LqCNAXPr6Vf79+IfBfGBheOq84IAXC3IftnllWBWfF6Eb9h5PW9wB7VGSGAPN/CguxYDUuK/0+0o+plYGI1Rgik9SL7oKP2E8CHtUl9TEMbIb9H0ihLp7o+IgnnAN8NRjdgYRBhSOhiMdexTHO8j1l0q6LxKjgIXTSo8+4kJU0XmjmOyY0ClcVhLAImIMo7WY4j4TMDRhI2xatF2gvsmRsFKotECoPRxtCVTA+ifZIGFy5SKTTLiwIZIx4nCjQT0Wthig/ShLw0YQvTJXqByU4XjZeKkyL5mGNgpg/ShDzsglbWmofUt0SjQGXh4F60Y2AccKPXeeaxosuH0SmbVXAe4rXMsj6iENaP7y9iVvvdbKe9ycOd6cT3nRGOm4X+W64O3BCpF7kELWd9J7povAqOAaV4GhH58OOQupCwvuvk/ChQWbg8kY/9wQfOVr8uEonNRoHSonH3VMemWAiXJ/JxPvjA2ep3QDtGFiB1IU1LvbeDKhsaesZGq/53ST3ufZwIfDp4zeOsqLwK1ZAwny4moHOvT2Fa/6bYV2j2juA1t9HNhR2eYTGkD0pc2SNBlD1m0FdotmLwuu5B6mLKI+EOtDdjVZYymyQ1AhPeRV6hWaO6GGO5wJG/FjyyFjzkFV32OO1hqwQnB5azguFVgdk+dYh4SQmMroVGdTElcwpa5WYTMh5WH3P+pEWXrfRRaTeu/8Ci9ruv+IFS48dD4PwR2ex67Hft5V6kJmvRYC8cgRyEjm7twIBMEX8gKPXH1MHgatDXyi1GDr9hjcrR4LNpQheiVfjuRbzyNcDNRYwRJfKR9oABfJ4K3/mD18WUhYtFsFMj0KdGoF+DnGhr6/1ghk61ndWPYx5dESvOcy7T2IJpbIcu1lsITChF4rYoU3kYx1HB6Gh6uYlTeTMJ30C067M8wwrsTZ0a5SXMAa4MRiVNYA6jWMBMdJOzu9iY00qZX1HWYgraU7MlcCrnMxaJTIXNwb5FwvfLmJ5Rf5wYGVGVm7QJ4kXE5J5LqmVpguOIq9yc7ulfC2F60FllSNwWJU1xi6nc7OdhD9+XDquVqA6sk8St60/hUCo353j4gJd02LBoeSEw0S13UYORjluIGBmh6EAP+E+A3wztREhTLkuRuC2IexodTXXA1eDXAz8R2C+4nqZcll2c3gj3U3TB98rIIX5FRHQkVOF7kBIlbgtyOhD2pnk3cBn4PBW+q8F9u4zJ5VGtIQIwlV+hlbDG0csseqOW2zdI+G05k2uCbi4GpT61Dq/zfbRyzmK62KU0idtmWIVDkXSGLNvxKD9Bq138nTHsWjuJ2/1ZjDzk5wVXjuQlfohWu7iPtaopyDVqzTfQXsvtkCLivYLxucCuZUncFiWtF4mthcORgvqweeqvEK98rUi73O+B9lrORFJ8Q+WXyx0lSroXxElRa/isGYt4W29CNxk+wun6PWNE4B5Bi0d0IUb1LcQyD3A/L2NmzeFuQUsIr4b8DKEzR9K4W+pi3nFOQppFZtkcUe87PBh/BakLqVk0z6W/X/4WXJiEROo/FYw/ikhlV0r1hghAwgxQ3ugNSdMgMswhaa67bsnsB6qp4kfQdSHHpQZY/TiS1xAZ0zDitH3w37049uQE5pYyr2ZJeAqdI++Qg2SWlxnFbqnxYhj9pCk9xdYC7Fl1XUgeaYpVbC1sH7z0ZcSYquVaSFPewojTykiEJ8sj6INDnTgLHXF6N1od7GYnNQLGiMVdjRgeWd6Orgu5iwqkwJvgKLTIx4fQdSFngvtBOVNqFpcn8rE9Otp6ELgny5hV87gXiIt8bB/8dxqVcwvKmFUj6mGI9DeCaZif/yQ6b7teJH2NYBr0rYA76a5FoVk+CY/hVLg15GS6Vd52vUi4DRrW4Hgc+3JSub0FjOGDK5aff2rZfTaaxUnjs1C1JmS/svtstEBC4xqcBUhdSLl9pZrALdvvGtXg1H+/M9rFQUCj/Py51C6VKcTliXxkuR+dal8zXJ7IR5aLwd1Y0oRaxN3D4DU4h4L7XRmzGYy6GCKQ8BJd7E48tUFUnZJhkCeb8BD5eYPPsgJ7UKe6kDy6uQlyVcnuYeO6FJoNwniOQXtq+jifbqVkYxgDcJI2k6dYNJzknr+JSMnGuMBJw8pa4/pTO3L7ThziqFDSvSBOUuUa7XcTHRVKuhsl4hYgqTMxB+ZSpC6kltHWgbgn0P3I+ngJ2CUtcK85Liby0cfvEIn34cDJkCsidCO4K3KulU59DBGAXt6OrgkB+BsrqZSnOrNOzvhDHK8UJuqJ9EFZO+fqvbWrC8ljAW9A9xXo4+4SZ2IMU1JJ1dy1kNZhDAfegK6l6OPuEucxVMYTb0D3OtL4bbjwNuL73fPoFF9jZLMGYQq38E90zWadyTv7PIb0GhsurJsz/stUaGA4MA4RG4pxd4nzGJT6GCIiqXppztV3soDaWG8N6WFHUApafexET7yzce1wnAB8MufqCSQd67bbThyLuBJYL+f6lSS5DxzD6OM4tIR4/zWfv07qxpVoCfE+rvD566Q2pLLJs9GFvCAHue/4+LVakcom59U7vgOGyX5ntAG/BpJ9EDuPrQ58O+2eXXP8VkhvmBjbUPu0rD78AUiKfYz9wYcKqHXlfKQ5Y4xzwIcKqJVRD0MkX1I1yyQSpdpULxLWxkdlJJfhmUGiVJvqRcLH8UpGMosoeyS53tV60MNhaNnkLOOB60mUUo1hAJBKqiYNXtKFdMgOJRFrhRdllC81eMlqSJ+Uuq+FC9GyyVk2Q8tw1gqfdlUn0lU9w0QPe5czI6M6+iVVI13V+9mR2qcD+dWINWweyIngQ9WmmuE3pXGzyLQnnH9HOfNpFT8BLZucJe2D5WvhtKmHIfIS30JLqv6RmFRjwnvLmVSTyGH2RnTqQ5ivLEZX0tDoqg4xLmKyyeHP8XZ0l9H6MI0P4pXKyOtIs7os2zJsPDVGmXj610J4OA/XwhrAVb6ma8HLs3VGMJy3FpIy5tQKXuR79w6Gn0dLEx/iGxtdVfMtYOtgLLjZVp0AACAASURBVLbfXeh13yZjZHEiWlL1CXSvmVPTiEMN8WnfEBVtDZ+TqTSxz0sXqhi/MnHZ5PDnWBW4IW1yWEP8u9ER1V50T6XBjK7SqN4QSfgccHAwOo/RfBZpzpJlJeBmzq5l6D1BNvIsDyON9G4NxmOdveuAQ9I3QhnJ2azINkieZ5ad6amhpyZhZXq5ATH6shwL7IyWYz2BntzUG2M5JDUqrkDXhsxBDpFhDn+ss3fleKmluBG9Fo4DdkKvheN8fhpaZXiRtw17FfQVrsdUbq708M4y5tYMHj6H1u2fh3x/QmnilYCbvdT2GCMO/3G0E2wB8AVgSjC+AnAz+LCzdx34BjLnLE8irQuuC8bXAmaBj9VGVc1FwHuCsR8gMsSh4M1HqE1n+Cy+rydRKJt8GvJcD6WJDwC/Wxkza0S1hsjJrIPkRmY9iR7HPpzIX5Eus2GDmU15tR5WXD897IB+cIiUb8K/WYH90IVaE0j4ainzK0rCMcDng9EngK9zLP+ii90QRZdleE5jmuo4WjWXoB8ot5NwXipN/I3gWhee6zilYXjcWL44Cr25PgF8zZEr032qlw2qTlyMXgt3AOfkSBN3Adf7xqkipeKl6HI2enOd7uAnqTTxBcG1VYHZvnGqSKl4KeS9hnC/g30dPIU4s0KVm02Ac0qYnlEq/q3EMw8OAfcocC7SqDPLuuTXFVWE/xDaYbwY2B3cK8CBaE/8DoiCX43w+6AbNs8F9gH3GnFp4mPB/2cZs2uCs4g1bIaeVJp4L7TT5hLwYd+aUqnOELmUMSxhFpKnn+VsutNmTwl5DWYOIKFyKw6AU1gDzw3oB8qBJOkCPJ4XiTeYuYBpvK/zkyxAQqzQbBFdGdnkqTyINrjG0MssEvV3rIaEA4DJweizrJBZgN3EmkitwWJuYE5UxcZYjvASxQy9032Sqq8COKIy3aOBWT5fpa1UvBgZuwfDzwJ7pb0s+qSJQ5nu1YEbfVzRqQrOBbYIxu5l4PPqaFBNYrdEJCwrJ629uQn93TjPpQfOjDRxuN993etnmjFs8XmZB7PAXSP/13lgX8RAzfJl8Ad1dn5F8W+EaObBMeDuk//rFiBOm9eC10wD/7FOz7AYfkPgvGCwF5i8TDbZPYHu65P+HX3YeLsi/JeJZRfBpGWyye4OtGMj/Tv6ypw21Rkiz3Ma2nv4AHD8gJGEPCvuUhLVfbRcErpYzHVo7+EVJFwfvPZenDroj6OXOZyhPH3lkoj3EN0B/gim8pvgtedRV09NEs15XEIXkziefw4YXSnaRGoHHs3tAWMsB3hy1gIc5YLwvBNVkrAPzTrANVXXi/i4J30J0jk9POgejF4L26OdDqXjYRdQzVVfBHZzGcdO2g1+Mrr3xtFeR3mr4FTgo8GYcuw4iZzHUs0u8TqyZQxPjgVCT3okOunSQyRh742zwYeGeRVcgu4Afzuqcap7GJ22mhrmvmKnjR+HpNuGZ7AecEHjVDcHMSCzpJGtqlPNfOwMljZOdWHj1CnAL4OxWGSrNKoxRHqiKhAvM4qJJKpICxJiVtzKwA0klYbeT0TnUz8CKvVH8EwHfhKMbshrnNv+qRUmVYFQhWa30M3Fkdd7xuZ4anqUNV4eM/pUIFT90ElMjfQWOIY8T00PCTXx1BgVcCW6tuBWYGbO6/dFdyP/HFQn0+37FVFUbUG306muOPrXQtiNvMdTnUx3KnEb1tJ5pAO86kng4t3IHXC1z+8L0HF8vH5oPmJMLQpf7+BOpKA9y8rAnDRNzRi2+K3RtQULgYngwnotwP0KlILlWETxqELBG38gqKyUZ4C90mhOgJuJRASzrA1cW7E08YWgslLuQUfE+zgEaWqYZTvkLFgRfgzkZBfhvqdf7xYjBm7Y0+5w8GE6cimUb4jkSdw6DuIktaEvY62aWXEJsUKzhcBuJGpD73tPL2PYHQi7pO5LD3u0f5IFiEvcPo32Qi7jOOYhOZMDPTWesyqTJl7ATLTCzE9pJOWZ8Huc6vkinpq6SxMbbSdH4vZpYG+nPdQAOHgZeaiHDpQZXufqlsVFaInbu0CpyPXj4Pdo59Ao4Fqf3wSxYzSQuD3TafGPfhzcjPYMjkekiUv3WnpJv4lJuu/vtPhHluOB/wvGNqdCr6UxVPxqyIExVFs6AtxvIm/o4wzgh8HYu6gsC8Fvhu48nqbRu39G3tDHgcCfg7GdyXPcdpyoxO0LwG7gcho2u4VI5DU8400FX1U/qdNB1enq7KIBuKfR9YGp+pkvvZ9UuYaI5N9fi97YZtKtrOWB7E++FZfwX22bYxFOJa/Q7GASHmr43hOYi2M3QqlGz8WlSxPHJW4X08UkkkE6wCfcjzbEqpEm7iGv0GwyiZLEHIhEfXI8NfWUYzXaj5dDXrgWlgCTnH7mDMDB/cBJwfBYxINd6lrw8ozcKxh+AZjsdI3aAJw0lL0xGF4b+HYFqWYxidvYMyfGN9Bey5jjqKP4frlStd9d6vTveQAu/e6hv3uH+ca9kYxa4vMzD3CXNH6v60Wkq/8WXJiYFlmXiM/LPDgRnM48GIB7BXFghk6bM8Fv064ZFsPHlEvT37MLf88B7hHgsGCwC6mzKLmflN8JOCIYTH/PTmcXDcB9B1TWS9oPplxp4nINkUeZhg71P8wqBWUvk6inXhZ4ktsxuN04XucKdKHZHBKuKnSHbu5Ce+plgZclTZwvcTuFqSrylHePMxDFmizlemoSNsRHC812J1GRpzjjop6anejh8DbM0Kg5qcRtbHM9zukobB4z0J76WGpRx0glbsO11wvs7qTfRhH2R3vqS22oliNx+zJiFA6yuYKTyPQEtDTxiSVLE/eg97tY5CmK6091GRCNc0jPmne0Y4JGaRwOymHaOPNgAC5P8GYm+M2HOrkmuBiUw/SH6D5FObhfoz31afTTN2rw2UZ8XgPtM8D9qNg93JUQ1AFLP6mr0yaVJeDzHKYHgsvPLhrIEUAYjduakvtJlWeIiMRtWAgsuclHqjz9fBJuIW7FzeJSFfJsPz18k7jEbZibPBgngapd2IxXiy7oIXMpMVnPpCmpSM8K7EvMU5Ow75BmV4SEvEKz6SSqFiefKcQ9NZ4zaihNbLSfmNzznej0g1zS1K2oTLen8zLdae1AbC2c4uDHRe+TShNrmW44zevwf9vJkbgFkbgturmSpj1pmW5J0eq419JLsf9xwfACYILTaR25pNLEYf+UPmnimjZUMwaSK3E7CVzjzIMBuFjtwjikWLqEXjN+X1Ap5HOBvdOoTVHOBsLahfXRTfg6xdnotNlYLc5gxKSJP0sp/aR8nwqfzi7CNc4uGoBbhDhtQmniKeA/M5QZNkM5hkiexK3LSNw2w/gcK+75DltxCVvhVaHZIuTgHf4hB7tXX+g9zKk8mB52bX2ShT77AHShWZ46WWOO58W0v0joqbmIhE57ai5AF5rdy8ZKnWxwEn6NPjjUS5rYaDupxG0ojfocsGdeXUgejnyZbq+/p+3mPOD9wdjPaKHplouoOSGH3lleF0S2jVTidhZa4vZ8p9XJBsWRI9PdYWlin8ofE0nddVqdrAhHoxuqbUUtG6oZA/FvIq7Cdyy4otHWLD1AoObEJtBpwRu/CbpXj2Qe9EvcFsWlak6Eak5fAV8wQtQq/stAKH8cSNwWxfX1kwod6aeADxXy2s00UKI6MXWyAjjpFTeQLuC6sqSJR5fxISxmPXSo52W6mdPS/Q5jEdP5MktVmL2XhBWiylvt4S2EKQOOx+lWm0QxEp4lYSfCA4RvnMs9RByOBfggJNzFL5mqZD2LMZV7SPg8ugt154pcz+CNvMYDSFHWMsZwKxNa/P0lnEMPL+JVis7aDFInYAw/0rqH19DpEfdFJG4L4eBeL9Kc6wSXOrYW0tSyB9E/x21prUErnIc4ScpcC32pBtm+Jr3o7szNcDA68gxikAySC94ysf3uFScH0qZxsMjDl4HQQ9nrYWxMecuoDeuha89eQ6f1FMT1gt8DLf+L9PWIKW+1hTXQtQjPgiueeTAANy9tBhhGWRdKPU1MeastjEI/J38L7qnWbuceBr8zkhabpYNpZn4FJJU8/Dl+nDZfbAE3G7xHoq1Z1qZzz8kBbI14/gqHvQ3DaBvzkfW3ftUTqSGXI7+bE6qeiGEsZ0xC1l7Y6X0ksT7yM86veiKGsRzyF2T9bV1dQ0PDMAzDMAzDMJZbzBAxDMMwDMMwDKN0zBAxDMMwDMMwDKN0zBAxDMMwDMMwDKN0zBAxDMMwDMMwDKN0zBAxDMMwDMMwDKN0zBAxDMMwDMMwDKN0ymloCHAKa7FYNceaT8ILtbhfUU5mPZYEHXPH8U+m8EpL90t4B6FBOJT7FfvM0cC6kSt/I2Fh5fcrygxWYgFrRK48RUJv2+6X9OtdGyOMtJt37Lv7vNMdc4dyv785OrcWPKwE8bXgaH4ttPt+TXzuasi/LIsdPNPi/cajm3S1fL8mPndN4A3B8HxHa/uTh7XQzSVbvp9RJn51pOloltfAPd/G+/27+Q7nTX/uOsCYYPBlcC02OG33/Qp9pgPeGbkwF9yCFu7XBbyjffcr/LnjgFjX86fBtdDEtt33a47yIiJL+ADwBPBk5t+fSFpo5DaNzVg84D5yL9iwbfPNYwn7BJ/7JAv5BYnadAanh4lIU5fs/e5jISu1b8IREpYCZxH+HK13MD4zcq/ZdPDAAsACHHC7+mzHMU3fK6GLBXxX3Uua6ZkRMnJZCnyL9q2F0yP3mkM536HbIp99bLM38bIv/E/kXid20ghJeTPwm+Bz/+qjnaQb48UA+TX65/hC22abT2y/e8K3sEd52DRyr8eQcaP+rA/8kYF/vz+D36L5W/n1gD8E93oCaUzdaT6PXku/Bf/m5m/lPwE8Fdzrd8Dq7ZlqHs4DJ6J/jtvAj2r0zhyOjdzrh0Ar92qGpcANkc8+vcX7XRW51/np53Sc8gyRbm4Hzg1GVwVmk7BC4fskrEwvc9DeoZNI+PnQJlmIacBPgrFNkD9acRLeheeyYNTj2I+Evw1hfkXwjGVf5EGQ5SskHNTUnRJ2Ag4PRl8BJpLwesszLPbZ8+liAqHn2nMy0/hok3ebCnwqGHsUOLT1CRp1x4mBsC/iEMjyZQ8HN3MvDzsCRwbD84HJDha1PsvBcbAAmAD8O7g0zcPHmrzdicCng7HHgG+0OL3CODlUfU0Pc6WHtxe9j5f3XIX2ft4KXDSkSRbAwR3A2cHwG4EbPYwtep80MjUHHV2Z6kZ21/MRhLsP6A4GxwGzwb+x+H38GGAWEuXLcja47w1lhsVwFwE3BYPrANemkYaC+DWQQ3R4/jwQ3B+HMsOCHIQYPVm2R5yOTeC3BnqCwYXABHCvtji3grjFwGRQmTNHgm/S0eIPBnYNBp8B9koNt45Tbo3IWhwL/DIY/RDNWXEzgfcGYz9FvPKdJ6GXMewOhGHV/ehhj0L3OJ+xyOaySnDldLq5deiTLMBxzAMmgjIWzibhA4XukbA2cC2y6S/DcSAJf27DLAdnKg+jD3+j6WUWCW8pdI9pbIccvrIspIvdSNTBzhhhOHgZmIReC2d5iq0FD2sD3yZcC7C/k2htx3Hwe+CIYHg0cJOn2Frw8HHEKM+yEJjg4F9Dn+XgOHk2hk6atyKH+KKexsOALwZjTwN7u/IinFOA/wvGPgic0cQ9ZgIbBWN3NXkPo3rOQDzlWd6N/p43YgawTTD2AHD8EObVLAeC2tt3RtZbAXwXYoSsGVy4HNz1Q51cMdxC5BAf7u3d4D9Z7B5+NSTrI0wtOwLcb4Y6w2K4PwNfDQeBq9PIWQH8Zsj3KssSYFdw/xzqDItSriGyP4uRDT/MATychP8a9P0JXwV12J8LTG6pJqBVTmAujsmEYSvPxUxXm4bmJc4FwrDsr1hLeU06S8L9wEnB6FgkShUaSeF7RyPemfCAM5Nu5TXpLAmXIA+3LHEjSb93dXq5EX3AOZipymtijFAc3I/2iI0FZnvtMBhAWhdyE3otXOLgxvbNcnCcHGzCDX1t4Nt+kLXg08M+ei0c6rQHsdN8A0nRyvJxtGdZ4cW5FR7UFwOTnN57OoaTDX0SEG7oh3ltJCk87APsGQzPRSJspaRMGO3C9SJnl+eCC5PA7zP4+/3n0If9l4GJ4DqbeTAAJ9kOOsI7A/yHC9wgAcLD/iPorIoO4x4BDgkGUyPJh0ZSgE8P+4SH/VvAXdKuGRbD3YI4K7KkRpIPjaQAvzJEs4tOBPeLds2wCOWrZiU8DezFQK+UhNGTaNGPMI1NgPOC0V5gdxI6XKQVoZu70JGclVjKHM5Wf9hlJHwFOCAYncdoJqaGWrkkzAC+H4y+C7h8kHeeDCr96WFW4eh2Ta1JDkB7nnciUR7iZSR0IbUAYZHWbBKuau/0jGHAWUCY4lBkLUxDpz/9Hh2pK4sDkZz0LDsCR+W9ITVSrkSnP81xcEV7pzc4aWH/RCBMcTjB67Sxfjy8CfFUhulPU5yOxnectCh+byL7nY8XzYK8eBPgwmC4F9jD6Wi8MSxwLwK7oY3ImeDfl/8+vw5wDdqRsB+4MKW0BNyv0bVnadqYD9PGMvjt0dGbNKXUVZB54K5GothZ0rQx3+hsfBS6zuxJdHSiLI4E/l8wFksbC7kYnV30A3SEpONUI9+bcBv6IStWXKxeZAYrpXUhA/NkHdNIVL1GmUxF5+luyqsqN1iYzgboTd3j2IcT+WsH5lcEj3jews+fkEagNAmfBVUQPh+YwJHNKw21hST9fK10dDoJH8l51xTgM8HYE8DX2zw7YxjgGqwFn/Od8PAJ4JvB8AIklamSteDIXQunee086ONYdEF4rF6jNBw8jv69dwHXpypSMS4GJYByB3BOm6dXGCciAmEN4arALI/e77zUD9yArguZ7uDHnZmlUQ7uXvQBcRxwI/iI4I3vi7aGBeEXgPvvTsywIOcjghZZ1iU31cyvTjzaegi4R9s9uSY4CCn+zxJ7pqf4rYBTgsHFwO5ptKgC3CLiTpsp4HNEPvzXgd2DwbnAPmn0rlSq6yOyFkcB9wWjWwHT1WsXcBGwcTB6DxtxcmcmVxBJB5sMKiJzAD1MHjByKWNYyvWIxy7L2XQrL2y5JLyEpBCEEZkLSHh/8No1kbCkLjRLlBe2XBIeQj9AxFNzavAgT9gGCRNnWUQXE0jUgjaWExz9tVPhWjjPB+mUvt97pjbXA53e3ErFwcOgopN99SID1oIX79m04LWLgIlOb26l4iS6EUYnVydSL5KKC4RFl88Ce5VYF5LHMeiITOxQA5JqEXrI7yG2NxrDkVPQBuXGaOcswGlo58FDtKCG115crshHWvycwXch6aKh82AWuGs6NMGCuDyRj+nggyi3XxVJRw+dB0enggQV4nJFPsAHUW6/Kdoxk55lOy0BHac6Q2R/FjOK3dFV/8eQ8Pn+/+phVySVK8sLwG5MqEGerKSF7UMoa+m5hOm8p/+/n+csqi80yyfhPvTBfBwwhzN4Y/qavEKzK0hUXno1JFxITNnj9UxoO2E88kAZmEPpOIKpKi/dWM5w8Ct0wfY4pF7kjdAvcRtbC1e51qV/24qTA21Yo7IOcG1fvYjvzydWRZdHOh3ur4qDiavc9D87PeQWXTr4R0dnVwBHbn3kUT6T5uHFCA5rBl4EdrO6kJGCk5RynWK3D/hMTZCPpVOm0U5XTebBAFxao6JFPsBnRT5OQKdTxqKdFeF+j65RSSNRPq3783kqfLcBF3R4ggVxuSIfy6SJfZ4KXwLufzs8wVyq7ax+UjSvTgqBEtZlOu/Gc2lwXYq+Oi9xW5wkmle3MkuZQ8I4Ej6HLox6mVElSNw2x+nElD1e6/9y9yBhyyyPUIKsZ5MchFb2+Bw9HEK/qkSk0Kybi8uYnDEsOAOUgl1W5aYbXXRZR7nnAxDp3Sw7IwXTeWvhO04XQFaG65fEVKpdiYdPemnuFiu6nOooRdK9EE5Uu8LDlwOu9rCej6soeWA/R432O6MNOHGmxutFNgKfp8J3ALhSVPiK4WLOVBG8wa8CPiYw0SdxW4oKXzHc5eSIfKRGSEyFL63/KkfitiB5Ih99jrWYCt/dwKmdnVZjqjVEABJuAXUAHA9cz1K+Q+qBzHA6CT8qZW7NcSIQKg1sjljRsQfKfpykwprVIqlme6I3vUkkXExeoVndJG4TXqYrIsfqmUHC5ZCJuAlPMq6yQjOjhqSpPPsRUbnxcAla7vnfSF1IrdZCKrk7Ga1ycyZy6A2LLv9CdUWXuTgxpkLVoC7k2Xoduujyh9RQ4tbBd9B9TFZDomu3oBXaznDaIDZGBO5udGreSki0PqbCdxm4UB2yDpyNRAayvAtZm7G6kMPB/baMiTXJQWinzY6IWEnYHmIxolhWmsRtMdxCJD11fnDhRPAXE1fh2xVcpdHW6g0RgPEcgU4D2BYJt2e5j7VU+lA9SPqlGsM0gF2RjSbLhSRUWWiWT8ILdEU9NQegvy+HkFBloVk+U3kAnUc7FjlcZpFCsykqRdBYznFpSgyS4pNlf/RaONRJdLB2OOkuHtZOrYA2OBYj0rAvlzKxJnGiHHRtMPw2UNLvc5F+IaUXXRbkKPR+91HEcZUlliJojCx60A2SNyeuwpevAFkpziMH3KeCC19Aq/DdDC7McqkJ7l/AV9AiH/uh60JOAFe6Cl8x3J/Qz/YutFprKildTV1IlnoYIoeRV/WfZR6jmVSJxG1REimMpHFh5EOskqfIUBOmcg+6eDVkFgnXlDCb1kk4D63sMRDHMWl9jGEoHMRUbkJmO11QXSucqNwM5vw4tgqJ2yY5GBo6P3qB3Z0WEKkNTqJTE9D1kVnmIX1P6rvfGW2gv16k0fe1Qonborh5xAVvsjxJhSp8xXAP00DmPOVO4FslTGYIuJjIR8ip4GqhwlcPQwQgaSgVWbXEbXES7oAc+V6Yz6gKJW6b42TypSIfZ8W6FJo1JE/Zo4/b6FaymoYRcirkpoMOJ7nn/chfC7cD55Y4l5Zw/Yey3BS4aU57mGuHa3wo88C+TnuYjRGJm0u8XqSPg8FVqsJXDPcrdIPkPlJnc1USt83gLia/Ee1zwJ41qwvJIyby0cfPGNzBVhr1MUQAunie+GL8ExupHMT64nINpts4STXdqydSL5JXIHkZx6rC0bryb/K6KTvOpnpZT6PmpCk+Ya1IH5dXLXHbBP9Gd/nu45waSNwWZR5ikIS8jtTvDBf+Rny/exyrC1ne+AfxaMLfEVW74ULe2efn4B4sdSZDI+/scwO4ylX4CvI6+c/7C8GFKceVUR9D5DRWo5fr0IVNAO/l0VxLu14kbI7PLZKcSKLymetJwiS0bPKyq4kqDq0rZwIfjF7xXEaiikMNYwA5kqp9TPVahaSunA58KOfapV4XSteOVDb5WkSWMmQFRIEqFAapHX5ZgXpsv9sQrTRkjFj8SoixMS5ycU1qnwbUh9+AfEfAJ8HvW+ZsWicqm9zHEeA/XOZshsAJaJXTPs4HH0rPV0ZdDBHHoqiMZJaTSPhUWRNqiSRXRrIP0aJOeEdpc2qF6VEZySyiRX127s9ZD0Q2OVTayfIuRBHDMKJ4+Y4MuhZ8/pqvBV4ke0Ot/CwbMDzWwlRouA/sCBxZ0lxaooFscpYTvO69YIxMLqKxM+Ng8GGjzprhU8le1bA5y0XgQ0GGmuHfTlzltA9pkIwPBYhqht+WxkIXawDXpM0mK6cWkyDhKLSMZJhOI1KNCauXM6mWuAwyTQyF8OdYDbiehNHlTKlJEsaxlFvQssnhz7EZr9bYU3My6yGe0+wDxSNpHVkm0KOUtAwDLx7Km9GRgnAtbEp+XVjleFgXvblG14KvoXRvHx52QMsmL0BLE5+WdouvK0dQcL/zcmAwRix+L3TmwTx0muRM8GEzvToxA515EH6nxwE3gA+b6dUEPwqpDQllk8OfY11Q/e1qhH8LIv8cnjHDn+M/gGNKmdIgVG+ITGNLtJb2Irr4FLpD8VrATWmH73qR8HVEqjfLs4xmc3SDmY9So0KhgHPRMpL3MJoPoKWJD6JH/czVkzCaJdyA9KPJci5dfJEwL9tzIYn6mQ3jbOD9wdi9EF0LB3gpOK0VXjajG9Fr4XxE9jasUbjAw/vKmFszeEnFuh6dynQQWqZ7DBKlCn/myvGwJXBaMLwIiX58OxhfE7jJx9O3jGGPfze6K3cvsAtwXjC+KtIkMJSRrQE+1rB5HvJdD7t1b0p9RTESpPlfloeRNhJh7csu4EM53BrgHXAlWjZ5NrA9Wpr4ZPAfLWFiDan2QJ+wKr3MRms0H8lUfoNsMn8Mrn0CrYlfLdPYBDgnGF0C7MqJPIeovIQFrVNI+EwZ0ytMD7sgPRKySC8FUSzT0sSemUynbp6aUxBjL8uvgSmpNPHJwbVxwI0k1NRTY5SNFz35A4Phl4A9nGxKe6K9lpd4ye+vE9PRa+FBRKr3XrRM9zjkEB9GRCsjrQu5DukZkuUaJ4f389Ey3evSOKWudHz/YVLtd8c46StyEBCqI+2ANrSMYY8fh6Rxh+tsGrj/Rc44oax8zGlbMX4dpL9PGG3dB9yfkWaqoTTx18DvXs78iuK3B44LBucjssl/Q+oEQzGBc8BvUcLkmuEYdMPmVNnRPYyOgIwGbgL/5jIml0fVkYUrQR1iv0PCTAAS5tPFBLQVN51panOthhmsRC9zIDjEOqaS8HNApImdkviUzTVRm2s1TGcDvMoR9zj2I0kVJESaOPRmrMpSZpOozbUaEj4LHB2MSnfppL/T+jS0xOcmaC+UsRzi46F3D+zj4GkAJ1ryYTrWG4EbvD5oVoKX0HvotJmPNC3sS2eKyXRvSL28lsciP0uWx0nrv9wyme6ngtd82YuEZV2Yid7vbgMuhAHSxOF+1+N1gztjeHMeOtqacZK5xcghPpS7PQp8mNZXEX400gU+PMSeA+578n/dXEToDRy4CQAAEMpJREFUI2wuejH4MI29IvzqxDvAHwQudYS7X4Fqpj0OiVLVxGnjt0IcT1nSnkUudYS7i5C0rSzrANem0ZRKqM4Q6eFQ4EvB6NOEmvxTeRgXseJ6mcWpagGUzwIuBDYORu9iI84cMNLNbKRAMYssgDkVh94vZQxLuR5daHYm3YGM5FocS9xTc2rnJliQhDWR33H4vT6AhMcyr+tlTLSJ1FdJqJmnxigT31+MqNJ6vuXg+8HYcegGgB9C1KkqxfcXI+q14FgmIe76u+uqtbCvl/FKSWs9wjTWhcAExzIJ8bQbfMxreZaHyr2WqUEUprE+g3SA74+sOemgHRbbj0ZStMLcdWNY4iegew9J5gEukyrp/oyu2UqFDnwjoYOyOA34SDD2a1Rkwf0ArfyVCvv4mFJYifguJOVzreDCVeDC0oDT0f2kBhP2KQm/KrJv6ewiXFgacBC6n9TOwKEdmtygVGOIxCVuF9PFJJJIz4duLkJ+yVnW5nVVjFwuInG7dzA6lzFMZkJEH34VDgYeCka341FO6MwEC/I8M4BtgtH7iakuSGf7mKfmSHpUAWZ5SN3QDUhedZZLSCLNiU4g31MzfKSJjfZzBhDKMz6ALpIm7Xo9CV0EeLinOpnuNJUpthYuczI+AAd5DdVmeqpbC6nE7WzEOMxyuIPfhq938WfWWCTVrDJpYi855jOC4SXAri6i8+9EAjV8Zq0NXDscpImNRviYOp0H9ktTgALcLejo7GrAdWlEoiKiEreSeYB7PfKGE4BfBGObQ26rg7I4Aa1O9yjRQ7nrc9o8H1yYlIoOVMlVxLKLcDP1S12f0yb8O30LfCUiH+UbInkSt47jmKq8i1kOJGbF9TSUZ+0ccYnbXhx7cIL6ogpH8hpd7IbuCtxND5/swCwHp4ed0RK38kVN1BdVSIh7ajxXp2pVVZCgNbN/zyoNpDwTfoA+IMj3s+7SxEbb8bATWuL2ZWCi0w9tAFwsipvKdHsqk+meCup58gii1hTFwV0QRHHTtVCFNHEDidubXWPFmjPQzQAHk2DuGJ5cSfcTnD6YZTkAMlFcIfb9NIYNfizyXQiN4jPANWpgeTja8N6WynrN5ErcHgAu/M6mOKmZ1Yb3YeC/2O4ZFiMqcbsQiUyFZ7QU9wJxp81F4CvqJ+UPA8LfYWxfyuAeAOUAH4OomjWSYO4IVURELkZL3N5J9yDylwkv0xWx4jwzSJQ3v7OIxO1sdKHZyXSrfOuBTOURnNpMuvDckKYWlcfJrIOPSNw69iVR+dYDSbgF3bxoNZYwi0uVB7OzJGwPHB+MLmAUEzhS5VuHnIg+EGzGq+pQZoxgfOpxRm+u+zntABmAg+8AoedpNWCW1978juJhO+IStxOcdoCETIW0rm0ZMW9+GcQkbp8EvtboTa7fu6w6I0/0UkdSNjPRUaVYqsoAXL93WRnAZ3gdsTOGBzMQxb0s8cyDAbiFSO3Qv4ILx4MvudeMlzYKOk3wYnA682AA7hkkgyQU+biqfGliPx5JyQqjSoeC+13j97q70ano0lutdGliH4sqpZF6p7OLBnIW8L1grJJ+UuUaIiJxG+bgP0tcgUYzlTwr7npOb9hIp92ci847vpeNlQJNnG4uRxZBljUQD2A5oXeRuL0JXWh2Pt1KgSaPI9DSxNvwfImemoT8QrOTlAJN7P1LGB311BxComqYjBFIKnE7C725XuDgvwve5kj0WojVN3QMT+5aOMRJukFDXJ/Sn5YmPtjr+oaOkSNxuxjY3emUUIXrz7fXXkuvpck7RtqTJayzmYuIHoQpoQrXp/Q3kDGIgVs7aWKjEbkStxPTwvRBcI+jPdxpfYMP6xs6yTRimQf5ncgD3G1oyeK0vqEsaWLfF21dN7gwB9wVBW+SAD8NxkruJ+X7oq1hnc1x4BplF6W4VN0sKk3cIJrSfsozROISt73AXiRq48sn4Sx00egGLCzJiotL3L4E7BGtC8nnQDJFoymfpUcpPnWKmMTtQ+iNL5+EhYxiItpTcxw9JXQFTsgrNLuWRGny53Miz+Ai0sRwZQ2liY32E5O4fZgmZFNdvzqJkuk+1tN5me4GEreznRStF8KJYyi2FmZ6nYPcdgaRuA1FMnJx5Mt0+1DhsAP4uApfL6JYFgoDNOJctNey5g3VjIH4VJVISdzuC+6p4vdxs9C9ZlZH0mlKELzxO6DPB6nSmxss8yDLNxG56iwxxadOEZO4HTTaOhDXizjQw7Pr/uDL6id1CbHsoqaMITcPcZYsCS6cB760flLlGCJ5ErfQTaKsysHos+KeDsZ3SSMunSNP4hb2IVHzaUzSp1HNwuBup5IoJYr2Epe4nc8oJpAE8xmMk4h7ajzXc4oyENrN8ehCs8dZsQX1h25uJ+apqZM0sdF2fLwv0XwklamZzRXXr9c+gC7gOq8NhHYzBW3wxOYzKA7uIKehWgnSxDGJ29uRXiHNMg3dUG0TOixN7Pv6Eun9bprT82mIW7bfhV7Lr3ipIzFqTb/EbaShqPtuCzfM6zVT3IHYEj41eKISt4NnHgzA5TltjgH/n63OsBhFJG6L4p4jns1zKfgO95Py+yOpm1nS+bjBs4sG4H5GTj+psqSJy1Fd+DcfR3KPs/nH/6RVydeEl0jYFfHcZdmYhHFNH6aL0sunEG9dlt+RqAhNMRIeImEf5EGSZXvg/1q65+Cf2YVo0ochyFs5SUVoit5zFj2sh2f9AeNL+AQRlZ62cDpvYiFrERahdnEhx6oITTHG801eYimS75m959bAz1qbqFFX0oLoHdBr4TanG6kWwslhfV2kQDrLJ9DpmG3Bi+z229EF2Rc5vdkX5Vi5dbAW6Nxa8LAREl3N/hy9SGF3k5urSBN7OShMJUh59bCe04f7drE9Er3JRnDmoSM0hXAwz4s62z7BpY08rNiswWyUyoeR1KXfZ8YWoJvnFcQtAD8Rneb1NikydoOmLrbIp9EiEH8GVzzzYADuSfCTgdDw2Br87WnEoRN8Ch0hvgtcGKEpiLsT/CFAGD3YAS020Sb8OORZGT7vrwVXPLtoIKcgghphqv7HkChLx9kaecg3LMg0DKMjzEfW3/qDvXA55HLkd1OtvLVhLH9MQtZesxkLw4n1kZ9xftUTMYzlkL8g62/rqjurG4ZhGIZhGIaxHJJNzXorOu2oCP+P6pvSGEbVnIJOxynC2HZPZAQykdbUjr6FNCM0jOWVdWlNfnmddk+kxoyltbPPE1i01jCORctSF+Gt2f/oS81q9d/trc3dMEYU9zO0dWSpWZq+1KxW/1XUKMswasPmDG0NLQ+pWa3+u7/8KRtG7bidoa2jrUcjeVph4VMzPDWE9xrGSOFMpBdMq7RaZDaSuQHdUbgZhvJewxgJPMfQ9vdn2zWRGvIPhva7mduuiRjGMGYmorTYKlafbhiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRhV4KqegDEEElbG8VFgGzxvBcYD44AFwN+BhxnFLziJJ6ucpmEYhmEYhmGEmCEyHEnYBpgC7AyMLvCOR4CrgCtIeLWTUzMMY/nFw9XAZjmX/wl81oEvcUqGYQw7/I7A9AIv7AVeAV4FngAeBn4I7sUOTs5oM0UOsUZdSFgV2ej/q8l3bgKcBXwE+Eq7p2UYhuFhPWBPoKvBy7YF7i1nRoZhDFPGAx9s8b294GcDU8A93cY5GR2i0YZh1InpbAT8muaNkCz29zYMo1PsweDPmL3KmIhhGMstXcCuwK/Av6fqyRiDYwfT4cAprMFS7gQ2GOSVzwC/AR4F/tHxeRmGYSxj9wKv+YqHN3R8JoZhLO+sCVxe9SSMwbHUrPrjWMx3kLSHGK8AZwLfJuHZAVcS3gV8FjgQ2LiTkzQMY/nFw4eBIt7HVYAvAjd0dkaGYYxA/g50Z/77DUjq+WRgxcjrt5WoiPtTGZMzWsMMkbrTw5fwfDTn6pOM4j9yVbESngAuBC4kYRLk3scwDGMo5KVcLQVGRV5rhohhGM3yMrjL9LC/Evg5+lkD8CHADJEaY4ZI3fFMzbmyAPhcYWnehFnArHZNyzAMA8CLZPiEyKU/Ao8Bnw/GP+lhHSeppIZhGEPE3Qf+D8CmkYvjy56N0RxWI1JnEtYHNs+5eh4JfyxzOoZhGBE+D6wWGb8JmB0Z7wJ26+iMDMNY3hiTM/58qbMwmsYMkXrzmdwro4mEJw3DMEonLy1rFvA9JHobsm/npmMYxvKF/wzw7siFJcCvSp6M0SSWmlVv3pcz/hdO5K+lzsQwDCPAwxrEHSYPOknLwsPt6NStDT1s6eCBTs/RMIwRw1vBn57579HAhsBOxB3rV4GzFNCaY4ZIvXlLzvjjpc7CMAwjzu7E95FsPdps4jUke2GGiGEYxXkzcGyB13ngeuCQzk7HaAeWmlVv8oqsXil1FoZhGHH2jIx54ObMf99B/Jm1q4exHZmVYRjLM3cBCbjFVU/EGBwzROrNaznjtnkbhlEpHrYgLqbxC8ey1FEHC5FakZDxwM4dmp5hGMsvnwD+AH7/qidiDI4ZIvUmrzv66qXOwjAMQxOLhkBcJjymngX5he6GYRghC4CfBP8eAV6PvHYF4GLwXyhvekYrmCFSb57LGX8fCSuUOhPDMIwUL3UhkyKXlgK3RMZ/BLwYGd8pLXg3DMMYjGfAfTr4tymimHV75PUOOBu8nXVrjBWr15t7gOMj4yvi+A/g1pLnYxiGAbAjsGZk/FVgmo+/J5Zq2mfQnNeuiRmGsbzhngY/GXgBlJN2fWAz4HelT8sohBkidWYVfsarvAasqK55ppBwOwm95U/MMIzlnLyUqtWAr7dwLzNEDMMYAu4V8I8R767+LswQqS0WrqozR/IacHXO1Y8AUwvfK2E00/hoO6ZlGMbyi5ci88+18ZZb+HjRu2EYRjOskjP+1lJnYTSFGSJ1ZzSnIqozMbpJOJ8kd/GJAdLDLsBv6OWoTkzRMIzlikm0X7lvjzbfzzCM5Qr/PmCdnIux+jSjJriqJ2AUoIf98VzS4BX/AL4L/BLJkRyHYy08WwKfAtZKX/c/JHyps5M1DGMk4+E+YOvIpeeARYO83QHvjIz/HVjHwZIhTs8wjGGPn4w0JAz5I7iNMq8bDbwd+AyQAG+L3Qx4h9SRGHXEakSGA91cSsJ7gcNzXvEW4KvpPyGnWtQwDKNVPGxI3AhZALzHyf8Odo9HgY2C4TWBTwN3DnmShmGMVN4LvtnTzU/NCKk3lpo1XEg4AtifuF62YRhGGeydM/7dIkZIypyccespYhhGO5kHHFz1JIzGmCEynEi4DNgW0eRvlhdx5m00DKM1vOwXu+dcvqmJW+W99gseVm1uVoZhGFEeArYH96eqJ2I0xmpEhisJHwB2AbYDtkSn2XngKeCXOL6L51aS3KJ3wzCMhnipN/tx5NJLwFquiWith98A749c2t/BZS1O0TCMEUFujchgPI3Uys4BvgvO2hsMA8wQGQnMYRSP8mZG8WY8b8DxMivwAsfyr6qnZhjGyMCL6EWsGPRfDh5r8l7rIbVtIf904kAxDGO5xY8nLmoRoxd4BXgRnJ15hiH/H8Phg89jllwPAAAAAElFTkSuQmCC"
|
|
}
|
|
},
|
|
"cell_type": "markdown",
|
|
"id": "acfb354b",
|
|
"metadata": {},
|
|
"source": [
|
|
" <div>\n",
|
|
"<img src=\"attachment:fig_matmul_intro_q_1.png\" align=\"left\" width=\"450\"/>\n",
|
|
"</div>"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "794602ae",
|
|
"metadata": {},
|
|
"source": [
|
|
"It is clear that in order to compute C[i,j] we need the row A[i,:] and the column B[:,j]. "
|
|
]
|
|
},
|
|
{
|
|
"attachments": {
|
|
"fig_matmul_intro_algs_1.png": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAyIAAAECCAYAAAACfmNBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAACAASURBVHic7N13mFTV+cDx75kt9KVXASlqFKyAaEw0aoxpxhiTRVTssAtir0vbvbsgoBhRVGBZijUiaPJL08SusQc0GsXY6B2kt21zfn/cWZh7zp3dmd1pwPt5Hh+Zc+feObs7M/eee973PQqRErfeemuT8vLydsFgsJ3WujwjI2PL9OnT16e6X0IIIYQQQiSDSnUHDidDhw49MRAIXAmcD5zg85TNwHtKqQVNmzZ9furUqXv9jpOfn/8g8EO/bVrrILBdKbUhGAz+JxAIvFBaWrokUp+GDRt2YSAQKAw9XFlaWnpxtD/PsGHDfhMIBMYABIPBZWVlZbnR7lubq6++unF2dvZJWuv+Sqn+QF+lVCaA1vqpWbNmPRiP1xFCCCGEEKmTmeoOHA6uvfbaLhkZGfcrpS4BArU8tR3wK631r3bv3v1gXl6e06VLl5mO41SFP0lrfRTQv7bX1FqjlLpcaz1l2LBhL2it82fPnr3a7zW11jXHahHLzxUIBNrX7KuUahLLvn7y8/PP0lo/BPQFspQ6ME7WWtf8842Gvo4QQgghhEg9GYgkWGgW5G9At7DmfcBbwH+BjUqp7GAw2EEpNRA4FXew0hZ4eM2aNWuAP9XyEtuALUZbG6BVzQOl1C+UUh8OHz78jJkzZy5v8A+VON2Bk1PdCSGEEEIIkXgyEEmgESNG9Kqurn4DaB1q2quUmlJZWXn/3Llzd/rtM3To0I6BQOAm4GagWSAQqDV8Tmv9SFlZ2TizPS8v71hgDDAk1NS5urp6HnBOPX+cZNqslFqstV6slFoMXKO1viDVnRJCCCGEEPEjA5EEufHGGxuVl5cv5MAgZGsgEPjVzJkz36ltv9mzZ28AxgwfPnx6MBhcUN/XnzVr1v+AK/Lz83dora8HUEqdnZ+fP6C0tHRRfY+bSNXV1S9rrXvMmTNnRXh7Xl7eRanqkxBCCCGESIza8hVEA1RUVFwD9Kt5rLW+sq5BSLiZM2eu2bp16zmVlZXvN6QfVVVV44DKmsfBYPAnDTleIs2ePXuDOQgRQgghhBCHJhmIJEBubm6G1vr2msda6+fKysr+FutxFi5cWDF37ty1DenLnDlztgCf1zxWSh3ZkOMJIYQQQggRDzIQSYCWLVueChxV8zgjI+PRFHYHYEfYv5ulrBdCCCGEEEKEyEAkAQKBwFlhD3d06tTprZR1xhVescussCWEEEIIIUTSyUAkMQbW/EMptchxnGCqOjJ8+PBTgJ5h/fk0VX0RQgghhBCihgxEEkAp1aHm31rrlCVf5+XltQsGg3PDmsorKytfTFV/hBBCCCGEqCHlexNAa90m7OH2BL9c56FDh3pWWVdKdQgEAqdrrfOBjmHtDzc0+V0IIYQQQoh4kIFIYoT/XqsT+UJKqeuUUteZ7Vprs+n5zp07j0pkX4QQQgghhIiWDEQSY39CuFIqJ5UdAT5RSj1QWlr6JGCNToQQQgghhEgFGYgkxv6BiNa6UyJfSCn1GvBSWFNlMBjcppTaEAgE/jNz5sw1sRwuzt0TQgghhBDClwxEEuMT4Jehf/ev7YkNFQwG3y0rK7u3vvsrpfaFPWwSy75a66ZhD8vr2wchhBBCCHH4kapZCaC1Dl83pMvQoUOPS1ln6qCU2hb2sBWxzYqEJ+XL+iRCCCGEECJqMhBJgH379r0NbK15HAgE8lLYnVpVV1evDnvYPC8vr1vEJxu01vsHWEqpVXHtmBBCCCGEOKTJQCQBnnzyyd3AjLCm/Ly8vGPrc6zc3Nzs+PTK3/bt2z8HdtQ81lqfF81+eXl5WUqps8Oa3otz14QQQgghxCFMBiIJEggEHgI2hh42AZ4dPnx4h1p28XAcJ3PYsGG/b9Wq1S/rfnb9LVy4sFpr/feax0qpG3JzczPq2k9rfTnQLvSwsrq6+oVE9VEIIYQQQhx6ZCBSD9HMUsycOXOjUmoIEAw1nRgMBt8ZOnTouXXtO2zYsJ+uXbv2Q6XUbYFAIOGVrAKBwAMcKO17SuvWrR91HCdiIYNhw4adoZR6IKxp/uzZs1dHer4QQgghhBAmqZoVo7y8vDFKqeOAIXU9t7S09OX8/PyhWutSIAs4KhAIvJqXl/ce8KLW+hNgs9Y6IxAIdAIGABcAfRL5M/j0c9GwYcPuU0rdHWrKX7t27dl5eXlztNYfZmRkfAc01Vr31lpfAFwC1MyarAJui1df8vLy5gNtjea+Yf/+XV5e3knG9m9nzZo1PF59EEIIIYQQiScDkSjl5eV1VkrdrbW+SWv9L9zqUnUuEFhaWjpv+PDhy4LB4FygZ6j5+8D3lXInO2r+b9DAUxUVFf+Kyw9Qh23bto1p3bp1I+CWUNP3gPuUUgSDwUi7fQlcNGvWrM1x7MqZQJdath8Z+i9cO78nCiGEEEKI9CUDkTrk5uZmtGrV6irgXq11O9xQq78TwyrlM2fOfCM3N/fY1q1bX6e1vlop1Z8DMwqm75RSzwKzSktLP2nwDxClhQsXVgO35uXl/UVrPUopdW4tfVwDPFJVVfXo3Llzdyarj0IIIYQQ4tAhK2nXIi8vrzfwEKHFCbXW7wBjysrK3mzIca+77ro2gUCgH9ARaKeU2qeU2qS1XjJr1qwviWGQkyjXXntti6ysrNOBzlrrNsBerfVm4L9lZWVfpbh7QgghhBDiICcDEX8qPz//Wq31FKA1UAXc2qVLl5mO41SluG9CCCGEEEIc9GQgYgjNBPxeaz0MQCn1PnBlaWnp1ynumhBCCCGEEIcMGYiEGTp0aP9AILAA6AVUAs6sWbMmprhbQgghhBBCHHJkIBKSl5eXC5QBLYFvtdbDy8rKXklxt4QQQgghhDgkHfYDkby8vJZKqUdDK4UDvFRRUXHJY489ti2lHRNCCCGEEOIQdlivrD58+PBTgE9Dg5BKpVRJly5dfimDECGEEEIIIRLrsJ0Ryc/Pv1JrPQtoBHwNXDFr1qwPUtwtIYQQQgghDguH3UDEcZzA2rVrxwFOqOkvjRo1uuLhhx/ekcJuCSGEEEIIcVg57FZWX7NmTbFSamzoYfHWrVvHh1YVF0IIIYQQQiTJYTMQyc3NzWjTps0orXUBoLXWQ8vKyuamul9CCCGEEEIcjg6bgUjr1q0f01oPCT2cIoMQIYQQQgghUueQH4jk5uZmtG7deh4wBKhQSg0rLS19ItX9EkIIIYQQ4nB2yJfvbdWqlQNcAZTLIEQIIYQQQoj0cEhXzcrPz79Ua/0HAK31kLKysqdT3SchhBBCCCHEITwjkpeXd4LWekbo4T0yCBFCCCGEECJ9HJIDkZEjR7YF/gy0VEq91qVLl8JU90kIIYQQQghxwCE5EKmsrJwF9AS+raysvMhxnGCq+ySEEEIIIYQ44JAbiOTl5ZUAFwN7gUFz587dmeIuCSGEEEIIIQwHVbL6sGHDrs3Ozv5zZWXljlmzZlWa24cOHdo/EAh8AAS01teWlZU9lvxeCiGEEEIIIepy0MyI5ObmZiilHqqsrPwfUGpuz8vLywoEAk8DGcDTMggRQgghhBAifR00A5GFCxdWa60vB9oBF+fl5WWFb1dKFQPfA1ZWVlbeloo+CiGEEEIIIaJz0AxEAJRSLwKbcath9alpHzFiRGut9cjQc26dN2/eplT1UQghhBBCCFG3g2ogEsoLWRJ6eGxNezAYnADkAJ+Ulpb+KRV9E0IIIYQQQkTvoBqIhCwDCAaD3QCGDx/eQWudD2il1J2ATmXnhBBCCCGEEHU76AYiWuuPAZRSJwEEg8HxwDvAg6WlpS+nsm9CCCGEEEKI6GSmugOx0lp/oJQCOHHEiBG9qqurrwUytdajUtw1IYQQQgghRJQOuoFIdnb2Z1VVVQA9qqqqRiqlMoFXy8rK3jWf6zhO5tq1a7torc8MBALNSktLZyW9w0IIIYQQQgjLQTcQmT59+u68vLx9QI5SajCA1noGQG5ubnbbtm1PDQaDpwPnrV27dgDQTimF1no9IAMRIYQQQggh0sBBNxDBm4zeWSn1KrAzPz9/ltb64mAw2NZ4/k7cSluvJK2HQgghhBBCiFodjAMRtNY7lVKNAaW1HgD8U+v945PNwJvA60qpb0tLS/+JVNISQgghhBAirRyUA5FAILBBa90+9LAlsAn4o9b6mW3btr23cOHCihR2TwghhBBCCFGHg3IgorX+DtiilPpLMBh8ftu2bS8uXLiwOtX9EkIIIYQQQkTnYB2I5B1xxBHfOI4TTHVfhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghRBKoVHdACCGS7d13322TlZXVKtX9EKKhgsHg9tNOO+27VPdDCCHqQwGdgSsaeJxNwLzwhvfffz8nMzPzTKCzUirQwOPH3J/MzMx3TjrppI1Jfl1xeLoeaN7AY5QC2+PQl0PJT4GTGniMV4HFAJ9//nn23r17bwPygR4NPK4Q6WSl1npWq1at7j/66KPLQ229gd828LgrgGcbeIx01RL3u6AhdgHT/Ta8/vrrjdu2bdukgcePrTO7du0744wz9ibzNcVh7RqgfZ3Pqt2TCjgNeL+BB/oMOAFgwYIFGb169XKA24GkfggN1VrrOdnZ2beddNJJu1PYD3HoWwd0auAxegNL49CXQ0kZMLSBx7gFeOj1119v3KJFixeAcxreLSHS1tvATwcMGLAHuAD4awOP9zpwboN7lZ56Ad828BjrcW/mArBo0aKmwB3AVaHjp8IKpdRTlZWV951++uk7UtQHcXj4L3B8A49xeviChruAhfU80GoArbVavHjxE8BlDexYPGQopfIqKyv7fP311+eF3SUSIt6eAeob5nMFB+nCokn0EfBJPff9HKBFixaTkUGIOPT9EJgCjARWYkQqxKAncHac+pTuqoAn67nvtpp/vPvuu22AV4BT4tGpBjhSaz0mMzPz4g8//PDcgQMHrk9xf8Sh60/Av+u5by6hSJLwC6DNwLUN6dGiRYt+q5RKh0FIuB9u3779VmByqjsiDlm3NWDfQchApC5/BO6p787vv/9+DjA8ft0RIq0N++CDDwpPO+20T6n/OX0wh89ApJwGXvsAZGdnzyH1g5BwxymlngLOS3VHxCGrsAH7nkNoIBLX3A2l1LB4Hi+O8lLdASFEamRkZAwEGqW6H0IkSVZmZub3U92Jw8nixYuPAy5KdT9MSqkfL168+PRU90OI2sT7TmzExNLX17/Oe5ve87S1a9SOYUcPQ6nYindV62oe/d+j7Kra5Wk/r/N5DGw30G+Xnu+//35OXOIli7kZTR+j9QMc5sZ8rIm0p4ISzAFhBvczjq/r38k6OGQCE3GT9cItxOGVehyvH3bSXyVQgMMunz3iI96/v2J+g+ZnRut6HBxA17ebIrUCgUBbrf3/fCoYpMsjj5C5y/s23frjH7PjtNNifq2mX35J++ef97TpzEzW3HAD1U2bxny8aGVu20aXGTNQxs+5YcgQ9nXvHvPxWr35Ji3fecfTVtm2LWvz8iDG7+tYNP3qK9o/95ynrSG/vw7z59NkqTf1anffvmz+9a8b1M+6tHrjDVq++66nrb6/v3q+R9vF9CKiQbTWZ0fa9uGHObzySmtPW/PmVYwcuZaMjNhOK1rDrFld+O67LE/7GWds5+yzt0XYR59Nw/OAAX0dYF5gfQ5qWj2O1Rw3SiXL2DAT1Mf16l50r6uAIsLyekJeBPV/9TjeMbj50OGCwDhQm+vTwyhfN86/P30ebqhUuO3AaFBV9elhLOI9EGkWacOAtgN4cMmDrNmzxtPeIqsFl/a8NKYXmfnlTJ749glP21EtjuL2vub74YDGjRu3ABo+EFG8gmYiEH5WHEoxKyji1ZiOVMEc4FdG+4KEDkIAHKpw+BA7JyiXCZzCWFZEfax7acFengGOMbbcntBBCMBoNuGwDSjwtFfzfR7gNG4j+uohDsegeRxoEdYaRPEzZBByUAsGgyrSzQ4dCLDr5JM56vbb3bN8SOtXXmHJU09R0aVL1K8T2LOHnqNH03iF9+Oz+uabEzoIAahq1Yrqli3pNNd7P6TZp5/yv8cfJ9go+gmhRitX0mPcODL27DnQGAjw9cMPJ3QQArDn6KPJ3LyZVm+95WnP3LaNpRMnxnSslv/6F91+/3vP37W6RQvWX311PLpaq50DB3LEtGk0XrnS017dogUbLosterlzaSmdnvCe7/b27s2q22qNCJXS/MkVceB38sm7eOihI/jyS+93QFaWZsSItTG9yDPPdKSszHsN3blzBTfcsCbCHqCU6hDTi0T2EnAv0NbbrFeD+mOMx5qOXa31H9Q/FzBKSoN+HbeaYkbYhstBDwS1JPpj6UbAfOxwvEmJHYQAqF2glwH3Gxt+DLo/qBgqcOquuHmu5nv4smQMQiDOoVm1aZHVgkn9JpEV8A7gHlryEJ9u/TTq4/x78795/JvHPW1NMpowuf9kGgWSEH1RyOcobjJaA2iexomhcpLD3diDkG+A5IS3OTyHXXawNVU8S6k1yo5sLzOxByEv4DC1gT2M1jjcSjHhTmAHU6I+gkNjYAHeQQjAeIp4uWHdE+lu+1lnsTHXezMoY8cOeo0ejaqK/nv4yEmTrEHI9jPOYMOQIXHpZ13WDh/OzlNP9bQ1+eYbuk6N/qMYqKigV0GBdxACrLvuunrNEMVMKVY4DhWdvF+lrV96iXZ//nPUh8nesIEejuMZhKAUywsLKY9hcFlf1U2bsuyee9DZ2Z72I6ZNo9mn0Z/vWixaRKd53nzzYJMmLJ08mWDjxnHpq2i42pYoyM4OMnnyUpo1q/a0z5vXGTd9LTpLljTj4YeP8LRlZmomTlxKTk7k76lgMBinQalahVsNzLwxNwd0z+iPo6/DHoRsAK4BFWxID6Oj3gQmGI3NgAWgY7ljNBV7EPIB7oxLMjwAmF+KvXGrTUZJZ+I/CHkU1DMN6Vwskrq+R59WfbjxuBs9bVW6itEfjWZHZd2TFVsqtjD247EE8b5XR504ih7Ne8Szq7UrYg52lY2OwNMs8Iyy/ZVwGlBitJYDl+DEYdYmWm24DbciUbjTWGf1zZ/D9dgV0lbj/2WVGA5VwKW4xRbCjaSYaKfaHsUOK3yTPoxvaPfEwWH1Lbew59hjPW3NPvuMLjNmRLV/++efp82LL3raKjp0YHlJScJnEWroQIDlxcVUtfIWcGv/3HO0+cc/ojpGt/vuo+lXX3nadvXrx7phyUv/q8rJYVlJCTrD+1Xa7d57aWL0zY+qqqLnqFFkbvfeFNw4eDDbzkle4bQ9xx3H6hu95ztVVUWv0aPJ3FH313zWli30HDsWFfSe71YWFLCvZwzXfSLlunUrZ8wY702KYBAKC3uyaVPd9/127sygoKAnlZXe75KbblrNCSckc3UC9XfgIaOxFfAs6GyfHQy6L2CGcgWBy0Els7pXCVhh6H2xf7YI9O+AEUbjVuASUJUN7Vx0lMZdx8OMYMkFHW1xlgm4lfbC/Re4s4Gdi0myFxrk0h6Xcnansz1t6/euZ8In5gDVK6iDjP1oLN+VexeQvbDbhfziiF/Eu5t1a8YI4Auj9Vy+4K5a95tEa4I8ix3bdxuONShIrJtCgx87ZO1uiq3ZGq8STsCeFnQHBY41KEgsJ8LgRzMDp45a7sVcgl0xZRNwGYOo9tlDHIJ0djZLJ0+murl3XcpOTzxhhQmZmnz7LV0feMB7vAiDgkSLNPg5cuJEa7bG1Prll2n3f94w6arWrVk6YQI6kNxTxa5+/ViX560xEmm2xnTEww/T3Jh18BsUJIPf4Cd7/Xp6FBV5Z2tMwSA9xo0ja7P3q/S7X/2K7375y0R0VSTY+edv5cILvX/PLVsyGTOmJ3VNWowf34O1a70RHz/84XYuvTQlazbfBbxntJ0KTKp9Nx2adcCcdSgGFUtYexyoIDAEdx2YcENB1zGFrXsDs81G3Bmd6MPa40KFBj+Yg58HQddRwU3/DHvAsQsYBCqpi2ImfSCilKLwpEK6NPVOj7+2/jUWLo+8jEnZ12V8uPlDT1uvFr246/jar/sT5k5245Ze9f7BNCU41gizhqKcecCRRvtzOP6rsyac4xsOptDMYQJH+O2CQ3OCLMBesHIcjhUmlRwOL+BOVYZrCTzLtAgVkxyOQjPLaNUorsMhtuBdcdAr79qVFWPHehu15kjHIXu9/826wN699CooIFDuXabIL0wqWbafcQYbrvBGPgT27HH7WVHhu0+jVas4coJxM0gplo8bR2WHeIWYx2bdNdew43RvwZ/GK1fSbUrkqMuW77xDxz/8wdMWjBAmlRQRwsFa/utfdFgY+XzXefZscj74wNO2r3t3Vt2Z1BuVIs4KClZxzDHeS4aPPmrB7NmRo7oXLOjAa695b2h07FhBcfHyZE22GlQlbnnnLcaGW0HXVjnsEbAK/bxJA0qzN4zagBvRYd5wnAH6WJ8dAJ0FPIVd6OcBUNHHjsaV+gC7jG4j3FCzCLF/uhPuGkPmGGAEqP/Fu4d1SfpABCAnK8c3X2Tqkqn8b7v9O1j83WLmfDXH05YdyGbCKRNonJHCOFmHz1DcarS6MXeOT/JaMbcBZrmWldgVp5LLYQF2XGF7qvhDhFCzGYD5QX0NuC8R3YtBAfCu0TaALT5ryBzICzE/qJMpavBqxOIgtfW889h08cWetswdO+g5bhyq2p4g6z5pEo2XLfO07RwwgA1JSIiuzZqRI9l1kjfasMnXX3PENLvAjaqooNeoUWTs9oZ4rL/ySrafdVZC+1mrQIBlJSVUtm/vaW7717/S9m9/s56evXGj70zDitGj61U5LF6qW7Rg2eTJ6Czv+a7rgw/S9AtzUh1afPQRnWd7b7gGa2bsElz0QCRWTb5I06be75LZs7vw4Yf2NePXXzfhoYe89wMzMjQTJy6jZcuk5BFHoFYCV+ONQlDAXNA97OfrwaHnh9uImxCdwsgD9TpuAn645rgX8eaNVnCjQMxyyP8GRiegc7G4F6zrlqPAutEK6ADwNFg5zbNBPZWIztUlJQMRgL6t+jLie94Qu4pgBaM+GsXuqgMnxC3lWxjz0RgrL6TghAKOyTFzpFOgiFLcP2q4rsAThFcuKeHUULWtcJUEGIxj3VlIhZuA/xhtZ7HEGGkXMwx3SjPcBuByHJKQaFYLhyoyGQx8Z2y5mWJ+Y7T5J5p1TlqimUhTq++4gz3f+56nrfnHH9N5lvc7vd2f/0zbF17wtFW2acOyFIQymXRGBssmTqSqpffGXYf582n12muetm5Tp9L0f94bQLv79mXtCDMEOvmq2rRxZzOM32f3e+/1DABVdTU9R48mc5u3hOmm3/2OLT8zK3In3+4+fVgzcqSnbf8AMKwsb+bWrfQcM8bKC1l1113sPSYNzneiwbp338edd67ytAWDMHZsD09Z3j17AhQU9KK83PveHzlyLSedlNiClNFRf8XNrwzXGpgfmjkI0UdjXxAHgStApUPkQSHujdRwPqHn+gLAjO/chpsX4j/VnDRKA9cBZvm0S0LFAcIVA+cabZ8DNyeoc3VK6dnyil5X8KOOP/K0rdq9igmfuiECQR2k8D+FbC73xlWe3+V8Lux2YdL6GYXhwJdG289DMyDg0CqUF2LGBtxFoRVrmRoO+8hgELDT2DKWYn4CQAl90TxobA+iuBzHirVMjbGswu9OjWYu43EzPIvJxV5peyuZXEK+FWspDjP77z4381Yj7zxvHjnvu+X4myxdaocIBQIsnzCBynbpsYRDRceOLC8utvJFeowfT6O17vm/9auv0t4IEarOyWHppEnozHhXd6+fnf36sX7oUE/b/pC4ffsA6DJ9Os3/472Psrd3b1bfak5Yp86Gyy9n24+857tGq1cfCIkLBulZWEjWpk2e52z9yU/YfFHarZUnGuBXv/qOCy7w3i/bsiXLky8yadKRrFjhjfg444wdDBmSHqfakDuAxUbbaVBT6EVHqkg5CdRLie5cdFQ1cCV2wZvrQYeK8ehuwGPYZbGvA7WMtKDc3FY3VzfcI6BD0+P6HGCUsT2UZqBqT75LoJQORJRSFJ1cROcm3rrYL699mT+t/BPzvpnH+5u86/B0a9aNMSeOSWY36+bUJPhY+SKTKeEHwBzALHPyd5xoKzQkibt+ibkKfQDNUzgcFcoL8cYGKEpiXD8l8Rz+hl2ZoxXVzGc8x6GtMDSN4pqY1k8Rh7Tybt1YMcb4ngldKDZas4aeY8bsvwiusW7oUHYM9F1QNWW2//CHbLjUWzwuY+dOehYU0GjlSrrfY4Rnh3IaYlk/JRnW+vxum3z7Ld1+/3ty3n2XTk96ixjuL3Ebw/opCacUy4uKrN9t61deof0f/0inxx4j5z3vfanybt3svCVxSLj77pX06uX9Dlm0qAWPPdaRP/6xPS++2MazrW3bSoqKlpPiyVaDqil4Y65bcRfoC3HPwycb297HvSufRtQa3MGIGdUxM1Tpaz7W+ik8Uo/1UxJMvYX9uw0NBnVv3OgdM9z+htjWT4m/lL+lc7JyGH/KeDKU93cz5bMpzPrKO5uXHcjm3v730iwz4rqJqePwKcqqQJBJkH8AFxvtK3Hf9Om3UJ7DfLBWie8AfIydaPY6x1n1uNPFXbixm+EGUs2H2IlmUymy6nGLw9zW88+37kRnbtlCn0svpcnX3jVHd/bvzzrjrn26WHPjjezu29fT1mzJEvoMGWKVkd146aVsO/vsJPYuSoEAy0tKqGzjvThr96c/0bugwI1tCbNi1Ki0LHFbnZPjhu4ZpYm73n8/XUpLPW2RZubEoaFJkyCTJi2lUSPve7e0tAv339/V0xYIaCZNWkbbtuk4Ya++xb6BqXAves1COJuB3OSVuI2FehGs9cda4A6czjDaP8KdDUpHE8Fa/+wY3NB7c0X5J0E9loxO1SblAxGAk9uczPDveSNlKoIVVGtvDtPtfW9Pj7yQOqa0rgAAIABJREFUSIp4FHdxmHDNjcdVBLgsTfJCIhmJvcKp+XNsBIakbYlbhwrgd9iVPcyf49/YU5VCAP6x+QGjfGxV69ZpkRcSic7KYum991KV402GNX+OPX36pKTEbbQq27Vj2cSJ1u/Z/Dk2X3ghW36RgpLuUdp14omsvf56T1ugosIqhrD61lutXCVxaOnde6+VL1Jdraio8L7H8/PX0a+fGTWdTtQCYKbRaJ5rNTAU1Ork9KlexgLvGG3mz7ELN8m+nLS0vzSxmX9j/hxf417rpVzanDmv6n0V32///Yjbf9z5x/z2yN8msUf11JgRwNJanjGGQuuNnl4c9hHgciBSzKCbaJbuJW4dVqKsOzXhtpHBJaFBixCWOqsV1ZS4NSo7pZuKTp1880VqVDdv7uaFZNW9uFoq7RwwgPW1VCTb16sXq+5KUUn3GKy/8kq21VKRbOu557IpNzeJPRKpctFFm/nFL8z6Kgf077+Ta65Jq7yQSG7BjZyI5P7UlbiNlqrCLU1c21pow0GZOcFpRoUqkkW8UbwPNy8kLUa3aTMQCagAY04cQ8CnS52bdGbcSeNS0Kt6KGA7WCV9a7yMY039padCPsdesLDG/TikSaJZHYp4HrBrfbryGUeaJJqJdLWve3c2DPFf42rDkCGpLXEbg+1nnsn2M8/03bZy9GjKj/BfNijdrMvPp6KTve6Czspy80Iap7Cke7SUYlVBge8sWkWnTqwYd5Cc70Rc3HnnKho3totOtmpVxcSJywgE0i+K26bKiXyHfRGQZsm9kajVRM5hmQfKrJKaptSbuGue+LkDlFklNWXSZiACMO+beVaZXoDvyr9j7Z70vvm+n0MmRFxd/Xs4tE5md+rNoQMQKeh9AE56vXciKuFU4PwIW80kOiEsmVu30v5Pf/Ld1vSLL6xSq+mq6ZIlVjJ0jSZfpvkNvjBt//533wUmVWUlTb76KgU9qp9O8+b5vncyt2whe926FPRIpMrTT3dk3z77lLpzZwarV6dRwYVaaQXcHWFjdyC9p433082BGyJsPB50ClZGrQ99NHZ+co20uvZJm4vJV9e9yvMrnvfdVhGsYOzHY9lXvc93e5qZAPwgwrbuQGmEbenDHWQ8CUQqnXMukQdb6SNy2eQad1PMT5PZJXGQ0Zoe48dbJVVrtFi0iI6PPZbcPtVDxp499Bw7FlXpnyPa6YknaPnWW0nuVewar1xJ1/sjTdTCkRMn0njlyiT2qH5av/aaVTa5RqCigl4FBWTsSVk1TZFEixe3YO5c/5XVq6sVo0f3ZPv29CilXYfbsRdsrtEB+ANovwWS080MIFJy1qlgrQeXhiKWTa4xFLT/NH8KpMVAZM2eNYz/ZHytz1m6cylTPkvzqCaHn4FVOcv0O4pJ/UphtSsg8ixCjfGh0sTpbDp22eRwATRP4kQccInDXKfHH6/zAr1Laam1hkW66V7XBXrNgGvjxuR1KkbRXKAH9uxxFwSsSN+0r+z16+k+ofZig41XrqRbLQMucWjYsiXTs3aInw0bsikq6oFO6+gsfSpwTx1P+hFpH56l/RZsNt0GOtKAK108SN2zHjNAH5uMztQl5QORymAloz4axa4q70qhF3W/iNbZ3iimP6/6My+ueTGZ3YueezH7BPbvdArmAjOaByjhpCT1LDYOP8SOj9wL1kKGmQT5Aw5tSEfFjAQuNVqXY1c1aw88xQKrtrY4zDX/9FO6zJjhaQs2asTGyy7ztKnqanqOGUPmdrOUfnpo/9xztPnHPzxtFZ07WyuOZ27dSs9x49I21KzbffdZoVc7Bw60ShM3/eILuj7ySDK7FjVVWUmvu++2yiZvvvBCqzRx27/8hbYvvJDM7okkCgZh3LiebN7sLRDx059uoUsX70D67bdbMn9+h2R2Lwa6Fe7ddzPy4EHMtdWgEPSPSEv6eLDWdqvCLumrgDmgu5KW9CAg32jcBMw22prjzlKlPPYv5QORaV9MY8k271oqfVv1peCEAopPLiagvF2c9N9JLN+1PIk9jIIbyvQEdgzkTBzuAoqM9sYEeQ6HHNLJJFrjJjeZ88A34XAr7qI+4brj/tyRb+ekQgknoK0vD7dsMlwLfGpsO4cvkFXDxH4ZO3a4oUxGSdVVt9/OqttuY8tPvRF92Rs20KOwkHS7bdnkm2/oOnWqp01nZLDsnntYUVholSZusXgxnWeb56vUa/3yy7T7v//ztFW1acOykhLf0sQdnnmGVm+8kcQeRueIhx+m2eefe9p29+nDylGjfEsTd580icbLlyexhyJZ5s3rzAcfeN+3vXrtY9y4FUyevJSsLO93yUMPdeW//03LNWXmAD2MtudB3QrcbLRnAPNBd0xGx6KnmwHPAk2MDYWg7sIOqW+LexGfZjFzujcwy2wErgNGYJcmPgV7oJV0KR2IvL3xbeYv817btshqwaR+k8hUmZzR4QyG9PLOku2p2kPB4gLKg2lVwrkI+LHR9hk53Bb692Swqkwdhf2GSSVFOfOAI432BTj7R9IjwKoy9UuKuSnhvYuWQ/PQCvDmF8ooCnkvVJr4MszSxJpCiq2/oTgcaU2PkhKy13oLZGw97zw2X+zm/q0cNcqqMtXynXfo+Iw54ZY6gb176VVQQKDc+125duRIdp14IsHsbJZNmGBVmeo8ezY5H36YzK7WqtGqVRxphjIFAiwrKaGyXTsqOnVipbn6eIS/YSr5vT+qW7Rg2eTJ6Kwsdg4YwIarrvJsj/Q3FAe3jz9uzqxZ3rXlsrODTJiwlMaNg/Tps5sRI9Z4tldVKcaN68muXek0ea9vxH/B5lDZfFWGu7BhuE7AvFBye7p4BL8Fm+G+0L9vwV0QMNyZ2DeZU0hn4f6uzQWb7wP111Bp4ksBs1b0jaAjJbUnRcoGIhv2baDo4yJ02OLiCkXhSYV0aXogZH/ksSM5qbU3iumbnd/w0BJzBi1FSnzjHneTwSBuC01LOqF1N8AshXIJDlcnvI/RKOY27ESzbwlfGdVhGwEuAWPdDc0UHE5PdBejNAMw4x5fxOH3+x8V8jmKW4znBNA8jYN/1qA4bHT0uZte3rUrK8IudiOtu3HEtGk0+9SccEsNv7vpO844g/VhpYj39urFqjuNtLZgkB5jx5L1XeS1DZJFVVTQa9QoMnbv9rSvu/pqdpx+4CvHb92NjB076DV6NKrKGxmbCtkbN9KjqMiaMVs+bhzlXQ6c79YOH86uk72h3U2++YauD5qRseJgtWNHBoWFPamu9l6H33XXKo455kAk0xVXbOCss7Z5nrN6dSMmTDDvFaaKPhG412isBAaDCl9IeDhgluX7OWmzMrkeDNZ12AbgclChKXEVWncDc92N0aB/kuAORut+4DSj7UOg8MBDtQr3ZzWn7ueAri2fNqFSMhCp1tWMXjya7ZXemOrBPQdzTqdzPG0ZKoOJ/SfSMss7yFuwfAGvrXst4X2tlUMHgvwBrPyC6xnHF8ZzIy0w8wiONRJPrhJORVuVIMqBQTh4g5kL+Tf2wCsLeIrJ1kg8uRyGYiearQGuxPzgFVGGXWO7IzDvoClNLOKu6ZIlHPHww542nZnJsvHjqW7uXZh2T58+rLnBW+VRVVXRa/RoKwcg2dr55BdUtmnD8qIiMMJ/Nv/613xnrESetWULPRzHDWRPoW5Tp9L0f//ztO0+4QTW5dnrlK7yWYm82Wef0aU0tYUKVXU1PUePJnOb96Jy46BBbDv3XE+bzshg2cSJVLVq5Wlvv3Ahbf75z4T3VSSW1lBc3IN167zpFD/5yVYuusi7hp5S4Dgr6NTJe9/vlVda88c/tkt0V+ugm0OEyAOUUSNc7cK9iDfLnk4EfUaiehgdfTR2ZEroxrEybhyrr8FaIDkAPAW6MymlLwBuNBq3AZeAMip3qL8BDxvPbQU8m6rSxCm54Jr+v+l8svUTT9txLY/jxuPM36OrY+OOOCc7KCMVYfyn41m7N0VT75FL3D6GwxMR9nkDu/RbM9zwpwhLNydYpBK3ijtx+CjCPr8HzBVSe7OPsoT0MRol9MVONAsCV+JEXCV1BPadmp+RNndqRDJFKnG7+uab2X3CCb77bLjsMrb9yJt7mb1+Pd3vqauATOI0WbqUbvfd520MBFg2YQKVbdv67rOyoIB9PXp42nLee49OTz6ZoF7Wza/EbXVODksnTkRn2qHZOjubpZMnU93MG0ff6fHHyXn//YT2tTZdZs60qqrtPeoo1txshs+7Kjp0YHlxsXslGqb7pEk0SqNQMxG7J5/syJtvegeZ3bqVM3bsCt/n5+RUMX78MjIyvPfR7r+/G199lZpLhpCZ2CVuXwQe8H+6+hR7jZFM3HyRFBW8iVjidgKol/33UfOBx43GFJcm1t2Ax/Dm6mrgWlDLI+x0B/CB0XYq7vITSZf0gci7G9/lyaXek1vTzKZM6DeB7EDkwdiZHc/kkp6XeNp2Vu6kYFEBlUH/2vgJ5lfi9mua1Jkv4QDmVE5fYKr91KTwK3H7N4qoreyMphHXAOa3Zy7FVrWGxJtCs1BeiPnNXIRj/a4PcKi5U2NW9rjnIChNLOLMr8Tt9h/+kI2DB0feSSmWFxVR0dl7Q6z1q6/S/rnnEtHNWgUqKug5diyBfd6bj2uHDWPnwIER9ws2bequSt7IW0Cly/TpNP/kkwh7JY5vidsIv+tw5d26sWKMMWEbDNKzsDDiWjCJ1OLf/6bj497rlki/63Dbf/ADNlzqLfqXsWsXPQsKIq4FI9LbkiXNmDHDm1eWna2ZNGkpzZqZgRIHnHLKLoYN896cr6gIUFDQiz17UnHtq/OAy43G1cCVoGqp1qGmAebKsN2Ax1OUL+JX4vYtoKSO/UaCEfECZ+NeEyaZzsStBGreYZoGyn8VXgBUJe7f0Cz1eAfoC+PZw2gkdSCypWILxZ8UE9Te6f5RJ4ziyGZ1xz3e0ucWjm91vKdtyfYlzPhyRoQ9EsTNh3CMVjeG8G4rhtDcN0gmV4J1lz6PYuvDnVgON2CXuF1Ftm8ModcothLgCuzSxA/iJHnVzt2+iWZv0IdJde7r8CnK505NkGeYaH24xSGq/cKFdonbjh1970ybqnNy3HwR4y59twceoGmSVyzvNnmyXeK2Xz/WX3ddnfvuPeooVht36feHFSWxNHGk8LYNl19uzT752Xr++Wy+0HsuzdyyxV1fJImhZllbtrgzbMZrrvCZffKz5qab2H3iiZ62ZkuWcMSjj8azmyIJdu7MoKCgJ5WV3u+SW25ZzbHH1r1w5bXXruO007yfh5UrGzFlSre49rNu+njsm6bVwFWgIkUehLsWu+DNBbgX90mkc7FL3G7BDcmKPCoEQO3GvYFp/uGKQZ/rs0MiTcReQHsxkVe4D6O8OcChRtxCAt3j0bloJW0gEtRBxn40lu/KvQmQF3e/mJ8f8fOojpGpMpnQbwLNM72x2k9++yRvbUjSqsBuidv5uHkR4W7Gsaoq+BvLGpRP3oJmJuMjrugZXyWcwIGKEDWqgMGMtqoq+CvkX9hrjrjTnfdGXNEzvhz8Es02ksVlDLLycfwV8TDwR6O1GxXWdKc4BPklA++P1W8ZXdrT7uOPZ62Rt6BqFuAzEq0TpfVLL9HuL3/xtFW1acOye+6xysJGsmnQIP/SxD6J1onil/C/u08f1oyM/lplVUEBe48+2tPW4qOP6DRnTlz6WKcICf+bL7qILUY+TiQ6M5OlEydapYk7Pv00rd58M25dFYlXUtKDtWu9M2Bnnrmd3NzoFhANBGD8+GW0a+edDfvrX9vy978n636ZdsPI/SIPUFEm7KptwGDMgjdwP+h+De1hdHRvsMLINXANqFpWfQ2nPoP9VVFrZODO7iQpgUf7Jfzvwk2yj7LMnlqInSPTBngymaFmSRuIlH1dxoebvSUhe7fozW19zb9l7bo27crYk7ylGjUa5z8O6/eub3A/6xCpxO1CnBhL8RbxIm6Vg3DNqWYBDo39dombSCVuFaNxeDfGo00EzHjKo9mbhNLE4/FPNFMMYYxVoawu1+F3p8axEsDEISRiidvrr2fXSbGtObreqOQEodKzScgX8X2dmhK37c3ljWq3sqDAU8kJoOXbb9NhvrmMUPzVVeI2WsHsbJbdc49VmrhLWRktklCauItPCeS9vXqx6o7Y0s8qOnVipRlqpjU9iovJXhfrV5xIhfnzO/D66968kI4dKyguXl7XZKtHmzZVTJiwjEDAe0Ng8uTuLFuW2EuGkEeB44y213GXJ4iB+hAYZzQ2wk2WTvDaahFL3E4B9RefHWqhSrFLE3cFnkh8qJk+Av813IaDinUa/mbs0sRn4am2lVhJGYh8tOUj5nzlvRPVJKMJk/tPpnFG7B+g8zqfx2+6/8bTtqNyB+M+HkeQBE69Rypx29ia3orWaLAu/P1K4sWbX4nbf1BkDYzq5pYmHoJdmngwDlfWr3tRvW5jqnkWO9FsEkXWwCia4/mXJob7cEjSnRqRbL4lbr//fdZfcUXsBwtb2yJc65deou1f/9qAXtYu0szL+quusgZG0Yh04d/1oYdo9tlnDeprbSKVuPUbGEXD98I/GKTn2LFkbdniv1MctPjoIzoZi0JGGhhFY+uPf8ym3/7W05axYwc9CwutBTdFevn66yZMm+bNC8nI0EyatIycnNjLSg8YsJOrr97gadu7180XKS9P5OWcHgxcZTRuxFPiNiZTAPNL8SjsmYp48ytx+2/sgVG0hgNfGW0/B26t5/GioGsW0DZnXmaBMgdGUYhYmngs6PPq08OYe4D7R3kfWI6dtByTRYsW7cRdNt5jb/VeK6E8U2XSNLP+VR+qdTW7q+yQh+ZZzQn4jK8yMzO7nnzyyWusDbFwyKGRUaq3Efv2rxdSH9NoxG5jqrMcjcO2CHs0lGISrazWcnbjWBfh0XNoSiO8c88BqurMman/62XSyCf8q5ztocFRfY9r/43LKcex4kHjZRdu5bTewNIEvcbBqgwYCowF6j2tsGjRolzckAIvrcnYab89g02axHT33RTYtw9VYXyUMjOpbpqYKjequpqAT/hXdfPmVqneWGTs3g3Gha7Ozq7XxXQ0VEWFlWSPUlS3aFiUZ4ZPKeWG/o1rE9i710oo15mZBBvw91fBIIFdu6z2YPPmvmF3WuurTj31VP/qjdEZjJsE+zqQ7Lj3ZOmFu1bWbnyuW2KxePHiIq21Y7bv2xegosJ70zojg1qT0+sSDOK7qGGzZkGruhaA1vrBU089tYEXxroFbpWrcOWgGnBe1Nm45z7TttqT3htCt8KeRdgTfSiT7zGbgBXFUg0qQTXcdQbgN3O0M7RoYX2P2xw75aAilBOTCMuAHsDp8V6evhyfD3STjCY0yTDLTTdMhsogJyv6Wbzy8nKzhnXszDU14uEmynF/b8miGcXWuB/VvVBP1MW63+tVQUJ+jtQuACHiTmu9VvnFQChFdU78IwGCjRtDgi7W/eiMjIT8HGYZ3ETT2dlUZ8e/jH0ifje1CTZpAk3ie77TgUBMP0cgEFgd1w6IemncOBj3r4JAAHJykj0TphJwQ1FVYEcgJJhKwA1etRe78mYCqWoSce3jrveSEvGey/s6zseLl80DBw5M3Fy8ECJtKaU+xK5SJ8ShatuOHTtizfUTQoiUiPdAJPHZjPWglJqvVKKm+oQQ6WzAgAGVJDHxTogUc84555yGRwAIIUQSxHUg0rJly5la60XxPGYcrFRK1bVAjRDiEDZgwIAZSimzXLUQhxSt9YP9+/eflup+CCFEtOKaI3L00UeXL1q06OfAU8BP63p+EnwEDOrXr1/yl9QVQqSV/v37371o0aK/AtfjrqjbKcVdEiIeNmitP9Fazxg4cKAsMCKEOKjEO1mdAQMGbAZ+tnjx4jO11udrrTvE+zWisB14Y8CAAf9QSiVvKV0hRFobMGDA28Dbqe6HEEIIIRIwEKnRv3//fwH/StTxhRBCCCGEEAevpK2sLoQQQgghhBA1EjYjYnH4GYqTPG2aNTg8Vc/j5aFo7WlTvEthgmdhirkKM7ZcsxiHV2I+1gM0YSc3YA4INX/CsVbrjJ9SsljHjShj8RrN33GIfelkh+4oLjWOpYGZCV2Xw6ETylrtFTRzcOpRrtVhIIpzjGPtxuFRQKquHYK0u4DTDYC5gMULCv5bj+N1Ay7z2TRTuSGjCaGhI3C1z6a5CmLOkdNwKvZCdruB6YoGLBha9+ueiLsycbhy4BEFMS/WpeFXQB+jeZnyW+AyjrSbI3my0bxWwZP1PN5QoK3R/J6Ct+pzPJE8H33UnP/+17u8Wk5OFb/5Tf0qir/wQhs2bfJ+XR1zzB6+//1EL4Glc3EXgQy3BJS5Qno0x8rE/d5tZGz4B6hP6tW96F5XASOxF1J8HdSH9Thee+Banw2PgdoQ+/Gift2WuKu6m54BtbIexzse+KXRWAk8DKrSZ4e4St5AJJPPqeIpzC9Thz04/DGmYxWTj2amcWm4Bs2chnazTpoVwBzwrL69G4eBOCyJ6Vg7eAgYZrS+Bfy+QX2sSz6VOATQTDa2DGMy/SmI4YLJIRN4Bs0ZxpZpCV8c0GE9DscDQ4wtP8L9UEU/eHDoAPwfms6edsXVMR1HHFQUVGp3pV3rs6ChfyyDB03oswA/MDY9kshBCICCDRr6AlcYm87W8MtYBg+a0GcBuhibrknkICTkS+Ax4BSjvT0wJpYDhQZTz+EdZFYCZzWgf9FaAjyNcb7TUKXc90jUQoOQMqN5A/B4g3ookuKoo/ZRWNiT9eu9gwel4KKLYhuMvPVWS4qKeqLDzkg5OdU89VRslx719CXwBN5VxCtBnw0q1nVrioHRRttnQIIrvikN+jvgYWPDBtCngFoX/bG0AmYDFxobFoC6t0HdrJPaDror7mAu3MWgzwwtFhkl3Rz3e/J7xoY7kjEIgWSGZo1lFfhe1M1hPD2jPo7D8WimGq3VwJX1ugseK4c3gIlGazNgAQ5NYzjOIOxByBbgitCq4Ynl8Hvgz0Zrb/ZZJ7y6TAZrEPIpcHd9uxajEcD/jLafU8wdUR/BIYBb6a2zseUxiuRkfxiYinvhHa437kkmFhOxByGfAnfVs1+xuh77s/Az4M5oD6Ddc8KT2IOQ+codICSUcmc/BoF1E6NAx1CJUUMr4Fnsma47FLzfsF7WTcEq4Crs8910bd9Vjig0uHzIaA4ClytY37BeimTIyali/PhlZGR43wr33deNr76K/pJh/fpsHKeHZxCiFBQWLqdLl2QsUK78vsuygPmgzdm6WuhzsK8PdgODQquUJ5h6BnsQ3xF4GnSGzw6R3IU9CPkG+7ouUe4AFhttA4EJMR6nFHsQ8gLwQD37FbPk5og4/A17xNuKap7FsU4YtimhC35o4mlXFOHwWry6GQUHeNVo6ws8GOXeR2Hf4dLANTjUY1qtXjSNuAZYYbTn4vhO+dmK+Tlwm9G6iwwG4ZCcBbUcdhFgEOD9AtNMpMS6KIxkLPATo+1rmnBTHHoo0pxyP3vXAsuNTb/T7kC3TtoNJzIHv7uAQcp8byaICr0e9utN0PDDKA8zGjjfaPsayGtg96Km/E/mAeBJbQ+QIpkD1g2uv2HfCU0YBX/HPie0Ap7V9gDJotl/vjOvVh1ln39EGjvllF3k53tvtldUBCgo6MWePXVf+1ZVKUaP7sWOHd4glksv3cDZZ2+La19rpx4GK4KlG/BYaIagDroj8Ae8ESUAI0B9EYcORmskWBEs5wCjottdnwaMNxrLgUtAJTpGLkSFXs+abb8DtDlAikCPwA4lXg1c5c4eJUfyk9U7cyfwntF6KvYsg20304HjjNbXOc4Kq0gshyBZXI59R2oYjhUm5DWNRrh36nKMLVNw+Ev8OhmFUWwlwCW44QrhplJihUZ4OXRF8wRuWMsBiuGM48u49rMuhfwX+yIwkyDPMNGKq/ZyOAt71e19wCDuZmf8OinSmYKtuF/q5q3FqdoOE/LQcAT4fBZghCK5n4VQXot5cyATeEZDu9r21XAmUGQ078MdTCX1sxDK4TBnpNoDf9D2RYyHhpuAi43mVcDVKvlhlndjn+8GYIcC+nkUO7/lDaI5V4q0c/XV6zj9dO816sqVjZgwoXud+06bdgSffupNa+jTZw833rgmrn2M0nXAMqPtAuDG2nfTNZEH5vpNc0HVK3eq/lRoBoY9xoZi0GZunEG3BuaDkWMLt4H6KF49jI76FvumjQLmgT6y9n31CdhpAFXApaASH10UJvkDkXwqgcG4YUjhbqOYX0fcz+Fa4EqjdQNZXM4gquPbySiMYQNwOVivPQOHYyPut4UHgH5G64fAuLj2L1qFfIB9Id6YIAtwrMGSy9kfC29e2MykiKfj38koOEzHvdMSrhsVPI59geia6F7YYF7YKG7C4T8J6KVIY8r/c9gIWKDtGwcAhC6Kn8D+LMxS1LMQRwMpmAnW57Ar8LiO8FnQ0Aa3v2be4M2KlH0WbsR+7R9Ry3dlKNndjM+uAgYr+C6+3aubIuL57hYNF0XaT8OlYBXi2AhcpuxzjjgIBAJQUrKM9u299/1eeqkNf/tb5Ptlb7/dkmee6ehpa968mkmTlpKVlYr0RbUN/5s294M+vZYdC4HzjLYl1DmASRT1OVhRDwHcEK0Ii91qBcwFehgbngc1Pc4djJJaiPudH64NbsicOVgK0c3xiy6CQlBJX2crNeV7HVairKl+hWYeE7BHcSX0xZ5SD6K4gjHEkFwUZ2442H1Gq/sHfsD6A0Mxv8WN4w7n3ol1rA918jjcC5iVL44CZkXYowQ71OMzcqw7scnVhOFgVRv7JQ43+zxbUcEc3LvZ4RZQFHOejDh0TAFrZtIvlLJGMXZ1qc+AW+Pcr1gNx56N+QU+/dL776Bh3ppdqCJ/ByScqpmZtGdjxmn7ggZd893rTaYFGK0g1mTauFGwEjtfRAFztX1Bg4ZjcOO2wwWBIYouilQvAAAgAElEQVQUnu9Eg7VpU8U99ywjEPAOIO69tztLl5pvW9i4MZuiIm9eCMCoUSs54ojyRHa1DurfQIHRmAU8FaroZNA/wg2BDrcPuAyUOSuRRGoOdiW7TrgzCn7Xx7di30BYSRJDVyO4BfjYaDsde4a7xnSwbpi/jn09mxSpW0ekiOdxp57DtaaKZykNm/JyaEyQp7HjZCdQxMsJ7mU0CrEXbjyBHdzvaXHojrZO6m5sumPFpiebJpvrAHOe95LQTNQBDudiJ6ztJoNB3JacWPiI7mYnAS7DjdUMdx8lfN/T4nA3bmnPcMlMNBNpSNXkatm5U4NC1Yv2025MsXky3o0bypTCk2ut+SKTtV1c4k7spEu/Kf+kU/75KQHgKW0Xl/BLunwRjO/iFFBufsojRnNrjHwR7Q6iFgAtjOdOVKTF+U40UL9+Oxk61Due3LvXzRfZt+/AJVl1tWLUqJ5s3+6dpMzN3cRPf2pOsKXEg0RV5EN3wD8vZGRiS/VGbQRg5qf8DCvcW58KTDKeF5rxVCn+g6hIRT5GgTZy/vRQ7OqKG3AHhSmZbU3tgoZtuB0wY+pOYx0lYY+ng7H+CLxFH89zUsetcHUZWBW7rscJJQGV1lSWoI3xnIdwrA9yaoxmE+7PYVbsepSS0O//nprKEtYXyvWMsz7IqVHIYvwqewSZjxP6/ZdwGljvHzfxK9Elh0XaU24YzWDs3KmHdWhtCE3Ez8JIZZ/UUkL5V+zKAubrUFlZ7VZZ8Uu6HJToksPRUu5352NGc0fg6Zp8kVBRATPpcg1wZQryQiK5Hbtil/n7fwT7fPcv3Jk3cYgYOnQdp53mPdUsXdqEKVO67X/86KNd+OQT7/ojRx21l1tuWZ2UPtZNRSzyEUqCJjSr4FeF71lQcxPcwSjtzxcxb9rcAzpU8EZHqsJ3NygzByxFVMQiH6BDv38dqQrfEFApq8KX2oHITZSTwSDsE97dFPMrHAbj3p0Mt4lMLktJXkgkDqtRXIl9wpuJwzGsYwoYd+RhEckrcRsdh7ewT3huvshkWlLJ0/glmjk8kZwORslhGnZlj+7AYzi0IcizmIlmittxrEGxOEyFSrw6RnNj3HyRlkQo96zSbG0H5V7YmutWdAMeC+WF+J1c71T2DaJUuwH/KjcFGvySLoO4g5CkJl3WJpQvMgT7fHenhgu1ezF0nbFtC25IVuJLuoukCQRg/PjltGvnvdfx5z+344UX2vLuuy156invqbZp0yCTJy+lUaNEL+UTCxWxyIe7LgejsKvwfUPqQ5kMyi+cNhM3z6Id/lX4XiDaSqlJo/yKfIRmpHQO/lX4xoOKfUHuOErtQARgHN+iyDdaVWhxQjMuOwhcyVgrhCj1inxDAFoA/8ROiNpOqvNCIpuIHQJwDPv4GPix0Z7CRLM6NGIo9p2aX+EOAM08pOcpssIEhZgMvGS0HY0bi2vmKHyBvbhUurge/yo3i7BzFP6EHUKUcmr/OgNWyJuDWybXSrpUJLWke1SUf8ibwr3QMS8gNHBFKMdEHGLatKmkpGQ5AeMqbPLk7hQW9iBojDdGjVpBjx7JqYofG/Uhdv5HI9x1yhyjfR+Qm7wSt7FQpbg3ZsJ1xS1iYlbhWwlckcwStzG4Cbd6Yrgf4Rb+MKvwvY49I550qR+IABTxLHZyXnvc5MNw9+Hwj+R0ql5GA+8YbT2wS9yOwGFpkvoUG6dmmo61xhbzbsA+AlyGk9pY+Ijc0sSDsO/UmD9HOiSaiTSkiOGzAJeGLpbTjoJtENVnYRUwNI1CmTwUfI594yMTd4Yn3OtEVx43JRQsBGYYze2w80KmKPeuqzhEDRy4g2uu8eaL7NkTYNs2b17IRRdt5uc/T4u8kEjux14guRt2Fb7bQKVzRcqh2EU+zO/JUDh+qvNCIlF7gd9iF/kwf45NuCFZKY8uSo+BiMsv6z/cB3S2ysymF4cqMrmU2stETqfICpVILw4bQ0nftb1BR1JIOiSaRVbIv6l9gaJKAgzGsUprCgGAYn/uVG2fhRsV6f1ZUHWHglbilrhN68+Ccktn1hYKugF31fGUn1zrcCu1h7+lrqS7SKr8/LUMHBh5mZ5evfZyxx2rktij+lCRinyEew6UOQBPMypSkY9wY0GZN5zTjKprEdog7oyOeZMtJdJnIOLUlHLzPYFsAQaF1iBJb2NZhYoYrvQf3ITF9FfIm8DUCFufxiFNEs3q4DCVSCEairsptBYbE8JDwZvYOQg1nlF2SE26egiIFAs8KpUlbmM0Enf1X1MQdxCS9iVulVsQINL5bitusYB0DN0VcRYIgOMso3FjO/ejcWM3L8RvW/pRWzEqC4ZZWsu2NKM+xQ4pq/EP3BLvBwE1H3f21c+9oP6ZzN7UJn0GIq6L8F81t4qDKVlPc0GELZW4J8v059AY+EmErekZjuXHoRuhSkcWneJyw+KgECqpaiZc1jh4PgtuvHOkVeIPps/CqdiFAsD9bk3l4gqx+jWRz3fpf9NNxM1777X0lO6tEQhAht87JH2ZuRQ1qjlYrn3Qmdil/WtUkaahqzbdAfhBhI1p9X2fPgMR/5KqNdys/wW+X9rpxeF67DKSNU4F7klibxrCr4xkjWE4DElmZ+olctnkGlMpiXhhJkSNaUQazMJ12q7Jnnb0/gowRFrC+QEdeZCSNrR7LvArmwzuz/iMtle5TzsRyibXaA/8Qfv/jOIQY5btDbdnj7u+SEVF+lyqRaZ/h1tG28/RpHBx1BiNx16wucYFpGuBHo+IZZNrOKDNhXhTJj3e3ZNoTZD5mCVVvX7EF4xOVpfqpYQTqHvxrNsp5tfJ6E69Ob5lJE0zGG8tHpZe1jEZu2xyuMb/z96Zh0lRnfv/c5oBRkEEXFFAwSVxvYlRYxa3mPiLS8xNVEBRUdCwKSqKDjDM1AyrIiqogHHBBRRQc+81qInJjVtu4prFhURRNOAGGkAEBWbo8/vj1AxV563q6e7prqrB+jyPzyOnumvOTPepc97t+5JlEdeJItGUFABcSdWWGvvN1rJLbdKYimxk6KUjRpq4S0TzKRjtNjIkOBrSRE/gXm0LhCQIDWE9CbwEdaJO2c7YsiXD+PF9AqMhTSxbtgOzZu0d4ayKQfdGCg7ZDAB9QRSzKR4d1LDZ5nrQR0Qxm1ZQRXgUH8yz9D5Xmjh2kmCIKDZzD1JG8vfY4SNNLfUcH820CsShM1keQspILrH+rdDciUPPiGZWGBM5AJnznkWqt3RmKw8wi47RTKxAHE5H6oKvBf5ojR3Al8mTK02JHw37Eywh/pg11hnjia+MZGIFouE0ZG3aOkyjPC/7Q6JlrMch00XfQEoTnwpcHsmMCsQ1kOYh97v/Rab5TdBwQgTTSomJadN6sWyZ/8jwjW9soEsXf+nQokW78/TTXaOcWgHoDsDDyMyDx5HpWLNBJ9Rpo/fC9Fyyz8X2Ga4jsMjty5FA9PeQ/eC+RNYH7g3cCzp2p038hkgdVwBnWKPvUMlZKHGQbEeWBTiJDL3PBhEheAKHM5AhyV2BB3CEtF28zKIjW1mIlJGcgslntotZj2BNAgu3jJE3D+kVvRgja2cXs15AHYOimFpK20A3bzYiQjANU8tmq6Z8g5ajoZGjTYTgHuRaGAGchZQmPk/LJrKxo+E4oNYabhI4CWqodr2GY6KYW4GMwnx/vKzARN5s46kdsFDLJrIp2wFPPtmNRx/1H2W6d29k2rTl1NW9i/KsWK2hrm5fPvwwVxAtNq7DpJ17eRH4GSYS66UT8BBo22EbMzqDaUa7u3Xhdsz59FFrPMhJlQB0N0zqqn22vALzedjSxKeSAAGleA0RhyPRQu99Mxn6U8Vn1HI75o/qZW+MfGPsVlwzDoOReeIfQHO39csxillejoWEyRGv4UbADjk+B9S50sQDkNLEl1HHzyKZXz4Y4+5BZJ74LTj8CofVBKnVaG5jIgdFM8mUNsANyLXwAuC4Xa6DZLpHahgQxeTywa0xuBe5Fm5TRu0reC3ALVo2vooNtwP8/cjNdaSCVxW8BCJttz2wQMPOUcwxHzR8C3No89Ism+yqr823ru8BzNNx79UpJWXlyo5Mnuzvq2u6rb/Lrrs2cOyxn3H22at91z//vB1jx/aloSE5Rx/QpyEN6HXAAFBbMM4DW7XyUODGCCZXCDXIJrWvY/qeNEkT241F+4FuKW03QnRTtNVu2PwQqF96pIntrphTQedK2y078T3cprEzwXmy11DDK55/D0NacadQx9XlnF7e1HMIcIs1ajrAO3wKGGnidvRDNpgZT12oMlW01HEmxkvqZS0VnI/jKpZVsxK4EFs1QnM3E0WznLioRxaavUoXTw8Fh6cJ8tRsZTEOO5Z3eilJR5uCxJHW8Fqgv3LVjJRp/jcIqaAyR8vGUXFRB9gFia8BY5r+4UoT2wIanTD1IrGvBU8qU2/r0iK3p0gTNyIbqvUlIdLK2qTvPQAilfVahU9CfDjwT+s1P8bzmaW0bbZsUVRV9WXjRr8WweDBH/Htb29rOH7FFe/z9a/7s/XeeKMTc+eG1R9Hje6JcXTYltFgUG66pNqKeU5+ar1mGOgwUZ+I0UH1WBuBfqDcD0CtwTibbafNLNBhoj5RMxpE/fE7+Goc1auY+hEvrpCJDhP1KTvxGSKbmIPZKLwswbEO9Q4byDAQW5ZRMwUnZ/Fl+XGoJMsC7A1b4eBYXoAJLMOE5b1k0Mxncs7iy/Lj0Bst0sc0iouothoUOSwBUVPRla0sxMlZfFl+HIIKzTbQjn6MFnJ1bcVTkxIh2nQDtjdXDVykrGZdytSKzLJu0RVYpHMXIpcdDSciN5wNmP4U9lqow9QoeDkEuLlM0yuEMcjU3bexmnW53eCDGqqdpWFo+aaXN7cDB1pjj2P9jZX7GSE/o0k6XIozpQ0xY0Yv3nzTf2T45jc3cMkl/ozhDh00U6cup1Mn/9n3vvv25Nln4w706TAVvlmg/ss/pN5nW3aIl9tB22siYrRRZJUKdSNB/cM/pJ5FKrtWAotBxyx4o4/CpNB7aQAGgvrMGp8FWJ9R074XT71IPIaIkbg9xxpdSYcAbztADa+gRFdgsxCcUGnWKAiSuH2ag8QXwuBwD7Ir8O40sCA2aeJwidsZ1AoPo6E7Y5BdgXPJUZafyexBsKzncCaIiBo4ZKngAqSnZih1DCzPJFOSjEfi1l4LNynpbW9iDPC8NRarTLcmdC2MUNLbjnIbAQIfW5cu0cS3FkIkbjdjjKn19uuViVoNQPbguFmHyy+XHW2i+rb3931gkArY75SJWtkOlSZp4jD55ZQ2wP/+bzceeWQ331iXLo1MnPgu7drJo0+vXpuprvbb1lrDxIn7snp1LpHRsjMJaRi/CuKc5qKeQDr5OgML3GL3GAiVuF0I6t6QN00CfmeNHUisThsdpsJ3NagX5OuVBgYD71kXTkdmxURC9IZIsMRtIxnOYZzIud5GbS4rLoZ6kWCJ29XAQPoFdss1dGIEYFnanMg/hPcyGoIlbl8Cxoe+ZxSb3VQz+zAwxi3OjxaHDA3MRxZ13oEjcq63Uc0HqABPjWZu4qWJU8pBkMTty8DYsDe4qVrnAbbX6Sotw+Rlx60luB8pcXuXMuOBKFiFiSjYKjdztRThKDs5JG5HK/hr2PuUMQptxZhKTKpZ5F5LHRxlbQTOUdIJ0owyTq5fWcO9gHuSLE2cEs4HH3Rk4kR/+r5S4Dj/Ys89ba2FbfzoR2v5z//0f1XWrq2gurov2WwcXwUdlCroRvKUXX/gZSz+NESAI0HUCUdFkMTtMqxoqx+VxaRo2YI3g0HH1U9qNjIdeAmyZMCDWkewyMeMOKSJozVEjMTtYqTE7XhqhAqNTbgV54h87vLihMp6no8jVGj8jGnKPRTSxHVualF0OJyKlLhdRzv644gvqJ8Jdu4hYDbIO5lE1KLnQYVmb2CUInJTyxPADGu0M1tZkFhp4pSSo+EUpHrIZ5i6kJxrQYk83KZh5mlZOFhuqpESt0uRaaECBb9BOok6Yw7xkUkTuwftu5ESt48os+m2xFTgSWss8oZq2q21Qe53NUrKiAcxBClN3EYaqqV4aWxUVFf3YcMGf5Dy/PNXcdxx61p8/zXXrOTAA/1Hhr/8pTN33hl1VrfeA1OzZZ8dh4GSmQc+VAMmYrnGunAFaFtJrszobwOONbgJY0zZtbwWahUmUmw7nOdEL02sRxKUXQQXupGPHKgXkYJJsUgTRx0RmY1s/BW0+QXj0GTF2aH3G3CEwk15MIfTxQTJejpi8wvGaVJj8GEUbqKSJjYSt0HRpOFMEJtf2D0WI4tBd6ORByJLNasPbPxlZD0docsfRpCn5lusEQo3KdshrsRtkBLfcAXL87mHgoeQB91uwP1aqj2VBVfi1t5YNgHnKtmjIozxSJnuw5FqT+VkFAglvhXk9FRuQzU5haTXcoAmUpnu2SCU+J4Crs/nzQrCvJbXuwpcKW2EmTN78tprnXxjBx+8keHDP8jr/R06ZJk0aTmVlf6A5Z139uDFF6M6M+oMJuVTZh6gbHXTEFTQOnYdD3rfVk4wT3Q3TLTVzm27ApStbhqCClrHruMhKmlifRiI9gmuoqMKzy7ycz3wa2sscmni6AyROoYgJW5NOoAj0gHCcQi34pwIugIbidtvWqMv0ENY17lxmIspkvISdiAqLeESt7fhsLDAu10G/N0aO46lEUgTT2E3siGFZg6v5n0fowoW5KkZhSM0/1O2I3JI3M5RZo0UQphMt93/ouRo2I3gosvLlFyfobjSxEEy3aO0NA5KTksSt/neJ4c08W1aGgclx+3FYneRXgUMVHJOobjSxLajpSNGECGhDdVSvPzxjzuzcKG/PcVOO21l2rR3ad++Bae1h759NzFmzErfWDYL1dX78u9/R1IvUgucZI3ll3ngQz2CjGx2wyg3lfkXCZW4fRhUS53hbWqQkc2g0oMyoDsTHG2tBtVSdpEHpTGRVzuTpx/owa2ZYSFEY4jUcwhaqMtkUQzEEQWSLeNwHXFYceESt/0ZKqI0LbMDw4C3rNFTcES6VKkJkrh9jS5FSEQ6TeFMIU1cjSPSpUqHQ4YtgYVmi3B8sp753m8FSoglGE+NI1JEUrYfgiRuX6eIJk+K0LUwTst0qZLhpjLdBSIlcrEqQr5WESLTDXdrmS5VMnJI3I5VMmLZIooQmW6TalY2r6U2xaszreEscL6SUZp8uAHZUG0/EtlQLcXLqlUdqK3dF22tpAkT3mOvvTYHvykHP/3pp5x6qt9HsGZNe6qr+5DN351bBPp4ZN2oJXFbEKORtV5B6VKlJkjidjmm2XGBqKZ+Unat1wjQdrpUqZlDcHZREQ2m1SeEOG1AH17M5Aolms7eiizyw19HLS8XeUdNRwaxOSA87VDpHo5Lj2Yl9oGiHSuFxG2+XMvnTOJkGjnAupK7PqM1OGSA32NL17bnjQCJ23zv+ZYrpewP2WZyiA+0ns6YDdr2PtgKRvlTy69x+D62HHO7mBTNUsqKe4D/A+bA6mVpgMRtXihYpglYCzLCUEo6YyQZbWdP0WtBwRJXLraTdamce8bOyP4tWUw6U7E4mM/XjjLvRJGfcR5kgJ9bY5+50Y2CUUYoaRCmsNeHhh2K/a6mlJ+GBsXUqf5M58rKLIcfvqHoe1ZVreD002Vw8Msv2wmp3xKyHtPPxsvHoJYWdzu12W2GeIh1IWtSwFS5zKqXkE6hZQESt3mi3gf9fYyQhBeh6lc6dCUmim8re71S/N9NPQP6GIxIiJfCHezF/HSMFfo8pgg8KY24UlK+KmzAHPb2I896hK8Qd2A8VdXEKIebkvIVZAAmNfEpZMSwVFyMyWSYiPGuR01fjNDERowxXzSvvPJKrdbaKcWkSo3W+uajjjqq3FkWKSmF8i4mwn5MfA0NU1JSUlJSUr6q9Mf0ndixpRempKRsv6SGSEpKSkpKSkpKSkpK5ERTI5KSkhI1O0PBCmgtcR2yniIlJSUlF8dj1ITmkJ9i2DEYtbkiCm9TUlLaGqkhkpKyfdIRWVzYWkI7c6ekpKSEcD1wNKYh8QjCRRR2xaicNcmG/jem03VKSsp2TJqalZKyfaIxajql/K8x0t8gJSVle+DnmGafh2GaZd4HeBtrKEzPlaWYAva/ACeTGiEpKV8J0ohISsr2ySekRaApKSnx8wEwFCMvPQXT2Pg0oKmRxh8wMq7vYBrkLkb2sElJSdlOSSMiKSkpKSkpKeXmDUw/sWMxUuU93PG9MQbIQcAiUiMkJeUrRXQREYdDCWp4VyO6a+ZHPd8my07W6Aoc0am8tJjGfban+T0c3i7iXhkUJ6KtZlvteYPxRXXgzffnVgAnBFx5FYfVRdyvCyYH2E8n/syYMurDT6VbYFNL+GNRTS0demJ3K1VspZanSTfH7RIN7TBrwW5496qi8LWgCVkL8LwyPWPKgjaNqETDO+D/iml4p83h8CBreCvwtCrjWtDQG9OZ3EuDgmeKvN9ByI7z6xRFN9PN9+fK/Q7WKJN2VMz9jsZ8t7ysVPBmMfeLkQ7AwcA+nrGdgeOAJzBRke2Kf/2rklWrOvjGOnXayiGHFLc1vvnmjnz2mf/otssuDey3X7n7WuojkQ3vPgD1jyLvdzzQ3hp8C9SK4u6X189UmOe93aT4H6A+KOJ+O2Aav9q8DGpd4ffL++d2Ar4TcOFFUEU0U9S7A3YXdQ08DapsXTKbiM4QydCRLEswRbSGLA3Uczw1/Lmgezn8mCyP4Y/obKBd4EZcag4E5lljq5jMNws2HhRj0UyyRpdREXi4Lh0OjTj8FLjUuvIiDsfiFNzZfR6yk/BjjOF/i55jPuzHepYyFtlway4wvKB7TacTG/ktZpPchqaW1nV2josKgg+mrWEZ5e0QHjkKtmo4AxhlXXpRw7GKgtfCXOAca+xx4PRi55gn64Eq4CRr/JeYtJi80VAJPAb8h3XJUeVfC58Dd+I/qKJhqDK/S964Rs0fge7+YX5GmQ0RzN70KLCDZ6xRw/HK1EnkjTbPtyfxH542AEe1epbRkcGkZNVjPpc/A59iDMX7gYGYaMlsTPPST+OZZunJZDRjxvRl48Z2njGYOXMZ3/lOYWfGpUs7MWTI12ho2OY36dBBc/fd/yzZfHOwO7AEv9PmM9BHgCqwGa/+BXC7NfgB8I3WTLBllAZ9LFBnXVgK+ihQXxR4w5uBX1hjz1G+JqBNfAGMBP7TGn8EOKuwW+kK4FdIg2oWqPKe4VyiS82q4RXgGmu0PVkW4vg2itw47Ik5+NpzH86ECLxDDvcA91qje9DAAhYLKzuceo5F41ijm8jQn2v5vHWTzIPuXA28Yo0ejelymz8OlyKNkJV0YBDljiL0YysVXIDctIbhcG5B99rIrdhGCDzNwW22o3d3zGZfyv/+X6S/QXRcjVTyORqEkyAn2igC2UbI+8CgckYRABRkMYe5j61Lv9BmvBBuQxohz1Dg36MYFKzFdPVusC7N1AUcUrTxtC4EsbfcpOB/WjfLllHwKnK/qwAWatgl3/to2ANYgPTgjlAQyemzBPwQs9fcg+lgfgXwfczBE8z6+xbGOLwC03F5GoiMhzZJr16bqa7+l28sm4Wamj588okdEAjn88/bUVXVx2eEAFxxxft8/euFnp+LQT0O3GgN7gwsAt0h4A0h6EOBm6zBrcAFoKIwQCcBv7PGDgZuKew2+mykEbIGOA9UmYVdlMaoy71nXTgT9IgCbzYFaYS8imk2GgnR1og4zMJYXl56Yw72dmpE0PszmIeyHfL+JQ7zSzHFvOjESIzCh5cT+QdVeb3foTtZ7seOSCmuKDpVrVBGsZl29Ac+s66MweGMvO7hcDhGmtFLIxnOYVxEnvNqPkBxAeYg5uV2JvK1vO7hMAC40BpdDQykX1669yltGGUOvQORa+Fqbby0LaKNItAN1nAjMEBF5N1VsAq4CLkW5mryWwvadLsebA2vBs5V+fWAaDXKGIW11nAlsFjnfzi9Hpm68BIwtpXTyxsFtwIPWsO9gHt0HvudNvvzfOR+d6dqW1LaV2IM2/sxqa8zkd/Rv2OMk0EYb+9lQLcI51hWfvSjtfzsZ/7HwNq1FYwf34dstuWjj9ZQX78vH37Y0Td+7LGfcfbZhWdTt4IqZETvSEyPqTzQnTBiBHZ6ey2oP7R2cvmhssB5IDJYBoO+IL976P2AO+xB4KLyppZ5UWsxz2s7an+jiVLlgz4F4wjwsgHoB6rw9PYiiaNYfQjG4+HldOpEmlAQdciQ1xuYB110jGEjGfphHpjb0NTjtBiSU5iIzj7W+EPUilBleZnAOygusUbN/Bx653yvQ2fMA2UH37hiHDX8Xymn2SK1PIE8BHZmK4txqMz53okcgEz5yALn4/Bh6SYZORswh7lS/vdqpL9BhChTPHuxHGaelmvVhyZkLUC1Itq1oOA3SOdAZ8wh3p6fDw37E7IWFJGvheuA31pjQWtVoI0i0+XW8DqgfxGpdq1lBOa75eV0ZCpgELWYaIKXN5C/W9IZBXwbI9H7SY7XaYy070GY9LmIDnTRMGbMSg480H9k+MtfduKOO3qEvGMbCxfuzlNP+csz9thjC3V176FatmNKiGrERCxtR+PloH+Wxw1mI2vPnsJEwCJErQbORTpXZoO252ehO2Ke9ztbF6aDerRUM8wP9SJQbQ12xESp7JoyC90Ts97sb9AwUJHWnkVviDisIxNgxWmmU5+jNqKOE5HerI1APxyiiEv6qQncEDLAfTjsGvq+Oq4GEXF4h0phEERDLQ9h8tq9dAfmu0XtYcxFelmfoFYYBFExHnnoC4rYbMOhkq0sRnpZp+DwZGmnFzlfYPKxS/nf65H+BhGj4GHMRumlGyadJlcOxRxskQNjEMTVGXoCpjbCy+HkmI9bF7IYWRA9TRH9WlBNzoBt6TtNDNAyetmMNhGHoAj7CCUdYGVHueSTkqAAACAASURBVAYQ0gCark0H8UC0Kagdbw1vwkSmot/vWsc7mGhUvqwhhu9cuenQIcu0acvZcUf/2feuu3rwwgvhZ8Z//GNHbrmlp2+sokIzdeq7dOkSR2sntRKzBr3ppgq4G3Sf8PfpCzHGqJdVwMAoCqIl6mlMWpIXN2KjczltZgB2xOFFzHM3Dm5Appvuj4zYeNDtMM9J+6x6O6gFpZxcPsQj31sTGCLvSJZFTBNWJkxmD3RAnqxiJI5IkYoOhzuRIfK9McaI/Ns6HB1QnL6ZDP2pEmkh0dGdK0CkhB0LoobFUMdQZN75B5iHTDzqUg5Nnho7DeYyHFHD0sQsZN75c8hCtpSvDqORykbHELIWNFyCCfN7WQVcpGT6SSQokxJ2DnItjNSyhqWJm4FvWmPPE/YMiABlvOdBXss5Wiq8oE2q64PIGoxblUyRigxXocvOt24PLNDSq4o2RcEPEFwXst1GJb8K9O69mepqf6Anm4UJE/rw6afS1/HFF+0YP74PW7b47epLL/2Aww8vmwhfHqglmP3TS1dgYXC9iD4w4PWus0GVTyG0ZRwQojpBNSwu+ieYKKcX19mgoo62uig3JYx/WRf6gQ5zcNcjs4teJ+rsIpf4+og43AT8tzW6H5ssK84hQwP3s01zvImF1Iqi8TgYgSwalHl3Dl0xGun+RaoY4xbyx8coNgP9MMo7XsbicLJvxOFQtFikWeACnJiVThxTGIw0hu5iIn2s1/YDEYUyhWZO2kH8q4oyTdb6I9dClbaK9bVpwnaz9bosMFDJovFIUaZIPsgxMFtDX++AhrORylprMfUtdtF4pCh4FukYqAQe0DLPPKjo8jVk0XgczAT+yxrri1EIa8atCwna7xYpqdbY1plI8L6zXXPyyWs44wx/ZtOaNRVUV8t6kSlTerNihT+7+Lvf/YyBA1eVfZ55MAaE4mmAyIduirbamQeTQNlF4xGjwkQ+hoK2nK26N0ZwwfshuUXj6r2yTTEvVJjIxyzQlrNVn4h0jJjsIlS5NaADibOhoaZjYNX/2a7HvYlq4EfWa5axg1AriAeHDW69iP0BTqa+eVN0w5bsa71mCbXcWuYZ5ofpg2IfzM2m6LAXYCRug3Pha3GIqNCsBRweR3ozurKVRTiuEegEhi2NV8HZvvKSUwpHEb4WNGYt6OYQvjgM1ynpYYsFZfoyzLCGuwKLtOsQ0RBadKmkhy0uJiNVbg7B42HVQc4ft+iymD4qpUY1H1jEfneW9kuNjwPL+WNks5Ox35WWZ4GH2NZh/StDVdUKDjjA/7V8+eWdmDdvmy7Bww/vxm9+4xd92333LdTXR10XEoZqwBx+11gXrgbtFfm4FanC9yzGK58AlJseJkU+QLvp5zpMhW8WKNvBEBMqKILtGoHaNQL1HoREW4vvB9N64u2sPpa1ZAKsOM3N1PNN6jkeqLHetQnoF4nEbb7U8BqKq6zRCrI8yBR2weFyTPGdl5V0EHmW8eKwGLjLGjVpAotpx8aQQrODmRrJ/PKlB1VIT81RwBRmNRVyiVz4G3CIuNAsJakoY2TYB/TdMJ74dhiJWyn3TOLknscSrHIzTTcXNYr0oBlRSNzmi5viFqRyM0TD+bopHVbWhQxPksRtjnqRmzQcoU06rK0WtglTZP+Vihps73TokGXy5HeprPSffW+/fS9eemkn3n57B266yV8X0q6dZsqUd+naNUkBe7UCGU11BXn0PqD7YwSKvLgpl3HUhYSh/kCIyIdbL3IdUoXvFSKUuM2TaYSKfOgwFb55oO6LYnJhxGuIANTwArLqv5IsC8kGWm6X4/C3aCZXALXMwRxevPRiC48ipe0ayHB2ZBK3hdCFyzDpDF6OZym/RxaafUx7zkmcxO1QGjC55WutK6NZw2+RhWbP00MUhqakXI7MyT8e+D0mBdDLKuCcqCRu88WtFwlaC1dgCuptgZAXMF75ROF2uT8f6bWcjUnxtYsu71BEKOmeJ8oUtdrPmo4Yb+uDyCbDVypZv5eyHdC375dcc42sF6mt7cM11/Rl82b/8Wzo0A/5xjfirAsJQz2Mccx46YYR/7CdOSaNu6gu5mUnTOTjcczz0stnmLqQhEXzlPv3FSqHAzCReluFbylGKjtW4jdEABymg/BGH4ibBuFhMU5h3XUjZgiIporfRdaFjHUNsOQxmi8xnTntiNMJ1r+zKC5gPIlIVhU4vIfMkVeYg6SXdbTjXNd4SUlpxk3pyW8twAVx14WE4aZYBa2FE6yXrsMYU4lcC27Kmx1x6oyJ8Hh5A3lwSBIzkBGnAzCRHS8PKalomLIdccYZ/+a00/z+yNWr24u6kCOP/JwLL0zmVutyFVLk40hkXcj1oH4TzZQKRYWJfJxAgAofqHeimFXhhEoTn2D9e5N5ndoYxaxykQxDpLkRTM78/HeQedvJwmlqBEOuRjBPUCu6kyYLh7dQItxqM4lakbedLByWQM4aHI1iMBOil/VMaRuo/PLzp8QhcVsICoJUbmyGxCFxWyAOuWtwNmLqQhIrcau27Xe5anCSv9+llISqqhX06RN+ZOjevYHJk98lk0lOFrdEhYl8eHkRmWqfMFSYyIeXOaAeiGhCRaKeoeUanMtA/T2K2bREUgwRcFhDhvMITm0wqk5OG8iTdXiV8LzB9+nA+SSpLiSMWh6EUFWyZzg4KYVmLdCdMUhPTROzqBVKNikpPpRJmwlTLGpLcs/XYKRkg7hFwa+inEwxqObUjtDGeJcqYpR0zxNlUuVy7Xf9FTFKuqdExg47ZJkyZTkdOki170zG1IXssksig5QW6m1gWMjFNcDZboF7wlFBIh9N/B0j8d4WmAShIkIPgLoz5FrkJMcQAciyN7ImBOBDOomUpyTTK2T8VcYJhYlkYvqg9Ay5+mzi6kLC2MiOyL4CTTwd4UxS2iiupGroWnDrMNoCOyJrKZp4OsJ5tJbumJQsmy1E3Mm+lexF8H73ETLFN2U7Zs2a9jQ2yuNY165b2X//2EXfCiHs7PMWsjlpkukdMv5nULkyXpJEJUZsKIinI5xHiyTHEDGSqreHXO3DRhJjveWkjlNAKGg1cSp1XBrldIpGMR44KeTqeBzRDCeJKDZzF7BPyPW7cEIfOCkpTYxFSog3X9Ph6yRp3IWUEG/iTh2+ThKDK5u8CCkhDqYW7xEdfC1RuLLJYfWO+0Ib2e9SWs2aNe2prd2XbED70zVrKqip2Red/BwKQB+N6Q0TxDEkPi2rCT0Mk2IfxFDQtgJqUpmFac4YxE2gbQXU2EiGIRIuqeplAI5QbUoWDj3RgTKS29BMxxGqTcnC4Ti0kJH0ksF0jw/zriaDOkYhZZO9dAfm4wilmpQUAFxJVSfHSzKYDtm2JGKi0EYZ5ec5XtIN0ycl6WvhVqRsspfDkDKciUK7XdUJ6Kruob+GC6OZUUpcZLNQXb1vYFf1Jv70p51ZsGCPCGdVDLobQQ2b/VSDtlWbEoY+FHLW8Lo94fS+0cynWHQ/pGyyF7cPlk6E0yYZhsgabkBKqv6TIKlGh69HM6kCMYfZB5CpD3a+sjG6nJxGV3wY4yJINtn+PfZGdhlNDvV8Cy1kk7dgmtV5OZY246lJiRJN81qwD+f2WtgDuFsndC1o82ydbg2HrQUnijkVgzbyvRdawx8hpYkv1bmNrri5Afi2NRa0392qZd+mlO2Iu+7qwYsv+o8CvXptpn17fwjkttv25o03OkU5tQLQbt8QEW21n5PGgYkOSxeKGd0ZIzlsH87t36MrsMBtcphA9AHIiGoW2VOpJaMrMuI3RBxOB0Zao2up4MeY5ixeOgEPcWMiQ+8OZiP38hqmkd6vrfGgzt5JQGHSN2wZyUXswDGYPE8vp1GXwMIth85kWYAx+rxcC5yGlGMdT11o6k3KVxDXqLgTWRuyGHOItHP4gzp7x442tRQPINfCWOBU5FoYq8PT0GJDG3lbu1dBU+F6kMrNXRr6RDG3QtBwOlK3fy3m+2NLE3cCHtKmtidlO+Mvf+nMHXf08I3tsEOWGTPe5rLL/OUUDQ2Ka6/ty/r1iQxYXg781Bp7B9O64H5rvAewEHRQbVTc3AZ8zRr7DUaG2Ba8+S6J6QzvRTf1JLJlk6dinuu2NPEw0OdGMbNcxGuITKIXRpnJ60nUKC6imn9huszaDWYOZX0yrLhm6jgRqLJGjZSvwxd0YAiyUKsfDhdHMr98cRgDnGGNvg38gmv5nAznYhRdtqGZSr3oOBo3c5EPlMdwmOlKE19uXcuguZ/J9CAlxXAVcnN9G7hEESrTPUWbDSpJzEGuhceBm0KkiTPAfE1y1oI2RZeLkJvrRAW/d6WJb7GudQUW6dypIpGiTSHvPdj7HQxW8B7GmWWr3BwC3BTB9FIiZO3aCqqr+5LN+oOo11yzgr59N3HOOas44YR1vmsff9yBSZOSVtKoj0Q6jBuA80B9BgxHeuJPxCj4JQh9EbJh8yrgIlBfEixNfC3on0QxuwKYQVDDZqhzpYkHIZ02c0EfGMXkwojPELmd9jSyEJOn7+VGat1mTw5hDWaG4RC7FQfAZPZAswCZyjQcx12A4/iE4AYzt1DPf5R/knngEFRotpmMRza5hleQBld7sizEEZ9jPDgMAwZao+/TwbMAa5kH3Ge9Zg8aWMDiQBWblK8Q2kQxbe90k6TqegBFoEx3BbBQh6u0RYo2RsZ51vD7wCC3l0WTNLEt07078IAOVnSKg5uBb1pjz+J/Xl0NoknsURgJy9hxa28eRH43ZirTGd4rTWzvd7/Q8pmW0kbRGiZO3JfVq/2ZPSefvIaf/MQ0N1QKamreY6+9tvhe84c/dOOhh3aLbK650TtBYObBGFDPm/9VGzFOG1v6qx7098s9w/zQBwIzrcEsMBCU26RWvY3s6+NmkGi78XZM6DMJyi6CAdtkk9XjSMeG+znq2Jw28RkiHzEV6T18CRjnG3EIs+JuxyFWKw6HDA3cj/Qe3onDfOu1z6LEQb+SLIu5Tnj6osUx3kNkB/grqeGv1mtn4m6cHnoTrgATHU5gzmMjGQYwDn/72k6MAP5hvfZElob2gEn5CqAJWQtwlbLC88qokth9aHoB98RdL6KDPemNmM7p9kF3JHItnIB0OkSOhrNBNFf9BDhXeRw7bjf4gcjeG1drGeWNgynA96wx4dhRJnIelGo2V8vIVkob5N579+TZZ/06Bb17b6a62t/PuUuXrUyZspyKCv9X4aabevHmm4nI1psL4gz2GKJxqnoNmbbqGuY6ZqeNrsSk29pnsDpQVuNUtRiTuu5lN+CB+FPNdNAZzG2cquzGqVXAn62xoMhWZMRjiBiJW7u2YB3t6I/DFvF6hyArrjOwACfW0Hs1Mp/6DRCpPwbNROD31uiBfMnNpZ9a3rgqEKLQ7GFqmRPwek1HBmNSCbycSZ2wxqNjepMKhKgfmkBNQG+BMYR5aupwSIinJiUG7kLWFvwamB3y+sHIbuSnQ3wy3bpZEUXUFtQqmeqKonkt2N3I6zTxyXS7Erd2LZ3GdIAXPQlUcDdyBczT4X0Byo4Orh/agDGmNtuvV/AEpqDdS2dgsZumltJGef31Tsyd63egd+iQZerU5ey4o2zNdeihGxk69EPf2JYtiqqqvmzcGOfZVw8HkZWyEhgEKkBsWM3GRAS99ATudYvd4+JWEFkpzyAj4k1cimlq6OV4zFkwJnR7CMkuQv2PfL1qAAaA6Gl3BWg7HTkSojdEwiRuFSOYIDb0bfRImBXncBxSbWkTcC6O2NCb3pOlPecBH1tXBlPH+aWfZB4ES9yuQHohtzGWtZicSX+XVM2M2KSJNzIbqTDzB3JJeTq8jhI9X4ynJunSxCklJ0TidgVwoZIeagAUrMM81G0HynQtc3Wj4jakxO1TIFTkmlHwOtI51A64V4c3QSwbOSRur1dS/KMZBQ8hPYPdMdLEkZ/ctBH+CJJ0H6qk+IeXccCfrLHDidFrmdI61q9vx7hxfWls9H8Vrrrqfb72teAjA8CgQR/zne/4yxNWruzI5Mlxtf3RhyE7j7tp9OrfAW9oYjiw3Bo7jTDHbdkJlLhdDZwLKqRhs9qEibzaH1gN6Lj6SU0DUacrs4t8qBXI+kBX/UxH/sWK1hAx+ff3Ije22dQKa9nPUMKtOIf/LNkc82FKUzhObGwjcXg153vHswrFudhSjZo5kUsTB0vcNpBhAE4LHeAdXkQaYvFIE9cRVmg2EEdIYvoxUZ8QT00y5VhTSo82hzx7LTQCA5R85vhQ8CIwwRruiPFgR7oWtHlGDrKGVwMDlaxR86FMQ9kHrOGewH0xpJoFSdwGPXOCuBzptQxyHJUV3SxXKva725X8O/tQ7ncP+d0bpXP3RkpJIFpDff2+fPihP4HjpJPWcuaZn+R8byYD9fXvsttufr/fk09249FHo85s0mGZB9WgZOaBD/UZxoFpO22uB31MqWaYHzpIuTQLnA/qw4A3eFBvAKOswQymziLiflL6VOBKa9D9OyuZXeRDPQIi68XtBxOtNHG0hshS6pGh/tfokqfspRPoqTepRU5ox+BSo9jCnUiJ28U43J3XHWp5CumpNws8KmnicInbKmpE5CnsHtdhFGu87E+U9SIOB6IDC83OwxGRp2AqAz01p1LHFSWYYUrCcSVugzbXsUpGYcOYjvTUB6UWlQ1X4tZee1ngPGX6beTDUKSnPiiVtmyESNyuwxiFLWyuoExkuh9Smrg6YmniOuR+FxR5CkQ1p7r4onEK07Nm31JMMCUaHnxwD55+uqtvbM89tzB+/IqQd/jp1q2RyZPfJZPxB2anTevNsmWRdjOYA8Jh+ltkn6IQ1MtIT70b/dS5GnyWEB3WQPs6UE/mdw91F1h1wKaf1DzQEZ2rdZjDdDio8OwiP1eCVQdsHEBO6+ZWGNEZIkbi1i4ENrnJo0WefjgODxNsxS3kdspvxdVxDcESt3ZucktMAFG7cBjr813QreZ2gmQ9nYKkIjUdGAzYHoT+OAxu1ezywSGs0GwijqjFCaeKYE+N5roEShOnlJ4guecnkOkHobipW4Ey3Zryy3S7tQNBa2Gygt/lex9XmljKdMNULcP/JSdE4haMxG2+mytu2pOU6TYpWmX3WmpT7D/WGt4I9FMyrSMUV5rY7p/SJE2c0IZqKV6WLt2RW27x+y0rKjRTpiynS5fGvO9zxBGfM2SI37e2ZUuG8eP7sGlTFEc5PRhECvkq4EJQuTMP/NwI2LULfZFN+MrFjci02Rcw7SIKIUia+MdE0k9KN6nwyewiVO7sIh9qM8ZpY0sTV4E+uTUzLIRoDJEwiVvlkbgthO4hVtxHZbbiHI5GiyY2mzEHb/uDbOleTaF3O6dyJHWcU/wk8/rZw5CFZmHqZLkZxydufxE77eM2HA4veo75cQuy0OxZDhbqZC3j8DLy4JAsaeKUkuNK3NrSqB8AF4TVhYShCJfp1vJ7WmpmAt+wxp6jiKZbKkDNCXPoXahlQWTJcCVuFyIlbmcpqU7WIooQme4ySxNrV/6YgNRdJdXJ8uFqZEO1o0lkQ7UULxs2tGPs2L40NPjt6lGjPuDwwzcWfL9LLvmQo4/2B/qWL9+BGTN6tWqeLaMPQfbqMZkHzRK3+aJcNSdsNaezQIfXppYEfSYwwhq0JG7zRTX1k7Id6ZNB2wp5paYehKhOkDpZHijTK85PBrg/KmniaNp0NrAPMtSzjloWF3W/UWxmImeyVYTZszh0CFTeKg27YqcMKJZRKzaJ/HB4H4dTsQ8QOncudytRKDairRS3DH+mRsh65kcNz+BwBrILdfmKXK9jJ77kJUxR1jba82v6Ffn3c7iJOj5BixSdnrRQJ5DS9nDrHr5Epns+HyBxmxcKntXwE4xn30vZ1oKbWvYK8vdY4tYaFMNMjJMkyrXQlGrg7WuSRXZnLoSRyMgzGIOkhVzwogna7z5TJh2kYBRs1nAmYHsosxo6BilvpSSDjz7qwKBB/nN6ZaXmlFNy1XSH01QvYsv/AnzxRbtA5a0SsQeyFuF9UPlnHvhQa91mgHaUdZNR0QpS3ioJ7ZDPyb+Beq+426nXQJ+GSYv1UsY0M90Bk0pu/x6/c5svFoFaZCqZ6Gpd6En5npPbfjomH+x5jByrLVuZkpJSXjZg6oP2Q9apfNW5A5PWVE24nGJKSkrpGYBJ/XiKGCWcy0xfjOTzRowxXzSvvPJKrdbaKcWkSo3W+uajjjrKNiJSUuLmXUyt2zHxNTRMSUlJSUlJSUlJSfnKkhoiKSkpKSkpKSkpKSmRkxoiKSkpKSkpKSkpKSmRkxoiKSkpKSkpKSkpKSmRkxoiKSkpKSkpKSkpKSmRkxoiKSkpKSkpKSkpKSmRkxoiKSkpKSkpKSkpKSmRE01DQ4DJ9KBBNMfagMPqRNwvXyaxD41Wx9xK/k0VnxV1P4d9sQ3C1twvv59ZAfQOuPIhDptiv1++TKcTG9kj4Mp7OGRLdj+Hdym043xKm8Dt5h303f1IyY65rbnfh4ryrQVtetEErgVF4Wuh1Pcr4Od2w/znpUHByiLv1x3ZpKvo+xXwc/cEdrSGNyiK25809EA2lyz6finRsWZNBV9+6T8ydOyYZdddC2zkneN+lZVZdtmluPvlj+4FtLcG14EqssFpqe+X189UBPfLWwWq8Fb36AymF0aJ7pf3z60EgrqerwBVRBPbUt+vMKIzRBo5Avg1poliE+tw+BZOgY3c6jmMBl7A/2BuBE6k3A/mRi4Can1jm3gDh6Nx+KKge9XRH81Ca/QTNvENKKshshWHGcB/WlceBs4u4o7XI7uuvgx8r4h75c9GFPAY8HXfuKIKuK6gezlk2Mh/Az+0rtwNDCl+kikJZytwA/Aza/wR4Kwi7jcNuMoae4VyrwXDEuAga2wcMLWQm2jjGPkv4EfWpXkKBhc/vbzYBfP36uKdkoafKrN/5I02BsjLyIPHZcCtrZplyxyB+Ty8+93nGo5U8FYhN9JwKPACfsNmK6bT+h9aO9GU8vLBBx255JKv0di47avQoUOWefPe5GtfK+zI8NFHHRg48CDWr992dFMKbrjhHY4/fl3J5hzCGch1sxL0N0EV2Cpe/wD4HX4n7AbgKKCMhojSoKuBi6wLT4P+IahCW9NfC0yxxt4GvlXkBPNlK7AAOMYanwFcXcT97gbOscYeA35SxL0KJrrUrFoeA262RrsCi3DokPd9HDqTZTHSOzQBhz+2bpJ5UQ/83ho7BJhV0F0c9kfzS2tUoxiCw4etmF8+aDoyGHjPGj8LhxEF3cnhVOAKa/QzoD8OW4qeYX4/ewMZ+mF7rjWTqC/44FeDNEKWYg4tKdspykS6BmO6vHo5U8PIQu6l4RRgtDW8ARioYHPxs2wZZbpD9wPhDKnX8P0Cb1eNNELeAi4vcnp5o8wmfokc5i4Ne+d7H23eczfSCPk1cFurJpkHCh4HbrSGdwIe0NAx3/u4kanFyOhKjUqNkDbBYYdtZOhQ/5a+ZUuGsWP78sUX7ULeJWlsVIwb19dnhAAMHLgqCiMEULcBD1qDvYB73UhDnug9MIdo+/w5HNQ/WzPDPBkB/N0aOwEYX9ht9LeBOmtwE9AP1Poi55YnqgEYiHRYjwb908LupUcijZCVwCBjuJWfaGtEenAt8Gdr9EiMFzFfZmN7wM0D+fpWzCx/HLK05zzgI+vKEOo4P697zKIjZnPpYl2ZRm1hXr+iGctaoD8IY+FGHI7I6x4OPYF78Xv9QDG84ChXsdTwGvLwV0GWhTjsmtc96jkec/jysokM5xYc5UppcyhYBwxAroUZmvzWgoaewH3YawGGKniz9bNsGQWvIyOTFcCDmvzWgobjMEa5l01APwWft36WLaPMs9F20uyGOcTne3IbhYxyrQAuVNGlWVYBf7LGvkVh0drZyCjXUwXeIyVmBg36mO98x382XbGiI5MmBWVxBjNzZk9ee62Tb+zggzcycuQHJZljngwHsbefhllveaAzGCNkT+vCHaDmt3Zy+aE2YQ7x9t5eC/qk/O6huwGLkKllV4L6a2tnmB9qOXCxPQjMA71PfvfQhwHTrcFG4JzCo1zFE60hMpQGzIZvh96uwBFpQhKHi0Ec9lcBA4uqCSiW8axCMRATHtuGZg4TxaYhWcPNwDet0RfoYaV8lRuHF4EJ1mhHTJTKNpLs91YAC5EHnNnUCq9JeXGYi3m4eQk2kuR7dyfLA8gDzkhqhNckZTtFwYtIj1hHYJGWDgMfbl3Ig8i1MFfBA6WbZcsoc4C3N/SewH26hbWg3cM+ci1cpqQHsdxcDtgb+nHYabEBaOPcsg/qDcAAVda0Dz/KbOgDAHtDH6WlkSTQJn3kAmt4FSbCVmgKSUqMZDJQX/8uu+/ur+N48snuPProLi2+/7nndmbhwt19YzvttJVp096lffsoyxeVyXaQEd7poL+Txw0cwD7sv4HMqigz6g3gUmvQNZK0bSRZaPewj33YfxjU3FLNMD/UwxhnhRfXSNK2kWShO0NgdlE1qP8r1QzzIXrVLIcVwCD8XikTRncCi34M9RwCzLRGs8B5OHxc4lm2TC1PISM5ndjKYm4UH+w2HM4Chlmja6mgv2uoRYvDdOBRa3R/4I4W3jkJmff+Gl2Kyk8sBcOQnudTcYSHeBsOGeB+ZJHWIhzuLu30UtoAM4D/scbyWQv1yPSn15GRuqgYDtgpDqcga1eacY2Uu5DpT4sV3Fna6bWMW9jfH7BTHMZrmTbWjIadMZ5KO/2pSslofNlxi+IvJGC/08FFs2BefAgyHz8LnK9kND6lDdCtWyOTJi0nk/EbDtOm9eatt8KPDKtWdcBx9kVb9saECe+x115lzfgMQb2MqY3w0h5YCLp7+Pv0CZiaNS9uSqmKIfNAzcNEsb24aWM619n4KsBOf3oHGZ2IitHAX6yxoLQxmznI7KLfICMkZSce+V6HJciHrLHigupFptPJrQvx58kqaWI9bgAAHyhJREFU6nFEvUaU1CDzdA9lvcgNNkxkP+SmrlFcRDX/KsP88kFjPG/2z+/nRqAkDj8GxlijG4B+jC5caagkOO7Pl0pH03D4bsi7qjAFn17eBn5R4tmltAFUjrWgQ74TGn4AXGMNb8SkMsWyFhSha2GqDi+avxZZmBhUrxEZCpYh/+4ZYL6rIhXEHKCvNfY4cFOJp5c3yhSt2zWEXYGFGrnfaajERHjtupCJyhT4prRRjjhiA7/4hd+O3LIlQ3V1XzZtksexrVsV48b14bPP/HUh/fuv5gc/iKIuJJRZGEELL72RKZUueneCo62Xglpa6skVwAjgH9ZY0DPdRR8NTLYGG4Dz3GhRDKjNBDttqkCHFJvrXwDnWYOrgItARZdd5BJfH5EeXAU8b40eDUwUr93IbcDB1ugzHMSk8kwuT0w62EAQEZlh1DHQN3I77dnKfIzHzsuN1AovbLQ4rMGkENgRmVtw+Ib12j0xYUlZaOYIL2y0OLyKfIAYT80UdrFeewwmTOxlMxn64YgFnfIVQdFcO2WvhZnaSqfUzd4zsbkOV3JzixQFryHVU5rqRXxrQRvvWb312s1AfyU3t0hRJrphRyd3J6BexBUXsIsu3wcGRVgXEsYYZEQm6FADJtXiP6yxZwjaG1PaHIMHf8S3v+1fVsuXV3L99bJe5NZb9+bvf+/sGzvggC8ZNSrSupAAVKjIh1v87EFnMOmitvNgIah7yjTBPFFhIh8TQVtRbt0Vk45uOw+uBmWfZSNGhYp8gLai3PpQpGPGPcuq6LOLiNMQGUoD7TgPWfU/Boczmv9VxzmYVC4vq4Fz6ZeAPFmTFnYRtra+Zi4T+Vrzvz9iBlJq7SVkqDIeHJ5HHswrgcVcx07ua8IKze7EEXnp8eBwK0HKHlu4h6YceYfumAeKP4dScSU1Ii895SuGMlKpdsF2JaZeZCdolrgNWgt3K5PuFzvKHGjtGpVewL1N9SK6OZ9YFF2OVjLcHxcjCVa5aX52aggtulTwaVlnlweK0PrIq7QnzUMbI9iWFv0EODetC9k+yGRg4sR3RR+RRx/dhcce2+Yj+NOfdmb+fH8rnx13zDJt2nI6dozcaR2AWkew4M0M0F6Rj/HIdMqgaGdMqNeRNSpu3Z926/50mArfEuCWMk8wT1SoyAdo12mjw1T4HFD/W+YJhhJvZ/UJgXl1phDIoTcTOQDN7db1LHB+BBK3+eME5tV1ZiuLcajE4XRkYdQ62kUgcVsY04DfWmMH8GXzl7sOE7b08gYRyHoWyAikssfp1HEpzaoSAYVmtcyJYnIpbYLrkH0rDmDbg74WWXSZRLnnYci+FadhCqbD1sIjShZAxoZqlsQUql2OhpM0hBVd1igikXTPC2VUu+zDlwLmadhH+79fTWhgiCJB+11Kq+nevZHJk98NrBd5991KVq/uQE2NrAsZO/Zf7LNP+XoEF44KcqYawRt0F9BBAhNNEreRqPDlh7qDEJEP1wgJUuFz67+ikbjNkzCRjybHWpAK39PIXiiREq8hAuDwMIgDYHdgPlt5BNcD6WEaDk9GMrfCqAZspYHDMVZ0kKznECaIsGa8mFSzC5Cb3gAc5hBWaJY0iVuHdWQC5Fg103G4AzwRN8M7VMZWaJaSQNxUniGAnQMxQMNcpNzzF5i6kEStBVdydyBS5eZ6zKHXLrp8l/iKLkNxmwDaEqEZzLP1fmTR5W9JoMStMo0y7T4m3TDRtYeRCm3XFdrIMaVt8K1vfc6QIf5MmC+/zDBuXF/GjevDunX+upCf//xTTjklMtG3QrgRExnwsj9mbQbVhVwB6m9RTKxARiCdNqdgxErs9hANQP8oJW7zQ23CpKdusC5Ug55DsArfOUU0ciwp8RsiAN25EpkGcCwm3O7leXqI9KFk4DRLNdppAOdgNhovt+Lwq0jmVSgOq8lwLjINYBjy+3IpDnEWmoVTw0tIZY+OyC7pptCsqoyd7FPaJMpNicGk+HgZilwLlykTHUwcynQXt2unOiANjgaMNGysVbBhKLgHI8ntZS8Q0u+rMP1CkpC/EsRVyP3uexjHlZegFMGU7YhLLvmQo4/214ssW7YDf/ubvy5kv/2+ZPTolVFOrQCUxhxw37Mu/BSpwvcQKDvLJSGoz4GzkCIfQ5B1IeNBRa7Clx/qTeSzPYNUazXZRTHVhXhJhiEyirCqfy9rqWBALBK3+eKYwkhyF0a+SpcwRYaEUMMzyOJVm4U43BPBbIrHYSZS2cOPYoxbH5OSIlDwLC3LIC5SsqA6USijctOS8+PaOCRuC2Qk5HR+ZIHzlBQQSQzKRKf6IesjvazF9D1J7n6X0moyGZg06T122SX8Y95hB1MXUlmZVLsaQK0lWPDGyzvEqMKXH+o1csicuzwB3BDBZFqBChL5sJkCKhEqfMkwRACcnFKRcUvc5o/D4xAi3wsbaBejxG1hTCJcKnIZOySl0CwnYcoeTSyhVshqpqTYTIHQdNC2JPc8hPC18Bhwc4RzKQrV3HcgNAWuXhGrpHteqNyHMg0MVtLDnLId0r17Q2C9SBPXXruCPn2SVBcShnoB2SC5CdfZHJfEbSGoOYQ3ov0AuCBhdSFhBIl8NPEcLTvYIiM5hghAho8IVgZ5k4NEDmJyUaEG0xImiKZ7ycTUi4QVSP6Sa0XhaFL5grBuyoobiV/WMyXhuCk+YXqZd8QtcVsAXyC7fDdxUwIkbvNlLcYgsdmCqd9pK3xI8H63jLQu5CtF166NVFTI5bfLLg2cfPLaGGZUNGFnnz+CeiXSmbSOsLPPAlCxq/DlyRbCn/e3grJTjmMjOYbIVLqR5X5kYRPA11kaamknC4fD0aFFkv1xRD5zMnEYgJRN3nbVEcWhSeV64FuBVzS/xBHFoSkpPkIkVZuo0VKFJKlMA44MuXa7loXSicOVTb4XI0tp0wGjQGULgyQOva1APWi/OxCpNJSynfLllxnGju3Lli3yOPbvf7fn5pt7xjCrYtD7Ee4IOAn04ChnUzz6FMLTs64E/Z0oZ9MKxiNVTpuYBdqWno+NpBgiis2BMpJeJuDww6gmVBROqIxkE0aL2mHfyOZUDBMDZSS9GC3qG0N/z2RgZJNtpR0v+2MUMVJSAtHmO9LiWtDhaz4RaCPZa2vle9mPtrEWaiDnPnAKMDqiuRRFDtlkL+O17L2Qsh1y3XVGsjeMxYt347e/7R7hjIpBu5K9omGzl9tA24IMCUPvTbDKaROmQTLaFiBKGPpYcgtd7AHc4zabjJ1ETAKHq5AyknY6jZFqdNg9mkkVxS/B08TQYP8e3YD5OFSQRBwq2crDSNlk+/c4jPUJLtiaxD4Yz6n3gaIxaR1e+lEnlLRSUtCmieFDyEiBvRYOJbwuLHY09EZuroFrQSdQurcJDSciZZM3IqWJp7rd4pPKleS532lzYEjZTlmyZBeWLNnFN9aly1aUdQyeNq03H37YMcKZFcx0ZOaB/Z2uBBaAtpvpJQTdDlMbsqt1wf49eoPob5cg9K6Yps72GdP+Pf4fMCaSKbVA/IZIPUcBk63RzWT4IbJDcQ/gQbfDd7Jw+AVGqtfL+1RwOLLBzPdIUKGQxc1IGclnqOAIpDTxCOrE7xw/DhU0sgDTj8bLzWT4GXZetuZWHPE7p6TcCHzDGnsWAtfCMG2kfhOFNpvRA8i1MAsje2vXKNyi4T+imFshaJOKNR+ZyjQCKdPdHhOlSpwbWcNRwFRreDMm+nGfNb4n8KAOTt9KaeOsWNGR66/v5RvLZGDatHc455zVvvHPP29HVVUfGhqSmHWogxo2r8V81+1u3YeSXFEMB9P8z8trmDYSdu3L2aBtOdwEoBVwF1I2eRFwAlKaeBLo70UwsZzEe6B36EqWRUiN5tHU8FfMJvNP69oPkJr48VLPIcBN1mgjcA7VfIBRebELWqtwODmK6eVNHWdjeiR4Mb0UjGKZlCbWzGYifaKZYN5Mxhh7Xl4Gqlxp4knWtUrgARwS6qlJiRpt9OSHW8NrgPOV2ZQuQBZ3z9Umvz9JTESuhVcwUr3PImW6KzGHeDsiGhtuXcj9mJ4hXu5R5vA+CynT3ZvcKXWRo6ErBO53Y5TpKzIC+Id17USkoZXSxtmyJUNVVV+++MJvY1588YccffTnjBr1Pocd5tdjWLq0E7Nn2+fLuNG9MP197GjrRaCWY5qp2lLal4A+L5r55Ys+ARhrDW7AdID/EFMnaEsT3wT6mxFMrhDGIBs2u8qO6jVkBKQCeBD0LsRI3JGFu0AcYh/BYTYADhvI0A9pxU2kXmyu8TCdTmRZDNYhVlGDwx8BI02shMSn2VwdsbnGw0T2Q4sccY1iCI6rIGGkiW1vRle2sghHbK7x4PBj4Gpr1HSXdpo7rdcjJT4PAWaWeXYpbQAdHHrXwEUKVgAooyVvp2PtBCzQ8qAZC9qE3m2nzQZM08KmdKYgme4DSZbX8lrM7+JlGW79l9om0/2e9ZoztZGwTAqzkfvdEuBW8EkT2/tdnYbvl396KVFxww29eOst/5HhiCM+5+KLzZm9okIzadK7dO7sD1jOn78HzzzTNbJ55kZXAAsB+xB7E6j/Mf+rVmGEPuwmKHNA22nsMaF3J7gD/AhQriNcvQCimXYlsAh0Qpw2+miM48mL27NIuY5wdRsmbctLL+BeN5oSC/EZInVcBvzcGl2Brclfw2uoACsuy0KmiAUQPRu5FTjYGn2Kg7jeN1LLIkyBohezABbHHHq/nfZsZT6y0Ox6ai0ZyR5cC6IB4FGYXgvx4rAn5m9sf6+H4fCW53VZ2nMe0lNzMQ4J89SkRIluLkYUaT03KHjUGhuLbAB4JEadKlZ0czGiXAuKbRLiqrm7rlgLg7UZjxW31sNOY90E9FNskxB3u8EHeS1naIjda+kaRHYa60pMB/jmyJqC15HF9hWYFC07dz2lDfK733XjV7/yf5TdujWKXiJ7772ZCRP8GUFaQ13dvnz0USJ8HVOB71pjLyMiC+o3yAaArrCPDq/SjwSdwaR89rAu3A3KLg2Yhuwn1ZKwT0Torph9S2YXoezSgBHIflKnAZeVaXItEo8hEixx20CGATgBPR9quQ3zR/bSky2iGDlajMTthdboKtozkH4B+vBdGAm8ao0ez1LGl2eCefIR04FjrNEXCVJdMJ3tByK7Ao+mThRgRoepG1qAyav2MhcnoDnReMI9NW1Hmjil9FwH2PKMLyGLpHG7Xg9AFgFeoYlPpttNZQpaC79UZtyHglWY+hb7mTVbE99acCVuF2GMQy9XKPib/XoV/MzqiEk1i02aWJsc8+nWcCNwjgrQ+VdGAtV+ZvUE7m0L0sQp4bz/fkcmTfKLpSkFEya8x267yabkJ520lp///BPf2Pr17aip6cPWrXF+FQIlbk3mAWpLwBvGA/9njR0Ooa0OomI8Up1uKYGHctXktPnIujAAdFirg6i4m6DsItRs+VLV5LSxP6cbQMci8hG9IRImcasYS43wLnoZTpAVV5dTnrV8BEvcZlGcz3jxRTWM5ksynIvsClxLHSeVYZYtU8dpSIlb80V1xBfV4LAcqa6j0Mxz1ariwEFqZr9OlxxSng6/QR4QzPcz6dLEKSVHw6lIidt1QH8lH9oAqKAorivTrYlNprsGxPPkDYxaUyAKngIriuuuhTikiXNI3D6kcivWXIdsBtiSBHPZ0IRKuo9X8mDmZRh4oriGoO9nShthyxZFVVVfNm70J0AMGvQxxx0X3nD86qvf58AD/UeGv/61M7/8pe3Ej4pQidthoOzvrIsyNbPS8B4F+melnmF+BErcbgLOBWWf0VzUaoKdNreBjqmflB4F2H/DoH3Jg3oJhAO8PUbVLJcEc1mIIyIyBylx+wS1LchfOqwjE2DFaabjCG9+eTESt4uQBZ2TqBX51n5qeAMlNpMMmgVualF0TKIXOkDiVjEYR+Rb+3F4GNm8qBuNLOR24cEsLw4nAOOs0Y20ox+jRb61TTXyQHAY68WhLGU7RrseZ+TmOkRJB4gPBY8AtuepG7BQS29+WdFwPMESt/2UdIDY1IBb17aNIG9+FARJ3L4DXJLrTW6a0xBkZ+T+2tSRRM1sZFQpKFXFh2r2LgsD+DotI3YpbYCZM3vyz3/660IOOWQjw4aFNfE2dOiQZdq05ey4o//sO29eD154IepAnzZtFGSa4BxQMvPAh1qJySCxRT7uBh2x4I3ujknJsiVuLwP199zvVU8jU9FNb7XIpYl1UFTJjdQrmV3kZwbwP9ZYLP2kojVEjMStnYP/PsEKNJIawqy4+UzL2Uin1NyMzDt+loOFAk0wtdyBWQRe9sB4AKOJtxqJ2weRhWazqBUKNGFciZQmPoaPIuwK7BBeaDZBKNAEvb+RikBPzaU4ooYpZTvElbhdiNxcb1HwqzxvMxq5FoLqG8qGJnQtXKpMukFOVJPSn5QmHqllfUPZCJG4bQDOUzIlVKCalP4CvJZaSpOXDbcni11nswojemCnhApUk9Kfn/YYAzdx0sQp4Tz33M4sXuxvgdaly1amTl1ORUXLR5/evTdTXb3CN5bNwoQJffj000h9HfUEZR6EdyK3UEuAW6xBt75BR1T4opuirb2tC4tB3ZnnTRzgD9ZYxP2kdFO01a6zGQsqV3aRi3LVzQKliXNEU0pPdIZIsMRtFhiEIza+cBxmIItG92NTRFZcsMTtGuD8wLqQcIbjKRp1+TF1QvGpXARJ3L6K3PjCcdhEO/rjKRp1GUtdBF2BTV1IUKHZvThCkz+calaiAqSJ4a4EShOnlJ4gidvXKEA2VTWrkwiZ7ms15ZfpziFxu0iZovW8UMYxFLQWZmuZg1xyWpC4tUUyQlGEy3RrW+GwDOhgFb4sRrHMFgbIxc1Ir2XCG6qleFm1qgO1tfuiPStKKaipeY+99grOfg7i5JPXcNppfn/ZmjUVVFf3IZuNwn+pT0SeD1ylN9VS5oGXazBy1V6CFJ/KRZDEbYvRVj8qi3Gg22fXoaCj6ic1l6DsooKMIbUW4yxptC7MBB1ZP6loDJEwiVuoxRFWZUs0WXErrPGz3YhL+QiTuIWLcMR8cuM0aVSzybrbFByhRFFagiVuN9COfjjWfFpiAsuQuYgZNPOZLAyEUjMOWWi2jB2KUH+o5TGCPDVJkiZOKTk6uC/RBkwqUyGbK6pZr91HBrhfSwOh1FQhDZ6g+bSIgseRh+iuwKIIpImDJG4fw/QKKZR6ZEO1QyizNLFu6ksk97t6JeeTE7Vtv7O9lmdpU0eSkmC2blWMHduH9ev9GUADBqzmhBPWFXy/qqoV9Onj36Jffnkn7rmn3FndeneM0EWQxG3LmQc+VJjTZgzonxQ7w/zIR+I2X9QHBGfz3A66zP2k9FBM6qYXdz6q5RCbD/UcIf2kopImtvPjysMXHIfJPfbmH/+bYiVfHdbgcA7Gc+flYBwqCz5M50uWH2K8dV7+jiMiNPnh8CoOF2GaVnk5AfhTUfds+WdmMJr0dgjy10wQEZp877mQOvZB09c33sgPCFDpKQnT2JlN9MAuQs1wK9eKCE1+dOca1rAVk+/pvee3geeKm2hKUnELok9EroUlSjZSzQtlDuu9MQXSXn6ATMcsCdrIbu+NLMi+TcnNPl+uNbe21gLlWwsaDsJEV72/RxZT2F3g5mqkibU5KNRgpbxq2EfJw32pOAETvfFGcNYiIzR5oWCtNupsF1mXDtKwQ6EGc0p0vPpqJ/bffxP/v727jZGrKgM4/j/sQl8gBAqVVlPRUgsVKNLdBqSiEinvASWgxRYwxtgY+8GXD6BBOgUrpFETCFEsCtGIlKqxhtQGNeIbocStVQkVECgWGistQluaYqF7/HAXu525d3de79yd+f+SSXfOOff2yTade8/c5zxnxowDtyTjx+9nyZKtdZ1vwoRBbrnl2Yo0r+3bD+XVV3sq9h1povlUFoF4FkL1mQcHCc9AXAiUTzzOgLh26IlDK5xL5RPihyCUP6GpUlgHcQlQ/vTgHCqLTTRJHE/yWVn+ef99CNVnFx1sOUlBjfJU/feRPGVpqUByYVlPshmUaShSvl4ludk7AXi2zbEUzV0kefY3kHxQSsrHApKNzx6ick1Ap5hOkpKzh6S6Wd0GBga+RBH20koRQljR19dXdZqplJPNJJUlz2z3zuqSJEljVoxxxMp67TQ4OOgXXCq04alZk6lMO6rGn2n/pjRSuy2nMh2nGuOaHUgH+hj1VTv6OslmhFK3ejv1lV+e1uxACmwc9d37PM1QFc9x48Y9uG/fvt1UlvRvt9d6enrKU6qkZroOmFPHcZPf/GH4RORwkgVEtToCJyLSfJKyo2q+U4detVqFExF1t6Oo77reTXqp73f0/+0EZs+e/fLAwMANVBZ5aKsY41fnzJkz8kYlUmPeT7LZat16SfK0ljRwjucaCUDqECtI9oKpV72LzDrZvcBfGji+kWOlTrCVxq7vLzQrkALaQWO/m38Pf9Pf33/7wMDA4SR7B+W7qW+l/SGEW/v6+gq5bkUd5VsklRbrtTmfzfMkSZI63IYNG2YAC2OMJ4cQjs75r98ZY9wE/Ki/v7+uyn+SJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEnKX2h3AGpAiSMIzAPOJDIZmASMB/YA24DH6OFhvsIz7QxTkiRJKudEZCwqcSZwPXAx0FvFEY8DdwPfpcSuVoYmqXtFuAc4NaP7JeCCADHHkCSNOfFC4OYqBg4CO4FdwNPAY8CDELa3MDg1WTU3sSqKEkeRXOg/XOORJwPfAM4Crmh2WJIU4XjgGuCQEYadDfw+n4gkjVGTgL46jx2EeD9wPYQtTYxJLTLSBUNFcjOzgAFqn4QM57+3pFa5mtE/Y67NIxBJXesQ4CrgUYgntjsYjc4b07FgOcexn3XACaOMfB7YCGwCdrQ8Lkk6YFEVY66IMLHlkUjqdlOAu9odhEZnalbxBV7npyRpD2l2AiuAH1DihYN6SswALgA+A7y7lUFK6l4R3gtU8+3jkcBHgHtbG5GkDrQNWDrs/USS1POFwISU8WcnT0XCk3kEp/o4ESm6ZVxOZF5G7zP0cH5mVawSTwN3AHdQYgFknkeSGpGVcrUf6EkZ60REUq1egbCysjl+D/gjlZ81AP2AE5ECcyJSdJEbM3r2AJdUXZq3xCpgVbPCkiSAmJQM/2hK1xPAU8ClZe0fijAtJKmkktSgsB7i34FTUjon5R2NauMakSIrMR2YndF7GyWeyDMcSUpxKXB0Svt9wP0p7YcAH29pRJK6zaEZ7f/KNQrVzIlIsZ2X2dNLyuNJScpdVlrWKuDnJE9vy32ydeFI6i7xPOBdKR1vAI/mHIxqZGpWsZ2W0b6ZG/hnrpFIUpkIx5H+hcmGkKRlEWEtlalbMyPMDfCnVscoqWNMhnjrsPe9wEzgItK/WL8bgimgBedEpNiOzWj/R65RSFK6RaRfR4avR7uf9DUk1+JERFL1jgGuq2JcBH4ILGltOGoGU7OKLWuR1c5co5CkdNektEXgx8Pe/4L0z6yrIoxrSVSSutlvgWUQXm93IBqdE5Fi25vR7sVbUltFOJ30YhoPBw6kjgZ4jWStSLlJwMUtCk9S9zoH2ARxcbsD0eiciBRb1u7ob8k1CkmqlPY0BNLLhKdVz4Lshe6SVG4P8Ouy1+PAvpSxhwHfhnhZfuGpHk5Eim1rRvtplDgs10gkaUhM1oUsSOnaD/wkpf2XwPaU9ouGFrxL0miehzC/7HUKScWstSnjA/BNiN7rFpiL1Yvtd8CXU9onEDgfeCDneCQJ4EJgSkr7LuCmmH5MWqrpmxOa25oVmKRuE7ZAXAi8CBVf0k4HTgX+mntYqooTkSI7kj+wi73AhIq+yPWUWEuJwfwDk9TlslKqjgY+Xce5nIhIakDYCfEp0ndXn4ETkcLycVWRfYG9wD0ZvWcBN1Z9rhK93MS8ZoQlqXvFZJH5JU085ekxfdG7JNXiyIz2yblGoZo4ESm6Xr5GUnUmzVJK3E4p8z9fMgFZxpXARgb5YitClNRVFtD8yn1XN/l8krpKPA2YltGZtj5NBRHaHYCqsIzFRO4cYcQOYA3wCEmO5HgCU4nMBc4Fpg6N+xklLm9tsJI6WYT1wBkpXVuB/45yeADemdK+DZgW4I0Gw5M05sWFJBsSlnsCwqxh43qBtwHnASXgrWknA96RrCNREblGZCxYyncocRLwuYwRxwKfGnolMlaLSlK9IswkfRKyBzgxJH+Odo5NwKyy5inAfGBdw0FK6lQnQaz17uY3TkKKzdSssaLE54HFpNfLlqQ8fCKjfU01k5AhqzPa3VNEUjO9DHy23UFoZE5ExpISK4GzSWry12o7wW8bJdUnJteLRRnd99Vwqqyxl0U4qraoJCnV34APQniy3YFoZK4RGatKzAGuBD4AzKUyzS4CzwGPEFhD5AFKmYveJWlEMVlv9quUrv8AU0MNT2sjbATek9K1OMDKOkOU1BEy14iMZgvJWtnVwBoIbm8wBjgR6QSr6WETx9DDMUQmEniFw3iR69jd7tAkdYaYFL1IWwy6O8BTNZ7reJK1beVeCskXKJK6VpxEelGLNIPATmA7BO95xqD/ASns3lUw6Yj5AAAAAElFTkSuQmCC"
|
|
}
|
|
},
|
|
"cell_type": "markdown",
|
|
"id": "b5ca8346",
|
|
"metadata": {},
|
|
"source": [
|
|
" <div>\n",
|
|
"<img src=\"attachment:fig_matmul_intro_algs_1.png\" align=\"left\" width=\"450\"/>\n",
|
|
"</div>\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "06e1977a",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Implementation\n",
|
|
"\n",
|
|
"Taking into account the data dependencies, the parallel algorithm 1 can be efficiently implemented following these steps from the worker perspective:\n",
|
|
"\n",
|
|
"1. The worker receives the corresponding row A[i,:] and column B[:,j] from the master process\n",
|
|
"2. The worker computes the dot product of A[i,:] and B[:,j]\n",
|
|
"3. The worker sends back the result of C[i,j] to the master process"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {
|
|
"fig_matmul_machines_1.png": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABkwAAAOBCAYAAACzvIyfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAACAASURBVHic7N15fFTV+cfxz50shFUIguxLXFr3CkittW6tVm21FhVxX1t3qlg1QEgmIQLuOy51a1Er2Fq1Vau2WutPVASsWK0Lsu9o2Lcsc39/nATmnnsnmZlkZgLzfb9eeb2Sc+eceQhZJvc553kc6n300Ued6+rqRgGnAd8BchAREREREREREREREdm11AFfAH/Oycm585BDDlkL4ADMnDnzQOAVoE/m4hMREREREREREREREUmrJcBJQ4YM+cSZM2dOl+rq6o+BvpmOSkREREREREREREREJM0W5+fnHxyqrq6+FiVLREREREREREREREQkO/Wtrq6+NgScnulIREREREREREREREREMuj0ELBnpqMQERERERERERERERHJoD1DQJtMRyEiIiIiIiIiIiIiIpJBbUKZjkBERERERERERERERCTTlDAREREREREREREREZGsp4SJiIiIiIiIiIiIiIhkPSVMREREREREREREREQk6+Um+PgPgH+lIA4REREREREREREREZGWdDTw/XgfnFDCxHGctwcPHlycaEQiIiIiIiIiIiIiIiLpNGvWrFtc1407YaKSXCIiIiIiIiIiIiIikvWUMBERERERERERERERkaynhImIiIiIiIiIiIiIiGQ9JUxERERERERERERERCTrKWEiIiIiIiIiIiIiIiJZTwkTERERERERERERERHJekqYiIiIiIiIiIiIiIhI1lPCREREREREREREREREsp4SJiIiIiIiIiIiIiIikvWUMBERERERERERERERkaynhImIiIiIiIiIiIiIiGQ9JUxERERERERERERERCTrKWEiIiIiIiIiIiIiIiJZTwkTERERERERERERERHJekqYiIiIiIiIiIiIiIhI1lPCREREREREREREREREsp4SJiIiIiIiIiIiIiIikvWUMBERERERERERERERkaynhImIiIiIiIiIiIiIiGQ9JUxERERERERERERERCTrKWEiIiIiIiIiIiIiIiJZTwkTERERERERERERERHJekqYiIiIiIiIiIiIiIhI1lPCREREREREREREREREsp4SJiIiIiIiIiIiIiIikvWUMBERERERERERERERkaynhImIiIiIiIiIiIiIiGQ9JUxERERERERERERERCTrKWEiIiIiIiIiIiIiIiJZTwkTERERERERERERERHJekqYiIiIiIiIiIiIiIhI1lPCREREREREREREREREsp4SJiIiIiIiIiIiIiIikvWUMBERERERERERERERkaynhImIiIiIiIiIiIiIiGQ9JUxERERERERERERERCTrKWEiIiIiIiIiIiIiIiJZTwkTERERERERERERERHJekqYiIiIiIiIiIiIiIhI1lPCREREREREREREREREsp4SJiIiIiIiIiIiIiIikvWUMBERERERERERERERkaynhImIiIiIiIiIiIiIiGQ9JUxERERERERERERERCTrKWEiIiIiIiIiIiIiIiJZTwkTERERERERERERERHJekqYiIiIiIiIiIiIiIhI1lPCREREREREREREREREsp4SJiIiIiIiIiIiIiIikvWUMBERERERERERERERkaynhImIiIiIiIiIiIiIiGQ9JUxERERERERERERERCTrKWEiIiIiIiIiIiIiIiJZLzfTAYiIyK5v5syZu7mue3goFOoB5GU6HpFm2gzM/frrrz8cPnx4XaaDEREREREREZGWoYRJ9hoBnN/MNf4C/K7hg+nTp7dt06bNMOAw13W7A04z14+b67rbgEU5OTl/GzRo0Hvpel7JWl2Ap5u5xhbgtBaIpaX9CBjdzDVmAGGAr776qs26desmAFc5jtPGdd1mLi3SehQVFS2aNWvWdYMHD34+avhPQLtmLn0uUNXMNRLRAZjWzDVqgVPswRkzZvRwHOcAx3G6NHP9RG12HOeLwYMHz03z80p2GgMc0cw17gD+2QKxiIiIiIhIMyhhkr32Ak5s5hpfNLwze/bsH0Qikamu6/Zt5ppJcRyTm4lEImNmzpz5Qm1t7QWHHXbY+kzEIlmhDc3//tnUEoGkQE+a/29zAd56663ctWvXvuA4zgnND0ukVernuu6fZs6c+eshQ4Y8Wj92PNCxmesWNHN+ovJo/vd9bfQHs2fP7h+JRO4HTiJDJWBd12XmzJmzI5HINUOHDp2eiRgkawym+d9DU1siEBERERERaR4lTORt4Mkk534KMGvWrH0jkchrNP8GUUs5NScn53nXdY93HCeS6WBkl7QOuCjJud2AW1swllT5ApiU5NzFAB07drwCULJEdnUOcO+MGTNeGzp06GLgciA/ybUeI/P95S4Fkikztv337QcffDAwEolMB3q0WFTJGxQKhd6aNWvWLwYPHvz3TAcju6z7gL8mOXcUcGALxiIiIqkxFDgm6uMlNL/qgIiItEJKmMiXJJ8wAcB13dtpPckSABzH+fHMmTOHA89mOhbZJW0h+e+bInaOhMkKmvmzAfh1C8QhsjNoGwqFLgAqgWeasc6jTT8k5f4A1DRngdzc3Cdc120NyZIG+a7r/uH999/fS6dPJUX+1Yy5Z6KEiYjIzuAovBvK/g8lTEREdkmZ3sUoO7mPPvqoM/DTTMcRxHGcMzMdg0i2+vTTT/OB/TMdh0i6OI7zvUzH0BrMmDFjf9d1j8p0HAG65eTknJHpIERERERERKR10wkTaZaampoBoVAoJ9b18R+PZ+a3Mz1jP+z+Q2484MaEn2vOmjmUflSKy46m0W1y2nD3oXfTq12voCl7J/wkQe6lDVW8DAz0jDvcSRkPJLxeORfhUmKNLqM9J3BDCvtahOkF/B1ob125jDD/SGK9W4DTrdH3CXMukLrO3mEOA57ClMFpsA34OWHmJbTWNHL4jD8BB3nGHf5AGeXNjDSr1dXVtcf7f+TR8/HH6frii56xLXvuybzbb8cNJZbLz1+2jL2vvRZn27Ydg47DgooKNh50UOyJzeW6DCwro/3HH3uG1x5zDEuuvTbh5TrOmkX/igrPWKSggLn33Ud19+7NCrUxoa1b2XvkSPJWrvSMr7joIr459dSE1+v25z+zxx/+4Bmr7tGDuffdRyQ/2UpVTctfsYK9R470fh0AC8rL2fi9xHMZfW+/nd3eeccztnHwYBaUlgY+3nXdTgk/yS7IcZzBsa7NmtWRior+nrGCggj33TeX7t2rE3qe2lqH66/fkwULvO1eTjttNeefvzJwjuM4QzBlz5rJvQywX8gsAk4CZ0uCa+0OvAZ0ti5cC06yJZ7ife67gFOswXfAuTCJtQ4G/oR3M1Yt8EtwPksywHieNxf4C7CfdeF34CRRVtI9HbjFGvwW+Ck4a5KJUEREREREdi46YSLNEgqF2jR2/ap9r2Jb3TaWbl66/W3agmm8svSVhJ5nfc16Sj4qYcnmJZ61zuh/RqxkCZjG3M03km2EGA30wZRTMm8ud9XfvI9fBfvjcr9nHRiAQzilyRKAMMtwmGg9dxHwNDfTM8G1fg7cYK1TSA4lpDJZYp77feBF67n3BaYSTrBvwGeMA0611qqlgDtbMmTxW3nuudS1b0+bpUu3v3X+97/p+bvfJbSOU1tLUUkJBfPmedZa96MfpTZZAuA4LL36anI2bfI89x5PPUXha68ltFTumjUMLCnxrNNm6VJWnXNOSpMlYJIyS665hvyVKz3P3ffWW2n35ZcJrdX2q6/oc+ednnXyV6xg2ZVXpjRZAiYps2rECN/ncOCYMeSuXZvQWl3eeIPuzz7rWSdn82aWXn55iqLfpcRMHA0evIHDDlvP0qVttr99/XVbbrqpiNramPnVQJMn9+Ldd3fzrNWuXYQzz1zd2LTdEnqS2H4HLMD7u+No4K7ElnEdTAJnkLXWzNQnSwCowPwtEP3cF4B7VWLLuO0xJVD3stZ6MrXJEgCnFijG9MuJfu6bwf1xYmu5RZiyeNHrDDRrKVkiIiIiIpItlDCRlCrML6RyUCUh60tt4pyJzN84P641XNel4uMKlm1e5hk/tsexnDEgTdU1SvkQh2JrNA94ljCFca1xG+2JMA1oZ10pp4x/tkCUTSvjj8DvrdHu1PAM04h5Usijkr6Y3hbeu1sOFzOO+P5Tm6snxcB0a3QI/l2hsVVwFPhO+mwlxHBuYkPzApSmRPLzmTdpEnXtvN8OPR97jE4ffBD3Or3vu4/2c+Z4xjbvuy9LrrmmReJsSnX37iwoLwfH++3Q7+abKVi0KL5FIhEGlpaSt9p7o3fN8cfzzSn25u/U2HTggSz7tbflTKi6mqLiYnI2b45rjdDmzRQVFxOyTngsu+oqNh58cIvF2pjVw4ZRdeKJnrH8VasYUFoKbny53DaLF9O/stI76DgsGDeOmhQnr7LB9dcv5jvf8X5NffJJex55JObmB5/p03fjqae8LVLatYswadI82rSJxJjVkpwIcA6m11O0y8A9J4GFbsB/wuNr4FfNCC4BzhpM/wz7eM8d4A5KYKEHge9aY2+Rtn5dzqfASGswBDwN8fbScfPM431JtTvBeTFggoiIiIiI7KKUMJGUG9J1CBfudaFnbEvdFopnFbMtsi14UpRn5j/Dv1b8yzPWo20PSg6273WnWBl3Ay9Yo/2Bh+Oav4kH8JeMeJv9uLn5wSWgPVcB9o7Po/kfY5qc+zB51PIs0NW6ci9l/KWFImzaZdSQywhMmYxov6GcXzY5P0x3IjwDviTRNZTycdAUaXnb+vVjUYn1fRyJMHDcOPK++abJ+bu9+y57POPtrx1p1475N9+Mm+LTDNHW/fCHrDz7bM9YzubNDCwpwaluusxQjyefpNN773nGtvXty8KxY1s0zqasuPBC1v/gB56xNosW0c9OHsTQf+JEChYu9IytP/xwVpx7bovFGI+Fo0eztb+37NNu06ezx1NPNTnXqa6maPRocjZ5D/ytOP981h15ZIvGma3y810mTZpH+/Z1nvEnn+zBe+81XdVs1ao8SksHELHyIsXFC+nff2tLhtoEZwVwEWBnaB4C9ztNz3eHAuOtwW3AcHDS2JjemYF/80AbYCrEU2bOvQQ4zxpcCZwNTl3AhBRxHgOmWIN7YJIm8fy9czv4Tg1/CHG8NhIRERERkV2KEiaSFpd/53IO3f1Qz9jXG77mzk8br3z02brPuP/z+z1juU4uEwZNoFNe2svFu7ThYkwZjminE+bKRmeGGQFcYI2uAs5mOGm8oQDcwCZCDAe8W3xdwpTTePmK5UwEDrdG5wA3tWSIcSlhMXAh3hJgDi6PE2ZAzHlhQpibKvZ25mmEebSFo5QmVB1/PN+efLJnLLeqioFjx+LYd0Sj5K9axYCyMt+pgYVjxrC1X7+UxNqYpddc4ysB1u6zz+hz//0xZhjtP/mEXo884hlzG07ftLfbDaVYKMT8igpqunXzDBe+/jpdX3qp0andnn+ewldf9YzVdO3KgrIySLAnTXNF2rVj3qRJRNp4qzL2vv9+OlinkWx977qLdp9/7hnbtP/+LFMprhbVt+82Skq8ybVIBEpLB7J6dV7MeZEIlJUNZO1abwu+X/7yG046qSolsTbO+TtwmzXYAZgGbtvY89wuwFTwlZH8LTizWzLCON0O2N/ke2FKjzXC3R+41xqMAOfWJ5TS7Qrgc2vsWPz9ZizuzwH7WOJa4ExwEmuuIyIiIiIiOz0lTCQtQk6I8u+V0znf29P0zwv/zKtLXw2cs6FmA8Uzi6mJ1HjGR+43koO6pLg3QSyjiVW+4k7CBJevGM/ewCPWaAQ4jzDLAmakXimfAr+xRkO4PE2Y4PIVYU4CRlmjG8lhOGHSua13hzB/A+w70p1pvJ9JMXC8NTaXtJVAEduiG29ka1GRZ6zjrFn0eOKJwMc7dXWBfSlWn346VSeckLI4G+Pm5jJ/4kRqd/NWc+n+xz/S+a23AufkrF9P0ZgxOLW1nvHFo0ax+TtxbFBPgdouXcwJHSvJ0W/SJNp+9VXgnLZff02fO+7wDoZCzK+spKarfRgtPbbsvTdLf+P9EefU1TFw9Ghy160LnNPln/+k23PPecbqOnVi3sSJuHmxb+JLco47bg2/+IX3JNmaNbmMHTuQSCS4n8lDD/Xiww87esaKirZw/fWLUxZnHEqAd62xg4hZjsp1gMfBl9j/G/BAy4YWL8fFnJZZaF0YDm6M341uW+AZ/GVGx4Pzj5aOMD7OJmA4sMW6MB7cI4LnuMFlRuEScNJTZlRERERERFoVJUwkbboXdKfikApCjtXP5JOJLNxk/40O4+eMZ9kWbz7hiO5HcNaAs1IaZ5PCzADGWaOmfEXYanYbpoA6pgEdrcdPJMzrqQsyDuY0RVD5iifqT2FEP7YPpveJ3bfkcsbxRQqjbFpPrgfet0aHAv46QmEOA8LW6DbgTMKksQSKRIu0bWtOBBQUeMZ7PfwwHWfM8D2+1+TJdPjPfzxjW/baiyXXXZfSOJtSvcceLAiHvf1MXJcBFRW0WWblRl2XAeXl5C9f7hle8+Mfs/r001MfbCM2DBrE8ksv9YyFqqsZOHYsoa3e3Ghoy5bgviWXXcaGQ72nCtNt1fDhVP30p56x/JUrGRAO+04m5S9fTr+breqIjsOC0lKqe8XfW0MSc9NNi9lnH++97dmzO/Looz19j505syNPPunN57dta/qWFBSko29JLE4tMAKw6wheDW7QC5ZrgVOtsUXABfWJiwxxqjD/jhrrwr3gfi9gwmRMYija2/jLjKWZ8wn+zR25wB/B3d077OZCYJnR+8F5PlURiohIo3KA7pgTm+mWj/mdsAfmd0drFsJ8nuz7DOnQGeiJf9OEiMguQwkTSavDux3OuUXeevabazdTPKuY6siOQxtTF0zlzeVveh7XvaA75YeU4zjBO0/TKsxtxFe+4l7AvtHwDv6b9plyJf7yFScQXb4i3HCjAetGAw9RxtMpjS4el1FDDucC9rbx3xKOaqY7kS6YGyP2VvFRhMlECRSJsqWoiMU33OAdjEQYWFJC3rc7WtV0mj6dHlO8eb7tCRerBFMmrPvRj1h15pmesZwNGxg4ejROzY77kHtMmULnt9/2PG5b794sHGfnYjNj+aWXsv773/eMtZ03j763easP9Zs0iYL53k3YGwYPZsVFF6U8xngsKi5mW+/enrHd3nmH7s8+u/1jp7aWojFjyF3vzZmuOuss1h59dDrCzFr5+Sbh0a6dtzLlo4/2ZMaMHfsPqqryKCnxnzy58cZFFBVl5oCjl7MEU3bTTnhMBnfgjg/dIcAk6zE1wIj6hEWGOe/jf31SgCkxFnVDxh2BKYkZbTVp71sSi/MQ+F6f1G/8cKO/iGKVGW2ihJeISKt1NqZUcsNbvLtXelrzbsKUOYzXudbc4MoLwbrVP9dfMSWrazG9sDZgTgz+D7gbU2IxGb+0Yjvauj4EeBD4AlOy+htgRf379mObqwBT5cH+XB8Qx9x+9XNfxft5Wg9sxfQovQP4QawFGjHAisfehdYFuB6zMWI9sAZYBmzCvwFTRGSXoISJpN1V372Kg7sc7Bn7av1X3PPZPdvfv/czb0nsHCeHiYMnsluet9xNBsUuXxHGbM0OMxx/mac15HIeYWppDcJsrO9n4i9fEeaI7e+DXcriv3Ty7eDMnHF8DVxqjTrAE1TSH3DYxhNAf+sxfybM5HSEKE375he/4NuTTvKM5VVVMaC8HCIRz/vRFo0ezdYBA9IYaeOWXHstmw480DPW/tNP6f3gg773G7i5ucyvrKSuQyY20wUIhVgwfjw1u3vzpLu/+CJdX3nFvP/SS3R9+WXP9drCwsCSXplS17FjYEmtPvfcQ/tPPvG932Dzfvux5Oqr0xZnNuvXbytjxy7yjEUiUFIygG++ySMSgXHjzPvRjj++ipNP/pbWw3kFuMsaNCUicfPBrX/fVy5yNDjvpSPCOE0CXrPGokqLurHLjOJkpsxosMvBdwI2qrSoeyLm5k+0jcBwcOzXRCIiO4uhmJ/jDW8j45z3C2veJEzZ426NTaqXhzl1GD23kT5e2xVgSiXPrZ//84DnKwC+i0kU/BP4N/EngRqcZ8V2Yv347sBzwIeY3xn7YE63NMirf/6WUgi8jkn+RMfTGfi0kXndMZswv6qfewLm8xS9AaANsC/md9x0TJnPfRKIbW8rpoqoa78C5mH6nR2J/0RLJk64iIikXOu4oyFZJcfJYcLgCb7kx9QFU/nr4r9y46wb2Rbxlne54jtX+JIsGRemihDngS/5cS9hhoGvgbiLw3mU+JIsmVVKrPIVzxDmbPw7LTcCZzDKl2TJrDB/Al/yo5BaphDmJswfAtHm40+ySIYtKi5ma39vXqvT9On0ePJJBhYXe06bAHxzyim+JEumxUp+7DFlCoWvvEJRcbHntAnAkpEjfUmWTKspLGRBRYWvaXu/SZPo/Oab9L3VatHQ0Ldkd/swWmZt3m8/llzj7efs1NYysKSEri+/7DltAlDXoQPzJkzAzY/VBkla2k9/6k9+VFXlUVY2gEcf7cUHH3irXQ4YsNXXNL6VKAY+sMYOBW7BvCYosq79DbgzDXElwIkA54Ovx9oIcK8A/oT/5sgt4NhJlgxzNmJ2Wm+zLkwE93TgD/j7lvwanMyWGRURaZ5/Wh8fi/9nXZCg0xsh4Jg45g7F+3thA+CvqevVGZOcnwhWSevG/QjTN+zcph7YhF6YxEJTdXBbqrTFAEzcP4oaq8NUexiN/4Rqg0HAx8A1+DdcNOZnmJLVRyYaqOVWzCaJzo08RvcURWSXpB9ukhF7FOxBxSEVONZrkPKPy1m8ydu89fDuh3P+nuenM7z4lfIOUGaNtgX+jP+Gwu2U8TKtUZig8hV968fsnxNXEfaV8WodChkFvvJaP8K8GI9WQ4hzCLMWaVUi7dox79ZbfeW1ek+eTMfZ3v/arUVFLL6xdVZOCSyv5boMLC319S1Zd8QRrDorw72ZYlg/dCjLrfJaoc2b2fPGG339TJZffDHrhw5NZ3hxW3XWWaw9xvs3f5ulSxlQVubrZ7KouJhtffqkMzwhuLzWBx904pFHvP1M8vMjTJgwn3btMtm3JBanBjgDsI++XAucZo0tAS7KbN+SWJxVmGSDXV4rqG/JB/hfB7USzmzgt9ZgHmZHsZ3ZfQScP6YlLBGR1Hkb72a+XpiTB41pLDHykzie88fWx//G3w8rWnvgLYJv5n8OPACUADcDz+OvhJCHSXpfEkdsQfKAFzGnKhpswnzunsOUBvsP5vRkSyRMBgPvYU7KNNgMDMOUAovl6PqYeljjW4E3MSc+xmBKaT4BLLce1wWTlEq2qeCvAateMnMwn59pmDLja2i5pJKISKuihIlkzA+7/5Czi85u9DGF+YWUHVzmaxTfygSVr7B9iHnh15oFla+wPUGYP6QjmKSMrG/gThMN3B1uopTWVAJFomzZc0+WXG9XSvGK5Oczr7LS1yi+NVnz4x+z+owzGn1M9R57sKC83NsovpVZdtllbGgiEbLxkENY/iu7AmErUt/AfVsTDdxXn346VSeckKagJFq8Ddx/+9vF7LPP5jRFlQxnMaa/R2OJkFrgLHDsRvGtiPM23pIcQdYAZ9Ynilop535MH7bGfIq/XruIyM5oPebvzmh2QsN2MP4kcrxzgx7zZuCjdrgdf4/PRZhSWfsCV2OSJSWYzQY9gYfx/l51gPtoOhkU5HxM3xIwmxfOx/z7jwaGA6cAhwB7YhIEzXES8C+8SY/VmBM9dj/UaD0xZTyjj6vXAhMwmxp/jElmTATKgYsxPU6uxptgKsD8DkzkFA+YEl+3179fh/n898d8rZyC+Xv7SExCrjzBtUVEdgqt+i607Pqu2fcaDupib1Y0Qk6IykGVdG3TNc1RJShMhHzOw1++osFacjiTMNUxrrcO4Yba3TFLbX1JW36TxoiSE2Yu/t4x0V6mjLvTFY4kZ/WwYVSdeGLM64uLi9myTyKleTNj8XXXsfm73w285ubkMH/CBGp3azW9mYI1lNrqGvyzuLZTJ+aPH4+bkxN4vbWo69iR+QH9TBps2Wsvllyne6aZVFS0hRtuWBzz+k9+soZhw1pxjmE752+YGzmxlILzf+mKphkqgTdiXKvv5ea0ytpolisx9deDbML0LWnNWTgRkUTYCYumTonYCY/ohEsRMLCRue2Bw6wxuyxYtCOBy6yxBcDhwN9jzFmH2dg3xhpvi78EdjwaXtB+gjn9MQVzasO2AJNQSdavMCdZopMeczH/Vrt8p+33mN4lDTYDxwFjMU3pg9RiTucch/ffsyf+05ZNycNUy6jBnDi9HJPUsm0FZia4tojITkEJE8moXCeX0/rbVSqMU/ueytDdW2d5F58xrCb2DsaxjGN+OsNJWpg5mPqqQS7hJjakM5xmeAEIuuu2jXwuovGdv9JKrBo+PHB8w5AhfHPKKWmOJjlufj6rhw0LvLZ6+HA2HtzKejPFUFNYyNpjg8pbw9Jrr6W6h10toHXatP/+bDrggMBrC0pLfaXgJP1OOKGKLl3s1mDmBMrYsTvDvfnt7sWU87D9F9PTZCfgRDA3X4JMBefFdEaTPGct5uZTkJvB+Syd0YiIpJidsDgK058yluiEySbMKYZY121H4O2tsZrGT2Vch7eEUx3mFMnSRuY0mAT8xRo7HH/CJh4bMf0tVyUxtykOMB7T+yP68/4BJt65Tcz/ISbpEe1izEmVeLyLv5TWFZgEU6IqMeW3RESyjhImklFV1VXc+797A6/9Y/k/WLY51qGNVqaCQzHN2IJcSZh26QwnaWEuJvYupJvYeWqU3oI5rmxrQzVXpTsYSVyoupr+E+3WM0aH//yH9nOae0I+PfJXrqT3A8H3Gwv//nfyVq9Oc0TJ6TB7Nrv/+c+B17r/8Y+Ettl9lVunbs89R4ePPgq81mPKlDRHI0HuuKMva9b47+ts2RLi+ee7tVFrIgAAIABJREFUZSCiZLi5wJMEv87eH/h5WsNJmtsFuCfGxZPBDT4+1+q4B2BewwS5FNxWfsxPRCQh7+GtGLAbO0pQ2fLxNiL/N/APvD1IGkuY2NfeIvbGtD7AydbYE/j7TzZmFN4eLWBOESbqLkjJhsZ8zO9/uxT3i5gyXPG88LfrEr+NKc+ViIfxbh7cHUi05uwy/H1ARUSyhhImkjERN0LJ7BK+3Wb3RjXW16xnzOwx1Lr+naatSpjORJiKd3dNtP1hJygBFWYfGo/z55RzdbrCSVo5P4NGS4eNIxxXA0PJoL633ELbL78MvObU1lI0Zgy56xtvVZNpTl0dA8eMIXfdusDruWvWMHDsWJxIa2xevUPu+vUMLC2NGWfbr76i973Bie/WpO3cufS5O/aPuC5vvMHuf7E3Lko6/eMfXXj++Vhl1GHy5F58/HGHmNdbkXLMrtsgDvAouL3TGE8SXAdzI6t/jAe0B6aBm8yO1TRy6+OMuXGliORKuoiItFZb8VcMiJX0+D7m53mDf2JOX8yIGjuW2Jvm7HUbK8d1LGDXb32kkccHWYC/d6h9GqMpLvBYgnPisRvwMqYnSrTJmFM08ZR+bIvpexLt4SRiqQGet8ZivS6JZQrexJmISFZRwkQy5tGvHmXGNzMafcx/1/6Xh79I5jVCWj1G47VdAX5FOeekI5ikhCnA3FDo2OjjXG4jzKC0xJSMMH1w+T2Nn4QJAU8RZueoIZSFurzxBru/2Hill/wVK+hXWZmmiJLTa/JkOnz8caOP6Th7Nj0eS8XfbC3EdekfDpO/YkWjD+s+dSqd33orTUElLrRlC0XFxU2ehOl7220xE3WSWkuWtKGyMta9eaOuzmHMmIGsW9dYZZFMc48h9mmGBt2AZ8BtzY1/rsOUK2nMgexoCttaPUDTTYFPB9euqS8isjOzExexEiaxEh7/iBrrjvl5b+uKv3l7YwkTu3TWMvwN6uNh727pQdN/i0ebD7R0jc8+mNM50ZvyXKAYuApTeiweQzEN16PXeCXJmN63Pk60dFnrfWEvIpIGSphIRsyums2jX3o39LXNacudh95J+9z2nvHff/173l9t/75vJcq5BrAbFCwCzsE+juzyEOP5TpoiS9R9gN1M4W1MY7lobYCphOmUlqgSESYXeJYdjfwa3IvZIRNtD+BpwvoZ2Nq0WbyY/nYiJBRi3sSJVPfq5Rnu8uabdHvuuTRGF79O06f7SjxF2rXj69tuI1JQ4Bnv9bvf0XFG48njTOkxZQqd//1vz9i2vn2ZX1kJjjcvOaCigjbLWmcZxX4TJ1KwYIFnbP3hh7P817/2jIWqqykqLiZns/o/p1N1tcPo0UVs3OjNH1x44QqOOWatZ2zlynzC4QG4rbITlWt+t/h30P4KsLOnRwLj0hFV4txD8Zfh2AacCtjHgq8E96y0hJUwdwRwgTW4EhiOv6TL3eDaN/5ERHZWduLicIJP2kUnTFaz43dVPAmXY/DeT1oIfN1ITPbfmsE1UpsWVMIrkZ/fje9mStyBmDJoB0WNVQPnknjPsh9YHy/DNL1Phr3bKdHNgi39eRIR2anoZqGkXdW2KsbOHkvE6oVafGAxR+5xJGMP8t6jj7gRSv9TyuqtrazWf5iDcLnVGq0hxAjCPIN/12UH6phWf5qj9QgzHLjUGl0FnE2YicBfrWt7Ab9LR2gJGo9pkhdtDman75XA59a1Y4Eb0xCXxMlpuFm9aZNnfPlFF7HmuOOYN2ECbq53Z3nfu+6i3RdfpDPMJuVVVTGgvBysElYLx4xh7THHsPh6qzRxJMLAkhLyvg0uT5gp7T/9lF4PPugZc/PzmTdpElUnnMCq4cM913I2bGDg6NE4Na3r9P7uL71E11e8m/NqCgtZUFbGsksvZf3QoZ5rBYsW0ef21r5pftdyzz19+N//vPdxDjhgE5dfvozS0gX06uU9GfTOO7sxbVr3dIYYB9ecXoSe1oXfgfMo5ib9BuvaOHBbWYlItzMElhm9ob7J+wX469NPBjeR3b1p4O6Nv9RLBDgXnOcwZdOi1Z+0dRs/aSsisnOYDUTvOGiD/++kDpiSXA3eZMfP9w8wDeAbBP2uSqQcF/g3tTWWXGnMV3Gs3ZiWvKmwJ/AO5oRJg7WYfiHPJLGe/RqiN+b/JJk3+4RIIp8jgG8SfLyIyC5FCRNJq1jJj5P7nszP+vwMgON7Hc8pfU/xXI+VZMmYMB0wJazs5EcxpbxX//4YYLp1/SAS32mSOuHA5EcEOI8wywCXfC4BllqPGU7Yl2TJnHJ+ij/5sZEchhNmK2E2EmI43gaIAOOp8P3xIBkSlPzYeMgh208BbDrgAJZd5q2aEivJkjExkh+rTzuNqhNMr8VvfvlLqk7ylieOlWTJlFjJj8XXXcfm75iDckt+8xs2f9fb8zkoyZJJBfPm0fdWK68dCjG/spKarl0hFGJBw/tRgpIskhpByY9OneqYMGEeubkuHTvWMXHifPLyvPfo77mnD59/HqstRUaMw39D6VPgWvOu8+WO97erT7K4ralE5GT8pU3+Btxv3nVext8Ivj7J4sbq5ZZmbqwyo+PBaSgzMwF4w7oelGQREdkZ1QH/ssbs31FHAnlRH0cnPKoxiYAGP7IeC4knTDpbHyfbjHAT/lOCXRKYb29eaI6emN4l0a4j+XJWhc0Lp1GJbAjYjP9zLCKSVZQwkbR6cu6TvvJa/dr344YDbvCM3XDADRR1LPKMza6azeNfPZ7yGOP0EPjKa71CmLu2fxSmllxG4C9fMZJyfpni+Jp2b315LXzltSYR5vXtH41hNXA2/tqr91HhO1qdfjezBy5PYv88c7iccey4+17KJzh4v9AglwjPMiHhHTfSwoLKa9V16sT8igrcnB3VbVZccAHrf+A9rd5m8WL633xzWuJsSlB5rS177smSUaM8YwuLi9na39uvodP06ezx1FMpjzEeQeW11hx7LKvPOGP7xw2nTerae8so9pgyhd2sMl6ZEKqupqikhNDWrZ7xZb/6FRuiTpXUFBaaEmMh74+QoDJe0rKCyms5DvWnSqq3j+2//yauuML79Vhd7VBcXMSmTa2hDYgbVF5rK3A2OFH13ZzHCS4R+Uz9CZUMc68C7PJai4ELwYnOWN2Ivzb6oZgkRGtwN/7yLP/GnESt59SfNmG59bgR4NoNe0VEdkZNldU6tonHR3/cEe9plH6YJHMDF3NCpTH2RsPGG8vF5gbMbZvA/Hj7icSjCn9j9HswCaZktJay161jB5eISAa1gj/OJFv8d+1/eeRL78a9/FA+kwZPol2Od5do25y2TBo8iYIc7+uqR758hA+/SaY3XAsK82vwNXBfQlCZipKGGw2+fiaPE2ZAqkKMSxV3gK+B+wf0JOx7bJh/40TfaACggAjPEA6sh5seYULU8BT+mqy/o4ynfY8v4wFMn5NofahuslG8pFBgA3fHYUFZGdU9rZPpoRDzKyqo6dbNM9zl9dfp+tJLKY60cUEN3CNt2zJv0iQibdp4x9u1M+P53g3ZvR94gA5z5qQ81sZ0f/ZZXwP36h49WFRS4nvstj59WGiPuy4Dxo8nb9WqVIbZpL633OJr4L5h0CBWXHKJ77EbDj2UFed775HG2yheklNX5zB6tL+B+1lnreLoo9f6Hn/eeSs48khvGe94GsWnnlvfwN3Xt+RKcIK+ma/AXyLyGDJeItI9ELjNGqwFRoBjbfxwajCvg+y66qPAbapRfIq5ZwB2A/f6jR+OdZPMMeVH/TfPJoPbVKN4EZHWzk6AHIL3BEN0AmU+MK+J+dGPt5Mtn+HvmWGzf2d0aOLxseTi78fif+GQHp8Bp+NN4HQCXiW4jFlT7M/RTOC4Fno7Pol4RESylhImkhbra9YzetZoal3vyc7fHvBb9um0T+Ccog5FjNrPuys74kYo+08Za6sz9Jqogv0h6hSJUQdcQDhGnc8wfwMesEZN+Yqwr0Z4epRzMqavR7Q1wAgu8+2SMVzGA/+wRvfDNFXPlFIaLYES6ArMHwXRfkY5I1syMImPU1tL0Zgx5K73nspfec45rD3qqMA5tV26MP/mm3HtEwG33UbBPPtvvfTIrapi4NixOFZJrUU33cTWgcGl/bfsvTdLR3q/7Jy6OgaOHk3uumT7OzZP26++ove93m9pNzeXeRMmUNspeNPbmuOO45tTT/WM5a5ZQ1FJie/zkS5d3niD3V980TMW6+umwbIrrmDjwd5Dc23nzqXPPXb1IWkJDzzQmzlzvPdK9t13M1dfvSTw8Y4D48YtoHt376+oN97owgsv7J6yOBvnOsBjmBrj0aaC80TwHGcTxCgRiZuhEpFuQ5lRe4fuWHDs0qL1nHmYZvaeQeAJcDOUxXL3xF9m1AUuBccuLVrP+RcwyRpsj+lnksiOZRGR1uZ/mKbhDUKYBD1AN7xNyoPKaX2Mt4/Fj2O8H2u+zf4DPtkT/oX4N7qtSXKtlvAScAqmjFWD9pg+oD9LcC37fkIB5u/vlniL5/9IRETqKWEiKee6LuX/KWf5Fm/Vg5/0/AnD+g1rdO6w/sM4sfeJnrFVW1dR+lEpruvGmJUit9GeCNOwd7Q4lBFu4ghyIb/FNN+LNhSoaMkQ4xKmX30Jq+gXmi5wMWEWNDIvQh7n4t89dAnlnNfSYTapgqMAe8u7uREV9rxg9QqzlhBnYmrz7uByG2EOa+kwpXG977uP9taJik377cfSq65qdF7QSYHtJwKsEkwpF4kwsLSUvNXe3kxVxx/Ptz//eaNTV40YwdpjjvGM5a9cyYBwGNL8My60ebP5/FV7vzWWXn01mw46KMYsY/GNN7JlH2/yu8Ps2fR89NEWj7MpbRYvpr99YinGyaRobk4O8ydOpHY3bynqbtOmUfjaa6kINWtNn74bU6bs4Rlr1y7CzTfPJz8/9td9ly61VFbOIxTyPubWW/vy5ZcZubd9I3CyNTYX+HXj05xPIKBEJDwLbiZKRE4GvmuN/R24vfFpznPAw9ZgF2AKuLkBE1LIzQOexl9L/jZwmjp+WIa/lMwBwJ0tFJyISKbYP9saEh3H4L0XZG+KA1OWKfrI8fcxiQCH5BImduL6gDjmBDkwYCx4t0X6vA6chLc/SgHwPHBaAuvYn6M9gTZBDxQRkdRSwkRS7pn5z/D2yrc9Y33a9aHkYH95lyCjDxxN//bezYrTV09nyjy7DHiKbeIBzImKaG+xr29not9ItgFn4m9ud2P9aY/0eJg8TEkqu6Hc3YR5ocn5Y1mJw4XYdU1dJhP23WxJnQl0IxJQAsXhGsJ81uT8Uj4ExlqjecBTTPLdbJEU2e3dd9njmWc8Y3UdOzJ/0iTcPLuvpJ/diwKg7bx59L3jjhaNsyk9nnySTu97y/lv69cvsIRVkAWlpWzr1csztts779B92rQWizEe/SdOpGDhQs/YusMPZ+U5dgVCv0h+PvMqK4kUeMso9nz0UTpZPV1Syamupmj0aHI2bfKMB/W+CVLdvTsLysvNcYYo/SZN8vV0keSsWpVHaekAXz5wzJiF9OvXdLJz0KCNXHqpdwNGdXWI4uIiNm9OZz8TN2jTwzZgODhxNLJ1HgD+aA32AX5ff3IlTdxLwLfpYSVwUX2fj6ZcC/zHGvsRJgmRTrfjra8PMAN/b5kAjjkp7N/Zezm4Z7dEcCIiGRKrrFZ0wsMldpPy6Pn5mEbx+2KanTeoBbx/7Af7wPr4IBLrPdLAfkFXhyldlWlvY8peRZ+kycf87d30i+kda0Rry45TQSIikkZKmEhKfbbuM+7//H7PWK6Ty/hDxtMhN76ype1y2zFp8CTyQ97qVQ98/gBz1qSp1n+YEZg/pqOtIo9zGB5n47gwcwkqX+HyGGF6BU1pccuZiP9F5iygOO41yngNf51zU87jzqRe9CbKoZrHwfc5m0oZMUqgBAhzB+YIdbQ92eor5yEpkL9qFQPKynynKBYVF/uSBzGFQsyvrKSm0Jv/2/0vf6Hw1VdbKtRGtf/kE3o94u3NFGloht4uvvY+dR07Mn/iRF+SqM8999Duc7vVQWp0e/553+espnt3FlRU+JIHsWwtKmLxjVYbhkiEASUl5H37bfCkFtb37rt9n7NN++/PssvslgaxrTviCFaNGOEZy9mwgYHFxTg1wRULJT6RCJSVDWTtWu/hg2HDVnPCCVVxr3PppcsZOtSbk1i0qIDbb+/TInE2ze0CTAVfWc1R4HyUwEJXElQiknSViHT3x19WMwKcA05TtejrOVsxJcY2WBfGgHtccyOMj/tz4BprcC2m/0p1wIQAzhLgfOyec/AwuMG1Y0VEWj/7hMk+mIbt0T1I5gCxGs8FJVzs0yWz8PfeCPKe9XE7TCmrRNmJ7P/i/x2UKe9jPrfRCfhc4A+Av4me30f4y4td2CKRiYhIQpQwkZTZULOB4pnF1ES8N5hG7juSA7sEnaSNbe9Oe3PNvt6/hevcOkbPGs36mjg2cjbHePYGHrFGIzicy1iWB02JKcw0TL3zaKZh7DRfw9iWVc6JwChrdCNwNmHivKGwXQnwrjV2IOu5Ndnw4lZOMWDXOYqjBIqPC1wELLLGzyCc8FqSAKeujoFjxpC71lvKePUZZ1D1058mtFZNYSELw2HfTf2g0xItLWf9eorGjMGp9fZmWnL99WzeJ7H7a5v2359ll1/uGYt1WqKltf36a/rcaVWeCYWYX15ObefOCa31zSmn8O1JJ3nG8qqqGFhSYu6Wp1CXN9+km3Uqp65TJ+ZNnIibm1h1oCW/+Q2bDvBWimj/2Wf0njy52XFms4cf7sWHH3b0jO255xZGjUqskkYoBJWVC+ja1fv64qWXdueVV1Jd0cp1gMeBAdaFP4OT4BeIsxYCSkTCbeCmuESkW4BpVm9ndivASbDOufMV/iRPCHgK3J4BE1qQ2xd8ZUYBLgHHTkY1wXkVf5+6DsDT4Gam55yISPMsAr6yxi4G9or6uLGf+XOB6BfUQQmTeH9nvI05wRhtFIndkzoFc8Il2tQE5qfDR8DReMtYhzA9tq5uYm4d8Htr7AxgUEsFJyIi8VHCRFLmiblP4DgOvdv13v52Yu8TOWvgWUmtN2LACE7qc5JnvdxQLo9/9XgLRx5lGjnUcSuwGpi3/c0hTBlvJLnqSODfnvWgL59xUUuEHChMZ1zCmJ2s0c97CWG+TGK9Wszuns+s9U6igh+1UNRBz/tdXC60nnMuJsmReOYsTBWmFMk8620klfRtoajFsvtf/kLe6tVs6917+9uGIUNYct11Sa237vDDWX7JJZ71arp0odfkySm9Sd/rkUdwQyHP8357yimsPi2RUsU7rDj/fNYcd5xnPSIRevze/rup5Th1dfS+7z5qunb1PO/Sq69mw6GHJrXmouJiNh50kGe9/GXL6Pr3v7dw9DvkrltHj8cf9zzntt69WVBWRnW8J5aiuLm5zK+sZOuAAZ71Or/1Fu0//TQF/4Jd35dftuP11wvp3Xvb9rd+/bYyadI8CgoS/z4tLKwhHF7gWa93721MmbIH337bdEm/ZjgdU0Yk+nfGh8ClyS3nfIjphRK93mKgIsU36W/AJAOin/cFoLKxSbE5TwIPWuttBMLNDTQ21wEmYnY2Rz/vbeA8n+Sio4HXrPUKgcYba4mItF52QsN+wR3UvyTW/INIPmGyDXwn+YcCV8Q5vwv+pPZWIP0N85r2KaZ82eKoMQe4D38PM9utmH9XgxDwJ2D3ZsTT0HtGRETi5MycOTPurrKO49w6ePDgm1IZkKRNCTAe86Il6d30M2fO/D7m6GlrNHfIkCF7ZzoIEUsR8DWmQX18denSazhmp9bbmN1RSfn444/b19TUbGypoER2Ai8PGTLEPv2WqFpMb6beQDqbpnQBGmpi5QNJ1x778MMPr3Yc574Wiarl/XHIkCHqSSGtzavACZiyK6nLkItItjodeC7GtWqgKybBHcvZwNMxrm3FvIZougmZ0R1TQqtb1FgtcC6NnxTpCvwVf2npW4Gm7k89D/wywTmx3FA/v8H/QaObBQdgEkpF1ngYKG9k3hjgZmvsa8zfabPjiLNBD0z5zyuBPSBmKfHjMI3rG2wEOsZ4rIjITmnWrFm3uK57Y9OPNHTCRJolEom05huiraWWqUjWOfjggzfhP3Yvsiubm+kARERERCz/wvSnCvIBjSdLwPRBibXJ9l3iT5aA6ZViN5bLxTRGfxqTEIk+CdEVuByTZLGTJXOA0gSeOxMWYE6a2E0Jw8CkRuZNxCR6ou2JOdH6J+BkTKLK1hE4AnOK6G1gKTAO83kUEZEEKGEizbJp06avafpFVqZ8nOkARLLctKYfIrJriEQi+noXERGR1uYbYv9dHE85rRWYElPJzrf9BXMT33Y2MB1zCn8esBwT+4OYkxLR5gOnYcp8tXZLMaf251jjNwH3ElwqywXOx3yuooUw/+6XMCeDv8Vs2JkPrAXWA+8Ad2ISNbrfJyKSJP0AlWY55phjtgJTMh1HADcUCtmN2kUkjfLy8ioxfySI7NIcx5kydOjQ6ZmOQ0RERCRArMRGvAmPWI97M4lYwPTLugzYEnCtLTAQf5KkwQzgh+xcJ3tXAscCM63xa4BHCL4vtwmTHBlD7FM8hZiTJwOA3Rp5/ipinxISEZEASphIs+Xn548Fvsh0HJY7Bw0a9F6mgxDJZgcffPAq4CfA/zIdi0gKPbl+/fqke4GJiIiIpFhQYmMDpiRXPIISJuvwJwAS8QjwHczmy3hOiszD9Hr6Aeb0yc7mW8zfRe9a45di+lflBsxxMeW5ijAN79cm8HzfYPrCDAN6Erssm4iIBAj6oSySkIMOOmjNzJkzj3Ac5yHXdYcRfKw0XdY5jhMeNGjQPRmMQUTqDRky5POZM2ce7DjOsEgkcqzjOEH1dkV2Ko7j1LmuuzAUCv1p0KBBzblZICIiIpJqr2FOI0SrA2rinP9KjPmxmojHazGm9NSVmGTC9zHNybsBmzE9TxZi4v8kyec4H8iL+jiRniu2+4BHoz6uTXD+OuAYoEOC85YDozBN5wdhSnz1wfQm6Yopkb4BWIbpl/JJ/Vu8SZJ/4f3/1WkUEcl6SphIixgyZMg3wOmzZ8/uX1dX94NQKNQpzSG4kUhkieM4bw8ePHhzmp9bRBoxZMiQGswOp6mZjkVEREREJMtEgDXNmF/XzPlN2Qi8UP+WirVbylaal3ABk6RK9nNZh2n8/mEzY7A1JyYRkV2SEibSogYNGrQQswtERERERERERERERGSnoR4mIiIiIiIiIiIiIiKS9XTCRFIrTCWwj2fM4Q3K+F0Saw0AbsHbI8UFbiLMgqRjbMq9tKGKBwC7zNijhHk94fXCHAlcbY1upj1XcQObkowynuftBdyJP1FaSpjPE16vnPNwOdkaXUSYG0hl3dMKvk+E663RbRRwNcWsS3i9MCXAQdbo/xHm3mRDlKa5cBVwlDX8XwcqklirE3A/UGBdusuB95IMMZ7ndTA/kwZYl152TPPGRNfbG7jZGo4Av3VgSVJBxve87YAHgPbWpcmOqWmc6Ho/Bi6zhjcAVznNL2PQ2PP2A27D30er2DGNQhNd7xLgp9bwXAfGJBli1vvoow5MndrdM1ZQEOGmmxbRtm3ivUgffLAXCxd6v+2HDt3AsGGrmxVn09xzgVOswUXADeAk+PvPbYP5+bWbdeFxcP6ebIRxPvcY4HvW4LvgJNEHzu0B3I3/NUYYnM+SiS7O580F7gV2ty48Dc6LSaw3BLjRGqwGrgFH5UpERERERLKAEiaSWiGmEuEDoO32MZdfUsFnlPJu3Os8TB7LeQb4gXXlnpQmSwBGso1yXsNlmnXlJ1RyCCUJlCCbQDeq+SPQy7pySUqTJQBhlhHma/w3+/blToYyii0JrHUQLg8T/f8KtYQ4mlQ3iStlBmHygFM941spAM5IaK0ww4Hx1mgV8NtmRCjx+RMwFugZNXaGC/MdmJLgWpOBc6yxV4H3mxFfkxxwXXgO+D8gP+rSqS584STw/C60AZ7FNHKMdksqkyUADmx24XXgGevSUS58zzGNJuPimkadTwE9rEvnpzJZAuDAItd8rkZZlwa68EPH3PSMiwtDMV9X0f+v24AfNj/S7HXwwRt57LGevP++d/9BdbXDhAnzE1rrhRd257HHenrGCgtruOGGxc2OM56nB0qA71jjy4E7ElzrVuBSa+xD4M3kQkvINOAmvBtCTgP3c3Bei38ZNwT8ATjOuvBkapMlAE4tuH8F/oY3WXOiSX44X8S/lrsbptdWkXVhlJIlIiIiIiLZQyW5JLVK+QTHdxoglwjPEvbtBoxtOZPwJ0tmUchNzQ0xLmU8BzxkjXahlmd5mLy41ggTopop+JMlUwnzeAtE2bT9KMV/E+YA1nNX3GuE6YC5ydLWujI2oSRY8lzacDH4EmWnU84Vca8SZi/wnXRygYsIs6hZEUqTHFiJSXLUWZcedGHfeNdxzUkGO1myFHODPrXJO8AxNzZHW8N5wLMuFCaw1J34kyUzgHHNCC9uDvwR/6mY7sDTLuTEs4ZrXlM8jT9Z8mgSSbBkFQPTrbEhmJNAcXGhMyZ5lW9dusGBWc0LL7uFQlBRMZ9u3Wo846+/Xsjf/tY17nXmzWvL7bf39a1dWTmfrl1rYsxqSc5GYDj+JOBEcA+Pfx3358A11uBa4Exw4k7wJc+ZC/zKGgwBU8C1X6s0pgR/suRLYGQzgkuA8ypwuzVY/1rFtV+rNOZB/MmSVzAnZ0REREREJEsoYSKpV8aD+Hcu98HcnLNLp/iFOQm4zhrdAJzNSLa1RIhxKeRa4CNr9DCWE45zhWICyrsAv25mZPEbTh25nA98Y125jHLfTedYHsK/qzboZkXqjGYNcCbgvTPmchdh301nv3tpg9lFapdZu40wL7VQlNIEB94CJlnD7YFprj8h5+PCAeBL9tVhkiX213gq3YXZcR6tP/CJqaiJAAAgAElEQVRwPJNdOB240hpeA5zp2F/jqXUVYO8GPwZ/QiiWMKYcV7RPgd80L6z41X++RmBOikX7jQu/bGp+fZm1x4GB1qW/YcomSTMVFtZy883zCYW8+cxbbunHvHl2VT2/LVtCFBcXsXWr9yXspZcuY+jQDS0aa+OcOeDbtJEHPAtuHNkfty/wJP7XQZeAk9hxm2ZxpgGPWoPdgGfAjSNZ6h4FlFqDW4Hh4KTzP2Qs+DZtHIQ5wRMH9yrgLGtwCXBB4mXWRERERERkZ6aEiaRHWy7H7DaMdhJhXyLEKxwzsXI5Yd96qWWSM8OB9daVYsIc3+jcMIeBL7GyjRDDCfvWS60SluJwPvbue5eHGO9LhHiVB+7mX0EeFxEm8QL0zRFmBo5v971JhIR9iRCvqszu5hePMoJOPZkTFzG59YkV/ImVMic9pWy2qz/JEnjqyfUnQjzq+27YiRUXuNjxr5dSDmzC/IzbbF0qd+HYxua6cDT+cn9bgbMd/3op5cBi4AK8P+Mc4HHX32/G9hv8iZXFwIXpOLGULQYN2sAll6zwjMVKhNhuvdWfWBk0aAOXXroixoxUcu4FnrcG6xMhbiMbQtxczCkmO7FyLzj2eulwDfCxNXYUTf5OdOsTK75TaNeAY6+XYk4tJuHxrXXhanDtRIjFPRDT/yhaLTACnHQm30VEREREpBVQwkTS4yY2EOJs8J0ImUSFr9SWESYXUybGLt31IGHfiZX0CDMXx3cixJSvCPtKbRkT6YK5MeIt3eVwHaW+EyvpURZ4IqQDdUzjzhg7+8McgOu7iR0BzmEsK1MQZdPKuBV8J0KCSm3tEA7czW9KoITj73EgLcOpPxGC/0TI5a4/ORdtMv7SXUEnVtLCYfupJ/tr6E7Xn5wDwN2+G91Xuutux39iJS2c4BMhIUxpLrvUFgCuKd0VdNP0SgfmtHyUTXOCT4R0Bqa6/lJbALimdJf99VMLjHD8N2GlmX71q2UMHerdLxBUaiva668X8te/enMMsU6spNElgH0i5OfA1Y3MmQTYpbuCTqykiVN/IgT7RMg4cO1SW/VcB3gMf5nRaeDYJ1bSxAlKlgJMBtc+NVbPjVVmdBw46SgzKiIiIiIirYwSJpI+pcwCbrRG8+r7mQTV+q8EjrDGPqGTrydKepUxFXOTIJq5YTjNd8PQYRtPYMrzRPtTfamyTBpDUPmK9QHlK27bvpu/nXWljHB6d/NbTM8RfD1HhhP2NdGFysAySS4OFxNO725+2cGp7zkCvlNKD7n+8m+45jTH+dbwSuAcx98TJW2c4FNKbTA36YNOPd2GvzfTTEz5voxxTHkeu+dID+AJ13rdUP/xU0BP6/HPOvBE6qKMy/XA+9bYUMzvFg8XOmL6r7SxLo12/D1RpAWYniMLfD1HXnhhd155xV/RatGiNlRW9vOtEdQTJb2c+p4jvmTpHeAe5n+8exIwyhqs74ni2D1R0sj5EtMTKlpDPxP7+xvMz6mTrbGgnihp5ryMv+dIZ2AquEHJ0geB71pjfyfuUl4iIiIiIrKrUcJE0itMUPmKfthlt8KcANxgPc6UixnFllSGGKerCSpf8Zl1s7Sc3wK/sB43j4KAm/npFqaW3BjlK8IM84xsCtzN/y/2Y2IKI4xPmCpCnIvZCR7tPio4ePtHD5NHbeBu/nso+3/27jw+qup8/PjnTBICggioIAoIinvFukDdsG70Vxe6sgqoCK0iFq1RQALJTUBAcAMVjHVDAQH1a90VWyiguNu6L1XctWALbixhmfP740xg5px7MzeTzJ0Bnvfr5esl5y452W5mznOe5+GhLM9SpKH8++A0w/Qz2Vp/R8NhwE3WeXFgkIKvszvLUKYSIutJw1m4DZG/w/QtyYdMp4uB96wxv+dyKW6z538TZW+mAIl+JgMxX9dkV2j4lTVWBRxojT0JXJel6QmgVatNvtkhkyd34JNPtpXd2rjRlOtaty51T8L55/+HY4+NtqqlP/Uybq+fImA26N22DengMqOo97M5w3DUfZj5JWsDzEntZ6J/BlRY51VjmtXnwzdkFPC8NdYVJ4NM/xHzjEi2EhgMKtoyo0IIIYQQQoi8IQETkQv+5Ss8hgNwNW0wO5NTfz4Vw/CcBbzc8AguX+FxeuKcbmhnJ/MmYACjnQW83BjL5yjf8hV3MD7R9LiCwbi7+VdRxDn0yd1u/hRlLEM5PWIaE2cB17ArAF8zFbB3+75Kq9zu5hcpam3amwiczMHNdJqg4JnsTy89tS3r6VPrUB+NCZRq0+PAb9F0mIIV2Z9lemrrjncnQD1BwwkAGk7C9KBJtgET9Imy2XMgBR+BE6BWmGyZfQESfWb8mj2fK31Lsu+YY37g/PNTqzquW2cCJNXV5mXA1Knt+eCD1F/7ww9fyx//+FVk8wzhBtxSevuzNViqg8qMVoGak+3J1cFw4B1r7BS2Zr7plsB87DKjUALqtWxPLhy1CegHrLYOXAb6N+Z/9U8w37NkpswoKhcNcYQQQgghhBB5QgImInoe3xLzLV9xLZV0ZRNzcGvl30m5UyImtzw+QPmWr5jNeA7B9CZILf+guBLPKRGTW+X4l6/YwvxE35Jp1rE4ioGU5sVu/m00k4CF1uiBrKcKj7Nxd/P/AJzDCKevjsgRtbXJrtPP5E8afofpW3KEdWwpUBnB9EJTZpFuED5ZT4k+GffhNnueocx43lDwJm7poEJgnjYZZ359Sy5T5Kg3UwAFD4BTArEVcK+GI3Ezm7YA5yn351BkyUUXfUXXrqkxtg8/bMINN7TjmWda8tBDqTGG5s23MHHiCgoL8ymepTSmXOAn1oHeoC8CxuOWGX0L93csx5TJ5oV11oFK0KeBb5nRB0HdEsXswlOf4fYzUcCdoA/Dv8xoBai/RzRBIYQQQgghRJ6SgInIjTL8ylcUE2cJcJo1/jbwp0jmVVfl+Jev2MKrgN1g9GHKmR7NxOpsNKb/QrKuibFdrfGJlOfHbv4UninLhFuWqT9mYSR1N79iCB4fRDM5EZYyO/svwN3ZPxuTuZHsG+CcXPYtCaJgGW72RWNMgOcEa/xfkOPeTAEU3IrZTZ6sHfAqsI81vkC5PYLyxeWYr3Oy7piMJrvZc7kip72ZdjqxmKai4mNatEiNMT7wwJ6Ul3dMGVMKKio+pm3bfKhcZ1NrgAGYbNJkN+L2cPsR6A3KDkzkAfU27iaDGPAobpnRj3GzuPKEegy42RpsCbyMW2Z0EXB1FLMSQgghhBBC5DcJmIjc8XzLV9gLVxuIMQDP2emYP5r6lq+wP4/PacQQ8rW8i8dGoDdu+Qr781iGW7c8f3isIkZ/3AV0+/OYSTn3RzQrUUfKLMrZpVLs76EGhiQaxuerycDT1pj9efwI9FemlFW+GgrY/RXsz+Mj8qBvSZDE17c3YPdXsD+PxTh9DkQUWrfeRGXlJ8SsV6YbN6YODBiwku7d86OqpT+1HBhrDRbjvuYeDio/yoz6UneAk9lr/76YMqOm8X2+KgEns9f+PFYBg0DlXfBdCCGEEEIIET0JmIhc0hT7lq9INpwyp7l6frmStcR8y1fU2EyM/oxxmqvnFw+/8hXJVgMD8ZwyQ/mljCUoxtdyxps0z8/d/CLFaGB5LcenJAIreUuxNeuptkYLFyu3uXpeqaWfSY1NwEDlNlfPKwo+BP5QyykrgQH5mLG0szj++O8YODC4fcShh65l+PB8jpFuNRV4pJbjd4O6J6K51Mcw4N1ajo8CZTdXzzNqE6axe9DzKfGcVnnVEEcIIYQQQgiROxIwEbl1FWtQzk7MGgvwuDPS+WSqjLdxyz4YCo8yp5F1fvJ4DHdHfI3BiaBK/juECcDnPkeqKaA3lwcu/Io8ocwi/GUBh18BxkU4nYwpUzasLODwPcrdwZ2XFLwB3B5w+Crl7uDOS8qU5/tHwOFzlVvST0Rs2LCvaNnSjcs3aRJn8uSPKSrKz0TNVEoDl2IW420fApdEO59MqbW4pcRqPIXb/yxPqY8wQSw/14Gy+58JIYQQQgghdmISMBG55dEYzZUBR4/Co3mk88nUBNoDQ3yPaU7A7p+RrzxOAnoEHD0+yqnUyztcCLT3OVJMnG5RT0fUnTa/M0FBkf1x+2fkJQ3NgCsCDh+t3abDeUmbr/m5AYdP1tvJM07DKZjeJX62n2fcDmzevNasWVPojK9fH+O99+xKSnmtAv/X2e2AzhHPJUO6CBgTcPAnQKsIJ1MPujUwPODgsaDdHzghhBBCCCHETksCJiLXbgaOCDjWGbgtwrlkxqOQzdwH7B5wxhlUBC6Y5o+J7AnMBQoCzhhJBT0jnFFmKjkcuDbwuGYGHgdHNyGRoZEQ+PPWEpinoSjC+WRqBgT+vB3GdrBDW5v+C/OB3QJOOZvtYMe8hjbAHIKfceM0nB7hlITlnXeaMmNGcCx0/PiOfPVVcYQzypQ+n+AAY2NgLujtIVg6GTgu4Fg7YBboPA+W6hgmk69twAndgfLo5iOEEEIIIYTIdxIwEblTQV+CsjK26YvH+RHMpj6uBk6o9QzNRLy83r2s2Mjt1L5rX6G5A4+9o5pUnU2lKXEW4DZ0TdYMWMD1tZ4jckhDN6AyzWk/w+zgzlvaPN8GpTntDxoGRDGfepgCHJ3mnKkajopiMpnQ5vVObYumYM6ZrWGvaGYlkv3wQwGjR3di06bg9fcw5+SePhCYnuakQ4GbIphMPegzgT+nOeksYEQEk6mPq4BfpDlnDOig7FohhBBCCCHETkYCJiI3PA5E8xdrNI5ZJLVrft+Mx6HRTKyOPH6JW27nO9wMh0JgDpNoGcm86srjSuBX1ugHwGxrbE9gDgsCd2jn1lpuxd3N/yRu8/DD+T6wnrnIIW1KvNwPNLIOTcE0H082SqdfCMsJbbJH7EXTzZhnnN2EYYbO0xI9Gn4D/MkaXg3cYI0VA/M17BrJxOpuLG65wbcwmTPJ2gB3a3l9FDm/7JFTTvmWgw9elzL2zjtNmTkzXyvy6SbAA7i/BzcBq6yxC0APjGRadabbA/eQWmpPA+OBjdbJU0AfE9XM6kZ3BzxrcD0wyRqLAfeAbhPFrIQQQgghhBD5TRYERPSmUwzMw11QmIhHOSZjI1lTTAP4/CpfcTVtgLtwf48uxmMk8JA13pFqZwEi9zy6YRZBklUTox/wB+B169jJvJOHDbc9LgDsxaeVwAUU0g/4n3VsOB79IpmbCCXRB+MOoIN16AEFo4Ch1ngMuFeTX1lPemvJHeeZVaFM6Rc7oNoceDBxXd7Qpg/Q7biLpkOAEuBR65LOBDeGzxkNJwFl1vAGTGbPUOA969j/I7jRtciC+fNbs2hRi5SxvfbayLhxnzJp0gqaNt2Scuzee9uwdGnq+XliGnC4NbYEk6nRH3dDyEzQeVYiUhdinl92mdGbQZUBpdZ4I2Ae6KCSfTmiW2Kyyuz+JJeCGoMJCCXbC7gPdH5uCBFCCCGEEEJERgImInqruR440hpdxrbyOh6wyDp+GO6O5tzxiLGJObilW27FYy5mUfEC4BPr+Nl4gY1Ho+fRAhO8snfzX04Z/8RjAzEGAOus4+Pw8qjWfyWH4ZY3iaMYgMd/GMvnKM7D3dk/k/F0imaSIoRLMRkNyVaQCJQokw1wl3W8NTBXB/elyIVbgC7W2D/Ytqt5DG7WUxfgmuxOKzxtFhn9ejNNU/BXtS1w8qV1vI92A1s5ownszTRcwRvKZC31wew6TzZepyu1KBrEv//dhOnTUzNGCgs1EyeuoHnzzbRvX83YsZ+mHNcaxo/fl1Wr8qmNke6D2WSQ7BvgHFBbQC3CZMolMyUiTWZKvqgETrTG3sAErQGuAx62ju8PTtZwDmmF+Vuxr3VgAaiaeV4MvGsdPwUYneXJCSGE2H41wt0QJYQQYgckARMRrQp+j3mTmmwNhQzCYzMAHnEKORf4r3XeH6nIm1r/5cBp1thbNOfyrf/y+Bboi1u+4lq8vKj1r4A7wQkYPIjHjK3/KuNtlFOjPAbMxsuDWv8ejYkzB5/d/JTz963/Kudx3BJJLdjCfDwnYCQipk2PjMnW8CZggDJl7mr8CXjHOu/nuLuec0Kb3/kLrOFVwDkKtgAoU5rLL+tphIbfZn+WoUzEDRi8StJiotq6GMwW67ybNByR3emll5SxZNdvmq/Msw8ABW8CV1rnFALztBswEg1o3boYo0fvR3V16svRSy75ki5d1m79d48ea/jNb1JfEqxZU8jYsfsRj+dD0qb2CxgkNk6or5LGxgHPWecdDvlSIlKfgptdlQgqqkRQUWlgMPCpdV5v0Bdme4YhlQC/tsY+IiWgpdbiHyytAH1qNicnhBBiu7MXcBvmPckPwN+BrjmdkRBCiKySgImIjkcHNLdZoxrFYMZab7zH8iWKc7EzAjS3Mp6DsjvRNCp9F2fXUkAfLrfeeHu8hHJKwRQD8/FonsVZplfBCNzF2c+APzrnlnMHbj+TNsDdeDl/jtyMuzi7hEOd0m7QliuBF63Rrrhl4ESEtNllPRfzu5FspIIXkgcU1Cxy2VlP5RpyusiV6ENiP+PiwEAFXycPKvgcOB836+lODR2zNccwNJyB25vpR0zQpzp5UMFS3JJ+jTFZP7negTcS6GmNfYjPM06ZrKB51nA7YJbOtzKKO5DJk/fl009TK9Edf/x3DBiw0jl35MjPOfDA1D+xr73WjNtvb5vVOaani4EF4PxNvwbUY6lDKihYOhx0jktE6jb4Z2MNA/V+6pBaAwyCxEaXbW4E/dNszTAc7fc3vRoT9Pk+dVi9BUkbXYwCYBboPbI1QyGEENuNIkwG/PuYoHtjzBraqZj3lAtwSwkLIYTYAeR6oVPsLKoowixGtbKOXE+5U9rBKOdJTOmHZM3YwgK8HNX692hN3GdBQTGccU5pB6OcKfjX+s9d+QqPLmif3fwx+uGxOuCqYfjV+lfOzuzoePTBlAVKZna993F2vcOFbKKAAaRmLACU4DlN70V0qoADrbEnMP0AHArexvQESBYD5mgTyIucNsEev0XTSQqe8btGwWOYhfpkLTDN03OS9aTNDrq7cIMEFyn4IOCy8cDfrLFDcTO6IqOhG6a0ULJqoK+C730uAfOM+9gaOwucDDvRAB56aA+eeCL1JUHr1puorPwE5ROiatQozoQJH9O4cWobkNtvb8tLL+V0/8FUcLJGX8Ltm5OgvoCAEpHoHJWI1CZr1C0zejsoe7NEglqG+zvWGFNizO5RFxHdAlO60X5+jgT1mv816lZMoChZO0zQRIKlQgix8+qJKd14I+7rezCvlXtjMt898qwXoRBCiPqRgImIxtdcAxxnjb6MqeVfm6vwr/VvL/Znn8mkuBe3wfQ8yplVy5WaRgwBvrLG+1DhLPZnn1dTM916Uae4ijKer+W6H4n5lK/QTKAyB7X+Pd+gUxzFIDzna73NOD5COXXmTb1zT3YIRU3DRZiyTsm+AM5T7oLiVspkcsyxhvcC7spRRsANuL2ZXmBbb6YgVwD2Qp7fYn/W6UTQCTfoVKXcr/VWKpFFA/zHOjREm13okdKJoBPuommJcr/WWykCyyhO1XBsw85y57ZiRROuu659ylgsBhUVH9OihZ20sM1++63nyis/TxmLx2Hs2I7873+56GeizwYusQbXAH1BbQq+TvmXiIT5oHMRLB0HTl+ytzG7amtzNW5A+AByFyydiVtm9DHcHme2i3ADwmfiBuaFEELs+H6C2Qj0CKZHVzpNMeW63yZ/SusKIYSoJwmYiOzzOBO4zBr9lgL64jkLU/a1mymkHzhZDyOoiPgFieIq4BfW6L9p4lPCyjaGb4j51PrX3Exl5LX+bwWnrNmTlHN92ivLeBO3vnkhce5jYoS1/qcnypr5lUAp5+m015dzP27ppFaYviyFDTJHkZY2b0jsn7vNQH/l9jDycxEmRT6ZXzmprNLQC5OdkGwN0E+ZPiyBEiWu+uJmPYzUbjmpbPNwy5r5laxxKFgJDMAET5LN0HBwg8wuBL2tN1NH69CDys3mcSgTyB9rDRcBszXs1iCT3MmtX2/6lmzYkPoS9MILv6Jr1x/SXv/rX/+XM89MrWi1enURY8d2Im7/9GWVbg/MIjVAW9O35JMQN7gSq+QgOSkRqX+OCZgk24BpVm+XPrSommDp19aB80Gf20ATDElfgil3lixR+lAFBt8N9QPm+WW/Jp0M2t7sI4QQYsfUEpPd/k/cXqVh7Af8H7AIs8FTCCHEdkwCJiK7vJqyBtaOb8XFjHNKn/gby+e45SsUmjvxIqr173EsmnJrdAPQh1GkX+EBKGMJMMEabUycuXgR1fqv4ELMokCyL8CnX0wQj5sxLwaTtWejz/c5W1ZzHW4JlBdp63yPanMp8C9rrDuBZVREQ9JmN9YCoIl1qEzBs2HuobY2I2aDdWiihuPrP8v0tKlbXOUOM1i5TZF9KdNXwy/r6Q7tNizPCg0n42b8rQX6KLdfjC9l3iBOsYabAQu0+33OlvC9mYJdi9lVmMyvqbfIwJQpHVixIjXB8eijf2DwYDtBKdjo0Z/RsWPqr/3LL+/KPffYFaWyRRfiX2Z0Gqi/hruH2oQJNrglItF2w/Is0Xvi37dkOKg3wt1DrcK8rrDLYM4AfUh9ZxiOPhz32bMZ6A/K7hcTQL0CjLYGE+Vktf19FkIIseMoBP6EeT0+IvHv+jgFeBWzUSe6DYVCCCEalARMRPaYnfr3AXbjzBmUc18d7/UYMMMaNeUrTH+U7JlES8zCSOrHUVyG5yy4p1MJ/N0ai6bWv8dP0M5u/jhwHl6o3fzJhuBX69/jTxnPL6wKfg8Mt0bXAP24sPbd/Ck8NlBAH3ACXqVU0KN+kxQhzADsxbTFuItetVLwBjDKGi4E5ml3MbNBaQJ7M92gCOjNFECZ4NEd1vCemObp9mJmg9LQmoBFU0VAb6Zg44DnrLHDMX0eskrD0cA11vBmTKZPUG8mR6IU3GBMoCVZb123wIuwLFzYikcfTV07aNVqM1df/TGxWLiYPcAuu8SZPHkFxcWpKSUzZ+7N6683a5C5pjEJNyj7Ku6CexrqI/yDpXeBznKJSK0wzxy7zOgCUHfW7V5qMe7vXiIorrMcLNU1ZUbtj1MKyn4WpXMj7rO7A25GqhBCiB1DD+B1zHvxtO8bmjdvTqdOodqNFQIXA/+mYYIwQgghIiYBE5FNlcCJ1tibNM+wXE4rSvCr9f91Vmv9K6q5C9jXGn+AcmdXeXoecYoYgE+tfzwGZjjH9KZu3c1vZ7KU47Gozvfz+JaYb63/a6nkZ5lNMtTH7YB2Fi5MCRSPT+p8v3H8G+XUaI+huZeraZvhLEUa2ixG2+VaVgIDlLtLOYybgIessfbArCz3M/HrzfQKpvdSJi7BvGlLdhJuuZwGk+hbci84P+/zFLX2ZvKltu7qxt7VPVy75XIajDaZLHOAYuvQVYpaejMFSARYBuH+PE7T8NPMZrlz++yzYiZMSI0BxGJQWfkxe+wRPtZdo3Pn9Vx66ZcpY1u2KMaM6cR332VzXUKfAZRYgz8CA0BV1/1+yq9EZEtgdiKTJVtG4Zb988t2C6scNzvwJ8B1Gd4vrJm4Zf+ewmSK1ZGqCZba2YG/B22XXRRCCLH96ox5b7wQs3mxVrFYjF69erFs2TKWLFnClClTaNUq1L6smjJfbwNn1WfCQgghoiWRbpFNUyi2dhVXs57LnfI54YygGo8TKLZ2EVaHLCWVCQ9FMYOd8Vb8mPE9S1nJVDqz2WpIHCO40219NWcjm30as1c7pUDCK+NlPPak2NqVXk0GC0ahraKYzikjijij6/F5lHMXk3BLqDQNV4ZIZOQBcL7m1WFLP9kUaG36gESytTxJJTDeGlun3EBiKAo2JJqL2zuls92ZwS+QEa7UoA8Fn2sTZLabV9d9VTy8atzgFZhG7hlRsDSRpWRn3mT2N2wn16bNJh577M2UsVgMmjXLJEZq9Omzil/+0q241KRJVn9lluGW2NgEKvPXBWYXql92SvZe35hAg73xYwOo9ZndTm0GfTruxows0gqzc3eEdWBtor9KBtQa0IfiBl8z/0EVQgiRL5pieoiNxn3O+zr++OOprKzk0EO3xVUGDhzI2WefzXXXXcesWbPYvDnt2/gDgccwzeQvBd7JZPJCCCGiIwETkT1e5gtVtdxzA1EuVnnEMeWeGtaVrMX0B4iGKVXV8J+H5zSqzq5sff+vysLXRgRS9ViMr+We2fkZr/1jNvgzThHtM06RnWecItpnXLa+/4qIn3E7sOLiOMWhlibqpnnzqNex6xUYCbrnFiJ+foHKfKNB8D2rIaubJuyPp8nK102tI8MAvhBCiLykMJnD1wChGp61bduW0aNH06tXL5RyE9ZbtGjB+PHjOe+88ygvL2fx4sVhbns6pofmTEzfzCz8LRZCCNEQpCSXEEIIIYQQQgghhNjRdAOWY0rNpg2WNGnShJKSEpYvX07v3r19gyXJOnfuzJw5c5g1axb77mtX8fZVhMmM/AiTbZLVXoVCCCEyIwETIYQQQgghhBBCCLGj2Ae4B3gBU/K2VkopevbsydKlSykpKaG4jmmxPXr0YOnSpVRWVrLrrruGuWR34EbgZUzPQiGEEHlEAiZCCCGEEEIIIYQQYnu3CzAKeA9Thqv2FBHgiCOO4K9//StVVVXss88+GX/goqIihg4dytKlSxk4cCCxWKjltiOBJcCjQKeMP7gQQogGJQETIYQQQgghhBBCCLE96wm8DUwGmqU7uU2bNkyZMoXHH3+crl27Ntgkau77xBNP1OW+Z7Nt7qFSVIQQQmSPBEyEEEIIIYQQQgghxPboKGAp8AjQMd3JRUVFDBkypK6ZIHXWpUuXrZkr7dq1C3NJE0x2zLvAuYTIjhFCCJEdEjARQgghhBBCCCGEENuT3YFpwEtA9zAX1PQaGT9+fNheI/VS0xtlyZIllJSU0MNRsCoAACAASURBVLhx4zCX7YNpUv8icFxWJyiEEMKXBEyEEEIIIYQQQgghxPagCLgU+AgYARSku+CAAw5g7ty5zJo1i3333Tfb83M0adKEkpISnnvuOXr16oVSoZJHugLPYZrX75XVCQohhEhRmOsJiB1cBX8AWqWMaZ7HY2md7+XRHLgIZaWmFjCPsXxaj1nWbjrFrOES7N+XGI8wjnfrfL/x7E+cXtZonF2YwZWszXyiaVxNWzZzrjNexO2M4X91vp/HsSh+njKm+QGPmYDOdJppVXIEml9aH7cauBmPzXW+n8evUBxija6gnPszn6RIR8Pvgc7W8PsK/prBvQqAPwHF1qGnFfwrwymG+bgKuAhobh1apmB5BvdrCfzR59BsBV9mMMWwH3cXYDjuJooHFXyYwf0OAn5jDW8BblawIbNZhvq47YFzfA7dquC7DO7XHTjeGl6j4LZM5ifg3Xd34aWXUn9diovj9OmzikyqYSxa1JLPP0/9td933w2cfPK39ZlmCPoMoIs1+DmouRne7yJgN2vwWVDPZXa/0B/3XKCtNfgaqGcyuFcT4BLc58hDoD7IaHrhPm5h4uPaz/+nQL2ewf3aAQN8DlSByvYPlhBCiPROB6aD8/7NV4sWLbj88ssZPHgwBQVp4ypZ17ZtW6ZPn07//v0pKyvj7bffTneJwjSv/x1wLabHSdZeTwshhDAkYCKy7Ss0VaTW3/yW8RzFOD6u471mAAOspfgnGcuUes6xdiOoxqMJMD5lfAtDuIajGcUPoe81nWJWswBTZzXZ5KwGSwBK+RqPLtgLihs5CdNkLnyQ42rasImH0M5Ol0F1uk8m4rwP3AUcaR3ZEyit0708ugH3o2mUNFpNjBPqNUcRxgfAvZhavTU2azhFwbN1vJcHjLXG3gJuynx66SnQGv6LeTYlW6PhSEX4QG4i+HIH8Fvr0KOQ3WecgnUaWgBjrEMDNXRTsD7svTQ0BuYDR1iHvGwGSxK+AI7FDdYcA/Suy40SwZeHMKUekv0+49kJOnbcQFlZJz7+OLUcxbp1BVxwwdd1utdrr+3K6NGdiMe3vbxo1CjO3Xe/1yBzTeNtYDapG0I06HWg6hj01ZfgPqs+B26vzwRD+hS4k9SduRtA/wzUG3W81zTgD9bYUuC6eswvBLUZdByzgJRsOOgjQdVhQ4guBO4DTrQOzJRgiRBC5NxBwPXAmWFOLioqom/fvowePZpWrVqlvyBixx13HE8//TQPPvggEyZM4Jtvvkl3SVOgHBgMjMNknQghhMgSKcklsqucxzFvopO1YAvz8VIWqWvncRHujr8vMM3QsrtAb0wEFlpjB7C+jjuNV3MDbrDkRdpSVo+5hdeEizAL1cnOpILLQ9/DI8Ym5uCmBf8Fj9n1nGGYj78B6AN8bx0ZTQX/L/R9JtESs7Cb+nOouJIyXq3nLEUaCt4ESqzhQuA+DXuEvY+GU4CrrOG1QB8F6+o3y/QU3A9UWcMtgXnalAsI61LcYMlnwPkqmmdcGbDIGvsJcEMd7zMDN1iyBJiQ4bxCS3ydLgA+sQ710nBx2Pto83M4DzdYcpOC/6vXJHdyTZrEmTx5BY0bx1PGb711b15+OXwd8dWrCyktTQ2WAIwe/TkHHhg6vlcP6jPgfFJ/NxVwJ+iO4e+ju+AGRDcD/eu20J8p5fe72RiYC3qX8PfRfXCDJauBQSagkW1qOu7vZnvgbtB1aZg7HjdY4ve3SgghRHRaYoLibxAyWNK9e3eefvpppkyZkpfBkhqxWIzevXuzbNkyhg8fTqNGoZZHOmD6myzCzXYVQgjRQCRgIrKvLSOB563RrsCkUNd7/ASzmyTZFuA8PP5b7/mFm0Mckz3xlXWkHx7nh7xHL2CYNboG6MeFbKrvFEMZxQ/EOAeoThnXTMZzSs8E8YDTrLG3gcvqPb+wPD5EOaWLYmjuxWPvEHdQVHMn0NEaf4xybm6QOYq0FMwE7BI27YBZGtIucmloDczBrVs8XJFBubzMXQb80xo7FvO7kpY2GRDXWMObgH7KLDpmnTLP1HPBeaZeqP3L0zg09MXsekv2DXBO4v5Zp8wztS+w0Tp0vXaD1UEm4ZbiegMYWc/pCWD//ddTUvJ5ylg8DuXlnfj22/SJz/E4lJV14ptvUuORv/jFGn71q2heEhjqUeAWazARiNchVjx0M2ABqVl2AKXZL8WVohL4mzV2GKbcSQi6M/AXexAYnAgsRWUIOJnLZ2PKNYagT8X9HV8L9AEVRRROCCFEqkJMqdr3gVHYm9x8dOrUiaqqKubPn8/BBx+c7fk1mObNm1NaWsrixYvp2bNn2MtOwbz/uAdTaUEIIUQDkoCJyD4TDOiHu/D3ZzyndEqqqTTFb0FBUY7n7IbOLo9ViWCDvfB3Mx6H1nrtBPbF3YVudkN7zm7o7DLZE/aigNlRPdHZUZ3K42Tcsj1mQcHL/m7+FOXMx5QwSrYnMJcFaRr/eVyKW7bncxo5O4ZF9l2IeSOU7Ezgz7VdpM3fr9m49ffnKbPrKjKJUlO+WU+a2rOeNOyKCfrYbwKvUm6gOasSfVLOBeLWoVsTfUkCaTgAt7dHHBik3EBzVil4CVOqIFkxMF+7/WZSaDgDdzf5j5iMJakX3UB++9v/cuaZqS8JVq0qoqysI3H7p89y99178cILqd/G9u2rKS3NXiuzWlwBTkZiN+wSnv5uxf29egpTnzxCKg4MBOyaaENAD6r9Wl2MydS0f6+mgnqkoWYYjvoW/2DptaCPrf1a3QbzHLbfFw0DFUmNNyGEEClOxfx9rSJEMKBp06aUlJTUNeCQd5IDPgcdVOtL7xoxzKbO0EElIYQQ4UjARETD4zNUQPkKz9nlv81aZuI2dFvMIU6t6miU+ZaWMUEdD//yFVUUsZl5pNY6B7gRr+4NrhuEh3/5io3cTdDOfo/WmGwAOxhxCR7vNPQUQ7oEsJu6/px3nMXSbTzf3fybgX6MIYISKCKZSixG4y5GT9ZwXC2XjgV6WGP/xr9petYlmqO7WU9wr6bWrKcq4EBr7AncrLpIKHgSd8G2GbAg0Z/EkdS3xF40vUbB0w0/y1CmAvaCrd9O+K20yW66B/cZeJFyg3qinkaP/pSOHVN/7Zcv343Zs+1qj9u8+WZTbrst9depUSPN5MkraNo0kiQmi6rGLNJ/Zx24EvSvgq/TF+Jmbv0Hk5WRJmSUDWplYj72F3Em6Nq26F6Hm7nlF7CMiHoZt0RjETAb9G7+1+gY+JYZvRPUvQ09QyGEELXqjNks+XdClJuKxWL06tWL5cuXU1JSErakVd7r3r07CxcurEtJsTqXLRNCCFE7CZiI6JQTVL5iHlU+tf49LsDsmEi2kiIG0Cea8i4BgspX2L1ajK+ZiinPk+wVYHSDz6xu/MtXVHCJc6YXvJsfj7uzMrswtvUz+cE6Mg6P053zJ7Mbfn1L4Co8lmdljiIt5V/uqAjTB8R5l6DhJHD6/mzAZAHYPwuRUQRnPWk30Eiir0Z/a/gL4LyI+pYEKQXskkB+vRZq3AgcaY29iGlMmRNqa0kg7LSDPhqG2ucn+pbMxe2fc5syi6mige2yi+lnUlycGh+45Za9ef31Zs75339fwJgx+7F5c2o86/LLP+egg6JNcEylPsLt36GAu0B3cM/XfmVG48AAUP/JxgzDUYtxG6cnsny1XTYM0L8HhluDiSwPZWd5ROkGcDaj7A/cHnB+OW6Z0XcIXcpLCCFEA2iKKWX7JtA7zAU1TdOnT5/OnnvueBWpioqKGDhwIM8++yxDhgyhoKD2AgoJBwGPA89AmgoYQgghaiUBExGtVlwBvGaN/oyvqUwZqeQw4CbrvDiKQZQ6ZSOi5RGniIGY3aDJhuIxMGWkgrOAEdZ53wF98ZyyEdHy+JaYT/kKzXVU8rOUMUUpfrv5m+RmN38Kjw9wv8YmwONZO0Y3MBPYzzr3STyuy94ERRjK/L7bWU8dsPqZ6Jqya24A4lIF/8ruLEPxz3qydlxrOBw3k2Mz0F+5fUQipWoyrnAyrv6k4XfJA9q8qb3QOm8N0FcRUW+mAGpr02nsptM3abcxfQXQ3Rp7izSl4UT9dO68nssu+yJlbMsWxZgxnfjuu239TLSGioqOfP11aqz7tNPW0KvXN1FMNQ11P6bEVrJWmMyGpMYsuqbMqJ2R6oGKtsyovzJwyp0eDvbfSN0BtwSfKTOK+iRLcwtJJebhlDvtBfqi1CH9c0yAONkG4BxQuYzCCSHEzkJhysF+iAlg+2YzJ2vbti3Tpk3jgQce4LDDDsv2/HKuRYsWjB8/nkWLFnHyySeHvex0zPuiaUBAhqUQQojaSMBERGsE1RTQB7d8xSgqMAVHPRoTZw7ugsIEynkmglmmV8pKlG8/k5l4mPIVE2iPZhZ2eRfFMDxWRDLPdMp4GeX0JCkizpxENgZ4nIT22c0foy+jcrebP4XJcrH7VrQhuZ+JF7ib/1ykb0m+CGraOxwgETi5A9jHOmeBchfvciKpn4mT9aTNmxd0osQVbrPnMgXPZn+W6alEpgvu78YdGjphDuxPQLNn5WZ25ISCZZgdi8kaY0qM7QqgTdPMUdY5azEZS7JommW9e3/DL3+Z2s9k5cpGlJd3RCd++mbPbsOSJS1Sztlrr42UlkbZUzytP2OarybrTmqm1QzcMqP/ACZmb1p1oeKYv4l20HYY6HPM/+oi8C0zOh3UQ9meYThqDSboawdtbwSdyIbTQWVGh4Oyg95CCCEaXldMRvMs3LKIjiZNmlBSUsJzzz1H7969Ucq/ivSO6oADDmDu3LnMmjWLfffdN8wlRZhNhR8Bl+KT7S6EECKYBExE9MbxEcqnfIXmDiawD2ZBwd79u5RDrSyUXCtnMW4vDLMQ6tGczdwHThP1WyjnvkjmF1Y51wMPW6P7s4G/MHHrbv7ClKOKyyhzFoZyqynDwemlcgrvMIpK3938W4Dz8HK7m19so7aWc3Gb9mo4GrOobXdy9CuHk1MKPsDNuogBs7UpazcTsPsCLCa45FVOKJPSf6M13ALTPH1XTNDH3rV2vXKfJ7k2CVhojR0IVOmawKrPoqmCd6OYnIAxYz6jQ4fUfibPPrsb993XmrffbsqMGakx0sJCzcSJK2je3E4eyiVVEyz93jowBvQvQA/GBCOSrcJkM+SyzKhFfYmZp91LpQr0QZjnlN1f6lXcoGOOqRdxe6kUY0qMtQDuxe0vNR/UnVHMTgghdmL7YHrGvUjt/QoBUErRs2dPlixZQklJCY0bp01C2aH16NGDpUuXUllZSbNmbglTH7tjXs+/hJtNLYQQIoAETERulONXvmJPNrMMU3c+2TdA/xz3LQlSjtnBnOxwTArsCdb4v4ArophUHWkaMQT43BrvzUZexN3NP59yqqKZWh1cyVrMYvt660gFcR7H3s2vKMdzSo+IHFPg17S3GFOTfrw1Xo3JArAXKHNOwX34Zz09B1bpPvga6KfcjLV8MBrzBitZV0zZMb9mz3bGWs4ps/A7CJxyjv2B53F3Nc5S7vdOZNEuu2zh6qs/plGj1ISmm25qx5VX7s+mTam7SEeM+JIuXdZGOcWQ1IeY3kTJYpjFebfMqOlbktsyo77Uk8BUa7AZ8BRml2oyU2YUVR3FzOpoCvCkNdYZUxr2F9b4B/j0NxJCCNFgmmCC6+9hXpelTRHp0qULDz30EFVVVbRr1y7b89tuFBUVMXToUJYtW8bAgQOJxUIt6x0FLAUeBTpmc35CCLEjkICJyCW/8hWdrH9rFEPw+CqiOdWNx2YK6Y9bvsL+PH4E+iealOefMfyPGL1xy1fYn8dHNHZ2zucPj7dw+5kUAu2tscUc4jS3FfnDr2lvO+xMJ7hCuT2R8olf1pP9OxUHzlVmp3neUSbbpzemH0gy+/P4FhP0yW1vpgCJr29/3KCU/Xn8G2n2nBOHHLKOESNS+5ls2qRYtaooZezEE7+jf/+VUU6tjtQcTOnAZK0xDW2TTQT1t2jmlJGxmABvso64C1wXJxrf5yGlMQFqu3ab/XtfDfQD9WMk0xJCiJ1PT8xr4smYAHyt2rRpw5QpU3jiiSfo1q1b1ie3var5Oj3++OMcc8wxYS87mzp8L4QQYmclAROROx5B5SuSXUM5j0Y0o8yM5UuUb/mKZMPweC+qKWWkjBdRTvmKZJuIMYDRTv+Z/OJxO2Y3b5CVFDEgTzOWBKC2Ng92mvYmewy4JZIJZUgl+mBQex+M8QryedEUZRYb/fqZJBum3P4zeUXBEtwspWQbMBlL+dGbaSfUr98qTj3128DjrVtvpKLiE7aDsuWXYLKwgiwDKiKaS4bUZkwfkNrKVs4ENTeiCWVIrcYETWqr3/ZnUPlVZlQIIXYMNVkNjxAiq6GoqIghQ4awdOnSumRO7PSOOOIIHn74YaqqqthnH7s4hK/kbJ9zCZHtI4QQOxv5CyRyy+ND4MqAo8tx60/np3KexPQl8HMHHrOjnE7GNFNxS4zVuIIyXoxyOhlrwnDgS58jceAcSp3SPCLPKFiDCZr4+QQYpGpfwM8LCt7GLTFW4x/UvoCfN5QJUN0VcPgWZZpAbw8mQOBz7FJlSieKHBo79hNatnTXtgsKNJMnf8xuu+VT35IgagMwAP+NFP8F+icCEnlOfUFwxtXrwOURTqYe1DLcEmM17gcV9PpNCCFEZnYHplGHvhk1vTnGjx/PrrvumtXJ7Yhqer0sXbqUkpISiouLw1y2D6YM7QuE6CcjhBA7EwmYiFxTmLRQPxs5NP8XRAHwaAacFnB0+ynxUEAnoIvvMUU+Foz3t4FjcPsSAMSJkY911oW/3waMb6b2jK68oc3fWbtRfY31bD+fRwvglIDD288zDvYDDg04Zvc/EjnwxhvN+PZbu/oeFBRAo0bbxa9Ljd/i/zp7C/nZryhI0PNrI9vJ8wt0MfDLgIPbz2sbIYTIf0WYXlcfYcokF6S7oHPnzsyZM4dZs2ax7777Znt+O7wmTZpQUlLCc889R69evcJe1g1ThvMe/N9DCyHETkcCJiK3KhhJ8Jvxk3k3/xoIB5gBHBxwbAQVgQu/+WM6xWxhPrCb73HNzVRyRLSTysDVtEEzB/8X6IXEuY+J7B71tETdaBNIvSTgcGfgtginUx/jgNMDjp0BXBHhXOrjDty6/zVG6uDneN7Q0BhYAARtW5yhg5/jIgIrVzaivLwj2merxMaNitGj92Pt2rRrL3lAdwfKAw62AeaA3g5eg+uLgHMCDnYFro5wMvVxA3BkwLHzQZ8b4VyEEGJHdTomU/dGgt5PJmnRogWVlZUsWrSIU04J2pMjMrX33nszffp0HnjgAQ49NGivUAoFDAI+BDzM62YhhNhpbQdv1sQOy6MbOk05Go2Hx6kRzSgzHkMxLy6CKDR34qWv25pTq5kCHF3LGY2JMxePXaKaUp15xNjEvUDbWs5qz0ZmIbVa85aG9pD2e9RXw+CIppQRDT8nfVnBiRqOj2I+mdImcPW7Wk5RwB3apPXns2nAT2s53gxYoE1dZxGxLVsUY8Z04rvv3OySGl98UcyECfm++1S3AmYDwZ8InAqMjGY+mdI/Aa5Pc1IJ6F9HMZvM6V7AsDQnzQB9SBSzEUKIHdBBwOPAMwRn8W5VWFjIwIEDefbZZxk6dCiFhbX9uRT1dfzxx7Nw4UKmTZvGHnvsEeaSpphNH28CvbM6OSGEyGMSMBG54dEKuB+TtpvsMevfMeAePEL9dY9cJYdhFuGSbQaessZaAHOpcj7f/ODxG9w65asxfWSSHQpMj2ROmRkL9LDG3sZtHn4WFYyIZEaiTrR5JiwAWlmHnsQt/3KTDvHGLBc07AnMxc10sp9xhcAcDS0jmVgdabMr+1preBOw0BrbE5itQ5ReyAVtmlf/0RpehamtnexwgnsdiCyaMWNvXn+9WcrYQQetY889N6WMPfNMS/761/x8SQBaYcpZdLAO/A3YYI2NB52nwVLdDHgAN3j4uPVvBdwOul0k06ozvR9wuz0IPGGNNQXmgZbdtEIIEV5LYDLwBnBmmAtOPPFEFi5cyJQpU2jVyn6pL7IlFovRu3dvnn32WYYPH06jRo3CXNYZ857s75jXx0IIsVORgInIBYUp72IvKDyAR09gjjW+D2YBIr8yArxExgVWxoXCoxW/AV6zrjiOr6mManqhTaA9ZkEh+eurgSEU8TvgP9YVQ/AYGNX0QvM4CSizRjcA5xCjD6be+jaaqVTys4hmJ8KbCBxrjb0C/Aa3/EtTTEZAXmU96W3PuL2tQ/OUKV31kDXeEbhH59kzTpuMi/sAu2vkVcCvMU2fk51M+oyayGnYH6hyhxkC/B74n3VseCLAIiKyfHlz7r03tWT2LrvEmTTpY66+egWxWGqNrilT2vPBB3mZCHQFcJY19iHm58wuv1eIWaTPxxKRt2B2DCd7CvgVbjnEPYC5oPNsi7AuwryetMvCXIv5PBZb411In1EjhBDCrCGdC7wPjALSrr536tSJqqoqFixYwMEHS/XTXGnevDmlpaUsWrSIHj3sPYaBTsWsa1RhNkgJIcROQQImInoel2IWP5OtoDFDE/9/EeYFWLIz8CjJ+tzq5hbcBun/4BAmM4JqoC/wvXV8FBV5VOvfo5DNzAOnp8c0PP5KKSsxZY/snf0z8fKo1v/EwN38w/F4gzJeRjHWOlZEnDlMTl9jV0RDm54e9u/5d0BfZQJeHrDIOn4Ypj59PhmF29Pj32zLcLgAN+vpbGB4dqdVZzNxF02fBK5XJhg5AFhnHR+ng3u2RE6bYM8CoLl16BoFjyn4AjjPnJpipg7u2SIa0OrVRVRUdCRu/ZW56qpP6dBhA0cd9SNDh6bG7TdujDF27H5s2JBPL2N1V2CCNZh4LaC+B3ULMM86nig/qPMoWKoHYxbCkiVeC6g4ppnvv6zj3XE3LOTaFNzg+8vAWFBbMJ/jf63jw0AH9WwRQggBpwD/xJTOTbt43rRpU0pKSli8eDE9e+bPW+Cd3X777cesWbOYP38+Bx1kv9T3VYh5H/M+5nVAnm2SEEKIhpdP7zTFzqCSozGpu8k2AQMYzXcAePxIjAGYhYZkk/DypNZ/BX0xi57JVlHEOfRhCwAeHwJ/sM5RaO7Ac3ae58pE3P4Jr9KK0Vv/5fEUbomaZsACrs+LWv+KjdyB2z9hPh53bv1XOdcCj1jn7M8G/pLl+YkQdHAm2TAFKzAH4vgvcv1Rm8X7nNPQDZxMsg2YoM8PAAq+xQRUN1rnXavhqOzPMj1tnl12JtmXwLkqEVxQptydXdouhinNtRf5YSru1/QlkhZ3lSkzZJcabAHM1yF2TYrMxeMwdmwn/ve/1GqVv/vdN5xxxuqt/x469Cu6dUvdf7BiRWOmTGkfyTzT0y2A+bg/LyWgkrNNhwEfW+echft7lCP6QNwyo3FgAKhE1EptAPqQeJ4lKQUdertqdumzMAs6yRLPXZV47qqgYOmtia+DEEKIbdpjXqcvwt0w6IjFYvTq1Yvly5dTUlIStgSUiFj37t1ZuHAhlZWVNG9u7y3y1RK4EXiLkGXYhBBieyUBExEdj2aJElZ2eZeReLyQMlLGqyhGWeeZ8hWe09sgWh6d0U5JijiKgZTytXXuAkxpnmQmG2JBjmv9V3AGbomQH4FzEhkyycYCz1ljh/M9U7I1vdAqGIm7m/9D3H4FGpMt85k13hvPOVdESNf0KsLpVTRDmZJQW6nEoj0+i1zazYaIVKIPyXzc3kx/VmY33lbKWrRPKMYs0od6x5It2mTt3GgNxzHBkpRglTLPt3utc9sAd+scv8bQJmvnEmt4DSZ4tckavxJ40RrrilsGTjSg22/fm5de2jVlbP/913P55V+kjMViMGHCJ+y+e+q37ZFH9uCJJ/KiotUduBlJDyaySpKooGDpVNB2NkTEdGNMNtau1oFKUH9PHVL/JiBYCrpttmYYjm6H2flsB9+HgLKCVeoJ3AzFXYE5oGV1TwghTPlbD/gAGBTmgqOOOopHHnmE6dOns+eeUsEp3xUVFTF06FCef/55hgwZQkFBqCWKgzAbjp4BDsnqBIUQIkckYCKiVAXYu/aewHN2MxrlTAf+ao0mylfkqNb/9MDyLpMo55mAqy7BNMNL9nPedUpERWcC+6B9d/NfiMcHzvkemymkP26t/0vw+F2WZpmeRze0s5u/mhh98JxyaOCxmhgDIZEFtM00KjkiW9MUaVVi6uMmews3oAeAMmWhrrOGm2H6meSkaW+i/8idmH4kyR5QcGvAZVOAR62xzpC7rCed6AuD2xemXLnl0GpcDLxnjf0/TBAiJ7T5W3E3bm+mC5RbDg1Vk+lIItNxmxJt+h2IBvbaa7ty++2piUhNmsSZPHkFjRvbVSChVatNeN4nxKxXrpMnd+CTT3LZq1v/CZy/g5/jBu0T1MtAqTVYhAk25LJE5E3g/B1cgltmLEHdjQl0J2uNCTbkaEOITvSFccqM3gzq/wIuGg08b40dg5sNLYQQOxOF2aD0IVBOiNfXbdu2Zdq0aTz66KMcdVReJEyLOmjZsiXjx4/nqaee4rjjjgt72emYnobTyPGGLyGEaGgSMBHRqGAYYNeFDiqHUENTHFDrv4KLG3aCIa3mBuBIa/QF2lIReI3HBmKcg13rX1NGBac1+BzT8Yix2Xc3fxUecwOvG8vnwPm43687GJ+DWv8e/iVQFCWUpe7mT1HGMtySSY2Js4BrnJ21Isu0qYU82hpeC/RRsL6WS68ClltjXcjdItdluL2ZPgMuDLpAbWs8/pV1qI8247lwE3CoNfYPYFLQBcpkpvXB/X5N0HBCg84uBL21mbazaDpduUH4rRR8hF8ZRbhLQ4eGneXObfXqQkpLOxGPp8bsR478jE6dNgRed9xx3zNoUGo/k3XrYowevR/V1bl4Sau7gJNpuRnoB2q1zwU1rsOvRGTOgqW6D2ztI1fjG+CcRL+Ply28AQAAIABJREFUIBcD71pjp4CTIRyV8bjPnDeBkcGXqE1AP8D+fl0G+tcNOTkhhNhOdMVUFphFiBKrTZo0Yfjw4SxdupTevXujVB615RJ1dthhh/Hggw8ya9YsOnQI9fK3CJN1+hGmHGZuq2gIIUQDkYCJyD6Pn6Cd3eCbgf54Ti+CVFeZ8inY5VM01+FFXOvfoxem/niyNRTSjwud8i6pyngbt552DM0cvMhr/Xv47+a/PMSVj2EWVJO1YAvz8SKt9R+0m/9ByrnFPd0xAZyMoANZH5DtJLJCb92N7Lywvli5i3Ap1NZFSWeRa4SG3zbcLNPT/ruRNwH9lDu/FGrroqST9XSzdnd7Z5U2z9rB1vAqYIBy55dC+S9KFgL3aTdwkW3+vZlCLOIquB930boVpi+LNLhsAPE4lJV14ptvUivX/eIXq+nZ005idF188VccccSPKWMfftiEadPsNlbZpk0vL3fX7VWg7GCuRQWXiERHXCJS+2W1JYK5yg7mWtRa/IOlFaBPbKgZhqNPxX0GJYK5qrbgO6D8gtsKuAv0vg01QyGEyHM1/QRfBNKmGCil6NmzJ0uWLKG0tJSmTZtmfYIiOj169GDZsmVUVlbSrFmzMJfsgSnp+xLQPauTE0KICEjARGTX1K3lXVKbgyvK8Hg21D284Fr/eBGlfnp0wJQUS6ZRDGYsn4a8x+3AbGu0DXAXXkS/ix4nA2Os0bUU0AfPyoAJ0pYr8K/1H1C2IwsqGIG7KP4ZgSVQLB5xihgEVs8ZGIzHufWfoEhHb613j13v/i7llnnxpUzZGztLTQF3ajeYlhV6a717J2A4SrllXnwp/7I3jYG52i2NlRXalAJzezPBIOVmwPhScDMmsyNZe2CWjqiMoiawN9MAhdObKcgITHmBZN1x/w6JDNx991688ELqn+4OHaoZO9aOHfgrKNBMnPgxu+22OWV8wYLWLFwYaYuzW3H7JvmVCwygVgMDMcHfZNNA/7S+kwtHm9dSbhmNa0DZ5QIDqLeAEmuwELgPtJ3JmiW6DeY5bL+WGgbKLhcYQD0AzLQGE32ptN2XSgghdiRNMJtK3sX0KUn7mq1Lly489NBDVFVV0a5du2zPT+RITX+TZcuWMXDgQGJ2XVR/RwFLMWWHO2ZzfkIIkU0SMBHZtZYZuI3AFnNIHZuFe1xDrmr9V1GEWQS0V2Kup5yH63i3Ybi1/n+JiqDWv0drYC72bn7FcMbVvps/xYVsosC31v8VeBHU+q/kaDTXWKObiNEPr/bd/ClKWYliAO7O+RmMl+Z1ESgFelhjH+BmYtVKwWPgZBW1wDRPjyLr6Vb8ejO5TdPTqQT+Zo0dCkzPcF6haYJ7MylYWMfbDQOsxsqchdsgusHpbTsj7Tf6Fyl4P+x9FGzA7Jr/wTpUqt2fWVEHb73VlNtu2ztlrFGjOJMmrWCXXWpNYkrRps1GKio+wa76MWlSB776qrghppqG/iOm502yL4FzE9kjISn/EpGwAHQUJSKvBSdb12+TShpqJjglPRPN13WWg6W6JvhuZ+veDsrepJLOn8Ep6fkzTGauEELsiHoCb2MypdP+3WnTpg1Tpkzh8ccfp1u3blmfnMgPNd/3xx57jGOOOSbsZWez7WcrVIqKEELkEwmYiOypYDA4u/VXAufQp/byLj40jfxr/eNxQaZTDOVrrsFNS34FN1MjPY8fifmUr9BMoDKLtf5NBsu9uLv551HOrDrfbxwfofxr/SeycbLDoxlx5mAWeJM/8lWUhdvNn6Kcxbj155uyhQVcb2VFiQaj/Xfrb8D0LbEXqcO4AnjNGuuGuxDZoDTBvZlUcG8mX8pkcwwE/mMdGqLNeDb59WZ6EWrpzRRAwbeY0l4brUNTtVl4zIpExpJfb6bblNl5XifKP3gXw5Tmsp+jIoTvvy/gqqv2Y/Pm1PXzkpIvOOigcAmOyU488Tv69l2VMvbDDwWMHt2JTZuyuUavD8P8ziSLY4IltZcZ9Xc1bonIA8h6sFSfDQy3BhO/v6r2MqP+LgZWWGNnYvo7ZVMZpulssneoY/DdUNX4B0tHg/5FJpMTQog8dSQmw/kRSN+LsqioiCFDhrB06VIGDhxIQYG0qdgZ/fSnP+Xhhx+mqqqKffYJVQp1F0z20nuYdSFpcCOE2G5IPW6RPZr3cXfjfoLnLAiGM4ZvGM9JbHFe1NV9pSWsBRTwLo+jeSJlvIg3KXUWBMMp400qOY44e6aMxzNaKA6rGTA18d82TTMIMtQo5348uuPWb8/mc6U5cIk1Fk8EPjJVBixyRr9nV2pvOi4y9wOmdFKyVQreyORmCqq12cV0mHUoriGWCEZkw5u4z7iPFGl6MwVQsFLDSYBdM/9Hv/MbQqIvx/8l/kv2urJ7R4Wk4GUNx+L2Llmbyf1Cao5pTG83p38u0xsq0+z9I9xMpShSGHY469cXMG5cagXLggLN0Udn/qdvxIgvOOkkO9kR1q0rcEp2NaA4YDcD/xbUK5ndTsVB98cNWgK6EajMXmuktwqwgwBfgPoks9up7xJ9RA6wDmRr/iSyV5bgPoffBZXha0P1IejjcAOj4TNYhRAif+2Oee8znJDNuXv06EFFRQUdO3bM5rzEdqKmd81pp53GzJkzufnmm6muTlv1dh9gFubn7lLghWzPUwgh6ku98soroXfBKqWmHH300WmbportwlhgPKakVcQNRoXYqe2HWYRdS36mJ/fB1LRfApyc26kIsdPZjFnA2IeQvWMaSEu2LQg3IsNgGcDLL798iVLqpgaZVcO775hjjrGzwoTItSeBXwLnQwZZv0IIkV4RJhOwAtgtzAWdO3fG8zxOPfXUrE5MbN+++uorJk+ezAMPPBD2Eo0ppTkSN7NeCCGy5tVXX71Gaz0y7PlSkksIIYQQQgghhBBix3M68C9Mf720wZIWLVpQWVnJokWLJFgi0tp7772ZPn06999/P4ccEqoNqAIGAR9ieoRJ5rYQIi9JwEQIIYQQQgghhBBix3Eg8BimT9ah6U4uLCxk4MCBLFu2jKFDh1JYKNXbRXgnnHACzzzzDNOmTWOPPeyWgr6aAuXAW0DvrE5OCCEyIAETIYQQQgghhBBCiO1fC2AyptfeWWEuOPHEE3n66aeZMmUKu+9ut6ATIpxYLEbv3r159tlnGT58OEVFRWEu6wwsAP4GHJ7VCQohRB1IwEQIIYQQQgghhBBi+xUDzgXeB0ZhepLVqmPHjlRVVbFgwYKw5ZSESKt58+aUlpayePFiTj/99LCXnQa8BlQBe2ZtckIIEZIETIQQQgghhBBCCCG2T6cA/wRmAa3TnbzLLrtQUlLCP/7xD3r27Jn1yYmd03777cc999zD/PnzOeigg8JcUgj8ERP0uzTxbyGEyAkJmAghhBBCCCGEEEJsX9oD9wCLgC7pTo7FYvTq1Yvly5dTUlJCo0Zpk1CEqLfu3buzcOFCKisrad68eZhLWgI3YsrKnZHVyQkhRAAJmAghhBBCCCGEEEJsH5oCHvABMCjMBUceeSQPP/ww06dPp3XrtEkoQjSooqIihg4dyvPPP8+QIUMoKCgIc9nBwBPAo8D+WZ2gEEJYJMVNZFclPyeO3e3rAzw+q/O9FlDAu5yMRqWMF/EmpaysxyxrN51iVtPd58hreKyu8/0msxsb6OpzZDke6+p8v7A89gB+6nNkKR4b63y/CezDZlKL3Sq2UM4/AJ3JFEPx6IhpDrdNjGrKWJbh/Q4G2lmj3+PxUkb3E6Fo6ArsZg1/qeDdDO/XHSi2hj9S8HEm9wv5MRVwMmC/4n9PwRcZ3K8I+LnPoX8p+G/dZxj64zYBTvA59IqCbzO4X0vgaJ9D/5+9O4+Pqjr/OP45Wdh3K+CCorhhpdVSRYGgYANuiAuLIhIRWlQUrFFEgTBJQIUaFRT90YKKYmWzVFGqhsoWcUHc6y4iiBBUBJQ1y/n9cUPI3DuTmYTMkuT7fr3yUs5d8gQyN5PznPM8eQb2VvR+Ffi8LQm8unK5gcJK3O8Y4CTXcIGBFZWJT2DTprps2uT/Mq1bt5jf//7XSt1v3bp6/Pij/+rYxo0Lad8+cj9KHfb3eOtr/wDmg0rerxPQ2DW4Ecznlbtf2J+3C87rv6x1YNZV4l4GpySMezHWJ2C+r1R44X3eJJznsNuHYLZW4n4NgXMCHHgbzM6K309EpEoZoC9wP877lJBat27NXXfdRd++fTHGhL5AJIKaN29OdnY2AwYMICMjgzfffDOcyy4BegGPAeMB/TwWkYhTwkQiq5gzgb+5Rr/mPjoyhh0Vutcn+IBxrtGPKaBT5QMMw0j24eNanCZ6ZS1jPqn0p6gCdzPs5Qngctf4Ynz895DiDOUIdrCZLLwTAQ8Ct1XoXj7qUchLwO89R2BZZUMM026credHlI4UA5lcxwRmV+hOE2lDIXnAYa4jV4ISJhHWEme1UNnf3LZb+ENFkxwWrgKedQ1vBc44tBDLZ8Ba6ApkuQ59aaGjgV8qeMt7gNtdYx9CZJ9xBvZYGAIMdB1aYuESU4EEaEkSaTbgLog938DSQww1lJ3AFLz/7vcAYytyIwuNgFdwVraVdSdKmFRacrLl7ruPY/t2/7efEyd+wwUXVGz9wcaNdRky5BR27TqYrzQGcnK+Igp9a+vhrHgsuyBkH9hzwLxXsVvZC4CX8E80/AoBF1ZUtVOBv7vGtoA9A8yWCt4rnUDv9wInT6uQKQR7GTDCdeBtsClgKrog5FECvd+D1MpGKCJSRc7EKVPUOZyT69evz/XXX8+tt95Kw4YNIxuZSAWddtpp/Otf/yI3N5fx48ezYUPI9bTJwEigH86cwyyo0DyMiEiFqCSXRJaPHOB512g79vKPCt0nk+7AXa7RXSTSP6K7Mg5oyE14V75351PGVOg+PkbhTZZsAK4jkrsyAIZTgDOx7J6VuhUfl1Xwbo/iTZasoD0TKxte2HxsxZnY9X+DZJmOj1MrcJ8kCpmLN1nyMD7+dahhSvmMM0E41TXcDJhnIeyCyhZOxDvhVwxcayCCq5pLTQJyXWOBYiqXderzpruGfwX6R3JXRhk34JR1KOsi4K8VvM+deJMlXwF/rmRcYSv5e+qPd9XZGOusSquIx/AmS17GWdEpldSy5X6ystbjXuB6zz3H8u239cK+z/79hrvuOt4vWQKQlraFbt0qthajcsxbQIZrsC4wH2xYxbkdthXwBN734zeC+exQIgyP+QcwxzXY2onJVuB3BHsWzrOwrALgGjDR+AdJB951jZ0FZFfsNnYI3mRJPs7XoUkZEYmVI4EZwJuEmSxJTU1l+fLljB07VskSiWtlv1cbNWoUziVH4Lwe3sJZuCYiEhFKmEikWeoyBPjWNd4PHzeEdQcfLbE8g7vsjWEE4ytXvqfC7mAXzkScf3LGkoWPHmHdw8cfgcmu0QISuKpSpb0qw8cGDH9xjRrg8ZJSV6FlMgBnNXpZPwADK7jbpvJ8LMc7OdMQmI+PBmHe5V68v3R8SBPuPMToJHyjgTdcY2fi/NuEZJ1V3vPxlrK518Crhx5eaMZJzgwCNrsOXWWdRGhI1ikJ9xTgrpNwg4EIl+RxlOyGGQjscx26zwYuT+NhnZ0w7t02+4ABJkpb542TnHE/4xKAp60z4RCSda4f5BrOB4aU/HvLIejceQeDBvlX0dy9O4Fx445j//7wSoU8+GAbPvvM/1H/29/u4oYbopEjLTUZZ5dcWSdAuAtCbALwDE6CoqyZYNxJjEi6EXAnZy4A7gjvctsMmIs30X17SWIpCsw+nPdo7uTMHWAvDe8e9iS8Sfxi4Fow7ue7iEg01AFG4Tyj/0IYczcdOnRg0aJFzJ49mzZt2kQ6PpEqUa9ePUaMGMHKlSsrUjquI7AK573YsRENUERqJSVMJPLu4mcSGICz2rCsB8kKUTLHRwLO6scjXEeerXD5pUPl42MMt7pGE4CnSvqDBDeZxjgTI+4JhTFkeCaMI2sCzwHTXaPNgXn4Qqzsz+ZEbIDV/IZr8UVlNX9ZmXhL/PwW74RHoCsDr+ZPpD+3sadqwpNQDEF3Pf3VEtaup6l4+/KswtmmHTWGILue4BFL+buerFMa85/geYbMMM4zI2oMrMVJYpWVDMy10KK8a0v6lswFT8+q24x35XdEGZiHs02/rMOBf1pvvxk/Fk7DKVNYVjFwjYGKliiSIG6+eZOnb8mnnzZg2jR3Oymv//63OQsW+LcPadKkiHvvXUdSUmQ3avozFhgKbHId6A92aBg38AHnu8b+hzM5FkXmV5xkg/tn38SSHiflsM6CCzjOdeBF4OEqCjBM5mu8O9kMzm6ZEHX+bbDk+0Qw7h2EIiLR0BsnUfIQ3meTR4sWLcjKymLJkiV06hTZatUikdK6dWumTZvGSy+9RMeOYVf0vAT4BLgPp6SuiEiVUMJEoiODQOUr6lHMfHyUV75iHN660V9Sn+FVGl+4JhCofMVRBF4dftAeZuBtHrwEn2diLjpaBC1f4V4dfpCPehQxDzz/XvcxgVeqNsAw+CgmmUF4JzGH4fOsDi973dHYAP9ehhsYH53V/HKQCVySzgCPW4LverJO/Vr3ToKfcUpxVbjB96EyBN/1ZCl311MmTsP6sj6m4qWwqoSBaeApSXcMMNsGecbZ0klJz7/Xc8Yp3xcLNwPuBtzn4jSKDMge2KXm/ffyGSLcY6qWSUy03HPPNzRt6v9SnTu3JcuWNQt63ZYtdZg0yX/u2xjIyFjPkUdWtFVFVTDO7krvM+eRksbwQdjzgLtdgyU7WU3ky4x6mI/wLiJIAuaCdZetLGsk3jKjG4HrShJKUWYW4JTpKKsFMKekOXwwj+AtM7qS8t4TiYhExuk47ylfwJuM9qhTpw433XQTb775JsOGDSMxsdx1ISLVwumnn87zzz/Pgw8+SMuWLcO5pAFOWeCfiNHvUCJS8yhhItHjC1q+InCtfx/d8CZZnBr1d1a4mXJVClS+4kIyPc2aHT5uAq52jX4HpBHpviXBjGQfiQHLV4zGR7DyFQ/hbab8JkdEdzW/n7HkYwKu7H8Mn6f/gNO3JPBq/r8zIbqr+eUg4zwXAu16mmu9Oxaw0A5v2RuLUzLJXf4vmiq068lCd/CUgNuF07ckljudhgLfuMYuwdtU+YDbgD6usQ14E1pRU6afiftnxXgLfwpy2XTA3S58OU7TeKlirVrtJzPT288kK6st339f13N+YaHh7ruPZ+dO/3nvq6/O57zztkcy1BDMSpzXflklOxZsgFXBtiXOzyH3rNbNYD6JRIThMY/hxFXW0cDskp0kLrYj3jKjhcBVYH6KRIRhuhV4zzWWQtCdh3YAzjOvrJJEmPqWiEjUtMRJ+L6Ds8AjpF69erF8+XLGjRsXbu8HkWojISGBAQMGkJeXx4gRI6hTJ6wWl3WAB3B+xxIROSRKmEg0WeoELF8xAB/X+43c45RPwdu3ZCQ+3o9kkCH5+JWEAOUrLPeQhX/5iiw64G0SXAhcjY8fIxlmSOP5GhOkfIUP/yW8mfQDz66en0niqpJm8rEzgWV4J20aAfN5gPqu8bhazS9+bse768nTE8OWNlamqevc+w08H7nwQivTz8Sz68m6emJYaEXgSdObDFHqzRSEge3AAMC9ZP9+C38oO2CdnjPuhEIBcJXxllqLKuM0sR/pGk4A5lhX34iSfjNprnO34pTi0qRphHTtuoOrr97qN/bLL4mMGXMcBQX+c/TTph3Nhx/6N6499dTd3HKL+y1FTNwDuEs3BeiJYYOVGZ0L5skIxVYRw3FeN2VdDO5ypLYRzvPLndm6C8zqSAUXHnMgWerum3QX2J7+QzbQop2SUmsmLr6xRKTGS8ZZePIFzkKTkFtETj75ZObNm8cTTzxB27ZtIxyeSGw1atSIsWPHsnz5ci644IJwLxsXyZhEpHZQwkSi6+4Dq/Y8E1DTySoth2DYzyycUldlzS8piRV7GXwEnh0lSRTzLPfglK/w0Yhi5oNr0t6QgY+8qMQZygQW4J0saAE8XbIbA7Jphw2wmt8whHExXc1/0KlkAK+5Rjuws0yyKjPIav5E+uMjBiVQpCzjNAcPtOvpTuvUcT7gflyT9sAa4uSNsXGagwfc9WRxdj1ZSnszuZs9P2Gc8n4xZ5y/U3fJoLo4JcaaAlhohtMvxL3k605DlHszBWHgSfD0u2pFmX4m1pnYnuY6pxinvFu0ezPVOiNHfsfvfrfLb+yTTxry6KMH3wLk5TXl2Wf9SzI0auT0LUlOjs1GTX/mQLLU3Rx8CNjBZf58N4HKjMZwN5Y/8yvO82uf68BksOeU+XOgMqP/AXIiGFwFmK/w/p0mAE+DPdL5oz2QfHeXGZ0Mxr0bWkQkEi4GPsJ5droXAnk0a9aMSZMmkZubS0qKe/2XSM3WsmVL2rdvT3Kyp/hAIOWVfBcRCYsSJhJ9PlZiApSvKOaf+GiAjzvxnyAF+ApvM8/Y8vEo3vIVbdjPbJydGo+BpyzUa7RnSjTCq4BReMtXdAMmMI26JX1L3G/iH2BCbFfz++lPEc7qcPeunZvwMZBJtMIG3LE0gvGxXc0vBxkI1rR3loWjShIn7rJQ24EBxrsbImYMwXc9WSeBmoG3LNQXRL3Zc0gP4N210w74R0nfkll462u/hFO+L56MwGkGWVZ3nGRcsGbP9xh4NRrB1XZJSZZ77llHkyb+bUDmzGnFihXNyM+vw4QJbbGuvMhdd23gqKPc8/qxZLYSOFn6KNj2YJ2fq/72AgPAxLLMqItZC4x2DSbj9DNpAfZGnK+zrO+AwbHpWxKMmYfTkL6sknJoNpHAZUYD9dsTEalqp+AkmV8ETg51clJSEkOGDGH16tUMGTKEpKTyWjKJ1CzWWhYtWkRKSgoPPvggBQUHi1s0bRo0z7guKsGJSI2mhInEhmUS3lr/p+I0uMt2je/DKdvlLq8Qe/W4CWeSt6yL8fEf8DQe3wxcXTK5Hz987CWRq4FfXUfuZhuLgY6u8bc4gruiE1wF+IL2hXmUAv6NdzX/bCZ4Vp5LjBlYAPyfa/hw4Dmc3Rdl6/RY4Hrj7bcRDyYAq1xjHXASEO7dMHuAK42330ZMmdLSNGx0HeqH84v+Fa7xDcBgE6veTEEYpy/MALx9YTJx+ue4mz2vwtuTQiKodev9jBu3wW/MWsjKOpY77mjHjh3+k0N9+/5Ar14xrfgWhFkOTHQNNsRJyv0TcM9y3QrGvWAhHjwMLHKNHQP8CyeRWlYhTr+P2JYZDewWnLKbZZ2Lk9i9wTW+DegPJrZlRkWkJmsOPAh8CIRVW6hbt27k5uYyadIkmjVrFtHgROLN+++/T58+fRgxYgSbNx/cxNuqVSumTJlCly5dgl2aH5UARaRGU8JEYsNHMXAN3vIV5+OdULgdn6e3QXwYww4SGIC3fEUv15+LgcH42Eo8Gs/nGIa5RhPwlg7ZTiJXx7xvSTA+luDtGdMUONs19iX1uSU6QUkl/BXvrqdOOCWgynrYeCf14oI50KvIu+spFW996pHGO6kXFwz8hJMgcb/m3c+4QmBgrPuWBFPy9+vuZ5KEd6fPNpxSXIVIVPXo8TP9+//gN7ZjRxKffNLAb+yEE/bw179+F83QKioL74KQ0/CWGV0AZkZ0QqooY4Hr8Sajz8XZlVWWD4w7ORwnzG7gSrzJaPfz60Dfkg2IiFS9BGAw8BlOT6iQNYXatm3LjBkzmDt3LiefHHITikiNkp+fz+jRo+nduzfvvPNO6XhycjLDhg1j5cqVDBo0CGNMOXcRETk0SphI7DjJg0DlK8pajI/pUYqocjIIVL7CnyELn2cCJb5MIFD5CrehjI/L1fxl3Q28Xs5xpyHsnfG1ml8OMgf+jbxNe8v6EG9PmrhiYBPOL8jF5Zw238DMKIVUKcYpUzM+xGnjTPmvu5gr+Xt+upxTLDDEECe9mWqhW2/dyCmnBG8p1aBBMffdt466dct7ScVaaT+TLeWcFKj8YJwx23F2ZpVX7nAZcF904qks8wXeZKnbQ2D+HY1oRKTWOQ94F6efWsvyT4UGDRqQnp7OsmXL6N3bXaFapGYrKChg5syZdOvWjTlz5lBUdHCaKDU1lZUrV5KVlUXjxu5KuiIiVU8JE4ktH8uBSUGOfoMz2RhX5V0C8vEwEOyX7WW095ToiFe3AP8LcuwRfPwrmsFUiu9AeRB+DnjcMBIf70c1Jqkw4/QtcvcrOWAnTgmrvVEMqVKMU7rKvevpgC/Bs7MrXv0NeDnIsZdLjlcHI3D6xQSSY5yykBIjdepY7r13HQ0aBF5Hcddd39K2bdy/7AGTj1MiMlBmxykzitkR3Zgqw6yBoCU4twBXg4mvMqMBmSdxSjoGsgYYE71YRKSWaIPz3FmGt/SnhzGGvn37snr1atLT06lbt27EAxSJJ7m5uZx77rlkZGTwyy8H1zWecMIJPPPMM8yePZtjjz02hhGKSG2jjmESD5oHGX8dH9ujGkllzSeBTzyN0Q94Oe76lgRXB6feeiAvRTOQQ5JIQ4qoE+DIPhLifKePlBXs2fAJ8dm3JJhgX8eKeOtbUo4EoEmQY/8x5e+iiSd1gQZBjlWfZ1wNtmdPIoWF3hIL9esX07FjdXm5AE4JwUALk9YTfGFCPAr2/FpTkhiqBqwh+NfxKpjydtGIiFREA5zKA3fiLWEY0BlnnEFWVhYdO7rbRorUfF999RU+n4/XXnvNb7xZs2akp6eTlpZGUpKmLUUk+rTDRGLLxyXAzUGODiKTa6IZTqV9wnige5CjWfj4QzTDOQSzgLZBjj2Jz9M4Pf74qEcR/yRw4qcuRczDFzCZInHEwu+AKUEOnw2MjWI4lWad0mLBSu8Ms3B5NOM5BBOBzkGOTbZhrJ6MNQsGpyzX0UFOedrCYVEMSVx2707g7ruPY/9+79vTPXsSGDfueIqLq0O9atsO+HuQgycTfNdZnLHdCb7DpDfY4dGM5hDcCgQhUuw6AAAgAElEQVSrbTMGbI9oBiMiNZLB6fn2KTCBMJIlrVu3ZurUqbz44otKlkits2PHDsaPH0+PHj38kiVJSUkMGjSIvLw8hg4dqmSJiMSMEiYSOxNpg1PPNfjsh+X/yCa+O91lcS4wrpwz6gLz8AVdnR0fMrkFuKKcM1rhJE3i/bkxDTi9nONnErwMnMQBC42A+ZT/y+YEC3E9yWXhBOAfIU573AZPUsYFCxcAd5RzSj3gnzb4zo14cTvQp5zjRwOzbXk/kySi7rvvGNavD/6yf/fdRvzjH0dEMaLKsMnAHAi66xRgBNirohRQJdmWwDNAYjknPQS2vJ+3ccD+kfL7rCQCs8H+JkoBiUjN80cgD+e96zGhTq5Xrx4jRoxg1apV9OvXT42rpVYpLCxkzpw5dO3alVmzZlFYWFh6rGvXrrz66qtMmTKFFi1axDBKERElTCRWZpBMIfMB90/Cr11/bkQRzzCN+Czkeg+HU8w/8U4ouL+OE4DHohNUJWRxBtbTg6AA2OAa64Upd+I0tnxchXc1/w94m4enk8nF0QlKKuEf4EmUul9TCcBTFg6PTkgVYw8kSr1lrNxfRzOcZENyVAKrIAtH4iS23e8X3F/HqcDDUQmqEix0wpso3Qd85xq7mNANoiUCXnjhNyxZ4r/B5ze/KaBePf9qb7NmHcGaNXHd7PNvOLvgyvoabz+2x8AeF52QKsom4CRL3Nkp9+u+HvAs2GClPGPMNsV5Drt3lbq/jqOBJ0pKd4mIhOtIYAbwFsF34fpJTU1lxYoVjB07loYN4/TRKRIheXl59OrVi9GjR/PTTz+Vjh933HHMmDGD+fPnc8opp8QwQhGRg5QwkdjYzD14JxTW0JDfA6td4x3ZxuToBFYhhv3MwnmzXNZc6nAO8L1rfCCZDI1OaBXgoxHFPAuupJThLhK4BNjjN26ZSBZdohdgmLJph/NLS1kWuB7jaaxtsDyFL/QqMIkuC38B3Cuvv8N5XjzjGj+K+N0RcD94SvG9ibP76V3X+DlAdjSCqghbkpQCWroOzQC64DR9Lut6C9dGI7aKsE5S6lm8Sal0nF117v4Ff7Pen08SQevW1WfKlDZ+YwkJkJ39DXfcsdFvvLgYxo49jp9+isccow2UcPsZ+BPO7seymgHzwMZjicixODGX9T+c51eua/wU4JFoBFUJjwHHu8ZexHk2f+EavwT4azSCEpFqrw4wCvgM531ryDmVDh06sGjRImbPnk2bNm1CnS5So6xfv57hw4fTv39/Pv3009Lxhg0bkp6ezrJly+jdO1jlTBGR2FDCRKIvkwtxJqrK2kEiA7iDXSRxFbDNdXwkmXFW69/HnXhrYn9Jff7C3fxAAgPB1ezd8ghZcVfr/zG8q/n/wwQeIIOPcBoXlpVEMc9yTxzV+p9GXYqYj3c1/2R8vMgEFuAtjdQCmIMPFUaNExZ+CzzoGi4ErjbwI3AD8Lnr+IU4pZbihnUm3ka4hn8GrjLwKzAA766n0TZ4jf1YyQDOd439D7jNQD5wHd5m749aZwI1nswC3Cv5XwQeNbAGb0nFZGCOLb+kklSR/fsTGDfuOPbu9X9LOnz495x55i/06fMjF13k/5Zg27Zkxo49jmL3d19M2UBlRp2kPWY9Tlm7t1wXxWGJSJuC89ovay8wEMyvwCBgs+v4dWAHRyG4CrA3AVe7BjcC14HZCVyDN1l6H9hzohCciFRfvXH6lDwEhNzu2Lx5c7KysliyZAmdOnWKeHAi8WT37t3k5ORw3nnnsXjx4tLxhIQE+vXrx+rVq0lPT6dOnXhcOyIitZ0SJhJdEzkKy1O4V4QbbmQ83wAwjo0Y/uK60mB5HF+c1Pr3cRaQ5RrdSwIDuJNfAMhgBU6j5LLqUcw/8cVJrf9M/owz+VHWJmAwB8qH+HgE+JfrnDbsD9F/Jpq28Te8q/nf5gi/SZ+RwAeucwJNDEkMWGiIU/vZ/dqYYJy60JQkG67BKaVU1j02zFIIkWYJ2JvJAkMMfItz4Cu8peMMMMt6d6zFhCVgb6ZdQH8DuwEMvAKeUn6NgPkW6kc+ytAsAXszbQTSzMESSfcDL7jOaUfo/jNSBSZPbsMXX/h/u3Ts+AtDhhzcwDRmzLe0bbvX75x33mnMU0+1jkqModkknF1M7oUE08D82/lfU4Dz/NrhOicd7KWRjjA81llIgGchwc1gPnT+12zF+TqKXOc8CrZ9pCMMj+2A87ouqxC4GkxJDRDzDt6G9snA3JK/BxGRstoDL+O8X3DvXPNITk5m6NChvPHGGwwbNozExPLaQYnULNZaFixYQOfOncnJyWH//oPrE/7whz/wwgsvMHXqVA4/PC4rK4uIAEqYSDTNJ5FCngLcjTUfZQLP+o1M4Dlguus8p3zFjBjX+r+X5jg1sd1x/JUM3nONZQH/dY2dCkyNUHThy+K3WB5yjRYDg/Hxo2t8KJQktA66GB+3RCy+cPm4BLjZNfozMIDhFJQ5by/QH0oSWgeNJZPUiMYo4ZiO89ooaxn4l+MzsBa403VeEjDXensiRZUtnWzzxPGggefLDhgnOTTLdd7hOP1MYvpbdUlfmEC9mW428IlrbBzwumusAzAlQuGFzcLvwFPOsRBnp0/ploWSxMkQvD2b+pWUiJMIefXV5jz/vP9bghYtCpk48RsSEg62/GjQoJj77ltH3br+W0oee+xIPvigUVRiDWESeEpVBnhWma8JnCx9AmyMS0Takjg8pSrng3E9q4zn2Uxp0tvGOFlqDyTf3XGMA+N+Vj2I69mM8/W7y3uKSO3VAuf3to+AXuFckJKSQm5uLtnZ2TRp4t78LlKzvffee1x66aWMGjWKrVu3lo4fccQRTJs2jcWLF/OHP7jXOYqIxB8lTCR6PiET6OEa/YgmQcrptCAdb63/s9js2dkRTYZ9PA6enS4L8fF/nrN9FJPMNXhr/Q/D59nZET1/oyHFgVfz4+M1z/k+tpPAALzlK+4ni9jtL59IG+BJApVA8bHec76PLzCMco0mYHmaSZ7mthIl1ulZkuYazgeuMd5VzOD0AljkGmtD7PuZ3It3p0ugVcwH3Ix319O5wPgqjitsJX1LniZAbybjvNb8mNJV2/zkOnSz9faiiRpbstMF76TpXcbbJ4uSBMq1eL/fplqnb4NUsY0b6zJp0rF+YwkJkJX1DYcfXuA5/4QT9jBq1Ca/saIiw113HceOHbGsrGgvwFsWsGQ3nHHvhgPMAuDvrsGSnR02ll/IHYB7p0ug3XAHTKBk918ZpwE5VRxXRT2Gtyzgy3h3wwHmQLL0W9eBvmBvjERwIlJtJOMsmvgcZ5d6yMUs7dq14+mnn2bevHmcdNJJkY5PJK5s2bKFkSNHcskll7B27drS8fr165Oens7rr79O3759MSY+ClSIiISihIlERybdgTGu0V1Af25zNRU/YCT7CFzr/04yY1TrP5Nbgctco+uo52kqftBY8nF+IXdXW38MX4xq/e/iYbyr+ZdzKvcGvSaDNZgAtf6LeYb7YlDr30cShcwlUAkUH/8Oet0EnsCZEC6rFQU8w/zYruyvjSyciHfysBi41njr5AOlOwKuB09SLFDvkKiwTi+V21zDO4ABxptoBMA4fQGuoaTEVRnjrbfhcrTciXcF5VeUs9PClJS44mCJqwMes97eIdESuDdTOZO5BlbiLbVYD6fEWMg65RK+/fsNY8Ycz65d/o/c667bwtlnu3/kH9S//1Z69NjuN7Z1ax0mTGiLdX/3RYVthbMrw/1++gYw7n5LZY0irkpE2rOAbNdgyXswE+QfxBxIlrp3pN4IdmBVRxgeez1O4rOskvdgJkjHG+PsSAV3lu5BsGdUdYQiUi38CXgPZ7eZuzKCR9OmTRk7diyvvfYa55/vbv0mUrPt2bOH6dOnk5KSwsKFC7Elb8iMMfTu3ZsVK1aQnp5OvXr1YhypiEjFKGEikeejJZZn8K7MuQkfn4W49qsg/Uxm4YtyrX8ff8Ryn2u0gAQGMcZTk9x97ct462k7K6AfiHKt/0wG4CRwynJqkvcPuJr/oAlBav3vjUmt/3vwruZfSwtPuSavhtwInu+97nzqaXAvEWRLJqPxTkZPMpBb3rUGthN4kut+6+1nE1EWjoYAvZngJgPryrvWOE3UvbuenKbjUW3QYKETkOka3ofTt8Rdys6PgZeAh13DzYB5FqLaydESvDeT8SZ13Cbi/d47EWdXk1SRBx9sw+ef+29wPO20XfzlL9+HvHb8+PUceaT/xo28vKbMnduySmMMzSYAz+B9nf4dzDPlX2uCl4jERrlEpG2GU0rQ/Tq9HYx7l6+L+Y7AydJHwYas8V+17EkQsMzoIDDuXb4u5i28z766OCXGlCwVqT26AGtw3gf8NtTJCQkJ9O3bl7y8PEaMGEFycmyrRotEW25uLueddx6TJk1i165dpeO/+93vWLRoETNmzODoo4+OYYQiIpWnhIlEls+Z+ANPuaMn8PFUWPeYwDzgcdeoU2M/WjsCJtMYZ2LEf0LBcCcZvBHmXcYSqNb/Tk8d8MjxcQI28Gp+fISeqSqn1n9JA/noyORCApVASeSakp1J5buDXSTQH1y7myxZ+OhaZXFKKA/hLXe0Cu8q/4AMvI13RXZdnEn6qBSNLuk3MhvvCsTHjNMHJCQDM3Gek2W1Ap6wUfo5baE5zqSppzeTwdObKZjbgbdcY2fiJCGiwjoTHAF7MxnvSngPc+B56C2jeJ2FwVUTZe322mvNWbDAv8lnkyZF3HvvOpKSQm8Tady4iPvu+4bkZP9zp049mo8/blilsYYwAXAvJf4f8NfwLjdfEDhZ+jTYaJaIfBzvTrAX8faRC8IswfuaawrMAxulZKkNlnzPBrM0zJvcC7zqGjsB7w5IEamZnsQpM/jHcE5OSUlh6dKlTJs2jcMOc292F6nZPvzwQ/r06UNaWhobN24sHW/VqhVTpkxhyZIlnHXWWTGMUETk0ClhIpFlGAuehtpfUN8zSRDKCOBD19i5fOopERUZe/g/wF2MdgkTPJMEwfkoJClgrf9b8HHFIUYY2rQDqyU9E8n34vNMEgTnC1Lr3zKNLH5/iFGGNpGjsAFW8xtuYDzllUDxl8FHeJMuScCz+EJvv5dDY6EfMNw1vA0YVNIXI1yTgcWusRMgarueAvVm+hhIr+B9Au16ugCnr0BElfR9CdibyTilrcJinN0+14Bnx93t1tsbocrZ0qbTnt5MPkOA3kxBGKeEz0C8/UwetdD+0KKs3bZsqcPEif49xY2BCRPWc8QRASvXBXTqqbu48Ub/fiaFhYZx447j11+jsY7CnouzCKIsp8woxl1irxzmCfAsHmkFPAM2Cl+IHQlc7hosKbFnKlLk7E7wLB75I5RT5rNqPQye9x8r8JYZK4c5kCx1l4K8Cux1hxCbiMS/rnh76QXUtm1bHn/8cebNm8cpp8SmsrJIrGzdupXbbruNiy66iDVr1pSOJycnM2zYMFauXMmgQYNISNA0o4hUf3qSSeRkkYL1rP7eSwL9ubP88i4ePvaSwEDctf4tGWR6VnhWrUxuxJk8KytYGYryjWMjcF2A62aRHeFa/9t4EHDX436TIzxlKELzBan1X8z8kt04keEjgUKewruafwYTCFECJeD9HgWedY0ejbNjQB3pIsRCO7wJDQsMMd7dS+UqKbE0FDw7pPpbZzxiLMF7Mxn37qUQjNMk2rvrCSZap0REJAXqzbQBb0IrJANf420SbXB2yxwT4JKqFLg3k1O+r0IMLAOmuIYb4vQziW4ZxRqisNBw993Hs3Onf1/zgQPzOffc7UGuCu7aa/Pp1s3/uu++q8vEiccGuaKq2JY4u8fcCY2bwXxSiRveBHzqGusOYZSXPCT2d+DZ4VoIXAVmW8XuZQqc63Bf91ewfSobYXhsf/D0kfsBGAim/DKjHmYrgZOlj4B1P1tEpOYIK1mSnp7O8uXLueCCCyIdj0hc2b9/P48++igpKSnMnTuX4uKDbcFSU1NZsWIFWVlZNG6sKpYiUnMkhT5FpJKKOTZAk/D3yfA0Og1PBv/Dx+UYz6R/5HqZzCeRT6mDcU2KWnLxhS7vEpCPF8nkWpyJ+YOKOBn4ppKRhvqczTB8i3ty1/IMwz09IMI1EdiOcU0e7uFEIETd80pKpB3FvIp/2YxiGvPIIdz1JkyA78mJHF2S4JKqdwrelccbjLc/TlgM/GChD97yOA0sJJSUWYqEY/GuMn/HeCc/w2LgIwt9gQ6uQ8fgLedXJezB9wHuxM9/jHfyMywGFlgnMezu7XASFUyIhcs6SdTP8X4dTxnv5Ge4MnAmXt1lhU7C27BbQtiwoS7nnrvdLzmSmGgZMGBrpe5nDGRkfMvzz+/yHPvpp2QOO6yyP9pCOhVvT5sfwTxZuduZXWD7Ar1dBwqdklYm/K03FXMy4HONfQpmdeVuZzaAvQI423Xg8EBnVw1rcF777tf9SjDhlBkNwCwHexVOYr+sE4HKJMREJP6F9ZydO3cuJ554Ir1798YYrauS2uGVV14hMzOT9evX+42fcMIJ+Hw+evRwb7QXEakZzDvvvBP2CnljzJSOHTtGeMWbRMk4nFIF/wBPU3URiZzjcVbh7wIaxTiWQPoD83DKmZwX21BEap1CnJ0LR+HdNRVJzTmYIKsDlU6k88477wwjeiXxKsRa+8SZZ555fazjEHH5D04JxutwdriKSHTdgjcRHtRZZ51FdnY2HTq417eI1Byff/45EyZMYOXKlX7jzZo1Iz09nbS0NJKSYrv++s9//jMvvfRSoEMPAyOjHI6IxLm1a9dOttaODvd8leQSERERkSqRkJDwRaxjCMYYE36fKxERqS0q0juPt99+mwsvvJD09HR++OGHSMUkEhPbt29n7NixpKam+iVLkpKSGDRoEKtWrWLo0KExT5aIiESannLSB2/5l3BMBeZWcSwi1c1KILmC19SNRCARcAbeJr7hWIS394NIbTMHb0mfcESjY3koq6hofy6nr1c/gB07dqxu3LjxNxDhvlwVt7+oqGh+rIOQGm0UTi+XilLnaJFqpri4mGeffZbnn3+eG2+8kVtuuYU6ddwVPEWqj8LCQubOncvkyZP56aef/I517dqVzMxM2rdvH6PoRESiTwkTaVnyUVELqjoQkWrobCqeMKkumuCtRR8O9XYQgdOB38Y6iErqVIlr1h34n+7duxeuXbv2RmvtS8RHAuiA7E6dOkWmT5iIoy2V+7kpIvGpkBDzJbt37yYnJ4fnnnuOu+66i9693e2oROJfXl4eEyZM4NNP/dswtm3bVt/XIlJrKWFSe80HPjqE6z+uqkBEqrErqXxpwwpt/4+iPOCyQ7heE5IiTj30Jodw/bbQp1SpXzm0171f5/WOHTu+smbNmiuMMTOJaNPvsOwFMjt27Dg5xnFIzTcLWH4I179bRXGISNVYh7Nz+q84/b2CWr9+PcOHD+fpp5/WSnypNtavX8+9997L4sWL/cYbNGignVMiUuspYVJ7fVHyISKVtzj0KdXO98DzsQ5CpJpbFusAKqiAKn7dn3nmmS/k5eW1q1+/fh9r7enW2sZVef9QjDF7jTFfJCYm/vv000/fFM3PLbXWx2hBkUhNUgSMAR4HHgAuDnVBXl4evXr14qqrruLOO+/ksMMOi3SMIhW2e/duHnvsMR555BH27dtXOp6QkMCVV17JuHHjOPzwWK93ERGJLSVMRERERKTKde3a9Recfi5zYh2LiIhIJX0BXAL8CXiIECU3CwsLmTNnDosXLyY9PZ3rrrtODbIlLlhrWbhwIZMmTWLr1q1+x8444wyysrLo2LFjjKITEYkvlS0lIyIiIiIiIiJS4yQnJ7uzHEuBM4BbgR2hrt+xYwcZGRn06NGD1157LRIhioTt/fff59JLL2XUqFF+yZLWrVszbdo0XnzxRSVLRETKUMJERERERERERKREw4YNGwYYLgCmAu2AaThlu8r11VdfMWjQINLS0li/fn3VBikSwpYtWxg5ciQXX3wxa9euLR2vX78+I0aMYNWqVfTt2xdjTAyjFBGJP0qYiIiIiIiIiIiUqF+/fqNyDv8EjALOBFaGc7/c3FzOPfdcxo8fzy+//FIVIYoEtXfvXqZPn05KSgoLFy7EWlt6LDU1leXLlzN27FgC5wVFREQJExERERERERGREvXr129orQ01X/IecC5wKfBNqHsWFBQwa9YsunXrxpw5cygqCrlBRaTCDiTnJk2axK5du0rHO3TowKJFi5g9ezZt2rSJYYQiIvFPCRMRERERERERkRKJiYmJmzdvPj3M0xfjNIMfA4TcPpKfn8/o0aO56KKLePvttw8lTJFSH3/8MZdffjlpaWls3LixdLxFixZkZ2ezZMkSOnXqFMMIRUSqDyVMRERERERERET89azAuXuAycApwNOALf90+Oijj7jssstIS0vju+++q2SIUtv9/PPPjB8/ngsvvJC33nqrdDw5OZlhw4bxxhtvMHToUBITE2MYpYhI9aKEiYiIiIiIiIhIGdba1Epc9j0wGOgEvBHOBcFKKImUp6CggJkzZ3LOOecwa9YsvxJvKSkpLF26lKysLBo3bhzDKEVEqiclTEREREREREREyjDGdN26dWt5zd/LswboAvQHNoY4lz179jB9+nS6devGggUL/Jp0i7itWrWK1NRUMjIy2LlzZ+l4u3btmDNnDvPmzePEE0+MYYQiItWbEiYiIiIiIiIiIv7qFBUVdTuE6y2wAGgPZAJ7Q12wefNmRo0aRe/evVm7du0hfGqpib7++muuvfZaBgwYwBdffFE63rRpU7Kzs1m2bBk9evSIYYQiIjWDEiYiIiIiIiIiIi6VLMvltgvwASfh9DcJ6d1336VPnz6MHDmSH374oQpCkOpsx44dTJo0iR49evDf//63dDwpKYlBgwaRl5fH0KFDSUpKimGUIiI1hxImIiIiIiIiIiJeFWn8HspGnP4mPYAPQ51cXFzMwoUL6dy5Mzk5Oezfv78KQ5HqoLi4mAULFpCSksL06dMpKCgoPda1a1deeeUVpkyZwmGHHRbDKEVEah4lTEREREREREREvE7dtGlTmyq+5zLgDCAN2Brq5F27dpGTk0P37t1ZvHhxFYci8er1118nNTWVUaNG8eOPP5aOt23blhkzZjB//nzat28fwwhFRGouJUxERERERERERAKrirJcbsXAU8ApwGQg5PaRb775huHDh9O/f38+++yzCIQk8eD7779n5MiR9OvXj08//bR0vEGDBqSnp7Ns2TJ69+4dwwhFRGo+JUxERERERERERAJISEiIRMLkgJ+BMcDvgCXhXJCXl0fPnj0ZPXo027Zti2BoEk27d+8mJyeHLl26sHDhwtJxYwz9+vVj9erVpKenU7du3RhGKSJSOyhhIiIiIiIiIiISgLU21Vob6bmTz4GLcXazfBLq5MLCQubMmUPXrl2ZOXMmhYWFEQ5PIsVay+LFi+nWrRs5OTns27ev9NgZZ5zBCy+8wNSpU2nZsmUMoxQRqV2SYh2AiFSIIYvTsJyH5XTgsJKPRGAnsAH4kASWkcH/YhmoiIiIiIhIDXDY5s2b/wC8E4XPtRQ4HbgJyASalnfy9u3bycjI4KmnniIzM5Pu3btHIUSpKu+//z7jx49n7dq1fuOtW7fm7rvv5sorr8QYE6PoRERqLyVMRKqDB6jPL1yP5XaKaRvy/GLAx5cYHsMyCx87Ix6jiMSEhRHAbeWcMtDAW9GKR0Sqkj0LeDbMkwuAbcA3wMfAq8C7YGyEghMRqU16Ep2ECTjP86nAHCAD571eYnkXfPXVV1xzzTWkpqaSlZXFscceG4UwpbLy8/OZNGkSzz33HNYe/DFdr149hg4dyq233krDhg1jGKGISO2mhIlIvPNxNjuZD7Sp4JUnYnkASAamVH1gIhInhgPHl3N8CEqYiFRX9Sn/9R3IOSX/vQdYC3YUmNerNiwRkVonFee5Gk0/AaOAJ3ESKCmhLsjNzWX58uUMHjyY0aNH07hx4wiHKBWxd+9eZs2axdSpU/n111/9jqWmpjJx4kTatKnor/0iIlLV1MNEJJ75uB5YQcWTJSJSC1j4I9AhxGlXWWfSVURqn47Af8H2inUgIiLVXOetW7c2itHnfg/oBlwKrA91ckFBAbNmzaJbt27MmTOH4uLiSMcnYcjNzeW8885j0qRJfsmSDh06sGjRImbPnq1kiYhInFDCRCRe+bgI+DtQp5yztgOrgZeBPJwyHCJSewwO45ymQO9IByIicasuMAts3VgHIiJSjdUpLi4+L8YxLAZOBcYAv4Q6OT8/n9GjR3PRRRfx9ttvRzw4Cezjjz/miiuuIC0tjQ0bNpSON2/enOzsbJYsWUKnTp1iGKGIiLipJJdIPJpIGwqZS/BatWuBccBSfBT6HfFxJIbLsdyE84ZaRGog65TbuyrM0wcD8yMYjohE1z7g2jJ/TsIp3XUDcHSA848C/gS8FPnQRERqJmttT+DFGIexB5iM09/kXmAQUG5X8A8//JDLL7+cSy65hPHjx3P00YF+TEhV+/nnn3nggQd48sknKSoqKh1PTk4mLS2N22+/nSZNmsQwQhERCUYJE5F4VMg4IFjB2WeB6/CxP+BRH98D0/HxGIYhOC3gRaTmuRg4PMD4frw703pZaG1gS+TDEpEoKASzwDtsHwf+BzQPcM3vUcJERKTSShIm8WITzoKYh3H6m5xT3snWWhYvXszSpUu56aabGDFiBPXq1YtGnLVOQUEBs2fP5v7772fnzp1+x1JSUsjOzuakk06KUXQiIhIOleQSiTcTOQqnSXMg71JesqQsH8VMYBYTeKIqwxORuJEWYMwCvgDjScDAiEYjInHAbAaCNXhvGs1IRERqoJO3bNlyXKyDcFkDdMF5XxhyYcyePXvIycmhS5cuLFiwAGttxAOsTVatWkXPni1vJ5QAACAASURBVD3JyMjwS5a0a9eOp59+mnnz5ilZIiJSDShhIhJvCrkQp9ROIOlhJUtEpEazcBhwYYBDb+KsMtwV4FiwRKyI1CwNg4x/H9UoRERqoOLi4j/FOoYALPAUcAKQCewNdcHmzZsZNWoUffv25X//+1+k46vx1q1bx+DBgxkwYACff/556XjTpk0ZO3Ysr732Gueff34MIxQRkYpQwkQk/qQGGV+Hj+XRDERE4tZAnEbObvMM7CZwfe3TLJwe2bBEJLZsdyAl0AHgtSgHIyJSEwX7XS0e7MLZadwBCFC20euNN96gV69ejBw5kh9++CGSsdVIO3fuZNKkSXTv3p2lS5eWjickJNCvXz/y8vIYMWIEycnB1kOKiEg8UsJEJP4Ea9S+KqpRiEg8C1SOqxhYWPL/8ypwnYhUP3XBzijz8TjYFcB/CdyjcB6Yj6Ico4hITfQna21irIMI4SugP3A+8GGok4uLi1m4cCGdO3cmJyeH/ftV0CCU4uJiFixYQNeuXZk+fToFBQWlx7p06UJubi5Tp07lsMMOi2GUIiJSWUqYiMSf3wQcNXwd5ThEJA5ZJ6naMcCh5cZpAAqwBNgR4JyBNnjJPxGpPpKAv5T5GAJ0A4zrvANlWq6LZnAiIjVY8/z8/D/GOogwvYbznnE4EHL7yK5du8jJyaF79+4sXrw44sFVV6tXr6Znz56MGjWKH3/8sXT8qKOOYtq0aSxYsID27dvHMEIRETlUSpiIxJ/mQcZ3BhkXkdrluiDjpbtKDOwD/h3gnJbABRGISUTi00fAbDD7Yh2IiEhNYa3tGesYKqAQ+DtwMjAZQvfD/Oabbxg+fDgDBgzgs88+i3R81cb333/PyJEj6du3L5988knpeIMGDUhPTycvL4++ffvGMEIREakqSpiIxJ9AzZoBGkQ1ChGJO9b5uX11gEMFwHOusWBluQZXaVAiEs9+B/wX7GNg9b5fRKQKWGvjuY9JMD8DY3B+LiwJ54JVq1bRs2dPRo8ezbZt2yIaXDzbs2cPOTk5dOnShYULF5aOG2Po168fq1evJj09nbp1A7UXFBGR6ki/OInEnx8DjlpaRTkOEYk/qcDRAcZfNfCTaywX2Brg3EstqKCySPV2YMXwgY8ngaUEew8BNwB3RSUyEZGa75xt27Y1jXUQlfQ5cDHOe8pPQ51cWFjInDlz6Nq1KzNnzqSoqCjiAcYLay2LFy+mW7du5OTksG/fwc2ap59+Oi+88AJTp06lZcuWMYxSREQiQQkTkfizMch4p6hGISLxKFjTds9uEuNMqC4KcG4dnEagIlJ97QMzvMzHEDCpQFvgwSDX3A22WfRCFBGpsZL27NlzXqyDOERLgd8DtxK4752f7du3k5GRQY8ePVi+fHmkY4u5Dz74gD59+jB8+HA2bdpUOt66dWumTZvGSy+9RMeOgVoKiohITaCEiUj8WR5k/EyyOS6agYhI/LDQBLgsyOGrLcx3fwB/CHJ+sMSLiFRrZhdwO4EXXzQAukc3HhGRGqs6luVyKwCmAu2AaUDI7SNffvklAwcOJC0tjW+//TbS8UVdfn4+o0eP5uKLL+add94pHa9Xrx4jRoxg5cqV9O3bF2NMDKMUEZFIU8JEJN4k8EqQI4kUqZyGSC3WH6gf5NiFQL8AH2cGOb+ThVOqPEIRiQOmGPgwyMHjoxmJiEhNZYypTo3fQ/kJGAWcBawK54Lc3Fy6devG+PHj+eWXXyIaXDQUFBQwc+ZMUlJSmDNnDsXFxaXHUlNTWb58OWPHjqVRo0YxjFJERKJFCROReJPBGuCNIEeHkRmw4XNgPo4ki3OqJC4RibWq3hWi5u8iNddvgoy3iGoUIiI114n5+fk1LQn9LtANuBRYH+rkgoICZs2aRbdu3TxJhuokNzeXlJQUMjIy+PXXX0vHTzvtNP71r38xe/ZsjjnmmBhGKCIi0aaEiUg8MowPesTyNJmM54GgK82dRImPLOAzikmJSIwiEjUWjgO6VPFtB1tIrOJ7ikjM2ROA04MczI9mJCIiNVlRUVFNKMsVyGLgVGAM8GuIc/3KWK1ZsybiwVWVsuXFNmzYUDrevHlzsrOz+c9//sPZZ58dwwhFRCRWkmIdgIgEMIH/4uNh4JYARxOxZLGTm/HxEk7Zje0YGmM5GuiM0yA+OYoRi0hkpQGBiiV/A3wdxvVnAIe5xo7C6Wew9NBCE5EYMGCbl/lzEs5rOgVngqtukOtej3RgIiK1SCowI9ZBRMgeYDIwB7gXGETg96KlPvjgAy677DIuueQSMjIyOOqoo6IQZsVt376dnJwcnnzySYqKDrZtSU5OJi0tjdtvv50mTZrEMEIREYk1JUxE4tWp/JVPOB64OMgZLYEhpX+y0QhKRKLNOr+cXhvk8E0GXg7jHplARoBDg1HCRKQ6agBsq+A175Z8iIhI1TjfWptkjCmMdSARtAnn/eIjOA3iy91yYa1l8eLFLF26lJtuuombb76ZunWD5fCjq6CggNmzZ3P//fezc+dOv2MpKSlkZ2dz0kknxSg6ERGJJyrJJRKv+lMEXIYz0Vk9C8KKSFVIIXCj5h8IP9nxbJDxKyw0rlRUIlKd7ASGgdHyChGRqtNs06ZNZ8Y6iCh5G6eSQRqwJdTJe/bsIScnh86dO7NgwQKsje2Pn1WrVtGzZ08yMjL8kiXHH388Tz31FPPmzVOyRERESilhIhLPfBTiwwf0AlZV4g5vkMCyqg1KRKIsWLP3+QbCWtFo4DPggwCHGgJXVjYwEakW3ge6g3kv1oGIiNQ0iYmJPWMdQxRZ4CngBJxFfftCXbB582ZGjRpFv379+OSTTyIdn8e6detIS0tjwIABfP7556XjTZo0YezYsSxbtow//elPUY9LRETimxImItWBj6X46EYCZwPZOMmTXwKcuR1YCWSSwOn46EwG1afznoj4sVCf4AmNYLtGggl2frCEjIhUT/uBj4EncMp6dgSjUlwiIhFgra2pjd/LswvwAacBC8K5YPXq1fTs2ZORI0fy448/RjI2AHbu3MmkSZPo0aMHubm5peMJCQn069ePvLw8RowYQXKy2n6KiIiXepiIVCcZvAW8VfrnadRlG4eRRCKF7MDHzuAXi0g1VAz8Icixbyp4r2kE/qVWJXpE4tdbQLswzy3CKb21E0xRqJNFRKRKnP3tt982P/bYY3+OdSAx8BXQH+gBPAR0KO/k4uJiFi5cyKuvvsott9zCn//8Z+rUqVOlARUXF/Pcc8+RnZ3tScx06dKFrKws2rdvX6WfU0REah4lTESqs5HsA76PdRgiEhnGKXWwrorutaeq7iUi0WL2otetiEg8S0xOTj4PWBTrQGLoNZwFPtcDE4HDyzv5wO6PZ599lgkTJpCaWjWbdFavXk1GRoan9NeRRx7JmDFj6Nu3b5V8HhERqflUkktEREREREREpHJqY1kut0Lg78DJOLuaQ/bZC9ZfpKI2b97MyJEjPX1SGjRoQHp6Oq+//rqSJSIiUiFKmIiIiIiIiIiIVM4FsQ4gjvwMjMIpz/WfcC5YtWoVPXv2ZPz48ezcGX6F6T179pCTk0Pnzp1ZuHAh1jpVZo0x9O7dmxUrVpCenk7dunUr8WWIiEhtpoSJiIiIiIiIiEjlHJefnx9uv6na4jPgIuBS4OtQJxcUFDBr1izOPvtsZs6cSVFR8FZc1loWL15Mt27dyMnJYd++faXHTj/9dJ5//nlmzJjBUUcdVQVfhoiI1EZKmIiIiIiIiIiIVFJxcXHPWMcQpxYD7YFbgZDbR7Zv305GRgY9evRg+fLlnuMffPABl112GcOHD2fTpk2l461atWLKlCm8+OKL/PGPf6y66EVEpFZSwkREREREREREpJKstUqYBFcATAVOwelzEnz7SIkvv/ySgQMHkpaWxoYNG8jPz2f06NFcfPHFrFmzpvS85ORkhg0bxqpVqxg0aBAJCZriEhGRQ5cU6wBERERERERERKqx8621ycaYglgHEsc2A8OBmcBDQOdQF+Tm5rJixQoSEhLYu3ev37HU1FSys7M55phjIhKsiIjUXkq/i4iIiIiIiIhUXuPNmzd3inUQ1cQaoCtwDfBdqJP379/vlyz57W9/y3PPPcfs2bNrZbJky5YtrF27ttw+LyIicmiUMBEREREREREROQTW2tRYx1CNWOCfwMnAGODXcC5q1aoVL7/8Muecc04kY4tL27dvZ+zYsZx11ln07t2bK6+8koICbWgSEYkEJUxERERERERERA6N+phU3G5gMnAaMD/Uyfn5+eTn50c8qHhSWFjIE088QefOnXniiScoLCwE4O233+bNN9+McXQiIjWTEiYiIiIiIiIiIofAGHPmxo0bW8Q6jmrqW2AAcDZQbhZg9+7dUQkoHuTl5dGrVy/Gjh3L9u3bPcd37twZg6hERGo+JUxERERERERERA5NYlJSUo9YB1HNvQV0AUbGOpBYWr9+PUOGDKF///58+umnsQ5HRKTWUcJEREREREREROQQqY9JlSgGFsQ6iFjYvXs3OTk5dO/enVdeeSXW4YiI1FpJsQ5ARERERERERKQG6BXrAKT6KS4uZv78+dx3331s3bo14DkdOnTg+++/56effopydCIitY92mIiIiIiIiIiIHLpjv/vuu5NiHYRUH++99x59+vThtttuC5gsad68OVlZWSxZsoQWLdQiR0QkGrTDRERERERERESkChhjegJfxDoOiW9btmzhnnvu4bnnnsNa6zmenJzM4MGDueOOO2jSpEkMIhQRqb2UMBERERERERERqQIJCQmpwCOxjkPi0969e5k1axYPPfQQu3btCnhOSkoK2dnZnHSSNiuJiMSCEiYiIiIiIiIiIlXAWtvdWptsjCmIdSwSX3Jzcxk3bhwbN24MeLxdu3b4fD7OP//8KEcmIiJlKWEiIiIiIiIiIlI1Gm/evPkcYGWsA5H48NFHH5GRkcFbb70V8HjTpk25+eab+ctf/kJycnKUoxMRETclTEREREREREREqk4qSpjUej///DMPPPAATz75JEVFRZ7jCQkJXHHFFWRkZPCb3/wmBhGKiEggSpiIiIiIiIiIiFSdnsD4WAchsVFQUMDs2bO5//772blzZ8BzunTpwv+zd+fxUVf3/sff30kGCEEIe0AQUFBQWQTELWFRBnqpsS0kYr0I1lC3iIgpEAqZJDNQEI0a1FpU/BnFhU2rAXsvUdAkQKsV9xVULFuCBRFlkSzf3x9jrNxMMgOzfCeT1/Ov65xz5nx6HzxgvvOe8zkul0v9+vULc3UAAF8ITAAAAAAAAIJn6J49ezp07dr131YXgvAqLS1Vdna2PvvsM6/jXbt21ezZs5WWlhbmygAA/iIwAQAAAAAACB6bYRiXS1ppdSEIj88//1y5ubl69dVXvY63bNlSt9xyi2677TY1b948zNUBAE4GgQkAAAAAAEAQmabpEIFJ1Pv222/14IMP6pFHHlFlZWWdccMwNGHCBM2bN0+dOnWyoEIAwMkiMAEAAAAAAAiuX1hdAEKnpqZGa9askcvl0v79+73OGTRokNxut4YMGRLm6gAAgSAwAQAAAAAACK5ue/bs6du1a9dPrC4EwVVWVqacnBx9/PHHXscTExM1Z84cpaamyjCMMFcHAAgUgQkAAAAAAEDwjZFEYBIlduzYoYULF6qoqMjreIsWLZSenq7p06erVatWYa4OABAsBCYAAAAAAABB9uM9JkusrgOBOXbsmO6991498sgjOn78uNc5V111lebNm6du3bqFuToAQLARmAAAAAAAAASZYRijtm3b1rxPnz4/WF0LTt0f/vAHPf/8817Hzj//fLndbl100UVhrgoAECoEJgAAAAAAAMEX36pVq0skvWZ1ITh1GzZsqPNahw4dlJWVpWuuuUY2m82CqgAAocLf6gAAAAAAACFgmuYYq2tAYKqrq0/47+uuu05lZWW69tprCUsAIArxNzsAAAAAAEBoEJhEmauvvlqtW7e2ugwAQIgQmAAAAAAAAITGBeXl5Z2sLgIAAPiHwAQAAAAAACA0bNXV1VdYXQQAAPAPgQkAAAAAAECI2Gw2h9U1AAAA/xCYAAAAAAAAhIhpmmNM0zSsrgMAAPhGYAIAAAAAABA6p5eXl59rdREAAMA3AhMAAAAAAIAQMk1zjNU1AAAA3whMAAAAAAAAQot7TAAAaAQITAAAAAAAAEJrxLZt25pbXQQAAGgYgQkAAAAAAEBotYyLi0uyuggAANAwAhMAAAAAAIAQi4mJoS0XAAARjsAEAAAAAAAgxLj4HQCAyEdgAgAAAAAAEHqD9u3bl2h1EQAAoH4EJgAAAAAAAKFnVFVVXWF1EQAAoH4EJgAAAAAAAOHBPSYAAEQwAhMAAAAAAIDwGGuapmF1EQAAwDsCEwAAAAAAgPBIrKioON/qIgAAgHcEJgAAAAAAAGFimuYYq2sAAADeEZgAAAAAAACEiWma3GMCAECEIjABAAAAAAAInxE7d+6Ms7oIAABQF4EJAAAAAABA+LSw2WxJVhcBAADqIjABAAAAAAAIL9pyAQAQgQhMAAAAAAAAwsgwDC5+BwAgAhGYAAAAAAAAhNeAr7/+uovVRQAAgBMRmAAAAAAAAISXUVlZOdrqIgAAwIkITAAAAAAAAMKPtlwAAEQYAhMAAAAAAIDwc5imaVhdBAAA+A8CEwAAAAAAgPDrvHv37oFWFwEAAP6DwAQAAAAAAMAChmHQlgsAgAhCYAIAAAAAAGABwzAcVtcAAAD+g8AEAAAAAADAGkl79uxpaXURAADAg8AEAAAAAADAGi0kDbe6CAAA4EFgAgAAAAAAYB3acgEAECEITAAAAAAAAKzDxe8AAEQIAhMAAAAAAADrnL9r165uVhcBAAAITAAAAAAAACwVExMz2uoaAAAAgQkAAAAAAIClTNPkHhMAACIAgQkAAAAAAIC1xpimyXc0AABYjH+MAQAAAAAArNVh7969g6wuAgCApo7ABAAAAAAAwHpjrC4AAICmjsAEAAAAAADAYtxjAgCA9QhMAAAAAAAALGYYRtK+fftaWV0HAABNGYEJAAAAAACA9ZpVV1cPt7oIAACaMgITAAAAAACACEBbLgAArEVgAgAAAAAAEBm4+B0AAAsRmAAAAAAAAESGc3fv3t3d6iIAAGiqCEwAAAAAAAAiB225AACwCIEJAAAAAABAhLDZbAQmAABYhMAEAAAAAAAgQpim6TBNk+9rAACwAP8AAwBgneaSrpDncs84i2sBAABAZGi/d+/ewVYXAQBAU0RgAgBA+BmS/lvSZ5JekfS/kj6XlC7+bQYAAIDnBzUAACDM+FIGAIDwGiKpRNJySWf87PUukh6T9E9Jwy2oCwAAAJGDwAQAAAsQmAAAEB5dJD0h6Q1JSQ3Mu0DSa5Ke04mBCgAAAJqOS/fv39/a6iIAAGhqCEwAAAgtu6Tpkj6RNEX+/dtrSJr445pFkk4LWXUAAACIRPZjx46NsLoIAACaGgITAABCJ0XSx5Lul3QqvxCMkzT7x/eYLE+QAgAAgCbAZrM5rK4BAICmhsAEAIDg6y/pVUkvSTorCO93uqRCSaWShgbh/QAAABDhTNPkHhMAAMKMwAQAgOBpL+nPkt6WdLk/C0aPHq1f/vKX/r7/ZZL+IWmZpMRTKRAAAACNxjnl5eW9rC4CAICmhMAEAIDAxUq6UZ47R26RFONrwZlnnqnCwkI9+eSTevTRR7V69Wqde+65/uxlk3SDpO2SciW1OOWqAQAAENFqampGW10DAABNCYEJAACBuULSVklLJXXwNbl169aaO3euNm7cKIfjP22pL730Uq1fv14FBQXq2LGjP/vGS8qR9IGktFOqHAAAAJGOe0wAAAgjAhMAAE5NH0krJb0iz50lDbLZbEpNTVVZWZkyMjJkt9u9zklLS1NpaakyMjLUrFkzf+o468c6XpU04KT+FwAAACDSjTZN0+fpZQAAEBwEJgAAnJx4eVphvS8/T3bUnh5ZsmSJOnTweQjlp1MoGzZsOOEUig+Xy3N3ypOS/DqiAgAAgIjXtqKiYqjVRQAA0FQQmAAA4B+bpMmSPpenFVZzXwu6du2qgoKCk7mf5AS195ysWLFC55xzjr81XifpU0mzJfl1RAUAAACRyzTNMVbXAABAU0FgAgCAb8MkbZJUKKmzr8lxcXHKzMzUpk2blJYW+PUiycnJWr9+vRYvXqx27dr5s6StpEWS3pM0LuACAAAAYBnTNLnHBACAMCEwAQCgft3kaXH1d0kX+5psGIZSUlJUUlKizMxMNW/u8xCK3+x2uyZNmqSysjKlp6crJsavVtbnSFonqVjSyR9xAQAAQCS45MCBA22sLgIAgKaAwAQAgLpaytPS6mN5WlwZvhYMHDhQL774opYuXarTTz89ZIUlJCTI7XZrw4YNGjlypL/LRkt6R1KBJB62AQAAGpfYo0ePjrS6CAAAmgICEwAATpQi6SN5Wlq18jW5c+fOWrx4sdatW6ehQ8N3H2efPn30zDPPqLCwUD169PBniV3S7fLcwTJdkl9HVAAAABARaMsFAEAYEJgAAOAxWFKppJck+Uwg7Ha70tPTVVpaqkmTJslms+afVIfDoZKSErlcLrVq5TPfkaT2ku6X9Iak5JAWBwAAgKAwDIOL3wEACAMCEwBAU9dBnlZVb0hK8mdBbUjhdrv9DSlCym63a+rUqScb3gyWVCKpSFLPUNYHAACAgPWpqKg40+oiAACIdgQmAICmyi5Pa6rP5WlV5bNF1Sm0wQqrU2wPdqVOogUZAAAArFFdXU1bLgAAQozABADQFKXIc6H7/ZJa+5qckJAgl8t1shetW+YULqCPk+eS+08kTZYfl9wDAAAg7AhMAAAIMQITAEBT0lfSy/LcU3KWr8l2u12TJk1SWVmZpk6dqpiYxnNPumEYSklJUUlJiTIzM9W8eXN/lp0uqVDS3yVdHNICAQAAcLKuME0z1uoiAACIZgQmAICmoK0895S8L+m//FmQnJys9evXa/HixWrXrl1IiwuluLg4ZWZmatOmTUpNTfV32TBJmyU9KSkxZMUBAADgZCTs3r37QquLAAAgmhGYAACiWaykGyV9Ks89JT5/kXfmmWeqsLBQK1as0DnnnBPq+sKma9euWrJkiVavXq1zzz3XnyWGpOskbZeUK6lFCMsDAACAH2JiYsZYXQMAANGMwAQAEK0ul7RV0lJJHX1Nbt26tebOnasNGzbI4Yje9tCXXnqp1q9fr4KCAnXo0MGfJfGScuQ5nZMW0uIAAADQINM0o/eDKgAAEYDABAAQbXpLWinpVUn9fU222WxKTU1VaWmpMjIy1KxZs5AXaDWbzaa0tDSVlZUpIyNDdrvdn2Un9f9XAAAAhMTFX331VVuriwAAIFoRmAAAokW8PK2jPpCfJyEuueQSrV+/XkuWLFHHjj4PoUSd2lM1GzduPJlTNSd1cgcAAABBFWO320daXQQAANGKwAQA0NgZkibLc9dGjqTmvhZ06dJFBQUFJ3OfR1Q7hXtbfn43zHT5cTcMAAAAgoZ7TAAACBECEwBAYzZM0mZJhZISfU2Oi4tTZmamNm/erLS0NBmGEfICG5Pk5GStX79eLpdLrVu39mdJW0n3y3OqZ1xIiwMAAECtX1hdAAAA0YrABADQGJ0u6UlJf5d0sa/JhmEoJSVFr7/+ujIzM9W8uc9DKE2W3W7X1KlTtWXLFqWnpysmJsafZedIWiepWFK/kBYIAACAnjt37uxtdREAAEQjAhMAQGMSJ2m2pE8kXSdPO64GDRw4UH/961+1dOlSdevWLdT1RY22bdvK7Xbrf/7nf3TxxT4zqVqjJb0rqUCSX0dUAAAAcPJiY2NpywUAQAgQmAAAGosUSR9JWiSpla/JnTt31uLFi7Vu3TpdeOGFIS8uWp133nl6/vnnVVhYqDPOOMOfJXZJt0v6XJ77Tfw6ogIAAAD/mabpsLoGAACiEYEJACDSDZZUIuklST19Tbbb7UpPT1dJSYkmTZokm41/6oLB4XDotdde09y5c9Wqlc+8SpI6yHO/yRuSkkNaHAAAQNNzhWmadquLAAAg2vAtEgAgUrWXp7WT31+4OxwOlZSUyO1267TTTgtpcU1RixYtlJGRodLS0pMJo2oDryL5EXgBAADAL6ft3bv3IquLAAAg2hCYAAAijV2eVk6fy9PayWdLpz59+ujpp59WYWGhevToEer6mrzadmdr167V0KFD/V12paQP5WdLNQAAADSMtlwAAAQfgQkAIJKMlvSOPK2c2vianJCQIJfLpQ0bNmjUqFEhLw4nGjRokF588UUtXbpUp59+uj9LWkqaLekTSZMlGaGsDwAAIMpx8TsAAEFGYAIAiATnSFonqVjSub4mx8bGatKkSSorK9PUqVMVE8O94lYxDEMpKSl6/fXXlZmZqebNm/uz7HRJhZL+LunikBYIAAAQpQzDuHDnzp3trK4DAIBoQmACALBSW3laNL0naZw/C5KTk7V+/XotXrxY7drxfBgpWrZsqczMTG3atEmpqan+LhsmaZOkJyUlhqw4AACA6BQTGxt7udVFAAAQTQhMAABWiJV0o6RP5WnR1MzXgl69emnp0qVasWKF+vbtG+r6cIq6du2qJUuWaNWqVerXr58/S2ySrpO0XVKuJL+OqAAAAIB7TAAACDYCEwBAuF0u6S1JSyV19DU5Pj5emZmZ2rhxo1JSUkJeHILjsssuU3FxsQoKCtShQwd/lsRLypH0gaS0kBYHAAAQPcZaXQAAANGEwAQAEC69Ja2U9KqkAb4m22w2paamavPmzcrMzFSzZj4PoSDC2Gw2paWlqbS0VBkZGbLb7f4sq/1z8oqk/iEtEAAAoPHrsWvXrrOtLgIAgGhBYAIACLV4eVotvS8/Tw4MHjxYL730kpYsWaKOHX0eQkGEa9OmjebOnauNGzdqFO4m0AAAIABJREFU9OjR/i67QtJW+XkSCQAAoKkyDGOM1TUAABAtCEwAAKFiSJosz90UOZJa+FrQpUsXFRQUqKioSIMHDw51fQizM888U08++aRWrFihs8/264eQtXfdfCJp+o//DQAAgJ+x2WzcYwIAQJAQmAAAQuFCSZskFUpK9DU5Li5OmZmZ2rRpk9LS0mQYRsgLhHWSk5NVXFwsl8ul1q1b+7OknaT75Tml9F8hLQ4AAKCRMU1zlGmafvU+BQAADSMwAQAE0+mSnpT0D0mX+JpsGIZSUlL0+uuvKzMzUy1a+DyEgihht9s1depUbdmyRenp6YqJifFnWV9JL0sqknRWSAsEAABoPE7bu3evz8/eAADANwITAEAwxEmaLeljSdfJ046rQQMGDNALL7ygpUuXqlu3bqGuDxGqbdu2crvd+tvf/qaLL77Y32VXyvNnrUCSX0dUAAAAohxtuQAACAICEwBAoFIkfSRpkaTTfE3u3LmzFi9erJdfflnDhg0LeXFoHM4//3w9//zzKiws1BlnnOHPEruk2+W53+RGSX4dUQEAAIhSXPwexX744QcdPXrU6jIAoEkgMAEAnKoLJL0u6SVJPX1NttvtSk9PV0lJiSZNmiSbjX+CUJfD4dBrr72muXPnqlWrVv4s6SJpqTxt4JJCWhwAAEDkGrpnz54OVheB4Fu3bp1GjBihXbt2WV0KADQJfFsFADhZ7eVphfSmpOH+LHA4HHr99dfldrt12mk+D6GgiWvRooUyMjJUUlKi1NRUGYbPDm+SNERSiaSVknqEtEAAAIDIYzMM43Kri0DwfPTRR0pNTdXvf/97/etf/6ozTltjAAgNAhMAgL/skqZL+lyeVkg+WyD17t1bTz/9tAoLC9WzZ88Ql4dok5iYqCVLlmjdunUaMmSIP0sMSWn6T4s4v46oAAAARAPTNLnHJArs379fs2fP1tixY7V58+Y64zExMZo2bZoGDhxoQXUAEP0ITAAA/hgt6R1J90tq42tyQkKCXC6XNmzYoFGjRoW8OES3QYMG6aWXXlJBQYE6derkz5KWkmbLczH8ZHmCFAAAgGj3C6sLwKmrrKzU8uXLNWLECD311FOqrq6uM2fw4MF68cUXNWfOHAsqBICmgcAEANCQcyStk1Qs6Vxfk2NjYzVp0iSVlZVp6tSpio2NDXmBaBoMw1BaWpo2b96szMxMNW/e3J9l3SQVStoi6aKQFggAAGC9bnv27OlrdRE4eaWlpRo7dqxmzZqlAwcO1Bnv0qWLCgoKVFRUpMGDB1tQIQA0HQQmAABv2srT0ug9SeP8WZCUlKT169dr8eLFateuXUiLQ9PVsmVLZWZmatOmTUpNTfV32UWSNkt6UlLnkBUHAABgvTFWFwD/ffnll7rppps0ceJEffLJJ3XG4+Lifvrsm5aW5u/dfgCAABCYAAB+ziZPC6NP5Glp1MzXgl69emnp0qVauXKl+vblB20Ij65du2rJkiVatWqV+vXr588Sm6TrJG2XlCvJryMqAAAAjQyBSSNw6NAhLViwQKNGjVJRUVGdccMwlJKSotdff12ZmZlq0aKFBVUCQNNEYAIAqDVK0tvytDDyeVFE7S/9N27cqJSUlJAXB3hz2WWXqbi4WAUFBWrfvr0/S1pJypH0vjwXxAMAAESTkdu2beOHIRGqpqZGq1atUnJysh566CEdP368zpwBAwbohRde0NKlS9WtWzcLqgSApo3ABADQXZ5WRRskDfA12WazKTU1VVu2bFFmZqaaNfN5CAUIKZvNprS0NJWVlSkjI0N2u92fZX0krZT0iqTzQ1ogAABA+MS3atXqUquLQF1btmzR2LFjNX36dH399dd1xjt37qzFixfr5Zdf1rBhwyyoEAAgEZgAQFMWL09ros/kaVXk0+DBg/Xiiy9qyZIl6tixYyhrA05amzZtNHfuXG3YsEFXXHGFv8uukOdk1VJJHUJWHAAAQJiYpumwugb8x969e3X77bcrNTVVH374YZ1xu92u9PR0lZSUaNKkSbLZ+KoOAKzE38IA0PQY8rQi+lie1kQ+G+J26dJFBQUFKioq0pAhQ0JdHxCQs846S0899ZRWrFihs88+258lsZJulPSppOk//jcAAEBjxT0mEeDo0aPKz8/XZZddptWrV8s0zTpzHA6HSkpK5Ha7ddppp1lQJQDg/yIwAYCm5UJJm+RpRdTd1+S4uDhlZGSopKREaWlpMgwj5AUCwZKcnKzi4mK5XC61bt3anyXtJN0vz/0mvwhpcQAAAKFzQXl5uc87CREapmmqqKhII0aMUH5+vo4dO1ZnTu/evfX000+rsLBQPXr0sKBKAEB9CEwAoGnoKs89Jf+QdIk/CxwOh15//XXNnTtX8fHxIS0OCBW73a6pU6dqy5YtSk9PV0xMjD/L+kr6m6TNkgaHtEAAAIDgs1VXV/vdnxTB89577+nXv/61brrpJu3atavOeEJCglwulzZs2KBRo0ZZUCEAwBcCEwCIbnGSsvWfe0p8HhEZOHCgXnrpJRUWFqpbt26hrg8Ii7Zt28rtdmvdunUnc4nmJZLekrQsdJUBAAAEn81m4x6TMKqoqNCsWbM0btw4vfnmm3XGY2NjNWnSJJWVlWnq1KmKjaUDLABEKgITAIheV8tzT4lLngveG9SpUyfdd999WrdunYYOHRry4gArDBgwQC+88IIefvhhde3a1d9lN4he4AAAoBExTXOMaZr00w2xyspKPfbYYxo+fLiWL1+umpqaOnOSkpK0fv16LV68WO3atbOgysh36NAhrVmzRmVlZVaXAgAEJgAQhS6Q9LqkFZJ8NsRt1qyZMjIyVFZWpokTJ8pm458GRDfDMPSrX/1KpaWlmjFjhr9380wNdV0AAABBdHp5efm5VhcRzYqLizV8+HA5nU599913dcZ79eqlpUuXauXKlerbt68FFUa+6upqPfXUU7r00ks1bdo0XX311VqyZInVZQFo4jgDCADRo5Ok+ZLS5Wcg/otf/EJOp1M9e/YMZV1ARHr33XdVXFws0zStLgUAACDoTNMcI+lDq+uINh9//LEWLVqkTZs2eR1v3bq17rjjDqWnp8tut4e5usZj06ZNysnJ0UcffXTC688995xuv/12i6oCAAITAIgGzSRNk+eukjb+LOjbt6/y8vKUnJwc0sKASLRr1y653W4VFRWd8HpcXJwSEhK0d+9eb8s+8vYiAABABHNIus/qIqLNrFmzvL5us9k0fvx4ZWdnq2PHjmGuqvHYs2ePFi1apNWrV3sd/+GHH8JcEQCciL4rANC4XSnpfUn3yI+wpG3btlqwYIHWr19PWIIm58iRI7r77rs1fPjwE8ISwzCUkpKikpKShu41ORaWIgEAAIJnxLZt25pbXURTcPHFF+t//ud/tGTJEsKSehw+fFiLFi3SZZddVm9YAgCRgBMmANA4nS3pXkm/9GdybGysrrnmGs2ePVvt27cPbWVAhDFNU2vXrpXb7dauXbtOGBs4cKBcLpcuvPBCi6oDAAAImZZxcXFJkl61upBo1aVLF2VlZSk1NdXfe/GanNrP4i6XS7t377a6HADwicAEABqXBElZkmbI04rLp6SkJOXl5alfv34hLQyIRO+9956cTqfeeOONE17v3LmzMjMzde2118pm48AtAACITjExMQ4RmATE22fFli1bKiMjQ7fccotatGhhQVWNw9atW+V0OrV161av4+3atdPo0aO1cuXKMFcGAPXjGwIAaBxskiZL+lTSbPkRlvTs2VNLly7VypUrCUvQ5FRUVGjWrFkaN27cCWGJ3W7X1KlTVVJSokmTJhGWAACAqPbjxe8IwLBhw376vw3D0Pjx41VaWqoZM2YQltSj9rP4VVdd5TUssdvtmjRpkkpKSvSb3/zGggoBoH6cMAGAyDdKnssaB/ozuWXLlrrllls0bdo0NWvm1yEUIGpUVlaqsLBQd999t7777rsTxhwOh1wul3r06GFRdQAAAGE3aN++fYmdOnUqt7qQxqqgoEBLlizRN998o0mTJmnIkCFWlxSxaj+LL168WN9//73XOcnJycrLy1Pfvn3DXB0A+IfABAAiV3dJCyRd589kwzA0YcIEzZs3T506dQptZUAEKi4uVk5Ojnbs2HHC63369FFeXp5GjhxpSV0AAAAWMqqqqq6Q9LTVhTRWCQkJcjqdVpcR8YqLi+V0OvXVV195He/Vq5eysrKUkpIS5soA4OQQmABA5ImXNFOe1lt+nfG+4IIL5HK5+LUTmqTt27crNzdXGzZsOOH1hIQEZWZm6vrrr1dMTIxF1QEAAFjOIQIThMi2bduUk5Oj1157zet4fHy8br75ZjogAGg0CEwAIHIYklIl3SPpDH8WJCYmas6cOUpNTZVhGCEtDog0Bw8eVH5+vgoLC1VVVfXT63a7XRMnTlRWVpbatWtnYYUAAAARYaxpmoZhGKbVhSB61H4Wf+KJJ1RdXV1n3Gazafz48crOzlbHjh0tqBAATg2BCQBEhqGSCiRd6s/kFi1aKD09XXfccYfi4+NDWxkQYaqqqvTcc8/prrvu0v79+08YoycyAABAHYkVFRXnS3rf6kLQ+FVWVmrFihVatGiRDhw44HXOJZdcIpfLpfPOOy/M1QFA4AhMAMBaXSXlSJoqyebPAofDofnz56t79+4hLQyIRGVlZcrJydHHH398wuv0RAYAAKifaZpjRGCCAJWWlionJ0effPKJ1/EuXbooKyuLDggAGjUCEwCwRjNJt0hySzrNnwX9+/eXy+XSRRddFNLCgEi0Y8cOLVy4UEVFRSe8Tk9kAAAA30zTdEjKt7oONE5ffvmlFi1aVOezeK24uDjdeuutysjIUIsWfl3DCQARi8AEAMIvRZ72W738mdy2bVvNmDFDv/vd77i4Gk3OkSNH9PDDD+uBBx7Q8ePHf3rdZrNpwoQJmjdvHj2RAQAAfBuxc+fOuO7dux+1uhA0HocOHdIDDzygRx999ITP4rUMw9CVV16p7OxsdevWzYIKASD4CEwAIHz6SbpP0lh/Jtvtdk2ePFkzZ85U69atQ1sZEGFqamq0Zs0azZ8/X19//fUJY/REBgAAOGktbDZbkqRiqwtB5Kuurtazzz7r9c7AWhdccIFcLpeGDBkS5uoAILQITAAg9NrJc09JhiS/jogkJydr/vz56tOnT0gLAyLR22+/LafTqbfeeuuE17t06aI5c+ZowoQJ9EQGAAA4eWNEYAIftmzZIqfTqQ8//NDreOfOnTVnzhylpaUF/Jl89+7devzxxwN6DwAINgITAAidOEmPSZogqbk/C8455xzl5eVp+PDhIS0MiES7d++W2+1WUVGRTNP86XV6IgMAAATOZrONkTTT6joQmXbu3Cm32621a9d6HW/evLluvPFG3X777YqPjw9or6NHj+qhhx7Sn//8Zx07duyEMe4lBGA1AhMACI1YSV9J8utyhYSEBM2cOVPXXXedYmP5qxlNS30PTPREBgAACB7TNPt//fXXXTp27LjX6loQOY4cOaIHH3xQDz/8sH744Qevc8aNG6fs7Gz16NEjoL1M09Rf//pXzZ8/X3v3ev9j+Mtf/jKgPQAgUHwrBwCh4ZYfYUlsbKyuu+46zZw5UwkJCWEoC4gcpmnqxRdf1Pz587Vnz54TxgYMGCC3260LL7zQouoAAACijlFVVeWQ9KTVhcB6pmnq+eef14IFC1ReXu51Tr9+/ZSXl6ekpKSA93v33XeVnZ2tf/7zn17HExISNGvWLE2ePDngvQAgEAQmABAaw3xNiImJ0WOPPaYxY8aEox4gorz77rtyOp168803T3i9c+fOyszM1LXXXiubzWZRdQAAANHJNE0CE+i9995TdnZ2nc/itRISEnTnnXfq+uuvD7gDwoEDB3TffffpiSeeUHV1dZ3x2NhYXXPNNZo9e7bat28f0F4AEAwEJgAQGt/4mlBdXa0bb7xRv//97zV9+nS1atUqHHUBltq3b58WLlyoVatWqaam5qfX7Xa7pkyZopkzZ+q0006zsEIAAICo5jBN0zAMw/Q9FdGmoqJC+fn5euaZZ074LF6rNrzIyspSu3btAtqrsrJShYWFuvvuu/Xdd995nZOUlKS8vDz169cvoL0AIJgITAAgND71Z9Lx48f10EMPafXq1crKylJaWhq/qkdUOn78uB599FEVFBTo+++/P2HM4XDI5XIF3BMZAAAAPnXevXv3QEnvWF0Iwsff8MLlcqlv374B71dcXKycnBzt2LHD63jPnj01Z84cpaSkBLwXAAQbgQkAhEbdn+s0oKKiQjNmzFBhYaFcLpeGDh0aqrqAsPvf//1f5eXl1Xlg6t27t/Ly8jRq1ChrCgMAAGiCDMMYIwKTJqO4uFhOp1NfffWV1/FevXopKysrKOHF9u3blZubqw0bNngdb9mypW655Rbddtttat68ecD7AUAoEJgAQAR55513dNVVV8nhcGjBggXq1q2b1SUBp+zzzz9XTk5OnQemhIQEZWZmasqUKQH3RAYAAMDJMQzDIWmx1XUgtLZv366cnBxt3LjR63h8fLxuvvlmTZs2Tc2aNQtor2+//Vb33HOPCgsLVVVVVWfcMAxNmDBB8+bNU6dOnQLaCwBCjW8pACC8vpXUxtek4uJilZWV6YYbbtAdd9yh+Pj4MJQGBEd9D0zB7IkMAACAU5ZcXl4en5iYeNjqQhB8Bw8eVH5+fr3hhc1m0/jx45Wdna2OHTsGtFdVVZWee+453XXXXdq/f7/XORdccIFcLpeGDBkS0F4AEC40ygeA8HpT0tWSdvqaePToUT300EMaPny4Vq1aJdPkXkZEtqqqKi1fvlxJSUlatmzZCQ9oSUlJWr9+vRYvXkxYAgAAYK3mNTU1yVYXgeBq6LN4rcGDB+ull17SkiVLAg5LysrKNHbsWM2aNctrWJKYmKiCggKtXbuWsARAo0JgAgDht0pSP0l5ko75mrx3715Nnz5dKSkpeuutt0JeHHAq6ntg6tWrl5YuXaqVK1cG5QJJAAAABIXD6gIQPGVlZRozZoxmzZqlAwcO1Bnv0qWLCgoKVFRUpMGDBwe0144dO3TTTTfp6quv1scff1xnvEWLFsrIyFBpaanS0tJkGEZA+wFAuNGSCwCscVhSrqRlkhZIus7Xgq1bt+pXv/pV0I5PA8GwY8cOLVy4UEVFRSe8HsyeyAAAAAi6MVYXgMB9+eWXWrRoUZ3P4rXi4uKC1ub5yJEjevjhh/XAAw/o+PHjXuc4HA7Nnz9f3bt3D2gvALASgQkAhFHz5s3tP/zww89f2ilpsqT/J+l+SQMaWl9TU6PVq1frb3/7G19Gw1L1PTDZbLafLnQk1AMAAIhY5+/atatbt27ddlldCE7e4cOH9Ze//MVneLFgwQJ169YtoL1M09Tq1au1YMEC7du3z+uc/v37y+Vy6aKLLgpoLwCIBLTkAoAwat++fX2XN2yUdIGkKZK8fwr9mcOHDys/P1+jRo2q99dEQCiYpqlVq1bp0ksvVX5+/gkPaIMHD9aLL76ogoICwhIAAIAIFxMTM9rqGnByampq6v0sXmvAgAH661//qsLCwoDDkrfffltXXXWVpk+f7jUsadu2rVwul15++WXCEgBRg8AEAMKoTZs2Dd12XSPpSUl9Jd0lyftPhX7myy+//Kl/7CeffBKkKgHv6ntg6tKli5YsWaKioiIudAQAAGgkTNPkHpNGZOvWrT99Fv/666/rjHfu3FmLFy/WunXrNGzYsID2Ki8v1+23364rr7zS6z2adrtd6enp2rJli6ZOnaqYmJhT3uvYsWO67777NGzYMP3qV7/S9u3bAykdAAJGSy4ACKOEhIQOfkz7RlKWPG267pU0zteC2kv+rrnmGmVlZaldu4ZyGeDklJeX609/+pPWrFkj0zR/ej2YPZEBAAAQdmNM07QZhlFjdSGo3969e7Vw4cI6n8Vr2e12TZ48WbNmzdJpp50W0F7Hjh3TsmXLdP/99+vw4cNe5yQnJ8vtduvss88OaC9JeumllzR//nzt2uXpDLdr1y7NmTNHq1atCvi9AeBUEZgAQBjFxsY237NnT9+uXbv6cxzkU0m/lDRaUoGkcxuaXFVVpeXLl2vt2rW68847df311ys2lr/mceoaemAKVk9kAAAAWKbD3r17B0naanUhqOvo0aN6/PHHGwwvHA6H8vLy1LNnz4D3Ky4u1rx587Rz506v42eddZZyc3N1xRVXBLzXBx98IKfTqb///e91xr744ouA3x8AAsE3aQAQfmMknUz/rFckDZJ0q6Q8SW0amnzw4EE5nU49+eSTysvL06hRo069UjRZ9T0w9e/fX263O+Bj/gAAAIgIY0RgElFM09TatWvldrt/Onnxf/Xu3Vu5ubm6/PLLA97v/fffl9Pp1D/+8Q+v423atNFtt92mG2+8UXa7PaC9/v3vf+uuu+7Ss88+q5oaDjYBiEzcYQIAYXaKvYIr5TllcpakJZKqfS3Yvn27/vu//1tTpkzRV199dQpboil6//339Zvf/EZTpkw5ISyp7Yn88ssvE5YAAABECe4xiSzvvfeefvOb3+imm27yGpa0adNGLpdLGzZsCDgs+eabb5Sdna1x48Z5DUtsNptSU1NVVlamjIyMgMKSyspKPfbYY0pKStLTTz9NWAIgonHCBADCzDCMUdu2bWvep0+fH05h+X5J0yU9IU+AkuxrQXFxsV577bWg9bVFdPrmm29077336oknnlB19X/yOLvdrilTpmjmzJn82QEAAIgyhmEk7du3r1WnTp2+t7qWpqyiokL5+fl69tlnT/gsXis2NlbXXHONZs+erfbt2we0V2VlpQoLC3XPPffo0KFDXudcdtllcrlc6tevX0B7SZ7n0by8vHpbbcXHx9fbcgwArEBgAgDhF9+qVatLJL0WwHu8LWm4pBR5Tpz0bGhyZWWlli1bprVr1yozM1PXXnutbDYOGaLhB6Zg9kQGAABARGpWXV09XNLLVhfSFNV+Fr/77rv13XffeZ2TlJSkvLy8oIQXpaWlys7O1meffeZ1vGfPnpozZ45SUlIC3uuLL75Qbm6uXnnlFa/jcXFxuvXWW9W/f39df/31Ae8HAMHCt2UAYAHTNMcE6a2K5LkMPkuS90/YP1NRUaFZs2Zp3LhxeuONN4JUAhqr0tJSORwOOZ3OE8KS3r17a/ny5SosLCQsAQAAiHK05bJGcXGxRowYIafT6TUs6dmzp5YuXaqVK1cGHJZ8/vnnuu666zRx4kSvYUnLli2VmZmpjRs3BhyWHDp0SAsWLNCoUaO8hiWGYSglJUUlJSXKzMxU8+bNA9oPAIKNEyYAYI0xkv4YpPc6KukuScslLZQ0SZLR0ILa3rhXXnmlsrOz1a1btyCVgsbg888/V25url599dUTXm/Tpo3+8Ic/aMqUKYqN5SMCAABAExGsH3PBD9u3b1dubq42bNjgdbxly5a65ZZbNG3aNDVr1iygvb799ls9+OCDeuSRR1RZWVln3DAMTZgwQfPmzVOnTp0C2qumpkZr1qyR2+3Wv//9b69zBg4cKLfbraFDhwa0FwCEEt+GAIA1LigvL++UmJi4L4jvuVvSZEkPyHO/ySUNTTZNU0VFRXrllVd06623KiMjQy1atAhiOYg09T0wBbMnMgAAABqdc3fv3t399NNP32l1IdHs4MGDys/PV2FhoaqqquqMBzO8qKqq0nPPPae77rpL+/fv9zpn0KBBcrvdGjJkSEB7SdKmTZuUk5Ojjz76yOt4586daQ0NoNEgMAEAa9iqq6uvkPRsCN77TUmXSbpOnpMniQ1NPnr0qPLz8/XMM88oKytLqampMowGD6igkan9tZfL5arzwBTMnsgAAABotBySHre6iGjkT3hxwQUXyOVyBSW8KCsrU05Ojj7++GOv44mJiZozZ05Qnvv27NmjRYsWafXq1V7H7Xa7Jk+erNmzZ6tVq1YB7QUA4UJgAgAWsdlsDoUmMJEkU9KTktZImilptqQGj4/s3btX06dP13PPPSeXy6XzzjsvRKUhnOp7YArmhY4AAABo3Gw22xgRmARdOMOLHTt2aOHChSoqKvI63qJFC6Wnp2v69OkBhxdHjhzRww8/rAcffFA//PCD1zkOh0Nut1tnnHFGQHsBQLgRmACARUzTHGOapmEYhhnCbQ5LypXnfpM/SUrztWDLli0aO3asxo8fr+zsbHXs2DGE5SFU6ntgCmZPZAAAAEQH0zRHm6ZpMwyjxupaooGv8CIuLk433HCD7rjjDsXHxwe0VzjDC9M0tXbtWrlcLu3evdvrnD59+igvL08jR44MaC8AsAqBCQBY5/Ty8vJzJX0Yhr22S7pa0uWS7pM0oKHJNTU1Wr16tf72t7/p5ptv5sv1RqS+BybDMJSamqq5c+cG3BMZAAAAUad9eXn5EHna++IU1X4Wf+CBB3T8+HGvcxwOh+bPn6/u3bsHtJdpmlq9erUWLFigffu8X415/vnny+Vy6eKLLw5oL0l69913lZ2drX/+859exxMSEnTnnXfqd7/7nWJiYgLeDwCsQmACABYyTXOMwhOY1NogaYikGyTNl9Tg8ZHDhw8rPz9fzz//vLKysmjfFMEaemAKZk9kAAAARKcfn00ITE5B7Z2BDYUX/fv3l8vl0kUXXRTwfu+8846ys7P11ltveR1v27atZsyYEZTwoqKi4qc7L2tq6h5Aqr2nZObMmWrdunVAewFAJCAwAQBrOeQ58RFOVZIekbRKnrtNZkhq8PjIl19+qZtuuknLly9XXl6e+vbtG4Yy4a/6HpgSExP1xz/+URMmTAi4JzIAAACinkPSAquLaGzefvttOZ3OesOLdu3a6Y477ghKeFFeXq4//elPWrNmjUyzbmfnYIYXlZWVKiws1OLFi/X99997nZOcnCyXy6VzzjknoL0AIJIQmACAtUbju1XVAAAgAElEQVRs27ateZ8+fbw3mw2tbyRlSfp/ku6VNM7XgtLSUo0dO1YTJ05UVlaW2rVrF+oa0YD6HpiC2RMZAAAATcal+/fvb92+fftDVhfSGPgbXsyaNUunnXZaQHsdO3ZMy5YtU0FBQYPhhdvt1tlnnx3QXpJUVFSk+fPna+fOnV7He/furdzcXF1++eUB7/XNN98E/B4AEEwEJgBgrZZxcXFJkl61sIZPJf1S0mhJSyT1a2hyZWWlli9frrVr19Kj1iINPTAFqycyAAAAmhz7sWPHRkjyflM5JElHjx7V448/rvvvv1+HDx/2Oic5OVnz589Xnz59At6vuLhY8+bNqze8OPPMM5Wbm6vRo0cHvNeHH34op9OpLVu2eB1v3br1T8+Adrs9oL0OHDigxYsX6+mnnw7ofQAg2AhMAMBiMTExDlkbmNR6RdJASbdKypPUpqHJBw8elNPp1FNPPaW8vDyNHDkyDCWiuLhY2dnZ+te//nXC68HsiQwAAICmyWazOURgUi9f4cVZZ52l3NxcXXHFFQHv9cEHH8jpdOrvf/+71/E2bdrotttu04033hhweLF//37dddddevbZZ1VdXV1nPCYmRtdee61mzZql9u3bB7RXbauv/Px8ffvtt3XGu3XrFtD7A0CgCEwAwGI/Xq6YZXUdP6qUVCBpuSSnpAxJDR4f2bZtm6699lo5HA65XC716NEjDGU2PfU9MLVt21Z33nmnrr/+ek76AAAAICA/Ppvg/3j//ffldDr1j3/8w+t4mzZtlJmZqeuvv16xsYF91fbNN9/o3nvv1RNPPOE1vLDZbBo/frycTqc6dOgQ0F6VlZV6/PHHdd999+nQIe+d2C699FK5XC6de+65Ae0lSRs3blRubq62bdvmdfyMM87QggVcowPAWgQmAGC9Qfv27Uvs1KlTudWF/Mx+SdMlFUq6X1KyrwXFxcV67bXXgtanFx71PTDZ7XZNmTJFf/jDHwK+0BEAAAD40Tnl5eW9EhMTv7S6kEhw4MAB3XffffWGF7Gxsbrmmms0e/bsoJ28uOeee+oNLy677DK5XC7169dgF2W/lJaWyul06tNPP/U63qVLF2VlZSk1NVWGYQS015dffqlFixapqMj74SXuYAQQSQhMAMB6RlVV1RWSIrF561ZJwyWlyHO/Sc+GJldWVmrZsmVau3atMjMzde2118pms4WhzOjT0ANTMHsiAwAAAD9XU1MzWtKjVtdhpdrP4nfffbe+++47r3OSkpKUl5cXtPAiOztbn332mdfxrl27avbs2UpLSwt4ry+++EJ5eXkqLi72Oh4XF6dbb71Vt912m5o3bx7QXocPH9Zf/vIXPfDAAzp+/HidccMwdOWVVyo7O5tWXAAiBoEJAEQGhyIzMKlVJM89K9MkzZPUqqHJFRUVmjVrlp5++mm5XC5deOGF4agxatT3wBTMnsgAAABAPRxqwoFJaWmp5s2bV2/bqJ49e2rOnDlKSUkJeK/PP/9cubm5evVV71datmzZUrfccktQwotDhw7pgQce0KOPPtpgeOF0OnX66acHtFdNTY3WrFmj+fPn6+uvv/Y6Z8CAAXK5XBo2bFhAewFAsBGYAEBkGGuapmEYhml1IQ04Iukuee43WShpkqQGz2a/++67+vWvfx20D97R7osvvlBubq5eeeWVE14P5oWOAAAAgA+jTdOMMQyjbg+qKBbO8OLbb7/Vgw8+qEceeUSVlZV1xkMRXrjdbv373//2OmfgwIFB+6Hb1q1b5XQ6tXXrVq/jnTt3VmZmpn77299yByOAiERgAgCRIbGiouJ8Se9bXYgfdkuaLOlBeS6Iv7ihyaZpqqioSK+88krQjnZHm/oemILZExkAAADwU9uKioqhkrzfcB5lvv32W91zzz0qLCxUVVVVnXHDMDRhwgTNmzdPnTp1Cmgvf8KLQYMGyeVyaejQoQHtJUmbN2+W0+nURx995HW8NrwIRivlvXv3auHChVqzZo1Ms+7vAO12O/ddAmgUCEwAIEKYpjlGjSMwqfWGpEslXSfPyZPEhiYfPXpU+fn5evbZZzV79uygXB7Y2DX0wBTMnsgAADQBMZJukTRFPk7AAj/T0eoCItWPzyZRHZhUVVXpueee01133aX9+/d7nXPBBRfI5XJpyJAhAe+3adMmOZ1Offzxx17Hgxle7NmzR4sWLQpLeHH06FH9+c9/1kMPPaRjx455neNwOJSXl6eePXsGtBcAhAOBCQBECNM0HZLyra7jJJmSnpS0RtJMSVmSGjw+smfPHk2fPl0rVqyQy+XSueeeG4YyI099D0zB7IkMAEATMVjSw5JohA8EyY/PJm6r6wiVsrIy5eTk1BteJCYmas6cOUH5kVdteLF69Wqv4y1atFB6erqmT5+uVq0avCrSp9rw4sEHH9QPP/zgdY7D4ZDL5VKPHj0C2ss0Ta1du1Zut1u7du3yOqd3797Kzc3V5ZdfHtBeABBOBCYAEDlG7Ny5M6579+5HrS7kFByWlCvP/SZ/kpTma8HmzZs1ZswYjR8/Xk6nUx06dAhxiZGhvgemYPZEBgCgiWgrz+eOGyUF9nNsAP/XJQcOHGjTrl27b60uJJh27NihhQsXqqioyOt4bXhxxx13KD4+PqC9jhw5oocffthneOF2u3XGGWcEtFdteOFyubR7926vc/r06aO8vDyNHDkyoL0k6b333pPT6dQbb7zhdTwhIUF33nmnrr/+esXG8tUjgMaFv7UAIHK0sNlsSZKKrS4kANslXS3pckn3S+rf0OSamhqtXr1a69ev17Rp0/T73/9ezZo1C0edYVffA5NhGEpNTdXcuXMD7okMAEATkibPfWr84wmERuzRo0dHSnrR6kKC5bnnnlNWVpaOHz9eZ8wwDKWkpCg7Ozsol6yvWrVKixYtUkVFhdc55513ntxuty6+uMHrIP3y7rvvyul06s033/Q6Xhte/O53vwv4kvWKigrl5+frmWeeUU1NTZ1x7mAEEA0ITAAgsjjUuAOTWhvkaY9xg6T58tEf+tChQ1qwYIGeffZZ5eTkyOFwhKPGsGjo116DBg2S2+0OSk9kAACaiPMk/VnS8Abm7JXUGE/sIvxaS2oax5xPjUNRFJi89957XsOS/v37y+12a9iwwLv6vfXWW8rOztY777zjdbxDhw6aPXu2fvvb3wZ8T4mv8MJut2vixInKyspSu3btAtqrsrJShYWFuvvuu/Xdd995ncMdjACiBYEJAEQQwzDGSJpldR1BUiXpEUmr5GnXdat8/LvzxRdfaMqUKUpOTpbL5dI555wT+ipD6J133pHT6dQ///nPE15PTEzUH//4R02YMKHJX3wPAICfWsrzGWmOpPqOox6U5zPHg5Kqw1MWGrlb5Ang4MWPzyZRq0OHDpozZ44mTpwYcHixd+9eLViwQC+88EK9l6zfcMMNmjFjhlq3bh3QXv6EF8nJycrLy1Pfvn0D2kuSiouLlZOTox07dngd5w5GANGGwAQAIsuAr7/+ukvHjh33Wl1IEH0jabo8l7HeK+m/fC0oLS3VmDFjNHnyZM2cOTPgh4pwq+/XXsHsiQwAQBOSIukBSfXdUGzKc4/aHyTtC1dRQBPQp6Ki4szOnTt/YXUhoZCSkqLf/va3Ab3HsWPH9PDDD+uhhx7SkSNHvM4ZPXq0cnNzdeaZZwa0l+QJL5xOp7766iuv47169VJWVlZQwovt27crJydHGzdu9DpeewfjtGnTAm6rfPDgQRUXF6tTp04aMWJEQO8FAIEiMAGAyGJUVlaOlvSU1YWEwCeSxsnzpcd9ks5qaHJlZaWWLVumNWvWBK3nbqgdO3ZMy5YtU0FBgb7//vsTxhwOh+bPn6/u3btbVB0AAI1OL3mCkl82MOczSRmSXglLRUATU11d7ZC01Oo6IlFxcbGys7P1r3/9y+v4mWeeGbR2w9u2bVNOTo5ee+01r+Px8fG6+eabgxZe5Ofnq7CwUFVVVXXGbTabxo8fr3nz5gV8B2NVVZWeeuop3X333Tp48KAkaebMmZoxY0ZA7wsAgQjszCEAIBSi5wIP74ok9ZN0h6RDviYfPHhQTqdTl19+eb0PCJGguLhYI0eO1IIFC04IS84//3y98MILKiwsJCwBAMA/dnlOp76n+sOSI5LyJPUXYQkQStH+bHLSPvjgA40fP15TpkzxGpa0bt1ac+fO1caNGwMOSw4ePKjs7Ox6n4VsNptSU1O1efNmZWZmBhSWVFVVafny5UpKStL/Z+/O46Oq7v+PvyYLEkARVDahgrgviGhVIIkCJtYFFwSxWsGlFRcgFmoIX5hJMpFFMQoCWi34IMLXjfDrt4ZqNYpogqIsKqKAyCaQBZAdAiSZ+/vjklabO5MJs8+8n//4gHPunDfaZrj3c8/nzJ4927JYcvnll/OPf/yDF154wediSUlJCWlpaYwbN+7fxRKA+fPn+/S5IiK+0g4TEZHwk24Yhs1ms9Vvfhs9qoFpwNuYvcYfAjxuH1m/fj333HMPaWlp5OXl8Zvf/CbwKb2wevVqHA4HS5cu/dXvt2rVilGjRnH//feH/c4YERGRMHIt5pkSF3mYsxAYDlj3pBERf+pnGEaCzWar//Q8xuzZs4fnnnuOOXPmUFtb/5ikup0XDoeD008/3ae1qqureeutt5g8eTK7d++2nNOzZ0+cTicXX3yxT2sBlJaWkp2dzZo1ayzH27Vrx9ixYxk4cKDPZzBu3ryZSZMmUVRUZDl+9OhRnz5fRMRXKpiIiISfttu3b78M+DrUQYKgHBiGeTj8VCC5oQuKi4tZvHgxQ4YMYcyYMbRo0SLQGS25u2FKTExk6NCh/OUvf4m4s1dERERCqB3wDPAHwN3TuI3ACODdYIUSEU7dvn37b4HPQx0kVOoOWX/22WfZv996g3yvXr1wOp1cdJGnWq93SkpKyM7OZu3atZbj7du3Jysryy/Fi02bNjF58mS3xYukpCQefPBBv5zBePDgQaZOncqsWbM4duyYT58lIhJIKpiIiIQhm82WTmwUTOqsAFJo+FBX4D/nmyxcuJDRo0dzzz33EBcXnC6Tnm6YUlJSyMvL47zzzgtKFhERkSgQB/wRs1jS0s2cauAl4H+AQ0HKJSLHxcfHpxOjBZOSkhIcDgfr1q2zHO/QoQNjxoxh0KBBPq/lTfHiscce4/HHH6dp06Y+rXX48GFeeuklpk+f7rZ44a8zGA3DoLCwkAkTJrBjxw6fPktEJBh0homISBiy2Wyx2iu4CLMFRxZwsIG5VFZWkpmZyc0338zy5csDHq6kpIT09HQcDseviiVdu3Zl7ty5vPXWWyqWiIiIeK8H5kPYl3FfLFkMdMc800TFEpEQMAwjPdQZgm3jxo0MGTKEwYMHWxZLkpKSGD16NEuWLPG5WLJ//34mTJhAnz59LIslNpuN/v3788knnzB69GifiiUul4v58+fTs2dP8vPzLYsll156qd/OYFy2bBk33XQTGRkZlsWSM844g7vvvtunNURE/E0FExGR8JRcVlbWLNQhQuQw8DTmwfBzgQbPcvnmm2+47bbbGDZsGNu3b/d7oI0bNzJ06NB6N0wtW7Zk3LhxLFq0iH79+vl9XRERkSh1KuZZZl8CV7mZUwEMBfoC3wcpl4hYu3rLli2tQh0iGH5ZvPjwww/rjdcVLz799FNGjx7NSSeddMJr1RUvUlJSmDlzpmXxolu3bvz973/n5ZdfpmPHjie8FsBXX33FbbfdRkZGBjt37qw33rp1a5xOJ++++y5XX321T2tVVFQwcuRIbr/9dr755pt644mJiTz00EOUlJRw2223+bSWiIi/qSWXiEh4agqkAv8KdZAQ2gYMAWZiPlTx+Ld2wzAoKirio48+4tFHH2X48OE+3cCAecM0ffp0XnnlFaqrq//9+3Fxcdx5553Y7XafD3QUERGJITbgPmAK0MbNHBcwC3gSsD4sQESCLT4xMbEP8P9CHSRQXC4XCxYsIC8vj127dlnOueyyy8jLy+PKK6/0eb3PP/8ch8PBd999Zznetm1bv7UeLi8vZ9KkSSxYsADDqP8uWmJiIkOGDCEzM5OTTz7Zp7WOHDnC7NmzmTZtGgcPWjcMUBtjEQl3KpiIiISvNGK7YFLnC6AX5iGwzwBtPU0+fPgw+fn5vPHGGyfcT9jTDVPv3r1xOp1ceOGFjf5cERGRGHYe5ksQ13uYsxJ4FHPniYiElzSitGCyZMkSsrOz+f57681skVq8qKqq4tVXX2Xq1KkcOmTd0TAlJYWnnnqKc88916e1AIqLixk/fjxbt261HO/atSvZ2dlcf72nrwERkdBTwUREJHzFXK9gD1zAa5g3aX/BPOPE4/aRsrIyMjIyePvtt8nNzeWiiy7yaqHPPvsMh8NR74apQ4cOZGVlMXDgwBP6A4iIiMSoZkAmMBZo4mbOXiAHmAHUBieWiDTS70IdwN/Kysr44x//yLvvvms5ftJJJ/HII48wYsQImjXzrVtyVVUVL774IjNnzuTIkSOWc9LS0nA6nZx11lk+rQXeFS9ycnL80lZ49erVOBwOli5dajnesmVLhg8fzsMPP0xiYqLP64mIBJoKJiIi4euSbdu2dezYseO2UAcJIwcxH6j8LzABaHD7yJIlS0hPT2fAgAE4HA63LbTKysqYPHkyhYWFv/r9Zs2a+a3Fl4iISIzpD0wH3D39M4B5mC9D1D8NWETCSeetW7ee06lTpx9DHcRf3n//fbdj/ipeGIbBwoULycvLY9s269u6c845h9zcXPr06ePTWgDffvstdrudL7+03qjXsmVLRo8ezf33309Cgm+PBPfs2cNzzz3HnDlzqK2tX+uOi4tr8B5MRCQcqWAiIhLG4uPjrwfmhDpHGFoP3AX0A6YCl3ia7HK5KCws5IMPPmDEiBG/erup7m2vGTNmcPTo0X9fY7PZuOWWW8jOzqZDhw6B+5OIiIhEn7MxCyU3eZizDngc+CgoiUTEZwkJCelA1BRMrFx00UU4nU569erl82etWrUKu93OsmXLLMdPPfVURo0a5Zfixe7du3n++efdFi8SEhK4++67GTNmDKeddppPa1VXV1NQUMCzzz7L/v3WR02pjbGIRDIVTEREwphhGGmoYOLJR0AP4DEgG2jlafL+/fuZMGECb7/9Njk5OezatYuJEydSWVn5q3ndu3cnLy+PK664ImDBRUREolAi5nfyBKC5mzmHMQ99nwgcC1IuEfGD4/cmL4Y6RyDUFS8eeOAB4uPjffqsyspK8vPzef3113G5XPXG64oXWVlZtG7d2qe16ooXU6ZM4cCBA5ZzkpOTyc3N9UvxoqSkBLvdzg8//GA53qFDhxM+R1JEJFyoYCIiEt7SDcOIs9ls9f+mLXWqgWmYbbrygD8BHu9y1q9fz7333lvv99u2bcu4ceO48847sdlsgcgqIiISra7DPNTd06FhC4HhwJZgBBIRv+tnGEaizWarDnWQE2G1iyMxMZEHHniAUaNGccopp/j0+d4WL5xOJxdccIFPa4F5Tkl2djabN2+2HO/cuTNjx46lf//+Pq+1YcMGcnJy+Ogj602BamMsItFEBRMRkfB2enl5eXdgZaiDRIBdwKOYxZPnacTBlE2aNOFPf/oTGRkZtGjRIlD5wtaxY8f4v//7Pw4cOMAdd9zh85tuIiISU9oBzwB/ANy9bbARGAFYn6wsIpHi5PLy8quB0lAHORFpaWm8+uqr/9710a9fP3JycujatavPn11cXIzD4WDLFut6cJcuXcjKyvJL8eLHH38kJyeHRYsWWY77s3ixb98+ZsyYwSuvvEJ1df06WV0bY4fDwZlnnunTWiIi4UIFExGR8JeOCiaNsRa4EfOg2amYfdQ96tSpE+PGjQt0rrD0r3/9C6fT+e830+bMmcOiRYv+fcaLiIiIG3HAHzHba7l7LbsaeAn4H+BQkHKJSAAdb8sVkQWTlJQU3n77bUpKSujduzfJyck+f+aPP/5IdnY2H3/8seV48+bNeeSRRxgxYgRNmjTxaa19+/bx7LPPUlBQQE1NTb1xm83GnXfeyfjx42nTpo1Pa9XU1DBv3jymTJnCnj17LOdcccUV5OXl0b17d5/WEhEJNyqYiIiEueM3JZNDnSMCFQHFwJ8xH9S43TqyceNGjh49GlPbx9euXYvD4aC09Nf3uxs2bGDdunVccsklIUomIiIRoAdmIeQqD3MWY55nsiYYgUQkaNIxzw6MSL169fLLge579+4lPz/fbfEiLi6OAQMGYLfbOeOMM3xaq6amhjfffJOnn36an3/+2XLO5ZdfjtPp9MsZjKWlpWRnZ7NmjfWP7/bt2zNu3DjuuOMOn9sY//TTT8yePdunzxAR8TcVTEREwpzNZkvesWNHizZt2hwMdZYIdASYBMwBcjDfhI3770mGYVBTUxMTBZOG3kwDs0WXiIiIhVOBXOBx3J8XVg5kAa8FK5SIBI/NZvvt1q1bW3fq1Gl3qLOEQl3xYvLkyezebf2voEePHjidTnr06OHzeg0VL9q1a8fYsWMZOHCgz8WLLVu24HQ6ee+99yzHmzZtyiOPPMLw4cNp1qyZT2sdOnSI6dOn8/LLL3P06NFfjfm6E0dExFcqmIiIhL8mtbW1qajvty/KgWGY7QNi8gFOTU0Nr732Gs8++yx79+4NdRwREYksNuA+zPZb7vq8uIBZwJPA/iDlEpHgi09ISOgLFIY6SLCVlpbicDhYu3at5Xj79u3JysryS/Fi8+bNTJo0iaKiIsvxpk2b8tBDD/HEE0/QvHlzn9Y6ePAgL7zwAq+88orbF6f69++P3W6nY8eOPq1lGAaFhYVMnDiRyspKyzm33nqrT2uIiPhKBRMRkQhwvC2XCia+i8m2IA29mSYiIuLB+cBMoJ+HOSuAR4FlQUkkIiF1/N4kZgommzZtYvLkyW6LF0lJSTz44IN+KV4cPnyYl156ienTp7stXqSlpfHUU0/RqVMnn9ZyuVzMnz+fyZMnuy1eXHzxxeTl5XHNNdf4tBbAypUrcTgcrFxpfTxn69atycrK4t577/V5LRERX6hgIiISGdJDHUAiz6ZNm8jNzeWDDz6wHE9KSuKxxx7jxRdfpKqqKsjpREQkzDUDMoGxgLv+KHswW3RNx9xhIiKx4YZQBwiGQ4cO8de//rXB4sWECRP8tvNiwoQJ7Nixw3LOpZdeitPp5Oqrr/ZpLYCvv/4ah8PB8uXLLcdbtWrFn//8Zx544AHi4911YPROZWUl+fn5vP7667hc9b8qEhMTGTx4MFlZWbRu3dqntURE/EEFExGRyHDR9u3bO5155plbQx1Ewl9j30x7+eWXg5xQRETCXH/MIshZbsYNYB7wF8D6yZ6IRLOztm3bdl7Hjh1/CHWQQHC5XCxYsICnnnqKnTt3Ws7p1q0bTqeTq666yuf1vvrqKxwOBytWrLAcD3bxYsiQITz55JOccsopPq1VXV1NQUEBzzzzDAcPWh/HmZKSQm5uLhdccIFPa4mI+JMKJiIikSMNeDXUISR8BfvNNBERiTpnYxZKbvIwZx3moe8fBSWRiIQlm82WDkRdwaShtlFt27Zl9OjR/P73v/e5eFFRUcHEiRNZsGABhmHUG/dn8eLIkSPMnj2badOmeSxeOJ1Ozj//fJ/WAiguLsbhcLBlyxbL8S5dupCVlUX//v19XktExN9UMBERiRBxcXEqmIhbwXwzTUREok4i8BgwAXDXgP8w5qHvEwHr7YsiEjOO35vMCHUOfykvL2fSpEkNFi8yMzM5+eSTfVqrrngxdepUDh06ZDknJSWFvLw8zjvvPJ/WArN4Ybfb+emnnyzHzz77bLKzs0lLS/N5rfXr15Odnc3ixYstx5s3b84jjzzCiBEjaNLEXbdHEZHQUsFERCRCGIaRZhhGnM1mU49w+bdgvpkmIiJR6TrgReBCD3MWYu4qsX7aJiIxxzCMPoZhJNpstupQZ/FFVVUVr776qsfiRVpaGrm5uXTu3Nnn9YqLixk/fjxbt1p3Wu7atSs5OTn069fP57VWr16Nw+Fg6dKlluOnnHIKI0aM4OGHHyYxMdGntfbu3Ut+fj5z5syhtra23nhcXBwDBgzAbrdzxhln+LSWiEigqWAiIhI5TisvL+8BWJ/MJzEl2G+miYhI1GkPPA3c52HORmAE8G5QEolIJDm5vLy8J/BpqIOcCMMwWLhwIXl5eWzbts1yzjnnnENOTg59+/b1eb1vv/0Wh8PBF198YTnesmVLhg8f7pfixZ49e3juuecaLF44HA5OP/10n9aqrq7mrbfeYvLkyezevdtyTs+ePXE6nVx88cU+rSUiEiwqmIiIRJZ0VDCJecF8M01ERKJOHPBHzPZa7rYeVgPPATnAkeDEEpEIlEYEFkxWrVqFw+Hgyy+/tBxv2bIlo0eP5v777ychwbfHZt4WL7KzsznttNN8WqvukPVnn32W/fv3W87p1asXTqeTiy66yKe1AEpKSnA4HKxbt85yvH379mRlZTFw4EBsNpvP64mIBIsKJiIikSUNs3e4xKBgvpkmIiJR6QrgJeC3HuZ8jNl+a01QEolIJEsH7KEO4a3Kykry8/N54403LIsXCQkJ3H333YwZMyYoxYvevXvjdDq58EJPHRG901DxokOHDowZM4ZBgwb5vNamTZuYPHkyRUVFluNJSUk89thjPP744zRt2tTn9UREgk0FExGRyNJrx44dLdq0aXMw1EEkeIL5ZpqIiESlVpi7RYZj7jCxUg5kAa8FKZOIRL4ry8rKTu/QocOuUAfxxrRp05g3b57lWHJyMrm5uX4rXtjtdn744QfL8c6dOzN27Fj69+/v81obN24kJyeHDz/80HK8rngxfPhwTjrpJJ/W2r9/P9OnT+dvf/sbx44dqzdus9m45ZZbsNvtdOzY0ae1RERCSQUTEZHI0sTlcl2HefiqRDlv3nQOab8AACAASURBVEzz582diIhEHRvmGSVTgDZu5tRgHvpuB6y/bERErMXZbLa+wNuhDnKiunTpQk5ODmlpaT5/1rp168jOzubTT627lLVo0YKMjAz+9Kc/0aRJE5/WqitevPLKK1RXV9cbryteOBwOzjzzTJ/WcrlcLFiwgKeeeoqdO3dazunWrRtOp5OrrrrKp7VERMKBCiYiIhHGMIx0VDCJeiUlJYwfP57169dbjvvzzTQREYlK3TALIb09zFkBPAosC0oiEYk6x+9NIrJgkpaWxqxZs3xuZbt3716mTJnC3LlzqampqTceFxfHoEGDGDt2LG3auKtde6eueJGXl8euXdYbey677DLy8vK48sorfVoL4PPPP8fhcPDdd99Zjrdt25bRo0dzzz33EBfnbgOjiEhkUcFERCTCHL8pkSi1YcMGcnJy+OijjyzHmzVrxqOPPuqXbfUiIhKVmgGZwFjA3SvMe4BcYDrgClIuEYlON4Q6wInq2LGjT8WSmpoa3nzzTZ5++ml+/vlnyzndu3cnLy+PK6644oTXqfPZZ5/hcDj4/vvvLcf9WbwoLy9n0qRJLFiwAMMw6o0nJiYyZMgQMjMzOfnkk31aS0Qk3KhgIiISec6vqKjo0q5du02hDiL+s2/fPmbMmOFxW/2dd97J+PHjfX4zTUREolZ/YAbwGzfjBjAPGA1Y91UREWmcjmVlZRd26NBhTaiDBFNpaSnZ2dmsWWP9x27Xrh1jx45l4MCB2Gw2n9YqKytj8uTJFBYWWo7XFS/GjBlDixYtfFqrqqqKF198kZkzZ3LkyBHLOWlpaTidTs466yyf1hIRCVcqmIiIRCCXy3U98LdQ5xDfBfvNNBERiUpdgReAmzzMWQU8BiwJSiIRiSXpQEwUTDZv3sykSZMoKiqyHG/atCkPPfQQGRkZfitezJgxg6NHj1rO8VfxwjAMFi5cSF5eHtu2bbOcc84555Cbm0ufPn18WktEJNypYCIiEpnSUMEk4n3//fcMHz6ctWvXWo63b9+e8ePHc/vtt/v8ZpqIiESlRGAUkAM0dTPnMOah7xOBY8GJJSIxJg2YFuoQgXT48GFeeumlBosXeXl5/OY37jb5eaeueOF0Otm+fbvlnHPPPZfc3Fyuu+46n9YCWLVqFXa7nWXLrI+zOvXUUxk1ahT3338/CQl6jCgi0U8/6UREItP1hmHE22y22lAHkRP34IMP8tNPP9X7/aZNm/LYY4/x+OOPk5SUFIJkIiISAfoAM4ELPcxZCDwO1P+yERHxn+vWr19/0rnnnmtdSYhghmFQWFjIhAkT2LFjh+WcSy65BKfTyTXXXOPzet988w12u53ly5dbjtcVLx544AHi4+N9WquyspL8/Hxef/11XK76x1klJCRw9913k5WVRevWrX1aS0QkkqhgIiISmVpVVlZeCXwR6iByYg4ePFivWGKz2ejfvz92u50zzzwzRMlERCTMtQeeBu7zMGcDMAJ4LyiJRCTWNW/RokUv4ONQB/Gnr7/+GrvdzooVKyzHW7VqxZ///OegFC8SExMZPHiwX4oX1dXVFBQUMGXKFA4cOGA5Jzk5GafTyQUXXODTWiIikUgFExGRCGUYRjoqmEQswzDq/V5BQQHXX399CNKIiEgESMDcLeIETnEzpxp4DrNFl/VpvSIiAWAYRhpRUjCpqKhg4sSJLFiwwPLv7HWHrD/55JOccoq7H8feqStePPPMMxw8eNByTkpKCk6nk/PPP9+ntQCKi4txOBxs2bLFcrxLly5kZWXRv39/n9cSEYlUKpiIiESo4zcleaHOIf5z8cUXhzqCiIiEpyuAl4DfepjzMeah7tYHY4mIBFY68D+hDuGLI0eOMHv2bKZNm+axeJGXl8d5553n83reFC9ycnJIS0vzea0ff/yR7OxsPv7YuqbVvHlzHnnkEUaMGEGTJk18Xk9EJJKpYCIiErl67t69u2Xr1q33hTqIiIiIBEQrzN0iw4E4N3PKgSzgtSBlEhGxcnlFRUWbdu3aWR/0EeaKi4sZP348W7dutRw/++yzycnJ8ctu8PXr15Odnc3ixYstx0855RRGjBjBn/70J5+LF3v37iU/P5+CggJqamrqjcfFxTFgwADsdjtnnHGGT2sFy/vvv+/2jBcREX9QwUREJHIlVFVVXQf8I9RBRERExK9smGeUPAu4e4JVA7wI2IH9QcolIuJOXG1tbT/gjVAHaYzVq1fjcDhYunSp5XjLli0ZPnw4Dz/8MImJiT6tVVe8mDNnDrW1tfXG/Vm8qKmp4c0332Ty5Mns3r3bck6PHj3Izc3liiuu8GmtYNmwYQPZ2dksWrQo1FFEJMqpYCIiEtnSUMFEREQkmnTDLIT09jBnOfDo8X+KiISFuLi4NCKoYPLPf/6TgoICy0PW4+Pj+cMf/kBmZiatWrXyaZ3q6mreeustj8WLnj174nQ6/dKit7S0FIfDwdq11h0a27dvT1ZWFgMHDsRms/m8XqDt3buXKVOmMHfuXMtdMv89PRiZRCS6qWAiIhLBbDZbeqgziIiIiF80AzKBsYC7Hix7gFxgOlD/CZ+ISAgZhpFuGIbNZrPVPyk9DO3YYd09rHfv3jidTi688EKf1ygpKcHhcLBu3TrLcX8WLzZt2sTkyZMpKiqyHE9KSuLBBx/kiSeeoHnz5j6tFQw1NTXMnTuXKVOmsHevV3WQGqAwwLFEJAaoYCIiEtnOraysPLtt27YbQx1ERERETlh/YAbwGzfjBjAPGA3sDFYoEZFGOrOiouIi4LtQBzkRZ511Fg6HgxtvvNHnz9q0aRM5OTkUFxdbjiclJfHYY4/x+OOP07RpU5/WOnToEH/961+ZPn06x44ds5yTlpbGhAkT6Nixo09rBcunn35Kdna220KThb2YOy9XBS6ViMQKFUxERCJcbW1tGvByqHOIiIhIo3XF3C3i6encKsyHQJ8FJZGIiA8Mw0gnwgomzZs3JyMjg4cfftjnQ9b379/P9OnT+dvf/mZZvLDZbNxyyy3Y7Xafixcul4sFCxbw1FNPsXOndS390ksvJS8vj6uuusqntYJl8+bNTJo0ye0uGQsu4H+BJ4HKgAUTkZiigomISORTwURERCSyJAKjgBzA3avFhzAPfZ8IWL8yLCISftKA50Mdwkr79u1/9eu4uDgGDhzI2LFjadu2rU+f7U3xolu3buTl5fHb3/7Wp7UAVq5cicPhYOXKlZbjbdu2ZfTo0fz+978nPj7e5/UC7fDhw7z00kvMmDGDo0ePenvZJ8ATwNeBSyYisUgFExGRyNfPMIwEm83W4Al4IiIiEnJ9MA91v8DDnIXA48BPQUkkIuI/165fv/6kc8891+un3sEydOhQSkpKWLJkCVdffTUOh4Pu3bv7/Lmff/45DoeD776z3lhTV7y45557iIuL82mt8vJyJk2axIIFCzCM+kfFJCYmMmTIEDIzMzn55JN9WisYDMOgsLCQCRMmuD1TxsI2YBwwF7NlpYiIX6lgIiIS+U7dvn37b4HPQx1ERERE3GoPPA3c52HOBmAE8F5QEomI+F+zpKSkZOCjUAf5b6eccgpvv/223z4vmMWLqqoqXn31VaZOncqhQ4cs56SlpZGbm0vnzp19WitYvvrqKxwOBytWrPD2ksPAFMzv0qqABRORmKeCiYhIFIiPj09HBRMREZFwlIC5W8QJnOJmzjHMFjY5wJHgxBIRCYz4+Pg0wrBg4i9VVVW8+OKLzJw5kyNHrH9kp6Wl4XQ6Oeuss3xayzAMFi5cSF5eHtu2bbOcc84555CTk0Pfvn19WitYKioqmDhxottCkwUDKMQ8p2RLQMOJiKCCiYhIVDAMIw3IDXUOERER+ZUrgZeO/9OdRZgFlbVBSSQiEmDHD37PCnUOf/O2eJGbm0ufPn18Xm/VqlU4HA6+/PJLy/GWLVsyevRo7r//fhISwv/x3pEjR5g9e7bHXTIWVgAZwJLAJRMR+bXw/4kqIiLeuGbLli2tzjrrrD2hDiIiIiK0wtwtMhxw17C+DBgLvBakTCIiwdJ9x44d7dq0aVMR6iD+smrVKux2O8uWLbMcP/XUUxk1apRfiheVlZXk5+fzxhtvUFtbW288ISGBu+++mzFjxnDaaaf5tFawFBcXM378eLZu3ertJeWY36OzAFegcomIWFHBREQkOsQnJiZeB/w91EFERERimA3zjJJngTPczKnBPPTdDuwPUi4RkWCy1dTU9AP+N9RBfFVXvHj99ddxueo/t68rXmRlZdG6dWuf1qqurqagoIApU6Zw4MAByznJycnk5uZy4YUX+rRWsHz77bc4HA6++OILby85BvwVfUeKSAipYCIiEj3SUMFEREQkVLphtt/q5WHOcuDR4/8UEYlmaURwwcTb4oXT6eSCCy7web3i4mKys7PZvHmz5Xjnzp0ZO3Ys/fv393mtYNizZw/PPfccc+bMsdwl48ZCzPZbGwOXTESkYSqYiIhEj9+FOoCIiEgMao55EO1YoImbOXswzxqbjlqLiEhsuMEwDJvNZvPqVO9wUlxcjMPhYMsW6/PFu3TpQlZWll+KFz/++CM5OTksWrTIcrxZs2Y8+uijjBgxgiZN3H3FhI+6QtOzzz7L/v1ebxBZC/wZ+FfgkomIeE8FExGR6NGlsrKya9u2bTeEOoiIiEiM6A/MAH7jZtwA5gGjgZ3BCiUiEgbaVVZWXgJ8G+og3vrxxx/Jzs7m448/thxv3rw5jzzyiF+KF3v37iU/P5+CggJqamrqjdtsNu68807Gjx9PmzZtfForWEpKSrDb7fzwww/eXrIbcAIzMdtVioiEBRVMRESiiMvlSsdsByIiIiKB0xWzUOJpd+c3wGPAZ0FJJCISZgzDSCcCCiYNFS/i4uIYMGAAdrudM85wdzyVd2pqanjzzTd5+umn+fnnny3nXH755TidTq644gqf1gqWDRs2kJOTw0cffeTtJTXAq8A4YFfAgomInCAVTEREoohhGGmoYCIiIhIoTTDbhuQATd3MOQTkAfnojVkRiWHHCyb5oc7hTl3xYvLkyezevdtyTo8ePXA6nfTo0cPn9UpLS8nOzmbNmjWW4+3atWPs2LEMHDgQm83m83qBtm/fPmbMmMErr7xCdXW1t5d9BDwBrA5cMhER36hgIiISXfoZhpFos9m8/huriIiIeKUvZtsQT6f7LsTcVbI1KIlERMJb6tatW5M6depUFeog/620tBSHw8HatWstx9u3b09WVpZfihebN29m0qRJFBUVWY43bdqUhx56iCeeeILmzZv7tFYwuFwuFixYgNPpdLtLxsJ6zB0l8wOXTETEP1QwERGJLqeUl5dfDZSGOoiIiEiU6ABMBu7zMGcDMBwdWCsSFVwuV6gjRIum8fHxKcAHoQ5SZ9OmTUyePNlt8SIpKYkHH3zQL8WLw4cP89JLLzF9+nSOHTtmOSctLY2nnnqKTp06+bRWsCxZsgSHw+F2l4yFg5i7jCYBRwMWTETEj+JCHUBERPzreFsuERER8U0CkAGswX2x5AiQC1yCiiUiUWPDhg3cddddjXkoLG6E073J66+/znXXXWdZLLHZbAwYMIDS0lLGjRvnU7HE5XLxxhtv0LNnT/Lz8y2LJd26deMf//gHBQUFEVEs2bx5M8OGDWPQoEHe/v/CBcwFzsFsY6liiYhEDO0wERGJPulAdqhDiIiIRLBk4EXgUg9zFgGPA9b9XEQkErjdSlJaWsrvfvc7hgwZwl/+8hdatmwZzFxRIy4uLh14MtQ5AFavXm151kb37t3Jy8vzyyHrX375JXa7nW+/tT7rvk2bNmRlZXHXXXcRFxf+7zDX7ZKZMWMGR496XfP4AvOFgy8Cl0xEJHDC/6eziIg0is1m++3WrVtbhzqHiIhIBGoFTAM+xX2xpAwYCvRDxRKRSLfJ02B1dTWzZ8+md+/eFBQUUFtbG6xcUcMwjEt37tzZPtQ5rJxxxhk8//zzLFy40Odiyfbt23nkkUe44447LIsliYmJPPbYY5SUlHD33XeHfbHEMAzmz59Pr169yM/P97ZYsg3z+7EnKpaISAQL75/QIiJyIuITEhL6hjqEiIhIBLEBQzAPpR15/Nf/rQZ4AfPQ99eCF01EAmgRXjzY3b17N2PHjiU9PZ3SUh0V2Ei2mpqasGnL9Uu33HILgwcP9ql4UVVVRX5+PqmpqbzzzjsYhlFvTnp6Op988gnjx4/n5JNP9iVyUHz99dfceuutZGRksGPHDm8uOQw8DVyI+f1Y/1+CiEgEUcFERCQKhVOvYBERkTB3GVAKFACnuZlTCvTAbDFyIEi5RCTwaoAbgFl4aM9VZ82aNdx111089NBDbNmyJeDhokW03psUFxdz3XXXkZ+fT1VVVb3xrl27MnfuXObMmUPnzp2DH7CRKioqGDlyJDfffDMrVqzw5hIDmA9cBGRhHvAuIhLxVDAREYlON4Q6gIiISJhrDkwGVgC9PMx7HbgWsG5ILyKRbh/wJ+BKzHZ8DXrvvfdITU3Fbrdz4IBqqF5IMwzDaudeRPr222+54447GDp0KFu3bq033rJlS8aNG8eiRYvo169fCBI2zpEjR5g5cyapqakUFhZa7pKxsAJIBe4CVD0UkaiigomISHQ6a9u2beeFOoSIiEiY6g+sA8YA8W7mHAPGYbbqavDNcxGJeF9hFkdvpYGzTeA/55ukpqYyb948nW/iWdvt27dfFuoQvtq9ezd2u52bbrqJL76o38ktISGBP/zhD5SWlvL444+TmJgYgpSNU7dLZsKECRw86NUGkXJgGHA15u5LEZGoo4KJiEiUstls6aHOICIiEmbOAd4D3gHO9DDvX0AnYCKgp6AisaUIuBizxVCD20cqKyvJzMzk5ptv5ssvvwx4uEgVyfcm1dXVzJo1i549ezJ79mzL4lhycjLvv/8+zzzzDKed5q67Y/hYvXo1AwYMYOjQofz000/eXFLNf87xegV9N4pIFFPBREQkSsXFxUVlr2AREZETkATkAKuB33mYtxOzreWNgFcn3YpIVKriP4dYz8WLQ6xXrVrFHXfcwbBhw9i2bVug80Ucm80WkfcmJSUlXH/99TgcDsv2a507d+bll1/m7bff5sILLwxBwsbZs2cPdrudG2+8kaVLl3p72ULM/y9kAPsDFk5EJEyoYCIiEqUMw+hjGEb47wMXEREJrL7A10A2cJKbObXA80BH4IMg5RKR8Lcdsy3f1cDnDU02DIOioiKuvfZaJkyYwKFDhwIeMIKkVFRUNA91CG9t2LCB++67j8GDB7N+/fp6482aNWP06NF8/PHH9O/fPwQJG8ebXTIW1gI3Ybax3BDQgCIiYUQFExGR6HVyeXl5z1CHEBERCZEOwGvAR4Cnc72+ALoCozDPLRER+W/LgN7AUKCioclVVVX/PkR7/vz53h6iHe1OcrlcKaEO0ZB9+/Zht9vp06cPH330Ub1xm83GwIED+eyzzxg9ejQnneSuDh8+SkpKSEtLw+FwsH+/VxtEdgNPAJditrEUEYkpKpiIiES3iNz6LiIi4oMEzLYh64D7PMzbA9wBXANsCUIuEYlsBmYR9hwgFzjS0AXl5eVkZGTQv39/Vq5cGeh8kSBs701qamqYN28eycnJzJ49m5qamnpzunfvzjvvvMMLL7xAmzZtQpCycTZu3MiQIUMYPHgwP/zwgzeX1GCeT3IBMO34r0VEYo4KJiIi0S1iD1cUERE5AcnAV8BUoIWbOQbmmQSdgP8LUi4RiR6HMM9EugSY780FK1eu5NZbb2XkyJHs3LkzkNnCXVjem5SWlnLDDTeQmZnJzz//XG+8Xbt2TJs2jX/+859cccUVIUjYOPv27WPChAn06dOHDz/80NvLPgJ6AMMwz/MSEYlZKpiIiES3K8vKyk4PdQgREZEAa435NuwnmA8x3Vl7fHwI5kNPEZETtQG4C+gHrGpossvlorCwkF69epGfn8+xYzHZAfCSbdu2dQx1iDrbtm3jgQce4K677mLNmjX1xps2bcqoUaNYsmQJgwYNwmazhSCl91wuF/PnzyclJYWZM2dSXV3tzWU/Yv7v+Hrg24AGFBGJECqYiIhEtzibzdY31CFEREQCxIZZ/FgPjMT9/c1hzLdmLwK+D040EYkRi4DLMc83afDN/EOHDpGfn0+fPn0oKioKeLhwEx8ff32oM9QpLi7m/ffftxxLS0vjk08+4S9/+QtJSUlBTtZ4S5YsIS0tjYyMDHbt2uXNJYcwW8t5vVNKRCRWqGAiIhLlDMMI217BIiIiPrgMWAIUYO4wcacQaI/Zl10nL4tIILgwzzc5H3gaaHD7yKZNmxg2bBh33XUXa9euDXS+sBHu9yaXXnopf//73ykoKKBTp06hjtOgsrIyRo4cyaBBgyx3yVhwYbal7IrZWu5oAOOJiEQkFUxERKLf70IdQERExI+aA5OBFUBPD/O2HR8fBOwPQi4RkT1AFtANeNebC0pLS0lPTyczM5Pdu3cHNFyYSDcMI+yeRbVq1Qqn08m7777L1VdfHeo4DTp8+DD5+fn07t2bwsJCby/7EuiNuTOzMmDhREQiXNh9SYmIiN91LCsruyDUIURERPygP7AOGAPEu5lzDBgHdAaWBieWiMivrANuBtLwog1gTU0N8+bNIzk5mVmzZlFTUxPwgCF0enl5efdQLJyQkFDv9xITE3n00UdZunQpf/zjH4mPd/fVEh4Mw6CoqIhrr72W/Px8jh71aoPIdsyWcdeg70URkQapYCIiEhvSQx1ARETEB+cA/wLeAc70MO9fQCdgIlAbhFwiIp58CHQHngD2NTR57969OBwO+vbty8cffxzwcCEUknuT9PR04uL+8xgsLS2NxYsXY7fbOfnkk0MRqVG+/vprbrvtNoYNG8b27du9ueQwZou4CzBbxqktpYiIF1QwERGJAeHeK1hERMSNJMwe66uBGzzM23V8/EZgR+BjiYh4rRqYhnlmxAt4Ucz98ccfuffeexk6dChbtmwJdL6gC9W9SXJyMgsWLODPf/4zhYWFFBQU0KVLl1BEaZTKykoyMzO55ZZbWL58ubeXLQQuxmwRdzBg4UREopAKJiIiMcBms/VZv379SaHOISIi0gj9gK+BbMDdd1gt8DzmrpMPgpRLRORE/AxkAFcBJd5cUFxcTGpqKna7nQMHDgQ0XDDZbLbkHTt2tAjF2ldffTVPPvkkvXr1CsXyjXLkyBFmzpxJSkoK8+bNw+VyeXPZSiAVs4Xl5kDmExGJViqYiIjEhuYtWrTwdDCuiIhIuOiA2TrkQ+A8D/O+wHxjexTmuSUiIpGg7oH2rXjxQLu6uprZs2eTmpramIfm4a5JbW1taqhDhLPi4mKuu+46JkyYwMGDXm0Q2YXZ+s3rgpyIiFhTwUREJEaoLZeIiIS5BMy3r9cB93mYtxe4A/Pw2ujrVSMisaIIuAgvWybVtWW66aabWLZsWcDDBZphGDpj0cLq1asZMGAAQ4cO5aeffvLmkmrMVm9dMVu/6fwuEREfqWAiIhI7dFMiIiLhKgWz/dZUwF2bFgOYi3mo+/8FKZeISCBV8Z9DuefixaHcq1at4vbbb2fYsGFs27Yt0PkCSfcmv7Bnzx7sdjs33ngjS5cu9fayhcCFmC8b7A9YOBGRGKOCiYhI7OhRXl5+RqhDiIiI/EJrzDdiF2MeTuvOWuASYAg6vFZEos92zJ9v1wCfNzTZMAyKioq49tpryc/P58iRIwEPGAAXlpWV/SbUIUKturqaWbNm0bNnT2bPnk1trVcbRNYBN2GeU7IhoAFFRGKQCiYiIrEjzuVy9Qt1CBEREcCG+XBwPTAS9/clh4FhmG1rvg9ONBGRkPkS6A0MBSoamlxVVUV+fj69e/dm/vz5GEaDG1TCSqy3DC4pKSE9PR2Hw8H+/V5tENmDeU7JJcB7AQ0nIhLDVDAREYkhcXFx2vouIiKh1h1YAhRg7jBxpwj4DfAKXrSpERGJEgbwGnAOkAs0uH2kvLycjIwMBg4cyHfffRfofH4TFxcXkwWTjRs3MnToUAYPHsy6deu8uaQG87vwfMxdmTWBzCciEutUMBERiSGGYaQbhmELdQ4REYlJzYHJwAqgp4d5P2G2pbkV+DkIuUREwtEhIAe4FJjvzQWff/45N9xwAyNHjmTnzp2BzOYXhmFcbxhGzDyX2r9/PxMmTKBPnz4UFxd7e9kioAfmbsvw/48qIhIFYuaLSUREADizoqLiolCHEBGRmNMfs+f6GNzfgxwDxgFnA18EKZeISLj7EbgL6Ad829Bkl8tFYWEhKSkpzJw5k2PHjgU8oA9Oq6iouCLUIQLN5XIxf/58kpOTmTlzJtXV1d5c1qj/7iIi4j8qmIiIxBjDMNSWS0REguUc4F/AO8CZHuYtwmy/NRHw6sRbEZEY06idBr/czVBUVBTwcCcq2u9NPvvsM9LT08nIyGDXrl3eXHIIsxXbJXi5s0hERPxLBRMRkdgTk72CRUQkqJIwW8l8B9zgYd7O4+P9gMrAxxIRiWi/PMviBbw4y2LTpk0MGzaMwYMHs3bt2kDnOxFReW9SVlbGyJEjGThwIN9//703lxjAXMwXDXKAowGMJyIiHqhgIiISe65dv379SaEOISIiUetm4HsgG2jiZk4t8DzQCfggSLlERKLFHiADcxfCu95cUFJSwg033EBmZia7d+8OaLhG6vXzzz+fEuoQ/lJVVUV+fj69e/emsLDQ28u+BHoBQ4CKgIUTERGvqGAiIhJ7miUlJSWHOoSIiESdDsBrwEKgs4d5X2C+QTsKvUErIuKLdZhF6jRgTUOTq6urmTdvHsnJycyaNYva2rDogJh45MiRa0MdwleGYVBUVERqair5+fkcPerV19t2YChwDbA0oAFFRMRrKpiIiMSg+Pj4qNz6LiIiIZGA+abzOuA+D/MOAPdgPhjaHPhYIiIx40PgMuAJ3Y8yfwAAIABJREFUYH9Dk/fu3YvD4aBv374sXrw40NkaFBcXF9H3Jt988w233XYbw4YNY/v27d5cUgU8DVyA+aKBEch8IiLSOCqYiIjEoGg/XFFERIImBfgamAq0cDPHAOZg7kB5IzixRERiTjUwDeiKeb5Jg9tH1q9fzz333MPQoUPZsmVLoPO5Fan3JpWVlWRmZnLzzTezfPlyby9bCFwEZAEHAxZOREROmAomIiKxqfuOHTvahTqEiIhErNbAy8AnwMUe5q0DLgUeQA+GRESCYRfmrr+rgBJvLiguLiY1NRW73c6BAwcCGs6N8ysqKrqEYuETUV1dzaxZs0hJSWHevHm4XC5vLlsJpAL90S5LEZGwpoKJiEhsstXU1PQLdQgREYk4NsxDaX8AHj7+ayuHgWHAhcB3wYkmIiK/UPeA/la8eEBfXV3N7NmzSU1NbUwRwG9cLtf1QV3wBNUVlxwOBwcPevUewM+YrdK8LmCJiEhoqWAiIhK7IrpXsIiIBF134DOgADjNw7wi4DfAK6gvu4hIqBVh7gT0qgXUL9tMLVu2LODhfiGs701OoH1ZNWZrtK6YrdIabJEmIiLhQQUTEZHYdYNhGO7eDBYREanTEvNhzwrMA9vd2Qr0xHyb+ecg5BIREe8c5j+HjM/Fi2L2N998w+23396Yg8x9db1hGPHBWKgx9u7di91up2/fvixevNjbyz7EfMkgA9gXqGwiIhIYKpiIiMSudpWVlZeEOoSIiIS1/sD3wEjc3zscA8YBXYClQcolIiKNtx2zreI1ePHz2jAMioqKSE1NJT8/n6NHjwYyW6vKysorA7lAY1RXVzNv3jySk5OZPXs2tbVebRBZB9yMuVvm+4AGFBGRgFHBREQkhhmGkR7qDCIiEpbOBd4H3gE6eJi3CLP91kTUbkREJFJ8CfQChgIVDU2uqqoiPz+f3r17M3/+fAwjMN0Ww+XepKSkhPT0dDIzM9m9e7c3l+zBbHnWDXg3oOFERCTgVDAREYlhhmGEda9gEREJuiQgB1gNeHpwtRP4HdAPqAx8LBER8TMDeA04B8gFGtw+UlZWRkZGBoMGDeL77/2/gSLU9yYbN25k6NChDB48mHXr1nlziQuzxdn5mC3PjgUyn4iIBIcKJiIise3arVu3JoU6hIiIhIVbMFuIZANN3MypBZ4HOmHuQBERkch2CLNQfgkw35sLPvvsM9LT0xk5ciS7du3yZ5aeu3fvbunPD/TG/v37mTBhAn379qW4uNjbyxYBl2O2ONsZsHAiIhJ0KpiIiMS2pnFxccmhDiEiIiF1JuZbxkVAZw/zvsB8E3kUXryJLCIiEeVH4C7geuDbhia7XC4KCwtJTk5m5syZHDvml80VCVVVVdf544O84XK5mD9/PikpKY35M2zA/PfUD1gV0IAiIhISKpiIiIjacomIxKZEIANYC9znYd4B4CHMQ4I3Bz6WiIiE0EdAD2AYXuycOMHdGZ4E5d7k888/Jz09nYyMDHbu9GqDyCHM1mVe78QREZHIpIKJiEiMs9lsYXG4ooiIBFUK8BUwFWjhZo4BzME89P3V4MQSEZEwUAO8gnk2xwvHf+3RCZz/YSnQ9ybl5eWMHDmSgQMHensOi4F5Tsk5mK3LjgQwnoiIhAEVTEREpNvOnTvbhzqEiIgERWvgZeAT4GIP89YBlwIPAAeDkEtERMLPHsydiJcC73lzQUlJCenp6djtdvbv338ia547derUs07kQk+qqqrIz8+nV69eFBYWYhiGN5ctA3pjnlNS4e9MIiISnlQwERERW3V19fWhDiEiIgFlw3zg8wPw8PFfWzkCjAQuBL4LTjQREQlza4GbgFsxz/DwqLq6mtmzZ3PNNdcwa9YsamtrG7VY7969U08sZn2GYVBUVERqair5+fkcPerVEVzbgaHA1cDn/soiIiKRQQUTEREBnWMiIhLNLgc+AwqA0zzMKwI6AtMxW5CIiIj8UhFmQf0JoMHtI3v37sXhcNC3b18WL17s9SKtWrW67kQD/tI333zD7bffzrBhw9i+fbs3l1QBT2P+GV9D34UiIjFJBRMREQFINwzD3dvGIiISmVoC04DlmAe2u7MV6IX55vDPQcglIiKRqxrzu+UCzHNOGtw+sn79eu655x6GDh3KTz/91OACSUlJyQkJCSccsLKykszMTG6++WaWLVvm7WULMVtVZgEHTnhxERGJeCqYiIgIQNvt27d3C3UIERHxm/6YLbVG4v7v/NXAOKALajkiIiKNUw4MA64CSr25oLi4mJSUFOx2OwcPuj8ey2azndK9e/dGB6qurmbWrFmkpqYyb948XC6XN5d9BVyL+b25qdGLiohI1FHBREREAIiPj08PdQYREfHZucD7wDvAmR7mLQHOBibixdvBIiIibqwEUjB3KW5paHLd+SYpKSkeixrXXntto0IUFxeTmpqKw+HgwAGvNoj8jNla7LfAp41aTEREopoKJiIiAoBhGDrHREQkciUBOcBqwFMBfCdwI5AMbAt8LBERiRFFwEWYLa3cbx857pdts5YvX15v3NuCyfr167n33nsZOnQoW7Y0WK8Bc3flC0BXzNZiemlARER+RQUTERGpk1JWVtYs1CFERKTR+gNrgGygiZs5tcCzQCfgX0HKJSIiseUw/zk0fS5eHJr+zTffcNttt9U7mP3yyy+nZcuWbq/bu3cvdrudvn378vHHH3ub70OgO5AB7PP2IhERiS0qmIiISJ2mQGqoQ4iIiNfOBF7DbL91lod5X2C26noSOBqEXCIiEtu2AUOAnpjfQR4ZhkFRURGpqank5+dz9OhR4uPj6d27d725NTU1zJs3j+TkZGbPnk1trVcbRNYBtwBpwPeN+pOIiEjMUcFERER+SW25RETCXyLm27HrgPs8zDsAPARcgw6yFRGR4PsC6AUMBSobmlxVVUV+fj69e/dm/vz5pKbWf5fr97//PZmZmezevdub9fdgfl9eCvyzUclFRCRmqWAiIiK/pIPfRUTCWyrwNTAVaO5mjgHMwdyB8mpwYomIiFhyYe6GPAfIxYudjmVlZWRkZPD222/XG6usbLDuUrfmXOACzPNKqhuRV0REYpwKJiIi8kuXbNu2rWOoQ4iISD2nAS8DizEP1XVnDdANeABzh4mIiEg4OAjkYO72mO/NBStXrjyRdT4GLsdsCbbjRD5ARERimwomIiLyK/Hx8deHOoOIiPxbHOZDnx+AhwGbm3lHgJHAxcDq4EQTERFptPXAXcDvMIv8/rIRGAD0BVb58XNFRCTGqGAiIiK/YhiGzjEREQkPlwNLgAKgtYd5RUAnYDpmOy4REZFw9z5wGfAE5lkjJ+oQZquvi4G/+yGXiIjEOBVMRETkv6UbhqHvBxGR0DkVmAYsxzyw3Z2fgN7ArcCuIOQSERHxp2rM77vzgL8CtY241oV5Xte5mK2+jvg5m4iIxCg9EBMRkf92enl5efdQhxARiVGDgHWY7bXc/V29GhgHnA18FqRcIiIigbILeBToASzyYv7nmC8UPACUBzCXiIjEIBVMRETESnqoA4iIxJhzgQ+At4E2HuaVAl2BiTTuTVwREZFwtwroB9wJ7LUYPwj8AXN35bIg5hIRkRiigomIiNSjc0xERIImCbOVyGrA08/eXcBNQAqwNfCxREREQub/AR2AfwCHgSrMlwrOBP4XndclIiIBlBDqACIiEn5sNlvyjh07WrRp0+ZgqLOIiESx/pgHtZ/lYU4t8DwwHjgajFAiIiJhoAq4PdQhREQk9miHiYiIWGlSW1ubGuoQIiJR6kxgPvAOnoslXwEXA0+iYomIiIiIiEjAqWAiIiKW1JZLRMTvEoEMzEPdB3qYdwB4CPPw23VByCUiIiIiIiKoJZeIiLing99FRPwnFXgJuMjDHAMoAEZiFk1EREREREQkiLTDRERE3Llo+/btnUIdQkQkwrUDXgMW47lYshboBjyAiiUiIiIiIiIhoYKJiIh4orZcIiInJg4YAnwH3AfY3Mw7AozBPKtkdXCiiYiIiIiIiBUVTERExK24uDgVTEREGu9y4DPM9lqtPcwrAjoBzwCuIOQSERERERERD1QwERERtwzDSDMMQ98VIiLeORWYBiwHrvYw7yegN3ArsCsIuURERERERMQLeggmIiKenFZeXt4j1CFERCLAIGAd5oHt7v6OXQM4ga6YO1BEREREREQkjKhgIiIiDUkPdQARkTB2HvAB8DbQxsO8UuBsIBuzcCIiIiIiIiJhRgUTERFpiM4xiWIrVqzg6NGjoY4hEomaATnAt3j+ObkLuAlIAbYGPpaIiIiIiIicKBVMRESkIb127NjRItQhxL8qKioYMWIEt976/9m787ioy/X/468ZFgUFFVcUN9IyS0/hUpqaVuiptNMptU55zL5ZbpmlpZgwyKLiwklTMzP7yqmv2VHrpB5/pS2WZotox1JbVMBdXFAR2Zn5/UFaH2cYwIEZxPfz8eDx0Pu+53NfLujM5/rc1/UABQUFhjmzWW8PREoxANhD8WkR3xLWFAFzKG7q/v/cFJeIiIiIiIi4wNvTAYiISJXna7VaewPrPB2IuC4vL4/XX3+d+fPnk52dbTcfEBBAaGioByITuSqEAK8AA0tZ91/gb8DPlR6RiIiIiIiIVBg9QioiIqWyWq0qy1UNrFu3jl69ejFz5kyHyZLrrruO//u//yMwMNAD0YlUaT7AOIoTIM6SJeeBp4BbUbJERERERETkqqMTJiIiUhZq/H4V27t3L9HR0WzatMnhfGBgIGPHjuXpp5/G17ek6kIi16w7gdeA9k7W2IBlFCdVzrshJhEREREREakESpiIiEhZtDt27Fir4ODgNE8HImV39uxZEhMTWbZsGUVFRXbzZrOZhx56iKioKBo2bOiBCEWqtCbALGAIYHKy7mdgMMXN30VEREREROQqpoSJiIiUic1muwd409NxSOkKCgpISkpizpw5ZGZmOlzTrVs3YmNjuemmm9wcnUiVZ6Y4SfIKEORkXR5gobixu9UNcYmIiIiIiEglU8JERETKqi9KmFR5mzdvxmKx8MsvvzicDw4OJiIigoEDB2IyOXtoXuSaFAYsArqWsm4NMBw4WekRiYiIiIiIiNsoYSIiImV1j81m8zKZTPa1ncTjUlJSiImJYePGjQ7n/fz8GD16NGPGjKFmzZpujk6kyqsLxADPUnzCpCQHgceAr9wRlIiIiIiIiLiXEiYiIlJW9dLT0zsD33o6EPldZmYm8+fPZ8mSJeTn59vNm0wm+vfvT1RUFCEhIR6IUKTKGwQsBJw18ikE4oFpv/1YREREREREqiElTEREpMxsNltflDCpEqxWK6tXryYuLo5Tp045XNOxY0fi4uLo0qWLm6MTuSpcT3Gi5J5S1m0BHqf4dImIiIiIiIhUY0qYiIhImdlstnAgztNxXOu2bt2KxWJhz549DucbN27MhAkTeOyxxzCbnVUXErkm+QMTgZcBHyfrTgFPAOvdEZSIiIiIiIh4nhImIiJSHt0yMjLqBAUFnfN0INeiY8eOMWPGDFavXo3NZrOb9/HxYejQoUycOJGAgAAPRChS5Q0AFgAtnKyxUnzyZCKQ646gREREREREpGpQwkRERMrDOycnpzfwoacDuZbk5OTw2muvsWDBAvLy8hyuCQ8PJzY2lpYtW7o5OpGrQggwF3i4lHX/Bf4G/FzpEYmIiIiIiEiVo4SJiIiUVzhKmLiFzWZj3bp1xMbGcuTIEYdr2rRpQ0xMDH369HFzdCJXBR9gNMXN2ms5WZcFjAPeckdQIiIiIiIiUjUpYSIiIuViMpn6ejqGa8HOnTuxWCxs27bN4XzdunUZP348w4YNw9tb/52X5NNPP+XDDz+kXbt2PP300/j4OGtZIdXMncBrQHsna2zAMuB5INMNMYmIiIiIiEgVpjssIiJSXm3T09NDGzdunOLpQKqj9PR0EhMTWb58OVar1W7e29ubRx99lIiICIKCgjwQ4dVh7969REdHs2nTpktj586dY/LkyZ4LStylCTALGAKYnKzbCzwGJLsjKBEREREREan6lDAREZFyKyoqCgcWezqO6ub1119n+fLlXLhwweF8nz59mDp1Km3btnVzZFePc+fOkZiYSFJSEgUFBYa5b775xkNRiZuYgeHAbCDQybo8wALMobjBu4iIiIiIiAighImIiFwZJUwqwZIlSxyOt27dmoiICAYMGODmiK4eVquV1atXExcXx6lTp0pcI9VWGLAI6FrKujUUJ1VOVnpEIiIiIiIictVRwkRERK7E3TabzdtkMhV6OpDqLDAwkOeff56nnnpKvTec2LJlC9HR0fz000+eDkXcry4QA4wBvJysO0Rx+a0t7ghKRERERERErk5KmIiIyJWoe+TIkS7A154OpDoym8089NBDREVF0bBhQ0+HU2UdOHCAuLg41q9f7+lQxP1MwN8pLqvl7Juk8Lc10UC+G+ISERERERGRq5gSJiIickW8vLz6ooTJFfP19cVkMmGz2Qzjt99+O7Gxsdx8880eiqzqy87OZtGiRSxYsIC8vDyHa8LDw7npppuYO3eum6MTN7geWAjcU8q6LcDjwMFKj0hERERERESqBbOnAxARkauTzWYL93QMV7MaNWoYepKEhISwePFi3n//fSVLSmCz2Vi7di133nkniYmJDpMlbdu2Zfny5SQlJdGiRQsPRCmVyB+YCuzCebLkFNAf6ImSJSIiIiIiIlIOOmEiIiJX6raMjIw6QUFB5zwdyNVqwYIF9O/fn6KiIvr160fNmjU9HVKVtXPnTqKiokhOTnY4X7duXcaPH8+TTz6Jl5ezVhZylRoALACcZcGsFJ88mQjkuiMoERERERERqV6UMBERkSvlnZubexfwgacDuVp5e3vTv39/T4dRpaWnp5OYmMjy5cuxWq128z4+PjzyyCNEREQQFBTkgQilkoUC84H7Sln3X4qbuv9U6RGJiIiIiIhItaWEiYiIuCIcJUykEhQUFJCUlMSsWbPIyspyuKZnz57ExsZyww03uDk6cQMfYDQwneJSXCXJAsYBb7kjKBEREREREanelDARERFX/NnTAUj1s3HjRqKiojh40HH7idDQUKKjowkPVxudaqo3xaW12jtZYwOWAc8DmZUfkoiIiIiIiFwLlDARERFXtE5PT7+ucePG+z0diFz99u7dS3R0NJs2bXI4HxgYyNixY3n66afx9fV1b3DiDk2AWcAQwORk3T6Ky29tc0dQIiIiIiIicu1QwkRERFxitVr7Aos8HYdcvc6ePUtiYiLLli2jqKjIbt5sNvPQQw8RFRVFw4YNPRChVDIzMByYAwQ4WZcHRAGJFDd4FxEREREREalQSpiIiIhLbDZbOEqYyBW42Kdkzpw5ZGY6rqrUvXt3YmNjad/eWXUmuYqFUfzvR9dS1q0BngZOVHpEIiIiIiIics1SwkRERFx1t81m8zGZTAWeDkSuHps3b8ZisfDLL784nA8ODiYiIoKBAwdiMjmrziRXqbpADDAG8HKy7hjwd+BTdwQlIiIiIiIi1zYlTERExFWBR48e7Qp85elApOrbt28fU6dO5bPPPnM47+/vz9ixYxk5ciQ1atRwc3TiBiaKEyBzAGf11Qp/WxMN5LshLhERERERERElTEREpEKEo4SJOJGZmcn8+fNZsmQJ+fn2979NJhP9+/fHYrHQrFkzl/ayWq2sXr2aGTNmuHQdqXA3AAuBu0tZt4Xixu8HKj0iERERERERkT9QwkRERFxmNpv7AlM9HYdUPUVFRSxfvpxZs2Zx+vRph2vCwsKIjY0lLCzM5f2++eYbLBYLu3btspsLCHDWT1wqkT8wEXgZ8HGy7jQwDFjnhphERERERERE7ChhIiIiLrPZbF0PHToU1Lx58wxPxyJVx9atW7FYLOzZs8fhfOPGjXn55ZcrpE/J4cOHiYuLY+3atQ7n/fz8GDVqlEt7yBUZACwAWjhZYwWWAi8AF9wRlIiIiIiIiIgjSpiIiEhF8PL29r4LWOXpQMTzDh48SFxcHP/5z38czteoUYMRI0YwduxYatWq5dJe2dnZLFy4kEWLFpGbm+twzZ///GcsFgutWrVyaS8pl1BgPnBfKet2An8Dfqr0iERERERERERKoYSJiIhUCJvNFo4SJte0nJwcXnvtNRYsWEBeXp7DNeHh4cTGxtKyZUuX9rLZbKxbt464uDgOHz7scE2bNm2YOnUqd911l0t7Sbn4AKOB6RSX4ipJFjAOeMsdQYmIiIiIiIiUhRImIiJSUfp5OgDxjIvJi9jYWI4cOeJwTdu2bYmJiaF3794u7/fDDz9gsVj47rvvHM7XrVuX8ePHM2zYMLy99VbHjXoDrwE3OlljA94FRgGZbohJRKTa+vbbb+t7eXndbrPZGpvNZrf9h2ez2fJsNtuRgoKCr7p3757jrn2rkuTk5A4mk+lGoK6nYxFxkc1qtaZ7eXklh4WFHfV0MK747rvvbjKbze1NJlM9N299zmQy/RwWFrbTzfuKSCXRXQQREakoLQ8fPnx9SEjIr54ORNxn586dWCwWtm3b5nD+YvLiySefxMvLy6W90tPTSUxMZPny5VitVrt5b29vHn30USZNmkT9+vVd2kvKJRiYCfy9lHX7gccAx5kuEREpk+TkZH8gERgOeJtMJmw2m1tjMJlM+Pr6nk9OTp7WqVOnWSaTyb0BeMi2bdu6mkymxcAt7v49F6ksJpMJq9VqS05OXgmM6dy58ylPx1Qe27Ztu9VsNi+22WxdALf/e3hxz+Tk5B+tVuvIrl27bnV7ACJSocyeDkBERKoPk8nU19MxiHukp6czceJE7r//fofJEm9vb4YMGcKWLVsYPny4S8mSgoIC3nzzTXr16sU777zjMFnSo0cPPv74Y2bNmqVkifuYgWeAX3CeLMkDXgJuQMkSERGXfP755zWBj4GReP4ByAAgYfv27Ys9HIdbJCcn9zCZTJuAWzwdi0glMAGDga+2bt0a5Olgyuq7777rYjKZNl9MlnhYB7PZ/PmOHTvu9nQgIuIaJUxERKTCmM3mcE/HIJWrLMmLnj17smHDBmbNmkVQkGuftzZu3Midd96JxWLh/PnzdvOtWrVi8eLF/Otf/+LGG51VgpIK1gn4BlhM8Q2zkqwBWgBzgCI3xCUiUq0FBAS8CPTwdByXeTo5Ofl+TwdRmXbv3u0L/BPw83QsIpXsel9f35meDqIs/vWvf3mZzeZ/ArU8Hcsf+Fqt1mVbt27VvxUiVzElTEREpMLYbLY+NpvNx9NxSOXYuHEjvXr1KjF50bp1axYvXsx7771Hu3btXNpr3759DBkyhCeeeIK0tDS7eX9/fyZMmMCmTZsYMGCAS3tJudQD5lF8UsTZk3zHgXDgL8AJN8QlIlLt2Ww2E8Un+6ocm802wtMxVKbc3Ny+QGtPxyHiJkN2795d29NBlOa66667E3DtQ0flCPH19e3v6SBE5Mp5+giviIhULwHHjh3rBnzp6UCk4uzdu5fo6Gg2bdrkcL5WrVqMHDmSsWPH4uvr69JeZ8+eJTExkaSkJAoLC+3mzWYzDz30EJGRkTRq1MilvaRcTBSX3ZoDNHSyrvC3NdFAvhviEhG5Znz//fcNgOYlzb+b+i6pWamGsZvq3sRfmv+l3HtlFWax8OeFFNmMhwMHtRxE28C2dutNJtOt5d7kKmKz2ar1r0/kMjUvXLhwI+C4SWEV4ez78osv6vLmm8GGsYCAQmbPTqFWrfIdei4oMBEREcqJE8bPOYMGneSBBxy3e7HZbLcAK8u1kYhUGUqYiIhIRQtHCZNq4WLyYtmyZRQV2X+wuJi8iIqKomFDZ/fQS1dYWMiKFStISEggIyPD4Zpbb72V2NhYOnXq5NJeUm4dgdeAO0pZtwUYAhyo9IhERK5BBQUFtZ31BLut4W0s/HkhuUW5l8b+ffDfBPsF07VB13LtlfBjAh8d+cgwdkejO2gT0KaklwSWa4OrT4klf7zPnKHts8/ilZVlGD/04ouc69mz3Bs1feMNgv7zH8NYzg03sD8hAcyVVyTE/9dfCZ00Cf5QbtXm5cX+xERyW5fzcI3NRuspU6i1e7dh+Ex4OEeefbYiwi1RvU8+odn8+Yaxwjp12LtwIUUBzqqI2jNnZ9N27Fh8Thlvih8bPpzTlXzCOfjNN6m/dq1hLKdtW1JmzcJWzr8HNY4epc24cZjy//Asi8lEamwsFzp2dPgab2/vKv89bTKZapfU4L1Xr7N8+GF9vvyyrmE8Pr4lM2aklGufV18N4YsvjNdp3/4C9957usTXmM3mKv/7JyIlU0kuERGpaGr8fpUrKCjgnXfeoUePHixdutRhsqRbt258/PHHvPrqqy4nS7Zs2UK/fv2YOHGiw2RJkyZNmDdvHuvWrVOyxL38galAMs6TJaeBAUBPlCwREfGY0NqhTLx5omHMarMSuSOS03kl39i73KoDq+ySJY1qNiLmlhhMJlOFxFqdFNarx/H/+R9qHDli+GodHY3vsWPlulbg1q0Ev/mm4To+Z85wZPToSk2WAGRffz0Z/foZ9q558CChkyZhzs0t/QJ/0PjttwnasMFwLUwmjg8bVjnB/8GZu+8m5/rrDXvX2rOH1hYLlHBzvSQtZs6k9s6dhmvlBweTcX/lt+xJHzoUa61ahr3rbtpE8Jtvlus6psJCWkdGUjM11XCts716lZgsqQ5MJpg69QDBwcYDzxs31uP99xuU+TpbttRhxQrjqfaAgCISElLx8Snf3ycRuXooYSIiIhWt89GjR8v+LlSqlM2bNztNXgQHBzNv3jxWrVrFTTfd5NJeaWlpjBgxgsGDB/PTTz/Zzfv5+TFmzBg2b97MoEGDdJPGvQYAP1NcWqukvkRWYAnQCljnnrBERMSZB5o/wP0hxpu5GfkZTNkxBSvWEl71u33n9/HK7lcMY14mL6a804xeAAAgAElEQVSHTaeub90SXiVn7r6bk4MGGca8MjMJnTwZk4MSo474ZGTQKibGcMID4EBEBLmtWlVUqE4dfeYZznc1nkbyS0mheWJima9Ra/dumi1aZBizeXuTGh9PUW03tMUwmUizWMhr2tQwXGfzZhqtLHuFpPpr1lD/spM+BUFBpMbHl/uEx5Ww+vqSkpBAkb+/YTz4zTcJ/O67Ml8n5NVXqfXDD4ax7PbtOTJ2bIXEWZUFBhYyfXoK3t7GxMacOc359Vf/El71u/R0X6KjW9nl2SIiDtK0aV5FhioiVYwSJiIiUtHMJpPpLk8HIeWTmprKiBEjeOSRR/j555/t5v38/JgwYQJfffWVy8mL7OxsEhMT6d27N2svKzVwUXh4OJs2bWLKlCnUqlViFYwyOXLkCDk5OS5d4xoSCvwHWIOTOvnAf4EOFDcfznKyTkRE3CyiQwStaxtLKCWfTiZpX5LT12UXZhOxPYI8q/FG4IjrR3BL0C0VHmd1c+iFF8huZ+w/XWvXLpq+/nrpL7ZaaR0Zic9p40mgUw8+SMZ991VkmM6ZzaTGx1NQv75huMEHHxC0fn2pL/c6f57WkydjKigwjB9+/nku3HxzhYbqTFFAAKkJCdh8jM98hMydi7+Dh3QuV/PgQZrPmWMcNJtJi4ujoIH7ngvLbdGCQy+9ZBy0WmkVGWlXJsyROlu20Ojddw1jRbVrkzJjht3vTXXVocMFnnnmqGEsP99MREQo2dkllzgsKjLx8sutOXfO2Mlg8OAT9OvnuHywiFQfSpiIiEiFs9ls4Z6OQcrmwoULJCYm0qdPH4fJC5PJxIABA/jiiy+YMGECNWvWvOK9rFYrK1eupFu3biQmJpKfb98TvEOHDnzwwQckJSXRvLmz+/Wl27ZtG/feey9dunQhLCyM7du3u3S9as4HmATsAZzdmckCngLCflsrIiJVjJ+XHwmdEqjpZfw/+/VfXue/Gf8t8XUJPyaQlpVmGOtcvzPD2g6rhCirH5uvLykzZlB02YMeTZKSqPOl8/Z+Td94g4DLTg3khIZy6MUXKzzO0lw8RXF5CbCWCQnUTEsr+YU2G61iY6lx1Hhz+lzPnpx45JFKiNS5C+3bF5cy+wNTfj6hkyfb9Zv5I3N+PqEREXhlZxvGjz31FJm33VYpsTpzesAATl9WAswnI4PWkZGYrCWfGvNNT6dVdLRdGbKDkyeT16xZpcRaVQ0bdpxu3TINYwcP1iA+vkWJr1m4sBk7dxpPRLVpk8O4cUcqJUYRqVqUMBERkcrwZ08HIM5dTF507969xORFx44d+eCDD1i8eDEhISEu7ff999/zl7/8hXHjxnHy5Em7+aCgIGJjY1m/fj23ufhh9OjRo4wePZoHH3yQnTt3AnDu3DnmzZvn0nWrsT7ATiABqFHCGhuwHAgB3vrt5yIiUkVdF3Ad49uPN4wV2Yp4ecfLnM0/a7f+w0Mfsv6I8QRBkG8Q08KmYdZtgzLLa96cA5GRxkGbjVZxcficOOHwNQHbt9PkrbcMY1ZfX1KnTcPqwoMqrjjfpQvHhw41jJmzswmNiMCc57gUUaMVK6j7+eeGsfzGjUmbOrW4oYQHpA8Zwtk77zSM1Th8mJbx8SW+pnlCAn6//moYywoL49jTT1dKjGVxMCKC3NbGU2MByck0XrbM4XpTURGtX34Z73PnDOMnBw8mo1+/ygqzyjKbITY2lYYNjSefNmwIYu3a+nbrt26tw9tvNzaM+ftbSUhIoUaN0ksbisjVT+98RESkMoQcPXq0XenLxBO+/vpr+vXrV2LyonHjxsyaNYv169fT9bI61uV17NgxnnvuOfr37+/whIePjw9PPfUUX3/9NcOHD8fLq+Sj8aXJzc1l4cKF9O7dm3//+9/YLnui7syZM1d87WoqGPgn8Blwo5N1+4DbgceBc07WiYhIFfJQy4e4L8R4aPBE7gks31sM/0emZKUwe9dswzqzyUx8WDz1a9jfTBTnzoSHc+qvfzWMeZ85Q6iDEwHeGRm0njLFbvxgRAQ5bdtWeqzOHB01iqxbjKXY/PbtI2TuXLu1/nv2EDJ/vmHM5uVF6owZFNapU6lxOmUykRYdTX5wsGG43ief0PD99+2W19uwgQZr1hjGCuvVI8VNfUtKYvXzIyUhwS6B1vT11wnYts1ufbOFC6n920NDF+W0acPhceMqNc6qrF69QqZNS8VsNn4+mDWrBSkpv/++njjhi8XiqG/JAVq1ynVHqCJSBShhIiIilaWvpwMQo4vJi4EDB7J79267+YvJiy+//JIhQ4ZgduGDYU5ODgsXLqRXr16sWrXKLnkB0LNnTz755BPi4uIICAi44r1sNhtr1qyhZ8+eTJs2jSwnZRYEAG9gHPAL8Hcn6/KAl4B2QNm7i4qISJURcXMELWu1NIxtPbmVd1LeASCnKIeI7RHkFhlvBA5vO5yuDVx7aOJaduill8i+/nrDWO0dOwhesuT3AauV1lFRdr0ozvTty+kHHnBHmE7ZvLxInT6dwrp1DeMNV64k6OOPL/3cKzu7uDzUZaeVj4wZQ1bHjm6J1ZmiwMDinh3exl4UIXPm4P/LL5d+XuPQIVpOm2Z8sclEWlQUBY0auSNUp3Kuu45DEyYYxkxWK62jo/E++/upsTpbt9L47bcN66z+/sUJlxolHSR2i9pAPTx4HzIs7DzDhx8zjOXkFPczyc01Y7WaiI5uxdmzxr8rf/3rKe67T31LRK4lSpiIiEilUB+TqiMnJ4fExETuuOOOEpMX4eHhfPnlly4nLwA2btxI7969mTZtGhcuXLCbv+6663j77bd57733aOvi05O7du3i4YcfZuTIkRw5oprCZdAJ2ArMBZz9QX8EtADmAEVuiEtERCqBv7c/CZ0SqGE23ihd8PMCfjjzA7N2zSLlfIphLiwojOHXD3dnmNWO1deXlIQEivz9DePBS5cS+O23xT9+661LP74or0ULDkyZ4rY4S5PfqBFpsbF2JbVazJhBjd/ed7WYPp2aBw8a5s9170763509k+FeF26+maMjRxrGzBf7mVy48Hvfksvetx4fOpRzvXq5M1SnTv31r2TcZzw15nPiBK0sFrDZDD/+owMREeS2auXGSB16G8gAWnkyiOHDj3HbbcZ+Jikpfsye3ZzXX2/Ktm3Gt8ehoTlMmHDInSGKSBXgXfoSERGR8jOZTH327t1bo23bto4LHUuls9lsrFu3jri4OA4fPuxwTZs2bYiJiaFPnz4u7/fjjz8SFRXFd985PoxQp04dJkyYwLBhw/D2du0tyMmTJ5k5cyYrVqzA6qDhpZeXF+3atXN4kuYaVQ+YCjyL8wdmjlN86uQTN8QkIiJu0DawLePaj2PWrlmXxopsRYz7bhznC84b1gbV8Gjfkp5ARR5ryQYWVeD1yiWvRQsORUQU38C+yGqllcXCoRdfJPiNNwzrrb6+7E9IsGsa72kXkx+N//nPS2NeWVmETp7M6T//maCPPjKsLyghyeJpx4cOJWDHDgK3br00VuPgQVrMnEmRn5/htAlAVseOHB01yt1hlupgRAT+u3YZklR1tm6lybJl1Pn6a8NpE4BTDz5ol2S5lhX3M0njb3+7kYwMn0vjH37YwO6vrJ9fcd+SmjXVt0TkWqOEiYiIVJZatWvX7gZs8nQg16IffviBqKgotjmoawxQt25dxo8fXyHJi4yMDF555RWWLVtGUZH9YQRvb28effRRJk2aRP36rtVCLygoICkpiTlz5pCZmelwzR133EFsbCw7d+5k/PjxDtdcQ0wUJ0ASgQZO1hVSfJokGsh3sk5ERK5Cg1sNZmfGTj4++nsppcuTJSZMRHaMpGHNhu4O76L7gUkVeL2TeDBhAnD6vvsISE6m/h/6YvicPk3o5Ml2aw9PmEDOZWW8qoojY8ZQa+dOQ18M/z178N+zx7jQbCY1JsaujFeV8Fts7R9/HJ8TJy4NB61fb7e0KDCQ1Ph4uzJeVUGRvz8ps2bR7oknMOf9/lxas4UL7dbmhIZy6MUX3RkegB/F9xrPl7bwDxpS/P3qFvXrFzB9eiqjR7fFav09S3L5IfyJEw8SGqq+JSLXIpXkEhGRSqOyXO6Xnp7OxIkTue+++xwmS7y9vRkyZAhbtmxh+PDhLiVLCgoKePPNN+nWrRtLly51mCzp0aMHH3/8MbNmzXI5WbJ582bCw8OxWCwOkyVNmzZl3rx5rFy5khtvdNbD/JrREdgMJOE8WbIZaAtMRskSEZFqa3LHyTTzb1bi/BNtnqBX46pTfqi6OBgRUWoi5Mw993Dy4YfdFFH5XepnUkoD96MjR3K+Sxc3RVV+lxq4e3mVvMhkIs1iIb9pU/cFVk45bdpw+IUXnK4pqVG8G0yiuE/eUIof3HGmKfBP4AcgsJLjMujc+TxPPnm8xPm+fTMYMOC0GyMSkaqk6qXLRUSkOukLVJ1CzNXYxZMXs2fP5vx5xw909ejRg9jYWNq1a+fyfhs3biQ6Opq0tDSH861atWLy5MkMGDDA5b3279/P1KlT+fTTTx3O+/v7M2rUKJ599llqeLaZZVXhD0wEXgZ8nKw7CzwDrHRHUCIi4lm1vWsz6eZJPPfdc3ZzHet1ZNQNHi8/tAhYW4HXqxIPAVh9fUmNj6fd0KGYc+2fVs8LCeFAZKQHIiuf/MaNSYuJoc0LL9g/ig+c79yZ48OGuT+wcsoKC+PYM8/QdJHjw0fpf/sbZ3v3dm9QV+DkwIHU/u9/7UqiXXRw4kRyQ0PdHBVQ/N4ziOIHdoZSXA7258vW+AIvAFFALSAZaAw4Pj5eSYYOTWf58sbk5BifJQ8KKiQy8oA7QxGRKkYJExERqUxhx44daxgcHOy2I9bXoo0bN2KxWDhwwPEb+9atWxMREVEhyYt9+/YxdepUPvvsM4fzFZm8OHfuHAsWLOCNN96goKDAbt5kMtG/f38sFgvNmpX8xOw1ZgCwEGjuZI0VWAqMB7LcEZSIiHiezWZj1YFVDudO5J7gQuEFAn3c+pD35Q789lXt5ISGknnbbdT94gu7uYOTJlFUu7YHoiq/zG7dyGvenBqXNXm3mc2kxcRgM18dRUxOPvwwTZYuxZxvzKkVNGrEkbFjPRRV+Z0cPNhhwuR8166croD3/VdoCrAEiAMeA3YC/6A4MQJwFzABaAfsAyKBfwH2WbhKNnt2c7tkCUBGhjdffFGXe+/NcHdIIlJFXB3/m4mIyNXKbLVa7/Z0ENXVvn37ePzxx3niiSccJktq1arFhAkT+Pzzz11Olpw7d46oqCjuuusuh8kSk8nEwIED2bp1KxMmTHApWWK1Wlm5ciU9e/Zk4cKFDpMlt9xyCx9++CGLFy9WsqTYdcB6YA3OkyXfU1yq6xmULBERuaYk7U/iy/QvHc4dzzlO/M54N0d07aj3yScOkyUAjZcvB+vV0VQ6ePFiu2QJgMlqpdGKFR6I6ArYbLSMj7dLlgD4nDhB0IYNHgiq/Mw5ObSMd/w9W3vHDmr98IObIzJIo7iHXgfgQyACuFiqeQnFpWIjgJuB9/BAsmTDhiDWrSu5XPCMGS05cMDt5cxEpIpQwkRERCqV2WxWH5MKdvbs2UvJi88//9xu3mw2G5IXvr6+V7xXYWEh77zzDj169GDp0qUUFhbarbn11ltZs2YNr776Ko0aNbrivQC++uorwsPDGTduHKdOnbKbb9y4MbNmzWLdunV07tzZpb2qCR+Ka0XvBu51si4LeAro9NtaERG5huw6u4vXf3nd6ZrPjn9W4gkUuXI1Dh8u8cY2QODXX9Pk7bfdGNGVCUhOpsmyZSXON37nHep+6TghV5U0fvdd6m7aVOJ8i4QEaqamui+gK9Ri9mxqpqQ4nDMVFhL68st4O+j552Z7KC7L9eEfxs5TfCJ6JpDn6EWV7eDBGsTHt3C6JjvbTGRka/LzS2vDIiLVkRImIiJSqWw2Wz9Px1BdlCV5ERYWxocffsirr75Kw4YNXdpvy5Yt9OvXj4kTJ3L6tH3TwyZNmjBv3jzWrVtHp06dXNrr6NGjPPfccwwaNIiffvrJbr5mzZqMGTOGzZs3M2TIEMxXScmHStaH4iaZCUBJR3pswPtAK+AtPPAEn4iIeFZmQSYR2yMotBnfNzzc8mG8TMbm1//Y/Q9+zfzVneH90VSKexhU1Nd+t0bvgKmwkNZRUXhlOT/U2fS116i9c6eboio/74wMWkdGYnJ2EsZmo+XUqfgeL7mRtqf579lDs/nzna4x5+QQGhGBOc8j9/LLpN6GDdRfs8bpGt/jx2kxbZqbInLIDAwDfgX+wu89hWoAWyh+Xxri7qDy8sxMmnQd2dnGf/uefPI4N910wTD200/+zJ/v9hBFpArQ3QYREalszY4dO9be00Fc7bZs2ULfvn2ZOHEiGRn29XSDg4OZN28ea9eudTl5kZaWxogRIxg8eHCpyYtBgwZhMl35k1fZ2dkkJiZyxx13sGqV46daw8PD2bRpE1OmTKH2VVLju5IFA/8EPqO4/nNJ9gPdgIcB+4yXiIhUezabjdidsRzPMd7Evif4HiZ3mMyIG0YYxvOt+UzaPonsomx3hnlRTSCggr88KmTuXGr9+KNh7MJNN3H4hRcMY6aiIlq//DLe5865M7yysVppHRWFz2Unf089+CCn/vpXw5h3Ziato6IwFRW5M8Iy8crKInTyZEyXlXo9/MILZN1yi2HMb/9+Ql55xZ3hlVmNgwdpeXkixGwmZcYM8oODDcP1Pv2UhqtXuzG6S+4BtgP/C3gBTwD/77e5u4DlFCdT9gPzgLruCiwxMYS9e/0MY2FhWYwadZSZM1MIDDQmllesaMSmTW4LT0SqCCVMRESk0tlstr6ejuFqlZqaeil58fPPP9vN+/n5MWbMGL788ssKS1707t2btWvXOlwTHh7OF198wZQpU6hVq5bDNWVhs9lYu3YtvXr1IjExkTwHT/HdfPPNvP/++yQlJdGihfNj89cIb2Ac8AvFdaFLkge8BNwAfOuGuEREpIp6N+1dNh3fZBgL8Q8h8k+RAAy7bhi3NbjNMH/owiFP9TNJA76qwC+P/h9YZ/NmGr33nmGsKDCQlBkzSH/8cc7edZdhzjc9nVbR0WCrWodBg5cuJfBb429lTmgoh158kUMvvUTO9dcb5mp//z3BS5a4M8QyaTFjBjWOHDGMnevZk/THHiN1+nQK6xpvijdctYqgjz92Z4ilMufnEzp5Ml4XjCchjj31FGfCw0mZPh2bt7dhLiQxEf9ffnFnmCuAjUB7istuXU/xgz4X/2Ifo7hMVziQAjxHcfP3jpUd2Cef1OP9940n8OvVKyQ+PgWz2UaTJvlERhp79NhsEBvbiqNHr7zEsYhcfZQwERERd1DCpJwuXLhAYmIiffr0cUvyYuXKlXTv3p3ExETyHTTB7NChAx988AFJSUk0b+6sp3jptm/fzv3338+IESM4evSo3XyDBg2YPXs2H330EbfffrtLe1UjnYGvgbk4f2L2I6AlMAeoeo93ioiI2+w5u4f5PxnLD3mbvIm7NY7a3sUnNs0mM3G3xtGgRgPDug1HN7D2kOP3H5XodaBHBX4NcG/4v/NNT6fV1KnG5IfJRJrFQn7TpgCkRUWR99uPL6qzZYtdksWTau/YYZf8sPr6kjptGtaaNbH6+pKSkECRv79hTfBbb9klWTyp4cqVdsmP/MaNSZs6FUwm8hs1Ii0mBi578MhRksWTHCU/ssLCOPb00wBc6NCBY888Y5i/lGTJdtupsQ3AF0AYxY3dL5Sw7lOKkyTPU1y2a09lBnX4cA3i41saxkwmiIpKo1Gj308d3XXXGQYNOmlYl5npxeTJoRQWqp+JyLVCCRMREXGHO/fu3VtSjwX5A6vVWqbkxb///W+SkpIICXGtru7333/PAw88wLhx4zhx4oTdfL169YiNjWX9+vXcdtttDq5QdseOHePZZ5/lgQce4L///a/dvI+PDyNHjmTLli08/vjjLvUpycvLY9u2ba6EW1XUo7hUwbcUJ01Kkk5xYvLe334sIiLXsOyibCK/j6TAaiw/NK79ODrU62AYC6oRxLSwaZgvuz0wa9csUrOqfvPrqqak8lonHn2Us717X/p5UUAAqQkJ2Hx8DOtC5s6l1q5d7gjVKe/MTFpbLHZ9Sw5FRJDTtu2ln+e2aMGhF180vthqpZWDMl6e4LdvHyFz5xrGbF5exadK6tS5NHbujjtI/9vfDOtKKuPlCY7KaxUGBpIaG4vtD++Zjw0bRuZlDxzVOHiQFvFuOzX2v0BvYHcZ1hZQ/D73DsC+OWMFKSw0ERXVmqwsY9+SoUOP06uXfRm8F144xA03GBNMu3fXYvHipnZrRaR6UsJERETcwd/Pz6+Hp4Oo6nbs2HEpeXHy5Em7+caNGzNr1izWr19P165dXdrr+PHjPPfcc/Tv35/t27fbzfv4+PDUU0/x9ddfM3z4cLy8vBxcpWxyc3N55ZVX6NmzJ++//z42B6Um7rnnHj7//HMsFguBgYFXvBfAf/7zH+68807effddw7gr5co8wERxuYJfKS5VUNJ7tkKKm763pLj8gYiICNN/mM7BC8bSMj0a9eDRVo86XN+pfieGtRlmGMspyiFiewS5RbmVFWa11HThQrsG7tk33sjhsWPt1l5o354jo0YZxkyFhbSOjCy1UXylKqGB+5nwcE498IDd8tMPPMDp++4zjPmUpVF8JSupgfvRMWPI+tOf7NYfee45LnQwJhT99+yh2YIFlRpnaWocOULLuDjjoMnEgalTyW/SxDhuNpMaG0tBA+OpsaANG6i/bl0lRwr8Xnqrsl9TZnPnhvDjj8bT+DfddIGRI+1PugP4+tpISEihVi3jYe2kpCZ8/bVrn1NE5OqghImIiLiFl5dXuKdjqKqOHTvGc889x4ABA9ixY4fd/MXkxZdffsmQIUNcTl4sXLiQnj17smrVKofJi549e7Jx40bi4uJcTl6sWbOGXr16MXv2bLIdlAJo06YN//d//8c///lPQkNDXdprz549DBw4kKeffpqDBw/azd96660uXd+NOgJbgCSggZN1m4G2wGSK+5aIiIiwMm0lHx35yDDWqGYjYm6NcfrwwMh2I+nSoIthbP/5/fxj9z8qJc7qKHDrVpq8845hzOrvT2p8PDZfxz0Q0v/+d8726mUYq3H4MC3ddyLATpO336bul18axvKaN+dAZGSJrzk4eTK5rVoZxgKSk2mclFQZIZZJixkzqJmWZhjL7N6d40OGOFxv8/YmNT6eotq1DeONly+n7hdfVFaYTpWUQHP09+aiwqAgUqdNM5w8AWgxcyY1Uz12aiyd4p4lbj2us3lzHd57r5FhLCCgiBkzUvHxKTlP07x5HlOmHDCMWa1gsbTm5EmfEl4lItWFEiYiIuIWavxuLycnh4ULF9KrV68SkxcX+5TExcUREOCsdUXpNm7cyJ133sm0adO4cMG+nPB1113H22+/zXvvvcf1lzXwLK9du3bx0EMPMXLkSA4fPmw3X6dOHWJjY/n000/p06ePS3udPn2aSZMm0a9fP7Zu3Wo37+XlxRNPPEFERIRL+7hBLWAqkAx0d7LuHPAI0IviBrkiIiIA7Du/j7l7jOWHvExezOg0gzo+dUp4VTEzZmJuiaGur7H59fsH37dLwIg9n4wMWsXEFN9V/YMDkyeT27JlCa+ixJMC9T75hAYffFAZoTpVa/dumi5aZBiz+fqSMmMGRU565ln9/EhJSMBaw1iFt+nrr1PbQSnWytZgzRrqr19vGCsICiItOhqclH3Na9aMA1FRxkGbjVYxMfgeO1YZoToV8uqr1PrxR8OYo5NJlzvfqRPHn3zSMHbpxE2uR06NjQSuAw65a8P0dF+mTm3F5R+xLJY0mjYt/Vmjvn3P8MADpw1jZ854M2VKa6zWq+rkuoiUkxImIiLiLrecOHGiSenLrg2lJS/atGnDO++8Q1JSEq0ue1qvvH788Uf++te/8sQTT3DokP1nlDp16jBlyhQ+++wz7r77bpf2OnPmDFFRUdx777188803dvNms5mBAweyefNmhg8fjo/PlT+hVVBQwDvvvMOdd97J22+/TVGRfY/zbt268dFHHzFjxgz8/PyueC83GEBxs8tooKTfFCuwBAgB/uWmuERE5CpxsYRWntV4I3DUDaP4Uz378kOONKrZiNhbYzFhvBk4/Uf7El/yB1YrrSMj8TltvLl66qGHyLj33lJf7qgXBUDz2bPx+/XXCg3VGa/z52ntoGfHoeefJ7tdu1Jfn9OmDYeff94wdqmny9mzFRqrM34pKTSfNcs4aDaTGh9PQf36pb7+zN13c/Lhhw1jXpmZhL78MqbCSmu1YafOli00uqzEbEm9bxw5OmIE57sYT4357d9PyD+q/6mxoiITL7/cmnPnvA3jjz56gj59yv538aWXDhIaakww7dgRwNKl+lgrUp0pYSIiIu5iKiwsdO1ufDXwww8/8OCDD/LEE084PXnx2Wefcdddd7m018XkxX333ce3335rN38xebFlyxbGjBnjcvLizTffpFu3bixdutRh8qJ79+5s2LCBV199lQYNnFWaKt3mzZvp27cvEydOJCMjw24+ODiYefPmsWrVKm666SaX9qpk1wH/D1gDtHCy7r8Ul+p6BvBgUXMREamqZvwwg7SsNMNYlwZdGHrd0HJdp3vD7jwe+rhhLLswmyk7ppBvzXc1zGqp6RtvEPDdd4axnNBQDo0fX+ZrZIWFcezppw1j5vx8QiMi8HJQ1rTC2Wy0io2lxlFjX4dzPXtyctCgMl/m5KBBZPTrZxjzPXGCVtHR2D3qXwnM+fm0joy0O0VxdPhwzpejB+DhCRPIvuzEda0ffyT4jTcqJM7S+KanO/w9S4uKIq9pGZuPm82kxsRQWNd4aqzh++8T9FH1PjW2cGFTdu40llZr2zaH5547Uq7r+PlZSS92Jh0AACAASURBVEhIoWZN48mxJUua8t13rp3+F5GqSwkTERFxp2u2j0l6ejoTJ07k/vvv57vLPlADeHt7M2TIELZs2cLw4cPx9vZ2cJWyKUvy4o477mDjxo28+uqr1C/Dk3bOXExeWCwWMjMz7eabNm16KXnRvn17l/ZKTU1lxIgRPPLII/zyyy92835+fkyYMIGvvvqKQYMGVeVG777AJGA38Gcn67KA/wHCflsrIiJiZ82hNaw/Yiw/FOQbRPyt8ZhN5f/Y/+yNz9KxXkfD2E/nfmLBz55tfl0VBWzfTpO33jKMXSpPVbNmua517KmnyLzspn7NgwcJmTPH5ThL02jFCup+/rlhLL9xY9JiYqCc76cORkTY3dSv89VXdqclKkPzmTPtTuWcDwvj+PDh5bqO1deXlIQEivz9DePBy5YR6OBBpIp06VTOuXOG8RODB3O2nA9UFTRqRFpsrN2fYcvp06npoOdfdbBjR23+/e8GBAYWXfpq2LCAWbP24+trLf0ClwkNzeHFFw8Zrle7dhGJic3Jyrry3pIiUnVd+d0YERGR8utns9lMJpOp8h8vqyIKCgpISkpi9uzZnD9/3uGaHj16EBMTw4033ujyfps3byYqKopfSyjf0KxZMyZOnMigcjwpWJKUlBSmTp3KJ5984nDez8+P0aNH8+yzz1LjsnrW5ZWZmcn8+fNZsmQJ+fn2T7eaTCb69+9PVFQUISEhLu3lBncBCwFntS1swAcUnyg57WSdiIgItze8nQ/v+tAwVtundql9S0ribfJmwe0LOJN3xjBehR9E8AhzdjZNFy4kPzjYMH7s6afJDQ29gguaSYuNpe3YsZj/cKokYPt2Ar/9lszbbnM1ZIdqHDlCw/ffJ69Zs98HTSZS4+MpDAws9/WKAgJInTGD1lOmGE5INHz/fc716kVeJb1XC/juOwKSkw2/Dqufn8MG6GWR16IFByMiaLp4sWG86eLFXOjQwS6ZUlEarF6Nz6lThl9HftOmduXOyupc9+4ce/JJgj7+2DDedNEiUqZNc9rT5WoUFpbFZ5/trNBrPvjgKR588FSFXlNEqi4lTERExJ2apKen3wz8WOrKamDjxo1ER0eTlpbmcL5Vq1ZMnjyZAQMGuLzX/v37mTp1Kp9++qnDeX9/f0aNGlWhyYs33niDgstqXMPvyQuLxUKzP37wvgJWq5XVq1cTHx/PyZMnHa7p2LEjsbGxdC1HmQUPaQokAH8vZd1+YAhg3wRGRESuWTVq1MgvLKF/QqOajSp8P38vf/zLfkO49A7KVzeHtcis/v78ctnpElcVNGjAHjecxPijvGbN2L1yZYVe88JNN7Hr3/+u0GuW5nzXruz68MPSF5ZDxn33kXHffRV6zdKcHDyYk4MHV+g1j44ezdHRo8u83mq1VvfvaRGREilhIiIibmWz2fpSzRMm+/btY+rUqXz22WcO5y8mL8aOHYuvr69Le507d44FCxY4TV48/PDDREZG0qiRazdTLiYv4uLiOHXK8RNWf/rTn4iLi6Nz584u7QXw9ddfY7FY2L3bcSWqxo0bM2HCBB577DHMVfvJOG9gDBAHOCt2nAdEAq8A9nXURETkmnbmzJn0gICALKB2qYvdb7+nA6hMJpMpxeaG/hsiVYSNav49LSLijBImIiLiVjabLRxI9HQcleHcuXPMmTOHpKQkHD0BWhnJi9jYWE6fdlyx6ZZbbiEuLo5OnTq5tBfA1q1bsVgs7Nmzx+F8RSYvjh07xowZM1i9ejWObk74+PgwdOhQJk6cSEBAlW+22AN4DehQyrpNFJ88OVzZAYmIyNWpT58+hdu3b//AZrOVdlLR7Ww22788HUNlMplM/7HZbNlA5dRgEqlatnTu3PmYp4MQEfEUJUxERMTd7jx06JBf8+bNczwdSEUpLCxkxYoVzJw5s8Tkxa233kpsbGyFJC+2bNlCdHQ0P/30k8P5Jk2aMHnyZAYOHOhyrfGjR4+SkJDAqlWrHM5fTF5MmjSJ2rVde+A1JyeH1157jYULF5Kbm+twTXh4OLGxsbRs2dKlvdygHjAVeBZwlkFKB4YCG9wQk4iIXOVMJlOUzWa7D6jv6Vj+YGdWVtYiTwdRmcLCwk4mJydbgMrvvi7iWbnAlTVLERGpJpQwERERd6tpNpt7ABs9HUhFGT9+fIkJhWbNmhEVFcWAAQNcTl6kpaURExPDx5c1bLyoZs2ajB49mjFjxuDn5+fSXtnZ2SxatIgFCxaQl+e4hHFFJS9sNhvr1q0jLi6Ow4cdH7Bo06YNMTEx9OnTx6W93MBE8UmRRKCBk3WFwGwghupf911ERCpIWFjYgW3btoWbTKbVQGtPxwN8ZTabB/fp08fxkw7VSOfOnROTk5P9AAvg4+l4RCrBCZvNNqRLly47PB2IiIgnKWEiIiKeEE41SphkZmbajfn5+TF69GhGjx7tcvIiKyuLefPmsWTJEvLzHfYc5YEHHiAyMpKQkBCX9rqYvIiNjeXIkSMO17Rt25aYmBh69+7t0l4AP/zwA1FRUWzbts3hfN26dRk/fjzDhg3D27vKv235E8Xlt7qXsu4L4EkgtdIjEhGRaqdLly7f792798azZ88ONplMvYA6HgjjOPBxp06d1ptMpmumuUfnzp3jk5OT3wUeA24AXGtGJ1I1XLDZbN8UFRW9e/vtt9t/sBERucZU+TsPIiJS/ZhMpr7ARE/HUVnuuOMO5s2bR9OmTV26jtVqZeXKlcyYMYMTJ044XHPzzTcTFxfHbbfd5tJeADt37iQqKork5GSH8xeTF08++SReXl4u7ZWenk5iYiLLly/HarXazXt7e/Poo48SERFBUFCQS3u5QS0gCpiA8/dW54BxQJI7ghIRkeqrbdu2ecDbv32JG3Xu3Hk/EOfpOERERKRyKGEiIiKe0PHkyZPBDRs2rJbNBO+8806XkyXbtm3DYrGwc+dOh/MNGjQgIiKCRx991OUm66UlL3x8fHjkkUcqJHlRUFBAUlISs2fP5vz58w7X9OjRg9jYWNq1a+fSXgAbNmxg7dq1tG3bllGjRuHjU+EVNAYAC4HmTtZYgaXAeCCrogMQERERERERkYqhhImIiHiCqaCg4B70VKSd48ePM336dFavXo3NZl/h4mKT9ZdeeonAwECX9rqYvJg1axZZWY7v4/fs2ZPY2FhuuOEGl/YC2LhxIxaLhQMHDjicb926NREREQwYMMDlvX7++Weio6PZvHnzpbHz588zZcoUl6/9mzbAfODPpazbCQwBdlXUxiIiIiIiUrJvvgnks8/qGcYCAgoZM+YoZnP5qwi++WYwJ04YK/B17ZrJPfeccSlOEamalDARERFPCUcJk0tyc3NZunQp8+bNc5q8iIuL4/rrr3d5v40bNxIVFcXBgwcdzoeGhhIdHU14eLjLe+3bt4/o6Gg+//xzh/O1atVi5MiRjB07Fl9f10qBnzlzhjlz5vD2229TWFhomPvuu+9cuvZv/IBJQARQw8m6bIpLdC0Grpna7iIiIiIinhYWlsWrr4bw66/GXpK+vjZGjDharmutXNmQ1183Vg9o1Cif0aMd93sUkaufEiYiIuIpfW02m+laahRako0bNxIZGcmhQ4cczoeGhjJ16lTuuecel/fau3cv0dHRbNq0yeF8YGAgY8eO5emnn3Y5eXH27FkSExNJSkqyS14AmM1mHnroIaKiomjYsKFLexUWFrJixQpmzpzJ6dOnHa5xVG6snO6iuPxWabXC3gdGAKdc3VBERERERMrH19dKQkIKQ4a0Izv7996LS5cGc8stWdx2W9l62+/b58fcuSGGMS8vG9Onp1K3rv3nGxGpHpQwERERT2l85MiRjhSXLLom7dq1C4vFwjfffONwvk6dOjz77LM888wzLvfeuJi8WLZsGUVFRXbzlZG8SEhIICMjw+GasLAwYmJi6NSpk0t7AXz55ZdYLBZ+/fVXl6/lxGBgRilr9lNcfsvxH6iIiIiIiLhFixa5TJlykClTWl8as1ohKqoVy5f/RIMGBU5fn51tJiIilLw8Y7/IUaOOcsstaksoUp0pYSIiIh7j5eXVl2swYXLmzBn+8Y9/lJq8sFgsNGjQwKW9LvYpmTNnDpmZjp+k6t69O7GxsbRv396lvQC2bNmCxWLh559/djgfHBxMREQEAwcOxGQyubRXWloaU6dOZcOGDS5dp4xudTKXB0QCrwD2f6AiIiIiIuJ2/fpl8PXXgaxbV//SWEaGD5GRrXnttb1O+5kkJLQkLa2mYaxLl/MMHXq80uIVkapBCRMREfEYm80WDsz2dBzuUpbkxR133EFsbCw33nijy/tt3rwZi8XCL7/84nC+IpMXqampJCQksHbtWofzfn5+/M///A/PP/88tWrVcmmv7OxsFi1axPz588nPz3e4Jjw8nJtvvplXXnnFpb3KYBPwd+BwZW8kIiIiIiLlM2nSQfbsqUVKyu/Jj+TkAP73f5vw1FPHHL7mgw8asH59kGEsKKiA+PhUzGaHLxGRakQJExER8aSeR48e9W/atGm2pwOpbJs3byYqKqrEslFNmzZl0qRJDBo0yOW9UlJSiImJYePGjQ7n/fz8GD16NM8++yw1ajjrW166Cxcu8Prrr5eavJg2bRohISEO58vKZrOxatUqpk2bxokTJxyu6dChA7Gxsdx2222sWLHCpf1KkQ48AXxcmZuIiIiIiMiV8/Mr7mcydGg7cnN/z3YsXtyUjh2z6NLlvGF9SoofiYnNDWNmM8THp1G/vvMyXiJSPShhIiIinlQT6Ek1vum8f/9+YmJi+OSTTxzO+/v7M2rUqApJXmRmZjJ//nyWLFniMHlhMpno378/FouFZs2aubSX1Wpl9erVxMfHc/LkSYdrOnToQFxcHF27dnVpL4Dvv/8ei8XC9u3bHc7Xq1ePF154gSeffBIvLy+HaypIIcWnomIoLsUlIiIiIiJVWGhoDi++eIj4+JaXxqxWiIxszfLlP11KhOTkFPct+WNiBWD48KN07Vq2RvEicvVTwkRERDwtnGqYMDl37hwLFizgjTfeoKDA/kmkykhexMXFcerUKYdr/vSnPxEbG0uXLl1c2gtgx44dWCwWduzY4XC+cePGTJgwgb/97W8uJy+OHz/O9OnTWb16NTabfY1hHx8fhg4dyksvvURgYKBLe5XBl8AwILWyNxIRERERkYrz4IOn2LGjNuvX/97P5PRpH2JiWjF37l7MZpg5s4WhdBdAWNh5hg9X3xKRa4kSJiIi4mn9gBc9HURF+vTTT1m0aBFnzpxxON+pUyfi4uK45ZZbXN5r69atWCwW9uzZ43D+YvLisccew+xiwd1jx44xY8aMUpMXEydOJCAgwKW9cnNzWbp0KXPnzuXChQsO1/Ts2ZO4uDiuv/56l/Yqo5XAYHdsJCIiIiIiFS8iorifyR+buW/dGsg77zShceN8Q3N4gHr1Cpk2LdVpc3gRqX6UMBEREU+7+fDhwyEhISHVpmn2t99+63C8IpMXR48eJSEhwS3Ji5ycHN566y2nyYv/z96dh0dZ3vsff0/Yd0UBlyqLK2rFuoOAgAZ32yK4HQVt3aoCKopByYQMq0s8bmhroUfU4wb8usDR9kRbe0BF0RbcEQ2brLKGJUCSmd8fA0qSgUyYJDNJ3q/r4rrO3M99P/cXsCfMfOZ+vunp6WRnZ9OhQ4eE9gLIzc1l5MiRLFu2LOb1o446ilGjRnHeeeclvFcFxD5OI0mSJKlGaNo0zLhxedxww/Hs3Pnj+7FnnjmM+vVLvqdKS4NQaBFt2ti3RKprDEwkSUlXr16984Hnk11HVWncuDG33XYbd955J02bNk3oXgUFBTzzzDM8/fTT7NgRu4VGeno6oVCI9u3bx7wer0gkwsyZMxk9ejTffRc7zzr66KMZNWoUffr0SWgvgE8//ZRgMLjXwKlVq1bceeed3HLLLTRo0CDh/SRJkiTVLcceW8CwYd8xfvyRP4wVFQUoKgqUmHfDDavo2tW+JVJdZGAiSUq6SCSSTi0NTNLT0xk9ejRHHnlk+ZP3YXd4EQqFWL58ecw5xxxzDNnZ2fTq1SuhvQA++eQTgsEgH374YczrrVq1YtiwYdxwww3Ur5/YPyc2bNjAY489xvPPP09xcXGZ62lpafTr14+srCwOOuigGHeQJEmSpPhcccX3zJvXnDffbB3z+kknbeWWW1ZUc1WSUoWBiSQpFfSNRCJpgUAgnOxC9kfz5s3LjJ144omEQiG6du2a8P3nz59PMBhk7ty5Ma8fcMAB3HPPPdx4440JN1lfvXo1OTk5vPLKKzHDi/r163P11Vdz//33JxxeFBYWMmXKFB599FHy82N/e+ucc84hFArRuXPnhPaSJEmSpN2GD1/KO+8cQEFByUclt2xZzEMP5ZV5RJekusPARJKUCg5euXLlKdTQPhE33HADb775JgUFBRx88MEMHz6ca665ptLCi5dffplwuGyWtDu8yMjIoHXr2N+Oitfu8OKRRx5h8+bNMed0796d7OzsSgkvZs2aRWZmJl9//XXM64cffjjDhw9nwIABCe8lSZIkSXuaOrVtmbAEYOvWNFavbkC7djuTUJWkVGBgIklKFX2poYHJ6aefzvvvv8/ChQs55ZRTaNasWUL3iye86NGjB9nZ2Rx//PEJ7QXRJutZWVksXrw45vUOHTowYsQILrvssoT3WrBgAVlZWfzf//1fzOvNmzdn6NCh3HzzzTRs2DDh/SRJkiRpT59+2oznnjs05rXi4gAPPNCJl1/+kpYti6q5MkmpwMBEkpQSdvUxmZDsOvZX27Ztadu2bcL3yc3NJRgMsmTJkpjXO3bsSEZGRqWEF9988w2jRo3i73//e8zrTZs25Te/+Q2DBw9OOLzYtGkTTz/9NM899xyFhYVlrgcCAa644gpGjhyZ8J9jOBxm+vTpjBs3LqH7SJIkSapd8vPr8cADnco0ed/TqlUNGTPmSB5+OK8aK5OUKgxMJEkpIRAIdF+zZk3ztm3bbkl2LcmwcOFCsrKyeOedd2Jeb9asGbfddlulhBcbN24kJyeHKVOmUFRU9ltTlRleFBUV8eKLL/Loo4+yYcOGmHNOP/10Ro8eTZcuXRLaC2D27NlkZWXx5ZdflrnWsmXLhO8vSZIkqWaKRCArqyMrV5Z8P9W790a+/LIpq1b9OP73vx/I66+34corv6/uMiUlmYGJJClVNCwuLu4JvJHsQqrT7vDi+eefj9lkPS0tjX79+pGZmUmbNm0S2quoqIhXX32Vhx56iHXr1sWc87Of/YxQKMRpp52W0F4Q7VOSlZXFV199FfP6oYceysiRI/nFL35BILD3b3jFY8mSJYwePZo33oj9n8/u0zKSJEmS6qb//u92zJrVqsTYEUfsYNSoxSxa1JibbjquxMmTxx8/gi5dtnLccduqu1RJSWRgIklKGbsey1UnApPCwkJee+01JkyYwPr162PO6dq1K6FQiBNPPDHh/fZ18gLgkEMOYcSIEfTv3z/h8GLx4sWEQiH++te/xrzeuHFjbr/9du644w6aNGmS0F5bt27lySef5LnnnmPHjh0x51x66aVkZmZyxBFHJLSXJEmSpJrpiy+aMXHi4SXGGjaMMH58Hs2aFXPSSVu59dYVJebs3BkgI6MTL730Jc2alf1ym6TaycBEkpRK+ia7gOoQz8mLjIyMSgsvxo8fz4wZM2Jeb9y4Mb/+9a+56667Em5Wv23bNp599lmefvrpvYYX6enpjB49miOPPDKhvSKRCDNnziQUCrF8+fKYc4455hiys7Pp1atXQntJkiRJqrk2b65HRkZHCgtLvrcaOvQ7jj/+x9Mjgwat4uOPWzBnzo+P8l22rBFjx7Zn3Dj7mUh1hYGJJCmVnLB8+fIjDj/88GXJLqQqLFq0iAkTJuw1vGjSpMkPJy8aN26c0F67w4unnnqKnTt3xpyTnp7OmDFjEj55EYlEmDZtGmPHjmXNmjUx55x00kmEQiHOPvvshPYCmD9/PpmZmXz00Ucxrx9wwAHcc8893HjjjdSrVy/h/SRJkiTVXOPHH8mKFY1KjPXosYkrryz53iUtDUKhRfzHf5zA9983+GH8f//3QM4++yAuvzz2Y40l1S4GJpKkVJMO/CHZRVSmrVu38tvf/nav4UUgEPjhsVE/+clPEtornvDipz/9KaFQiLPOOiuhvQDmzZtHZmYmH3/8cczrBx54IHfffXelhBerV68mJyeHl19+mXA4XOZ6gwYNGDhwIPfdd58N3iVJkiTx+utt+d//bV1irF27nYwatZhYh/lbty5i7NhF3HbbMYTDP0545JEjOemkrXTqtL2qS5aUZAYmkqSUkpaWVmsCk3A4zPTp0xkzZgzff/99zDknn3wyoVCIM888M+H9/v3vfxMMBqslvFi1ahXjxo1j+vTpRCKRMtcrM7woLCxkypQpPPzww2zZsiXmnB49ehAKhTjuuOMS2kuSJElS7fDNN0144omSfUvq1YswfvwiWrUq2uu6U0/dzK9+tYpJkw79YaygII2MjE688MJXNG5c9stbkmoPAxNJUkqJRCLpkUgkLRAI1Oh/hb7//vsEg0E+//zzmNfbtWvHsGHDuPbaa0lLS0tor+oML7Zv387kyZN54okn9hlejB49mmOPPTahvQByc3PJzMxk6dKlMa936tSJrKws0tPTE95LkiRJUu2wbVs04Nixo+R7rTvuWMHJJ8d+H7OnW25Zwfz5zZk7t8UPY3l5TcjJOYIHH1xS6fVKSh0GJpKkVHPQypUrTwViN6hIcStXrmT8+PHlhhfDhw+nRYsWMe4Qv4KCAv7whz/w+OOPs3Xr1phzqju8GDVqFOeff37Ce33++ecEg0Hef//9mNdbtmzJ4MGDufnmm2nYsGHC+0mSJEmqPSZMaM/ixSX7Qnbrls91162Ka31aGmRnL+Laa09g48YfPz794x8P5tRTN3PRResrtV5JqcPARJKUivpSwwKTgoICnnnmGSZOnMj27bGfa5uenk4oFKJ9+/YJ75ebm8vIkSNZtmxZzOtHHXUUo0aN4rzzzkt4r88++4xgMMicOXNiXt8dXtxyyy00aNAg5px4bdy4kZycHJ5//nmKi4vLXE9LS6Nfv34Eg0EOPvjghPaSJEmSVPv86U8H88YbJfuWtG5dSFbWYipyuL9t20JCocUMHXo0e34Xbvz49pxwwjbat7efiVQbGZhIklJROjAu2UXE629/+xsjRoxg1arY31bq3Lkz2dnZdO/ePeG9PvnkEzIzM5k7d27M6wcccAD33Xcf119/PfXrJ/ZjfsOGDTz22GPVEl7s7lPy6KOPkp+fH3NOt27dCIVCnHDCCQntJUmSJKl2ystrwqOPHlFiLC0NxoxZxEEHFVb4ft26beL661fzwgvtfhjb/bivKVO+omHDGv0kaUkxGJhIklJRtzVr1jRv27Zt+Q+XTQGvvPJKzLCkdevW3HfffVx33XUJN1lfs2YNEyZM4PXXXyccLvuP8vr163P99ddz7733cuCBBya0VzzhxTnnnEMoFKJz584J7QUwa9YsgsEgCxYsiHn90EMPJSMjg/79+xMIBBLeT5IkSVLtdNBBhbz22hclxho0iNC27c79vucddyzniiu+T7Q0STWEgYkkKRU1DIfDvYCZyS5kf9SvX5+rr76ajIwMWrduXf6CfdgdXjzyyCNs3rw55pzu3buTnZ1daeFFZmYmX3/9dczrhx12GPfffz8DBgxIeK+8vDyys7PJzc2Neb1Jkybcfvvt3HnnnTRq1Cjh/SRJkiTVbq1aFdGqVVGl3rNevQiHH76jUu8pKXUZmEiSUlI4HE6nhgYmd999N3fffXfC9/nb3/5GdnY2ixcvjnm9Q4cOZGVlccEFFyS8V15eHqNGjeKtt96Keb1p06b85je/qZTwIj8/n6eeeorf//737NxZ9ptegUCASy+9lGAwyOGHH57QXpIkSZIkSfEyMJEkpaq+yS5gfyXa+Pzbb79l1KhRvP322zGvV2Z4sWnTJp5++mmee+45CgvLPtO3MsOLcDjM9OnTGT16NGvXro05p0uXLoRCIc4444yE9pIkSZIkSaooAxNJUqo6fuXKlR0OPfTQxckupLrEE15cccUVjBw5krZt2ya0VzzhxSmnnEIoFOL0009PaC+A9957j2AwyBdffBHzert27Rg2bBjXXnstaWlpCe8nSZIkSZJUUQYmkqSUFYlEzgcmJbuOqlZUVMSrr77KQw89xLp162LOOeWUUxg9ejSnnXZawvu9++67BINBvvzyy5jXKzO8WLFiBRMmTGD69OlEIpEy1xs0aMDAgQMZPnw4LVq0SGgvSZIkSZKkRBiYSJJSViQSSaeWByazZ88mKytrr+HFIYccwogRI+jfvz+BQCChvXaHF9OmTYt5fXd4cf/999O8efOE9iooKOCZZ57h6aefZseO2A0S09PTCYVCtG/fPqG9JEmSJEmSKoOBiSQpZQUCgfRIJFIvEAgUJ7uWyrZ48WLGjx/PjBkzYl5v3Lgxv/71rxk6dGjC4cW2bdt49tlnyw0vRo8ezZFHHpnQXpFIhJkzZxIKhVi+fHnMOccccwzZ2dn06tUrob0kSZIkSZIqk4GJJCmVHbhq1arTgA+TXUhliTe8GDNmDEcccURCe8UTXpx44omEQiG6du2a0F4A8+fPJxgMMnfu3JjXDzjgAO655x5uvPFG6tWrl/B+kiRJkiRJlcnARJKU0iKRSF9qQWASiUSYNm0aY8eOZc2aNTHnnHTSSYRCIc4+++yE95s3bx7BYJCPPvoo5vXKDC9Wr15NTk4OL7/8MuFwuMz1+vXrc/XVV5ORkUHr1q0T2kuSJEmS9uXzz5uxYEGTEmMtWhSTnr5hv+43a1Yrvv++QYmx9u13cNppm/e7Rkmpy8BEkpTq+gJjkl1EIubNm0dmZiYff/xxhpaabwAAIABJREFUzOsHHnggd999d7WEF7v7lNx33320bNkyob0KCwuZMmUKjzzyCJs3x36z0KNHD7Kzszn++OMT2kuSJEmS4nHooTsZNuwo1q4tGXIUFi7m4ovXVeheH33UgmHDjiIc/rGfZJMmYV58MXYPSkk1n4GJJCnVdV2/fn2r1q1bb0p2IRW1atUqxo0bx/Tp04lEImWuV0V48fDDD7Nly5aYc3r06EEoFOK4445LaC+A3NxcgsEgS5YsiXm9Y8eOZGRkcNlllyW8V3XYHTTNmzcv2aVIkiRJSkDr1oWMGbOI228/pkTQMX78kXTuvJWOHbfHdZ/16xvw4IMdS9wDYMSIpXToEN89JNU8BiaSpFRXv6CgoBfw52QXEq/t27czceJEHn/8cbZu3RpzTo8ePRg9ejTHHntswvvl5uaSmZnJ0qVLY17v1KkTWVlZpKenJ7zXwoULycrK4p133ol5vVmzZtx2220MHjyYhg0bJrxfVdu5cye///3veeKJJ/YaNO1SNvGSJEmSlJJOP30zN9ywmj/84ZAfxgoK0sjI6MQLL3xFo0ZlT+PvKRyGkSM7sG5dyVMql1++tsKnVCTVLAYmkqSaIJ0aFJg8/vjjMR+HBXDssceSnZ3Nueeem/A+n3/+OcFgkPfffz/m9ZYtWzJ48GBuvvnmhMOLjRs3kpOTw/PPP09xcXGZ62lpafTr14/MzEzatGmT0F7V5a9//SuhUIjFixfHM31ZFZcjSZIkqRLddtsKPv20GXPntvhh7Ntvm/DYYz9hxIjYXzbbbdKkw/jww5JPAejUaTvDh/u2QKrtDEwkSSkvEAj0TXYNFRErLGnVqhX33nsvgwYNon79xH78btiwgccee6zc8CIYDHLwwQcntFdhYSGvvfYaEyZMYP369THnnHrqqYRCIU499dSE9qouX331FVlZWcyaNSveJd9SgwI7SZIkSZCWFiE7exHXXnsCGzf++B5s+vQ2nHLKFi66KPb7m3/9qwWTJh1SYqxhwzBjxuTRuPG+T6ZIqvkMTCRJNcExq1ev7tSuXbu8ZBdSUZUdXkyZMoVHH32U/Pz8mHO6detGKBTihBNOSGgvgFmzZpGVlcVXX30V8/qhhx5KRkYG/fv3JxAIxJyTSjZs2MCjjz7Kiy++SFFRUbzL3gBuBWI/W02SJElSymrbtpBQaDF33XU0e36vbfz49pxwwjbaty/Zi2T9+vox+5bcf/8yjj22oDpKlpRkBiaSpBqhuLg4HfhdsuuIZW9hQffu3cnOzqZz584J7zFr1iyCwSALFiyIef2www7j/vvvZ8CAAQnvtWjRIiZMmMCMGTNiXm/SpAm33347d9xxB40bN054v6pWVFTEq6++ykMPPcS6dXE/b/hrYBgws+oqkyRJklTVunXbxHXXreKFF348NbJtW7SfyZQpX9GwYTRJCYchGOzI99+X7FuSnr6Bn/98bbXWLCl50pJdgCRJcUq8Y3kVOemkk0q8bt++PZMnT+b1119POCzJy8tj0KBBXHXVVTHDkiZNmjBs2DDefffdhMOSrVu3kpOTQ+/evWOGJYFAgMsuu4x//vOfDBs2rEaEJbNnz+aCCy5g+PDh8YYlG4EM4GQMSyRJkqRa4Y47VtCly5YSYwsXNuHJJw//4fXzzx/KnDkl+5YcccQORo5cUi01SkoNnjCRJNUU50UikfqBQCDuZylVl8GDB7N161Y+/vhjLrjgAm666aaEm6zn5+fz1FNP8fvf/56dO3eWuR4IBLj00ksJBoMcfvjhMe4Qv3A4zPTp0xkzZgzff/99zDknn3wyoVCIM888M6G9qsvixYsZP378Xk/JxBAG/hu4D1hdZYVJkiRJqnb16kUYP34R11zTmU2bfvw49NVX23LqqZtp06aQ5547tMSahg0jjB+fR7NmZftGSqq9DEwkSTXFAcuXLz8DeD/ZhZTWsGFDgsFgpdxrd3gxevRo1q6Nfey7S5cuhEIhzjjjjIT3e//99wkGg3z++ecxr7dr145hw4Zx7bXXkpaW+gdTt23bxrPPPstTTz0VM2jai3eAu4D5VVaYJEmSpKRq23YnWVmLGTbsaCKRH8fHjOlA48ZhiopKPmr57ruXcfzx26q5SknJZmAiSaox6tWr15cUDEwqy3vvvUcwGOSLL76Ieb0yw4uVK1cyfvx4pk+fTmTPdwu7NGjQgIEDBzJ8+HBatGiR0F7VIRKJMG3aNMaOHcuaNWviXfYd8CDwIlD2D0GSJElSrdKz5yauuWY1L7/c7oex/Px65OfXKzGvT58NDBgQ+/S9pNrNwESSVGNEIpF0IDvZdVS2FStWMGHCBKZNmxbzemWGFwUFBTzzzDNMnDiR7du3x5yTnp5OdnY2HTp0SGiv6vLvf/+bYDDIxx9/HO+SbcAjwAQg9h+CJEmSpFppyJDlfPZZcz75pFnM64ccspORI5dWc1WSUoWBiSSpJjlr/fr1rVq3br0p2YVUht3hxdNPP82OHTtizklPTycUCtG+ffuE9opEIsycOZPRo0fz3XffxZxz9NFHk52dTe/evRPaq7qsWrWKcePG7fWUTAwRYBpwL+A7IEmSJKkOql8/wpgxeVx55Yls317y5H6DBhEeeiiPli1TrnWmpGpiYCJJqknqb9++vQ/wx2QXkojd4UUoFGL58uUx5xxzzDFkZ2fTq1evhPf75JNPyMzMZO7cuTGvH3DAAdxzzz3ccMMN1K+f+v80KCgo4A9/+AOPP/44W7dujXfZR0T7lLxbdZVJkiRJqgm+/LJZmbAEoHHjMAcdVJiEiiSlitT/VESSpJLSqcGByfz58wkGg+WGFzfeeCP16tWLOSdeq1evJicnh5dffplwOFzmev369bn66qvJyMigdevWCe1VXXJzcxk5ciTLli2Ld8lKYBQwCSj7hyBJkiSpTlm1qiFjxx4Z89rmzfXIyOjEpEkLqF/fNodSXWRgIkmqaS5MdgH7o7zwokGDBlx11VWVEl4UFhYyZcoUHnnkETZv3hxzTvfu3QmFQhx//PEJ7VVdPv30U4LBIB988EG8S3YCvwUygfwqK0ySJElSjVFUFOCBBzqRn7/3j0Q/+6wZv/vdYdxxR+ynAUiq3QxMJEk1TcfVq1cf1a5du2+TXUg84gkvevToQXZ2dqWEF7m5uQSDQZYsWRLzeseOHcnIyOCyyy5LeK/qsGHDBh577DGef/55iouL4102ExgK5FVdZZIkSZJqmiefPLxMs/djj93Gd981Ztu2Hx/RNWXKIZx66ma6dvW7V1JdY2AiSapxwuFwX+DZZNdRnuoML7755huysrL4xz/+EfN606ZN+c1vfsPgwYNp2LBhwvtVtd1B06OPPkp+ftxvUr4E7gb+VnWVSZIkSaqJ3n23Fa+80q7EWIsWxTz6aB6ffdaUBx7o9MN4OAzBYEdefvkL2rSxp4lUlxiYSJJqnEgkkk4KByYLFy4kKyuLd955J+b1li1bMnjwYG6++eaEw4uNGzeSk5PDlClTKCoqKnM9LS2Nfv36kZmZSZs2bRLaq7rMmjWLkSNHsnDhwniXrAdCwNNA3MdQJEmSJNUNa9Y0JCurA5FSbUmCwcUcdtgODjtsB3PmrOMvfznoh2sbNtTnwQc78tvfLiQtzX4mUl1hYCJJqonOi0QiDQKBQEp91Wd3eLG3x0dVZnhRVFTEq6++yoQJE1i/fn3MOT/72c8IhUKcdtppCe1VXb799ltGjRrF22+/He+SIuAPwIPA2iorTJIkSVKNVVwc4IEHOrJxY8mPQa+6ag29e2/84fV99y3ls8+akZfX+Iexf/2rBZMnH8LNN6+stnolJZeBiSRVow0bNrB9+3YaN25c/mTtS8sVK1acCbyb7EIg+vio1157bZ/hRdeuXQmFQpx44okJ7zd79myCwSBfffVVzOuHHnooGRkZ9O/fn0AgkPB+VW3Tpk08/fTTPPfccxQWxp2BvUX08VufVV1lkiRJkmq6Z589jHnzmpcYO+aYAoYMKdnUvUmTMBMm5DFw4PFs3/5jP5Pf//4wTjllC2ecEbsnpaTaJa38KZKkyvLZZ59xzjnnMHXqVCKlzwKrotKTXcBud999N8OHD48ZlhxxxBH87ne/Y/r06QmHJXl5eQwaNIgrr7wyZljSpEkT7r33Xt59910GDBiQ8mFJUVERL730Et27d2fixInxhiULgSuJ/v0blkiSJEnaq7lzW/DCC4eUGGvaNBqMNGoULjO/U6cC7rlnWYmxcBhGjuzI+vUNqrRWSanBwESSqkbZZhK7rFy5kqFDh9K/f38+//zz6qyptrkg2QXstmXLljJjTZs2Zfjw4fzzn/9MuKl7fn4+o0ePpnfv3uTm5pa5HggE+OUvf8ns2bO55557asQJptmzZ3PBBRcwfPhw1q1bF8+SLUA28FNgapUWJ0mSJKnGW7++ASNHdiRcKhfJyFhC+/bb97quX7+1XHRRyS/DrVvXgFGj2pfpgSKp9jEwkaSq8e/yJrz//vtceOGFDB8+nLVrbb9QUYFA4Ixly5a1TnYdsXTv3p3Zs2dz1113JRRehMNhXn75Zbp3786zzz4b8wRGly5d+POf/8zEiRM59NBDEym7WixevJhbb72VK6+8ki+//DKeJWHgReBoYBSwowrLkyRJklQLRE+FdGDdupKnQn7xi7VcfHHsxyjvacSIsqHKe++14sUX21VqnZJSj4GJJFWNmcCfy5tUXFz8wyOJfve731Wkf4OgXr169Xonu4hYevbsySGHHFL+xH344IMPuPDCC7n33ntjBmpt27blP//zP/mf//kfTj/99IT2qg7btm0jJyeH3r17M2PGjHiX/RM4DRgIrK6y4iRJkiTVKpMmHcaHH7YsMdapUwH33rtsLytK2v3YroYNSx5PmTjxcD75pPleVkmqDQxMJKlqhIErgDuBcr++kp+fT3Z2Nn369OGtt96q8uJqkZTpY1JZVq5cyZAhQ+jXrx+ffVa2RUeDBg349a9/zaxZs7jqqqtIS0vtH+WRSISpU6fSrVs3cnJy2LEjrgMi3wGDgN7AvCotUJIkSVKt8q9/tWDSpJJfYGvYMMzYsYto3Lhs35K9OeaYAgYPLtkYvrg4wIgRHcnPr18ptUpKPan9KYsk1WzFwESijxJ6CNhZ3oJvv/2WgQMH7rWpt8pImT4miSooKGDixIn07NmTadOmEYnxcNz09HT++c9/Mnr0aFq0aJGEKitm3rx5XH755QwdOpQ1a9bEs2Qb0T4lxwIvAD4hWJIkSVLcNmyoz4MPdiQcDpQYz8hYxjHHFFT4fldfvYbevTeWGFu9uiFZWR3sZyLVUsahklT1NgAZwH8BjwEXl7dg9uzZ9O3bl6uvvpqMjAxat07JVh2poMN333137E9+8pOvk11IInJzc3nwwQf57rvvYl4/+uijGTVqFH369KnmyvbPqlWrGDduHNOnT48Z/MQQAaYB9wFLqrQ4SZIkSbXWxo31GTas5GO3GjUK06PHpv26XyAAmZmLueCClmWubd1aj+bNi/frvpJSl4GJJFWfBcAlwPnAE8AJ+5pcVFTESy+9xMyZM7nnnnu44YYbqF/f/7ddWiAQ6AvUyMDk008/JTMzkw8//DDm9VatWjFs2LAa83e/fft2Jk+ezOOPP87WrVvjXfYxcBcwu+oqkyRJklQXdOy4nY4dt5c/sQJatizm/PM3VOo9JaUuH8klSdXvLeAUoh8Sl/s1l40bNxIMBunTpw//+Mc/qry4miYtLa3G9TFZvXo1w4cP5+KLL44ZltSvX5/rrruO2bNnc9NNN9WIsCQ3N5dzzz2XsWPHxhuWrARuBc7EsESSJEmSJKUAAxNJSo5CoqdMjgKeJNrvZJ+++eYb/uM//oNBgwaxZIlPLdotEon0jkQiDZJdRzwKCwuZNGkSPXv25KWXXqK4uOxfe/fu3fnb3/7Gww8/zEEHHZSEKivm008/5Ze//CWDBg1i2bJl5S+I9vJ5EjgeeA6Iv+uiJEmSJElSFTIwkaTkWgcMJfot+1nxLMjNzaVnz55kZmayefPmKi2uhmixcuXKrskuojy7T2AEg8GYf28dOnTgd7/7Ha+//jqdO3dOQoUVs2HDBjIzM7n44ov54IMP4l02E+hM9L/5/CorTpIkSZIkaT8YmEhSavgX0BO4HFhc3uTCwkImT578w0mFcLjOf0k/ZR/L9c0333DdddcxaNAgFi9eXOZ606ZNGTZsGO+88w6XXXZZ9RdYQbtPyXTt2pXJkyfHPCUTw1fARcBlQF6VFihJkiRJkrSfDEwkKbXMINoMPgPYUt7kPXthzJ07t8qLS2F9k11AaZs2bSIzM5M+ffrw97//vcz1QCBA//79ee+99xg2bBgNGzZMQpUVM2vWLNLT0wkGg+Tnx3VAZD3RXj0/Bf5apcVJkiRJkiQlyMBEklJPAfAQ0R4PLwKR8hZ88skn/OIXv+DWW2/lu+++q+r6UtFp3333Xco0/MjNzf3hBEZRUVGZ62eeeSZvvvkmTz75JG3btk1ChRXz7bffcv3113PVVVfx9ddfx7OkiGh/kuOI9uop+4cgSZIkSZKUYgxMJCl1LQcGAmcDc8qbHIlEmDFjBueeey45OTls3769ygtMIfXq1at3XrKL2G3u3Lls3LixzPghhxzCE088wR//+EdOPvnkJFRWMZs2bWLs2LH06dOHt99+O95lbwM/A24F1lZZcZIkSZIkSZWsfrILkCSV60OgG3A90ZMnh+xrckFBATk5Obz88stkZGTQv39/AoFAddSZVJFIJB14Pdl1xNKkSRNuv/12br/9dpo0aZLscsoVDoeZPn06o0ePZu3auDOPhcCDwNSqq0ySJEmS9m3lyoZs3FjyI8+mTcO0b79/XypcvrwR+fn1Sow1b17MEUfs2O8aJaUuAxNJqhkiwAvAdOA+oj1OGu1rwcqVKxk6dCivvvoqoVCIE088sRrKTKoLk11ALOnp6YwZM4Yjjjgi2aXE5d133yUYDPLll1/Gu2QLkAOMB3zHIEmSJCmptm6tx003HceOHT8+WKdevQjPPfc1XbqU2yq0hKVLG3PddcezbduPgUlaGjz11EIDE6mW8pFcklSzbAVGAScR5zf533//fS644AKGDBnC999/X5W1JdtPVqxYcXwyNm7evHmZsZNPPpk//elPTJkypUaEJStWrGDIkCEMGDAg3rAkTLTHztFE/5v03YIkSZKkpDv66ALuuqtkb8/i4gAjRnQsc/JkX3buTCMjo1OJsATg179eyVln5VdKrZJSj4GJJNVM3wBXAucBn5Y3ORwOM23aNHr06MHEiRPZuXNnlReYJH2TsemNN95I06ZNAWjTpg05OTm88cYbnHnmmckop0K2bdtGTk4O55xzDtOmTYt32QdEHxM3EFhdZcVJkiRJ0n4YMOB7LrxwfYmxNWsakpXVgUgkvns8/PARfP11yUcqn3rqFm6+eWVllSkpBRmYSFLN9nfgVKINtss9PpKfn8/YsWPp3bs3M2bMqPLiqtuuPibV7rTTTmPOnDlMmzaNOXPmcM0115CWlto/YiORCFOnTqVbt27k5OSwY0dcB0S+AwYBXYmGJpIkSZKUkh54YClHHlmyb8m777bilVfalbs2N/dA/vSng0uMHXhgEWPG5JGWFmfiIqlGSu1PcyRJ8SgCngOOA57c9XqfFi1axK233spVV13FggULqrq+ahMIBHovXLhwn71dqsrBBx9Mt27dakRT93nz5nH55ZczdOhQ1qxZE8+SbcBDQGeivXR8hyBJkiQppTVtWszYsYto2LDk25cnnzycTz5pttd1y5Y1YsyY9iXGAgHIzFxM27aFVVKrpNRhYCJJtccGYCjR/iZvxrNg1qxZ9O3bl+HDh7N+/fryF6S+Zs2bN++a7CJS1apVqxgyZAiXXHIJH3/8cbzLZgInABlEG7xLkiRJUo3QufM2hgwp2c+kqCjAAw90Ij+/bD+TnTsDZGR0YuvWkn1LBg5cRc+em6q0VkmpwcBEkmqfBcDFQDpQbvfuwsJCXnrpJbp3786kSZMoLi6u8gKrUrIey5XKtm/fzsSJE+nZsyfTpk0jEt9Dez8GegCXAUuqtEBJkiRJqiJXX72GPn02lhhbtaoho0aV7Wfy2GNHsGBB0xJjJ564ldtuW1HVZUpKEQYmklR7vQV0Ae4C8subvHHjRoLBIH369OGdd96p6tqqUlIav6eq3NxcevXqxdixY9myJa4DIiuJ9sQ5C5hdpcVJkiRJUjXIzFzMYYeV7Nv4f//XiqlT2/7w+u23D2TatDYl5rRsWcz48Xk0aOBTiaW6wsBEkmq3QuAJ4Cii/U3KPT6ycOFCrr32WgYNGsSSJTXyYMGpK1eubFP+tNrts88+o1+/fgwaNIilS5fGs6SQ6H8jxxPtiVOzjxpJkiRJ0i4tWhQzYcKiMsHH44//hK++asry5Y0YPbps35JgcDGHHbazOkuVlGQGJpJUN6wl2t/kTGBWPAtyc3Pp2bMnmZmZ8Z5MSBVp4XD4vGQXkSwbNmwgMzOTiy66iDlz5sS7bCbRhu5DieM0kiRJkiTVNCecsJU771xeYmznzgAjRnRixIhObNlSsm/JNdesoVevko/yklT7GZhIUt3yL6AncDmwuLzJhYWFTJ48mR49evDSSy8RDoerur5KkZaWVuf6mBQWFjJp0iS6du3K5MmT4+1F8xXRfjeXAd9WaYGSJEmSlGTXXruac88tGYIsW9aIL74o2bfkhBO2MXhwyWbxkuoGAxNJqptmACcCGUC5x0dWr17N8OHDueSSS/joo4+qvLhERSKRC5JdQ3WaNWsW6enpBINB8vPjOiCynmhvm58Cb1ZpcZIkSZKUIgIByMra92O2mjYtZsyYso/vklQ3GJhIUt21DXiIaM+KF4Fy/zU4f/58fv7zn3PrrbeyfPny8qYn0+ErV648IdlFVLW8vDwGDhzIVVddxddffx3PkiKi/UmOJ9rbpqgq65MkSZKkVNOyZTHjxuVRv37st8APPLCUI4/cXs1VSUoVBiaSpOXAQOBsoNymF5FIhBkzZtCzZ09ycnLYsWNHlRe4PyKRSN9k11BV8vPzGTt2LL179+att96Kd9nbwKnArcD3VVacJEmSJKW4tLQIgUDZ8dati+jZc1P1FyQpZRiYSJJ2+xA4BxgErCpvckFBATk5OZxzzjlMnTq1yovbD7Wuj0k4HGbq1Kl0796diRMnUlhYGM+yb4ArgfOBT6u0QEmSJElKcdu21WPkyI4UFpZNTNavr8+YMe2TUJWkVGFgIknaUxh4ATgayAbKPT6yYsUKhg4dSv/+/fniiy+qur6K6LVw4cJGyS6isrz77rukp6czdOhQ1q5dG8+SrUT/Dk8CUjLRkiRJkqTqNm7ckSxd2niv1//3fw/kL385uBorkpRKDEwkSbFsBUZRgQ/b33vvPfr27cuQIUPi/UC/qjVt0aLFOckuIlErVqxgyJAhDBgwgC+//DKeJRGiPWmOJvp3mJrPTJMkSZKkajZ9ehv++tfWJcZaty4krdQnpA8/fAR5eXsPVSTVXgYmkqR9qdDjnMLhMNOmTfvhkVE7d+6s8gL3pSb3Mdm2bdsPjzybNm1avMs+BLoR7UlT7mPVJEmSJKmu+PbbJjz22E9KjNWrF+GRR/L41a9Wlhjfvj2NjIxObN/uR6dSXeP/6iVJ8ahQw/DdTcn79OlDbm5ulRe3NzUxMIlEIsyYMYNzzz2XnJwcduyI64DIcqK9Z84G5lRpgZIkSZJUwxQURAOQHTtKfhR6xx0r6NJlC7fcsoIzzthc4lpeXhNyco6ozjIlpQADE0lSvIqA54DjgSd3vd6nvLw8Bg0axFVXXcWCBQuqur5YTlmzZs0hydh4f8ybN4+f//zn3HrrrSxfvjyeJduAh4j+nbxA9HFckiRJkqQ9jB9/JIsWlXzEVrdu+Vx3XfRgfloaZGcv4oADSr7N/eMfD+bNN0s+wktS7WZgIkmqqPXAUOCnwJvxLJg1axZ9+/YlMzOT/Pz8Ki2ulEBRUdF51bnh/li9ejXDhw/n0ksv5aOPPop32UzgRCAD2FJlxUmSJElSDfaXvxzMG28cVGKsdetCsrIWl+hd0rZtIaHQYgKBkuvHj2/PkiX2M5HqCgMTSdL++gq4GLgc+La8yYWFhUyePJmzzz6bSZMmUVxcXOUF7pJeXRtVVGFhIZMmTaJHjx689NJLhMPheJb9C+gJXAYsrsr6JEmSJKkmW7q0MY8+WrJvSVoajBmziIMOKiwzv1u3TVx33eoSY9u2RR/ntXOnH6NKdYH/S5ckJWoG0Bm4Cyj3+MjGjRsJBoNceOGFvP/++1VeHHBBJBIJlD+teuXm5tKjRw+CwSBbtsR1QGQt0T/jM4FZVVqcJEmSJNVwO3dGg45t2+qVGL/pphWceebmvayCO+9czsknl3yPtnBhE5588vAqqVNSajEwkSRVhkLgCaK9NJ4Dyj0+8vnnn3PFFVcwaNAgli5dWpW1HbJ69eqTqnKDivj888/p169fRX7fhUR7xhxF9M+42o7mSJIkSVJN9fDDR/D1101KjJ166mZuumnVPtfVqxdh/PhFtGxZsp/Ja6+15R//OKDS65SUWgxMJEmVaSVwK3AWMDueBbtPWmRmZsZ70qLCIpFI3yq5cQVs2LCBzMxMLrzwQubMmRPvsreALkR7xlRr8xdJkiRJqqlycw/kT386uMTYgQcWMXbsItLSIuWub9duJ9nZJfuZRCIQCnVgxYqGlV2upBRiYCJJqgofE+2zcSWwpLzJu/ubVLCXR9wikUjS+pjs7lPStWtXJk+eHG/vlgXAJUT7r3xZpQVKkiRJUi2ybFkjxoxpX2IsEIDMzMW0aVO2b8ne9OixiQEDvi8xtnlzPUaM6ERRUco99VlSJTEwkSRVlQgwFTgByADKPT6yevVqhg8kipnyAAASfUlEQVQfziWXXMJHH31UmbWcu2zZsiblT6tcs2bNom/fvgSDQfLz4zogsoFon5KTgDeqtDhJkiRJqmV27gwwYkQntm4t2bdk0KBV9Oy5qcL3u+uuZRx//LYSY59/3ozf/vawhOqUlLrqJ7sASVKttw14CPhvYBxwHbDPr+PMnz+fn//851x66aUEg0EOPzzh5nqN09LSuhMNJKpcXl4e2dnZ5ObmxrukCPgDMBL4vpy5kiRJkqQYvv66KWedlc9ZZ/34hbVGjcL86lf77luyNw0bRhg3Lo8//7nk470CAdiypR7Nm9tiUqptDEwkSdXlO2AgMJFo8/Kz9jU5EokwY8YM3n77bX7zm99w55130qhRo0T2TwdeT+QG5cnPz+epp57iueeeo7Aw7qPefyd6quTTqqtMkiRJkmqPcDhcEAiU/R7eSSdt5aSTtlbqXkceuYPBg5fHPT8cDhdUagGSqpWP5JIkVbcPgG7AIGB1eZO3bdtGTk4O55xzDlOnTt3vTQOBQJU1fg+Hw0ydOpXu3bszceLEeMOSb4j2eDkPwxJJkiRJiltaWlrK9npMS0v7Itk1SNp/BiaSpGQIAy8ARwPZwI7yFqxYsYKhQ4cyYMAAvvxyv/5tfPIvf/nLg8ufVjHvvfceffv2ZejQoaxduzaeJVuJ/p5/SrTHiyRJkiSpAnbs2PEWsCLZdcSwsUGDBn9OdhGS9p+BiSQpmbYAo6hAePDuu++Snp7OkCFD4g0odgtcc801Z1a8xNhWrFjBkCFD6N+/P198EdcXiCLAi0RDolHA9sqqRZIkSZLqkm7duhVEIpHfEP0yXsqIRCJDTz755GrpnSmpahiYSJJSwUKij6c6H/isvMnhcJhp06ZV9BFYHH300fvsmxKPgoKCHx4RNm3atHiXfQicQ7SHy/51G5QkSZIk/eCMM874C3AFcTzquRqsDwQC159xxhkvJLsQSYmx6bskKZW8DfwM+BUwFtjnI7Ty8/MZO3Ysr7zyCqNGjeL888/f580POuigswOBAJFIpMKFRSIRZs6cSSgUYvnyuBv+LQceIHqypOKbSpIkSZL26vTTT//T/Pnzc3fu3HlRWlraiZFIpEl17h+JRLYDC4qLi//n7LPPzq/OvSVVDQMTSVKqKQKeA6YBWcDtlPPzKi8vj4EDB9KjRw9CoRDHHXdczHkNGjRo3blz53gfofWD+fPnk5mZyUcffRTvkgLgSWAM0ceOSZIkSZKqQJcuXbYSff8Y9yMAJGlvfCSXJClVrQeGEu1v8td4FsyaNYu+ffuSmZlJfn7sL/f06tUr7gJWr17N8OHDueSSSyoSlswETgAyMCyRJEmSJEmqMQxMJEmp7ivgIuByIK+8yYWFhUyePJmuXbsyadIkiouLS1zv2bNnuRsWFhYyadIkevTowUsvvUQ4HFcfwX8BPYHLgMXxLJAkSZIkSVLqMDCRJNUUM4DOwF1Auc+G3bBhA8FgkIsuuog5c+b8MH7WWWfRpMneH2ubm5tLz549CQaDbNkS1wGRdbtqOhOYFc8CSZIkSZIkpR4DE0lSTbITeAI4nmifk3KPfnz22Wf069ePQYMGsXTpUho1asRZZ51VZt7ChQu59tprGTRoEEuWLImnlkKifUqO2lVT8b6nS5IkSZIkKZUZmEiSaqKVwK1ET3W8G8+C3NxcevXqxdixYzn77LPLXL/00kt555134t3/L8CJRHusbIp3kSRJkiRJklJX/WQXIElSAj4GegD9gUeA9vuavH37diZOnMhBBx1U5lqcfUoWAPcAb1S4UkmSJEmSJKU0T5hIkmq6CDCV6ImPscD28hasW7euonusB4YAJ2FYIkmSJEmSVCsZmEiSaoutwEiijeGnVdI9w8CLRHumPAUUVdJ9JUmSJEmSlGIMTCRJtc1iYADQG5ifwH3+AfwMGAh8n3hZkiRJkiRJSmUGJpKk2uod4DTgNioWeHwL/BLoA3xS+WVJkiRJkiQpFRmYSJJqs2Lgd8CxwH8ChfuYuxnIINoL5U9VX5okSZIkSZJSiYGJJKku2AjcA/wU+CLG9beIhioPATuqsS5JkiRJkiSlCAMTSVJdsoDoCZJ7gHnAh8CVQDqwKol1SZIkSZIkKcnqJ7sASZKS4D93/ZIkSZIkSZIAT5hIkiRJkiRJkiQZmEiSJEmSJEmSJBmYSJIkSZIkSZKkOs/ARJIkSZIkSZIk1XkGJpIkSZIkSZIkqc4zMJEkSZIkSZIkSXWegYkkSZIkSZIkSarzDEwkSZIkSZIkSVKdZ2AiSZIkSZIkSZLqPAMTSZIkSZIkSZJU5xmYSJIkSZIkSZKkOs/ARJIkSZIkSZIk1XkGJpIkSZIkSZIkqc4zMJEkSZIkSZIkSXWegYkkSZIkSZIkSarzDEwkSZIkSZIkSVKdVz/ZBUiSpP3WADgWOG2PX2cADfeYswjoVP2lSZIkSZIk1SwGJpIk1Sw3Aj2A04HO+LNckiRJkiSpUvghiyRJNUsI+Emyi5AkSZIkSapt7GEiSZIkSZIkSZLqPE+YSJJUsxUA84CPd/26CTgnqRVJkiRJkiTVQAYmkiTVLB8Bf+bHgOQLoGiP679MRlGSJEmSJEk1nYGJJEk1i4GIJEmSJElSFbCHiSRptwOAQDXv2Qg4EGi4n+ubAM0rr5y4tQRaJWFfSZIkSZIkVRFPmEhS7XUL0TBit/8BPtv1f9cD+gFXAz8DDiMaXhQCK4C/Af8N/F8F9zwY+HWpsceBHbv+78bAtURPSZwOHLLHvDeBi/dx7zQgHbgU6AMcyY9hSQGwale9bwB/AbZXsPa9OWlXXenAiUR/jw12XQsDi4j+ub6za++vK2lfSZIkSZIkVSMDE0mqve4Fjtnj9SqiH+x3AV4ATo6xpgHQnmjYcgvwR+AOYGWce7YDJpQae5ZoYHIZ8Azwk72sPXgf9+0DPEo03ImlCdBx169BwBLgAeAVIBJP4TGcAmQTrXtvJ2/SgKN2/fo58J/Au0SDqO/2c19JkiRJkiQlgY/kkqS65RxgFrHDklh+CcwFOiW47x3An9h7WAJ7/5l0P/AWew9LYmlP9ITMZPbvywF3Ev19X07FH1N2DnDofuwpSZIkSZKkJPKEiSTVHYcSPaXRYtfrMNFHWH0IrANaA2cAvSgZXhwOvA2cDazej30vBJ4sdc8lwEIgn+hjuU4kdjAxCsiKMb4Z+CvRx2HtJBqQXAC0LTXvRqL9RgYQ/0mTHOCeGOMR4F/Ax8CaXa8PBE4g+nixlnHeX5IkSZIkSSnIwESS6o4R/Pih/hyiYcJXMeYdAzwPdNtjrAPwNNHgoaKe5sew5P8RDUE+LTWnEXBWqbHeQGapsSKij/waD2wrda0+cBPwMD+GQgBXED0x8lQctQ6ibFhSDPwXEAKW7WVd/V31XgdcE8c+kiRJkiRJSjE+kkuS6o7dYck/iX64HyssgejJjz7AP0qN92ffTdn3pg3R0xj3Eg0vSoclEO1xsmeD+YZEQ4o9f06Fgf8gGqKUDksgGqb8lmhz9i2lrj1EtEn8vnQi2mOldF1XAjez97Bk9965RAOXo4mefJEkSZIkSVINYmAiSXXLRqKnRLaXM293ULCh1Pjd+7nvH4g+6ipeVxB9zNaeHgFej2PtB0RPlOypCXB7OevuBZqWGruF6KmYilgKrK3gGkmSJEmSJCWZgYkk1S0TgO/jnLsWGFdq7DyiJygqogAYXsE1pcONVcDoCqx/gWjT9j39muijv2JpQ/QRZXuaues+kiRJkiRJqgMMTCSp7iim4gHAC0QfN7VbgGgT94r4I7C+AvObA11Ljf03sLUC94gAz5UaOxg4dS/z+wKNS409WoH9JEmSJEmSVMMZmEhS3fExsLKCa9YQbRC/pzMreI+/V3D+GUC9UmN/quA9IBrUREqNlQ5idju31OvlRHu9SJIkSZIkqY4wMJGkumP+fq6bV+r1zxJcX57S9w/vxz0A1gGLS42dspe5pUOgD/ZjP0mSJEmSJNVgBiaSVHfkVdK6gyu4vqIN0FuXer0S2FLBe+y2sNTrvdXeptTrr/ZzP0mSJEmSJNVQBiaSVHfk7+e6TaVeH1jF+5a+//7WDbCxnHvvVjqk2ZDAnpIkSZIkSaqBDEwkqe7Yvp/rCkq9bkTZHiP7UlzB/ZqUer2/dcdaW/reEP29NCo1Vvr3LEmSJEmSpFrOwESS6o7m+7muZanXm6l4CFIRpU+07G/dULb20idOIPp72VxqrFUCe0qSJEmSJKkGMjCRpLqj9GOn9nddrNChMpW+//7WDXBQOffebV2p1xXt0yJJkiRJkqQazsBEkuqOEypp3bJECynH8lKvDwIO24/7BICTyrn3bktKvf7ZfuwnSZIkSZKkGszARJLqjtP3c90ZpV7PTbSQcnwYY+ys/bjPsZRt8v7BXubOLvX6DGL3O5EkSZIkSVItZWAiSXVHR+C0Cq7pAhxXamxO5ZSzV59TtqfIVftxn2tjjO2t9n+Wet0MuGY/9pQkSZIkSVINZWAiSXXL4ArOH1Lq9Wbgfyqplr0pBv5fqbFfAEdV4B4tgVtKjc0Dvt7L/HeAvFJjGUDTCuwpSZIkSZKkGszARJLqluuBc+KcezZwQ6mxVyh7+qMqPF3qdSPgKeL/uTUeOKTU2FP7mF8EPFZq7BjgCaK9UCRJkiRJklTLGZhIUt2SBvyR8hvAHw/8mZI/J7YBD1VRXaV9BMwsNXYR8Fug/j7WBYBM4PZS4wuAl8vZczIwv9TYTcAfiP+kSROip3iOjXO+JEmSJEmSUsS+PnSSJNUunwAnA22INm4fDfwXsHqPOW2InirJItrHY0+jKPvYqqp0M/ApcHCpsdN31fI3YMeu8XrAucAI4PxS9ykierJmezn7bQeuJBrWtNhj/AYgHXgEmEHZP4MDiDaJ/+Wu9QcBZ5azVyK6EA139qb0o8sOI/p72pvxwPREi5IkSZIkSarpDEwkqe54kmhwcC7RExPjgTHAYmAd0BroQOyfDa9R9pFVVW0V0B/4C9GeJLv9jOjpl+3ACmAncCSxT4EUEQ1Z5sa559fAz4kGCAfuMX448PiuXxuIhkyRXXNKP/qrqjUHTqvA/EblzG+TWDmSJEmSJEm1g4/kkqS6owjoB7y/x1g9oicSzgSOJnZY8irRoKW4qguM4Z9AL2BZjGuNgU5EHx8WKyzJB64Anq/gnv8g2ufly71cP3DXnp2p/rBEkiRJ+v/t3T1rFGEUhuHHXdnaTiys7RZSpbEQG8FUYqW1+AOstRQsRFLZ2VrFxh+gwU4JpBK1EAsDFn4kqEiCWWLxRoj4lZiMYzzXBVvs8jJ7mPZmzgAAHRFMAGp5l+RkkqtJPv7m7Ksk55OcS/K547l+ZTEtUFxJsrKN86tJbqYFoLt/+J9P0taXXcj215BtJHmU5GLaKjEAAAAA9hEruQDqWU1yOcn1JKfTVlwdSXI4yZskS2nvB7mfnT9V8jRttddWH3Yz7KZPaevDriU5nhZ9jqatkxomeZ22wutBknub53drPe1dIbfSniY5lRZhDqe9t+Rz2nquF2mBZD7fvg+mKw/z/T3ejb24VwAAAAD7nmACUNdKktubn70ySYsIXVlPCxPzHf7HjzzJz1d0/W3r6fYeAwAAAJRkJRcAAAAAAFCeYAIAAAAAAJQnmAAAAAAAAOUJJgAAAAAAQHmCCQAAAAAAUJ5gAgAAAAAAlCeYAAAAAAAA5R3sewAAOvM4yfst39/2NQgAAAAA/OsEE4D/15m+BwAAAACA/cJKLgAAAAAAoDzBBAAAAAAAKE8wAQAAAAAAyhNMAAAAAACA8gQTAAAAAACgPMEEAAAAAAAoTzABAAAAAADKE0wAAAAAAIDyBBMAAAAAAKA8wQQAAAAAAChPMAEAAAAAAMoTTAAAAAAAgPIEEwAAAAAAoDzBBAAAAAAAKE8wAQAAAAAAyhNMAAAAAACA8gQTAAAAAACgPMEEAAAAAAAoTzABAAAAAADKE0wAAAAAAIDyBBMAAAAAAKA8wQQAAAAAAChPMAEAAAAAAMo7sLCwsLGD8w+TzHc0CwAAAAAAwF45kWR6u4cP7vDi0zu5OAAAAAAAwH5gJRcAAAAAAFCeYAIAAAAAAJQnmAAAAAAAAOUJJgAAAAAAQHmDJGt9DwEAAAAAANCjtUGS531PAQAAAAAA0KPngyRzfU8BAAAAAADQo7nBaDSaTfKy70kAAAAAAAB68HI0Gs0OxuPxcpKZJEt9TwQAAAAAAPAXLSWZGY/Hywe+/rK4uHhoMplcSnI2ybEkw76mAwAAAAAA6MgkybMkd4bD4Y2pqamVJPkCrPPWWINs7WUAAAAASUVORK5CYII="
|
|
}
|
|
},
|
|
"cell_type": "markdown",
|
|
"id": "70087bce",
|
|
"metadata": {},
|
|
"source": [
|
|
" <div>\n",
|
|
"<img src=\"attachment:fig_matmul_machines_1.png\" align=\"left\" width=\"450\"/>\n",
|
|
"</div>\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "9d22ccea",
|
|
"metadata": {},
|
|
"source": [
|
|
"A possible implementation of this algorithm in Julia is as follows:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "f9f757a5",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"using Distributed"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"id": "cb00fd41",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"if procs() == workers()\n",
|
|
" addprocs(4)\n",
|
|
"end"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "e4697fda",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"matmul_dist_1! (generic function with 1 method)"
|
|
]
|
|
},
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"function matmul_dist_1!(C, A, B)\n",
|
|
" m = size(A,1)\n",
|
|
" n = size(A,2)\n",
|
|
" l = size(B,2)\n",
|
|
" z = zero(eltype(C))\n",
|
|
" @assert nworkers() == m*n\n",
|
|
" iw = 0 \n",
|
|
" @sync for j in 1:l\n",
|
|
" for i in 1:m\n",
|
|
" Ai = A[i,:]\n",
|
|
" Bj = B[:,j]\n",
|
|
" iw += 1\n",
|
|
" w = workers()[iw]\n",
|
|
" ftr = @spawnat w begin\n",
|
|
" Cij = z\n",
|
|
" for k in 1:n\n",
|
|
" Cij += Ai[k]*Bj[k]\n",
|
|
" end\n",
|
|
" Cij\n",
|
|
" end\n",
|
|
" @async C[i,j] = fetch(ftr)\n",
|
|
" end\n",
|
|
" end\n",
|
|
" C\n",
|
|
" end"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "f0e5a38b",
|
|
"metadata": {},
|
|
"source": [
|
|
"You can execute the following cells to test this implementation."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"id": "13920a31",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"\u001b[32m\u001b[1mTest Passed\u001b[22m\u001b[39m"
|
|
]
|
|
},
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"using Test\n",
|
|
"N = 2\n",
|
|
"A = rand(N,N)\n",
|
|
"B = rand(N,N)\n",
|
|
"C = similar(A)\n",
|
|
"@test matmul_dist_1!(C,A,B) ≈ A*B"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "f69d3333",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Performance\n",
|
|
"\n",
|
|
"Let us study the (theoretical) performance of this algorithm. To this end, we will analyze if algorithm 1 is able to achieve the optimal parallel *speedup*. The parallel speedup on $P$ processes is defined as \n",
|
|
"\n",
|
|
"$$\n",
|
|
"S_P = \\frac{T_1}{T_P},\n",
|
|
"$$\n",
|
|
"\n",
|
|
"where $T_1$ denotes the runtime of the sequential algorithm on one node and $T_P$ denotes the runtime of the parallel algorithm on $P$ processes. If we run an optimal parallel algorithm with $P$ processes we expect it to run $p$ times faster than the sequential implementation. I.e., the *optimal* speedup of a parallel algorithm on $p$ processes is equal to $P$:\n",
|
|
"\n",
|
|
"$$\n",
|
|
"S^{*}_p = P.\n",
|
|
"$$\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "df7aa7ed",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Complexity of the sequential algorithm\n",
|
|
"\n",
|
|
"In order to analyze the speed up of the parallel algorithm, we first need to determine the time of the sequential implementation $T_1$. To this end, we will study the computational complexity of the sequential implementation. From now on, we assume that matrices A, B, and C are of size $N$ by $N$ for simplicity. Remember the three nested loops of the sequential implementation:\n",
|
|
"\n",
|
|
"```julia\n",
|
|
"for j in 1:N\n",
|
|
" for i in 1:N\n",
|
|
" Cij = z\n",
|
|
" for k in 1:N\n",
|
|
" @inbounds Cij += A[i,k]*B[k,j]\n",
|
|
" end\n",
|
|
" C[i,j] = Cij\n",
|
|
" end\n",
|
|
"end\n",
|
|
"```\n",
|
|
"\n",
|
|
"The inner most loop has $N$ additions plus $N$ multiplications i.e. $2N$ operations. These are repeated $N$ time in the loop over i and $N$ times more in the loop over j. It total, we have $2N^3$ operations.\n",
|
|
"\n",
|
|
"- Thus, the complexity of this algorithm is $O(N^3)$\n",
|
|
"\n",
|
|
"Remember that when we say that an algorithm has complexity $O(X)$, this is equivalent to say that the cost (e.g. the time) of running the algorithm is proportional to $X$ (for $X$ large enough). In other words, the time of the algorithm can be written as $CX$ for a suitable constant $C$.\n",
|
|
"\n",
|
|
"For the sequential algorithm with can model the runtime as follows:\n",
|
|
"\n",
|
|
"- The time of the sequential algorithm is $C_m N^3$\n",
|
|
"\n",
|
|
"where $C_m$ is a constant related with the FLOPS in the master process (the smaller $C_m$ the faster the computation).\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "2ebf04b4",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Complexity of parallel algorithm 1\n",
|
|
"\n",
|
|
"To compute the complexity, we need to remember the main steps of algorithm 1 from the worker perspective:\n",
|
|
"\n",
|
|
"1. The worker receives the corresponding row A[i,:] and column B[:,j] from the master process\n",
|
|
"2. The worker computes the dot product of A[i,:] and B[:,j]\n",
|
|
"3. The worker sends back the result of C[i,j] to the master process\n",
|
|
"\n",
|
|
"The worker receives $2N$ scalars (e.g. floats) and sends one scalar as result, making a total of $2N+1$ scalars. In addition, the number of operations in the worker are $2N$ (computation of the dot product of A[i,:] and B[:,j]). Thus,\n",
|
|
"\n",
|
|
"- The communication complexity is $O(N)$\n",
|
|
"- The computation complexity in a worker is $O(N)$\n",
|
|
"\n",
|
|
"We can use these complexities to model the communication and computation time in the worker as:\n",
|
|
"\n",
|
|
"- The time of communication in a worker is $C_n N$\n",
|
|
"- The time of computation in a worker is $C_w N$\n",
|
|
"\n",
|
|
"where $C_n$ is a constant related with network bandwidth (the smaller $C_n$ the faster the network) and $C_w$ is a constant related with the FLOPS in the worker process (the smaller $C_w$ the faster the computation).\n",
|
|
"\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "9ecdc891",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Theoretical speedup of algorithm 1\n",
|
|
"\n",
|
|
"Now, we are ready compute the speedup:\n",
|
|
"\n",
|
|
"$$\n",
|
|
"S_P = \\dfrac{T_1}{T_P} = \\dfrac{C_m N^3}{C_n N + C_w N},\n",
|
|
"$$\n",
|
|
"\n",
|
|
"\n",
|
|
"We have assumed that the time of the parallel computation can be approximated by the time spent in a worker (since all workers run in parallel). Thus, the optimal speedup will be achieved when\n",
|
|
"$$\n",
|
|
"\\dfrac{C_m N^3}{C_n N + C_w N} = P\n",
|
|
"$$\n",
|
|
"\n",
|
|
"Since each worker computes a single entry of the result, the number of workers needs to be $P=N^2$.\n",
|
|
"\n",
|
|
"$$\n",
|
|
"\\dfrac{C_m N^3}{C_n N + C_w N} = N^2\n",
|
|
"$$\n",
|
|
"\n",
|
|
"We can simplify the equation to get:\n",
|
|
"\n",
|
|
"$$\n",
|
|
"\\dfrac{C_m}{C_n + C_w} = 1\n",
|
|
"$$\n",
|
|
"\n",
|
|
"and therefore:\n",
|
|
"\n",
|
|
"$$\n",
|
|
"C_m = C_n + C_w\n",
|
|
"$$\n",
|
|
"\n",
|
|
"\n",
|
|
"This means that if the master process is as fast as the worker ($C_m = C_w$) the only way of achieving the optimal speedup is by having an infinitely fast network ($C_n = 0$). This is impossible in practice and shows that this parallelization strategy is not efficient.\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "b15cbaf4",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Parallel algorithm 2\n",
|
|
"\n",
|
|
"Let us study the next algorithm to see if we can improve the efficiency by augmenting the granularity (i.e. the amount of work) in each parallel task. In parallel algorithm 2, each worker computes an entire row of C.\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {
|
|
"fig_matmul_intro_q_2.png": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAyIAAAECCAYAAAACfmNBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAACAASURBVHic7J13mFXV1YfffadQBYagKAgqiFHBRonGxJYYEzUx0QREBUXKABKMDQWkXDpWFBRhBhRUFDEx+b4Y02M0+UwUsYsNGyiIhaL0mbn7+2OfGe/Z+9w2c++5d2C9z+Mjs06565Zzzl57r/VbCkEIkcGDB+9XXFx8QCwWa6OU+qqqqurTJUuWbMm3X4IgCIIgCEK4qHw7IOz9DB8+/Byt9S+As4COAbu8p5R6OhaLLevYseM/otFoLOg85eXl/1JKNQvaprXeA2wFPtJaP1dUVPQ/CxYs+DSRT+Xl5VOVUud4x/62oqJiRrrvp7y8fIZS6ofesb+uqKiYne6xyRg0aFCbkpKS3pFIpFcsFusdiUQOq91WU1Nz9aJFi/6VjdcRBEEQBEEoBIrz7YCw91JeXn6iUuoOrfVJKXbtorXuopQatH79+tXDhg27prKy8s8B+52gtW6R6nWVUkNjsdi88vLye1q0aDF+zpw5OwN2O1Rr3cv796pU54xHa30Y0Mt7rWczOTaI4cOHj9Za/wro6p0fpRRa67p9ioqK2jT0dQRBEARBEAqJSL4dEPZOhg8ffhHwTysI+QJ4FJgJ3ABMARYB78Ttc7RS6k9Dhgxpm+IlNgDvxf33PhAfcDQBrtq2bdsTo0ePbtKgN5NjYrHYcXhBiCAIgiAIwr6CrIgIWWfYsGE/11ov4+vUv4+ACZs3b37w0UcfrUlwTHel1ASgH2kEyEqpgQsXLvx7vK1v375Fbdq0+S5ws1LqW95+p+/evXssJugpdN7XWq9SSq1SSq3SWt8PHJhvpwRBEARBEHKBBCJCVhkyZMjhSqnFfB2EvAycXVFRsSHZcZWVla8DF40YMeKuWCy2oj6v7QU5Tw0aNOi00tLS/wN6epuuikajM6LRaHV9zptrYrHYbOD6xYsXb4q3l5eXF6S/giAIgiAI2UBSs4SsUlxcPANo7f25ORaL/ThVEBLPggUL/q+4uLhX8+bNt9fXhyVLluzSWk+OM7XZsGFDn/qeL9csXrx4jR2ECIIgCIIg7O3IioiQNUaOHNmlpqbm53GmiYsWLfoo0/PMnz//k4b6opTyKUzFYrFDgP809LyCIAiCIAhCdpAVESFr1NTU9AOKvD+/qq6uvj9fvmzevHkbUCc7FYlEUqptCYIgCIIgCOEhgYiQTU6N+/c/77333q/y5UirVq0OJq5PTiwWk9QnQRAEQRCEAkICESGbfKv2H0qp5/LpSFFR0QXxfyulXsmXL4IgCIIgCIKLBCJCVohGo8VAfO+Ptfnypby8vCcQX6z+WkVFxbv58kcQBEEQBEFwkWJ1ISt8+OGHZSUlJSrOtDXHL9lt6NChW+L+LikqKuqgtT4LuAxo6tm11npcjn0RBEEQBEEQMkQCESErlJSU+H5LWuuc9sDQWt8TiURsm71bDXBDZWXl47n0RRAEQRAEQcgcSc0SskKTJk3sYvDWgTuGQ0xr/YTW+tSKiorb8uiHIAiCIAiCkABZERGywrx583aXl5dvB2plctvn+CUXKaXW1P6htd6plNpSU1PzUSQSWVVZWZl2aphSSqXeq/77C4IgCIIgCC4SiAjZ5GXgZO/fvXP5Qkqp5QsXLvx7A06xu/YfWutmGR7bPO7Y3cl2FARBEARBEIKR1Cwhmzwd9+/T+vbtW5RwzzyjlIovdC/L8PA6dTCllPQnEQRBEARBqAcSiAhZQ2v9+7g/O7Zp0+bcvDmTAq31urg/j8rw8CMTnEcQBEEQBEFIEwlEhKxRWVn5DPBM7d9KqVmDBg1qmuSQQPr27VuU69UUrfV/4v48rLy8vGs6x3k9StolOI8gCIIgCIKQJhKICFklFotNBGLen0eXlpZWeM0O0+Lyyy/fv6ys7M+tWrXKqepWx44dXwRqVzOU1vpX6Rxn7fdGZWXlO1l3ThAEQRAEYR9AAhEhbfr27Vuaap9Fixb9Q2s9M840cP369X8YPnx4t2THlZeXl5SXl48sKSl5Bfh+Q31NRTQarVZK3VH7t1LqiuHDh1+a7Jhhw4ZdoZQaWPu31vpWwGleIgiCIAiCIKRGVLOElESj0cjHH3/8e6XU48A9qfbfsmVLtKysbH9guGc6S2v9enl5+R+Bvyql3ovFYp9FIpFWQMdYLHYqcC5wYM7eRAAHHXTQ3PXr158PfBco0lovLS8vH6i1XhGJRF5TSn1VU1PTKhKJHAtcrLU+pfZYrfUTlZWV92XDj6FDhx4ciUSCzrV/3OtNLS8vvzJ+o1LqNwsXLlyQDR8EQRAEQRDCRgIRISnl5eXHrF+//nal1JlKqefTOebRRx+tAUYMHz78da31DGA/oAQ4DzhPa41Sqq4TutWWYztwU6dOnb7M6hsJIBqNVpeXl58PrADO8MxnKqXO1Fpj+1mLUurxJk2aXEKWVkOUUs2BM1Psdrxt0Fq/mo3XFwRBEARByAeSmiUEUl5e3rq8vHwG8CJmkLwVvzxvShYuXDgP6ALMBlLVUryjlJoIdKuoqJgWjUar6+F2xlRUVHzeoUOHs5RSg4HXUuz+AnDJQQcd9NN58+blPFASBEEQBEHYm5EO0YLD8OHDf6C1vg04BkAptaS6unrG4sWL16Q4NClDhw49LBKJHI1RnSrTWn8JfKqUWlVRUbGh4Z43nPLy8oO01n2Adkqp1kqpLbFY7DOt9cpFixZtzLd/giAIgiAIewsSiAh1DBw4sEXTpk2nKqVGY1KpNimlzl+4cGFGKyGCIAiCIAiCkAoJRAQAhgwZckhxcfFyrfVJmNqHxTU1NTcsXrxYOocLgiAIgiAIWUcCEYHhw4cP0FovBJoD64FRFRUVv8uzW4IgCIIgCMJejAQi+zB9+/YtKisrmwKMx/wW/lZTUzOyobUggiAIgiAIgpAKUc3aRxk5cuQ327Zt+yxwIyYImdGhQ4ezJQgRBEEQBEEQwkBWRPZBhg0bNlAptQCTivW5UmrkwoULf51vvwRBEARBEIR9BwlE9iH69u1bWlZWdgtwJYBS6s9a68sLRTpXEARBEARB2HeQQGQfYfDgwfsVFxcvA36CUcWaWlFRMYUsdQcXBEEQBEEQhEwoyrcDQu6JRqORHTt2/BX4AbBda923srJyYb79EgRBEARBEPZdZEVkL2fkyJFlsVhsgda6H7BJa/2jysrKlfn2SxAEQRAEQdi3Kc63A0LuGDRoUJuampqngR7ATqXUsIqKCglCBEEQBEEQhLwjgcheyogRIw6IxWJ/wQQh65RSFyxcuPD5fPslCIIgCIIgCCB9RPZK+vbtWxqLxZYDxwHrI5HITyUIEQRBEARBEAoJWRHZCykrK5sHnAFs01qfsWDBgrfz7ZMgCIIgCIIgxCMrInsZ5eXllwHlQEwpdUFlZaUEIYIgCIIgCELBIYHIXsSIESO+BSzy/py6cOHCv+bTH0EQBEEQBEFIhMj37iWUl5e3Bl4EDgMeqaiouAhpVigIgiAIgiAUKLIishcQjUaLtda/wwQh7zRp0qQcCUIEQRAEQRCEAkaK1QucK664olNVVdVxVVVV/16yZMmWoH0+/vjjUUqp0zENC/vNmzfvy3C9FARBEARBEITMkBWRAqe6urqDUur3paWl7wwbNmywvb28vPxIpdQsAK31mMrKypfC91IQBEEQBEEQMkMCkQKnoqLiWWAO0E4pNSBgl8VAM631Ex07dlwSqnOCIAiCIAiCUE8kEGkEaK3v9/55TN++fYtq7cOHD/8+cDLwZVFR0ahoNBrLi4OCIAiCIAiCkCESiDQCWrZs+RawG2jXunXrdmC6p2utb/F2WbJgwYIP8uWfIAiCIAiCIGSKBCKNgDlz5uwEPgEoKirqBFBWVnYOcALweSwWm5lH9wRBEARBEAQhYyQQaTysAtBaHx+NRiPAFK31E0qp6xctWrQxz74JgiAIgiAIQkZIINJI0Fo/7/3/2A0bNgwAjlVKnVhVVfXrPLsmCIIgCIIgCBkjfUQaD68CRCKR7lrrb3m2O++9996v7B379u1bWlZW9k3gRK31J5WVlY+H6aggCIIgCIIgpEICkUZCJBL5QmuN1voIoD2wHVgKUF5e3lop9e1YLHY6cKJS6ttAE+/QhwEJRARBEARBEISCQgKRxkc7IKK1nquU+u6wYcP6AT/UWjdVSsXv9ynwQiQSeSIvXgqCIAiCIAhCEiQQaSRorTd7/2wK7FFKXQM0iQs+3gb+AzyplHp94cKFz+fBTUEQBEEQBEFICwlEGgkdOnRYs379+j1AqfcfwJvAo1rrRzp27PiGNDQUBEEQBEEQGgsq9S5CgaDKy8urtNYfKaV+HYvFHl60aNGqfDslCIIgCIIgCMJeTDQajYwcOfKb+fZDEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARh30ABBwEDG3iez4D7Gu6OIDRKrgBaNvAcC4GtWfBlb+KHwHENPMffAem3I+yLdAV+3sBzfAg8kgVfCpHWwPAGnmMbMD8LvghCY+RyYP8GnuMBBZwI/LeBJ3oNOAbg+eefP0spNUBr3Q0oaeB5BSHf7NJavxSJRCp69er1SoJ9NgAHNvB1ugLvNfAcexuVwNAGnuMq4M4s+CIIjY0fA79v4DmeBL6XBV8KkS7Auw08xyeYyVxB2Bd5FejRwHOcVBz3xzbg0Xqe6KPXX3+9dNeuXUu11v211g30SxAKB6XUd7TWI1euXDmpT58+MwJ2eRhoU8/TDwSKU+61b/MC8HI9j309m44IQiNiLfXPVDgMOD17rhQ01cAD9Tx2SzYdEYRGxm+BlfU8ti9eJkn8AOhzYHB9vdm5c+fdQP/6Hi8IBU5EKTV91apV63v16mU/3K9pwHn7IYFIKh4DggJAQRAS8wr1f6b3Z98JRHbTgLGPIOzDTGrAsWfgBSKRbHiyatWqw2l4rqUgFDxa69nPP/+8pBwKgiAIgiA0kKzMxGqtzwWKku3z5CdP8p/P/uOztWvSjmHdhqGUyuj1anQNd795N9uqt/nsZx50Jt9q962MzpUpD7//MO9ve99n69GmB+d1Oi/jc23es5kFby1A409lG9BlAJ1bdG6Qn8nI9uf35tY3eWztYz5bsSrml0f+kubFzRvkazKy/fkF/Ua/0eQblHcrj/+NHoCpq/p3vZwWCgpt7lszcVPrfq3gr/U43wnACMtcBYxT8FX9vEzrddsB03Anl25T8HY9zvdT4BzL/AkQVZCz3FsNxwMjLXO9Pz8NVwLdLfNzChbX08V0X/dnwNmWuV6fX7Z/o0LY6DMxaSjxbAFuBFWd4bkUEMWtSfwjqN/V08F0X3sIYA8QXgc1tx7nagnMxq0jXgDqxXq5l97rKmAybl1PPT8/fQRwrWWMARNBfV4fD9N83Sx/foG/0a3A+Mx/o5mTrZSQg1Pt0Psbvblj9R18vONjn32/kv246LCLMnqxBW8t4P537/fZDt/vcK7tbv8ess+J+5/I3W/eza6aXXW23639HQc2OzCjQbzWmmkvT+PpjU/77D/o8IOcBiEARaqI7m26c8OqG3z2v63/G8tOXcZBzdKvvdtRs4PxL4xn7fa1PvvVR1+d0yAEoKy0jP1K9mPJmiU++yubXmHpKUtpEmmS9rnWbl/L5Bcns6NmR50toiLMO3FeUKCc2y9ICA0FNdoElf9j/qyjr4aeCj5I91zaLDM/DHzT2jQml0EIgILPNWwCxlubvq3hRAU70z2Xhm6YnPn94swx4Ee5DEI8XsYMsuyZnXZkmPqrTbH2Hfi/1y2YB3iu+TtwE3CEZd8CzMnwXFHgesv2GnB1vTwTwubfwM2YSYp49gATMzzXVbjpMB8C4+rnWkb8BfOb/obfrD8C9VjQAUmYj6vW+ifqXwuYJkqDfhJzfcZPnl8C+lugVqd/Lt0EWI77vc7KbRACoLaBfh+41drwfdC9QGWgwKkPxjy32lkbLg4jCIEspWZprVMGNPuV7MesnrMoifgDuDtX38krmxOJEbms/HwlS9cs9dmaFTVjdq/ZGQ0860uXll0Y02OMzxbTMSa8MIEvdn+R9nmWvrvUCUI6tejEhGMnZMXPVHz/oO/T91B/APxl1ZeMWzWOap3+b2/mKzOdIOQ7B3yHiw+7OCt+pmLkN0dyfNvjfbY1X63hztXpCyXtie1h7KqxviAEYGi3oZzY7sSgQyQ1ay9CGWWhuy1zGbBcZ/ZdL8ANQv4I3NYA9zJhEvAPy3ZMJq+voSmwAn8QAjA9jNl3L9C5HFNoHc+FGoakex4NnYAl+IMQDQxW8H7gQVnECzwvxtQfxHOThm+nex5t8qjtQeZ2oJ+CHQGHCAWH2oWpBfzS2jAe9Fnpn0f3wQ2iq4D+oDY1xMP0UOuAy3AnIxaDPiz98+ghuEHIRuByULGGeJge6ilgumVsAawAncns6RzcIORZzIpLGNyOmUCLpytGbTJNdDHBQcjdoB5uiHOZkJVAJF2ObnM0o48a7bNV62rGvzCeL6vsa9Rl055NTHhxAjH8v9Vxx47j0JaHZtPVpPy00085p6M/ayGRb0G8tuU1Fry1wGcrjZQyq+csWhS3yKqvybj66Ks5svWRKX1LxKMfPMqfPv6Tz3ZA0wOYcvyUjNPt6kuRKmJmz5m0KfVnLaz4YAV/Xv/ntM4x+9XZvP2lP3ulZ9ueDD2iocqxQiPiOow6VzwnYtKdUqJNOtYllvkj4NIQVhEAs7qDGSjYs3EjtRkUp8M8THpUPE8DUxvoXtoos7IzEKNmFM9dOo2+Ml7wuBxn5pa5yqi8hIIy/WtusMwlmAC3barjNbQHluGmPV+h4I3seCmEg1oDlFvGCPAA6A6pj9dtMP1cSq0N14NqaPuFDFB/wJVD93zTtm8B6O6AncoVAy4B9Uk2PEyTqcDfLFt30pZ617/ATSHdDFwIqqqhzqWHqp20+dDa0Be0nR6ciOnAdy3bq8CYgH1zRqiBCMBFh17E6Qee7rN9svMTpr9sB6h+Eq06nNfpPCcoCINxx47jsJb+SYCg1RqbRKsOQUFBrkkU/Cxd467W2Kz5ag13rL7DZ0sUFOSauuAHf/Az65VZTiqgzV/W/4X/Xfe/PltZaRkzes4gEv7lIeQJZWau++E2lbxeu2lCPrTRUb/dMtcAlyk3KMgpygt+cIOfhdpdrfGhzfu3o+/PgIu9ICc0lAl+pljmpsAK7a7W2MwGTrZsQUFBGMzFDX46A0s1JJyt0XWDVCeXfYmC+wMOEQoe9Qhwr2U8AHgIdNIaW0xNk73qEBQUhMH1wH8sWx9gVvLDtLfqgL3qMAXU37PlXHqoGDAAU7cVz1DQA5Ifq7sCi2wjZkXHDgpyjPKCH+zg5w7Q9mqNhf4RbsCxDegHKu1U3mwQ+khLKcWk4ybRobl/EuAfn/yDRz9I3Mak8p1Knvv8OZ+ty35duL6HnTobDonSwRa8tYCXNr0UeIzWmikvTWHDzg0+e1CaVFgEpYNpTP3Kp7s+DTxmR/UOxq4ay+6YP+sgKE0qLL5zwHe4pIt/Qnpb9TbGvTCOPbE9gces276OGa/4VWEVionHTWT/pg1tFio0NpRpbjbMNXOfTlAXpOuW9GlmbZqk3DSpUFAmHczOHW6JGcQ3DTpGw+G4S/oaGKIgeTSfO2Zi8tLjOQJ3RrUObQrs7dqJbZhgyk6Tyjneathg3HSwHwOjkhw6EfiBZXsbU3wvNF5G4dZBnAYkycnWvwQusIxempTKQ9M25aWDYaeDXQ36Z0kOvAs42rI9Rd6k2dVGzEqxPclyD+gEs8K6BHgQaG1tuB2UnSYVEupZ3LqhJphUs1bBx+gDMT2G7BhgJKg3s+1hKvIy5duqpFVgvcic1XN4c6v7Gaz6YhWL3/aLnJRGSpl+wnSaFgU+V0Oh635dubaHv0C+Rtcw/oXxbNnj9jla9v4yntr4lM92YLMDufHYG3PqZyp+0OEHnN/5fJ9t857NCVPNZr82mw+2feCz9WnXh0u7XppLN1My+qjRHFt2rM+2estq7nrzLmff2rqQ7dXbffZBhw/i1Pan5tRPoXBRpqnrQsvcFnhQB4t73AMcZdmexBR15pPxwP9ZtmMJ8Eubh9YjgP3Qulk1vDN3vVEmZWMgsN7aNEibFDQf2oimLMVdaRheH+WwbKFMgfqFmOLkeG7V0MveX5uBqV3EvAtTF5JT0QMh19TVi9jf4yRPuchCH4spdI+nGrgIVPpFqVlHrQUG4V95VcC9oA9199f9vf3j+RRTEB3qaqsfFXSvbokZxNuTS2AmeE6ybCtxRULC5ibce/XhQIW7q45gUj5t5bVFoB7MhXOpyFvuSfc23Rn5TX+K3Z7YHsa9MM43ONy0exM3vnCjMyAee8xYjmhlC5KEzwWdL+Dsjn6Vxk93fcqkFycR32F+9dbV3P2mvx62WBUzs+dMWpUkCFpDZEyPMc7n+cIXL1D5tn+S9Ldrf8sTHz3hs7Utbcv0E6YTUflNZSpSRczqNYvWJf7Jioffe5gnP3nSZ7vt9dt468u3fLYebXow/JvSDkfgKsCWQDwFqwjRK54OKrq8JOxUJhtVN1jBHqxcqd3Z1duBnpbtOTJX9Mk6qm6w4nyed+u4ANALEoOKLu9R8FBuvUyNCh6sNAEe0XGzqxr2x/hrp+qMVjlXFBLCQQWtbEWAB72Zag/tDYid1dYbQdmTDHlAJRT58FYOPHQ33AGxN8mg7EmGfJBI5MNaVdY/BkZb+3mTDCo47SI0lMY8j+zV6ws9cYB4pgDfs2yvA7/KkXMpyevIcWCXgZzW/jSfbd32dUx/xdSLxHSMSS9N4vPd/jTrszqcVa++Hbli3DHjOKTFIT7bM589w7L3lwHwVdVXjH1+LFUxfxrflUdd6czg54vSSCmze82meZE/fXPxO4t59vNnAXhv23vc9rpfgCeiIkzvOZ1vNLHrQvND+6btiR4f9dWLaDRTX57K+p3mnve3DX/jNx/+xndcq5JWzOo1i2IlTc73dZQ3+0yAyo2GswC0KWwMKrocoGADBYCqS99wVW60l2+u4RfAFdb2zcCFys07zgvKpG8Eqtzor/PNg4ouX8PV+M8nSVVu4upC7OLlFcrNSRcaNWoJZvUunvb460WCVPj+hJt2mU+uw9RfxRMn8qETqfDNAmWnXeYJVYOpq7Pr+a4A7Yl86CAVPoAhoHKuwpce6jPMpI0j8gHaE/nQCVX4QOVNhS+vgYhSisnHT3b6Vvx1/V/57drfct+a+/jvZ35BiE4tOuU9lcmmeXHzwHqReW/M4+XNLzPtlWl1g+BavnvAdzPun5JrOrfozITj/KmqMR1j4osTWbd9HWNXjfX1TwEjcZvrJpKZckr7U+h/mL/lwFdVXzFu1Tje3/a+I4ygCP4dCvsuChKq3Gjogpm1tosupylXiSWvKFPQeodlboOZie+Gm4ZWK3H7QQjuZUKQyk0P4A4NQUWXtRK3oRZdJiNOmvgDa1NfDcOBscAPrW1rcOuWhL2DUYDdt+IM4AbQw3FV+D4hNInbdFG7MWmHjsgH6PMwkzV24eh/cYUo8oz6GBOM2J/tAk/pK0iF76569E/JMSqhyIdXZB+kwvfLzPqnZB+FiV7/i7k5ZqAF/TUrV66co5S6qr5OvLTpJYb/Zzg1+uvV99JIKTW6xrEt+e6SgkjJCmLFByu4+TV/Omfz4ubsqPYHmgc2O5CHTn2oIFKygpj68lRHSSroffT+Rm/mf3t+QapLVcWqGPJ/Q1i91X99Bb2PS7pcwtVHZ9QbbFDv3r2Ty6OlzzbM7G5X4L0snXNvoRKj4jSBPBU06q99iGcbJo84nn8CZ+Y7JSsIbSQ//4XbFTnofdyhCrRRnjYKUi9iZo7jCXofA5UpKi04tFH0egp/zdEu72/bdrJy0wTDoD8m1e1J3DSOvYUuGIGK7bi/n5DQPTBpkPHpV9Xef/EFsDXA970eGAWI7oepM4sn6Lr8HDgB1EehuJUxejauul7Q+3gBONkLxAoMHcGsnNliF0Hv4wFQ+SrufR84FDipIEaQx7c9nhHf9Mse74nt8QUhANd2v7ZggxCAfof244cd/BNa9qC3SBUxo+eMgg1CILj+xn4fbZu0ZdoJ0woyCAEoiZRwc++bnc/Zfh9Htz6aXx75yzBdExoXo3Fz8+2b+WcUQF1IIpQpku6Lq3Jjv4/nyY/EbVp4KW8X4X7O9vu4t1CDEAAFz+CqJDXFFUO4Nk9BiBAa6jXcepFiXHW7aOEGIQBqBSaVLB77utTA0MINQgBzXdr1N/b72IYpsi/AIATipInt+hv7fbxDcuW+0CiYUeRlXS/j2/snbjj7/YO+z88P+XmIHtWPcceOo2Pzjgm3jzpyFMeVpezJlVdKI6VM75lYkSyiIkw9fmrBS9we2OxAJ9Usnv1K9mN279mOepsg1BJXL5JIrahW4rYQii4Tokyn8qB6kVq2YupC8lx0mRxlZujt7tLxrMYtKC1Ebgb+N8n23yiYH5YzQj5RizC1QYn4Jyl7dBQEQSIf8dyaP4nbdFHVmNXAZP2fRoB6K8n2AkAlEvmoxXuuqYJQ4SuYQCSiItx47I2BM+wHNTuIicflXcAlLVoWt+Ta7sH1kSe2O5GBXWyRncKkS8suDOwa7OuALgM4aX9bwa4w+d6B3+OU9qcEbht/zHg6NEujqa2wT+NJv96WYPNt+ZS4zQQFj2P+C2KEajypgVFMYGWzB1MXkreiy3Tx6kVGETxQWIubDijs3VxJ8O/2c4xUb0GutvpRu0k8w/48UFjFvQlRH5G4huU+UMvC9Kb+qKdIvDJ8Hajghnd5oGACEYD71twX2Lfii91fsH5HQU841lGjaxJ2V/9w+4d8VV0QAWhKNu3exO/W/i5w2xtb3yCmC6heLgmrt652BA9qefvLvLUWEBoRnqSqXbheSy/tFv8VJBp64xZD7/3glAAAIABJREFU15KfTqT141KCG0yWAoW93OxnHMG/nQOAQwLswt7LNbjiF2CEJbqG7Es90YrEqZ2dMffRRoBuCSTK1+4BujRMb+qP7oYr1V5LQd3vCyYQ+fuGvzuSqrXsie1hwosTHMWmQmT+m/N5eXOw3PsnOz9xOnkXIrWyyZ/t+ixw+8rPV3L/u/eH7FXmJJJNrmXpu0v5z2f/CdkroTGhjaDHYlxJ1Vo8lZvCRhv5zGWYwXoQ12v4SYgu1QttOqvbKmDxLPT2KWg0/BxXNrmWphhpYlvyVNgr0aeTuCGe1x9HF4Y+fnKuBX6aYNsB+KWJC5l7cGWTa+kDzAzRl3qSUDa5lqGgB4ToUFIKIhD5eMfHTHt5WtJ93vvqPW557ZaQPKofz3z6DA+8lyzV0wRcv/7w1yF5VD+WrFmScBWhlnveuidhwFUozH51tiObHE9Mx5j0YuKASxAwQUaqAfoU7fawKDQWkHyArjD9RRIXuOUZXSdDmXSA3hJ4yOsWX5BoMzsc0PHYxxHAnSG4I+QV7Q3Qk66qdgKWeisOBYruQ2plw9Mo+PQsPQxT6J2Ma0AnCrgKhTtIvepxD+gjw3AmFXkPRKpiVYx7YRzbqrf57D/r/DPKSst8tv9Z9z/88eM/hule2ny26zMmvzTZSVm6tOulFCn/Peb2128v2LSglza9xMK3/a0FmkSacHGXi322Gl3DjS/cyJdVds+3wmDFByv48/o/+2wdmndwVM0279nMxBcnBqYECvs2nsyqPUOyE3dGvhgz+C3IWUsNIzGFi/F8iNtxfH/gwQJONZuHm3r1d4z8aTy9SF7Qnjc8KeVHgbbWpnuBjZbtcg2No6hQqAfa66aO3cDqYdxeM+fiqmsVCLoNZoLAXm29A7ePzyTQp1GQ6B64wX81YM+Ae6vk+uBQ3MoY3Q/Tlyiez3CborbErFLlfdIm74HI3DfmsnqLv9dD9zbdGXvMWKYcP4WI8rs469VZfLDtgxA9TE1Mx5j80mQ279nss//8kJ9z5VFXMvwI/29iT2wPN6y6ge3V28N0MyVfVn3JxBcnOrLJY3qM4Zqjr+GsDmf57J/s/IRJL05C60RCPPlhzVdruHO1/35SpIqYfsJ0Jh8/mW6tuvm2Pf/F8yx6WxoXC1+joQyTymRLql7l9dl42LJ3Au7XbufdvKLhGNxC+2pMYDIEV5r4dKDglEG0US6zC7g/xQzUg6SJf6XhZ2H4liGzcfu5rMQEi0HSxPdoKIhZSyHrjMft9bAa8zvvh6tgdwvoQlSJWYzpBxHPb0BdDfzKshcBy0HbvYDyjG6B6YPSzNowCdT1uI1fv4EZxNvPhzyju+KutmrMvX4krjTxCbiBVujkNRD596f/Zvn7y322/Ur2Y1bPWRSrYk4+4GQGdPGvku2o3sHYVWPZHSscCefKdyp57nP/pFzX/bpyTfdrABh0+CBHZWrd9nUFVS+itWbKS1PYsHODz/6DDj/gZ53N83zcMeMclal/f/pvln/g/w7zSaLfxy+P/CXHlh1LaaSUGT1nONLEi95Z5HyHwr6JF0zci/twfVR9fZMfiasydQ5GwrIg0KZR5grch+uNCp7xpIkvwVXrmajhzDB8TAcNh2MaS8YTwzQt3OBJE9tiAgq4V7vfYd7Qwb+PLXiyyZ408c3W9haYehH7OxQaNfoUYLJl3IXpT7ED1ErcXjMlwIOgW4fhYXro0bgF0XHXo6rETOjEcyBwX4Glmt0FHG3Z4q/HqwBbZSroO8wjugTzWdu/j5tB/d6TJr4I+MLaPhp0oqL2UMhbILJx10YmvzgZHSdrr1BMOm4SHZp/PdgN6rsRNOOdL17Y9AKL317sszUrasbsXrNpEjErXrV9N9o1aefb7y/r/8Lv1xWG8uey95fx1EZ/v6SDmx/MhGO/vhcm6rtx5+o7eXXzq6H4mYrZr812VsxO3t8f0HZp2cWRWI7pGBNemMAXu+1rVNgHuQp3Nv1dYFjtH8rru4E7a3mThsQNkcLlHtzZ9D8Bt9b+oeB13JSPCCZF68Dcupcar9bjEcDuADtLwV9q/1DwG9y+G2XAcm0GcHlFw8HAUtwVsyHKdBiuZRLwb2ufY4j7zoTGji7D9A2xZ9NHg4pfobwVt9dMV9ygPE/oY4GbLGMV0B9U/ArlCMDuu3E2cF0OncsA3R8YZBk3Apd8LZusEvWTGg/aXtXKF7cCJ1q25zD3FA+1DvNe7TSWxaAPy6FvSclLIFKjaxi/ajxbq7b67P0P688ZB57hsxWpImb2mknrEn+Qt+KDFfxjwz9y7msyNu3exI0v3OjUF4w9ZiyHtfR/p22btGVGzxlOn5SbX7uZ977Kr3z/6q2rufvNu3220kgps3vNpkVxC5/96NZHc8U3/WIv1bqaiS9OdOp8wuZ3a3/HEx894bMd0PQApp4wFaX8z//zO5/POQef47Nt2rOJKS9PaTTSxEL28SRu7fqCKmCAF3zUoYw2/jhr3xLM4NeuAQgVDYNx6ws2Apcr/DcsZVIrbJWN9sASnf/03duBnpbtvwTr/F+D21DtxAT7hoauUz6inbXpLgWPxRuUSZu7CLeh2hXa2IVGjVbAfbjyzCu8xoZxKA1cjtszpy/oRHLiIaFbErzaOg6UJUWptmEG8bbs6UzQJ+fKw/TQ3XBTmWLAQFD+9BDUO7grr16dj7brfEJG/xi3kesW4EJQ1mSZehxTbxdPG+CRfEkT5+UhEyRxe1Troxh9VHBD3PZN2xM9PoqyJpOmvTItqSpSLkkkcfuTTj/h3IPPDTym1zd6MbjbYJ9tZ81Oxq4amzdp4kQSt786+lcc2To4NXlAlwGc1t5fb/bRjo+Y/vL0nPmZive2vcetr/snDSMqwpTjp9CmtE3gMWN7jOWQFv7nwTOfPsOD7yXqASTszSSRuB2jzOA3iDmA3S24M25OcWho6I77oIkBlyj4JMFhVwBvWrYfAmOy7F7aJJC43Qz0VyY49KFgN2bAYyto3KDhLHv/EJmKq6r2KnB90M4KPgIuw521vEdD3mYthaxwHa7E7RriVlv9qE0YFadqa8OdoPPZC2IBrsTtHzETBwGoV3Blzosx9SJ5mrRJKHE7HdRfg49RyzErm/HkWZpYdwKW4F9t1cBgUB8kOOg64FnL1gfIyyAu9EAkSOK2eXFzpvecTmkkcTB2SvtTuPCwC322VH0ickmQxG3nFp0Z0yP5c7v8iHL6tOvjs7237T1uX53g+s0xQRK3p7Q/hX6H9Et4jFKKycdP5qBm/kmAv234G4+tfSzBUbkjUTA3/IjhzmcdT/Pi5r4UulrufvPugpcmFnJCkMTtH4C5iQ7wOmRfjlGhiucXnlpVqHgSt8twm6NNUUZhKhAFtbOWtsrNdA3fya6XqUkgcasxKzr2Z12HMoO6oFnLB3TiXjA5Q8P3cAOObZgO8PZnXYeCJ3DV2VoDj+jEvWCEgkYHDfR2Y2atk8hPqn9hgtl4vEG0zkOvGV2OqS2L5yPgUm8VJwFqLvBby5hPaeIgiduncT9rm1HAG5btdGBsdtzKBF272morNs4FZX/WcagqzHe41dpwHejzsulhOoQaiCRKfRl3zDhnZjqIq46+ih5tevhsq7eu5p637smqn6l4dfOrVLztf0bWpjI1Lwpqjvo1iWbpH/vwsdCliYMkbutWn1Ty+0KrklZMPWGqI01862u3hi5NHJTe1usbvbi82+Upj+3WqhtXHu1PkU+UOijsvWgz825L3K4DLlPuzLQPZWbpL8SdpZ+jjSpJmNyNK3H7FKk1/lFmlt6eSSkGHg5Tmtir6ViOm952u3JXnxyUqSm51zIfgJFYDm3WUpv0tmW4rzlSuatPQdwA2B1XG0lDNcGP9lJfnCDyOlAvpHGCGYA9S9+NJJMkuUH3wKwCx1MDXAbKTicMYjD+miiAH2MG9yGi++JK3G7CpGTZynUWajtm0sYW+ZgC+nvZ8jBNZuJOFK0irSa7ylf3WGvECAl0zoZz6RJaIJKoGPiCzhdwdsez0zpHsSpmes/ptCxu6bM/8O4DPL3x6az5mowvq75k/Avjqdb+ldLrul/HEa3Sa+hbV7dgpZrNenUWH25PONmXVRJJ3M7qNcupx0nECW1PoPwI/+Tjntgexq4ay44a+xrNDUEF/4nqcRJx4aEX8r2D/PePjbs2En0pWnDSxEL20cHFwNXARcpVGAlEmWXuqGVuglE8sgutc4I2wdBgy/wpcLFyZWEDUSaQCZImXhqiNPFNuAX/K0ncfTqIUcArli20hmq6LnfcKfhfpIw9Jaqu8NeRJr5GJ+5gLRQm9+Km1T2Oud7SQMUwKVpW3QKDQF/aQN/SRNeq8NmzrZNBpVmwq7ZgftO2yMetoO1asByhgwr+vZVtZdfjJEC9hqlJi6cIs7pj14LlCB1U8L8NU2SfpqysehR35bkt8ECYqWahBSKpJG7T5eDmBzPhOL+qnUYTfSnKJzsTpT9nh0QSt2cedCYXHJKZ+tnJ+5/MwK7+WtJa6dk9MfsazS6JJG5HHTmKY8uOzehclx9+OSe28ws1rN2+NpR6kaDXiagI006Y5iiUpWLisRMdaeJ/bfwXj3zwSIP9FAqXJBK3E5SruZ6K2cQpOXkcTuou2g1GB79OrcRtpoV0V+DOWobSUC2VxG2651F1UqjOrOVkDd9vmJdpMQlXAvl13L4KSfGkie2ZWwXcp92CZ6Eg0VcC51vGdZhVhAxmutSnmHQae1JhPuijGuJhmtwN2K/zJBk3D1XP4fYq8tTxdI4nbRJK3N4CylYoS4FaiCtNfDBwf+5TzXRH8zrO5NAIULZCWSp+hStNfCo+ta3cEkogkkzi1u7nkA5nHnQm53f2X9e1zfhy2SE7ocTtcbbcd3oEDfzf+fId5r6R29XWQInbA05mYJfMm/gmGvj/Zf1f+MNHf2iIm0nZE9vDuFXjnJWXQV0HOYFROiSSJp77xlze3JpOFoXQSAmSuP0z9WjypOrUVpxZywu1Kw+ZNTyJ2xW4Ky83KTcwSomqU1txG6ppVx4yaySRuL1CuYFRSlTwwD8CLPPSpnKCNisv9kNhF2ZlKuOlYgW/xtQvxVOGqXspsIZqgp9AidtqXInbNFFPBpzPm0zROew1o/tjBBTi8QKjVKlMgdwC2L0LgvoFZZsgiduV1L+J6wjAzkU/G9P0NkfoCCYIsWdbK0DZgVEaJJQmngA6lH5SCvOl/Bf4gHoqcqxcuXKOUiphI6+dNTudgvJiVUzz4uT1FMmo0TWBnclblrRMOyUnU7ZXb3e6jjcpauIUO2fCntgep8haodivJDc1aFprvqq2f28mMLQH4Zmwq2aXs5JTHClOWTNTXxJ+/8Utiaj6f/9B33FppNQOmAf17t3bVs6oL9swD5KuuA3y9nUqMV2GJ5BGjUOmeKlGQZJq2zOZfQ84b3NMcBBPtXJv9FnBG4wG3TC22lK9GZ63FW59w+76DKbTfL0muGkf2guMGnLesgBzg77jFK/XArcWoMoTBKjvOYsITvH7Mt20uwzpj0nRexJTcL830gXTH2g70DLFvvVEB90LapIXp6c8ZwR3Rh/gK69pXQ7Q++EGvbtN88V6n7MUc63YbMlspSij12yDO9GxI/1UpsBzNsOIB8TTwO846esluhc08PvXLXF7Lu3xamJywfuYhrMnhTKb0qyoGc2KshusF6kiWpWEknpdh91TIxuURkqTqoVlG6VUTj63pkVN67W6VV9y9f2n8x1rKRzZK/CK0Dfn4Lw7yNFgPcHrVZOb95GjB2nC19uN+S/b5836Z5Pi9bZj/svmOWsI+X0I2UDl4F6gYoT+W1A5mERRe8jRZECS12zQpEaCc+4kiQJeDl4vR/cClbdGcFlZOlBKyQ1S2GeIRCL1WFIXBEEQBEEQ4slKIKK1tiUGBWFvpUYpZTcCEgRBEARBEDIkK4FI7969/w5IBzhhr0drfX/Pnj0/y7cfgiAIgiAIjZ1spWbFtNYXAhuzcT5BKFBerKmpSSjKIAiCIAiCIKRP1uSl+vTp81Z1dXVv4CGMVKEg7C1sAW4tKSk55aSTTgq1gFcQBEEQBGFvJauqWSeddNJHwCXPP/9881gsdlhRUYgySoKQA2Kx2LZt27a9e8YZZ+RIFlEQBEEQBGHfJCfyvb17996BaSYlCIIgCIIgCILgEF5X1ig/QnGcz6b5mCgP1vN85SirUZXiGSbxr3r7mA5TuAw40GfTrCLK3zI+1+004yt+iZ0ip/ktUadbZ/ZYSAkbGI2ymtdo/kCU1zI+X5TOKC6yzqWBBURz2IsgyoEop9sraBYT5fN6nO9bKM6wzrWdKHdjek4IexnaNHD6JW4DuicUvFqP83UCLg7YtEDB1nq4mO7rtie4e/u9CjIWV9DQB7eR3XZgfkOaJKbxusdiOhPHsxu4y+uXkun5fgIcbZnfV6YTfc7Q8EPgeMu8XsED9TzfUOAblvk/Cp6uz/mEMNGnAt+2jJtA1bOLuB4AdLSML4H6c/3Ol/br9sU0gYxnNSi7Q3o65yrG3HftZo9/ApVD4SOtgFG4jRSfBPVcPc63PzA4YMMSUDmsmdatMV3dbR4GtbYe5+sBnGsZq4B5oKoCDsgq4QUixbxONQ9i30yj7CDKYxmdawrD0SywhoYfo1ncUDdTovkQWIy/4/B2onyLKKszOteX3AkMs6xPA7c1yMdUDKeKKBE0s60tw5hNL8ZmMGCKUgw8jOZka8vcnAYh5rU/IUoPYIC15TTMRZV+8BDlAOB3aA7y2RWDMjqP0KhQUOV1WHeuBQ29MgkevA7nDwPfsTbdlcsgBEDBRg3dgYHWptM1nJtJ8KDxrgXoYG26PJdBiMdbwBLgBMu+P3BjJifygqlf4w8yq4BTG+BfuqwGlmE97zRUK/MbSRsvCLEHrRuBpQ3yUAiL1zABaGe/WWtQizI7lf4JcD/+7uCbgZ4NcTBN3vJeOz7lvgr06aCeyfBcU4Dxlu01YG793UsHpUF/AcyzNmwEfQKoDemfSytgEXCetWEFqJsa5GZK1FbQB2OCuXguAH2K1ywyTXRLzH3ym9aG68IIQiCLxeopmcA6CBzULWYah6V9nig90MyxrDXApfWaBc+UKP8EZlrWFsAKojTP4Dz9cIOQTcBAopnP/GVMlNuA/7GsXdnlPPBSMRucIOQV4Ib6upYhI4E3LdvZTOG6tM8QJQI8CFYQAkuYLA/7fYA5mIF3PF0xD5lMmIkbhLwCXF9PvzLlCtxr4UfAmHRPoM0z4QHcIGS5MgFCTvG6q/fD7eo+1ltlSAsNbYBHcFe6rlPw34Z5mRoF64DLcJ9387U7q5wQL7i80zLHgEsUfNIwL4VwUJswk2X2c30eaHvVLAm6M+YajA9CNDAY1AcNcjEtVNC9rARYDtperUuCPgN3fLAd6Od1Kc8x6mHcIL49sAx0UcABibgeNwhZgzuuyxXXAass27eA6RmeZyFuEPIEcHs9/cqY8AIRgCiP40a8bajhEaLOA8PlFm/AD818dsVkovwjW26mQRT4u2XrDtyR5tGH485waeByotRjWa1eaJpwOfChZe9LNHDJz2UKZwPXWNZtFNGPaEjKaVG2EaEf4L+BaWYy1RkUJmIC8APL9g7NuDILHgoFjqp7mPOBtekX2gS6KdEmncgOfrcB/ZT928wRyns93NebruG7aZ5mPHCWZXsHKG+ge2mjgh/mEeAB7QZIiVgMzgTX47gzoTlDwR9wnwltgEe0GyA5aOqed/YEV1S5zx+hoFH/wowb4mkKrAC9X+rjtTfgp6214Q5Q9iRKDlHzwMlg6QQs8VYIUqDbY5RV7QH/SFBvZMHBdBkFTgbLGcC49A7XJwLTLONu4EJQISlrKu/1nNX260DbAVIC9EjcVOKPgMvM6lE4hBuIABzEGMDuxN4Hd5XBZTvzgaMs65Mc5aRV5JYoMUq4BHdGahhRJ03Iz1yaYGbqWllbbiHK/2bPyTQYx2YiXIhJV4hnDlOd1Ag/UQ5GO0vEoBjBRN7Kqp+pmMSruIPAYmI8zEwnr9pPlFOBSZZ1F9CPG/gqe04KhYwy6Q0XAvaS9hztpgn50CZf270WYKQi3GvBq2uxJweKgYc1tEt2rIZTgMmWeRcmmAr1WvBqOOwVqf2Bh7Q7iPGh4UrgAsu8Dhikwk+zvAH3edcbNxUwiLtx61v+STrPSqEQmQX8xbJ1AyrSOPYm3DqT54GxWfArU4YA71u2HwOjkx+mazMPDrQ23AuqXrVT9Ud5KzDssDZMAW3XxlnoMkxQWGJtuAbUC9nyMD3Uu7iTNgq4D/QhyY/Vx+CWAVQDF4HKfXZRHOEHIsOpAvpj0pDiuYYp/DThcVEGA5da1o2UcAn9qMmuk2lwIxuBS8B57XuIcmTC4zZxO24+53PAxKz6ly6TeBZ3IN6UGCuIOsGSIVqXC28PbBYwmWXZdzINoszHzLTE04k9LMUdIBpmmoEN9sBGcSVRXsqBl0IBo4KvwybACu1OHADgDYrvx70WKhT1FOJoIAoWgHMdHgws1QmuBW1mWh/ErRv8lSJv18Jo3Nc+jST3Sq/Y3c7Prgb6K/giu+6lRpHweXeVhp8lOk7DReAIcXwKXKzcZ47QKFAxTA3XemtDf9Cu6Eod+lzAbqS7FTP7nkEtQLZQWwietLkV9ElJDpwEnGnZVpMygMkV6nVwsh4imBQtO1jy0Aq4FzjU2vAbUPOz7GCaqEcx9/x42mJS5uxgyUO3JCi7CCaB+ne2PUxF+IEIQJS1KGepX6G5j+m4UdxUuuMuqcdQDORGMiguyjImHexmy2q+4NudLxim8HNMHnc8ZiY26lzU4RHlJsBWvjicxDM1U3FTPV6jlTMTGy7NGAGO2ti5RPlVwN6KPSzGVR9ZweSM62SEvYdbwFmZDEqlrGUKrrrUa8DVWfYrU0bgrsacQ4Bfum4GzS6m5VGV3mxtTlC1K5PuasxE7Q5o0LX3Xn8xLcB4BZkW02YNBWtx60UUcK92BzRoOAKTtx1PDBigyOPzTsgC6lNMKowdTN4N2l79witIDppMGwnqvVx4mB5qJe5qTAnwoKfoZKFPw6RAx7MLuBiUvSoRImoxrpLdgZgVhaDx8dW4EwhrCTF1NQFXAS9atpNwV7hrmQ/OhPmTuOPZUMhPIAIwmd9glp7jKaOaR1gYt+QVpSkxluHmyU5nMn/NsZfpMAkcyeBj+JJbfZYondHOQ93kpked3PSw0ZQyBPjYsl/orUR9TZTv4RasbaeIflwTTi58Qm7gKyJcjMnVjOdmplrL2lFuwEh7xhNmoZlQgKjaWi23dqqfp15UhzY5xfbDeDsmlSmPD9ek9SKztSsuMQa36DJoyT90VHB9SgR4ULviEkFFl38E616cB5SpT7nLMpdh1YvouroB7LqBmYqCeN4JDUY9hVtf4NUD6bhxji7GpADZ6cXzvYLrfHMHaYl86AMIrgsZlVup3rQZCdj1KT/CSffWfTDpdfF4K57KXvEMGZVI5GMcaKvmTw/FVVfciAkK87Lamr9ABKAt1wJ2Tt2JbGBq3N/zweo/Ak9ztG+f/GEUri4GR7HrCqJeEdBCEhWa3UnUuZDzw3g+w7wPW9njbqZ6n/+MWmUJ54ZyBROdCzk/TGIVQcoeMZYT9T7/qZwIzu/HFH7lWnJYKHiUSaPpj1s7NU97vSE0Ca+FUcp9qOUFFazYVQIs197gRhuVlaCiy365lhxOF2XunUssc3tgWW29iCcqYBddfgxcmoe6kERci6vYZX/+d+E+7/6FWXkT9h6m4QaW3fGL+czAVeELqofMEyqhyIdXBI23qhCkwvcIqHtz7GCa1NWL2JM2M0B7n79OpMJ3Ayi7BixPqIQiH6C9z18nUuEbACpvKnz5DUSuZDdF9MN94N3AFH5ClP6Y2cl4PqOYi/NSF5KIKB+huBT3gbeAKEewgVsILjQLS+I2PaI8jfvAM/Uis2lNFcsIKjSLcn84DqZJlLm4yh5G+jBKW2I8gl1opriWqBMUC/sonsRr1DI3xdSLtCaB3LMqsN4Oygxs7dnTTsASry4k6OE6RrkTRPnmlwSr3IzVEFR0GcMEIaEWXSbDqxcZgPu8G6PhPG0GQ0OsbZswKVm5l3QXQqSuXsROtRsCeiDohCp84UjcpotKKPJh+nIwDleFbw35T2WyUEHptN6KlG5HsArfE6SrlBoaKkjkw1uR0q0IVuGbBirzhtxZJL+BCMBE3kUx3LIqrzmhnZcdAy5lgpNClH8mB6YA7Af8GbcgyhSa5bMuJDEzcWdqjmAXLwLft+x5LDRLQROG4s7U/AQTANp1SL9hspMmKAizCVa5eRG3RuEN3OZShcIVBKvcPI9bo/Bb3BSivKPq+gw4KW9RjEyuU3SpCFXSPS1UcMqbwgx07AGEBgZ6NSbCXofaiBHgsZuEzscIYNjjsxGg7D5BBYB6Drf+owmmT1nUsu8C+oYncZsJaiFmYiaegzEiJrYK31pgYJgStxlwJWblLJ7TMMIfdh3Sk7gr4qGT/0AEYDKP4Bbn7Y8pPoznZqL8KRyn6sV44P8s26G4ErcjiZLHQrMkRGuX6RxlD3s2YBcRLiaa31z4hBhp4n64MzX2+yiEQjOhAFFkcC3ARd5gueBQsAXSuhbWAUMLKJXJh4LXcSc+ijErPPE8SXryuHlBwaPAPZa5HW5dyC3KzLoKey3qb7hyzC1xVfgWgcqPImV63IrbILkTrgrfNaAKWZFyKK7Ih32f9NLx810Xkgi1E/g5rsiH/T4+w6Rk5T27qDACEUNQ1X88z3KQIzNbWESpppiLSC4TOZ/JTqpEYRHlU6/oO9kPdBSTKIRCs8RMYiXJGxRVEaE/UUdaUxAAUNTVTiW7FkYrCvtaUKlTQaswErcFfS0oI52ZLBV0I6breN4frim4muTpb/mTdBfCZjLJG1S+DoHKjwWESiTyEc+vQdkBeIG3NWSnAAAgAElEQVShEol8xDMBlD3hXGCoVE1ovdRAZU+y5YXCCUSitVJugQ+QTUA/rwdJYTOBdaiE6UovYQoWC59JPAXMSbB1GVEKpNAsBVHmkChFQ3EDk5xmY4LgQ8FTuDUItTys3JSaQuVOIFEu8Lh8StxmyChM91+bGCYIKXiJW2UEARI97zZjxAIKMXVXyDoqhpF3Dsou2IGpCynMzAMfajOWsmAc7yXZVmCoV3BTymr5E0bivRGglmNWX4O4CdSfw/QmGYUTiBh+RnDX3GoaU7Ge5scJtlTh5oMWJlGaAj9IsLUR3BQ9onTCUzpy0HmWGxYaBZ6kql1wWUvjuRZMvnOiLvGN6VrogysUAObeakt3FzI/JfHzrvAn3YRs8iPcImIwv+lCX92Lx66lqKWGxjL2MbLJtrR/LdUUaOqqiz4AV3WtloK63xdOIBIsqVqLqfpfEXjTLiyiXIErI1lLH4wkX2MgSEaylmFEGRCmM/UisWxyLXOYmnBgJgi1zCVRMAtDtKvJXnDoOgUYpydBLbfrxEFKwaDNsyBINhnMe3xYu/n1BUcC2eRa9gce0sHvUdjr0LZsbzxek05tN+ksQPQvMDLaQXQjj81RM2QabsPmWn5MoQr0+Egom1xLFLTdiDdvFEYgMosyYizHllT1cxpvMD4sl+rFVI4hdfOsa5nCT8Nwp95EA2Ukbe5hmtM8rLDYwGxc2eR4mhLjEW5yikQFAQBPUjVVY7/52u1SW2jMwm1kGE8TjDRxq5D8yRjtNTIkeDWkloOBpdrtRF0waEjUkyCeoE7Uwl6Hbopp9he0GlLLscBN4fhTX3RnXMEhm/6gLw3Dm/qjgxo229wMumcY3jSAsSRexQdzL73fkybOO4UQiCh2swRXRvJv2MtHmslM5bRw3MqQKC2J8SiujOTj1t8KzSKiHBySZ5kxjW64Oe8xXPWWltTwEHNpEo5jGRLlx7i64JuBf1u2buwsPLlSIf9oOJxgCfE/WLaWmJn4gpy11HAubm3aFkyjvHgOh4KWsR6Pmy76Oq408TkUaHGvFyDdh/u8+ztumt9EDaeH4JaQP+7GBBrx/BvzrIpnNOifheNSpuhS4Ne4mQdPEChNrAt00kZ3wPRcssfF9hiuCfCI15ejANHfwe0HtxO3PrAjsBR03idt8h+ITOEq4DzL+i5N+QXKGUgWEWMZ0YJcep8PzgrBH4lyHu6SZDvgIaKOtF1+mUsTaliOKyM5E5PPbBez9mRTARZumSDvPtxZ0aEYWTu7mPVSpnBZGK4JjQNd97BxVghmY2rZbNWU40m9Gho62qwQLMG9Fq4AfoErTTxAu01k846GUzHqQvHUCpwENVS7WcNJYfiWIVdifj/xrMWsvNnBUxGwXLtNZIW9An0hpjN5PJ9ifgt2g2QvgNWHhuNbRtyESTuP5zngfMxKbDwtgEdB2xO2eUZHMM1oD7A2LMSMT//XsgdNUhUAugyTumqPLa/CfB+2NPE5FICAUn4DkSi90Y7e+24iXMhYtjKZhZgPNZ6OGPnGvEdxdUQZjJsn/jFf30x+hVHMiucUKDA54k3cDthLjv8CpnjSxP1xpYlHM4XzQ/EvHUxw9zBunvg8ojxGlE8JUqvR3M00jgrHSaERcCvutfAsEPW6XAfJdI/S0D8M59LBqzFYinst3K2M2lfwtQDztNv4Km94HeAfwH24jlLwioKV4KTtlgDLNLQOw8d00NALN8WmTjbZU1970NreHrhP5/tZLWQZfTjuBKXXt0htAPU47uqkl9Knk6X0hYw+FzeA3gL0B7UHM3lgq1b2AG4PwblMmITbpPY1TN+TWmliu7FoP9Cp0nZDRNeuttoNmx8FVREnTbzL2j4LdLK03ZyTv5vbbFoTnCd7PZNYFff3CNwo7mymcF0u3UubqXQH5llW0wE+yueAkSYuoh9ug5kbmZJQmSpcpvBzzCxpPJspZiBRT7FsAuuAQdiqEZp7meY0y8kXU3ELzV6hVVwPhSj/JGimpoYVRJPm6gr7ANoUJI6yzJuBC5WnZqRM87/LcBVU7tFu46h8MQWwCxJfBcbU/uFJE9sCGi0w9SJ5vxbiUpk6W5se8XqK1HI7bkO1LhSItLI26XsPgZPKeoPCJyE+ErC7Z/+IuO9MaOzoJsAK3NXWGaD+Gvf3dbi9Zr5FYlGfkNEHYyY67EnhwaC8dElVg7lPfm7tMwJ0IlGfkNFB9Vjb8ckmq02YyWZ70mYu6ESiPmFzDTj1x+/iq3FUr2DqR+LxhEx0IlGfnJO/QGQX92AeFPE8TtQa1EfZRoRLsGUZNTOJJi2+zD1RmhJjGfYDWxElas0CTOQdzLJ8PBE0DzIjafFl7onSGe3MzmgUlzPBalAU5XFwairaUMNyokmLL3NPlKBCs20U0Y9rHLm6xjJTI4SINt2A7YerBi5XVrMuZWpFbLWbNsAjOnkhcs7RcAbuA2cbpj+FfS1MwW2o1h24I0fuZcIY3NTdNVjNurxu8EEN1X6hYXju3EubhcARlu0JrM9Yed8R7nc0XSeW4hQaF3fgKtT9CyfAULsxaYdfWvteDzqRvGxI6EQqfHNB/dZvUh/hppoBLARtXxMho40iq6tQNwrUG36Teho3CGyKUTXLs+CN7oNJoY+nCrgE1FbLPhewvqPa515+6kXyE4gYiduLLOs6SgNm2wEmsQrldAU2F0I0oTRrGARJ3P6To5wfhCHKEtyuwAdQxbK8SRMnlri9jcnODKOhLWMInqlJJEeZe2bQnmBZz5FMdFbUIEqMYi7FnakZzhQuyY2TQiETJ3FrXwtzlDvbXssY4L+WLa8y3ZqE18IVyp1tR3mNAIFPrE3DNPm7FhJI3O7GBFP24AxlVq364/bguEMnll/OOdqs6tuzvx8Bl6mA550yq1b2hEqtNHEi+WWhUaB/gfk9xLMJk5IV0CtNrcFV7VPAYtAdc+FhmkzHDYxfAWec5qH+iDvJ1xJYlr9Us4QSt8tBLU1w0HTgr5btCPI6aaMTqfBdB+pZd3+lMbVJH1gbfoybFRMK4QciwRK31US4iPFOzvXXTE4WxeWhXiRY4vZT4BL6JWlA1IIrACvS5gzecGYvwyFY4nYlcGPCY65kt5dqZg8GxnjF+eESJUIVD+IWdVYSdXKuv2YCH6MCZmo0CwpemljIBUESt88D4xId4KVqDQDsWadrtbtMnnO8WoIHcCVuFytjD0TBRsyKgq1ys0C7Ihw5J4nE7TUKXkx0nDJBoa0Y0xSTahb6rKUOXmWtBi5S7iRIHcpMcj1mmTsBSwpZmlhIhg5KFfRW8pRdfxCHWhFw3P7AQ6DzMIGpg1IFvZU8ZdcfxDMOfxoiQG9w6oTDIkji9h2s1VY/KoZJ0bIFbwaDzlc/qfm46cCP45YMxKG2ECzycVs+pInDDUSMxO0KXInbG5nkqNDYJI7iok4+d26JJpT1HEjUUaHxM6Y299CRJp7ipRaFR5RzcCVut1DEhUSdH6ifiXbuIWAekIuYTtgzNUGFZq9jlCKSM5k/ArdZ1pbUsKxgpYmFrKPhbFz1kK2YupCk14Jy8nBrzdyn3cLBXDMBV+J2NW5aqIOCP+FOErXEDOJDkyb2Btr34krc/kaZh24qZgF/sWyhN1TTXq0N7vNuknJlxIMYgitN3Egaqgl+dAlmldIWT7gVlK3IFMRo4GXLdiowMQvOZYBuj6nZsseOI0C5mQc+VBVmxXKTteGq8KWJ9YlA1DLuwgRTdi2vhdqIWSm2J5zvCV+aWI8iKLsIBnkrH0lQz+EKJuVFmjjsFZH5uI2/gh5+wUSpjeLspfdbiToKN7nBDE6DCs1mE3UefsFEa9UYfBiFm7CkiY3EbdBq0kgmOg+/ROcInqmp5qHQUs2mBjb+MrKeUUeXPxFBMzW92FToTaSEbOBJ3AYp8Y1U8F4651DwKO5Atwx4QLtqTznBk7i1Hyy7gIuV26MiETfiynSH3VDtSnCU+NaSdKbya1TtpJA7a9lfE6pM93xwlPieBG5O52AFiWYtb/YUuITGwy24ctIrSbtppaqVqnZ6zYC2J+FyhI5ggik38+D/2zvzMDuqMv9/TichQRAhKsjI4oCirA4qy6gIuI2AozMqSSDsOLIjqwkQ0tUJO7JDwr7IlgSY0QFER0cWdUSUnyObyqIMixhQEjCRhCR9fn+81Z3q8566Xff2vVXVnffzPHmUU/fWPd19T53zbt8XF6qb5uBi6zh1PJQlTezXQaKtYQPtY8CF6qY5uNg6Th0PZUkT+61BtU9IFR1dfnbRQM4B7gzGSpcmLs8Q6eFgtMStpAMkKh0gn4R8Ky4poSuwSNyGhWY/Z31lXTcm4XKkSCpL3oGoveRL3F5Gwpwm7xb31DxRgjTxGbyT3pxCs4RHCt9HVMFinpqjSZTmvzGCaCBxO9vJGmmGPJnusP9F2/H9qRpqLRzl9PrMJZUmjsl0H+21cdB2BpO4LXqfBtLEl3ltHLSdtBdL2EV6PjDZ6Tnl4uKH1bGIIEJNG6oZA/F7oCOSqZHpGmceDMDFIptdwE3gy+g10w18KhgrlnkwAHcHOrK5DqLcFBoHbSZX4vZ2cIN1hg+Zjo5sxkoPOoBfk3i0dRq4wbKLMjiPRF7DTJ4J4MMeNx2jHENkBlvilbpML47JJKpAcnASzqYKKy5f4nYih6gozeCszqHAk8HobiQqXardxCRuH2WtFiQik75wppImnkai0qXaR0IXb0YLzeaSDJD1LHq/53BKLEE8NYlKETFGDjGJ28doocmTI3ctnOx1ulTb8P3Fqyolcp5rQb7WkSPTDdd6nS7VNhpI3J7kdMRyUBw5Mt2SatYxr6WX4tWLguFeYF+nozRF+Ca6odqm1LKhmjEQn1fHevBKidtmcNega71ScQrfwfOc3xldNxpI3DbFcehar1i6VLuJSdz+Hml23CSur59UWOt1OPgwXardzCaeXdRCg2n3CjlOG/DbtDK5Zimns7ejF/3HX0g3v2zxjp6x7M/SSHg6YVx6OG4/nucJDxSjeF5J3BZlCn/lND7Lct4XXGnCS9IkCV3ADwmla8fweETitug9n0yllAd6ZboaiA8MnTWRDTr0PoQKRsXp5k4SPk4oxzyqIkUzo6OkB/gfIQfWLE9EJG4L4eApT2Qt6AhDO1kTkWQMnT0trwUHd6VysWsElzq5Z7wN3b+lF0lnapUE+fuGB8G30uLfuABdwJeCsdfS6EbTOPBpStlHwmseVm/1u2qUwmroJqd/AxemPzbD4Wj1TZDngFKTaxOvI/1ssvwpjdK0gFuaRoq2DC70ikHlimfJNMcv0E6hpyIStwVxL4D/OCIkkaVTfwfAj0OM21DZ6+HWf2/ufvA7IiIhWZp3sLfIDojnqwXr3DCMIbIIWX9hTx1DPL6eRgpuhmF0gknI2gt7LbWTryKKSaGxWxabID/jooo+3zBWZf6ArL8dqmtoaBiGYRjGqspEpO/EWwZ7oWEYIxczRAzDMAzDMAzDKJ1yakQMwyibt0HTCmiDcTa6nsIwDKMROyNqQrMpphi2I6I210LhrWEYww0zRAxjZDIWXVw4VHI7cxuGYeRwDrA90pD4cPJFFN6BqJz1yYZ+G+l0bRjGCMZSswxjZOIRNZ12/lte6k9gGMZI4EtIs8+tkWaZ3wLWzVx3SM+VJ5AC9v8HfBYzQgxjlcAiIoYxMnkFKwI1DKN6XgQOQeSlz0AaG+8BLE2v/wiRcX0GaZA7D93DxjCMEYpFRAzDMAzD6DSPI/3EdkKayK2fjr8bMUA2B+ZiRohhrFKUFxFJ2IpYw7vpqrtmMWawA728NRh9jkR1Km8v0rgv9DQ/S8LTLdyrC8eu+KDZ1hge55SWOvAW/dzRwC6RK4+Q8HIL91sLyQEeyBr8jBNZ3PT9inIm60SbWsJPWmpqmbABYbdSxwq6uQ/bHEckHkYhayFsePeIo/m14MlZC/Cg62C/Ai+NqFTDO+CnrTS883I43DwYXgHc5zq4FjxshHQmz7LMwf0t3m9zdMf5hY6Wm+kW/Vy938GrTtKOWrnf9sh3K8vzDn7Xyv0qZDVgC2DjzNjbgE8A9yBRkRGGfz/RhnfuoRbvty3w9mDwT+Aea+1+hT/3I+iGdy+C+02L99sZGBMMPgnuudbuV+gzHfK8D5sU/wbciy3cb3Wk8WvIL8EtbP5+hT93DeAfIxceAtdCM0W/LhB2UffAfeCKCEwMifIMkS7G0stdSBGt0MsyZrAz0/lZU/dK+By93M3AiM4iRkU34nazGXBdMDaf09m2aePBcRKe04LRpxgdPVy3j4TlJHwRODK48hAJO5E03dn9OnQn4bs5kf9ueY5F2JTXeYKTgE8GVy4HDmvqXueyBov5PrJJrsTTzdA6O1fFaOIH06HwFJ3tEF46DlZ4+AJwdHDpIQ87OZpeC5cDewVj3wU+3+ocC/I6MBX4VDB+JZIWUxgP44C7gQ8GlxLX+bXwV+BqBh5U8XCIk5+lMKlR8xNg/MBh/pUOGyLI3vSfwOqZseUednZSJ1EYL8+3/2Lg4WkRsN2QZ1keXUhK1gzk7/Iz4M+IoXgjMBmJlswCTk+vjRRWAHcw0JDsBb87uO83dyu/HfKdXi0zuBT46BDnWIR1gbsY6LR5DfyHwP2+uVv5rwFXBIMvAv8wlAkOjvPgdwJ6ggtPyO/W/a3JG14IfC0Y+zH6TNJu/gYcAfxLMH4H8JXmbuVHA/+ONqguBtfZM1xKealZ03kY+EYwOoZe5pAM2Cgak/Au5OAbzv0wTi3BO5RwPXBDMLoey7iZecrKzmcGO+FJgtEldDGRKfx1aJMswHhOAB4ORrcHZjZ1n4Qj0UbI86zG/nQ6ijCBFYxmP/SmdSgJezd1r8VcSmiEwH1swelDmGGVjEc2+3b++6dSf4LyOAGt5LM9KCdBQ7woAoVGyAvA/p2MIgA46EUOc38KLn3Ny3gzXIY2Qu6nyd9HKzhYgHT1XhZcusg3cUjx4mmdA2pvucDBd4Y2y8Fx8Ah6vxsNzPHam52Lh/WAm9Ee3MMd/HZosyyNTyN7zfXAmsAxwMeRgyfI+vswYhweg3RcPgtUxsMwxT0N/Fsw2AXcCP7vit/Hr42krq0WXDgBXEuRtuZw3wXODwbfJnPy4Zwa4LcCLggGVwD7gSvDAD0N+EEwtgVwSXO38XuijZBXgX3AdVjYxXlEXe7Z4MKXwR/e5M3OQBshjyDNRkuh3BqRhIsRyyvLRsjBPkyNiL2/C3kohyHvK0m4qR1TLMQaHIEofGTZld8wtdD7E8bTy42EESnHMS2nqjXL0SxlFBOB14IrJ5LwhUL3SNgGkWbMspwu9uLkkjzn03gRx37IQSzLFczk/YXukTAJOCAYfRmYzIRCuvfGMMbJoXcyei2c4MVLOyheFIG+GQwvBya5kry7DuYDB6LXwuWeYmvBS7frg4Lhl4G9XbEeEEPGiVHYHQyPA+b54ofTc9CpC78AThri9Arj4FLg1mB4Q+B6X2C/87I/34Te7652w0tK+1jEsL0RSX29CP0d/TVinOyPeHuPAtYpcY4dxs0DrgoG3wncAr6AA9M74Frg74MLdyGOg7KYio7ofQTpMVUAvwYiRhCmt3eD+9FQJ1cM1wvsAyqD5SDw+xW7h98U/ff0wIGdTS3L4hYgz+swan++RKmK4HdDHAFZFgETwDWf3t4iDtgBefA/i/6St5+EtZE82YGf5Tia7kEs0oSZwLRg9HFgexKaDakNjRlsSS8PMXBB9QKfIaHRgnIkfBvUYf82Eia0e5qD0sOeeOYFo68C25KQv6AS1kQ8WAMPOI5v0F1BI6qEs9EeyEeAHRrWi8zkfazgYQYecHqB3Uj4r7bPU7MIWAPYFCngbBdvQT9ghsq/Ax3OQx7AVYic5zTofGTKS0j7tmB4AbCtg/9r8L41kUPuB4JLU13hDbp9eOnFEDpFHgF2bFQv4uG9iOc6SCFhN0cpayE7ly4kpS2Mws1xOuoUvncP4E4GHvYXAh9y4m0vjbR252Fgk+DSMU4O5I3e2wNMD4YfB7Z3dHy/m4QYUfcy9DSTTZHI1C+C8R8g0ZJ1EZW/PsYjh9tOf+c2QWpSFiNruMP4cUhkOYzszQAXGt7he7+OpAFleV7u5V5t1wyL4TcEfsXAyJ4HvgzuPwZ57w2IVHOWe4HPlFGLEMxlF+CHDIw2Lga2a1z34scixlh42D8HXGlRhMx8TkQ7hJ8GPty4XsRvgPwd3xFc2Afcze2cYQ5/AN6D7EslGyIAM9iO3kieYxcfS1O4ND3siucH6C/N9iQqOlEOCV9FW8WS55jkeEF7OBGvvjTPMI4PM1V5ZMshYTZwaDAqeY5JTu8IiUCFKR/3kLAHVRR2SwH+fegQ4yUkKv+/7z15G8NpJJza7inm0ClDZCRQqiEC4MW7GIa2HwQ+4XS6UN97bkQ8bFm+B+zhtOe343iJtN6LeJizXOZ0XVjfe8Yhm+u2waUzHJzS/lkOjheP8a/QxeYHOknzib0ndkgCieiE0YlS8HKo/ikD97tlyHcq2tzPS0FteEhaAuyQpn11mnYaInnkGSJlUbIhAuDfB1HH1+fAhelCfe/5MPL9GZsZXAbsAq6peqP24T+P1EApYx9cjrHvDyBWXwvbguucOE9D/AxQe/1jwPbgcpw2/lKkPiPLQ8BO4JqtKWwD3gH/gY7ezwM3Mec9oxBDP1zbV4ALz4Kdot8QqUa+d3o0RD6WXuZyFm9Trz+d9fCRPFnHEZUZIQAJV6ND5O8GvpWmkYWv3z5SnL6ULiZWZoQAjOcYUClhO4GqYRF6OARthLyIeDqqUZcSg2kSOg3mKBJVw9LHxWgj5MfoQjZj1eE4tLLRjuSsBS+536ERMh85LJduhAA4SQnbC70WjvD50YQL0UbIg+Q9A0rAyeF0b3RK2GyvFV76DLBb0UbIpVUZIQCpQlfoKR0D3OzR+52Xg/ktxOtCyjBCjI7hnkLXFaQpeH59/Xr/VuS7MDa4cFJ1RgiAuwvZP7OsDcyJ14v4zSKv7wX2rc4IAeT5FhZkx2pYUvw/ox1VC4GJ1RghkNaLHIiO2k8AH9Ym9TEDbYQ8hqRRlk51fUQSLgC+HYxuypIgwpDQxTJuZKXmeB9z6FZF41VwOLpoUOfdSUqaLjRznJgbBSqLo1kKTECUd7KcRMJnB4wkbIVXi7QX2C83ClQWiRQGo42ha5gZRPskDS5cpFJolhcFMkY8ThRoJqLXwlQfpAl5acIWpkv0ApOdLhovFSdF8jHHwCwfpAl52BOtrLUAqW+JRoHKwsEDaMfAOOAWr/PMY0WXj6JTNqvgIsRrmWUTRCGsH99fxKz2u7lOe5OHOzOJ7zsjHDcH/bdcF7g5Ui9yOVrO+h500XgVnAhK8TQi8uHHIXUhYX3XaflRoLJweSIfh4APnK1+IyQSm40CpUXj7tmOTbEQLk/k42LwgbPV74p2jCxG6kKalnpvB1U2NPSMjVb975l63PuYBnwmeM1TrK68CtWQsIguJqBzr09nRv+m2Fdo9p7gNXfRzaUdnmExpA9KXNkjQZQ9zqWv0Gz14HXdg9TFlEfCd9HejLVZwVyS1AhMeC95hWaN6mKMVQJH/lrwyFrwkFd02eO0h60SnBxYzguG1wbm+tQh4iUlMLoWGtXFlMzpaJWbLcl4WH3M+ZMWXbbSR6XduP4Di9rvvuIHSo2fDIHzR2Sz67HftZcHkJqspYO9cARyODq6tSsDMkX8YaDUH1MHg6tBXyu3DDn8hjUqJ4DPpgldilbhewDxytcANx8xRpTIR9oDBvB5KnwXD14XUxYuFsFOjUCfGoF+PXKira33gxk61XZWP4kFdEWsOM+FzGBbZrAzulhvCTChFInbokznURzHB6Oj6eVWzuDtJHwd0a7P8jyrcQB1apSXMA+4JhiVNIF5jGIxs9BNzu5lC84sZX5FWZ+paE/NdsAZXMxYJDIVNgf7Jgn/Wcb0jPrjxMiIqtykTRAvIyb3XFItSxOcRFzl5ixP/1oI04POK0PitihpiltM5eZgD/v6vnRYrUR1WJ0kbl1/CodSubnAw4e8pMOGRctLgIlulYsajHTcEsTICEUHesB/EvzWaCdCmnJZisRtQdxz6GiqA64DvzH4icDBwfU05bLs4vRGuB+hC77XRA7xqyOiI6EK38OUKHFbkLOAsDfN+4Arweep8F0H7ltlTC6Pag0RgOn8HK2ENY5e5tAbtdy+TsL/ljO5JuhmNij1qQ15k/9EK+cso4s9S5O4bYa1OApJZ8iyM0/wQ7TaxZ8Yw161k7g9hGXIQ35BcOU4XuX7aLWLB1m/moJco9Z8He213BkpIt4/GJ8P7FWWxG1R0nqR2Fo4BimoD5un/hzxyteKtMv9vmiv5SwkxTdUfrnKUaKke0GcFLWGz5qxiLf1VnST4WOdrt8zRgTucbR4RBdiVN9OLPMA95MyZtYc7na0hPA6yM8QOnMkjbulLuYd51SkWWSWbRD1vmOC8deQupCaRfNc+vvlj8GFSUik/tPB+BOIVHalVG+IACScC8obvRlpGkSGeSTNddctmYNBNVX8KLou5KTUAKsfx/EGImMaRpx2Cf67F8d+nML8UubVLAnPonPkHXKQzLKQUeydGi+G0U+a0lNsLcB+VdeF5JGmWMXWwi7BSxcixlQt10Ka8hZGnNZEIjxZHkcfHOrEeeiI0/vQ6mC3OakRMEYs7jrE8MjybnRdyL1UIAXeBMejRT4+gq4LOQfc98qZUrO4PJGPXdDR1sPBPVPGrJrHvUxc5GOX4L/TqJxbXMasGlEPQ6S/EUzD/Pxn0Hnb9SLpawTToG8F3EN3LQrN8kl4EqfCrSGn0a3ytutFwl3QsAbH4ziIU8vtLWAMH1yx/Pwzyu6z0SxOGp+FqjUhB5fdZ6MFEhrX4CxG6kLK7SvVBG7lfteoBqf++53RLg4HGuXnz6d2qUwhLk/kI24HSHAAACAASURBVMtD6FT7muHyRD6yzAZ3S0kTahF3P4PX4BwF7tdlzGYw6mKIQMKrdLEP8dQGUXVKhkGebMIj5OcNvsBq7Eud6kLy6OZWyFUlu58t6lJoNgjjORHtqenjYrqVko1hDMBJ2kyeYtFwknv+BiIlG+MSJw0ra43rT+3I7TtxpKNCSfeCOEmVa7TfTXRUKOlulIhbjKTOxByYK5C6kFpGWwfinkb3I+vjVWDPtMC95riYyEcfv0Yk3ocDp0GuiNAt4K7OuVY69TFEAHp5N7omBOCPrKFSnurMhjnjj3CyUpioJ9IHZYOcqw/Uri4kj8W8Bd1XoI/7SpyJMUxJJVVz10JahzEceAu6lqKP+0qcx1AZT7wB3ZtI47fhwt8R3+9eQqf4GiOb9QhTuIW/oGs260ze2edJpNfYcGGjnPGfpUIDw4FxiNhQjPtKnMeg1McQEUnVK3Ku/j2LqY311pAedgOloNXH7vTEOxvXDscpwKdyrp5C0rFuu+3EsZRrgI1zrl9DkvvAMYw+TkJLiPdf8/nrpG5cg5YQ7+Nqn79OakMqmzwXXcgLcpC7w8ev1YpUNjmv3vE9MEz2O6MN+PWQ7IPYeWxd4Ftp9+ya47dHesPE2JHap2X14Q9FUuxjHAI+VECtKxcjzRljXAA+VECtjHoYIvmSqlkmkSjVpnqRsAE+KiO5Es+5JEq1qV4kfAKvZCSziLJHkutdrQc9HI2WTc4yHriJRCnVGAYAqaRq0uAlXUiH7FASsVZ4UUb5UoOXrIP0San7WrgULZucZWu0DGet8GlXdSJd1TNM9HBAOTMyqqNfUjXSVb2f3ah9OpBfh1jD5oFMAx+qNtUMvxWNm0WmPeH8e8qZT6v4CWjZ5CxpHyxfC6dNPQyRV/kmWlL1t8SkGhM+UM6kmkQOs7egUx/CfGUxupKGRld1iHERk00Of453o7uM1ocZfBivVEbeRJrVZdmJYeOpMcrE078WwsN5uBbWA671NV0LXp6t5wbDeWshKWNOreBFvveAYPgltDTxkb6x0VU13wR2CMZi+92lXvdtMkYW09CSqk+je82ckUYcaohP+4aoaGv4nEyliX1eulDF+DWJyyaHP8fawM1pk8Ma4t+Hjqj2onsqDWZ0lUb1hkjC54EjgtEFjOZzSHOWLGsAt3F+LUPvCbKRZ3kUaaR3ZzAe6+xdBxySvhHKSM5ldXZE8jyz7EFPDT01CWvSy82I0ZdlCrAHWo71FHpyU2+MVZDUqLgaXRsyDzlEhjn8sc7eleOlluIW9Fo4CdgdvRZO8vlpaJXhRd427FXQV7geU7m5xsPflzG3ZvDwebRu/wLk+xNKE68B3OaltscYcfhPoJ1gi4EvAlOD8dWA28CHnb3rwNeROWd5BmldcGMwvj4wB3ysNqpqLgPeH4x9D5EhDgVvPkptOsNn8X09iULZ5DOR53ooTXwo+L3LmFkjqjVETmNDJDcy60n0OA5kGv+HdJkNG8xsxev1sOL66WFX9INDpHwT/sZqHIwu1JpAwldLmV9REk4EvhCMPg18jSn8lS72RhRdVuI5kxmq42jVXI5+oNxNwkWpNPHXg2tdeG7k9IbhcWPV4nj05vo08G+OXJnuM7xsUHViNnotfBe4IEeauAu4yTdOFSkVL0WXc9Gb60wHP0yliS8Jrq0NzPWNU0VKxUsh7/WE+x0c5OBZxJkVqtxsCVxQwvSMUvHvJJ55cCS4J4ALkUadWTYiv66oIvxH0A7jZcA+4F4DDkN74ndFFPxqhD8Q3bB5PnAguDeISxNPAf/PZcyuCc4j1rAZelJp4v3RTpvLwYd9a0qlOkPkCsawnDlInn6W8+lOmz0l5DWYOZSEyq04AE5nPTw3ox8oh5GkC/BkXiHeYOYSZvDBzk+yAAmxQrOldGVkk6fzMNrgGkMvc0jU37EaEg4FJgejL7BaZgF2E2sitR7LuJl5URUbYxXCSxQz9E73Saq+DuCIynSPBub4fJW2UvFiZOwTDL8A7J/2suiTJg5lutcFbvFxRacquBDYNhh7gIHPqxNANYndDpGwrJy09uZW9HfjIpceODPSxOF+9zWvn2nGsMXnZR7MAXe9/F/ngYMQAzXLl8Ef3tn5FcW/FaKZByeCe1D+r1uMOG3eCF4zA/zHOz3DYvjNgIuCwV5g8krZZPc0uq9P+nf0YePtivBfJpZdBJNWyia776IdG+nf0VfmtKnOEHmJM9Hew18AJw8YSciz4q4gUd1HyyWhi2XciPYeXk3CTcFrH8Cpg/44epnH2crTVy6JeA/RHeCPZTq/Cl57EXX11CTRnMfldDGJk/nLgNE1ok2kduWJ3B4wxiqAJ2ctwPEuCM87USUJ+9BsCFxfdb2Ij3vSlyOd08OD7hHotbAL2ulQOh72BNVc9RVgb5dx7KTd4Ceje2+c4HWUtwrOAD4WjCnHjpPIeSzV7HKvI1vG8GQKEHrSI9FJlx4iCXtvnA8+NMyr4HJ0B/i7UY1T3aPotNXUMPcVO238OCTdNjyD9YALGqe6eYgBmSWNbFWdauZjZ7C0caoLG6dOBX4WjMUiW6VRjSHSE1WBWMgoJpKoIi1IiFlxawI3k1Qaep+Gzqd+HFTqj+CZCfwwGN2MN7iw/VMrTKoCoQrNbqeb2ZHXe8bmeGp6lDVeHuf2qUCo+qFTmR7pLXAieZ6aHhJq4qkxKuAadG3BncCsnNcfhO5G/nmoTqbb9yuiqNqCbqdTXXH0r4WwG3mPpzqZ7lTiNqyl80gHeNWTwMW7kTvgOp/fF6Dj+Hj90CLEmFoavt7BPUhBe5Y1gXlpmpoxbPE7oGsLlgATwYX1WoD7OSgFy7GI4lGFgjf+MFBZKc8D+6fRnAA3C4kIZtkAuKFiaeJLQWWl3I+OiPdxJNLUMMvOyFmwIvwYyMkuwn1Hv94tQwzcsKfdMeDDdORSKN8QyZO4dRzOqWpDX8n6NbPiEmKFZkuAvUnUht73nl7GsA8Qdkk9iB72bf8kCxCXuH0O7YVcyUksQHImB3pqPOdVJk28mFlohZkf0UjKM+ExnOr5Ip6auksTG20nR+L2OeAApz3UADhYiDzUQwfKuV7n6pbFZWiJ23tBqcj14+AxtHNoFHCDz2+C2DEaSNye47T4Rz8ObkN7Bscj0sSley29pN/EJN0PcVr8I8vJwP8EY9tQodfSGCp+HeTAGKotHQvuV5E39HE28P1g7L1UloXgt0Z3Hk/T6N1fIm/o4zDg98HYHuQ5bjtOVOL2ZWBvcDkNm90SJPIanvGmg6+qn9RZoOp0dXbRANxz6PrAVP3Ml95PqlxDRPLvb0BvbLPoVtbyQA4h34pL+Je2zbEIZ5BXaHYECY80fO8pzMexN6FUo2d26dLEcYnbZXQxiWSQDvAJD6ENsWqkiXvIKzSbTKIkMQciUZ8cT0095ViN9uPlkBeuheXAJKefOQNw8BBwajA8FvFgl7oWvDwj9w+GXwYmO12jNgAnDWVvCYY3AL5VQapZTOI29syJ8XW01zLmOOoovl+uVO13Vzj9ex6AS7976O/e0b5xbySjlvj8zAPc5Y3f63oR6eo/BhcmpkXWJeLzMg+mgdOZBwNwryEOzNBpcw74Hds1w2L4mHJp+nt24e85wD0OHB0MdiF1FiX3k/K7A8cGg+nv2ensogG4O0BlvaT9YMqVJi7XEHmCGehQ/6OsVVD2Mol66mWBJ7kdg9uN402uRheazSPh2kJ36OZetKdeFnhZ0sT5ErdTma4iT3n3OBtRrMlSrqcmYTN8tNBsHxIVeYozLuqp2Z0ejmnDDI2ak0rcxjbXk5yOwuZxLtpTH0st6hipxG249nqBfZz02yjCIWhPfakN1XIkbhciRuEgmys4iUxPQEsTTytZmrgHvd/FIk9RXH+qy4BonEN61rynHRM0SuMYUA7TxpkHA3B5gjezwG8z1Mk1wWxQDtPvo/sU5eB+ifbUp9FP36jBZxvxeQ20zwb3X8Xu4a6BoA5Y+kldlzapLAGf5zA9DFx+dtFAjgXCaNwOlNxPqjxDRCRuw0JgyU0+TuXp55NwO3Erbg5XqJBn++nhG8QlbsPc5ME4FVTtwta8XnRBD5kriMl6Jk1JRXpW4yBinpqEg4Y0uyIk5BWazSRRtTj5TCXuqfGcXUNpYqP9xOSe70GnH+SSpm5FZbo9nZfpTmsHYmvhdAc/KHqfVJpYy3TDmV6H/9tOjsQtiMRt0c2VNO1Jy3RLilbHvZZeiv1PCoYXAxOcTuvIJZUmDvun9EkT17ShmjGQXInbSeAaZx4MwMVqF8YhxdIl9JrxB4FKIZ8PHJBGbYpyPhDWLmyCbsLXKc5Hp83GanEGIyZN/DlK6Sfl+1T4dHYRrnF20QDcUsRpE0oTTwX/2aHMsBnKMUTyJG5dRuK2GcbnWHEvddiKS9gerwrNliIH7/APOdi9+kLvYU7lEfSwV+uTLPTZh6ILzfLUyRpzMq+k/UVCT81lJHTaU3MJutDsAbZQ6mSDk/BL9MGhXtLERttJJW5DadQXgf3y6kLycOTLdHv9PW03FwH/EIz9mBaabrmImhNy6J3jdUFk20glbuegJW4vdlqdbFAcOTLdHZYm9qn8MZHUXafVyYpwArqh2vbUsqGaMRD/NuIqfFPAFY22ZukBAjUntoROC974LdG9eiTzoF/itiguVXMiVHP6CviCEaJW8V8GQvnjQOK2KK6vn1ToSD8dfKiQ125mgBLViamTFcBJr7iBdAE3liVNPLqMD2EZG6NDPQvpZl5L9zuapczky6xQYfZeElaLKm+1h3cQpgw4nqJbbRLFSHiBhN0JDxC+cS73EHE4FuODkHAXP2O6kvUsxnTuJ+EL6C7UnStyPZu38ga/QIqyVjKGO5nQ4u8v4QJ6eAWvUnQ2YJA6AWP4kdY9vIFOj3gwInFbCAcPeJHm3DC41LG1kKaWPYz+Oe5Kaw1a4SLESVLmWuhLNcj2NelFd2duhiPQkWcQg2SQXPCWie13rzk5kDaNg6UevgyEHspeD2NjyltGbdgYXXv2BjqtpyCuF/y+aPlfpK9HTHmrLayHrkV4AVzxzIMBuAVpM8AwyrpE6mliylttYRT6Ofm/4J5t7XbuUfB7IGmxWTqYZuZXQ1LJw5/jB2nzxRZwc8F7JNqaZQM695wcwA6I569w2NswjLaxCFl/m1Q9kRpyFfK7OaXqiRjGKsYkZO2Fnd5HEpsgP+OiqidiGKsgf0DW3w7VNTQ0DMMwDMMwDGOVxQwRwzAMwzAMwzBKxwwRwzAMwzAMwzBKxwwRwzAMwzAMwzBKxwwRwzAMwzAMwzBKxwwRwzAMwzAMwzBKxwwRwzAMwzAMwzBKp5yGhgCnsz7LVHOsRSS8XIv7FeU0NmZ50DF3HH9hKq+1dL+E9xAahEO5X7HPHA1sFLnyRxKWVH6/opzLGixmvciVZ0nobdv9kn69a2OEkXbzjn13X3K6Y+5Q7vdHR+fWgoc1IL4WHM2vhXbfr4nPXQf5l2WZg+dbvN94dJOulu/XxOe+C3hLMLzI0dr+5GF9dHPJlu9nlIlfF2k6muUNcC+18X5/a77DedOfuyEwJhhcCK7FBqftvl+hz3TA30cuzAe3uIX7dQHvad/9Cn/uOCDW9fw5cC00sW33/ZqjvIjIcj4EPA08k/n3O5IWGrnNYGuWDbiP3As2a9t881jOgcHnPsMSfkqiNp3B6WEi0tQle78HWcIa7ZtwhIQVwHmEP0frHYzPidxrLh08sACwGAfcrT7bcWLT90roYjHfVveSZnpmhIxcVgDfpH1r4azIveZRznforshnT2n2Jl72hf+I3GtaJ42QlLcDvwo+9/98tJN0Y7wYIL9E/xxfbNts84ntd0/7FvYoD1tF7vUkMm7Un02A3zLw7/d78Ns2fyu/MfCb4F5PI42pO80X0Gvpf8G/vflb+U8Czwb3+jWwbnummofzwDT0z3EX+FGN3pnDlMi9vg+0cq9mWAHcHPnss1q837WRe12cfk7HKc8Q6eZu4MJgdG1gLgmrFb5Pwpr0Mg/tHTqVhJ8MbZKFmAH8MBjbEvmjFSfhvXiuDEY9joNJ+OMQ5lcEz1gOQh4EWb5CwuFN3Slhd+CYYPQ1YCIJb7Y8w2KfvYguJhB6rj2nMYOPNXm36cCng7EngKNan6BRd5wYCAchDoEsX/ZwRDP38rAbcFwwvAiY7GBp67McHAeLgQnA34JLMzx8vMnbTQM+E4w9CXy9xekVxsmh6t/0MNd4eHfR+3h5z7Vo7+edwGVDmmQBHHwXOD8Yfitwi4exRe+TRqbmoaMr093I7no+gnAPAt3B4DhgLvi3Fr+PHwPMQaJ8Wc4H952hzLAY7jLg1mBwQ+CGNNJQEL8ecogOz5+HgfvtUGZYkMMRoyfLLojTsQn8DkBPMLgEmADu9RbnVhC3DJgMKnPmOPBNOlr8EcBeweDzwP6p4dZxyq0RWZ8pwM+C0Y/QnBU3C/hAMPYjxCvfeRJ6GcM+QBhWPZge9i10j4sZi2wuawVXzqKbO4c+yQKcxAJgIihj4XwSPlToHgkbADcgm/5KHIeR8Ps2zHJwpvMo+vA3ml7mkPCOQveYwc7I4SvLErrYm0Qd7IwRhoOFwCT0WjjPU2wteNgA+BbhWoBDnERrO46Dx4Bjg+HRwK2eYmvBwycQozzLEmCCg78OfZaD4+TZGDpp3okc4ot6Go8G/jUYew44wJUX4ZwK/E8w9mHg7CbuMQvYPBi7t8l7GNVzNuIpz/I+9Pe8EecCOwZjvwBOHsK8muUwUHv7Hsh6K4DvQoyQdwUXrgJ301AnVwy3BDnEh3t7N/hPFbuHXwfJ+ghTy44F96uhzrAY7vfAV8NB4Lo0clYAvzXyvcqyHNgL3F+GOsOilGuIHMIyZMMPcwCPIeFfBn1/wldBHfbnA5NbqglolVOYj2MyYdjKM5uZatPQvMqFQBiW/TnrK69JZ0l4CDg1GB2LRKlCIyl872jEOxMecGbRrbwmnSXhcuThliVuJOn3rksvt6APOEcwXXlNjBGKg4fQHrGxwFyvHQYDSOtCbkWvhcsd3NK+WQ6Ok4NNuKFvAHzLD7IWfHrYR6+Fo5z2IHaaryMpWlk+gfYsK7w4t8KD+jJgktN7T8dwsqFPAsIN/WivjSSFhwOB/YLh+UiErZSUCaNduF7k7PJicGES+AMHf7//PPqwvxCYCK6zmQcDcJLtoCO854L/xwI3SIDwsP84Oquiw7jHgSODwdRI8qGRFODTwz7hYf92cJe3a4bFcLcjzoosqZHkQyMpwK8J0eyiaeB+2q4ZFqF81ayE54D9GeiVkjB6Ei36EWawJXBRMNoL7ENCh4u0InRzLzqSswYrmMf56g+7koSvAIcGowsYzcTUUCuXhHOB/wxG3wtcNcg7TwOV/vQoa3FCu6bWJIeiPc+7kygP8UoSupBagLBIay4J17Z3esYw4DwgTHEoshZmoNOfHkNH6sriMCQnPctuwPF5b0iNlGvQ6U/zHFzd3ukNTlrYPxEIUxxO8TptrB8Pb0M8lWH601Sno/EdJy2KP4DIfufjRbMgL94SuDQY7gX2dToabwwL3CvA3mgjchb4D+a/z28IXI92JBwMLkwpLQH3S3TtWZo25sO0sQx+F3T0Jk0pdRVkHrjrkCh2ljRtzDc6Gx+PrjN7Bh2dKIvjgP8XjMXSxkJmo7OLvoeOkHScauR7E+5CP2TFiovVi5zLGmldyMA8WccMElWvUSbT0Xm6W/G6yg0WZrIpelP3OA5kGv/XgfkVwSOet/DzJ6QRKE3C50AVhC8CJnBc80pDbSFJP18rHZ1Fwkdz3jUV+Gww9jTwtTbPzhgGuAZrwed8Jzx8EvhGMLwYSWWqZC04ctfCmV47D/qYgi4Ij9VrlIaDp9C/9y7gplRFKsZsUAIo3wUuaPP0CuNERCCsIVwbmOPR+52X+oGb0XUhMx38oDOzNMrBPYA+II4DbgEfEbzxfdHWsCD8EnD/3okZFuRiRNAiy0bkppr5dYlHW48E90S7J9cEhyPF/1liz/QUvz1wejC4DNgnjRZVgFtK3GkzFXyOyIf/GrBPMDgfODCN3pVKdX1E1ud44MFgdHtgpnrtYi4DtghG72dzTuvM5Aoi6WCTQUVkDqWHyQNGrmAMK7gJ8dhlOZ9u5YUtl4RXkRSCMCJzCQn/ELz2XUhYUheaJcoLWy4Jj6AfIOKpOSN4kCfsiISJsyyliwkkakEbqwiO/tqpcC1c5IN0St/vPVOb62FOb26l4uBRUNHJvnqRAWvBi/dsRvDapcBEpze3UnES3Qijk+sSqRdJxQXCossXgP1LrAvJ40R0RCZ2qAFJtQg95PcT2xuN4cjpaINyC7RzFuBMtPPgEVpQw2svLlfkIy1+zuC7kHTR0HkwB9z1HZpgQVyeyMdM8EGU26+NpKOHzoMTUkGCCnG5Ih/ggyi33wrtmEnPsp2WgI5TnSFyCMsYxT7oqv8TSfhC/3/1sBeSypXlZWBvJtQgT1bSwg4klLX0XM5M3t//3y9xHtUXmuWT8CD6YD4OmMfZvDV9TV6h2dUkKi+9GhIuJabs8WYmtJ0wHnmgDMyhdBzLdJWXbqxiOPg5umB7HFIv8lbol7iNrYVrXevSv23FyYE2rFHZELihr17E9+cTq6LL45wO91fFEcRVbvqfnR5yiy4d/LmjsyuAI7c+8nifSfPwYgSHNQOvAHtbXchIwUlKuU6xOxB8pibIx9Ip02inqybzYAAurVHRIh/gsyIfp6DTKWPRzopwj6FrVNJIlE/r/nyeCt9dwCUdnmBBXK7Ix0ppYp+nwpeA++8OTzCXajurnxrNq5NCoISNmMn78FwRXJeir85L3BYniebVrckK5pEwjoTPowujFjKqBInb5jiLmLLHG/1f7h4kbJnlcUqQ9WySw9HKHp+nhyPpV5WIFJp1M7uMyRnDgrNBKdhlVW660UWXdZR7PhSR3s2yB1IwnbcW7nC6ALIyXL8kplLtSjx8yktzt1jR5XRHKZLuhXCi2hUevhxwnYeNfVxFyQMHO2q03xltwIkzNV4vsjn4PBW+Q8GVosJXDBdzporgDX4t8DGBiT6J21JU+IrhriJH5CM1QmIqfGn9VzkStwXJE/noc6zFVPjuA87o7LQaU60hApBwO6gD4HjgJlZwB6kHMsNZJPxXKXNrjmlAqDSwDWJFxx4oB3OqCmtWi6Sa7Yfe9CaRMJu8QrO6SdwmLKQrIsfqOZeEqyATcROeYVxlhWZGDUlTeQ4monLj4XK03PPfkLqQWq2FVHJ3Mlrl5hzk0BsWXf6B6oouc3FiTIWqQV3Is/VGdNHl96mhxK2DO9B9TNZBomu3oxXaznbaIDZGBO4+dGreGki0PqbCdyW4UB2yDpyPRAayvBdZm7G6kGPA/W8ZE2uSw9FOm90QsZKwPcQyRLGsNInbYrglSHrqouDCNPCziavw7QWu0mhr9YYIwHiORacB7ISE27M8yPoqfageJP1SjWEawF7IRpPlUhKqLDTLJ+FluqKemkPR35cjSaiy0Cyf6fwCnUc7FjlcZpFCs6kqRdBYxXFpSgyS4pPlEPRaOMpJdLB2OOkuHtZOrYY2OJYh0rALS5lYkzhRDrohGP47UNLv85F+IaUXXRbkePR+9zHEcZUlliJojCx60A2StyGuwpevAFkpziMH3GeDC19Eq/DdBi7McqkJ7q/AV9AiHwej60JOAVe6Cl8x3O/Qz/YutFprKildTV1IlnoYIkeTV/WfZQGjmVSJxG1REimMpHFh5COslafIUBOmcz+6eDVkDgnXlzCb1km4CK3sMRDHiWl9jGEoHMRUbkLmOl1QXSucqNwM5vyYUoXEbZMcAQ2dH73APk4LiNQGJ9GpCej6yCwLkL4n9d3vjDbQXy/S6PtaocRtUdwC4oI3WZ6hQhW+YrhHaSBznnIP8M0SJjMEXEzkI+QMcLVQ4auHIQKQNJSKrFritjgJ34Uc+V5YxKgKJW6b4zTypSKfYvW6FJo1JE/Zo4+76FaymoYRcgbkpoMOJ7nng8lfC3cDF5Y4l5Zw/Yey3BS4GU57mGuHa3wo88BBTnuYjRGJm0+8XqSPI8BVqsJXDPdzdIPkPlJnc1USt83gZpPfiPZFYL+a1YXkERP56OPHDO5gK436GCIAXbxEfDH+js1VDmJ9cbkG012cqpru1ROpF8krkLySKapwtK78jbxuyo7zqV7W06g5aYpPWCvSx1VVS9w2wd/QXb77uKAGErdFWYAYJCFvIvU7w4U/Et/vnsLqQlY1/kw8mvAnRNVuuJB39vkJuIdLncnQyDv73AyuchW+grxJ/vP+UnBhynFl1McQOZN16OVGdGETwAd4ItfSrhcJ2+BziyQnkqh85nqSMAktm7zyaqKKQ+vKOcCHo1c8V5Ko4lDDGECOpGof071WIakrZwEfybl2hdeF0rUjlU2+AZGlDFkNUaAKhUFqh19ZoB7b7zZDKw0ZIxa/BmJsjItcfBe1TwPqw29KviPgU+APKnM2rROVTe7jWPD/WOZshsApaJXTPi4GH0rPV0ZdDBHH0qiMZJZTSfh0WRNqiSRXRrIP0aJOeE9pc2qFmVEZySyiRX1+7s9ZD0Q2OVTayfJeRBHDMKJ4+Y4MuhZ8/pqvBV4ke0Ot/CybMjzWwnRouA/sBhxX0lxaooFscpZTvO69YIxMLqOxM+MI8GGjzprhU8le1bA5y2XgQ0GGmuHfTVzltA9pkIwPBYhqht+JxkIX6wHXp80mK6cWkyDheLSMZJhOI1KNCeuWM6mWuBIyTQyF8OdYB7iJhNHlTKlJEsaxgtvRssnhz7E1r9fYU3MaGyOe0+wDxSNpHVkm0KOUtAwDLx7K29CRgnAtbEV+XVjleNgIvblG14KvoXRvHx52RcsmL0ZLE5+ZdouvK8dScL/zcmAwRix+f3TmwQJ0muQs8GEzvTpxLjrzIPxOJSLXigAAE9RJREFUjwNuBh8206sJfhRSGxLKJoc/x0ag+tvVCP8ORP45PGOGP8c/ASeWMqVBqN4QmcF2aC3tpXTxaXSH4vWBW9MO3/Ui4WuIVG+WFxjNNugGMx+jRoVCAReiZSTvZzQfQksTH06P+pmrJ2E0y7kZ6UeT5UK6+FfCvGzPpSTqZzaM84F/CMYegOhaONRLwWmt8LIZ3YJeCxcjsrdhjcIlHj5YxtyawUsq1k3oVKbD0TLdY5AoVfgzV46H7YAzg+GlSPTjW8H4u4BbfTx9yxj2+Pehu3L3AnsCFwXjayNNAkMZ2RrgYw2bFyDf9bBb91bUVxQjQZr/ZXkUaSMR1r7sCT6Uw60B3gHXoGWT5wK7oKWJTwP/sRIm1pBqD/QJa9PLXLRG83FM51fIJvPb4Non0Zr41TKDLYELgtHlwF5M40VE5SUsaJ1KwmfLmF5hetgT6ZGQRXopiGKZlib2zGImdfPUnI4Ye1l+CUxNpYlPC66NA24hoaaeGqNsvOjJHxYMvwrs62RT2g/ttbzcS35/nZiJXgsPI1K9D6Bluschh/gwIloZaV3IjUjPkCzXOzm8X4yW6d6Ixil1peP7D5NqvzvRSV+Rw4FQHWlXtKFlDHv8OCSNO1xnM8D9N3LGCWXlY07bivEbIv19wmjrgeB+jzRTDaWJ/w38PuXMryh+F+CkYHARIpv8R6ROMBQTuAD8tiVMrhlORDdsTpUd3aPoCMho4Fbwby9jcnlUHVm4BtQh9g4SZgGQsIguJqCtuJnMUJtrNZzLGvQyD4JDrGM6CT8BRJrYKYlP2VwTtblWw0w2xasccY/jYJJUQUKkiUNvxtqsYC6J2lyrIeFzwAnBqHSXTvo7rc9AS3xuifZCGasgPh5698CBDp4DcKIlH6ZjvRW42euDZiV4Cb2HTptFSNPCvnSmmEz3ZtTLazkF+VmyPEVa/+VWynQ/G7zmy14kLOvCLPR+dxdwKQyQJg73ux6vG9wZw5uL0NHWjJPMLUMO8aHc7fHgw7S+ivCjkS7w4SH2AnDfkf/r5iNCH2Fz0dngwzT2ivDrEu8Afzi41BHufg6qmfY4JEpVE6eN3x5xPGVJexa51BHuLkPStrJsCNyQRlMqoTpDpIejgC8Fo88RavJP51FcxIrrZQ5nqAVQPou5FNgiGL2XzTlnwEg3c5ECxSyyAOZVHHq/gjGs4CZ0odk5dAcykuszhbin5ozOTbAgCe9Cfsfh9/pQEp7MvK6XMdEmUl8loWaeGqNMfH8xokrr+aaD/wzGTkI3APwIok5VKb6/GFGvBcdKCXHX311XrYWDvIxXSlrrEaaxLgEmOFZKiKfd4GNey/M8VO61TA2iMI31eaQDfH9kzUkH7bDYfjSSohXmrhvDEj8B3XtIMg9wmVRJ93t0zVYqdOAbCR2UxZnAR4OxX6IiC+57aOWvVNjHx5TCSsR3ISmf6wcXrgUXlgache4nNZiwT0n4tZF9S2cX4cLSgMPR/aT2AI7q0OQGpRpDJC5xu4wuJpFEej50cxnyS86yAW+qYuRyEYnbA4LR+YxhMhMi+vBrcQTwSDC6M09wSmcmWJCXOBfYMRh9iJjqgnS2j3lqjqNHFWCWh9QN3YzkVWe5nCTSnOgU8j01w0ea2Gg/ZwOhPOMv0EXSpF2vJ6GLAI/xVCfTnaYyxdbClU7GB+Agr6HaLE91ayGVuJ2LGIdZjnHwv+HrXfyZNRZJNatMmthLjvm5wfByYC8X0fl3IoEaPrM2AG4YDtLERiN8TJ3OAwenKUAB7nZ0dHYd4MY0IlERUYlbyTzAvRl5wynAT4OxbSC31UFZnIJWp3uC6KHc9TltXgouTEpFB6rkWmLZRbhZ+qWuz2kT/p2+Cb4SkY/yDZE8iVvHSUxX3sUshxGz4noayrN2jrjEbS+OfTlFfVGF43iDLvZGdwXupodPdWCWg9PDHmiJW/miJuqLKiTEPTWe61K1qipI0JrZj7FWAynPhO+hDwjy/ay7NLHRdjzsjpa4XQhMdPqhDYCLRXFTmW5PZTLd00E9Tx5H1JqiOLgXgihuuhaqkCZuIHF7m2usWHM2uhngYBLMHcOTK+l+itMHsyyHQiaKK8S+n8awwY9FvguhUXw2uEYNLI9BG947UVmvmVyJ20PBhd/ZFCc1s9rwPhr8v7Z7hsWIStwuQSJT4Rktxb1M3GlzGfiK+kn5o4HwdxjblzK4X4BygI9BVM0aSTB3hCoiIrPRErf30D2I/GXCQroiVpznXBLlze8sInE7F11odhrdKt96INN5HKc2ky48N6epReVxGhviIxK3joNIVL71QBJuRzcvWoflzOEK5cHsLAm7ACcHo4sZxQSOU/nWIdPQB4KteV0dyowRjE89zujN9WCnHSADcHAHEHqe1gHmeO3N7ygediYucTvBaQdIyHRI69pWEvPml0FM4vYZ4N8avcn1e5dVZ+SJXupIymYWOqoUS1UZgOv3LisD+GyvI3bG8OBcRHEvSzzzYABuCVI79NfgwsngS+4146WNgk4TnA1OZx4MwD2PZJCEIh/Xli9N7McjKVlhVOkocL9u/F53HzoVXXqrlS5N7GNRpTRS73R20UDOA74TjFXST6pcQ0QkbsMc/BeIK9BoppNnxd3EWQ0b6bSbC9F5xw+whVKgidPNVcgiyLIe4gEsJ/QuEre3ogvNLqZbKdDkcSxamnhHXirRU5OQX2h2qlKgib1/OaOjnpojSVQNkzECSSVu56A310sc/HvB2xyHXgux+oaO4cldC0c6STdoiOtT+tPSxEd4Xd/QMXIkbpcB+zidEqpw/fn22mvptTR5x0h7soR1NvMR0YMwJVTh+pT+BjIGMXBrJ01sNCJX4nZiWpg+CO4ptIc7rW/wYX1DJ5lBLPMgvxN5gLsLLVmc1jeUJU3s+6KtGwUX5oG7uuBNEuBHwVjJ/aR8X7Q1rLM5CVyj7KIUl6qbRaWJG0RT2k95hkhc4rYX2J9EbXz5JJyHLhrdlCUlWXFxidtXgX2jdSH5HEamaDTlc/QoxadOEZO4fQS98eWTsIRRTER7ak6ip4SuwAl5hWY3kChN/nym8TwuIk0M19RQmthoPzGJ20dpQjbV9auTKJnuKZ7Oy3Q3kLid66RovRBOHEOxtTDL6xzktjOIxG0okpGLI1+m24cKhx3Ax1X4ehHFslAYoBEXor2WNW+oZgzEp6pESuL2IHDPFr+Pm4PuNbMukk5TguCN3xV9PkiV3txgmQdZvoHIVWeJKT51ipjE7aDR1oG4XsSBHp5dDwFfVj+py4llFzVlDLkFiLNkeXDhIvCl9ZMqxxDJk7iFbhJlVQ5GnxX3XDC+Zxpx6Rx5ErdwIImaT2OSPo1qlgR3O4NEKVG0l7jE7SJGMYEkmM9gnErcU+O5idOVgdBuTkYXmj3F6i2oP3RzNzFPTZ2kiY224+N9iRYhqUzNbK64fr32AXQBN3ptILSbqWiDJzafQXHwXXIaqpUgTRyTuL0b6RXSLDPQDdW2pMPSxL6vL5He72Y4PZ+GuJX7Xei1/IqXOhKj1vRL3EYairpvt3DDvF4zxR2ILeFTgycqcTt45sEAXJ7T5kTw/9zqDItRROK2KO5F4tk8V4DvcD8pfwiSupklnY8bPLtoAO7H5PSTKkuauBzVhb/xCST3OJt//BdalXxNeJWEvRDPXZYtSBjX9GG6KL18GvHWZfk1iYrQFCPhERIORB4kWXYB/qelew7+mV2IJn0YgryTU1WEpug959DDxng2GTC+nE8SUelpC2fxNpawPmERaheXMkVFaIoxnm/wKiuQfM/sPXcAftzaRI26khZE74peC3c53Ui1EE4O6xshBdJZPolOx2wLXmS3340uyL7M6c2+KFPk1sFaoHNrwcPmSHQ1+3P0IoXdTW6uIk3s5aAwnSDl1cPGTh/u28UuSPQmG8FZgI7QFMLBAi/qbAcGlzb3sHqzBrNRKv+IpC49lhlbjG6eVxC3GPxEdJrX30mRsRs0dbFFPoMWgfg9uOKZBwNwz4CfDISGxw7g704jDp3g0+gI8b3gwghNQdw94I8EwujBrmixiTbhxyHPyvB5fwO44tlFAzkdEdQIU/U/jkRZOs4OyEO+YUGmYRgdYRGy/jYZ7IWrIFchv5tq5a0NY9VjErL2ms1YGE5sgvyMi6qeiGGsgvwBWX87VN1Z3TAMwzAMwzCMVZBsatY70WlHRfh/VN+UxjCq5nR0Ok4RxrZ7IiOQibSmdvRNpBmhYayqbERr8ssbtnsiNWYsrZ19nsaitYYxBS1LXYR3Zv+jLzWr1X93tzZ3wxhRPMTQ1pGlZmn6UrNa/VdRoyzDqA3bMLQ1tCqkZrX676Hyp2wYteNuhraOdhiN5GmFhU/N8OwQ3msYI4VzkF4wrdJqkdlI5mZ0R+FmGMp7DWMk8CJD299faNdEasifGdrvZn67JmIYw5hZiNJiq1h9umEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmFUgat6AsYQSFgTx8eAHfG8ExgPjAMWA38CHmUUP+VUnqlymoZhGIZhGIYRYobIcCRhR2AqsAcwusA7HgeuBa4m4fVOTs0wjFUXD9cBW+dc/gvwOQe+xCkZhjHs8LsBMwu8sBd4DXgdeBp4FPg+uFc6ODmjzRQ5xBp1IWFtZKP/lybfuSVwHvBR4CvtnpZhGIaHjYH9gK4GL9sJeKCcGRmGMUwZD3y4xff2gp8LTAX3XBvnZHSIRhuGUSdmsjnwS5o3QrLY39swjE6xL4M/Y/YvYyKGYayydAF7AT8H//6qJ2MMjh1MhwOnsx4ruAfYdJBXPg/8CngC+HPH52UYhrGSfQq85ise3tLxmRiGsarzLuCqqidhDI6lZtUfxzLuQNIeYrwGnAN8i4QXBlxJeC/wOeAwYItOTtIwjFUXD/8IFPE+rgX8K3BzZ2dkGMYI5E9Ad+a/34Kknk8GVo+8fieJirjflTE5ozXMEKk7PXwJz8dyrj7DKP4pVxUr4WngUuBSEiZB7n0MwzCGQl7K1QpgVOS1ZogYhtEsC8FdqYf9NcBP0M8agI8AZojUGDNE6o5nes6VxcDnC0vzJswB5rRrWoZhGABeJMMnRC79FngS+EIw/ikPGzpJJTUMwxgi7kHwvwG2ilwcX/ZsjOawGpE6k7AJsE3O1YtI+G2Z0zEMw4jwBWCdyPitwNzIeBewd0dnZBjGqsaYnPGXSp2F0TRmiNSbz+ZeGU0kPGkYhlE6eWlZc4DvINHbkIM6Nx3DMFYt/GeB90UuLAd+XvJkjCax1Kx688Gc8T8wjf8rdSaGYRgBHtYj7jB52ElaFh7uRqdubeZhOwe/6PQcDcMYMbwT/FmZ/x4NbAbsTtyxfi04SwGtOWaI1Jt35Iw/VeosDMMw4uxDfB/J1qPNJV5Dsj9miBiGUZy3A1MKvM4DNwFHdnY6Rjuw1Kx6k1dk9VqpszAMw4izX2TMA7dl/vu7xJ9Ze3kY25FZGYaxKnMvkIBbVvVEjMExQ6TevJEzbpu3YRiV4mFb4mIaP3WsTB11sASpFQkZD+zRoekZhrHq8kngN+APqXoixuCYIVJv8rqjr1vqLAzDMDSxaAjEZcJj6lmQX+huGIYRshj4YfDvceDNyGtXA2aD/2J50zNawQyRevNizvgHSVit1JkYhmGkeKkLmRS5tAK4PTL+X8ArkfHd04J3wzCMwXge3GeCf1shill3R17vgPPB21m3xlixer25Hzg5Mr46jn8C7ix5PoZhGAC7Ae+KjL8OzPDx98RSTfsMmovaNTHDMFY13HPgJwMvg3LSbgJsDfy69GkZhTBDpM6sxY95nTeA1dU1z1QS7iaht/yJGYaxipOXUrUO8LUW7mWGiGEYQ8C9Bv5J4t3V34sZIrXFwlV15jjeAK7LufpRYHrheyWMZgYfa8e0DMNYdfFSZP75Nt5yWx8vejcMw2iGtXLG31nqLIymMEOk7ozmDER1JkY3CReT5C4+MUB62BP4Fb0c34kpGoaxSjGJ9iv37dvm+xmGsUrhPwhsmHMxVp9m1ARX9QSMAvRwCJ7LG7ziz8C3gZ8hOZLjcKyPZzvg08D66ev+g4QvdXayhmGMZDw8COwQufQisHSQtzvg7yPjfwI2dLB8iNMzDGPY4ycjDQlDfgtu88zrRgPvBj4LJMDfxW4GvEfqSIw6YjUiw4FuriDhA8AxOa94B/DV9J+QUy1qGIbRKh42I26ELAbe7+R/B7vHE8DmwfC7gM8A9wx5koZhjFQ+AL7Z082PzAipN5aaNVxIOBY4hLhetmEYRhkckDP+7SJGSMq8nHHrKWIYRjtZABxR9SSMxpghMpxIuBLYCdHkb5ZXcOZtNAyjNbzsF/vkXL61iVvlvfaLHtZublaGYRhRHgF2Afe7qidiNMZqRIYrCR8C9gR2BrZDp9l54FngZzi+jedOktyid8MwjIZ4qTf7QeTSq8D6rolorYdfAf8QuXSIgytbnKJhGCOC3BqRwXgOqZWdB3wbnLU3GAaYITISmMconuDtjOLteN6CYyGr8TJT+GvVUzMMY2TgRfQiVgz6VwdPNnmvjZHatpC/OHGgGIaxyuLHExe1iNELvAa8As7OPMOQ/w8j6NSLobDrOAAAAABJRU5ErkJggg=="
|
|
}
|
|
},
|
|
"cell_type": "markdown",
|
|
"id": "62e5c637",
|
|
"metadata": {},
|
|
"source": [
|
|
"<div>\n",
|
|
"<img src=\"attachment:fig_matmul_intro_q_2.png\" align=\"left\" width=\"450\"/>\n",
|
|
"</div>"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "fa6cad0e",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Data dependencies"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "d4312f2c",
|
|
"metadata": {},
|
|
"source": [
|
|
"<div class=\"alert alert-block alert-success\">\n",
|
|
"<b>Question:</b> Which are the data dependencies of the computations done by the worker in charge of computing row C[i,:] ? \n",
|
|
"</div>\n",
|
|
"\n",
|
|
" a) column A[:,i] and row B[j,:]\n",
|
|
" b) row A[i,:] and column B[:,j]\n",
|
|
" c) the whole matrices A and B\n",
|
|
" d) row A[i,:] and the whole matrix B"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 14,
|
|
"id": "cdb46cd8",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"It's not correct. Keep trying! 💪\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# replace x with a, b, c, or, d;\n",
|
|
"# and run the cell to check you answer\n",
|
|
"answer = \"x\" \n",
|
|
"alg_2_deps_check(answer)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "a9d84ac2",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Implementation\n",
|
|
"\n",
|
|
"These are the main steps of the implementation of algorithm 2:\n",
|
|
"\n",
|
|
"1. The worker receives the corresponding row A[i,:] and matrix B from the master process\n",
|
|
"2. The worker computes the product of row A[i,:] time B\n",
|
|
"3. The worker sends back the result of row C[i,:] to the master process\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {
|
|
"fig_matmul_machines_2.png": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABkwAAAOBCAYAAACzvIyfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAACAASURBVHic7N15fFTV+cfxz51sJBAwAQIEEpIgLoggi6i4W7faShUrda9W6g7ihgnEEEIgca0IrqVWpe6/urZatWqVShVZBBSVJQkBAgQIkJCFLDO/Py6RnFmSmSyTYL7v14vXK3PuPWdOhiyT+9zneSwOWLFixWF1dXV3ApcARwIhiIiIiIiIiIiIiIiI/LzUAT8Cfw8JCXlkxIgRewAsgKVLlx4LvAcMaL/9iYiIiIiIiIiIiIiIBNVm4ILRo0evtlatWhVTXV29Ekho712JiIiIiIiIiIiIiIgE2abw8PDhjurq6ikoWCIiIiIiIiIiIiIiIp1TQnV19RQH8Nv23omIiIiIiIiIiIiIiEg7+q0DGNTeuxAREREREREREREREWlHgxxARHvvQkREREREREREREREpB1FONp7ByIiIiIiIiIiIiIiIu1NARMREREREREREREREen0FDAREREREREREREREZFOTwETERERERERERERERHp9EIDPP8r4D9tsA8REREREREREREREZHWdAZwgr8nBxQwsSzrs1GjRqUGuiMREREREREREREREZFgWrZs2f0ul8vvgIlKcomIiIiIiIiIiIiISKengImIiIiIiIiIiIiIiHR6CpiIiIiIiIiIiIiIiEinp4CJiIiIiIiIiIiIiIh0egqYiIiIiIiIiIiIiIhIp6eAiYiIiIiIiIiIiIiIdHoKmIiIiIiIiIiIiIiISKengImIiIiIiIiIiIiIiHR6CpiIiIiIiIiIiIiIiEinp4CJiIiIiIiIiIiIiIh0egqYiIiIiIiIiIiIiIhIp6eAiYiIiIiIiIiIiIiIdHoKmIiIiIiIiIiIiIiISKengImIiIiIiIiIiIiIiHR6CpiIiIiIiIiIiIiIiEinp4CJiIiIiIiIiIiIiIh0egqYiIiIiIiIiIiIiIhIp6eAiYiIiIiIiIiIiIiIdHoKmIiIiIiIiIiIiIiISKengImIiIiIiIiIiIiIiHR6CpiIiIiIiIiIiIiIiEinp4CJiIiIiIiIiIiIiIh0egqYiIiIiIiIiIiIiIhIp6eAiYiIiIiIiIiIiIiIdHoKmIiIiIiIiIiIiIiISKengImIiIiIiIiIiIiIiHR6CpiIiIiIiIiIiIiIiEinp4CJiIiIiIiIiIiIiIh0egqYiIiIiIiIiIiIiIhIp6eAiYiIiIiIiIiIiIiIdHoKmIiIiIiIiIiIiIiISKengImIiIiIiIiIiIiIiHR6CpiIiIiIiIiIiIiIiEinp4CJiIiIiIiIiIiIiIh0egqYiIiIiIiIiIiIiIhIp6eAiYiIiIiIiIiIiIiIdHoKmIiIiIiIiIiIiIiISKengImIiIiIiIiIiIiIiHR6CpiIiIiIiIiIiIiIiEinp4CJiIiIiIiIiIiIiIh0egqYiIiIiIiIiIiIiIhIp6eAiYiIiIiIiIiIiIiIdHoKmIiIiIiIiIiIiIiISKengImIiIiIiIiIiIiIiHR6CpiIiIiIiIiIiIiIiEinp4CJiIiIiIiIiIiIiIh0egqYiIiIiIiIiIiIiIhIp6eAiYiIiIiIiIiIiIiIdHoKmIiIiIiIiIiIiIiISKengImIiIiIiIiIiIiIiHR6CpiIiIiIiIiIiIiIiEinp4CJiIiIiIiIiIiIiIh0egqYiIiIiIiIiIiIiIhIpxfa3hsQEZGfv6VLl/ZwuVxjHQ5HXyCsvfcj0kIVwPoNGzZ8PWHChLr23oyIiIiIiIiItA4FTDqvy4BrWrjGm8Cf6x8sXrw4MiIiYjxwosvligOsFq4v0p4qgA1Op/ONMWPGfOd2LAZ4sYXrVwKXtHCNtnAqkNbCNZYAmQDr1q2L2Lt37xzgVsuyIlwuVwuXFuk4UlJSCpctW3bHqFGj3mgw/H9AVAuXvgooaeEagegGvNbCNWqBce6DS5Ys6WtZ1lDLsmJauL5Iu7Esq7Kuri7fy/uBetOAU1r4NA8DH7dwDRERERERaSEFTDqvw4FftnCNH+s/WL58+UlOp/NVl8uV0MI1RToUh8OR+fXXXz9pWdYdo0ePrjkwHEHLv3/KWzi/rfSj5Z+bC+DTTz8N3bNnz1uWZZ3f8m2JdEiJLpfr/5YuXXrD6NGjFxwYOxeIbuG6XVo4P1BhtPz7vrbhg+XLlw90Op3zgQtQCVg5xLlcLhwOB0uXLv3R5XLdefzxx7/ndsooWv499GoL54uIiIiISCtQwEQ+A55r5tzvAJYtW3a00+n8gJZfIBLpiByWZd1qWVYocNOBsb3Adc1crzfwQKvsrG39COQ2c+4mgOjo6JsBBUvk584CHluyZMkHY8aM2YT9cyK8mWv9hfYPLkwEmlNmzFn/wVdffZXsdDoXA31bbVciHcORlmW9u3Tp0j+MHj36+Qbj84B3m7nmncCxLd+aiIi0sTHAmQ0eb6blVQdERKQDUsBE1tL8gAkALpfrIRQskZ85l8t1w7Jly/48atSoZdjltJ5r5lIpHBoBk2208GcDcEMr7EPkUBDpcDh+D2QDL7VgnQVNn9LmXgBqmjyrEaGhoX91uVwKlsjPlQN48ssvv/z4xBNP3Hxg7D8tWO93KGAiInIoOB3zhrL/ooCJiMjPUnvfxSiHuBUrVhwGnNfe+xAJAguY0N6bOFR899134cAx7b0PkWCxLOu49t5DR7BkyZJjXC7X6e29D5E2FhkaGvqH9t6EiIiIiIi0PmWYSIvU1NQkORyOEF/HZ62cxdJdS42xk+NOZurQqQE/16rdq8hYkYGLg02jI0IiePT4R4mPig94PX9VO6uZsmQKWyq2GONXplzJhKTAr5+/s+kd/rLuL8ZY7y69mXfCPCJDIlu018bsqNrBpK8mUVlXaYxPHzadMb3GBLzeY98/xsdbzd6kx8Ycy6zjZmFZVov22pjVu1dz34r7jK+DcEc4j455lP5R/QNay4mTqUunsq50nTH+qwG/4oYjPJMjXC7X4ObtuvOpq6vrih1k8qrfs8/S8+23jbHKQYPIe+ghXI7AYvnhRUUMnjIFa//+g4OWRUFWFvuGDQtorYC4XCTNmEG3lSuN4T1nnsnmKVMCXi562TIGZmUZY84uXVg/bx7VcXEt2mpjHFVVDJ48mbDt243xbdddx86LLgp4vd5//zt9XnjBGKvu25f18+bhDG9upaqmhW/bxuDJk82vA6Bg5kz2HRd4LCPhoYfosWiRMbZv5EgKZszwer7L5eoe8JP8DFmWNcrXsWXLosnKGmiMdeniZN689cTFVQf0PLW1FnfdNYiCArPdyyWX7OCaa7b7mNU63nijN88/38cY69u3msceW09EhNPHLO/27AnlttsGU1ZmvpW6665NnHba3hbvtTGPPJLAZ5/1MMZGjNhHZmZBwGutXRvJvfcOwtng0w8JcfHQQxtISalq4U59q6uzuPvuQeTlmV8HF1+8k2uv3Rbweh9/HMNjj5nvJXr0qGX+/HV0725WqnO5XKMD37GIiIiIiHR0yjCRFnE4HBGNHb/16FvZX7efLRVbfvr3WsFrvLfFvVdm40prSklfkc7mis3GWpcOvLRNgyVgX4y/7ejbKK4qNp77ke8eYfXu1QGtlbcvjwe+fcBYZ2vlVm444oY2DZaAHZS5bvB1xnNvqdhC+op0du7fGdBai7YvYuGGhcY6pTWl3HLULW0aLAE7KHN639ON587fl0/a8jRqnIFVkVmwdgH/2fYfY60QK4SrBl3la0qjX+/iv+1XXUVd165EbNny07/DPv+cfn/+c0DrWLW1pKSn0yUvz1hr76mntm2wBMCyKLrtNkLKy43n7vO3vxH7wQcBLRW6ezfJ6enGOhFbtlB85ZVtGiwBOyizedIkwrdvN5474YEHiFq7NqC1ItetY8AjjxjrhG/bRtEtt7RpsATsoEzxZZd5vIbJ06YRumdPQGvFfPQRca+8YqwTUlZG0Y03ttHuf1Z8Bo5GjSrjxBNL2bIl4qd/GzZEcu+9KdTWBva744kn4vniix7GWlFRTn73ux0t/gSactFFO4iPrzaee9myaB5+eEBA67hckJU1kB9+iDLWGjKkos2DJQATJxbhclnGc//jHz157bXeAa1TWelg2rQUNm2KMNa68MJdbRosATsoM2nSFnbtCjOe+4kn+rNkSWDVYrdsiWDWrIHGOkVFEVx//TaPYMkBPbwNioiIiIjIoU0BE2lTseGxZI/MxuH2pZazKof8ffl+reFyuchamUVRRZExflbfs7g06dJW22tjhvQYwqSjJxljta5api2fRmlNqV9rVNZVkroslao68+LBHwf/sVkZHs1xXvx5/HrAr42xkv0lTF8+HSf+3RW7vWo7md9kGhkeABnDM4iPbNvgVb1JR09iWIx5MXzNnjXM+2Ge32ssL1nOgrVmu4BwRzi5o3KJColqlX2Kb87wcPJyc6mLMl/rfn/5C92/+srvdfrPm0fXVauMsYqjj2bzpEk+ZrSu6rg4CmbOBLdAYeLs2XQpLPRvEaeT5IwMwnaYF3p3n3suO8eNa62tNqr82GMpusHMqnJUV5OSmkpIRYVfazgqKkhJTcXhluFRdOut7Bs+vNX22pgd48dT8stfGmPhxcUkZWTYV6f9ELFpEwOzs81By2JjZibVfdWWo6XuumsTRx5pfk2tXt2VZ57x//fH4sU9+NvfzP+LqCgnubl5AWd4NIfDAdnZ+fTsaQbp33ijN++/H+v3OgsX9uXzzw8zxgYM2E96+sZW2WdTunevIycnj7Aw83vj0UcT+OEH/38P5uQkemT6jB5dxu9/37aZPvVSUiq5555NxpjTCenpyezaFebXGrW1FunpyezbZ2b6XHnldk4/PbCAq4iIiIiIHNoUMJE2N7rnaK49/FpjrD54sN+53/ukBl7Kf4n/bPuPMdY3si/pw9NbcZdNuzzpcs7oe4YxtrVyK7NXzfZr/v2r7yevLM8YGxk7kuuPuL61tuiXe4+9l5ToFGNs2a5lPLvu2Sbn1rpqSVuWxt4a887Xy5Iv48y+Z7bqPhsTaoWSMyqHHmHmzZ0v573Mp9s+bXK+ryDR1KFTOaL7Ea26V/Ftf2Iihelu38dOJ8n33UfYzqaznnp88QV9XjL7azujosifPRtXG2czNLT35JPZfuWVxlhIRQXJ6elY1U2XGer73HN0/9//jLH9CQlsnD69VffZlG3XXkvpSScZYxGFhSS6Bw98GJiTQ5eN5oXe0rFj2XaVz4ytNrExLY2qgWbZpx6LF9Pnb39rcq5VXU1KWhoh5eXG+Larr2bPaae16j47q/BwF7m5eXTtat6x/9xzffnf/5qualZcHEZGRpJR+gkgNXUjAwe2bTZDQz171jBjRgHuFQRzcgaycWMX75Ma+O67rjz5pBkk8vXatKVjjinn5pvNkqPV1RZpaSmUl/usuPqTt9/uxXvv9TTGYmNrmD07H4fDvyBla/jNb3ZywQW7jLGSkjDS05NxOpvOXnr00QGsXt3VGBsypJxbb93iY4aIiIiIiPxcKWAiQXHTkTdxfK/jjbENZRt45LtHGp23Zu8a5v8w3xgLtUKZM3IO3cOCWy7esiw7i8KtBNjHWz/m9YLXG537YdGH/GPzP4yx2IhYZo+c7ZF909YiQyLJHZVLlxDzgs4za59hyc4ljc6d//18Vu027+Yf3H0wk4+e3Or7bEqfLn3IPC4Tq0GbDBfes5EacrqcZHyTwY4q827+c+LP4aLEwPs1SMuUnHsuuy680BgLLSkhefp0LPcrog2EFxeTNGOGR9bAxmnTqEpMbJO9NmbLpEkeJcCi1qxhwPz5PmbYuq5eTfwzzxhjrvrsm65dfcxqIw4H+VlZ1PQ2y/HEfvghPd95p9Gpvd94g9j33zfGanr2tPt9BNiTpqWcUVHk5ebijDAr6PWfP59ubtlI7hL+9CeifvjBGCs/5hiKbr651ffZmSUkeGZROJ2QkZHMjh2+MwKcTpgxI5k9e8wWfBdfvJMLLihpk702ZuzYUq6+2uyTUVHhIDU1hf37fX/dl5aGkJaWQk2NeSF/ypTNHHWUfxldrenqq7dz2mlmFsWmTRFkZw/0McOWlxfJgw8mGGN29k2BR/ZNMKSlFZKUZAbNvv462qPfjLtFi3rw6qtm6cPo6Dpyc/M9sm9EREREROTnTwETCQqH5WDmcTM5LNwsPfH3jX/n/S3ve51TVlNG6tJUj74Uk4dM9ijHFCzdw7qTMzKHMId5QedPa/7ED3t/8DqnsLyQ7JXmHdoOy0HWcVn07hJYnfDWktIthXuG3mOMOV1O0pens2v/Lq9zvij+ghfzXjTGokKjyB2VS7gjeHfzN3Rqn1OZkDTBGCurKWu0n8lz65/jyx1fGmMJXRNIHxbcjCU5qHDqVKpSzKyn6GXL6PvXv3o936qr89qXYsdvf0vJ+ee32T4b4woJIT8nh9oeZtZT3Msvc9in3rOeQkpLSZk2Dau21hjfdOedVBx5ZJvttTG1MTF2ho5bkCMxN5fIdeu8zoncsIEBj7gFvx0O8rOzqenZ0+uctlY5eDBbbr/dGLPq6khOSyN0r/feEDEff0zv183gd110NHk5ObjC/CvrI/4755zd/OY3ZibZ7t2hTJ/uOyPgqafi+fprsy9FSkold921yev5wXDLLUUMH77PGFu3LpK5c/t7Pd/uW5JEUZH5e/PUU/dy6aXFbbbPxlgWZGZupF8/MyPuo49iePPNXl7n7N/vYPr0ZKqqzJ8VEyduZcwY/0qVtrbISO9l2Z56Kp5vvunmdc727eFkZiZ5VOy7774C4uObzoIWEREREZGfHwVMJGjiusSRNSILh+XWz2R1DhvLPet1z1o1i6JKM1PglLhTuDzp8jbdZ1OOOewYbj7SvNu42llN2vI0ymvLPcZTl6VSUWfeMXrtoGs5sfeJbb3VRv0m4Tdc0P8CY6ykuoSZK2fidJkXG4qripnxzQyPviVpx6YxsGvjd6C2tTuOuYNjY441xr7b8x1P/vikx7mrd6/mmbXm3fzhjnByRubQNTTId/PLT5yRkXZGQBcz6yn+6aeJXuKZ9RT/xBN0++YbY6zy8MPZfMcdbbrPplT36UNBZqbZz8TlIikri4git6wnl4ukmTMJ37rVGN79i1+w47e/bfvNNqJs5Ei2TpxojDmqq0mePh1HlXn3tqOy0u5b4jZedOONlB1vZhUGW/GECZScd54xFr59O0mZmR6ZSeFbt5I42628omVRkJFBdXxwejN1Rvfeu4kjjqg0xpYvj2bBgn4e5y5dGs1zz5l9S+ovkHfp0vZ9S3wJCXGRk5PPYYeZgc/XXovjgw88+5m8/HIf/vMf8+aRvn2rmTmzwL0VUlB1717LnDl5hIaa3xsPPpjA2rWe/UxycxNZty7SGBs5soyJE7d6nBtMhx9eyZ13bjbG6uospk3zzEyqq7NIS0tm715zfMKEYs46S31LRETaSQgQB3iPdLetcKAn0AcIbeLc9ubAfp2imzqxDRwG9APU+FNEfrYUMJGgGtt7LFelmPXsK2orSF2WSrXz4J2Nrxa8yidbPzHOi+sSx8wRM7Ha84rCAVenXM1pfcx69pvKN5G9yswkefDbB1lbutYYGxE7ghuPvLHN9+iPtGFpJHdLNsYWFy/mhQ0v/PS4zlXHtOXT2FNtXjy4ZOAl/LK/2Vy5PYRaocwaMYtuoeZ76oUbFvL59s9/elxaU8q05dOodZkXte4YcgdH9TgqKHsV3ypTUth0j5n1hNNJcno6YbsOZj11X7yYvgsXmqfVB1zcSjC1h72nnkrx735njIWUlZGcloZVczDrqc/ChRz22WfGefv792fjffcFZZ9N2TpxIqUnnGCMReblkfDAA8ZYYm4uXfLzjbGyUaPYdt11bb5HfxSmprK/v3mnf49Fi4h75ZWfHlu1taRMm0ZoqXlXfPHll7PnzOD1ZuqMwsPtgEdUlNmzY8GCfixZcrDspq9eFFOnFpKSEry+Jb7ExXkPeOTmJlJUdPDn0po1UcybZ349hoa6mDMnj+7dzd9N7eHYY8u54QYzuFtdbZcYq6g42M/kww9jefddM3ssJqY26H1LfLnkkh388pdmibbi4nAyMsxMkvnz+7NqlfneYfDgSm6/XX1LROSQdQVwb4N//t690s9t3r1AIPVIr3KbOzKAub0PPNe7QDFQC2wHyoBK4HvgUeCsANZs6GK3vZ3hdnw08CTwI1AB7AS2HfjY/dyW6gLcjudrPdSPuYkH5r6P+TqVAlXAGuBh4CRfCzQiyW0/7nehxQB3AZ8deL7dQBFQDjTdJFBE5BCkgIkE3a1H3crwmOHG2LrSdcxdM/enjx9b85hxPMQK8drku71YlkXmcZn0izTvgv2o6CPeKnzrp4/fLHzTON49rDtZI7IIsZpupBoM9f1MIhzmheYnf3ySb0q+8fi43qDoQdx5zJ1B22dTBkQN4L7h5oVmFy4yv8lka+VWXC4XM7+ZydZK887Xs/qexaVJlwZzq9KInb/5DbsuMLOewkpKSJo5E5xO4+OGCtPSqEpKCuJOG7d5yhTKjzWznrp+9x39n3zS4+N6rtBQ8rOzqevWHjfTeeFwUDBrFjW9zHI8vd55h57//CcAPRt8XK82NtZrSa/24quk1oC5c+m6erXHx/Uqjj6azbfdFrR9dmaJiVVMn15ojDmdkJ6exM6dYTidcN999scNnXtuCRde6L2EZHs4+eS9XHHFdmOsrCyE1NRkamosysq89y257bYtDBtmZqe2p2uv3cZJJ5nBw8LCCLKzEz0+rudwQFZWPr17B79viS9paRsZONAMpi1e3IMXX+zz08d/+5vZ2yQqyntJLxGRQ8gYILfBP38bTf7GbV4uMB87mNGUMOAJt7mRjc6wdQFSgfUH5v/ay/N1AY7CDhR8DHyO/0Ggele77a3+jr+ewOvA18BNwBHY2S31wg48f2uJBT7EDv403M9hwHeNzIsDHgPWHZh7Pvbr1PANRQRwNHAnsBj4B/bn46/BbnvKanDsj0Ae8BBwGp4ZLe2R4SIi0uY6xhUN6VRCrBDmjJrjEfx4teBV3t30LlOXTWW/06wbffORN3sEWdqbr+DHg98+yCdbP2HWylnGuIVF1ogsjyBLexsUPYi7ht5ljNW56pi+fDr/2vIvI9sE7L4l94+63yPI0t5+0e8XHsGP0ppSMlZk8PyG5/lsu3k3f3xkvEeQRdpfYWoqVQPNMm/dFy+m73PPkZyaamSbAOwcN84jyNLefAU/+ixcSOx775GSmmpkmwBsnjzZI8jS3mpiYynIyvJo2p54//0c9sknJD74oDmhvm9JL+89D9pLxZAhbJ40yRizamtJTk+n5z//aWSbANR162YHWcLbpzdTZ3TeeZ7Bj5KSMGbMSGLBgni++qq7cSwpqcqjaXxHMGnSFoYONYMfa9Z0Zd68AcyaNZAtW8zfm6eeupcrrzSDLO3N4YCZMz2DHx9+GMv//V9v7r13kJFtAvD733sGWdpbVJST2bPzCQ83M17mz+/Pxx/HeGSbAEyf7hlkERE5xHzs9vgszAvrvnjL3nAA/qTajsG8aF4GeNbUNR0GfADkAN2bOLehU4EvsDNaWiIe+B/QVB3c1iptkYS971MbjNUBtwBpgK/0zJHASmASdrkwf/0K+BI7wNESDwDPYP9/+dL+5T9ERNqAAibSLvp06UPWiCwst9+vM1fOZFO52bx1bNxYrhl0TTC357cRsSO48QizvNZ+536mLpvq0bfk6kFXc0rcKcHcnt/GJ473KK+1vWo76SvSPfqZ3Dv0XpK6JQVxd/7zVl5rRckK5v8w3xgLtULJHplNdJhuiOlonFFR5D3wgEd5rf5PPEH08uXGWFVKCpumTg3m9vzmtbyWy0VyRoZH35K9p5xC8eXt25vJl9IxY9jqVl7LUVHBoKlTcVSavSe2/uEPlI4ZE8zt+c1bea2ILVtImjHDo59JYWoq+wcMCOb2BO/ltb76qjvPPGPeZBAe7mTOnHyiojpeFkBoqIv778+jRw+zvNZLL8XxyScxxlhcXDUzZrRv3xJfYmO9l9fy1rdk6NBybrzRrUdTB3HUURVMmWL2M6mttbj33hSPfibjx+/kvPPMMl4iIoegz7BLNdWLx848aExjgZGz/XjOX7g9/hxoLOWwK/Ap3i/m/wA8DqQDs4E3sMtyNRQGvABc78fevAkD3sbOqqhXjv3avY5dGuwbwEnrBANGYQdnGv6RWgGMxy4F5ssZB/bU1228CvgEO+NjGpAJ/BVwbyIWgx2Uam5TwRsAt3rJrMJ+fV4DFmGX5uqA72RERFpOARNpNyfHncwVKVc0ek5seCwzhs/waBTfkVx7+LWc1LvxUqFDegzxaBTf0fjTwH1cwjh+NeBXQdpR4Pxt4D55yGSGxQwL0q4kUJWDBrH5rrsaPccZHk5edrZHo/iOZPcvfsGOSxsv+Vbdpw8FM2fSIa+aHlB0442UNREI2TdiBFv/+Mcg7agZDjRw399EA/cdv/0tJeefH6RNSUP+NnC/++5NHHFERaPntKc+farJzGw8EBIS4mLOHM9G8R3JyJFl/PGPjTdw7969jpwcz0bxHcmECcVNBkJSUiq5885NjZ4jInKIKMUuMdWQe0DD3XDAV3pwU3O9nfOJ17MOegg4zm2sELtU1tHAbdjBknTgEuz+Kk9jZmFYwDyaDgZ5cw123xKAzQce98IOUEwAxgEjgEHYAYKWuAD4D2bQYwd2Rs87jczrB7yK2fi+FpgDJGC/5vdgZ+jMBP6A3ePkNswAUxfgZQLL4gG7xNdDBz6uw379B2J/rYwDfocd8Io/8PwiIj87HfcqtHQKk46e5PPCtcNykD0ym54RPb0e7ygcloOsEVn07uK9xGt0WDS5o3MJc4R5Pd5RRIVGee1nUi+xayJ3D707yLsKXELXBNKHpfs8fkrcKVye1DHv5peDdowfT8kvM28a6QAAIABJREFUf+nz+KbUVCqPCKQ0b/vYdMcdVBx1lNdjrpAQ8ufMobZHx+jN5FN9qa2e3n8W13bvTv6sWbhCOkZvJl/qoqPJ99LPpF7l4Yez+Q73HpcSTCkpldxzj+8L12efvZvx43cGcUfNc+qpe/nd74p9Hr/ppiKOO25fEHfUPNdfv5UTTvBeasuyYMaMAvr1qw7yrgKXmlpI//77vR7zN1AnInIIcQ9YNJUl4h7waBhwSQGSG5nbFTjRbcy9LFhDpwE3uo0VAGOBf/mYsxe7x8g0t/FIYEEjz+VL/Rva1djZHwuxszbcFWAHVJrrj9iZLA2DHuuxP9evmpj7PHbvknoVwDnAdOym9N7UYmfnnIP5+QwCAv0jPgy7zFoNcAX261/o5bwqYGmAa4uIHBIUMJF2FWqFcsnAS7weuyjhIsb06pjlXdzFhMdwXvx5Xo/dcuQtxEc2fldzRzG4+2COi3W/4ceWMTyDqJCoIO+oec7oewZ9uvTxGA93hDPjuBlYHfhufjmoeMIEr+Nlo0ezc9y4IO+meVzh4ewYP97rsR0TJrBveMfqzeRLTWwse87yVt4atkyZQnVf92oBHVP5McdQPnSo12MFGRkepeAk+M4/v4SYGM/Mi8hIJ9Ond7y+Jb5cdlmxe/sfAAYNquT3v98W/A01g8MBEybs8HrsnHNKOP30PUHeUfNER9fx61/v8nrsD3/Y6lEKTkTkEOcesDgdCPV24gENAybl2FkMvo67OwWzt8YOGs/KuAOzhFMddh+RLY3MqZcLvOk2NhbPgI0/9mE3uvd9d0PzWcAs7N4fDV/3r7D3u76J+SdjBz0a+gN2poo/vsCzlNbN2AGmQGVjl98SEel0FDCRdlVSXcJj3z/m9di/t/6booqOWRfb3Zq9a3i14FWvx14veJ2qukPjj/F3Nr3DVzu93/Dy/Ibncbl3SO2g5v0wj+1Vno10q53VvF7wejvsSALlqK5mYE6O12PdvvmGrqtamiEfHOHbt9P/8ce9Hov9178I2+H9YmRH0235cnr9/e9ej8W9/DKO/d7v3u5oer/+Ot1WrPB6rO/ChUHejXjz8MMJ7N7teV2nstLBG294z+TsaOrqLDIzk3B6SVrIy4vkv/9trHdqx1FaGsJDDyV4PbZo0WEUFHTckogNbdgQyfPPew/qvvVWL/bt69jZcSIiAfofZlmmHhwsQeUuHLMR+efAvzF7kDQWMHE/9im+G5gPAC50G3sOWNbI+u7uxOzRAnbj9ED9CchvxrymhGN/Tu7lDt7GLsPlzxt/97rEn2GX5wrE00DDlN1eQKA1Z4uwS36JiHRKCphIu3G6nKQvT2fXfu93/ZXWlDJt+TRqXR23xjdAWU0ZqUtTqXF6722Xty+Ph797OMi7ClxheSEPffuQz+OLti/itY0d/waT/xb/l5fzXvZ5fMG6BSzZuSSIO5LmSLj/fiLXrvV6zKqtJWXaNEJLvZeK6SisujqSp00jdO9er8dDd+8mefp0LG9XVTuQ0NJSkjMyfO4zct06+j/mPfDdkUSuX8+ARx/1eTzmo4/o9ab7jYsSTP/+dwxvvOGrjDo88UQ8K1d283m8o3j66Xi++cb7Pl0umDVrIMXFHbtMp8sFM2cmsXVruNfjlZUOUlNT2L+/Y/8pUb/Pqirv+9yyJYJZsxrv3yYicoipws4yaMhX0OME7LJa9T7Gzr5o+MfSWfhu7O2+bmPluM4C3CPUzzRyvjcF2I3MG3LPxmiKC/hLgHP80QP4J3ZPlIaewO7F4k8DtkjsvicNPd2MvdQAb7iNnRLgGgsxA2ciIp1Kx/4rR37W/Llw/e2eb3n6x+a8RwieWatmUVTZeCbMm4Vv8v6W94O0o8BVO6tJXZZKRV3j7+PmrpnLD3t/CNKuAldcVcyMFTNw+byxqelAnbS/mI8+otfbbzd6Tvi2bSRmZwdpR80T/8QTdFu5stFzopcvp+9f2uJvtlbicjEwM5PwbY2XEIp79VUO+/TTIG0qcI7KSlJSU5vMhEl48EGfgTppW5s3R5Cd3fiF67o6i2nTktm7t7HKIu1r6dJonnvOsyRkQ7t3h5KenoLT2XHLQ770Uh8++6zxTJj16yN59NEBQdpR89x/fyL5+Y1nwnz8ccwhk70kIuIn98CFr4CJr4DHvxuMxQHHepnbE8/m7Y0FTNxLZ23FDMz4y/3ulr403mfFXT7Q2jU+B2Bn5zTsF+MCUoFbsUuP+WMMdsP1hmu818w9fen2ONDSZR33jb2ISBAoYCLtYnnJchasNXu0RYZE8sjxj9A1tKsx/vyG5/lyh/vv+47h1YJX+WSr2Vevb2RfskdkY7ndiJOzOoeN5R2z/voD3z7A2lLzIuHI2JHccqSZ4VztrCZteRrlteXB3J5f6lx1pC1LY2+NeTf/ZcmXcUF/80adkuoS0lek43R17Dv7O6OITZsY6B4IcTjIy8mhOt7sBRTzySf0fr1jlljrvnixR4knZ1QUGx58EGcX8+Jd/J//TPSSjpn11HfhQg77/HNjbH9CAvnZ2XbX5waSsrKIKOqYZRQTc3LoUlBgjJWOHcvWG24wxhzV1aSkphJS4c9NgNJaqqst0tJSPEojXXvtNs480+yTsX17OJmZSXTECpElJWGkpyd7BELS0zdyxBGVxtjy5d1YsKBfMLfntzVrujJ/fn9jLDzcxcMPb6BHDzPr9/XXe/PBB7HB3J7fPvwwln/8o6cxFhtbQ25uHiEh5hfQQw8NYO3aQ6NPm4iIH9wDF2MBbz/kGgZMdgD1d/r4E3A5E/N60kZgQyN7cm/ct7yRcxvjbZ73JpzeNX43U+COxS6DNqzBWDVwFXB/gGud5Pa4CLvpfXO43+0UaMPB1n6dREQOKQqYSNCV7C9h+vLpODEvVqcem8ppfU5j+rDpxrjT5STjmwx2VHWsWv/rStcxd81cYyzUCmXOyDmc3/98rh50tXGsoraC1GWpVDurg7nNJn1U9BFvFb5ljMVGxDJ75GyuO/w6TutzmnFsU/kmsld1vDv7n/zxSVbuNt/XDe4+mMlHTyb12FSSuiUZx77e+TUvbHghiDuUplj1F6vLzYDc1uuuY/c555A3Zw6uUPPO8oQ//YmoH38M5jabFFZSQtLMmbg3MNg4bRp7zjyTTXe5lSZ2OklOTydsV8fKeur63XfEP/mkMeYKDycvN5eS88+neMIE41hIWRnJaWlYNR0re7/XO+/Q8z3z5rya2FgKZsygaOJESseMMY51KSxkwEO+yxNK65s7dwDff29exxk6tJybbioiI6OA+HgzM2jRoh689lpcMLfYJKcT0tOT2LnTLLV18cU7ueiineTm5hEVZd5gumBBP5Ys6R7MbTaprCyE1NRkamrMoM/tt2/m9NP3MHNmgXuslNzcRIqKIuhICgsjyM5ONMYcDsjOLuDss3dzww1bjWPV1XbprooK9TMRkZ+F5UDDOw4isJuJN9QNuyRXvU842H/kK+wG8PUaZk7UC6QcF9gZKQ01FlxpzDo/1m5Ma15UGAQsws4wqbcHu1/IS81Yz/1Oiv7Y/yfN+eeeIRLIawSwM8DzRUR+VhQwkaDyFfy4MOFCfjXgVwCcG38u4xLGGcd9BVnai6/gx6SjJzEsxr655Najbv3p43rrStf5bHLfHrwFPxyWg6zjsujdpTeWZXHf8PuI62JemPIWZGlP/9vxP4/gR1RoFLmjcgl3hP/0cYTDvKDjLcgi7cdb8GPfiBE/ZQGUDx1K0Y03Gsd9BVnajY/gx45LLqHkfLvX4s6LL6bkAjPryVeQpb34Cn5suuMOKo48EoDNt99OxVFHGce9BVnaU5e8PBIeeMAcdDjIz86mpmdPcDgoqP+4AW9BFmkb3oIf3bvXMWdOHqGhLqKj68jJyScszMwImDt3AD/80HEyArwFP1JSKrnrLrvnamJiFXffvdk4Xh9k2bWr4/Qz8Rb8OPXUvUyYUAzAKafs5fLLi43jvoIs7cVX8GPixK2MGWP3vrruuq2ccILZB8tbkEVE5BBVB/zHbcw96HEa0PAXUMOARzV2IKDeqW7nQuABE/c6j81tRliOZ+P3mADmlzXzeb3ph927pKE7aH45q7ZM2YwO4NwKPF9jEZFORQETCarn1j/nUV4rsWsi9wy9xxi7Z+g9pESnGGPLS5bz7Lpn23yP/vBWXuvkuJO5IvmKnx6HWCHkjMqhR5j5HuqV/Ff4dFv7lwT1VV7r2sOv5cTeB0ucxoTHkD0iG4fbjwtvZbzaQ0l1CZnfZHqU10o7No2BXQ/Wwz88+nBuH3K7cY6vMl4SfN7Ka9V1705+VhaukIMXvbb9/veUnmRmq0ds2sTA2bODss+meCuvVTloEJvvvNMY25iaStVAs19D98WL6fO3v7X5Hv3hrbzW7rPOYsell/70uD7bpK6rWUax78KF9HAr49UeHNXVpKSn46iqMsaL/vhHyhpkldTExtolxhzmzzhvZbykdXkrr2VZHMgqOXhDwjHHlHPzzebXY3W1RWpqCuXl7Z8R4K28Vni4k9mz8+nS5eDvpnHjdnLBBWYwtaQkjOnTkztErPS11zzLa/XpU01mpplVMnnyZo491nzvsGZNVx5/3Czj1V68ldcaOXIfEycezCpxOGDWrHx69TKDwh9+GMs//xnoTbgiIh1SU2W1zmri/IaPozGzURKBwQ0eu7AzVBrj3lCq8cZyvrm8zI0MYL6//UT8UYJnY/S52AGm5ugoaacd4F2JiEj7UsBEgubbPd/yzNpnjLFwRzi5o3KJCjH/sI0MiSR3VC5dQsz3Vc+sfYavd37d5nttzBsb3/Bo4B7XJY6Zx83EcqtT0adLHzKPy/ToZ5K1Mouiivat9f/omkc9GrgPPWwoNxxxg8e5I3uOZOIRE42xamc16SvSqaqr8jg/WHw1cL848WJ+2f+XHudPSJrAufHnGmM/NYrviAXxOwmvDdwti4IZM6ju55aZ7nCQn5VFTW+zQW/Mhx/S85132ninjfPWwN0ZGUlebi7OCPOObWdUlD0eHm6M93/8cbqtWtXme21M3CuveDRwr+7bl8L0dI9z9w8YwEb3cZeLpFmzCCsu9jg/mBLuv9+jgXvZyJFsu/56j3PLjj+ebddcY4z52yhemqeuziItzbOB++WXF3PGGXs8zr/66m2cdpoZ3PanUXxb89XAPTW1kMGDKz3OT0srJCnJ/L25dGk0L7wQaGnx1rV+fSRz55oN3ENCXOTk5Hv0LQkNdZGdnU+3buY1pxdfbLpRfFv79789G7jHxNSSnZ2Hw2H+no+NrWX27HyP8dzcphvFi4gcAtwDICMwMxgaBlDygbwm5jc83z3YsgbPnhnu3O9Q69bE+b6E4tmPxfONQ3CsAX6LGcDpDryP9zJmTXF/jZYC57TSv3MRERG/KWAiQVFaU0rasjRqXeYf3XcPvZsjuh/hdU5KtxTuHGLele10OZnxzQz2VLfPe6K8fXk8suYRY8yBg5nHzeSwcO8XCU7tcyqXJl1qjJXVlJG2PI0aZ/vU+l+0fRGvF5h383cP686ckXMItUK9zpk4eCJjepm1/vPK8njw2wfbbJ9NWbBuAUt2mnfzp3RL4a5j7vIxw848iY80m4f/t/i/vFLwSpvsURpn1daSMm0aoaVmVv72K69kz+mne51TGxND/uzZuNwzAh58kC557n/rBUdoSQnJ06djud0mXnjvvVQlJ3udUzl4MFsmTzbGrLo6ktPSCN3bPllPkevW0f8xs2ygKzSUvDlzqO3u/aa33eecw86LLjLGQnfvJiU93eP1CJaYjz6i19tvG2O+vm7qFd18M/uGm/1II9evZ8DcuV7Pl5Z5/PH+rFplXis5+ugKbrtts9fzLQvuu6+AuDjz9+ZHH8Xw1lu92myfjXG5YNasJIqLzSol5567m3HjvPckiox0kpubR0SE+b3x5JPxrFzZ3GtHLVNRYZew2r/f/N649dYihg3b53VO//77SU83M21dLpg5M4mtW8O9zmlr3gJo9tfNRo+vm3qjRpVx7bXmNb7KSu+vh4jIIeZ77Kbh9RzYjdoBemM2KfdWTmslZh+LX/j42Nd8d+5/wDc3nS8WcK8BubuZa7WGd4Bx2GWs6nUF3gV+FeBa7n1DugD/bqV//vwfiYjIAfpLQNqcy+Vi5jcz2VppNtg8u9/ZjE8c3+jc8QPHe2QKFFcVk7EiI+gZAZV1laQuS/XIqLjpqJs4vtfxjc6dMmQKR/Uwa/1/t+c7nvrxqVbfZ1O2V21nxjczcHHw9bOwyBieQXxUvM95DstB9shsekaY723f3vQ2720Jfq3/5SXLWbB2gTHmKzOpoeiwaHJH5xLmMC9wzV0zl9W7V7fJXsW3/vPm0dUto6J8yBC23Hpro/O8ZQr8lBFQFeSsJ6eT5IwMwnaYvZlKzj2XXb/+daNTiy+7jD1nnmmMhW/fTlJmJgT5Z5yjosJ+/arN3kxbbruN8mHDfMyybZo6lcojzOB3t+XL6bdggY8ZbSdi0yYGumcs+chMasgVEkJ+Tg61Pcwyir1fe43YDz5oi612WosX92Dhwj7GWFSUXcIqPNz3172vTIEHHkhg7dpAqnG0jhde6Mvnn5tfLwkJ+5k+faOPGbbDD6/k9tvNwJCvjJtgyM1NpKDA/L05dmwpV13V+M3CZ5+9m/HjzZ97paUhZGQkU1cX3H4mtbUW6enJ7NtnlmizM5Mav8nmppu2cvzxZkn7DRsieeSRAT5miIgcMtzLZNUHOs7EvBb0by9znZi9OE7ADgRYNC9gssXt8VA/5nhzrJcx73dbBM+HwAWY/VG6AG8AlwSwjvtrNAiI8HaiiIi0LQVMpM29lP8Sn23/zBgbEDWA9OGe5V28ce9FAbB4x2IW5i1stT364/7V95NXZt69PrrnaK49/Nom54Y7wskZmUPXULPW/wsbXuDz7cGr9V/rqiVtWRqlNebd/JcnX84Zfc9ocn5seCyZx2XisMwfHbmrcynYV9CKO23c7urdTF8+HadbeVVvvW+8GdJjCLcceYsxVuuq5b4V97Gv1vvdtNL6enzxBX1eeskYq4uOJj83F1dY002Q3XtRAETm5ZHw8MOtus+m9H3uObp/afZm2p+Y6LWElTcFGRnsjzeDlT0WLSLutddabY/+GJiTQ5eN5oXevWPHsv3KK5uc6wwPJy87G2cX86JrvwUL6O7W06UtWdXVpKSlEVJu9lfw1vvGm+q4OApmzgS38oqJubkePV2keYqLw8jISPKIB06btpHExKaDne69KMB3k++29N13XXnqKfP7NjzcRW5uHl27Nl0efcKEHZx3XokxVlwczowZnq9NW3r77V689555I0RsbA0zZhS4t/Xx6u67N3PEERXG2IoV3XjmmX4+ZrSNRx8dwLffmu+xvPW+8cbhcDFzZgGHHWZmQf/9773517/asv+uiEib81VWq2HAw4XvJuUN54djN4o/GrvZeb1awPxj37uv3B4PI7DeI/Xc39DVYZeuam+fYZe9ahilDwdeAZp+M31wjYYiOZgVJCIiQaSAibSpNXvXMP+H+cZYqBXKrBGz6BbqX+mJqNAockflEu4wSzw8/sPjrNodnFr/HxZ9yD82/8MYi42IJXukZzN0XxK6JpA+zLyA6sLFrJWz2FG1w8es1jX/+/ker9nRPY5m0tGT/F7jpN4ncXXK1cZYRW0FqctS2e9s+1r/LpeLrJVZHq/ZufHnMi5hnN/rXJVyFaf1Oc0Y21yxmeyV2T5mSGsKLy4macYMjyyKwtRUj+CBTw4H+dnZ1MSaF7R6vfkmse+/72NS6+q6ejXxz5i9mZz1zdCj3Msre1cXHU1+To5HkGjA3LlE/fCDj1mtq/cbb3i8ZjVxcRRkZXkED3ypSklh09Sp5qDTSVJ6OmG7vJcnam0Jjz7q8ZqVH3MMRTfe6Pcae085heLLLjPGQsrKSE5NxappnzKKPxdOJ8yYkcyePWYWxfjxOzj//BIfszxNnLiVMWPMwH9hYRceeig4GQGlpSGkpaVQU2N+b9xxxyaOPLLCxyxPqamFxMebvzf/+98evPJKXKvssyl5eZE8+GCCMeZwQHZ2Pj17+ve1Hh5ulxiLijKDRH/9az+++io4vWsXLerBq6+ar1l0dB05OfmEhfkXfYqLqyYrq8Djx92cOQMpLFQ/ExE5ZLlnmByB3bC9YQ+SVYCvxnPeAi7u2SXL8Oy94c3/3B5HYZeyCtQVbo+/xczsaE9fYr+2DUtrhQIvAJ5N9DytwLO82LWtsjMREQmIAibSZspqykhdmurRp2Py0ZM5NsZbJq1vg7sP9rioX+eq85ot0doKyws9LqI7LAezRsyiV0RgddPPiT+H3yT8xhjzlS3R2hbvWMyLeS8aY1GhUcweOdujPFVTbjnqFobHmLX+15etZ+6atq/1/9yG51i0fZExltA1genDpge0jmVZZB6XSd9Is9Huv7f+mzc2vtHifYpvVl0dydOmEbrHLJOy49JLKTnvvIDWqomNZWNmpsdFfW/ZEq0tpLSUlGnTsGrNu5I333UXFUd4783kS/kxx1B0003GmK9sidYWuWEDAx4xezPhcJA/cya1hwXWwHnnuHHsuuACYyyspITk9HT7ankbivnkE3q7ZeXUde9OXk4OrtDAyhxtvv12yoealSK6rllD/yeeaPE+O7Onn47n66+jjbFBgyq5887AKmnYF/ULPC7qv/OOZ7ZEa3O5ICsriaIi8yaOs87azaWXBnbzQ3R0Hbm5nhf1584dwOrVXX3Mah3V1Q6mT0+mqsr8U2DixCLGjAnsulNi4n7uuWeTMeZ0wn33JbNzZ2DvLwK1fXs4mZmeWTn33VfgEYxqytixe7niiu3GWEWFg/T0ZI/gmIjIIaIQWOc29gfg8AaPGyuntR5o+IbaW8DE394YnwHb3cbuJLBrUuOwM1waejWA+cGwAjgDaFjX0gH8Gbitibl1wPNuY5cCI1trcyIi4p/gF0qWTuOv6/+KZVn0j+r/09iwmGFcnnx5s9a7LOkyvt/7PStLVhrjz657lilDprRor744cfLY948RExFDDDE/jV+YcCEn9DqhWWveM/QeNlVsYnvlwfeL26u2807hO1yUeFEjM5uvrKaMp3982qNHyW1H3UZi18SA1wuxQpg9cjaTl0xmf93BCxJfFH/BipIVjIgd0eI9e1Owr4B3N71rfE05LAf3j7rfo9yZP7qHdSfruCxmrpxpjL+S/won9zmZPl36+JgpLdHrzTcJ27GD/f0P/j9W9+vH5jvuaNZ6e8eOZev113tkSMQ/8QR5OTn4VVemGeKfeQaXw2F8HvtGjWLHJYGUKj5o2zXXEPXDD0StWXNw0Omk7/PPs+WWW3xPbAGrro7+8+ZR09O8yLzzkksoO77x3ky+FKamErF5s5FVEl5URM9//csjmNJaQvfupe+zzxr/FwCb77yTan8zlhpwhYaSn53N4VOmGFklh336KbvPPpvyY45p8Z47m7Vro/jww1j69z/4OyMkxC5h1aVL4MG02NgaMjMLyM01f4ctXNiHE04o9TtDIlAffxzDunWRxufRo0ct993XvADtkCHlTJ682SOr5Kmn4nn00fV+Z0gE6oUX+lBR4TA+j8GDK5k4sfG+Jb5ceOEuvvuuK//7n5lV8swz8Uyb1jbBa5cL5s/vT7dudXTrdjDD5Re/2MNZZzXet8SX227bQl5eJIWFB0vG790bwuuvx3kEU0REDhEfA4MbPHZ/w+2tf4n7/D8c+HgYZrCl/rg/9mMHDRqWXBgD3Aw87sf8GOBPbmNVQPAb5jXtO+zyZR8D9amcFjAPu8zWg43MfQC4CbsHCtjBlv/Dfq3cm8L7qyt2U/rgNkgUETmEWUuXLvX7h6ZlWQ+MGjXq3rbckARNOjAL+03LDc1dZOnSpSdgp56KdAbvjR49+lctXCMF2ACUA/7VpQuuCdh3an2GfXdUs6xcubJrTU2NGsJIZ/LP0aNH/7qFa9QCIUB/IJhNU2KA+ppY4UCzow1ff/31bZZlzWuVXYl0YC6X6/Pjjz/+9FZY6n3gfOyyK+53FouItNRvgdd9HKsGegKNvWe/AnjRx7Eq7PcQTTchs8Vhl9Dq3WCsFriKxjNFegLv4tm/5AGgqetTbwAXBzjHl3sOzK/3X+DURs5Pwg6auDfZzARmup/cwDRgttvYBuy/05b7sc96fYFbDvzrg53B4s052I3r6+0Don2cKyJySFq2bNn9LpdratNn2lSSS1rE6XTqgqh0Gi6Xq6PUx+3whg8fXo5n2r3Iz9n69t6AiIiIiJv/gM/az1/ReLAE7D4ovm6y/QL/gyVg90pxbywXit0Y/UXsgEjDGog9sbMtvsUzWLIKyAjgudtDAXamiXtTwkwgt5F5OdiBnoYGAV9jZ5tcCA3KXxwUDZyCnUX0GbAFuA/7dRQRkQAoYCItUl5evoGm32SJ/CxYlrWy6bOkgdeaPkXk58HpdOrrXURERDqanYCvv2H8Kae1DbvEVHPnu3sT+yK+uyuAxdhZ+HnAVuy9P4mdKdFQPnAJdpmvjm4Ldtb+Krfxe4HHMANE9VzANdivVUMO7M/7HezM4F3YN+zkA3uAUmAR8Ah2oEbX+0REmkk/QKVFzjzzzCpgYXvvQyQIKmtra/W1HoCwsLBs7D8SRH7WLMtaOGbMmMXtvQ8RERERL3wFNvwNePg675Nm7AUgGzvTpNLLsUggGc8gSb0lwMkcWpm924GzgKVu45OAZ/B+Xa4cOzgyDd9ZPLHYmSdJQI9Gnr8E9S8REQmIAibSYuHh4dOBH9t7HyJtybKsKSeeeOLm9t7HoWT48OHFwNnA9+29F5E29FxpaWmze4GJiIiItDFvgY0y7JJc/vAWMNmLZwAgEM8AR2LffOlPpkgedq+nk7CzTw41u7D/LvrCbXwidv+qUC9zXNjluVKwG97vCeD5dmLj3TbTAAAgAElEQVT3hRkP9MN3WTYREfHC2w9lkYAMGzZs99KlS0+xLOspl8s1Hu9ppSKHqiLLsu4YNWqUyu00w+jRo39YunTpcMuyxjudzrMsy/JWb1fkkGJZVp3L5drocDj+b+TIkS25WCAiIiLS1j7AzkZoqA6o8XP+ez7m+2oi7q9N2KWnbsEOJpyA3Zy8N1CB3fNkI/b+VzfzOa4Bwho8DqTnirt5wIIGj2sDnL8XOBPoFuC8rcCd2E3nR2KX+BqA3ZukJ3aJ9DKgCLtfyuoD//wNkvwH8/9X2Sgi0ukpYCKtYvTo0TuB3y5fvnxgXV3dSQ6Ho3t770mkJZxOZ63D4ShwuVyLRo0a5e8fE+LF6NGja7DvcHq1vfciIiIiItLJOIHdLZhf18L5TdkHvHXgX1us3VqqaFnABewgVXNfyzrsxu9ft3AP7lqyJxGRnyUFTKRVjRw5ciP2XSAiIiIiIiIiIiIiIocM9TAREREREREREREREZFOTxkm0rYyyQaOMMYsPmIGfw54rVkkU0cuZo8UF3AvmRS0YJeNe4wISpgP9DDGLf7CDD4IeL0sTsfJrW6jFXTlVu6hvPkbbUIm8cAjeAZKM8jkh4DXm8nVuLjQbXQjmUylLeueZjIGuNttdD9duI1U9jZjvXRgmDFmsYgZzGv2HqVJLrgVON1t+FsLspqxVnfgcSDC7dAjFnzZzC3687wWkAskux16z4LnmrHeYGC227ATuMuCLc3apH/PG4X9+nV1O/SkBZ82Y72zAfcm6GXArVbLyxg09ryJwIN49tFKtexGoYGudz1wntvwegumNXOLnd6KFd149dU4Yywiwsm99xYSFRV4L9Inn4xn48YuxtiYMaWMH7+zRftsyvvvx/LZZ4cZY336VDNlymasALu4VVdbPPBAIvv2hRjj48btZOzY0pZutVHPPtuXtWujjLHhw/dx+eXFAa+1a1cYDz+cgNPtv/HGG4tITm6zb3vq6iweeiiB3bvNP2nOO6+EM88MpDeubc2arrzwQh9jLCzMxdSphURHt7RUv4iIiIiIHAoUMJG25eBVnHwFRP405uJiMvmeTP7r9zpPE8ZWXgROcjvyaJsGSwAms5+ZfIgLs+m3i7PJZgTpAZQgyyQOJy8B8W5Hrm/TYIn93EVksh6Y7nbkaDI5gUwqAlhrGC6epuH/K9Ti4AzauklcJl+TSRhwkTFeRRfg0gDXmgDMchvdQQh3tGSL4pf/w/5a7Ndg7FIXFFjwQoBrPQFc6Tb2PvBVC/bXJAtcLvvz+C8Q3uDQRS740YL/+buWyw72vILdyLGh3LYMlgBYUOGCD4GX3A6d7oLjLLvRpF9cdqPOhUBft0NXt2WwBMCCQhdsxm6K2VCyC06xYL+/a7lgDPbXVcP/1/3AyS3faec1fPg+/vKXfnz5pdnmrKbGYs6c/IDWeuutXvzlL/2MsdjYGu65Z1OL99mU00/fw4IF/TyCNb1713DVVdsDWmvu3AG89VYvY2zIkHKOP76sxftsyjnn7Ob55/tSXn4wWPPxxzH077+f007z//4DpxMyMpL46ivz/3XcuF1tGiwBCAlxceqpe5ky5XAjWLN4cQ+Sk78nKcn/5y8rCyEtLZktW8zY+513blawRERERESkE1FJLmlbGazG4i630VDgZTLp5W2KV1vJxTNYspRYUlu4Q//M4HXgKbfRGGp5hacJ82uNTBzYFxLdgyWvksmzLd+kH4YwA/jEbXQoduaJfzLpBryGGSwBi2lk8EULd+gPFxH8ATwCZb8lk1v8XiWTw8Ej08kFTCS9bS9QC1iwHTvI4X4V6gkXHO3vOi64Cc9gyWbgGqutg3eAZTdddP85FAa84oLYAJZ6BM9gyVdARgu25zcLXgaedxuOA15yQYiXKR5c9nuKF/EMliyw4G8t36VfUoHFbmOjsTOB/OKCw4BXMYMlAPdYsKxl2+vcHA7Iysqnd+8aY/zDD2N5992efq+TlxfJQw8leKydnZ1Pz541Pma1nqgoJ7m5eYSHm+kU8+b1Z9Wqbn6vs2hRD157zcy4iY6uIzc3n7CwNv/xRULCftLTzXs+XC6YNSuJHTv8e2sDsGBBP49gSWJiFXff3fbBK4CxY/dy1VXbjLGKCgepqSns3+//nzq5uYkewZJTTtnL5ZcHFgQTEREREZFDmwIm0vZm8CSedy4PwL4413TxikwuAI87/suAK5ns/x3D/8/efQdGVWYPH//eSScQilKlBbHhCj9RWMXFtuprWV3XpUqxgBXFEsEAIbkpQARFARfEjgJCFldX14a7uCCy9rqyFiRIFVB6S5v7/vEkMPd5ZpJJyNwZ4Xz+gnPnTp60yZ17nnPOYWvG3cBnWvQsNmGH+QyZwCVabBVm65rI6UcF8QwF9H4lt5Br3HQO5THgJC32Bjk8eNjrC9cYtgP9gVLtyFRs46azaTpJqBuiadqRydi8Ui9rFDWqbPek38hOBYocPSEXhBM82VcBXGeZP+OR9AjwshZrD8wO52QH+oCR7NsODLAg8nd/DxkBrNRi5xN+Cyob+L0W+xq467BWVQuVX68BwC/aobsc+FNN51e2WXsa6Kgd+gfwaH2s8WjXrFk5EyYU4/O5EwKTJ7dn9erkEGcdsn+/uhF+4ID7EvammzbSs2fkqzKqnHDCfu66y51br6iwGDMmnZ07ay7g3rw5EdvuiKPlRbKz19CmjXeXNhdfvJ2rr3a/XG7fHs+4cen4/TVfon36aSOefNJd6ZOYqBJKDRp4V5UxYsRGunXb44qtWpXCtGltwzq/qKg5b73lznG3aFFKbu6aWrdZE0IIIYQQQvy6ScJEeOUW4Fstdjl2Da2P7JCJlVux+a7+lhcGlZzpB+hNxTPJNfrcu9mcBUZipQQf/bCN54usLDZgMRQ1G+EQh8fINxIhbrncgrmbfwMwFA9287vYfAiM16IqEWIbiRC3bTyMuZv/QzzazS9csgle9fRwdSc5lYkVzMRKjmU+X0RVVrIErXpyzESIiwMdMBMrDnCjZT5fRFmwF/Uap7fnsx0zEeLiBE+s7AX6WebzRZQF64Drcb8mWcDTjjlvRncXZmJlHXC9FxVLR4vu3XczfLi7IiBUIkT3wANmYqV7990MG/ZTiDMip3//LVx4oXtORqhESKDy8uCJlQEDttRp7sbhGj16HSee6P41/fTTRjzxROsQZyihEivq+fbX+zqrExfnMGlSMU2alLviwRIhuu+/NxMrVc/XuHF5iLOEEEIIIYQQRypJmAhv2OxB3YjTm0kXkme02qo6Jx7V019v3TUL26hY8YaaAXKTFvXh8HzlUHXTJJqiPg+9v8XdZBsVK97I4Q0wKkIaUkERU0Ps7Lf5DY5xE9sPDMX2dDf/ITZTwKgICdZqK/CcPsBtWlRVrNhGxYqIMEv9DA0C9Ludtzhmci7QLMzWXcEqVjxhEbrqyTGTcwA4la27MFt3PWKZFSuesFRFyEgt7APmOWarLQCcytZdmK277rDMihVPWKoiZIYWboJqlaa32gLAUa27HtDC5ahKH71iRRym4cM30rOne79AsFZbgRYvbsY//uFu3RWqYsUr48ebFSHvvtvYGG4f6NFHzdZdJ5ywn5Ejo9MNMlRFyFNPma22qqi5JelG665gFSteCVURMmmS2WqrSqjWXbffblasCCGEEEIIIY4OkjAR3rH5EovRWjQBPwuwg/b6L8AcsPsVacZMFG/ZFAFPatHmwHyKjBuGFiU8g9pFHmgRtjETxWvjwJg50pVdTDYeOSX0bn5sb3fzaxzgBuBHLd4Pm+HGowtC7+bH9nY3vzjEUsmSG9CrnuAxx2z/hqOqOYZo4c3AIMucieIZS1UpZWnhJGChY7Z/A5gCnKXFPsacieIpC55CzVsK1BJ4xtGuGyr/PxfQt6IvsODZiC0yPPcB72uxnqi/LS4ONCb43JIxljkTRdQDNXNkDcce6+469/LLx/L66+Y8k7VrkygoaG88R7CZKF4KNXPkkUfa8tVXqcbj33uvMfPmtXTFQs1E8VL79iVkZa11xfx+GD++Iz//bM4zmTOnFf/5j/tlLdhMFK+dc85Orr3WPXNkz544xozpRFmZ2VursLADP/7orljq1WsXQ4Z4X7EkhBBCCCGEiA2SMBHeymEG8Dct2h697ZbNpcAo7XGqXcy9eNvnIbg7gS+02Hms1FpE5XIf8EftcatJDnIz32u22jmNOevhDmwGuCJ7mYm5m//fdGFS5BYYJptt+BiC2gkeaAZ5dDv4v9kkUB50N/807Ojs5heHWPAmKoEQqCFqnsnBu1kOnIpZOeAHhliwKbKrDMuDhFH15MAVmJUcO4H+llmlEg23Ad9osWCvy+OAi7XY93g5mymEynkmg1Bf10D3OXCVFpsFdNJibwAPRWh5AmjWrIyCArM6pLCwPWvWHLqJXVqqqgD27XPvSbj++k2cdZa3XS2D6dJlL3fc4a4OKS+3GD8+nT17Dq15y5ZEcnLMdl1jxvxIhw56Aa73LrlkG1de6S6m2rYtgawsd9ut//43ldmz3UW1iYkOkyatJjU1ajnrg+68cwNdu+51xVaubMCMGce5Yn/727G8/rr7kqBZszJyctbgk3dIQgghhBBCHLXk7YCIhmFAsRb7AzYjAJigdjKj/3xa3IZt3MCLDpsDqBZj+oTZ8dhcVPmYnjjGTmZ1Ay/TuIEXHTbrgeswe/PPIr+y138uN6BmlATaQgLX0i96u/ldsnkXy5gRk4yfIh6gEQCbQuzmbxbd3fzCJYtgVU+oqqfKxMk8oIH2mAIL3o788mpmVVP15KASpQ60I/hsptssWB35VdYsYJ6JnqAucOB3AA6cizn35wAq6ePd9O1qVH499QS1haqW6QBQOWdmoPaY9cBQmVsSeWeeuZvrr3dXBOhtkqZMacd337l/7U87bS833xwLOVLl2ms3c/757vkj69cnUVCgCkwrKizGjk1nxw733JJrrtnKZZdt82ydNRk9ei2dOrmTNx9/3Ihnn1Ud+XbtUtUa5eXul6977lnHySd7Oq4opPh4h4kTV5OW5t5H8cILLfn3v5sA8MMPKUyd6m7/pqqeijnmmOhVLAkhhBBCCCGiTxImwns2O/AF7fX/IHn0oIx5mL3ynyLHaBETXTbfYXGLFlXtafI5BTWbwN3exWIUttEiJrpsXsccsN2EChZWzi2Zph3zYzGYcTGxm/8Qh0nAYi16IvuZjc0fMHfz7wYGMZISREywCFn1dKcD1wAzIaBqSFkG5HmwvLBZsA31eeh33WZUzsl4AdB7Dv3FUvGYYcFXwL1aOB54wVEVZ/Mr/x/obosozWYKwYJFqAqSQM2A5x04HXOeUwVwnWX+HIoIufXWjfTo4c6xrVqVwsMPt+Xtt5vy0kvuUWZpaRVMnLia+PjYyWdZFmRnr6FNG/elzT//2ZQXX2zOrFlt+Pxz99yS44/fT0bGei+XWaOUFNUeLDnZ3R7sscfa8OGHjcjN7cimTe5Lmwsv3E7fvls9XGXNWrUy55k4DuTldWT16hQyMztx4ID7bdBNN22kZ8+YyPUKIYQQQgghokgSJiI6svkIGKNFk/CzFPi9Fg82hDg25PACZp/+llTwCVRWaBzyd3KY7sm6aqs1mcAHWrQHaiZDIy0+kZzY2M3vYqu2TJhtmQai5q+4t8NaDMPmO28WJ8JlqZ39N2Lu7J+LqtwItBUYGM25JaFYanaGrYWTUQkefTbT56h5GzHHgsdQsz0CtQU+AY7T4kWWOSMoVtyLmcjpjapoMmYzWUR1NtNRx+dzyM0tpkkTd0XAokXNycnp6IpZFuTmFtO6dSx0rnNLS6ugoMBM5Dz0UDuee869D6RBAz8PPLCapKTozS0JpVOn/Ywatc4V8/vhnns6s3RpE1e8TZsSxo+P7tySUHr33kn//ltcsV274hgy5GSKi91zS3r02M2wYTK3RAghhBBCCCEJExFNNg+DMTtCv3F1AB+DsImNPg/BpHIHsFKL6p/HOhIZRqy2d7mFMuLpC/yiHdE/j2VArjeLqgObLfgYiHkDXf88ZpHDXz1alaglC17FrHrSv4cOMMyCjd6sqk4Kgbe0mP557EElfaI/wCC04cC3Wkz/PH4gBuaWhFL59e0H6AMv9M/jHdT3TXisRYsy8vLM2RGlpe7AoEGb6d07NrpaBtO1615uv939slRaauHX8iL337+Wjh1j99f+j3/8mcsvd18SVLVIqxIf71BQUEyjRjGXsz7o7rvXc9pp7nkm+ufRrFk5eXnmLB0hhBBCCCHE0UkSJiKaHJK4EVhTzWNGkG0MV48to9iLj34QMqlTjo+BjDWSEbEli3XA9YRO6mwDhlQOi49d2SzFIr+aR3xFGhmerUfUVSawoprjD1QmVmKWxcGqp+qSOrdZ5nD1mGKppE6weSZVyoBBljlcPaZYsAq4qZqHbEZ9HrF79/cI16vXTgYPDr3Lv0uXvYwYsSHk8VgxZMhPnHvujpDHr7rqF664IrYvCQDGjFlLenropM7IkeZw9VgTH++Qn19Mw4bBf619PsjLK6Z5c5lbIoQQQgghhFAkYSKiawzbscgKcbQIm6c9XU9dZfM18GjQYxY22cYg69hk8w/gzRBHb8BmrZfLqbNTKADWBTlSQhx9uTfkjV8RIyx1E/7uEIc/xhw2HpMs1TYs1Fqfs1SrsZhnwZfAEyEOj7HMln4xyVLt+f4d4vBQy2zpJzx2220badrUzMur2RrFJCTEfhWAZcF9960zqmUA2rUrYdSoX8ef0pQUPyNHBp+x0qvXLgYO3OzxiuqmbdsShg4NvtbBgzdz1ll64ZkQQgghhBDiaCYJExFdNsk4jApxtDs2aZ6up64KaAcMC3rM4Rz0+RmxKo/ewMUhjvbycimHZSW3AO2CHEnCT0+vlyNqz1G/M+NDHD4ec35GTHKgIaHnk5zhQAMv11NXjvqaXxfi8PnOr+Q1zoELULNLgvn1vMYdwRYsaMH27fFGfP9+H998o3dQi12zZ7cx2nABbN6cwLp1Sd4vqA7Kyy2eeaZ10GOrViWza5f5fYpF27bFU1TUPOixr75KpaLiV/HyJYQQQgghhPCIJExEtD0KdAtxrDPwuIdrqRubeMp5ATgmxCMuIzc2Bzq72DTDz1wg1B2Q0eRypZdLqpM8TgMeDHncYSY2J3u3IFFHoyHkz1tTYIEDCR6up65mQsift1OBRzxcS504kIQa/N44xEP+ANzh3YrqxoGWwDwgLsRDxjtwkYdLEpqVK1OZOTN0LjQ/vyMbN8Z+suHVV4/htdeCXxKUlvrIyurEgQOxfwk+Y8ZxfPllatBjW7YkkpPTESfGC378fsjOTufnn4P/ufjss4Y8/njwpJAQQgghhBDi6BT779bEkSuX/oSqyjikPzbXe7CawzEBOKfaRzhMxI7p3csW8AzQvtrHODyFTRuP1lR7U0jFTxHmIOdADYEiplb7GBFFDvQE8mp42G+BXA+WU2eOen0bUsPDbnJgkBfrOQyTgTNqeMwUB7p7sZi6cNT1zvNAdXdGfcBcB1p5syoRaPfuODIz0ykrC73bP5zHRNvatclMmRKswPGQ1auTmTy5+sdE23vvNWb+/JbVPmb58sYsWNDCoxXVzbPPtub996svVn7mmdZ88MGvo6BZCCGEEEIIEXmSMBHRYXMijtEP34+6Sao3sXgUmy7eLKyWbC7FbLezE7PCIR6YxySaerKu2lIVMFdp0e8w5ys0B+ZRFHKHdnTt5THM3fxvYA4PP41dTPFmUaI2HGgG/BVI1A5NRg0fD3S/A5d4srBaclT1yHQtXI56jdP3ZM90VEVdzHHgauBOLbwNeFiLJQELHWjkycJqLwuz3eB/UZUzgVoCzzpyfeS5YNUjF1ywg5NP3ueKrVyZyqxZsdmRr6TEx+jRndi3z/0nsn//LTRr5p7L8sorx/L66828XF7YNm9OJDvbXT1iWTB8+CZjhsz06W1ZuTI2Owt+9llDZs9250iTkvzccMNPrpiqQunItm2/hqJFIYQQQgghRKTJDQHhvekkAQswb6xNxCYHVbERKBU1AD623pFPoCWqKkP/Pbodm9HAS1q8IyU8R6z1+rfpiUOBFi3BxwDgJuAL7dj5rAw5WyJ6bG4EBmvRzcCNxDMA+EU7NgKbAZ6sTYSlcg7GU5iVTossuB8YrsV9wPMOsVX15EAyMB9zPkmuBTmYCdU04MXK82KGo+YAPYn7NctBVc5kAK9qp3SufHxMceBcIFsLH0BV9gwHvtGO/T9USzjhkYULW7BkSRNXrFWrUsaP/5FJk1aTmlrhOvb88y1Ztsz9+Fjw4IPtWLXKXbzYvftuMjLWM2HCamMIfGFhB9asialfeyoqLMaNS2fnTnd3zn79tnDrrRu5/fYNrnhZmcXYsZ3Ysye29lHs2hVHdna6MZ/kvvvWMWLEBq64wn1J8MsvCYwdm47fH1uXaEIIIYQQQgjvScJEeG8bU4HTtei7HGqvYwNLtOOnYu5ojh4bH2XMw2zd8hg281E3FW8E1mjH/4DNCA9WGB6bJqjklb6b/16y+QybA/gYBOzTjo/HjqFe/3mcCszQon4sBmHzE1msw+I6zJ39s8gn3ZtFijDchapoCLSaykSJpaoBntGOtwDmO6HnUkTDX4CuWuzfwKTKf4/FrHrqCjwQ2WWFz1FVccFmM02z4GXrUOJkg3a8n2MmtqLGUVVx8zF/PkZY8KWlqpb6Afu14/lOTa0WRb34/vsUpk93V4zExztMnLiatLRy2rUrISvrR9dxx4H8/A5s2RI7FQFvv92Ul1461hVr2rScCROK8fkcevTYzdCh7sqGfft8ZGZ2oqQkdi7HH3usDZ9/3tAVO+GE/YwcqX7VBw/ezHnn7XAdX78+iYKCDp6tsSaOA7m5Hdm0yX1pc/HF2/nTn34GIDNzLenpB1zHP/64Ec8+Kx35hBBChJSIuSFKCCHEESh23qGJo0MufwZu16LbiWcINqpfhY2feIYCP2uPu5ncmOn1nwP8Xov9lzTuPfg/mx1Af6BUe9yD2DHT6/9pMBIGL2Iz8+D/svkai5HaY3zAXOwY6PVvk4yfeQTZzU8O/zr4vxxew2yR1IQKFmIbCSPhMUfNyCjUwmXAIEu1uatyJ7BSe9x5wLgILi9sjvqdv1ELbwGutaACwFKtuYJVPY104E+RX2VYJmImDD4BMqv+Y8FW4FoqP68AMxzoFtnl1SygYknv37TQUq99AFjwFTBKe0w8sMAxE0aiHoVKGNxxxwa6dt178P8XX7ydq692XxJs3x5PVlanmKgICJYwsCzIzl5D8+ZlB2O33baRbt3cnQVXrUph2rS2nqyzJh9/3Ig5c9xzSxo08FNYuJqkJNUt1bIgJ2cNrVu7L23++c+m/O1vzT1ba3Xmzm3J0qXuCqS2bd2Jt5QU9+dV5bHHWvPRR7HaWVAIIUSUtAIeR70n2Q38C+gR1RUJIYSIKEmYCO/YtMfhcS3qYHEDWbi3j2axAYuh6BUBDo+Rz0mRXWgN8oLenN1LHP24V9ulbPMhltEKJglYiE10J4zajMS8ObsWuNl4bA5PYc4zaQk8ix3115FHMW/OLqWL0doNWjMK+ECL9sBsAyc85EBDVBVAknZotAXvBwYs2IuqCNCrnnIcuDByq6xZ5RwS/TXODwy2YFNg0IJ1wPWYVU9PO9AxUmsMhwOXYc5m2oNK+pQEBi1YBuRrj01GVf1EewfeaOBKLbaKIK9xlqoKWqCF2wJznFhro3gEKSzswI8/ultS9eq1k0GDNhuPHT16HSee6P4T++mnDXnyydbGY71UWmqRmdmJvXvdRUzXXfcTvXvvdMXi4hwmTSqmcWP3PJOiouYsXhzdeSbbtiUwbpzZkioz80c6dHBXYqSlVZCXV0xcnPvl68EH2/Ldd9H9tV+5MpWZM9050sREh8JCs7Xb8cfv595717tifr9FTk5HduxwtyQTQghxVEpAVcB/i2pVnYy6h3Yh6j1lEWYrYSGEEEeAaN/oFEeL2SSgbkbpdwSmksPfg56TwxvAQ1q0IRUUYUep179NC/xB2rtYjGA8/wt6Tg6TCd7rXx967x07aPufMnwMwGZbiLNuI1ivf8vYme0dm36otkCB1K73fsaud7iFMuIYhLtiASAD2xh6L7wzGzhRi70OTAv2YAu+Bu7Rwj5gnqMSeZ5zVLKnCIxE6CQL3g52jgX/QN2oD9QENTw9KlVPjtpB9wxmkuBWC74LcVo+8E8t1gWzosszDvQE8rRwCdDfgl0hTrsNKNZiV4BRYSfqwUsvmUPPW7QoIy9vDVaQFFViop+CgmKSk90VAU8+2ZoPP4ze/oNp09ryzTfuJMGpp+7l1ls3Bn18ixal5Oaan+OkSe2Nofde8fshK6sjv/zibnF29dU/c/nlwS8JTj99Dzfd5MoDU1qqKob0ofde2b07jszMdMrK3F/ckSPXc/LJeo5d+fOft3Lppe7PccuWRHJy3EPvhRBCHHWuBP4HPIJ5fQ/qWrkvqvLdJsZmEQohhDg8kjAR3tjEA8DZWvQjVC//6owheK9/vXVP5KlKiucxB0wvIIc51ZzpkMgwQL970o9c42Z/5Nk0RN3YdV/UWYwhm/9Uc94efEF6/TsUkBeFXv920KSTH4sh2MbX+pDx/IDFTVrUAp7Blh1CXnPgVlRbp0Drgesss/riIEtVcszTwq2AZ6JUEfAw5mym9zk0mymU+4BPtViwm/0R51QmnTCTTrMt82t9kFVZRQP8pB0a5sCQ+l1lzZzKpBNm0inDMr/WB1mEbKM4xYGz6neVR7fVq1N46KF2rpjPB7m5xTRpUh7iLOjUaT+jRq1zxULd7PfCu+82pqiohSuWllbBpEmriY8Pfbf9d7/byYABW1yxUDf7vRAs6dSp037uu29diDOUG2/cxG9/684/rl2bxJQp7UKcEVnBkk69ewRY9MoAACAASURBVO+kf/8tIc5Qxo5dS/v27iqa995rzPz5Ucm/CyGEiK7foDYCvQIcH8bjU1Htur8mdlrrCiGEOEySMBGRZ3M5cLcW3UEc/bGNG1P6ueXEMwCMqoeR5Hp8QWIxBrhEi35PSpAWVrqxbMUXpNe/w6Pked7r/zEw2pq9QQ5Tazwzm69QbW4CxePnBSZ62Ot/emVbM3O3zwPk8FaN5+fwV8zWSc1Qc1mkD4dHHPWGRP+5KwcGWuYMo2BuRZXIBwrWTiqiHOiDqk4ItB0YYKk5LCFVtrjqj1n1MNox20lFmo3Z1uy/EDCbKQQLNgODUMmTQDMdOLleVheGymTZ05htzV60zGoeg6US+VlaOAGY60DjelnkUW7/flWFcOCA+xL0lls20qPH7hrP/+Mff+byy93jf7ZtSyArKx2//tMXQZs3m1UIVXNL2rSp/tIG4K671nPaaXtdsWDtpCLt008bGW3NEhP9TJhgVvPofD7Izy/m2GPdL3OvvnoMr73m7fifoqIWRluzli1Lse3gFUuBGjSooKCgmIQEd5Jrxozj+PLL1PpeqhBCiNjUFFXd/hnmrNJwdAL+BixBbfAUQgjxKyYJExFZtuoBj77j2+J2xhutT4LLYh1wHe7d5hYOT2N71Ovf5iwccrToAaAf91PzHR6AbJYCBVo0GT/zsT3q9Z/LLaibmoHWQ5B5MaHYPIq6GAzUjtIg3+dI2cZDQHct+gGtje9Rde4CPtdivcGYOSMiwFG7sYqAFO1QtgXLw3kOS83V6If6XQw00YFeh7/Kmjmqb/FsM8wNFtpsphAsNVcjWNXTU445sDwiHDgfs+JvL9DPMufFBGWpN4iTtXBDoMgxv8+REv5sptAeRO0qDHQ80WyjeASZPLk9q1e7CxzPOGM3N9ygFyiFlpm5lo4d3b/2H33UiOeea1Uva6xJRYXFmDHp7Nrlzq8PHLiF88/fEdZzxMc75OcX07Chex9FsIHlkbJ9e3yIuSXrOOGE/SHOcmvWrJyCgmJ8PvclRGFhe4qLvelOsmpVCtOmuV8q4+IcJk4058WE0qXLPu68c4MrVl5uMXZsJ+P7LIQQ4ogSD9yJuh4fWfn/w3EB8Alqo463uweEEELUG0mYiMhRO/VfAI7Vjswkhxdq+Vz/AGZqUdV2Rc1HiZxJNEXNX3F/HIu7sY0b7jXJA/6lxbzp9W/zGxxjN78fuA47rN38gYYRrNe/zZ11Xl+4cvkzMEKLbgcGcEv1u/ldbA4QRz8wEl7jyOXiw1ukCMNM4BQt9g7mDfdqWfAlcL8WjgcWOObMpHrlEHI208MWIWYzhWCp5NFTWrg5anh6RAcCONACgsxmghEWIWYzhTYeeE+LnQZMqePywubAGZizmcpRlT6hZjMZKlvB3YBKtATq69Qu8SI0ixc349VX3fcOmjUrZ8IE84Z7dRo08FNYuJqkJHcFxKxZbfjii4b1stbqPProcXz5pfvjnHLKPu64Y32IM4Jr27aErCx3XtVxIDe3Iz/9FNkxRo4D+fkd2brVfWlz8cXbueqq2l0SnHnmbq6/frMrVlVJVFIS2bca+/YF/zgjRmykW7c9tXqugQM3c9557oTXTz8lUlAg3TqFEOIIdTHwBeq9eI3vG9LS0khPTw/neeOB24HvqZ8kjBBCCI9JwkREUh7wOy32FWl1bJfTjAyC9frfFNFe/xYlPAN00OKLyDF2ldfMxk8CgwjS6x+bwXVcY82mHNzNr1ey5GCzpNbPZ7MDX9Be/w+Sx2/rtsiwPm57HKOVlgPciM2aWj/feL7H4i4t6sPheSbQOug54rA56mb0UC28GRhk6W3rwjMDeEmLtQPmRHieSbDZTB+jZi/VxR2oN22BzkUlISKicm7J82D8vC+wqHY2U1BWZUs14Bft0AgHBtRtlTVzVCXLPECfmj3GoprZTCFUJliGYP48TnPg/+q2yqPb2rVJxo1nnw/y8syWTuHo3Hk/d93lrgioqLAYOzadnTsjd19ixYrGzJ3rnm3RoIEaSJ+YWPsp4RddtJ1rrnEnKHbtimP8+HQqKiL38jVnTiuWLXN3mWvXzkzghOuWWzbyf//nTlD88EMKDz/cts5rDEdhYQfWrHFXsvTqtYvBg8OvWKpiWZCTs4bWrd2XNkuWNGXRouaHtU4hhBAxpTPqvfFi1ObFavl8Pvr06cO7777L0qVLmTx5Ms2ahbUvq6rN19fAFYezYCGEEN6yPv7447Df3VmWNfmMM87Qd/KKX6csIB/VYiQyO2ZtmpCk3awsYT+20T6nNs+ZTJLW2qUEB5vwemDU/uP5SArSt74Ze2pVzaCbQirl2kBiH+Vht/eqrdkksA1z220JO7GNmQPhs0kjSduVXkIJdngtfOrw8czvv4WfTHYe1vOqKiK3VPYxkpLDet7gOgE/oNodRX4rdO31Q82HWYpq01TvHGiEudOqJNzWTyGeM4HgX88d1Q2PPxyVw8X1O5r7KueS1PU5kzHbV/ktDvNnPPTH8xF8NsfuyuRHXZ83FXPoelllG7V6F6nvv6PmJOmVNwcsCK9fUe2VV36844CNEfoYwTTlUBVOIjXM3qnORx99dIdlWTP0eEmJj5IS96+Lz4fRkqq2du0yC7BSUvzGPIr6sm+fj/Jy9+cRH+/QoEHd/5T6/RZ79ph7mBo29Neq8qY29uyJM2a+JCU5RtVObZSWWsZsGoC0tMP7HofiOLB7d/1//w8c8FFa6v4ex8VBaqo2hs5xlvXo0eO8On+gQ94ALgWupw6JaiGEEGFLBUYBmZibbILq1asXeXl5dOnizqvs2LGDhx56iDlz5lBeHvYl8z9RbaFXhr9kIYQQ9eGTTz55wHEcfSZzSFIaKCInEkkMlWype8Kl9h/Pj2r3VL9GsRd1w9wbKrlT/5+HbQyqjqxIff/HROBrI0KyzDZo9fGckfkZr/5j1vtrnIW3r3EWkXmNs/D2NS5S338Lj1/jjmBJSX6Swro1UTuRuhkfyuEkRkLx+RzPP4/DTVQFk5jokJjo3edhWZH5/icn+0n2ZvyKEEIIb1ioyuEHgLAGnrVu3ZrMzEz69OmDZZkVn02aNCE/P5/rrruOnJwc3nnnnXCe9iLUDM1ZqLmZEdkQJYQQ4vBJSy4hhBBCCCGEEEIIcaTpCaxAVfDVmCxJSUkhIyODFStW0Ldv36DJkkCdO3dm3rx5zJkzhw4d9C7eQSWg5pr8gKo2ieisQiGEEHUjCRMhhBBCCCGEEEIIcaQ4DngOeB84q6YHW5bFlVdeybJly8jIyCCplmWxF198McuWLSMvL49GjRqFc8oxwCPAR6iZhUIIIWKIJEyEEEIIIYQQQgghxK9dA+B+4BtUG67qS0SAbt268fLLLzN79myOO+64On/ghIQEhg8fzrJlyxg8eDA+X1i3205HzY58FUiv8wcXQghRryRhIoQQQgghhBBCCCF+za4EvgYKgYY1Pbhly5ZMnjyZ1157jR49etTbIqqe9/XXX6/N8/6BQ2sPq0RFCCFE5EjCRAghhBBCCCGEEEL8GnUHlgGvAB1renBCQgLDhg2rbSVIrXXt2vVg5Urbtm3DOSUFVR3zP2AoYVTHCCGEiAxJmAghhBBCCCGEEEKIX5NjgGnAh0DvcE6omjWSn58f7qyRw1I1G2Xp0qVkZGSQnJwczmnHoYbUfwCcHdEFCiGECEoSJkIIIYQQQgghhBDi1yABuAv4ARgJxNV0wgknnMD8+fOZM2cOHTp0iPT6DCkpKWRkZPDee+/Rp08fLCus4pEewHuo4fWtIrpAIYQQLvHRXoA4wuVyE9DMFXP4DzbLav1cNmnArVhaaWocC8jix8NYZfWmk8R27kD/ffHxCuP5X62fL5/j8dNHi/ppwExGsbfuC63BBFpTzlAjnsCTjOWXWj+fzVlYnOeKOezGZhbg1HWZNcqjGw6Xah+3BHgUm/JaP5/NVVicokVXk8Nf675IURMH/gx01sLfWvByHZ4rDrgTSNIOvWXB53VcYjgf1wJuARprh961YEUdnq8pcHOQQ3Mt2FCHJYb7cRsAIzA3Ubxowao6PN9JwNVauAJ41IIDdVtlWB+3HXBtkEOPWbCzDs/XG+ilhXdYMLsu6xPwv/814MMP01yxpCQ//fptoS7dMJYsacq6de5f+w4dDnD++TsOZ5k1WrGiMd9/n+KKtWxZyqWXbqvT8734YnP27HHf6/m//9tDt2576rzGcLz22jH8/HOCK3byyfv47W931fq5Skp8LFzYHMdxX6JdcMEO2reP2K89FRUWCxc2p6zM/QN09tm7OPHEfbV+vi1bEnnjjWZG/JprttKoUUWd1ymEEKLeXARMB+P9W1BNmjTh3nvv5YYbbiAursa8SsS1bt2a6dOnM3DgQLKzs/n6669rOsVCDa+/BngQNeMkcn9YhRBCAJIwEZG3EYfZuPtv7iCf7oynuJbPNRMYpN2Kf4MsJh/mGqs3khJsUoB8V7yCYTzAGdzP7rCfazpJbKMI1Wc1UGFEkyUA49iETVf0G4qlnIsaMhd+kmMCLSnjJRxjp8uQWj1PXfj5FngGOF070hwYV6vnsukJ/BWHxIBoCT7OOaw1inB8BzyP6tVbpdyBCyxYXsvnsoEsLfZfYEbdl1czCxwHfgFmaYe2O3C6RfiJ3Mrky1PAn7RDr0JkX+Ms2OdAE2CsdmiwAz0t2B/uczmQDCwEummH7EgmSyqtB87CTNacCfStzRNVJl9eQrV6CPTnOq9O0LHjAbKz0ykudrej2Lcvjhtv3FSr5/r000ZkZqbj9x+6vEhM9PPss9/Uy1qr06nTfrKyOrJr16HLaMuC5GR/rZM1RUUtmDy5nSvWsmUpV1/9c72stTqtW5eSm9vB+BrOmfMNJ5wQ9q89AA8+2I6XXjrWFevefQ+DB2+ul7WGEhfn4PPBjBnHueJFRc2ZP/9/NG4c/j6KigqLsWPT+fxz95zgPn0kWSKEEDHgJGAqcHk4D05ISKB///5kZmbSrJmZCI+2s88+m7feeosXX3yRgoICtm7dWtMpqUAOcAMwHlV1IoQQIkKkJZeIrBxeQ/UVDdSEChZiu25SV8/mVmCQFl2PGoYW2Rv0ykRgsRY7gf08Xqtn2cbDmMmSD2hN9mGsLXwp3Iq6UR3ocnK5N+znsPFRxjzMsuAnsJl7mCsM5+MfAPoB+hbYTHL5f2E/zySaom7sun8OLUaRzSeHuUpRAwu+AjK0cDzwggPHBjklKAcuAMZo4b1APwtqv724liz4K/CYFm4KLHBUu4Bw3YWZLFkLXG958xqXDSzRYr8BHq7l88zETJYsBQrquK6wVX6dbgTWaIf6OHB7uM/jqJ/DBZjJkhkW/O2wFnmUS0nxU1i4muRkvyv+2GNt+Oij8PuIb9sWz7hx7mQJQGbmOk48sXY3+uuiVatSbHsNgd00HAfy8jqycWP4lzbff5/CtGnuG/1xcQ4TJxbX6kZ/XXXvvpvhw39yxUpLfYwbl86BA+G/RXj77aZGsiQtrZy8vGLi4iL/8jVgwBYuvNCdqNq8ORHb7ohTiw8/a1YbI1nSufN+7rlnfX0sUwghRN00RVVVfEmYyZLevXvz1ltvMXny5JhMllTx+Xz07duXd999lxEjRpCYGNY1RHvUfJMlQNeILlAIIY5ikjARkdea0cB/tGgPYFJY59v8BrWbJFAFcB02kd+CqdbgR1VPbNSODMDm+jCfow9wmxbdDgzgFsoOd4lhuZ/d+LgWKHHFHQqxjdYzodjA77XY18Ddh72+cNmswjJaF/lweB6bNmE8g0UJTwMdtfg/yOHRelmjqJGlKjPma+G2wBwHrfVeEA60AOZh9i0eYVGHdnl1dzfwmRY7C/W7UiNHVUA8oIXLgAEW1K3HTy1Z6jV1KBivqbc4ZrI6KAf6o3a9BdoKXFv5/BFnqdfU/kCpdmiqYyarQ5mE2YrrS+D+w1yeAI4/fj8ZGetcMb8fcnLS2bGj5sJnvx+ys9PZutWdj7zkku1cdZU3lwQA5567k759t7hiu3bFMWZMJ8rKau5Lvm+fj8zMTpSUuC/FR4zYGPFWXIGGD99Iz57u/QerV6cwZUq7EGe4rVuXREGBuxe8ZYFt/0irVvqvYeSMH7+GNm3clzbvvtuYBQtahHX+Rx814rnn3PtAqhJ8SUn+EGcJIYSIoHhUq9pvUddgNWYT0tPTmT17NgsXLuTkk0+O9PrqTVpaGuPGjeOdd97hyiuvDPe0C1DvP55DdVoQQghRjyRhIiJPJQMGYN74uwfbaJ3iNoVUoAh32x6wyME2dkNHls2WymSDfuPvUWy6VHtuAR0w+96r3dC2sRs6slT1xGgtqnZUTzR2VLvZnI/Ztmcv0A878rv5XXJYiGphFKg5MJ+iGgb/2dyF2bZnHYlcjze7+cUht6DeCAW6HLinupMc9fdrLtBaO7TAUruuPGOpBGTQqieH6queHGiESvrobwLHWGaiOaIq56QMBfS7g49VziUJyYETwKi48wNDLDPRHFEWfIhqVRAoCVjoQFqQUw5y4DLMyqc9qIqlyJcuHCX+9Kefufxy9yXBli0JZGd3xF/Dvelnn23F+++7v43t2pUwblzkRpmFcvfd6znlFPefvq+/TmXWrJrz9pMmdeDHH92tyXr12sXgwT+FOCMyfD4oKFjDsce69238/e/H8vrr1V8SlJZajBnTib173X9yhwz5iXPPjewcGV2jRhUUFhaTkOD+Ez5tWlu++iq12nO3bUsgKyvd+NkbM2YtHTtKm3ghhIiCC4FPUO+fa0wGpKamkpGRUduEQ8wJTPicdFK1l95VfKhNnWEnlYQQQoRHEibCGzZrsYyb0RbwNLaxy/+QvczCHOj2DqdQWN9LDEt20NYyKqlj0yDoObNJoJwFgF4P/Ah27Qdc1wub6ZitZdpRyrOE2tlv0wJVDaAnI+7AZmV9LzFMdwBfaLHzWGncLD3EDrqbvxwYwFh+qd/liZpYlTejMedbFDpwdjWnZgEXa7HvCT40PeIqh6PfpIV9wPMO1VY9zQZO1GKvY1bVecKCN1ADJQM1BIocPXFdKWBuiZ6MeMCCt+p/lWGZAryixToDT4Q6wVHVTc9hvgbeZplJPXGYMjN/NG5Gr1jRmLlz9W6Ph3z1VSqPP+7+dUpMdCgsXE1qqvczJhITHSZNWk3Dhu6P/fzzrVi2rEnI8/72t+bGYPFjjikjJ2cNvihcmTdrVkZBQTE+nzvZMGlSe9asSQ5xFjzySDu++cZ96XPqqXu57TZPc6QHdemylzvu2OCKlZdbZGWls2dP8H0Ufj9kZaXzyy/uiqWrrvqZyy+XSwIhhPBYZ9RmyX8RRrspn89Hnz59WLFiBRkZGeG2tIp5vXv3ZvHixbVpKVbrtmVCCCGqJwkT4Z0cXgX+okWbAguYHaTXv82NqB0TgTaTwCD6edPeJYQ84J9a7FTMWS3KJqag2vME+hjIrPeV1c4woFiL/YFc7jAeaYfezY/NsxFZXTgOzTPZrR0Zj81FxuMLaUywuSUwBpsVEVmjqJGlLu71qqcE1BwQ412CA+eCMffnAKoKQP9Z8Iyl3uA9qYWbA/MdM9FI5VyNgVp4PXCdR3NLQhkHvKfFumImGqs8ApyuxT5ADaaMisqv3w2AXnbQz4Hh+uMr55bMx5yf87iFB7OZjkINGgRvd/SXv7Thiy8aGo/ftSuOsWM7UV7uzmfde+86TjrJ2wLHQG3blpCV5f4xcxyw7Q789JN54+aHH1KYOrWtK6aqPIo55hhvunMGc+aZu7n+end1y/79wduGASxZ0pSiIvem30aNKpg0abVR5eGla6/dzPnnu6tbNmxIIj+/Q9DHP/FEGz780D0/p1OnA4wevS7o44UQQkREKqqV7VdA33BOqBqaPn36dJo3P/I6UiUkJDB48GCWL1/OsGHDiIurvoFCpZOA14C3oYYOGEIIIaolCRPhrWbcB3yqRX/LJvJckTxOBWZoj/NjMYRxbIrgCmtm4yeBwYDeN2M4NoNdkVyuAEZqj9sJ9Mc2eux7y2YHviC9/h0eIo/fumIW4wi2mz8lOrv5XWy+w/waqwSPrQ2mP8AsoJP22DeweShyCxThsNTvu1711B5tnolT1XbNTEDcZcHnkV1lWO4kWNWT1iLKgdMwKznKgYGWOUfEU1ZVxRVGxdWdDlwTGHDUm9pbtMdtB/pbeDSbKYTK+S9DUJ9PoBmOOZg+F+itxb6mhtZw4vB07ryfu+92D9SuqLAYOzadnTsPzTNxHMjN7cimTe4ExO9/v50+fbZ6sdRqXXTRdv78Z/c6du2KZ/z4dCoqDiV4qhIQ+kD1m2/eSI8eUcv1HnTrreY6Vq1K4eGH3Qmen35KpKCgvStmWZCdvYY2baJ7aRNqHf/6V1MWLXLfUPv000Y89ZT7MiEx0U9BwWqSk2VuiRBCeMBCtYNdhdpoE7qssVLr1q2ZNm0aixYt4tRTT430+qKuSZMm5Ofns2TJEs4///xwT7sI9b5oGtA4UmsTQogjmSRMhLdGUkIc/VBJg0D3k4tqOGqTjJ95YLS4KiCHtz1YZc3GsRkr6DyTWdioCXMFtMNhDnp7F4vbsFntyTprks1HwBgtmoCfeZXVGGBzLk6Q3fw++nN/9Hbzu6gqF31uRUsC55nYIXfzD0XmlsSK4FVPMAKgMnHyFHCc9pgiy5yfERUWoaueHPXmBaeyxRVmi6tsC5ZHfpU1syorXTB/N55yIB114HjMFlcOcINlVnZEhQXvonYsBkpGtRhrBOCooZn6QPe9qIql6JUuHCX69t3KpZe655ls3pxITk5HnMqfvrlzW7J0qbvFVatWpYwbt9arZdYoI2O9Ueny2WcNefzxQ4WZhYXtKS523ws644zd3Hijt3NLQvH5IDe3mCZN3DnGRYua8+abqtivvNxi7NhO7NoV73rMgAFbuOACb+eWhJKWVsHEiauJj3e/fE2d2o5vv1WXltu2xTNuXDp+v/sSLTNzHSeeKOOKhBDCAz1QFc1zgND9OCulpKSQkZHBe++9R9++fbGs4F2kj1QnnHAC8+fPZ86cOXToELxqUpOA2lT4A3AXQardhRBChCYJE+G98fyAZfT6t3B4igKOA2Zi7v5dRhetCiXacngHs0WNuhFqk0Y5L4AxRP0v5PCCJ+sLl83DYMxSOZ4DPMHEg7v53XdGLO4mm888WmF4UhkBxiyVC1jJ/eQF3c1fAVyHHd3d/OIQC3ZAkKoneNCBM1A3tfVJjj9gzg6JKgu+w6y68AFzHdXWbhZUJlYPeQeY7MHywmapkv5HtHAT1PD0Rqj2dvqutakW/N2L9dXCJGCxFjsRmO1UJVbNN5EjLPP1RETI2LFrad/ePc9k+fLGvPBCC77+OpWZM9050vh4h4kTV5OWphcPRU9ioj/oLJVnnmnN+++n8corx/Daa+5LgmbNypkwwZwdEk0tWpSRl2fOUpk4UQ2pnz69LV9+6R6ifsop+7jzTnelULT95jfmLJXSUovMzE7s3h1HdnY6W7e6u8Fecsl2rrpKLgmEECLCjkPNjPuA6ucVAmBZFldeeSVLly4lIyOD5OQai1COaBdffDHLli0jLy+Phg3NFqZBHIO6nv8Qs5paCCFECJIwEdGRw1+Bx7Roc8p5F9V3PtBWYGCU55aEkoPawRzoNFQJ7Dla/HPgPi8WVUsOame/vlW3L6V8gLmbfyE5zPZkZbUxir2om+361tBc/LyGvpvfIgebJR6tToTJImjVUxIqqZevxUtQVQC7vFhbbVjwAhjzfVqidtIN1uKbgAGWWbEWCzJRb7AC9UC1HTtDi38IjPViUbVhgR/Vmktv5zgQ+A/mrsbnLLNiTURQgwYVTJhQTGKiO3EwY0ZbRo06nrIy9y7SkSM30LXrXi+XGJZ27UrIzHT/KfX7ITs7nSlT3C2squaWHHtsVDvXBdWr106GDHFXvezb5+POO0/ghRdauOING6q5Jfr3LhYMHfoTvXq5C5rXrUti0KBTeP/9NFe8ffsDZGWt8XB1Qghx1ElBbX76BnVdVmOJSNeuXXnppZeYPXs2bdu2renhR42EhASGDx/Ou+++y+DBg/HpuxyC6w4sA14FOkZyfUIIcSSQhImIpnvAqFJI1/7vYDEMm43EIpty4hmIOXNA/zz2AAMrh5THHpttqFkE+s5+/fP4gWRj53zssPkv5jyTeKCdFnuHUyj0ZlGiDoJVPbVFr3SC+yxzJlIsuQOzSkH/nfIDQy3Y4s2SasdSrwl9UfNAAumfxw5U0ie6AwxCqPz6DsRMSumfx/eo75vw2Cmn7GPkSHeVQlmZxZYt7iqA3/1uJwMHbvZyabVy2WXb+OMf3ZcE27bFs3+/+5L7hhs20bNnzOV6D7r99o1067bHFdu4MfFgm7QqmZlradu2xMOVhc+yoKBgDa1auV+WNm5Mcv0/MdFh0qRiGjSQuSVCCBEhV6KuiQtRHRmq1bJlSyZPnszrr79Oz549I764X6uqr9Nrr73GmWeeGe5pf6AW3wshhDhaScJERI99sNd/dXcMHiCHVz1aUd1ksQGLoagbn6Hchs03Xi2pTmw+RBtMrSnDxyAyjfkzscXmSeD5ah6xmQQGxWjFkgAsVfV0I7Cmmof9A/iLJwuqI6tyDgbVz8HIt+CfHi2pTixVfRZsnkmg2yxz/kxMsWApZpVSoAOoiqXYmM10FBowYAsXXhh6DkaLFqXk5q4h1tuW339/9XMwTj99DzffrBc8xZa4OJVE0OeZBOrTx5w/E2vS0srJzy8mLi70y9e9964z5s8IIYSoF1VVDa8QRlVDQkICw4YNY9myZbWpnDjqdevWjb///e/Mnj2b447Tm0MEFVjtM5Qwqn2EEOJoI3+BRHTZrAJGhTi6gupv4MeOHN5AzSUI5ils5nq5nDqzmYK6qA3mPrL5wMvl1FkKI4ANQY74gWsZZ7TmETHGgu2o+4nNxwAAIABJREFUpEkwa4AhVvU38GOCBV9jthir8m+qv4EfMyyVoHomxOG/WLDAy/UchgII+Tp2l6VaJ4ooyspaQ9Om5k36uDiHwsJiGjeOnbkloSQm+ikoKDbmgAA0aVLOhAmrq72BHytatChl9Oh1QY+deOJ+7r03tuaWhHL66XsYOjR4VdJFF22nT5+tHq9ICCGOeMcA06jF3Iyq2Rz5+fk0atQooos7ElXNelm2bBkZGRkkJSXVfJJqvT0HeJ8w5skIIcTRRBImItosVFloMKV0if0bogDYNAR+H+LonhDx2JNPJ6Bb0GMWsdcwPpQDnIk5lwDAj4/Y7B0igvlTiHg51Vd0xQxH/Z3VB9VX2c+v5/NoAlwQ4vCv5zUOOgFdQhwLXRIgPPPllw3ZsUPvvgdxcSoR8WvxzjtN8AdZrs/nEBfn/XrqatmyxkHj8fF+LOvXcYlWWmqxYkVa0GMpKb+enykhhPgVSADuAn5AtUmu8S9e586dmTdvHnPmzKFDhw6RXt8RLyUlhYyMDN577z369OkT7mk9UXMWnyP4e2ghhDjqSMJERFcuowl9M/F8/hd7A4RDmAmcHOLYSHJD3viNHbNJoIK5QPC7Iw6PkhcimRJLJtASh3kEv0CPx88LTOQYr5clasdRidRQsyQ6A497uJzDMR64KMSxy4D7PFzL4XgKc95HldFO6NfxmOFAMlAEhNq2ONMJ/TouPLB5cyI5OR2NORmgbnpnZnZi797YzzZ89llDHn+8ddBj27YlkJWVHjSZEmtefLE5b77ZLOixlStTmTkzrLYfUTd1aju+/bZB0GOvvnoMr70mlwRCCFEPLkJV6j5CqPeTAZo0aUJeXh5LlizhggtC7ckRddWmTRumT5/OokWL6NIl1F4hFwsYAqwCbNR1sxBCHLUkYSKix6YnTg3taBxsbC70aEV1YzMcdXERioXD09g1922Nqk08CJxVzSOS8TMfm+B3HWKBjY8yngeC36lS2lHKHKRXa8xyoB3U+D3q78ANHi2pThw4j5rbCk50oJcX66krRyWurqnmIRbwlKPK+mPZNOD/qjneEChyVF9n4bGKCouxY9PZudOsLqmyfn0SBQWxvft01654xo9Pp6Ii9MvXRx814rnnYnsD5w8/pDB1attqHzN3bkuWLm3i0Yrq5l//asqiRc2rfUxhYXuKi+W+kBBC1NFJwGvA24Su4j0oPj6ewYMHs3z5coYPH058fOi/++Lw9erVi8WLFzNt2jSOPfbYcE5JBXKAr4C+EV2cEELEMEmYiOiwaQb8FVW2G+gf2v99wHPYhPXX3XN5nIq6CReoHHhTizUB5jPb+Hxjg83VwJ1adBtqjkygLsB0T9ZUN1nAxVrsa8zh4VeQy0hPViRqxVGvCUWAvq35Dcz2VTOcMN6YRYMDzYH5mJVO+mtcPDDPgaaeLKyWHDgdeFALlwGLtVhzYK4TRuuFaHBgAHCzFt6C6q0d6DRgiieLEi4zZ7bhiy8aumInnbSP5s3LXLG3327Kyy/H5iWB40B2dkd++inRFe/Zc5fRTmzWrDZ8+aX7840V+/b5GD26EyUl7rcJv/vdTtf/HQfy8zuwZYv7840VGzYkkZ/vTrBZFpxzjvvz2L/fx9ixnSgtlbdFQghRC02BQuBL4PJwTvjd737H4sWLmTx5Ms2aBa9gFPXP5/PRt29fli9fzogRI0hMDOvvdmfUe7J/oa6PhRDiqCLvDEQ0WKj2Lu21+CJsrgTmafHjUP00Y6siwK6suECruLCwacbVwKfaGWeziTyvlhe2AtoBT+L++jrAMBK4BvhJO2MYNoO9Wl7YbM4FsrXoAeBafPQDSl1HHKaQx289Wp0I30TMSqePgauBCVo8FVUREFNVT86h17g22qEFlmpd9ZIW7wg858TYa5yjKi5eAPSpkWOAPwJfaPHzqbmixnMOHA/MNsMMA/4M/KIdG1GZYBEeWbEijeefd1dcNGjgZ9KkYiZMWI3P5+7RNXlyO777LvYKgZ5/viXLl7u7kLRrV8KUKau5+273gPSKCosxY6qvqImWBx5oz48/uisuevXaxdSpq7jmmp9d8R074hk3rvqKmmgoL7fIykpnzx53DnfIkM08/PAPnHnmblf8++9rrqgRQggBqHtIQ4FvgfuBGu++p6enM3v2bIqKijj5ZOl+Gi1paWmMGzeOJUuWcPHF+h7DkC5E3deYjdogJYQQRwVJmAjv2dyFuvkZaDXJDK/8962oC7BAl2GTEfG11c5fgK5a7N+cQiEjKQH6A7u04/eTG0O9/m3iKecFMGZ6TMPmZcaxGdX2SN/ZPws7hnr9Twy5m38ENl+SzUdYZGnHEvAzj8Kae+wKbzhqpof+e74T6G+phJcNLNGOnwo8HPnV1cr9mDM9vudQhcONmFVPfwBGRHZZtTYL1WYh0BvAVEslIwcB+7Tj453QM1s856hkTxGgT3x+wIJ/WLAeuE491GWWE3pmi6hH27YlkJvb0ZjpMWbMj7Rvf4Du3fcwfLg7b19a6iMrqxMHDsTOZezKlanMmuXuSpeY6DBp0mpSUyvo128rl1yyzXW8upkt0fLKK+ZMj2bNysjJWYPPB/fdt44TT3T/2n/2WUOeeKK6Tpjemz69LV99leqKdemyl9tu24DP55CXt4YmTcpdxxctCj2zRQghBAAXAJ+hWufWePM8NTWVjIwM3nnnHa68MnbeAh/tOnXqxJw5c1i4cCEnnaRf6gcVj3of8y1wV+X/hRDiiBY77zTF0SGPM1Clu4HKgEFkonok2OzBxyCgRHvcJOwY6fWfS3/UTc9AW0jgWvpRAYDNKuAm7TEWDk9hGzvPo2UCcI4W+4RmZB78n82bmC1qGgJFTI2JXv8WpTyFOT9hITZPH/xfDg8Cr2iPOZ4DPBHh9YkwOKEryW6zYDXqgB+1o+1n7TE3O+rmfdQ50BOMSrIDqKTPbgALdqASqqXa4x50oHvkV1kzR7126ZVkG4ChVmVywVLt7vTWdj5Ua65YGdAwBfNr+iEB1WiW6ruttxpsAix0wtg1KerO74esrHR++cXdrfKaa7Zy2WWHkgvDh2+kZ0/3/oPVq5OZPLmdJ+usye7dcWRmplNW5n75uvvudZx88qHkwpgxa2nTxn1ps3x5YxYsaOHJOmuydm0yDz7o/pr6fFBQUMwxx6jWaImJfgoLV9OgQYXrcU8/3ZoPPtDzktGxfHljXnjB/TVt1KiCwsJiEhJUdqpFi1Jyc9dgaX9xJk5sz9q1Ms9ECCE07VDX6UswNwwafD4fffr0YcWKFWRkZITbAkp4rHfv3ixevJi8vDzS0sL6G94UeAT4L2G2YRNCiF8rSZgI79g0rGxhpbd3GY3N+65INp9gcb/2uHhgQeX8k+ix6YzD41rUj8VgxrFJe2wRqjVPIFUNURTlXv82lwL3adE9wLWVFTKBsoD3tNhp7GJypJYXtlxGY+7mX4U5r8BBVcus1eJ9sY3HCg85VbOKMGYVzbRUS6iDrMqb9pgVAY85ZjWEpyrnkCzEnM10j6V24x1kaTftKyWhbtJH9a6jo6p2HtHCflSyxJWsstTr2/PaY1sCzzpRvsZwVNXOHVp4Oyp5VabFRwEfaLEemG3gRD168sk2fPhhI1fs+OP3c++97vZV6qb9moM37au88sqxvP66XiDpvfz8jmzc6L60ufDC7fTrt9UV02/aV5k2zayG8FppqY/MzE7s2+e+NFHJKnf7qvbtSxg1ap0r5vfD+PHp/PxzdEe1bdkSvGpn/Pg1RrLqnHN2cu21m12xffviyMoyk19CCHGUSkVVeH8HDAnnhO7du/PKK68wffp0mjeXDk6xLiEhgeHDh/Of//yHYcOGERcX1i2Kk1Abjt4GTonoAoUQIkokYSK8NBs4UYu9jm0MTVdymA68rEXboUqAo/NOdnrI9i6TyOHtEGfdgRqGF+g8/me0iPKOTSvgGczXgFuw+S7I48uJZyBmr/87sLkmMosMg01PHGM3fwk++mEb7dDAZhs+BgMV2pFp5NEtUssUNcpD9ccN9F/MhB4AlmoL9ZAWboiaZxKVrcGV80eeRs0jCbTIgsdCnDYZeFWLdYboVT05lXNhMOfC5FhmO7QqtwPfaLH/h0pCRIWj/lY8izmb6UbLbIeGVVXpCDu1QxkOXBWhZR7VPv20EU8+6S5ESklR1QvJyXoXSNUWyrZVW6hAhYXtWbMmehUBCxe2YMmSJq5Yy5alZGXpuXmlS5e93H77BlesvNxi/Hhz3oaXgs2F6d59t9EOrcqVV/7CFVe4Lwm2bYsnKysdvz86l2ih5sL067eFCy/cEfScO+/cQNeue12xlSsbMGOGXrQqhBBHFQu1QWkVkEMY19etW7dm2rRpvPrqq3TvHhMF06IWmjZtSn5+Pm+++SZnn312uKddhJppOI0ob/gSQoj6JgkT4Y1cbgOu1aKhesdXcUgK0es/l9vrd4Fh2sbDwOla9H1akxvyHJsD+LgWvde/Qza5/L7e11gTGx8wD7Nlzmxs5oc8L4t1wPWY36+nyI9Cr39btcxBb5ljkUG2eze/SzbvYrZMSsZPEQ/QKNgpInIc1Qs5UwvvBfpZsL+aU8cAK7RYV8yWf165G3M201rgllAnWIcGj2/UDvVzVDwaZgBdtNi/gUn/n737Dq+izB44/p2bntCR3kKxgKIiKKsSRNbY0dWlqVFE2EVFAQ2LgbRJSGgCCgr8cEWlqDRlEWEVXGkRG2BBRVEJ0ot0Qkm58/tjAmRmbk1yS5LzeR6fXd8pHITcTOa85xxnFyh6ZVpvrH9eWZq15Z/PaeerEa2zmaYq1iT8BQr8jqM2ivCmBs3LN8qq7cgRfVC4+cX6iBE7adnyrNPrbrzxBI8+anyBf/q0Xhlx7pz/H2l//TWKKVOML9ZDQjTGjs2lRo1CJ1dBQsIBunY1vsDfvTuCrKwWPonTnVWravOf/xgL/GrXLiQ7OxebzfmAlaQk65/Xxo3VeeutBj6J050ZMxrz3XfVDGtt2pxh6NA9Tq6A0FCNMWO2W/683n23AWvX1nJylRBCVGrXo3cWmI0HLVajoqIYPHgw69ato1evXijmXoeiQrnyyit57733mD17Ns2be/T4G4beovd39Pkmge2iIYQQ5UQSJsL3VK5Cs+wGLwQeQrXMIjAaqbdPwdw+RWMSqp97/av0BJ4yrR4llL4MsrR3MUrjR/QHiJJsaLxdXO3hTyqOd/M/78GVH6K/UC2pFkUsQPVrr39nu/nfI51pHlyfBZaKoMs446TaSfiEBvXRk3fmB+unFdjq6lpF/wzpCxwxHRqiwQPlF6V7GnTC8Wymvoo1PgMFDqEnk81VT69q+LfqSdM/a/ublg8CjyjW+AwU2AKMMC2HAu9q1sSFr40By7yrTWBp82ihwCKsFT510OeyyIDLcmC3Q1paSw4dMrZuuv32I/ToYS5itHr66b1cc80pw9pvv1kTF752PlGTn298lH7mmT1cffUpJ1fpFAVU9Q8aNjSOMfrkk9q8/765M6Fv7dplTdQoit7Cql4914825yuCIiKMFUEzZzbm22+rObnKN77+ujpz5hgfp6KjHcdn1rBhPsnJxoogTYOMjFj27ZO++0KIKuP8PMEvAbclBoqi0KNHD9auXUtycjIxMYFtLSnKV3x8POvXryczM5Nq1Tz6nn4Jekvfr4A4nwYnhBB+IAkT4VsvXmjvYuzzoJCGSo5H91Cd9/pH9VPpp0pz9JZiJWko9CeFPzy8x+vAPNNqA+DN4qoP31PpBowyreYRQm9UUwWMM40YjuNe/1lljs9TGQzB+lJ8J9a5JY6p2AnjUTDNnIH+qDxW9gCFO8XzLeYBjUyH3lT0H9bcUmAX1io1BXhDsybTfEKD6uhJH/NbtRcU+NyTeyiwFuvXTyTwjmZtjeUTmt4KzDqbCR5VrBUwDinwKnplR0nNgNman9ooanAXjmczPaJgmc3kzBD09gIlxWH9PiRK4a23GvLFF8Zv3c2bn3PawsosJERjzJhcatY0VgQsXFiflSv9N+Js7NgW/PGHsUPJTTcdJyHhgJMrjGrUKGT06FxCQowVHBMnNmPbNr982ZOfrzByZCvy8ow563799tO1q7k7nWOtW5/hueeMM2eKihRGjWrJsWP+yTEeORJW3ArMuJ6U9Aexsc4rlkr661+P0rOncebMiRMhjBzZisJC2S0thKjUotA3lWxFn1Pi9kPv6quvZsmSJcycOZOmTZv6Oj4RIOfnm6xfv56EhARs5r6ojl0HrENvOxzry/iEEMKXJGEifCuP6VgHga2mrZfDwlXGE6he/zMJQ38JaH4TM5l0lnp5t6ew9vq/E8UPvf5V6gPvYN7NrzCYVNe7+Q0GUUCIw17/w1H90Os/k45ojDetFmCjL6rr3fwGyRxA4RGsO+enM1qG1/lBMhBvWtuGtRLLJQU+BEtVUS304en+2Br8fziazWQdmu5OJvCJaa0dMLWUcXlMw/lsJgVWenm7p4Bc09o96EkIn9Iu7ow0/6D/pAK/eHofBc6itxg7aTqUrFn/zgov/PBDDK+91tiwFh5uZ+zY7URHuyxiMmjQIJ+MjB2Yu36MHdvcMnzdF95//xL++1/jI0H9+gVkZlpjcqVDh1P84x/GvL2z4eu+8PLLTfn5Z2Ny5sor83jySY9ypBf07HmIO+80fvt1Nny9vNntkJISy+HDxoqlv/3tT+6+2/NHAoDnn9/F5Zcb9444+jsrhBCVSA/gR/RKabetiRs0aMCECRNYvnw5N9xwg8+DE8Hh/J/7hx9+SKdOnTy97F4u/t3yb9mpEEKUA0mYCN/JoD9YdusfAB6mt+v2Lg5ohDvu9Y/KE6UN0SP7GI+1LHkj1koN91ROYXPQ618ji0wf9vrXK1jmYt3NP590Znt9v1R+R3Hc67+4Gsc3VKph5230F7wlf+WRpHm2m98gndVgSd7FUMRCJpuqokS50Rzv1j+LPrfE/JLaE8OBzaa1G7DOqilXGs5nMynOZzM5pOjVHAmAecLyAE1f9yVHs5m+BBezmZxQ4Bh6a69806EXNehcuvDcK65YmoPeDqCk1xS9AsgriuPknQ29NZf5c1R4wNlu/cTE3ZaX1J7o0uU4ffocNKydPBlCUlJLCgp8VxGwfXsUkyc3M6zZbJCRkUutWs7nljjzxBP76Nz5hGFt584IXnyxmZMrysf69TVZtKi+Ya169SLGjt1OaKj3WY6kpJ00aWIs4vrss5q8+65v55m8/npjvvrKmOtt1eosw4fv8vpe4eEa48ZZk3eOqqKEEKKC64Be4fwBuJ9FGRYWxoABA1i3bh0JCQmEhMiYiqro2muvZenSpcycOZMmTTxqhRqNXr30M/p7ISnZFEJUGNKPW/iOxi9Yd+PuQLW8EPTMKA4xmq4UWR7qvH/T4qmFhLCV5WisMKyHsYVkywtBz6SxhUxuxE49w7q9VC+KPVUNeLH4n4tiSpFkOC+dRajEobcOKsmXnys1gGdMa/bixEdppQGfWlZPUB3XQ8dF6Z1Eb51U0kEFvi/NzRQ4p+m7mK40HbJrYCtORvjCFqyfcb8ruJnN5IQCBzToCpgnP7seiFAGxXM53i/+p6TvFPPsKA8p8LUGf8E6uySvNPfzUA30wfTm4fSflfaGij7s/XeslUq+L2GohM6cCSE11djBMiREo2PH0n/rGzJkt8PWUadPh1hadpUXRdGYPPl3w1q1aoW0a1e6RxGbDcaMyeWXX6xtuAoKFMLCfFOiUadOIdOm/WpYq18/n8aNS/doU61aEf/3f9vYtcv4SBAa6quPX33OyHXXnWT6dONHZGzsGSIjS/frNmt2jrfe+oU//zRWrJiHwgshRAVVF/1nn8F4OJw7Pj6ejIwMYmNjfRmXqCDOz67561//yowZM3j11Vc5d85t19smwGz0v3dDgS98HacQQpSVsnHjRo9/ElMUZULHjh3dDk0VFUIKMBq9pZVncx+EEOWhFfpL2DyCszy5N7AAfddZt8CGIkSVU4j+AqMJHs6OKSe14UJLw3BKmSwD+Prrr59RFOWVcolKiCCmadq666+//pZyuNV/gTuBx6EUVb9CCOFeGPA0evVwTU8uaNOmDaqq0r17d58GJiq2vXv3Mm7cOBYvXuzpJRr6HMsRWCvrhRDCZzZt2jRe07QRnp4vLbmEEEIIIYQQQgghKp/bgG/R5+u5TZbUqlWLzMxMPv30U0mWCLcaN27M1KlTWbRoEW3bejQGVAEeBX4DVKRyWwgRpCRhIoQQQgghhBBCCFF5XAZ8CKwC2rk7OTQ0lISEBNavX8/AgQMJDZXu7cJzN998M6tWrWLKlClccol5pKBDMUA68APQy6fBCSFEKUjCRAghhBBCCCGEEKLiqwWMQ5+1d48nF3Tp0oWPP/6YCRMmULeueQSdEJ6x2Wz06tWLnJwcBg8eTFhYmPuLoA2wEPgEaO/TAIUQwguSMBFCCCGEEEIIIYSouGzAY8AvwAvoM8lcio2NZebMmSxcuNDTdkpCuFWjRg2Sk5NZvXo1t912m6eX/RXYDMwE6vksOCGE8JAkTIQQQgghhBBCCCEqpluBb4DZQH13J0dHR5OYmMiaNWvo0aOHz4MTVVOrVq2YM2cOCxYs4PLLL/fkklDgn+hJv6HF/y6EEAEhCRMhhBBCCCGEEEKIiqUZMAf4FLja3ck2m42ePXuyYcMGEhMTCQ93W4QiRJnFxcWxcuVKMjMzqVGjhieX1AZeRm8rd5dPgxNCCCckYSKEEEIIIYQQQghRMcQAKrANeNSTCzp06MDSpUuZOnUq9eu7LUIRolyFhYUxcOBAPv/8cwYMGEBISIgnl10BrACWAa19GqAQQphIiZvwrUxuwY552tc2VHZ6fa+FhLCVbmgohvUwtpDMgTJE6dpUIjhCnIMjm1E54vX9xlGTs1zv4MgGVE57fT9PqVwCXOvgyDpU8r2+XxZNKMTY7FahiHTWAFppQvSISiz6cLiLbJwjjfWlvN8VQFPT6glUvirV/YRHNLgeqGla3qPA1lLeLw6IMC3/rkBuae7n4a+pALdg/V76swK7S3G/sOL7mX2rwJ+lCNHTXzcKuNnBoY0KHCvF/WoDHR0cylHgrLf38+LXrY/j3ZVrFCgsxf2aA5eZlgsVWFOK8ASwZ08Ee/YYv0wjIuxcc82pUt1v+/ZI/vzTuDu2evVC2rb13bdSgG3bojh2zPhoU6tWAZdddqZU9/vhhxhOnza+OGjQIJ8WLXz25QLAd99V49w5496pJk3O0aTJOa/vpWmwcWN1NM34iNay5Rnq1SsoU5yuFBUpbNpU3bLeps1p6tTx+sueM2dsbNlSzbJ+5ZV5xMQUlSpGIYQoRwrQE5iI/pziVsOGDRk5ciQ9e/ZEURT3FwjhQ7Vr12b06NH06dOHtLQ0vvjiC08uuxe4A5gBpAInfBmjEEKAJEyEr9m5HnjRtPo74+hIEse9utdPqECKafUHCuhc+gA9MIRzqDyKPkSvpNUsJJ7eePMTtMJZ3gQeMK0vQ+V/ZYrTnUYcZx+ZwI2mIy8Bz3t1L5VIClkOXGM5AqtLG6KHTqOXnje6sGIHMnicdGZ7dacsmlFIDlDXdOTvIAkTH6uPvluo5E9uxzS4ztskhwZ9gXdNyweBDmUL0TVFf0fYBRhtOvSrBh0VOOnlLccAw01r34NvP+MUOKNBf+Bh06EVGtyreJEALU4izQbMDbEXKvBJGUN15wQwAeuf+xgg2ZsbaVAN+Bh9Z1tJSUjCpNTCwjRGjWrJsWPGx8+srFzuvNO7/Qe7dkXQv/8V5OVdTDQoCkya9Bu+nlubn29jyJA2FBZe/PgKD9d4882fufxy75I1GzbUYNiwS7HbL65FR9uZM6dUuWOvbN8eSXZ2C8Na3boFvPPOVurW9S7JMW9eA6ZMMe49aNr0HPPm+fb3ERKisWZNLRYuNM6HvfLKPF5//RfCwrzbvzFuXHOWLzc+EnTqdJLp038tc6xCCFFG16O3KbrJk5OjoqJ44oknGDZsGDExMb6NTAgvXXXVVbz//vusWrWK1NRUdu50u582DBgC9EJ/5zALvHoPI4QQXpGWXMK3VCYBS02rrTnLv726Twa3AiNNq3mE0NunVRnnxfA01p3vt7KVJK/uozIUa7JkJ/A4vqzKABhEAfqLZfNbqWGo/M3Lu03HmixZS1uyShuex1QOor/YNT4gaUxDpZ0X9wmlkPlYkyWvoPJ+WcMUrimwHJhiWq4FLNDA44bKGlwKvGZatgOPKrC3bFF6ZAyw0rTmKCaXNL0/b6Jp+RTQ25dVGSU8id7WoaS7gee8vM8LWJMlvwH/KGVcHiv+79Qb666zJE3fleaNGViTJR9h3QAgvFC/fj6ZmTswb3AdM6YFf/wR6fF98vMVRo5sZUiWAPTrt5+uXb3bi1EaV12Vx5NPGj9e8vMVkpKsMbly5EgYGRmxhmQJQFLSH8TG+v7L/oEH/uTuu42PBIcPO47JlR9/jGH69CaGtdBQjaysXKpV8/27jGHDdnHFFcZHwR9/jGHGjCZOrnDsgw/qWpIldeoUkJWVi83m20c0IYRwoTEwE/gCD5Ml8fHxrFmzhuTkZEmWiKBW8u9qtWrWCk8HGqF/PXyJvnFNCCF8QhImwtc0IugP/GFa74XKkx7dQaU+Gm8DxrcQCoNJLV37Hq/9izz0F3HGn8g1MlHp7tE9VDoB402rBdjoW6rWXqWhshPFkpxRgDeKW125l0Ef9N3oJR0CHvay2qb0VNYA2abVGGAhKtEe3mUs1h86vqcGL5QxOuG5EcDnprXr0f9s3NIgElgImPuxjFWsSQyfUIqTM1iTM301PRHqlqa3hJsDmPskPKnAL2UO0gPF1TAPA+ZePOM0a1WaQ5peCZNpWj4H9FH8VDqv6MmZf5qWbcBcTX/h4JamX59gWj4A9C/+8xZlcNNNx0lIMHZsIn5QAAAgAElEQVTRPH3aRkpKS/LzPWsV8tJLzfj5Z+NH/ZVXWpMYvuQoObNrVwRZWS2cXGFkt0NKSksOHza29vrb36xJDF9ylJzZsKEGc+c29Oj6kydDGDmyJQUFxj+7YcN2c9VVeeUWpyvh4Rrjxm23JGfmzm3AunW1PLrHzp2RTJzYzLBms8Ho0Tu45BLftRQTQggXwoGhwM/ozyZu3920b9+eJUuWMHv2bJo1a+budCGCQmRkJIMHD2bdunXetI7rCKxH71jg2cOXEEJ4QRImwvdGchQbfQDzT5wvkemmZY6KDZhHyfZLune9br9UVio/oDDMtGoD5hTPB3FuPNWBt7HunE8izfLC2LfSWYZeIVJSbWABqpud/aO5FM3Bbn6FR1H9spu/pAysLX6uxFq14OhKx7v5Q+jN85SuCb3wmoLTqqfnNDyqepqCdS7PevQybb9RcFL1BK9quK560vTWmO+A5TNkpqJ/ZviNApvQk1glhQHzNajj6triuSXzi88v6XkFNpdflO4psAC9TL+kesA7mjnxbqLBVehtCkuyA48osL/8oqzannlmj2Vuydat0Uydah4nZfW//9Vm0SJj+6UaNYoYO3Y7oaH+qwJQFEhN3UH9+sZHm1WrarN0qetHAoDXXmvMV18Zc72tWp1h+PBd5RqnO9HRdsaN205EhDEXOH16Y777zvVOT02DzMxY9u41zqWJiztOnz4Hyz1WV5o2PUdKinFvjqaBqrZg3z7Xjzb5+TaSklpZ5sgMGLCPzp2lTboQIiB6oCdKXsa6MciiTp06ZGZmsmLFCjp39m23aiF8pWHDhkydOpXly5fTsaOjcYgO3Qv8BIxDb6krhBDlQhImwj/S+BJIM61GYmchKjVcXJkCxJvWfiWKQeUan6fS+Td6AqekJjjeHX7RGWZiHR68AtXyYs4/6pCI9SXmDVh3h1+kEkkRC8Dy5zWOdD4u3wA9oGInjASsLzEHolp2h5e8rimagz8vhSdJ9c9ufnGR4rglnQK8oeG86knT+9eaKwmOorfi8n7SbxkpsBYsLeligIUaLqueMtAH1pf0A963wioXCkwFS0u65sBszclnXPH6m1j/vN5TrMlZf3kG+M60dgv6oEiHtPNVatY/rwwFH8+YqmJCQjTGjMmlZk3jl+r8+fVZvdp5RcD+/eFkZxtn3CoKpKXtoHHjfJ/E6krt2oVkZW0nJMSYqBk/vhnbtkU5vW7Tpuq88YaxgiMqSk9cREb6v4ipTZszPPfcbsNaUZHCyJEtOX7c+bhDR39eDRrko6rWtmv+cNttR3nwwUOGtRMnQklLa0lRkfOAHP15XXfdKf7xj30+iVMIIVy4Fn1W2gdAS3cnh4eH8/TTT/PFF18wcOBAQkI8bwspRLC69tprWbp0KS+99BL169f35JJo9LbAhwnQz1BCiMpHEibCf1TGo5dMltQGZ73+VbpiTbLoPepf8HqYcnl6Cn3HT0l3kWEZ1qxTeRp4yLS6G+iHr+eWODOEc4TQGzA3ex+Byn1OrnoZ6zDlL2jk3938BskcQHG4s38GqmX+gD63xPFu/tdI9+9ufnGRon8uTDMt10avbDBXLKBBa7DMQdLQWyaZ2//5UyZeVD1pcCtYWsDloc8tCWSl0wAg17R2L3oSwpHngPtNazuxJrT8psQ8E/P3ilQNbnNy2TTAPC58Ddb2f6IcNGiQT0aG9cW6o4oFgMJChVGjWnHihPEF/kMPHaBbt2O+DNWl6647xT//aXyx7qxiAeDIkVCSk1titxt/4yNG7KRVK3+MK3KsZ89D3Hmnsdjv4MFw0tNj0Rw8qWzdGs0rrxgrgkJCNMaOtSbC/Gn48N1cfrmxe+o331Rj5kxzobJu5UprRdD5RJjMLRFC+FF99LkMG9E3eLh1xx13sGbNGlJSUjyd/SBEhWGz2ejTpw85OTkMHjyY8HCPRlyGA5PRf8YSQogykYSJ8CeNcAYAe0zrfVB5wrAyRm+fgnVuyRBUvvVlkG6pnMJGb8wvNDXGkMnNhrVM2gMTTXcoBB5C5U9fhulWKr+jWAYx6zvFVYxbeDPoBZaqnqOE0rd4mHzgpLMa62yYasBCJmPe4htUu/mFwXCsVU+WmRgaRKBXAdQ0nTtRgaW+C8+94vkWDqueNNNMDA0a4OgzDp5W8NNsJicUOAb0Acxb9l/U9H7BF2iOZ84UAH0Va6s1v1L0IfZDTMs2YJ4Ghu39xfNm+pnOPYjeiss/s5mqoC5djvPQQ8bWTSdPhpCUZJ2JMXVqU77/3ji4tl270zz7rPmRwv/697e2bnI0E8Nuh9TUlvz5pzEPfPvtR+jR47DP43Rn1Kg/aN7cmLTJyanJu+82MKydPm0jOdk6c+aZZ/Zw9dXGVmv+Fh6uV+rExBi/bN96qxFffGEskN21K4LsbGPbc2et1oQQwkfCgOfRn1n+iZvWoQCXX345CxYs4M033yQ2NtbH4QkRWNWqVSM5OZk1a9Zw5513enpZii9jEkJUDZIwEf41qng4uPUF1DQyuab4/yvkMwu91VVJC4tbYgVeGlvAUlESip13GUNdAFSqYWchmF7aK6ShkuOXON1JZxH6bqaS6gBzi6sxYDSt0Rzs5lfoT0pAd/Nf1I404FPTantOlEhWZTjZzR9Cb1ROIwJK0YeDO6p6ekHT+zifNxG4znTO1wTJg7GiDwd3WPWkoVc9aVyYzWSeqvymorf3CzhF/286yrQcASzQipNVGtRCnxdi3vL1goKfZzM5ocBbYJl31YAS80w0vV3iVNM5dvT2bv6ezVTlDBmym6uvNg4H/+mnGKZPv/gIoL+0N7ZkqFZNn1sSFhb4KgB9OHiuZTj4Bx/UZfnyuhf+/c03G/Hll8aX9s2bnyMlZadf4nQnOtpOdnYu4eHG/6ZTpzYxJKvGjGnBzp2RhnNuuuk4CQkH/BKnO82anSM52fh4YrdDWlpLDh3Sk1X5+QpJSa3IyzO+m+zXbz9du5q/DQkhhE/cA2wBJmHdCGRRq1YtsrOzWbVqFXFx5v1fQlRu9evXp23btoSFWZoPOOKq5bsQQnhEEibC/1TWoZBhWo3EzjuoRKPyAsYXpAC/gaUaIrBUpqPvEC+pGfnMRq/UmAGWtlCf0pYJ/gjPC8OAb0xrXYF0phJRPLfE/BA/mfTA7uY36E0R+u5wc9XO06g8TDYN0BxWLA0mNbC7+cVFCvyO9etcAWZp0KQ4cTLYdPwY0EexVkMEjILzqidNT6CmYW0LtQ0Y6ofwvDEZa9VOa+DfxXNLZmHtr70cvX1fMBmMPgyypFvRk3GR6BVL5oGqYxVY6Y/gqrrQUI0xY7ZTo4axjdO8eQ1Yu7YWBw44bgs1cuROmjQ558dIXatTp5Ds7FxLG6dx45qTmxvJ5s3VeO01Y1uo8HA7Y8duJzo6eIqY2rY9zZAhxnkmJduhLV5cj48+qmM4Xr9+PpmZgZlb4szttx/lvvuMjwQl26FNmtSMX34xjiu66qo8nnxScqRCCJ+7Avgv8CFwubuTQ0ND6d+/Pxs2bKB///6EhjqfLSVEZaNpGkuWLCEuLo6XXnqJgoKLm1Nq1nSaZ9zul+CEEJWaJExEYGhkY+313w59wN1o0/o59LZdJwg2kTyN/pK3pHtQ+S9YBo/vAx4qfrkfPFTOEsJDgLmPxiiOsAxTCx7gSxox0j/BeUF1OhdmOgX8B+tu/tmkW3aeiwBTYBHwf6blesB76NUXJV/JacATinXeRjBIB9ab1tqjJyDM1TBngL8r1nkbAaXo/30HALtMh3qh/6D/oGl9J/CYEqjZTE4o+lyYPljnwmSgz8+5xrS+HgI4m6kKatgw31JloWmQmdmCf/2rtWXweM+eh7jjjoB2fHOoY8eTDBxo7Mh35ow+zyQlpZVl8LijeRvBoE+fg9x6q3EuzP794Qwf3orJk61zS7Kzc6lVK3BzS5wZMWIXrVsbv+w3b67O0KFteO+9eob1GjUKGTduO6GhQfXxJYSoXGoDLwHfAx71FuratSurVq0iOzubWrVq+TQ4IYLNt99+y/3338/gwYPZt+/ivLgGDRowYcIEbr75ZmeXBkfJqxCiQpOEiQgMFTvwCHoSoaS/AuZtM8NRLbMNgkMSx7HRBz2pU9Idpn+3A4+hcpBglMovKAw0rdqAeNPaMUJ4KOBzS5xRWYF1ZkxN4C+mtV+J4ln/BCVK4TmsVU+d0VtAlfSKAkv8E5J3lPOziqxVT/FY+1MPUfRZOkFHgcPoCRLz17z5M64QeDjQc0ucKf7va55nEoq10ucoeiuu4Hv7W8l1736U3r0PGdaOHw/lp5+MVQBt2pzhueeMFRDBZODAvdxwg3F/x++/R3HwoLGFxG23HeXBB42/32ChKJCWtoPGjY2PNps3Vyc/3/ijw6BB++jQIbBzS5yJjLTz4ovWCp7PPzd26tB/v3/QsGHQFCoKISoXG/AY8DN6Zb/bnkKxsbHMnDmT+fPnc/nlbotQhKhUDhw4wIgRI+jRowcbN268sB4WFsbAgQNZt24dCQkJKMFU2iqEqHQkYSICR08eOOr1X9IyVKb5KaLSSWMTMMLlOQqZqJaKmuCSzgL0FjuuDCA1KHfzlzQK+MzF8bNAb14Irt384iLl/J8RLqvKvsc6kyaoKLAH/Qdku4vTFirwup9CKhUFvgRS3ZyWorj+ugu44v/Oc12cogH9FYJkNlMVNGzYLq64wnnFRXS0PtA7IsLVl1Rg2WyQlbWDunWd7yto2vQcKSnB/desevUixo3LdTkjplOnkzz++H6nx4NB8+Zn+de/zEVyRg89dIBu3Y65PEcIIUqpG7AZfZ5afdenQnR0NImJiaxevZoePcwdqoWo3AoKCnj99dfp2rUr8+bNo6jo4mui+Ph41q1bR2ZmJtWrmzvpCiFE+ZOEiQgslTVAtpOjuegvG4O/P4LKK8B/nBxdTVuy/BlOGQzB+U73V1F535/BlIqq73RH3ylupTAElW/9GpPwmqLPLTLPKznvBHoLq7N+DKlUFL11lbnq6bxfwVLZFaxeBD5ycuyj4uMVwWD0eTGOTFKsM1uEH4WHay5neowc+QexsUH/ZU+dOgVkZOzA5uAp+/zvsVq14OrO6Ui7dnk888weh8fq1i1gzBjrzJZg1KPHYe6557DDY+3a5fHss45/j0IIUQbN0FvJrsba+tNCURR69uzJhg0bSExMJCIiwucBChFMVq1axS233EJaWhonT17c19imTRvefvttZs+eTYsWLQIYoRCiqpGJYSIY1Hay/hkqFWPL30Js/GQZjH7eR0E3t8S5cCDGybHl/gykTEKIoYhwB0fOYQvySh9RkrPPhp8Izrklzjj7fawNtrklLtiAGk6O/VdxXUUTTCKAaCfHKs5nXCV25kwIhYXWFgtRUXY6dqwoXy5w8mQIdgdfFY0anaN16+BP+px34oS5g6DuyitPU6dOcHbnNNM0OHnS8Y88f/nLCZdVNEII4aVo9M4DLwCRnlzQoUMHMjMz6djRPDZSiMrvt99+Q1VVPv30U8N6rVq1SExMpF+/foSGymtLIYT/SYWJCCyVe4FnnBxNIINH/BlOqf1EKnCrk6OZqFznz3DKYAbQ0smxt1Atg9ODj0okRbyD48RPBEUsQHWYTBFBRIOrgQlODv8FSPZjOKWm6a3F/uHk8EANHvBnPGWQBdzk5Nh4zYPdk4GmgYLelqupk1PmalDXjyEJk9OnbYwa1dIyJwP04ekpKa2w24O/X/Xu3RFkZzveBfnHH5G8/LKzv4LBZePG6rz5puNv++vW1eT99+s5PBZs3n23AevWOd7T8tZbDfn6a2ntIYQoMwV95ttWIB0PkiUNGzZkypQpfPjhh5IsEVXO8ePHSU1NpXv37oZkSWhoKAkJCeTk5DBgwABJlgghAkYSJiJwsmiG3s/V+dsPjf9jNME96S6TW4AUF2dEAAtQne7ODg4qzwB9XZzRAD1pEuyfG1OBa10cvx7nbeBEENCgGrAQ1z9spmvQ3U8hlYoGbYB/uzntDQ1i/RBOqWlwJ/AvF6dEAu9ozis3gsVw4H4Xx5sCszVX35OET40b15wdO5x/2W/eXI1//7uRHyPyXmGhQmpqS06dclyZAbBwYT1Wrqzjx6i8d+RIKCkpLV0mqCZObMq2bcH9Zf/TT9G88koTp8ftdoX09FiOHZMXMkKIUusE5KA/uzZ3d3JkZCSDBw9m/fr19OrVSwZXiyqlsLCQefPm0aVLF2bNmkVhYeGFY126dGHlypVMmDCBOnWC+zlJCFH5BfuLT1FZzSSMQhYC5u+Ev5n+vRpFvM1UgrOR6xjqYecdwPxmxPz7aINevRGcMumAdQZBPrDTtHYHissXp4Gl0hfrbv6DWIeHJ5LBPf4JSpTCv8GSKDV/TdmAORoE5RZn7Xyi1NrGyvz7qIWebAjzS2Be0qAxemLb/Lxg/n20A17xS1CloEFnrInSs8Bu09o96LOchJ998MElrFhhLPCpV6+AyEhjX6tZsxoFdUXAlClN2bLFWODYtOk5zO/Dxo5tzt69wfloY7dDSkpL/vzT+LHUrNk5w7/n5+sVQWfOBOePE6dOhTByZCsKCoz/8c2/j4MHw8nIiEWTzlxCCO80BmYCX+K8CtcgPj6etWvXkpycTEyMsy7IQlROOTk53HHHHYwYMYLDhy/OFmvZsiUzZ85k4cKFXHHFFQGMUAghLgrOn3BE5bePMehtdUr6mhiuBTaY1jtyhPH+CcwrCvnMQn9YLmk+4dwE7DWtP0wGA/wTmhdUqhUnfYzbehVGYeNe4IxhXSOLTG72X4AeGk1r9B9aSrKj8BiKZbC2gsYcVPe7wIR/afBPrJVOu4EbgbdN600I3oqAiWBpxfcF0AHYbFq/ERjtj6C8oRUnpYD6pkMzgS7AftP6Exo86o/YvKHpSal3sSalhgMPoieHS3pRs35/Ej60fXsUEyY0M6zZbJCZmcu//rXLsG63Q3JySw4fDr4cY05OTebPN3651KhRxPTp2+jb96Bh/eTJEJKSWlpe5geDN95oxFdfGXO9rVqd4e23f6JzZ+P+gx07IpkwITi/lY4d25w9e4xJqbi448ybt5XmzY1zZNavr8k77zTwZ3hCiIorHBgK/Iz+3Or2nUr79u1ZsmQJs2fPplmzZu5OF6JS2bFjB4MGDaJ3795s3br1wnpMTAyJiYmsXr2aHj16BDBCIYSwkoSJ8L8M7gISTavHCKEP/yKPUPoCR0zHh5ARZL3+VV4AzN/ZfyWKfzKKQ9h4GEzD3jVeJTPoev3PAMxbOf5LOpNJYwv64MKSQrHzLmOCqNf/VCIoYiHW3fzjSedj0lkEvGY6VgeYh4r04QgSGlwJvGRaLgQeUuBP4EngF9Pxu9BffAcNDe4FBpuWjwJ9FTgF9MFa9TRCs36eBFoa8FfT2g/A8wocAB7BOux9umb9PAm0WVhnM72nwDQFvsY6DycMmKeB46EHolzl59tISWnJ2bPGR9JBg/Zy/fUnuf/+P7n77sOGY0eOhJGc3NLhUPVAOXAgnPR0Y5WCokBa2g4aN85n6NDdtG+fZ7jmp59imD7debuoQPjmG2vbs/BwO9nZuURH2xk9OpdLLjEOe1+2rC7LlwfPIwHAokX1+PhjYxFzgwb5qOoOYmKKyMrKtQx7f+WVJnz/vez4FkK41AN9TsnLgNtyx9q1a5OZmcmKFSvo3Lmzz4MTIpicPn2aSZMm0a1bN5YtW3Zh3Waz0atXLzZs2EBiYiLh4TJeVAgRfCRhIvwriyZozMG8I1zhaVLJBSCFXUA/QDOcofEGapD0+le5Acg0rZ4FevMCJwFIYy36oOSSIrHzDmqQ9PpXGQgkmFZ3A49x/r+/yqvAfNM5zch3M3/Gn47wItbd/F/SiPQS/z4U+NZ0Thz6S2ERYBrEoPd+Nn9tpCl6X2iKkw290b/WShqjedgKwdc0HM5m0oD+CvyBfuA3rK3jFGCWZq1YCwgNh7OZ8oDeCpwGUOBTYILpnGrAQg2ifB+lexo8i15FUtJO9B2h500CPjCd0xr382dEORg/vhnbthn/unTseJL+/S8WMCUl7SQ21vhlv3FjdebMcTyQ3N+KihRGjWrJ8ePG/PtDDx2kW7djAISGaowenUu1asZ9FPPmNWDdulp+i9WVEydCSU1tSVGR8Vt7UtIuLr1ULzatU6eQrKxcbDZjsmHcuObk5rqdcewXv/0WxcsvNzWshYRojBmTS82aeq/0du1O8+yzewznFBYqjBrVihMnZB+FEMKiLfAR+vNCK3cnh4WFMWDAAD7//HMGDhxISIjzuVZCVDaaprFo0SJuuukmJk2aRH7+xWLu6667jg8++IApU6ZQr15QdlYWQghAEibCnxYSQiFzgEtMR6aTzruGFZUPgemm82oBC5gZ4F7/Y6mNPpvAGIfCMFTLC/lM4H+mtXbAFJ/F56lMrnQQhx3oh8qfpvWnoDihddE9qDzrq/A8pnIv8Ixp9SjQl0EUlDjvLCH0huKE1kXJZBDv2yCFB6ahf22UtBrTC3kFvgdeMJ0XCszXrDOR/Kp4Dsl8rHG8pMDSkguKnhyaZTqvHvo8k4D+VF08F8bRbKbBir6rsqRU4DPTWnusiRS/0+BqsLRzLESv9LlQxagUJ7SwzmzqpRkTK6KcrVxZm6VLjY8EdeoUkp1tfCEfHW1n3LjtREQYS0pmzGjMd99V80usrkybZo2jbdvTPPOMcURO06bnSEn5w7CmaaCqLdi/P7C7K53FER9/lPvuMz4SdOp0kscfP2BYO3PGRlJSK86dC+yPFs7iGDx4L9dcc8qw9tBDB7jllmOGtf37w8nODs4WY0KIgKiD/vPSFuAOTy6Ii4tj1apVjB49mho1zMXvQlRu33zzDffddx9Dhw7l4MGL7UgbNWrE1KlTWbZsGdddZ97nKIQQwUcSJsJ/fiID6G5a3UINJ+106pCItdf/DeyzVHb4k8I53gBLpcti0i3zM0DFThiPYO31PxDVUtnhP5OJKp5bYt7Nn47Kp5bzVY5how/WXv8TySRw9eVZNAPewrqb/wlUdljOT+VXFIaaVm1ozCWbRpbzhV9o+sySfqblA8Ajirmtne4VYIlprRmBn2cyFmuly0ZgpJPznwG+M63dgp6ECIjiuSVzcTCbSdErZwyU4pZpwGHToWc06ywav9GKK12wVrqMVOBz8/nFCZQE9N9PSVM0uNY3UVZtu3ZFkJ3dwrB2fm6JueUTQJs2Zxg61FgRUFSkMHKktbLDnzZsqMG8ecZKl+hoO1lZuYSHW6eI33bbUR580JiAcFbZ4U9z5za0VLo0a2ZN8Jw3aNBerr3WmID4/fcoXnqpqcPz/WXs2Obs2GGsdLnpphMkJJgfw/SWaenpO2jUyPho87//1WbxYtn1KkQVF4a+aeIXYAgebGZp3bo1c+fOZcGCBVx22WW+jk+IoLJ//36GDBnCvffey6ZNmy6sR0VFkZiYyGeffUbPnj1RlOBoUCGEEO5IwkT4Rwa3Akmm1TygN8+bhoqfN4RzOO71/wIZAer1n8Ew4G+m1e1EWoaKX5TMAfTdy+Zu6zNQA9Tr/wTT0Hdfl7SGdox1ek0aX6NYWvSEYedtxgWg179KKIXMB8sslSmo/Mfpdem8iT7IuqQGFPA2CwO7s78q0uBSrPNl7MCjCuxzdI1yPimGJSnmaHaIX2j6LJXnTcvHgT6KNdEIgKK3FnuE4hZXJaRqcFv5R+mRF7DuoPwVF5UWCg7bKALM0KyzQ/xlBnC5ae2/6O23HFJgPdZWi5HoLcbc9ikXnsvPV0hKakVenvEj9/HH9/GXv5i/5V/Uu/dBbr/dOOLs4EHr7BB/OXIkjIyMWMsslZEj/6BFC3PnwIuGD9/FZZcZv+wdzQ7xlx9/jGHGDGOONDxcY+zY7cTEOMpZX2xxVauWMce4eHE9PvooMMV+H3xwCStWGB8J6tQpID19BzYnP/HUqFHE2LHbCQ01/gWaPLkZv/wSHN1ThRB+dxvwDTATa2cEi5o1a5KcnMynn37KX/9qHv0mROV25swZpk2bRlxcHIsXL0YrfiBTFIUePXqwdu1aEhMTiYwMjradQgjhKUmYCN9TqY/G25h35ig8hcrPbq513OtfYxaqn3v9q3RCY5xptQB4hCSOu7n2I2CiaVXfAT3Zz73+M+iDnsAp6SBhPExvh7v5L0pnIo56/Z8NSK//MVh382+ijiUxZxXD02D5u3crWy0D7oUPacUvo7G+jM5WYJWraxU4hp5QNW9Fn6hZ59n4lAZNwcFsJnhKge2urlXgR/SdiyXZ0IeO+3VAgwadgQzT8jn0pI+5lZ2BAsvRK39KqgUs0MCvvYY0/XuGuYJvD/CYYk3qmGVj/bt3KTC1nMITwEsvWV9GX3VVHv/8p8McqcHIkTtp3PicYS0npybz59cv1xjdsdshJaUlhw8bu3M++OCf3HXXESdX6cLD9RZj0dHGb7lvvNGIL7/0b/uWkydDGDmyJQUFxo+vYcN2ccUV5lyuUf36+WRk7MC8WXTcuObs2RNR3qG6tHNnJBMnGqtbbDbIysqlbl1rxVJJ+t+9vYa180m906dlH4UQVcjNwNfozwFXujvZZrPRs2dPcnJyGDx4MGFhge0aLYS/rVq1im7dupGdnU1eXt6F9auvvpolS5Ywc+ZMmjYNbOWpEEKUliRMhG+p+os/sLQ7epN05np4j4XAG6ZVvce+vyoCxlMdeBvziz+FF1D5wsO7JOOo1/8JS49931Fpg+Z4Nz/Jjnfzmzjt9U+GJbHlOxncBZZWbqcI4ZHiyiTX/kUeNnqDqbpJIxOVLuUWp3DnZaztjhzt8ndIga+ANNNyBPpLer+8dSyeNzIb6w7EGQqm2UxOKPosk3mm5QbAm5qfvk9rUBt9/or5p/3nFH2XpSeGA1+a1q4HssoYnsc0/QXHy6ZlO3qyxDybyUI5/3lobagTebYAACAASURBVKP4uAaPlU+UVdunn9Zm0SJjuyNnu/wdqV69iHHjcgkLM547ZUpTfvghplxjdeXf/27MV18Zc72tWp3h+ed3eXR98+bnGD7ceK7dDqmpsfz5p/9eumVmxrJ3rzG5ERd3nF69Dnl0/c03H+ehh4zzTE6dCmHkyFaWJIyv5OfbHCY3Bg7cxw03uMz1XvD44/st1U27dkWQlSXzTISoIt4CcoBOnpwcFxfHJ598wtSpU6lb11zsLkTl9v3333P//ffTr18/du26+CzToEEDJkyYwIoVK7jhhhsCGKEQQpSdJEyEbykkg2Wg9jaiLHMk3BmMPuy5pFvYamkR5Rtn+D/A3Ix2BemWF3POqRQS6rDX/7OoPFjGCN2bSgT6bn7zi+SxqKz0+D4qR9BfKBq3xmpMJZNryhile1k0QXOwm1/hSVL5xeP7pLEFa9IlFHgX1X35vSgbDXoBg0zLR4AExTpHwpXxwDLTWhvwW9WTo9lMPwCJXt7nKaxVT3cC/yplXB4rnvvicDaTore28ohyvuIOS8XdcA3uK1OQHtAgBv0zztxHR1VwMJvJCUWfn/Mw1vk50zVoW7Yoq7b9+8MtL6CdzZFwpV27PJ56yjjPpLBQISWlJadO+X4fxebN1Zk1y1gAFhWlV41ERpq7bzp3332Huece4yPBkSNhpKS0xG73fbJh/vz6rF5tnFvSoIHjqhFXhgzZw9VX5xnWfvopmldfbVIeYbo1YUIztm0zFuted91JBg70ZB+Iztn8nJUr67BsmbwMFaKS64J1lp5DsbGxvPHGGyxYsIArrghMZ2UhAuXgwYM8//zz3H333Xz99dcX1sPCwhg4cCDr1q0jISEBm7M+mEIIUYHIJ5nwnUzi0Cy7v89iozcvuG7vYqFyFhsPY+71r5FGBr5tFpvBU+gvz0rajeOe/a6lsAt43MF1sxjt417/R3gJ6GBa/YJGlhY87qmsw1GvfzsLi6txfEPFRiFzsO7mn0k6b5fiftOxVgE0Ra8YkIl0PqJBa6wJDQ3or1irl1wqbrE0ANhrOtRb09d9RsP5bCbFXL3khgKnwEHVE2RpeosIX3I0m2kn1oSWWwr8jqM2inq1jK+3ar8CtDOtrUFv3+cVBVYDE0zLMejzTPzbRrGSKCxUGDWqFSdOGAe0P/zwAW655ZjX93v00QN07Wq8bvfuCLKyWji5onwcORJKcrI1oTFixE5atXI+t8SZpKSdtGxpvG7jxuq89VaDMsXpzq+/RjF1qjGhERKiMXZsLjVqeJOzhtBQjTFjtluue+edBqxdW8vJVeVj1ara/Oc/xkeC2rULyc7OxWbz7hGtTh3H102Y0Jzt26X3uhCVmEfJksTERNasWcOdd97p63iECCr5+flMnz6duLg45s+fj73E8Lb4+HjWrl1LZmYm1avLyD8hROUR6v4UIUrJTgsHQ8K/JY3vSnW/NH5E5QEUy0t/380yWUgIWwlHMb0U1ViF6r69i0MqH5LBo+gv5i8q4nIgt5SRuvs1a6HwB+aXuxpvM8gyA8JTWcAxFNPLwzNcCmwu5T1dC6E1dlaCoSLGTnVeLcNdn0Zx8Hcyi6bFCS5R/q4AxprWdirW+TgeUeCQBveDJXkarYGtuM2SL7RAb7VX0kYFtpbmZgps0aAn0N50qDnWdn7lQrv4HGBO/PxX0St+vKbAIk1PDJtnsFyGlwkxT2l6EvUXrL+POYq1UsRTacAhrDNYLoNSfh+rwnbujOCWW44ZkiMhIRp9+hws1f0UBdLS/mDp0jzLscOHw9zOrSit3Nwo+vY1xlyrViE9epiLRz0TFWVn/PjfWb/emFgICdEoKFAsrcfKyx9/RDJokLECo2XLs1x99alS3a9hw3wmTtzOli3GtmhHj/ruRw1Ng2PHQnn2WWO1UYcOJ6lXr3R//h07nmTs2Fx27za2Kdu1K7JUCTEhRIXgUYnj/PnzufTSS+nRoweKN2V4QlRgH3/8MRkZGezYscOw3qZNG1RVpXt3c6G9EEJUDsrGjRs9/klMUZQJHTt2fMGXAQm/SQFGo+/y/meAYxGiKmmFvgs/D6gW4Fgc6Q0sANYC3QIbihBVTiH6XJwmWKumfKk2FxNk4VDqRDobN24ciP9a4gkRSCs7dep0Rznc57/oLRgfR69wFUL417PAVE9PvuGGGxg9ejTt25v3twhRefzyyy+kp6ezbt06w3qtWrVITEykX79+hIYGdv/1P/7xD5YvX+7o0CvAED+HI4QIcps2bRqvadoIT8+XllxCCCGEEKJc2Gy2bYGOQQg/Mc+dEkJUTF71Ifzqq6+46667SExM5NChQ76KSYiAOHbsGMnJycTHxxuSJaGhoSQkJLB+/XoGDBgQ8GSJEEL4mnzKifuxtn/xxBRgfjnHIkRFsw4I8/KaCPenBIUOwOeluG4J1tkPQlQ189Bn9XjL9xPL3VuPt/O59LlevQCOHz++oXr16rng47lcQgSWBrxjWhsK9C3FvWRytBAVjN1u591332Xp0qU89dRTPPvss4SHmzt4ClFxFBYWMn/+fMaPH8/hw8Y2o126dCEjI4O2bdsGKDohhPA/SZiI+sX/eGtReQciRAX0F7xPmFQUNdB/f96S2Q5CwLXAlYEOopQ6l+Ka7ef/z6233lq4adOmpzRNW05wJICE8IWZnTp1+tK0Fkvpvm8KIYJTIW7el5w+fZpJkybx3nvvMXLkSHr06OGn0IQoPzk5OaSnp7N1q3EMY2xsrPy9FkJUWZIwqboWAlvKcP0P5RWIEBXY3yl9a0Ovyv/9KAf4Wxmuzy2vQISowJ5FTzqW1hH3p5SrU5Tt694web1jx44ff/311w8qivI6UK9MkQkRXAqBKSdPnkxycGwWsKYM995chmuFEOVvO3rl9HPo872c2rFjB4MGDWLu3LmyE19UGDt27GDs2LEsW7bMsB4dHS2VU0KIKk8SJlXXtuJ/hBClt8z9KRXOXmBpoIMQooJbHegAvFRAOX/dX3/99R/k5OS0joqKul/TtGs1TatenvcXwp9sNlu+3W7frijKB506dfrdyWk/IBuKhKhMioAk4A1gMnCPuwtycnK444476Nu3Ly+88AJ169b1dYxCeO306dPMmDGDV199lXPnzl1Yt9ls/P3vfyclJYV69WS/ixCiapOEiRBCCCGEKHddunQ5iT7PZV6gYxFCCCFKaRtwL3Ab8DJuWm4WFhYyb948li1bRmJiIo8//rgMyBZBQdM0Fi9eTHZ2NgcPHjQc69ChA5mZmXTs2DFA0QkhRHApbSsZIYQQQgghhBBCiEonLCzMnOX4BOgADAOOu7v++PHjpKWl0b17dz799FNfhCiEx7799lvuu+8+hg4dakiWNGzYkKlTp/Lhhx9KskQIIUqQhIkQQgghhBBCCCFEsZiYmBgHywXAFKA1MBW9bZdLv/32GwkJCfTr148dO3aUb5BCuLF//36GDBnCPffcw6ZNmy6sR0VFMXjwYNavX0/Pnj1RFCWAUQohRPCRhIkQQgghhBBCCCFEsaioqGouDh8GhgLXA+s8ud+qVau45ZZbSE1N5eTJk+URohBOnT17lmnTphEXF8fixYvRNO3Csfj4eNasWUNycjKO84JCCCEkYSKEEEIIIYQQQghRLCoqKkbTNHfvS74BbgHuA3Ld3bOgoIBZs2bRtWtX5s2bR1GR2wIVIbx2PjmXnZ1NXl7ehfX27duzZMkSZs+eTbNmzQIYoRBCBD9JmAghhBBCCCGEEEIUCwkJCdm3b9+1Hp6+DH0YfBLgtnzkwIEDjBgxgrvvvpuvvvqqLGEKccEPP/zAAw88QL9+/di1a9eF9Tp16jB69GhWrFhB586dAxihEEJUHJIwEUIIIYQQQgghhDC63YtzzwDjgSuAuYDm+nTYsmULf/vb3+jXrx+7d+8uZYiiqjt69CipqancddddfPnllxfWw8LCGDhwIJ9//jkDBgwgJCQkgFEKIUTFIgkTIYQQQgghhBBCiBI0TYsvxWV7gceAzsDnnlzgrIWSEK4UFBTw+uuvc+ONNzJr1ixDi7e4uDg++eQTMjMzqV69egCjFEKIikkSJkIIIYQQQgghhBAlKIrS5eDBg66Gv7vyNXAz0BvY5eZczpw5w7Rp0+jatSuLFi0yDOkWwmz9+vXEx8eTlpbGiRMnLqy3bt2aefPmsWDBAi699NIARiiEEBWbJEyEEEIIIYQQQgghjMKLioq6luF6DVgEtAUygLPuLti3bx9Dhw6lR48ebNq0qQy/tKiMfv/9dx599FH69OnDtm3bLqzXrFmT0aNHs3r1arp37x7ACIUQonKQhIkQQgghhBBCCCGESSnbcpnlASpwGfp8E7c2b97M/fffz5AhQzh06FA5hCAqsuPHj5OdnU337t353//+d2E9NDSUhIQEcnJyGDBgAKGhoQGMUgghKg9JmAghhBBCCCGEEEJYeTP43Z1d6PNNugPfuzvZbrezePFibrrpJiZNmkR+fn45hiIqArvdzqJFi4iLi2PatGkUFBRcONalSxc+/vhjJkyYQN26dQMYpRBCVD6SMBFCCCGEEEIIIYSwardnz55m5XzP1UAHoB9w0N3JeXl5TJo0iVtvvZVly5aVcygiWH322WfEx8czdOhQ/vzzzwvrsbGxzJw5k4ULF9K2bdsARiiEEJWXJEyEEEIIIYQQQgghHCuPtlxmdmAOcAUwHnBbPpKbm8ugQYPo3bs3P//8sw9CEsFg7969DBkyhF69erF169YL69HR0SQmJrJ69Wp69OgRwAiFEKLyk4SJEEIIIYQQQgghhAM2m80XCZPzjgJJwNXACk8uyMnJ4fbbb2fEiBEcOXLEh6EJfzp9+jSTJk3i5ptvZvHixRfWFUWhV69ebNiwgcTERCIiIgIYpRBCVA2SMBFCCCGEEEIIIYRwQNO0eE3TfP3u5BfgHvRqlp/cnVxYWMi8efPo0qULr7/+OoWFhT4OT/iKpmksW7aMrl27MmnSJM6dO3fhWIcOHfjggw+YMmUK9evXD2CUQghRtYQGOgAhhFcUMrkKjW5oXAvULf4nBDgB7AS+x8Zq0vgxkIEKIYQQQgghRCVQd9++fdcBG/3wa30CXAs8DWQANV2dfOzYMdLS0pgzZw4ZGRnceuutfghRlJdvv/2W1NRUNm3aZFhv2LAho0aN4u9//zuKogQoOiGEqLokYSJERTCZKE7yBBrDsRPr9nw7oPIrCjPQmIXKCZ/HKIQICA0GA8+7OOVhBb70VzxCiPKk3QC86+HJBcARIBf4AVgJbAZF81FwQghRldyOfxImoH+eTwHmAWnoz3ohri747bffeOSRR4iPjyczM5MWLVr4IUxRWgcOHCA7O5v33nsPTbv4bToyMpIBAwYwbNgwYmJiAhihEEJUbZIwESLYqfyFEywEmnl55aVoTAbCgAnlH5gQIkgMAlq5ON4fSZgIUVFF4frr25Ebi/93DLAJtKGgfFa+YQkhRJUTj/656k+HgaHAW+gJlDh3F6xatYo1a9bw2GOPMWLECKpXr+7jEIU3zp49y6xZs5gyZQqnTp0yHIuPjycrK4tmzbz9sV8IIUR5kxkmQgQzlSeAtXifLBFCVAEadALauzmtr6a/dBVCVD0dgf+BdkegAxFCiArupoMHD1YL0K/9DdAVuA/Y4e7kgoICZs2aRdeuXZk3bx52u93X8QkPrFq1im7dupGdnW1IlrRv354lS5Ywe/ZsSZYIIUSQkISJEMFK5W7gNSDcxVnHgA3AR0AOehsOIUTV8ZgH59QEevg6ECFE0IoAZoEWEehAhBCiAgu32+3dAhzDMqAdkAScdHfygQMHGDFiBHfffTdfffWVz4MTjv3www88+OCD9OvXj507d15Yr127NqNHj2bFihV07tw5gBEKIYQwk5ZcQgSjLJpRyHyc96rdBKQAn6BSaDii0hiFB9B4Gv2BWghRCWl6u72+Hp7+GLDQh+EIIfzrHPBoiX8PRW/d9STQ1MH5TYDbgOW+D00IISonTdNuBz4McBhngPHo803GAgmAy6ng33//PQ888AD33nsvqampNG3q6NuEKG9Hjx5l8uTJvPXWWxQVFV1YDwsLo1+/fgwfPpwaNWoEMEIhhBDOSMJEiGBUSArgrOHsu8DjqOQ7PKqyF5iGygwU+qOPgBdCVD73APUcrOdjrUy7Q4OGCuz3fVhCCD8oBGWRdVl7A/gRqO3gmmuQhIkQQpRaccIkWOxB3xDzCvp8kxtdnaxpGsuWLeOTTz7h6aefZvDgwURGRvojziqnoKCA2bNnM3HiRE6cOGE4FhcXx+jRo7nssssCFJ0QQghPSEsuIYJNFk3QhzQ7shlXyZKSVOykM4t03izP8IQQQaOfgzUNUB2shwIP+zQaIUQQUPYBzga81/RnJEIIUQldvn///paBDsLka+Bm9OdCtxtjzpw5w6RJk7j55ptZtGgRmqb5PMCqZP369dx+++2kpaUZkiWtW7dm7ty5LFiwQJIlQghRAUjCRIhgU8hd6K12HEn0KFkihKjUNKgL3OXg0BfouwzzHBz7f/buPDzK8u77/3smGXbZVDZRcQfrijsQLGqwjxptNVEfbwR7Q7UahdpUxB8SIJFbpKY1tN4+tNoaq7UC2mrEtkTZEqBqq1Vbl7qXNa4Uq6AhuX5/TKHSJGQgmbkmyft1HByHXOd5zvXRA8k1853zezZWiJXUtnRt5Pr6lKaQpDaorq7urLAzNCAA7gMOBWYCW5tasGHDBiZNmkRubi5//etfk52vzXvrrbcYO3Ysl1xyCa+99tqO6z169GDq1KksWbKEM888M8SEkqTdYcFESj/ZjVx/ixksS2UQSWnrMuIHOf+nhyLwGQ331z4qgOOSG0tSuIJRQFZDA8CSFIeRpLaosfdq6eBT4juNjwYaaNtY3+rVqzn77LOZOHEi77//fjKztUmbN29m1qxZjBo1iieffHLH9Wg0Sl5eHlVVVeTn5xOLNfZ9SElSOrJgIqWfxg5qr0xpCknprKF2XHXAwn/980O7sU5S69MRgnlf+vUzCJYDT9HwGYUPQeSlFGeUpLborCAIMsIO0YQ3gIuBM4EXm5pcV1fHwoULGTZsGCUlJXzxhQ0NmlJXV8eCBQsYMWIEd955JzU1NTvGhg8fTkVFBaWlpey9994hppQk7SkLJlL62afBqxHeTHEOSWkoiBdVT2hgaFkkfgAowBPAPxqYc1nQeMs/Sa1HJnDll359ExgJRP5j3vY2LVekMpwktWG9qqurTww7RIKWEH9mvApocvvIp59+SklJCaNGjaK8vDzp4VqrVatWMXr0aCZNmsQHH3yw4/p+++3H3LlzWbBgAUOGDAkxoSSpuSyYSOmnVyPXNzdyXVL7ckUj13fsKonA58BvGpjTB/haEjJJSk8vAWUQ+TzsIJLUVgRBMDrsDLthG/AT4AjgNmj6PMy3336bq666iksuuYRXX3012flajfXr1zNx4kRyc3N5+eWXd1zv0qULBQUFVFVVkZubG2JCSVJLsWAipZ+GDmsG6JLSFJLSThD/uf1/GxiqAR7+j2uNteUa26KhJKWzY4CnILgLAp/7JakFBEGQzueYNOZjYArxnwtPJLKgsrKS0aNHM3nyZD766KOkhktnW7ZsoaSkhOHDh7Nw4cId1yORCHl5eaxatYqCggI6dmzoeEFJUmvkGycp/XzQ4NWAvinOISn9ZAMDG7i+OAIf/se1CuC9BuaeH4ANlaXWbfs3hrf/upf4//ONtVz5NnBTSpJJUtt32kcffdQj7BB76DXgXOLPlK80NXnbtm3cf//9jBgxgrvvvpva2tqkB0wXQRBQXl7OyJEjKSkp4fPP/71Z87jjjuOxxx6jtLSUPn36hJhSkpQMFkyk9LOmkeunpDSFpHTU2KHt9XaTROIfqP66gbkdiB8EKqn1+hwiV33p1zchMhoYBPywkTX/HwQ9UxdRktqszC1btnw17BDN9CRwLPAdGj73biebNm2isLCQM844g2XLliU7W+heeOEFLrjgAq666irWrVu343q/fv2YO3cuixYt4oQTGjpSUJLUFlgwkdLPskaun0QxB6UyiKT0EUB34OuNDP/fAOb/5y9gaCPzGyu8SGrVIp8B36PhL190AUalNo8ktVmtsS3Xf6oBSoFDgLlAk9tHXn/9dS677DLGjRvHu+++m+x8KVddXc3kyZM599xz+eMf/7jjeqdOncjPz2fFihXk5uYSiURCTClJSjYLJlK6ifL7RkYyqLWdhtSOXQx0bmTs/wB5Dfw6qZH5pwQwuMUTSkoDkTrgxUYGD05lEklqqyKRSGs6+L0pHwKTgJOBykQWVFRUMHLkSKZNm8Ynn3yS1HCpUFNTw913301WVhb3338/dXV1O8ays7NZtmwZU6dOpVu3biGmlCSligUTKd0U8iywupHRCcxs8MDnhs1gAEWc1iK5JIWtpXeFePi71Hbt08j13ilNIUlt12HV1dVtrQj9HDASOB94p6nJNTU13HPPPYwcObJekaE1qaioICsri8LCQv75z3/uuH7UUUfxyCOPUFZWxgEHHBBiQklSqlkwkdJRhGmNjgT8gplM4weNftM8XiiZQRHwKnVkJSWjpJQJ4CBgeAu/7NgAMlr4NSWFLjgUOK6RwepUJpGktqy2trYttOVqSDlwJDAF+GcTc3dqY/Xss88mPVxL+XJ7sb///e87rvfq1Yvi4mJ++9vfcuqpp4aYUJIUlsywA0hqwHSeYgZzgYkNjGYQUMRmrmUGi4i33dhEhL0IGAgMI35AfCyFiSUl1zigoWbJbwNvJrD+eGDv/7i2H/HzDJ5sXjRJIYhA0OtLv88k/v90FvEPuDo2sm5lsoNJUjuSDcwLO0SSbAFuA+4HbgXG0PCz6A4vvPACX//61znvvPMoLCxkv/32S0HM3bdp0yZKSkq49957qa3997EtsViMcePG8b3vfY/u3buHmFCSFDYLJlK6OpLv8jKHAOc2MqMP8M0dvwtSEUpSqgXxN6eXNzJ8TQR+l8BrzAQKGxgaiwUTqTXqAny0m2ue+9cvSVLLODMIgsxIJLIt7CBJtI748+KPiR8Qv8stF0EQUF5ezpNPPsk111zDtddeS8eOjdXwU6umpoaysjJuv/12Nm/evNNYVlYWxcXFHH744SGlkySlE1tySenqYmqBrxP/oLN1NoSV1BKyaPig5vdJvNjxYCPXLwxgrz1KJak12QxMgIhfr5CkltNz3bp1J4UdIkWeId7JYBywsanJW7ZsoaSkhGHDhrFgwQKCINwfP5WVlYwePZrCwsKdiiUHH3ww9913Hw899JDFEknSDhZMpHQ2g23MYAZwNlC5B6+wmihLWzaUpBRr7LD3+RFI6BuNEXgVeKGBoa7ARXsaTFKr8GdgFESeDzuIJLU1GRkZo8POkEIBcB9wKPEv9X3e1IINGzYwadIk8vLyePnll5Odr5633nqLcePGcckll/Daa6/tuN69e3emTp3K0qVLOeuss1KeS5KU3iyYSK3BDJ5kBiOJcipQTLx48kkDMzcBK4CZRDmOGQyjkNZz8p6knQTQmcYLGo3tGmlMY/MbK8hIap2+AP4C/Jx4W88TIGIrLklKgiAI2urB77vyKTADOApYkMiCVatWMXr0aCZOnMgHH3yQzGwAbN68mVmzZnHGGWdQUVGx43o0GiUvL4+qqiry8/OJxTz2U5JUn2eYSK1JIU8DT+/4/Vw68hF7k0kG2/gHM9jc+GJJrVAdMLSRsbd387Xm0vCbWlv0SOnraeCQBOfWEm+9tRkitU1NliS1iFPffffdXgceeODHYQcJwRvAxcAZwB3A0buaXFdXx8KFC1m8eDHXXXcd3/rWt+jQoUOLBqqrq+Phhx+muLi4XmFm+PDhFBUVMWTIkBa9pySp7bFgIrVmE/kcWB92DEnJEYm3OnirhV5rS0u9lqRUiWzF/28lKZ1lxGKxrwK/DjtIiJYQ/4LPfwO3APvuavL23R8PPvgg06dPJzu7ZTbprFq1isLCwnqtvwYMGMCUKVPIzc1tkftIkto+W3JJkiRJkiTtmfbYlus/bQN+AhxBfFdzk+fsNXa+yO7asGEDEydOrHdOSpcuXSgoKGDlypUWSyRJu8WCiSRJkiRJ0p75WtgB0sjHwCTi7bl+m8iCyspKRo8ezbRp09i8OfEO01u2bKGkpIRhw4axcOFCgiDeZTYSiZCTk8Py5cspKCigY8eOe/CvIUlqzyyYSJIkSZIk7ZmDqqurEz1vqr14FTgHOB94s6nJNTU13HPPPZx66qncfffd1NY2fhRXEASUl5czcuRISkpK+Pzzz3eMHXfccTz66KPMmzeP/fbbrwX+NSRJ7ZEFE0mSJEmSpD1UV1c3OuwMaaocGAJ8B2hy+8imTZsoLCzkjDPOYNmyZfXGX3jhBb7+9a9z1VVXsW7duh3X+/bty5w5c3j88cc58cQTWy69JKldsmAiSZIkSZK0h4IgsGDSuBqgFBhM/JyTxreP/Mvrr7/OZZddxrhx4/j73/9OdXU1kydP5txzz+XZZ5/dMS8WizFhwgQqKysZM2YM0agfcUmSmi8z7ACSJEmSJEmt2JlBEMQikUhN2EHS2AbgKuBu4A5gWFMLKioqWL58OdFolK1bt+40lp2dTXFxMQcccEBSwkqS2i/L75IkSZIkSXturw0bNpwSdohW4llgBPBfwNqmJn/xxRc7FUu+8pWv8PDDD1NWVtYuiyUbN27kT3/60y7PeZEkNY8FE0mSJEmSpGYIgiA77AytSAD8EjgCmAL8M5FFffv25Xe/+x2nnXZaMrOlpU2bNjF16lROPvlkcnJyuOiii6ipcUOTJCWDBRNJkiRJkqTm8RyT3fcZcBtwFDC/qcnV1dVUV1cnPVQ62bZtGz//+c8ZNmwYP//5z9m2bRsAzzzzDH/4wx9CTidJbZMFE0mSJEmSKx+2JwAAIABJREFUpGaIRCInrVmzpnfYOVqpd4FLgFOBXVYBPvvss5QESgdVVVWcffbZTJ06lU2bNtUb37x5cwipJKnts2AiSZIkSZLUPBmZmZlnhB2ilXsaGA5MDDtImN555x2++c1vcvHFF/PKK6+EHUeS2h0LJpIkSZIkSc3kOSYtog5YEHaIMHz22WeUlJQwatQofv/734cdR5LarcywA0iSJEmSJLUBZ4cdQK1PXV0d8+fPZ/bs2bz33nsNzjn66KNZv349H374YYrTSVL74w4TSZIkSZKk5jtw7dq1h4cdQq3H888/zwUXXMB3v/vdBoslvXr1oqioiCeeeILevT0iR5JSwR0mkiRJkiRJLSASiYwG/hZ2DqW3jRs38j//8z88/PDDBEFQbzwWizF27FhuuOEGunfvHkJCSWq/LJhIkiRJkiS1gGg0mg38OOwcSk9bt27lnnvu4Y477uDTTz9tcE5WVhbFxcUcfriblSQpDBZMJEmSJEmSWkAQBKOCIIhFIpGasLMovVRUVHDzzTezZs2aBscPOeQQZsyYwZlnnpniZJKkL7NgIkmSJEmS1DL22rBhw2nAirCDKD289NJLFBYW8vTTTzc43qNHD6699lquvPJKYrFYitNJkv6TBRNJkiRJkqSWk40Fk3bv448/5gc/+AH33nsvtbW19caj0SgXXnghhYWF7LPPPiEklCQ1xIKJJEmSJElSyxkNTAs7hMJRU1NDWVkZt99+O5s3b25wzvDhwykqKmLIkCEpTidJaooFE0mSJEmSpJZz4vr16/cZMGDAB2EHUWpVVlYybdo0/va3vzU4PmDAAG688Uby8vJSnEySlCgLJpIkSZIkSS0nGolEzgDmhx1EqfHmm28yY8YMnnrqqQbHu3TpwtVXX821115Lx44dU5xOkrQ7LJhIkiRJkiS1oCAIsrFg0ub94x//4Mc//jE/+clPqKmpqTceiUS46KKLuPnmm+nTp08ICSVJu8uCiSRJkiRJUsv6WtgBlDx1dXU8/PDDFBUV8eGHHzY457jjjqO4uJgTTjghxekkSc1hwUSSJEmSJKllDVy/fv3gAQMGvBp2ELWsqqoqpk+fziuvvNLgeL9+/bjpppvIzc0lEomkOJ0kqbksmEiSJEmSJLW80YAFkzbinXfe4dZbb6W8vLzB8U6dOjF+/HgmTZpEt27dUpxOktRSLJhIkiRJkiS1sH+dYzI37Bxqnq1bt/KDH/yAn/zkJ3zxxRcNzjn//PO5+eabGThwYIrTSZJamgUTSZIkSZKkFhaJREa9/vrrHQ877LDPw86iPfe9732PRx55pMGxo446iuLiYk455ZQUp5IkJYsFE0mSJEmSpJbXtVu3bqcBy8IOoj23ZMmSetf22WcfpkyZwqWXXko0Gg0hlSQpWfxbXZIkSZIkKQmCIBgddgY1T21t7U6/v/zyy6mqquKyyy6zWCJJbZB/s0uSJEmSJCWHBZM25uKLL6Z79+5hx5AkJYkFE0mSJEmSpOQ4fuPGjX3CDiFJkhJjwUSSJEmSJCk5orW1tWeGHUKSJCXGgokkSZIkSVKSRKPR7LAzSJKkxFgwkSRJkiRJSpIgCEYHQRAJO4ckSWqaBRNJkiRJkqTk2W/jxo1Hhh1CkiQ1zYKJJEmSJElSEgVBMDrsDJIkqWkWTCRJkiRJkpLLc0wkSWoFLJhIkiRJkiQl1+mvv/56x7BDSJKkXbNgIkmSJEmSlFxdOnfuPCLsEJIkadcsmEiSJEmSJCVZRkaGbbkkSUpzFkwkSZIkSZKSzIPfJUlKfxZMJEmSJEmSku+49957r1/YISRJUuMsmEiSJEmSJCVfZNu2bWeGHUKSJDXOgokkSZIkSVJqeI6JJElpzIKJJEmSJElSapwdBEEk7BCSJKlhFkwkSZIkSZJSo191dfVRYYeQJEkNs2AiSZIkSZKUIkEQjA47gyRJapgFE0mSJEmSpBQJgsBzTCRJSlMWTCRJkiRJklLn9DVr1nQOO4QkSarPgokkSZIkSVLqdIpGoyPCDiFJkuqzYCJJkiRJkpRatuWSJCkNWTCRJEmSJElKoUgk4sHvkiSlIQsmkiRJkiRJqXXM+++/3z/sEJIkaWcWTCRJkiRJklIrUlNTc1bYISRJ0s4smEiSJEmSJKWebbkkSUozFkwkSZIkSZJSLzsIgkjYISRJ0r9ZMJEkSZIkSUq9vuvWrTs27BCSJOnfLJhIkiRJkiSFIBKJ2JZLkqQ0YsFEkiRJkiQpBJFIJDvsDJIk6d8smEiSJEmSJIVjxPr167uEHUKSJMVZMJEkSZIkSQpHJ2Bk2CEkSVKcBRNJkiRJkqTw2JZLkqQ0YcFEkiRJkiQpPB78LklSmrBgIkmSJEmSFJ6j1q5dOzDsEJIkyYKJJEmSJElSqDIyMs4KO4MkSbJgIkmSJEmSFKogCDzHRJKkNGDBRJIkSZIkKVyjgyDwMxpJkkLmD2NJkiRJkqRw7bNhw4bjwg4hSVJ7Z8FEkiRJkiQpfKPDDiBJUntnwUSSJEmSJClknmMiSVL4LJhIkiRJkiSFLBKJjHjvvfe6hZ1DkqT2zIKJJEmSJElS+DrU1taODDuEJEntmQUTSZIkSZKkNGBbLkmSwmXBRJIkSZIkKT148LskSSGyYCJJkiRJkpQejly3bt3+YYeQJKm9smAiSZIkSZKUPmzLJUlSSCyYSJIkSZIkpYloNGrBRJKkkFgwkSRJkiRJShNBEGQHQeDnNZIkhcAfwJIkhacjcCbxwz07h5xFkiRJ6WHvDRs2DA07hCRJ7ZEFE0mSUi8C/BfwN+BJ4PfAm8B4/NksSZKk+BdqJElSivmhjCRJqXUCsAK4HzjgS9f7A3cDfwRGhpBLkiRJ6cOCiSRJIbBgIklSavQH7gWeAUbsYt7xwDLgV+xcUJEkSVL7MezDDz/sHnYISZLaGwsmkiQlVwyYBLwKjCOxn70R4JJ/rZkN7JW0dJIkSUpHsa1bt54edghJktobCyaSJCVPDvAKcAewJ98Q7Azc+K/XGEu8kCJJkqR2IBqNZoedQZKk9saCiSRJLe9o4CngMeCQFni9/YAyoBI4sQVeT5IkSWkuCALPMZEkKcUsmEiS1HL2Bv4XeB44I5EFZ511Fueee26irz8ceBq4B+i3JwElSZLUahyxcePGg8IOIUlSe2LBRJKk5ssEriR+5sjVQEZTCw4++GDKysq47777+OlPf8rChQs58sgjE7lXFPhv4A1gBtBpj1NLkiQprdXV1Z0VdgZJktoTCyaSJDXPmcBzwDxgn6Ymd+/enalTp7J06VKys//dlnrYsGEsXryY0tJS9t1330Tu2xWYDvwFyNuj5JIkSUp3nmMiSVIKWTCRJGnPHAbMB54kfmbJLkWjUXJzc6mqqiI/P59YLNbgnLy8PCorK8nPz6dDhw6J5DjkXzmeAo7ZrX8DSZIkpbuzgiBocveyJElqGRZMJEnaPV2Jt8J6iQR3dmzfPTJ37lz22afJTSg7dqEsWbJkp10oTTiD+Nkp9wEJbVGRJElS2utVXV19YtghJElqLyyYSJKUmCgwFniTeCusjk0tGDBgAKWlpbtzPslOtp9z8tBDD3HEEUckmvFy4DXgRiChLSqSJElKX0EQjA47gyRJ7YUFE0mSmnYysBIoA/o2Nblz584UFBSwcuVK8vKaf7xIVlYWixcvZs6cOfTu3TuRJb2A2cCLwDnNDiBJkqTQBEHgOSaSJKWIBRNJkho3kHiLqz8ApzY1ORKJkJOTw4oVKygoKKBjxyY3oSQsFosxZswYqqqqGD9+PBkZCbWyPgJYBFQAu7/FRZIkSengtI8++qhH2CEkSWoPLJhIklRfF+ItrV4h3uIq0tSCY489lkcffZR58+ax3377JS1Yz549KS4uZsmSJXz1q19NdNlZwJ+BUsA325IkSa1L5pYtW74adghJktoDCyaSJO0sB3iZeEurbk1N7tu3L3PmzGHRokWceGLqzuM87LDD+OUvf0lZWRkHHnhgIktiwETiZ7BMAhLaoiJJkqS0YFsuSZJSwIKJJElxQ4FK4DGgyQpELBZj/PjxVFZWMmbMGKLRcH6kZmdns2LFCoqKiujWrcn6DsDewB3AM0BWUsNJkiSpRUQiEQ9+lyQpBSyYSJLau32It6p6BhiRyILtRYri4uJEixRJFYvFmDBhwu4Wb4YCK4ByYFAy80mSJKnZDquurj447BCSJLV1FkwkSe1VjHhrqjeJt6pqskXVHrTBSqk9bA92HrvRgkySJEnhqK2ttS2XJElJZsFEktQe5RA/0P0OoHtTk3v27ElRUdHuHrQemj04gL4z8UPuXwXGksAh95IkSUo5CyaSJCWZBRNJUnsyGHiC+DklhzQ1ORaLMWbMGKqqqpgwYQIZGa3nnPRIJEJOTg4rVqygoKCAjh07JrJsP6AM+ANwalIDSpIkaXedGQRBZtghJElqyyyYSJLag17Ezyl5Cfg/iSzIyspi8eLFzJkzh969eyc1XDJ17tyZgoICVq5cSW5ubqLLTgZWAfcB/ZIWTpIkSbuj57p1604KO4QkSW2ZBRNJUluWCVwJvEb8nJImv5F38MEHU1ZWxkMPPcQRRxyR7HwpM2DAAObOncvChQs58sgjE1kSAS4H3gBmAJ2SGE+SJEkJyMjIGB12BkmS2jILJpKktuoM4DlgHrBvU5O7d+/O1KlTWbJkCdnZbbc99LBhw1i8eDGlpaXss88+iSzpCkwnvjsnL6nhJEmStEtBELTdB1VJktKABRNJUltzKDAfeAo4uqnJ0WiU3NxcKisryc/Pp0OHDkkPGLZoNEpeXh5VVVXk5+cTi8USWbZb/10lSZKUFKe+++67vcIOIUlSW2XBRJLUVnQl3jrqLyS4E+K0005j8eLFzJ07l333bXITSpuzfVfN0qVLd2dXzW7t3JEkSVKLyojFYl8NO4QkSW2VBRNJUmsXAcYSP2tjOtCxqQX9+/entLR0d87zaNP24NyWL58NM4kEzoaRJElSi/EcE0mSksSCiSSpNTsZWAWUAf2amty5c2cKCgpYtWoVeXl5RCKRpAdsTbKysli8eDFFRUV07949kSW9gDuI7+o5J6nhJEmStN3Xwg4gSVJbZcFEktQa7QfcB/wBOLWpyZFIhJycHJYvX05BQQEdOza5CaXdisViTJgwgdWrVzN+/HgyMjISWXYEsAioAIYkNaAkSZIGrVmz5tCwQ0iS1BZZMJEktSadgRuBV4HLibfj2qVjjz2W3/zmN8ybN4+BAwcmO1+b0atXL4qLi/nd737Hqac2WZPa7izgBaAUSGiLiiRJknZfZmambbkkSUoCCyaSpNYiB3gZmA10a2py3759mTNnDosWLeKkk05Keri26itf+QqPPPIIZWVlHHDAAYksiQETgTeJn2+S0BYVSZIkJS4IguywM0iS1BZZMJEkpbuhwArgMWBQU5NjsRjjx49nxYoVjBkzhmjUH3UtITs7m2XLljF16lS6dWuyXgWwD/HzTZ4BspIaTpIkqf05MwiCWNghJElqa/wUSZKUrvYm3top4Q/cs7OzWbFiBcXFxey1115JDdcederUifz8fCorK3enGLW94FVOAgUvSZIkJWSvDRs2nBJ2CEmS2hoLJpKkdBMj3srpTeKtnZps6XTYYYfxwAMPUFZWxoEHHpjsfO3e9nZnjz/+OCeeeGKiy84D/kqCLdUkSZK0a7blkiSp5VkwkSSlk7OAPxNv5dSjqck9e/akqKiIJUuWMGrUqKSH086OO+44Hn30UebNm8d+++2XyJIuwI3Aq8BYIJLMfJIkSW2cB79LktTCLJhIktLBEcAioAI4sqnJmZmZjBkzhqqqKiZMmEBGhueKhyUSiZCTk8Py5cspKCigY8eOiSzbDygD/gCcmtSAkiRJbVQkEjlpzZo1vcPOIUlSW2LBRJIUpl7EWzS9CJyTyIKsrCwWL17MnDlz6N3b94fpokuXLhQUFLBy5Upyc3MTXXYysBK4D+iXtHCSJEltU0ZmZuYZYYeQJKktsWAiSQpDJnAl8BrxFk0dmlpw0EEHMW/ePB566CEGDx6c7HzaQwMGDGDu3LksWLCAIUOGJLIkClwOvAHMABLaoiJJkiTPMZEkqaVZMJEkpdoZwJ+AecC+TU3u2rUrBQUFLF26lJycnKSHU8sYPnw4FRUVlJaWss8++ySypCswHfgLkJfUcJIkSW3H2WEHkCSpLbFgIklKlUOB+cBTwDFNTY5Go+Tm5rJq1SoKCgro0KHJTShKM9FolLy8PCorK8nPzycWiyWybPufkyeBo5MaUJIkqfU7cO3atYeHHUKSpLbCgokkKdm6Em+19BIJ7hwYOnQojz32GHPnzmXffZvchKI016NHD6ZOncrSpUs566yzEl12JvAcCe5EkiRJaq8ikcjosDNIktRWWDCRJCVLBBhL/GyK6UCnphb079+f0tJSysvLGTp0aLLzKcUOPvhg7rvvPh566CEOPzyhL0JuP+vmVWDSv34vSZKkL4lGo55jIklSC7FgIklKhpOAlUAZ0K+pyZ07d6agoICVK1eSl5dHJBJJekCFJysri4qKCoqKiujevXsiS3oDdxDfpfR/khpOkiSplQmCYFQQBAn1PpUkSbtmwUSS1JL2A+4DngZOa2pyJBIhJyeH5cuXU1BQQKdOTW5CURsRi8WYMGECq1evZvz48WRkZCSybDDwBFAOHJLUgJIkSa3HXhs2bGjy2VuSJDXNgokkqSV0Bm4EXgEuJ96Oa5eOOeYYfv3rXzNv3jwGDhyY7HxKU7169aK4uJjf/va3nHrqqYkuO4/4n7VSIKEtKpIkSW2cbbkkSWoBFkwkSc2VA7wMzAb2ampy3759mTNnDk888QQnn3xy0sOpdTjqqKN45JFHKCsr44ADDkhkSQyYSPx8kyuBhLaoSJIktVEe/N6Gff7552zZsiXsGJLULlgwkSTtqeOB5cBjwKCmJsdiMcaPH8+KFSsYM2YM0ag/glRfdnY2y5YtY+rUqXTr1i2RJf2BecTbwI1IajhJkqT0deL69ev3CTuEWt6iRYs4/fTTWbt2bdhRJKld8NMqSdLu2pt4K6RngZGJLMjOzmb58uUUFxez115NbkJRO9epUyfy8/NZsWIFubm5RCJNdngDOAFYAcwHDkxqQEmSpPQTjUQiZ4QdQi3n5ZdfJjc3l29961v8/e9/rzduW2NJSg4LJpKkRMWAScCbxFshNdkC6dBDD+WBBx6grKyMQYMGJTme2pp+/foxd+5cFi1axAknnJDIkgiQx79bxCW0RUWSJKktCILAc0zagA8//JAbb7yRs88+m1WrVtUbz8jI4LrrruPYY48NIZ0ktX0WTCRJiTgL+DNwB9Cjqck9e/akqKiIJUuWMGrUqKSHU9t23HHH8dhjj1FaWkqfPn0SWdIFuJH4wfBjiRdSJEmS2rqvhR1Ae66mpob777+f008/nV/84hfU1tbWmzN06FAeffRRbrrpphASSlL7YMFEkrQrRwCLgArgyKYmZ2ZmMmbMGKqqqpgwYQKZmZlJD6j2IRKJkJeXx6pVqygoKKBjx46JLBsIlAGrgVOSGlCSJCl8A9evXz847BDafZWVlZx99tlMnjyZjz76qN54//79KS0tpby8nKFDh4aQUJLaDwsmkqSG9CLe0uhF4JxEFowYMYLFixczZ84cevfundRwar+6dOlCQUEBK1euJDc3N9FlpwCrgPuAvkkLJ0mSFL7RYQdQ4t5++22uuuoqLrnkEl599dV64507d97x7JuXl5fo2X6SpGawYCJJ+rIo8RZGrxJvadShqQUHHXQQ8+bNY/78+Qwe7BfalBoDBgxg7ty5LFiwgCFDhiSyJApcDrwBzAAS2qIiSZLUylgwaQU2b97MrFmzGDVqFOXl5fXGI5EIOTk5LF++nIKCAjp16hRCSklqnyyYSJK2GwU8T7yFUZMHRWz/pv/SpUvJyclJejipIcOHD6eiooLS0lL23nvvRJZ0A6YDLxE/IF6SJKkt+errr7/uF0PSVF1dHQsWLCArK4s777yTL774ot6cY445hl//+tfMmzePgQMHhpBSkto3CyaSpP2JtypaAhzT1ORoNEpubi6rV6+moKCADh2a3IQiJVU0GiUvL4+qqiry8/OJxWKJLDsMmA88CRyV1ICSJEmp07Vbt27Dwg6h+lavXs3ZZ5/NpEmTeP/99+uN9+3blzlz5vDEE09w8sknh5BQkgQWTCSpPetKvDXR34i3KmrS0KFDefTRR5k7dy777rtvMrNJu61Hjx5MnTqVJUuWcOaZZya67EziO6vmAfskLZwkSVKKBEGQHXYG/duGDRuYOHEiubm5/PWvf603HovFGD9+PCtWrGDMmDFEo35UJ0lh8m9hSWp/IsRbEb1CvDVRkw1x+/fvT2lpKeXl5ZxwwgnJzic1yyGHHMIvfvELHnroIQ4//PBElmQCVwKvAZP+9XtJkqTWynNM0sCWLVsoKSlh+PDhLFy4kCAI6s3Jzs5mxYoVFBcXs9dee4WQUpL0nyyYSFL7chKwkngrov2bmty5c2fy8/NZsWIFeXl5RCKRpAeUWkpWVhYVFRUUFRXRvXv3RJb0Bu4gfr7J15IaTpIkKXmO37hxY5NnEio5giCgvLyc008/nZKSErZu3VpvzqGHHsoDDzxAWVkZBx54YAgpJUmNsWAiSe3DAOLnlDwNnJbIguzsbJYvX87UqVPp2rVrUsNJyRKLxZgwYQKrV69m/PjxZGRkJLJsMPBbYBUwNKkBJUmSWl60trY24f6kajkvvvgiX//617nqqqtYu3ZtvfGePXtSVFTEkiVLGDVqVAgJJUlNsWAiSW1bZ2Aa/z6npMktIsceeyyPPfYYZWVlDBw4MNn5pJTo1asXxcXFLFq0aHcO0TwN+BNwT/KSSZIktbxoNOo5JilUXV3N5MmTOeecc3j22WfrjWdmZjJmzBiqqqqYMGECmZl2gJWkdGXBRJLarouJn1NSRPyA913q06cPP/zhD1m0aBEnnnhi0sNJYTjmmGP49a9/zV133cWAAQMSXfbf2AtckiS1IkEQjA6CwH66SVZTU8Pdd9/NyJEjuf/++6mrq6s3Z8SIESxevJg5c+bQu3fvEFKmv82bN/Pwww9TVVUVdhRJsmAiSW3Q8cBy4CGgyYa4HTp0ID8/n6qqKi655BKiUX80qG2LRCJccMEFVFZWcv311yd6Ns+EZOeSJElqQftt3LjxyLBDtGUVFRWMHDmSwsJCPvnkk3rjBx10EPPmzWP+/PkMHjw4hITpr7a2ll/84hcMGzaM6667josvvpi5c+eGHUtSO+ceQElqO/oAtwDjSbAg/rWvfY3CwkIGDRqUzFxSWnrhhReoqKggCIKwo0iSJLW4IAhGA38NO0db88orrzB79mxWrlzZ4Hj37t35zne+w/jx44nFYilO13qsXLmS6dOn8/LLL+90/Ve/+hUTJ04MKZUkWTCRpLagA3Ad8bNKeiSyYPDgwcycOZOsrKykBpPS0dq1aykuLqa8vHyn6507d6Znz55s2LChoWUvN3RRkiQpjWUDPww7RFszefLkBq9Ho1EuvPBCpk2bxr777pviVK3H+vXrmT17NgsXLmxw/PPPP09xIknamX1XJKl1Ow94CbidBIolvXr1YtasWSxevNhiidqdzz77jO9///uMHDlyp2JJJBIhJyeHFStW7Opck60pCSlJktRyTn/99dc7hh2iPTj11FP53e9+x9y5cy2WNOLTTz9l9uzZDB8+vNFiiSSlA3eYSFLrdDjwA+DcRCZnZmZy6aWXcuONN7L33nsnN5mUZoIg4PHHH6e4uJi1a9fuNHbsscdSVFTESSedFFI6SZKkpOnSuXPnEcBTYQdpq/r378+UKVPIzc1N9Fy8dmf7s3hRURHr1q0LO44kNcmCiSS1Lj2BKcD1xFtxNWnEiBHMnDmTIUOGJDWYlI5efPFFCgsLeeaZZ3a63rdvXwoKCrjsssuIRt1wK0mS2qaMjIxsLJg0S0PPil26dCE/P5+rr76aTp06hZCqdXjuuecoLCzkueeea3C8d+/enHXWWcyfPz/FySSpcX5CIEmtQxQYC7wG3EgCxZJBgwYxb9485s+fb7FE7U51dTWTJ0/mnHPO2alYEovFmDBhAitWrGDMmDEWSyRJUpv2r4Pf1Qwnn3zyjn+ORCJceOGFVFZWcv3111ssacT2Z/Hzzz+/wWJJLBZjzJgxrFixgm984xshJJSkxrnDRJLS3yjihzUem8jkLl26cPXVV3PdddfRoUNCm1CkNqOmpoaysjK+//3v88knn+w0lp2dTVFREQceeGBI6SRJklLuuPfee69fnz59NoYdpLUqLS1l7ty5fPzxx4wZM4YTTjgh7Ehpa/uz+Jw5c/jnP//Z4JysrCxmzpzJ4MGDU5xOkhJjwUSS0tf+wCzg8kQmRyIRLrroIm6++Wb69OmT3GRSGqqoqGD69Om88847O10/7LDDmDlzJl/96ldDySVJkhSiyLZt284EHgg7SGvVs2dPCgsLw46R9ioqKigsLOTdd99tcPyggw5iypQp5OTkpDiZJO0eCyaSlH66AjcQb72V0B7v448/nqKiIr/tpHbpjTfeYMaMGSxZsmSn6z179qSgoIArrriCjIyMkNJJkiSFLhsLJkqS119/nenTp7Ns2bIGx7t27cq3v/1tOyBIajUsmEhS+ogAucDtwAGJLOjXrx833XQTubm5RCKRpIaT0s2mTZsoKSmhrKyMbdu27bgei8W45JJLmDJlCr179w4xoSRJUlo4OwiCSCQSCcIOorZj+7P4vffeS21tbb3xaDTKhRdeyLRp09h3331DSChJe8aCiSSlhxOBUmBYIpM7derE+PHj+c53vkPXrl2Tm0xKM9u2beNXv/oVt912Gx9++OFOY/ZEliRJqqdfdXX1UcBLYQfXo9w0AAAgAElEQVRR61dTU8NDDz3E7Nmz+eijjxqcc9ppp1FUVMRXvvKVFKeTpOazYCJJ4RoATAcmANFEFmRnZ3PLLbew//77JzWYlI6qqqqYPn06r7zyyk7X7YksSZLUuCAIRmPBRM1UWVnJ9OnTefXVVxsc79+/P1OmTLEDgqRWzYKJJIWjA3A1UAzslciCo48+mqKiIk455ZSkBpPS0TvvvMOtt95KeXn5TtftiSxJktS0IAiygZKwc6h1evvtt5k9e3a9Z/HtOnfuzDXXXEN+fj6dOiV0DKckpS0LJpKUejnE228dlMjkXr16cf311/PNb37Tg6vV7nz22Wfcdddd/OhHP+KLL77YcT0ajXLRRRdx88032xNZkiSpaaevWbOm8/77778l7CBqPTZv3syPfvQjfvrTn+70LL5dJBLhvPPOY9q0aQwcODCEhJLU8iyYSFLqDAF+CJydyORYLMbYsWO54YYb6N69e3KTSWmmrq6Ohx9+mFtuuYX3339/pzF7IkuSJO22TtFodARQEXYQpb/a2loefPDBBs8M3O7444+nqKiIE044IcXpJCm5LJhIUvL1Jn5OST6Q0BaRrKwsbrnlFg477LCkBpPS0fPPP09hYSF/+tOfdrrev39/brrpJi666CJ7IkuSJO2+0VgwURNWr15NYWEhf/3rXxsc79u3LzfddBN5eXnNfiZft24dP/vZz5r1GpLU0iyYSFLydAbuBi4COiay4IgjjmDmzJmMHDkyqcGkdLRu3TqKi4spLy8nCIId1+2JLEmS1HzRaHQ0cEPYOZSe1qxZQ3FxMY8//niD4x07duTKK69k4sSJdO3atVn32rJlC3feeSf/+7//y9atW3ca81xCSWGzYCJJyZEJvAskdLhCz549ueGGG7j88svJzPSvZrUvjb1hsieyJElSywmC4Oj333+//7777rsh7CxKH5999hk//vGPueuuu/j8888bnHPOOecwbdo0DjzwwGbdKwgCfvOb33DLLbewYUPDfwzPPffcZt1DkprLT+UkKTmKSaBYkpmZyeWXX84NN9xAz549UxBLSh9BEPDoo49yyy23sH79+p3GjjnmGIqLiznppJNCSidJktTmRLZt25YN3Bd2EIUvCAIeeeQRZs2axcaNGxucM2TIEGbOnMmIESOafb8XXniBadOm8cc//rHB8Z49ezJ58mTGjh3b7HtJUnNYMJGk5Di5qQkZGRncfffdjB49OhV5pLTywgsvUFhYyLPPPrvT9b59+1JQUMBll11GNBoNKZ0kSVLbFASBBRPx4osvMm3atHrP4tv17NmT7373u1xxxRXN7oDw0Ucf8cMf/pB7772X2traeuOZmZlceuml3Hjjjey9997NupcktQQLJpKUHB83NaG2tpYrr7ySb33rW0yaNIlu3bqlIpcUqvfee49bb72VBQsWUFdXt+N6LBZj3Lhx3HDDDey1114hJpQkSWrTsoMgiEQikaDpqWprqqurKSkp4Ze//OVOz+LbbS9eTJkyhd69ezfrXjU1NZSVlfH973+fTz75pME5I0aMYObMmQwZMqRZ95KklmTBRJKS47VEJn3xxRfceeedLFy4kClTppCXl+e36tUmffHFF/z0pz+ltLSUf/7znzuNZWdnU1RU1OyeyJIkSWpS33Xr1h0L/DnsIEqdRIsXRUVFDB48uNn3q6ioYPr06bzzzjsNjg8aNIibbrqJnJycZt9LklqaBRNJSo76X9fZherqaq6//nrKysooKirixBNPTFYuKeV+//vfM3PmzHpvmA499FBmzpzJqFGjwgkmSZLUDkUikdFYMGk3KioqKCws5N13321w/KCDDmLKlCktUrx44403mDFjBkuWLGlwvEuXLlx99dVce+21dOzYsdn3k6RksGAiSWnkz3/+M+effz7Z2dnMmjWLgQMHhh1J2mNvvvkm06dPr/eGqWfPnhQUFDBu3Lhm90SWJEnS7olEItnAnLBzKLneeOMNpk+fztKlSxsc79q1K9/+9re57rrr6NChQ7Pu9Y9//IPbb7+dsrIytm3bVm88Eolw0UUXcfPNN9OnT59m3UuSks1PKSQptf4B9GhqUkVFBVVVVfz3f/833/nOd+jatWsKokkto7E3TC3ZE1mSJEl7LGvjxo1d+/Xr92nYQdTyNm3aRElJSaPFi2g0yoUXXsi0adPYd999m3Wvbdu28atf/YrbbruNDz/8sME5xx9/PEVFRZxwwgnNupckpYqN8iUptZ4FLgbWNDVxy5Yt3HnnnYwcOZIFCxYQBJ7LqPS2bds27r//fkaMGME999yz0xu0ESNGsHjxYubMmWOxRJIkKVwd6+rqssIOoZa1q2fx7YYOHcpjjz3G3Llzm10sqaqq4uyzz2by5MkNFkv69etHaWkpjz/+uMUSSa2KBRNJSr0FwBBgJrC1qckbNmxg0qRJ5OTk8Kc//Snp4aQ90dgbpoMOOoh58+Yxf/78FjlAUpIkSS0iO+wAajlVVVWMHj2ayZMn89FHH9Ub79+/P6WlpZSXlzN06NBm3eudd97hqquu4uKLL+aVV16pN96pUyfy8/OprKwkLy+PSCTSrPtJUqrZkkuSwvEpMAO4B5gFXN7Ugueee44LLrigxbZPSy3hnXfe4dZbb6W8vHyn6y3ZE1mSJEktbnTYAdR8b7/9NrNnz673LL5d586dW6zN82effcZdd93Fj370I7744osG52RnZ3PLLbew//77N+tekhQmCyaSlEIdO3aMff7551++tAYYC/wcuAM4Zlfr6+rqWLhwIb/97W/9MFqhauwNUzQa3XGgo0U9SZKktHXU2rVrBw4cOHBt2EG0+z799FP+3//7f00WL2bNmsXAgQObda8gCFi4cCGzZs3ivffea3DO0UcfTVFREaecckqz7iVJ6cCWXJKUQnvvvXdjhzcsBY4HxgENP4V+yaeffkpJSQmjRo1q9NtEUjIEQcCCBQsYNmwYJSUlO71BGzp0KI8++iilpaUWSyRJktJcRkbGWWFn0O6pq6tr9Fl8u2OOOYbf/OY3lJWVNbtY8vzzz3P++eczadKkBoslvXr1oqioiCeeeMJiiaQ2w4KJJKVQjx49dnXadR1wHzAYuA1o+KtCX/L222/v6B/76quvtlBKqWGNvWHq378/c+fOpby83AMdJUmSWokgCDzHpBV57rnndjyLv//++/XG+/bty5w5c1i0aBEnn3xys+61ceNGJk6cyHnnndfgOZqxWIzx48ezevVqJkyYQEZGxh7fa+vWrfzwhz/k5JNP5oILLuCNN95oTnRJajZbcklSCvXs2XOfBKZ9DEwh3qbrB8A5TS3YfsjfpZdeypQpU+jde1d1GWn3bNy4kf/5n//h4YcfJgiCHddbsieyJEmSUm50EATRSCRSF3YQNW7Dhg3ceuut9Z7Ft4vFYowdO5bJkyez1157NeteW7du5Z577uGOO+7g008/bXBOVlYWxcXFHH744c26F8Bjjz3GLbfcwtq18c5wa9eu5aabbmLBggXNfm1J2lMWTCQphTIzMzuuX79+8IABAxLZDvIacC5wFlAKHLmrydu2beP+++/n8ccf57vf/S5XXHEFmZn+Na89t6s3TC3VE1mSJEmh2WfDhg3HAc+FHUT1bdmyhZ/97Ge7LF5kZ2czc+ZMBg0a1Oz7VVRUcPPNN7NmzZoGxw855BBmzJjBmWee2ex7/eUvf6GwsJA//OEP9cbeeuutZr++JDWHn6RJUuqNBnanf9aTwHHANcBMoMeuJm/atInCwkLuu+8+Zs6cyahRo/Y8qdqtxt4wHX300RQXFzd7m78kSZLSwmgsmKSVIAh4/PHHKS4u3rHz4j8deuihzJgxgzPOOKPZ93vppZcoLCzk6aefbnC8R48eXHvttVx55ZXEYrFm3euDDz7gtttu48EHH6Suzo1NktKTZ5hIUortYa/gGuK7TA4B5gK1TS144403+K//+i/GjRvHu+++uwe3VHv00ksv8Y1vfINx48btVCzZ3hP5iSeesFgiSZLURniOSXp58cUX+cY3vsFVV13VYLGkR48eFBUVsWTJkmYXSz7++GOmTZvGOeec02CxJBqNkpubS1VVFfn5+c0qltTU1HD33XczYsQIHnjgAYslktKaO0wkKcUikcio119/veNhhx32+R4s/xCYBNxLvICS1dSCiooKli1b1mJ9bdU2ffzxx/zgBz/g3nvvpbb23/W4WCzGuHHjuOGGG/yzI0mS1MZEIpER7733Xrc+ffr8M+ws7Vl1dTUlJSU8+OCDOz2Lb5eZmcmll17KjTfeyN57792se9XU1FBWVsbtt9/O5s2bG5wzfPhwioqKGDJkSLPuBfH3ozNnzmy01VbXrl0bbTkmSWGwYCJJqde1W7dupwHLmvEazwMjgRziO04G7WpyTU0N99xzD48//jgFBQVcdtllRKNuMtSu3zC1ZE9kSZIkpaUOtbW1I4Enwg7SHm1/Fv/+97/PJ5980uCcESNGMHPmzBYpXlRWVjJt2jT+9re/NTg+aNAgbrrpJnJycpp9r7feeosZM2bw5JNPNjjeuXNnrrnmGo4++miuuOKKZt9PklqKn5ZJUgiCIBjdQi9VTvww+ClAw0/YX1JdXc3kyZM555xzeOaZZ1ooglqryspKsrOzKSws3KlYcuihh3L//fdTVlZmsUSSJKmNsy1XOCoqKjj99NMpLCxssFgyaNAg5s2bx/z585tdLHnzzTe5/PLLueSSSxoslnTp0oWCggKWLl3a7GLJ5s2bmTVrFqNGjWqwWBKJRMjJyWHFihUUFBTQsWPHZt1PklqaO0wkKRyjgf+vhV5rC3AbcD9wKzAGiOxqwfbeuOeddx7Tpk1j4MCBLRRFrcGbb77JjBkzeOqpp3a63qNHD773ve8xbtw4MjN9RJAkSWonWurLXErAG2+8wYwZM1iyZEmD4126dOHqq6/muuuuo0OHDs261z/+8Q9+/OMf85Of/ISampp645FIhIsuuoibb76ZPn36NOtedXV1PPzwwxQXF/PBBx80OOfYY4+luLiYE088sVn3kqRk8tMQSQrH8Rs3buzTr1+/91rwNdcBY4EfET/f5LRdTQ6CgPLycp588kmuueYa8vPz6dSpUwvGUbpp7A1TS/ZEliRJUqtz5Lp16/5/9u48Pqrq/v/4a7IgAQRBWQUBARfcUKzKKtvEukQrgqit4FIFEYwShaQwk2RCIAhREZBqxR8R6kb4+m3DV2ujYJuguICIKCC7LElA9iWBhNzfH0Pa2txJBu7seT//8WHOuXM+asvk3vc959Puwgsv3BHsQiLZwYMHyc7OJicnh4qKimrjvgwvKioqeOedd5g2bRr79u0zndOtWzcyMjLo3r27pbUAli9fTmpqKj/88IPpeMuWLXU0tIiEDQUmIiLBEXXq1KmBwNt++OyvgF7Ag7h3nrSqaXJpaSnZ2dm89dZbJCcnM2TIEGy2GjeoSJipetvL5XJVu2Hy5ZnIIiIiIhK27MAbwS4iEnkTXlx77bW4XC6fhBeFhYWkpqaybt060/FWrVqRkpLik/u+3bt3k5WVRW5urul4bGwsw4cPZ8KECTRq1MjSWiIigaLAREQkSKKiouz4JzABMIA3gcXAc8AEoMbtI0VFRSQmJvLOO+/gcrm44oor/FSaBJKnGyZfNnQUERERkfAWFRUVjwITnwtkeLFt2zamTp1KXl6e6Xj9+vV59NFHSUxMtBxeHD9+nLlz5zJ79mxOnDhhOsdut5ORkcFFF11kaS0RkUBTYCIiEiSGYcQbhmGz2WyGH5c5BqTh7m8yBRha2wWff/45t9xyC4MHD8bhcNC8eXM/lif+4umGyZdnIouIiIhIZDAMY5BhGFE2m60y2LVEgtrCi7i4OB555BGefvppGjZsaGmtQIYXhmGwZMkSXC4Xu3btMp3TpUsX0tPT6devn6W1RESCRYGJiEjwXFhcXNwV+D4Aa20C7gUGAC8CV9c0ubKyktzcXD788ENGjRqlh+thxNMNk81mY8iQIUycONHymcgiIiIiEnHOLy4u7o77eF85S1W/i8+aNYuTJ0+azrHb7UyePJl27dpZWsswDHJzc8nMzGTPHvPWmFdeeSUul4ubbrrJ0loA3377LQ6Hg6+//tp0/LzzzmPcuHE8/PDDREdHW15PRCRYFJiIiASRYRjxBCYwqbIU6A48AkwGatw+cuzYMbKzs/mf//kfkpOTdXxTCKvphsmXZyKLiIiISGQ6fW+iwOQsVPUMrCm8uOqqq3C5XNx4442W11u9ejUOh4OVK1eajjdt2pRnnnnGJ+FFSUnJv3peVlZW34BU1afkueeeo3HjxpbWEhEJBQpMRESCy457x0cgVQCvAYtw9zZ5Bqhx+8jWrVsZOXIkCxcuJD09ncsuuywAZYq3PN0wtWrVij/84Q/cc889ls9EFhEREZGIZwcyg11EuPnmm29wOp0ew4tmzZrx9NNP+yS8KC4uZsqUKSxevBjDqH6ysy/Di/LycnJycnj++ec5evSo6Zw+ffrgcrm49NJLLa0lIhJKFJiIiATXzRs3bjynS5cu5ofN+tcBIBn4f8ALwG21XVBQUMAtt9zCsGHDSE5OplmzZv6uUWrg6YbJl2cii4iIiEid0XPfvn2Nzz///MPBLiQceBtejB8/nnPPPdfSWmVlZcybN4+ZM2fWGF5kZGRwySWXWFoLIC8vj8mTJ7Njxw7T8c6dO5OWlsaAAQMsr3XgwAHLnyEi4ksKTEREgqtBXFxcb+CTINawAbgdGAS8DFxe0+Ty8nIWLlzIkiVLdEZtkNR0w+SrM5FFREREpM6JLSsruxkw71QuAJSWlvLGG2/w0ksvcezYMdM5ffr0YfLkyXTp0sXyevn5+UyaNMljeHHxxReTlpbGoEGDLK/1/fff43Q6+fzzz03HGzdu/K97wNjYWEtr7d+/n+eff54///nPlj5HRMTXFJiIiARZdHS0neAGJlU+Bq4BRgPpQJOaJh88eBCn08mCBQtIT0+nX79+AShR8vPzcTgc/PTTT7/4uS/PRBYRERGRuikqKsqOAhOPagsvOnXqRFpaGgMHDrS81tq1a3E6naxYscJ0vEmTJowZM4bHH3/ccnixb98+pk2bxttvv82pU6eqjUdHR/PAAw8wfvx4zj//fEtrVR31lZ2dzaFDh6qNt23b1tLni4hYpcBERCTITjdXTA52HaeVAzOBhYATeBKocfvIxo0beeCBB7Db7bhcLtq3bx+AMuseTzdMTZs2Zdy4cTz00EPa6SMiIiIilpy+N5H/8t133+F0Ovniiy9Mx5s0aUJSUhIPPfQQMTHWHrUdOHCAF154gfnz55uGF1FRUQwePBin08kFF1xgaa3y8nLeeOMNXnzxRQ4fNj+JrWfPnrhcLrp27WppLYBly5aRlpbGxo0bTccvuugiMjPVRkdEgkuBiYhI8HXbs2dPqxYtWhQHu5D/sA9IBHKAl4A+tV2Qn5/Pp59+6rNzesXN0w1TbGwsI0aM4Nlnn7Xc0FFERERE5LRLi4uLO7Zq1WprsAsJBfv37+fFF1/0GF7ExMRw3333MWHCBJ/tvJgxY4bH8KJXr164XC4uv7zGU5S9UlBQgNPpZMOGDabjrVu3Jjk5mSFDhmCz2SyttXXrVrKyssjLM9+8pB6MIhJKFJiIiASfraKiYiAQioe3rgL6Agm4+5t0qGlyeXk58+bNY8mSJSQlJfHAAw8QFRUVgDIjT003TL48E1lERERE5D9VVlYOAv4U7DqCqep38enTp3PkyBHTOb179yY9Pd1n4YXD4eDHH380HW/Tpg0TJkxg6NChltfasmUL6enp5Ofnm47HxcUxevRoxowZwznnnGNprWPHjvHHP/6RWbNmcfLkyWrjNpuNO+64A4fDoaO4RCRkKDAREQkNdkIzMKmSh7vPylhgEtCopsklJSWMHz+eP//5z7hcLn71q18FosaI4emGyZdnIouIiIiIeGCnDgcmBQUFTJo0yeOxUR06dCAlJYWEhATLa23evJm0tDQ++cS8pWWDBg144oknfBJeHD58mFmzZvGnP/2pxvDC6XRy4YUXWlqrsrKSxYsXM3nyZPbu3Ws65+qrr8blcnHDDTdYWktExNcUmIiIhIZbDMOw2Ww2I9iF1OA4MA13f5OpwO+AGvdmf/vtt/zmN7/x2S/ekW7Lli2kpaXx8ccf/+LnvmzoKCIiIiJSi0GGYUTbbLbqZ1BFsECGF4cOHWL27Nm89tprlJeXVxv3R3iRkZHBzz//bDrnmmuu8dmLbqtWrcLpdLJq1SrT8ZYtW5KUlMT999+vHowiEpIUmIiIhIZWJSUlVwLfBbsQL+wChgOzcTeIv6mmyYZhkJeXx8cff+yzrd2RxtMNky/PRBYRERER8VLTkpKS6wHzDucR5tChQ8yYMYOcnBwqKiqqjdtsNu655x4mTZpEixYtLK3lTXjRrVs3XC4X119/vaW1AD777DOcTic//PCD6XhVeOGLo5SLioqYOnUqixcvxjCqvwcYGxurfpciEhYUmIiIhAjDMOIJj8CkypdAT+BB3DtPWtU0ubS0lOzsbN5++20mTJjgk+aB4a6mGyZfnoksIiJSB0QDTwAjqGUHrMh/aB7sAkLV6XuTiA5MKioqeOedd5g2bRr79u0znXPttdficrno3r275fWWL1+O0+lk3bp1puO+DC92795NVlZWQMKL0tJSXnnlFebMmUNZWZnpHLvdTnp6Oh06dLC0lohIICgwEREJEYZh2IHsYNdxhgzgTWAx8ByQDNS4fWT37t0kJiby7rvv4nK56Nq1awDKDD2ebph8eSayiIhIHXEdMBfQQfgiPnL63iQj2HX4S2FhIampqR7Di1atWpGSkuKTl7yqwovc3FzT8fr16/Poo4+SmJhIo0Y1toqsVVV4MXv2bE6cOGE6x26343K5aN++vaW1DMNgyZIlZGRksHPnTtM5nTt3Ji0tjQEDBlhaS0QkkBSYiIiEjpt37NgR165du9JgF3IWjgFpuPubTAGG1nbBZ599Rnx8PIMHD8bpdHLBBRf4ucTQ4OmGyZdnIouIiNQRTXH/3vE4YO11bBH5bz3279/fpFmzZoeCXYgvbdu2jalTp5KXl2c6XhVePP300zRs2NDSWsePH2fu3Lm1hhcZGRlcdNFFltaqCi9cLhe7du0yndOlSxfS09Pp16+fpbUA1qxZg9Pp5MsvvzQdP++88xg3bhwPPfQQMTF69Cgi4UV/aomIhI76UVFRvYH8YBdiwSbgXmAA8BJwVU2TKysryc3N5e9//ztjx47lscceo169eoGoM+A83TDZbDaGDBnCxIkTLZ+JLCIiUocMxd1PTV+eIv4RU1pa2g/4S7AL8ZV33nmH5ORkTp48WW3MZrORkJCAw+HwSZP1RYsWkZWVRUlJiemcK664goyMDG66qcZ2kF759ttvcTqdfPXVV6bjVeHFww8/bLnJeklJCdnZ2bz11ltUVlZWG1cPRhGJBApMRERCi53wDkyqLMV9PMYjwGRqOR/68OHDZGZm8vbbb5Oamordbg9EjQFR09te3bp1IyMjwydnIouIiNQRVwCvAH1rmFMEhOOOXQm8xkDd2OZ8duxEUGCyZs0a07DkqquuIiMjgxtusH6q38qVK3E4HKxevdp0/IILLmDChAncf//9lvuU1BZexMbGMmzYMJKTk2nWrJmltcrLy8nJyWH69OkcOXLEdI56MIpIpFBgIiISQmw2WzwwPth1+EgF8BqwCPdxXaOp5Xtny5YtjBgxgj59+uByubj00kv9X6UfrV69GqfTyddff/2Ln7dq1Yo//OEP3HPPPXW+8b2IiIiXGuD+HSkF8LQd9SDu3zlmA6cCU5aEuSdwB3Bi4vS9ScS64IILSElJYdiwYZbDi6KiIjIzM3n//fc9Nll/5JFHeOaZZ2jcuLGltbwJL/r06UN6ejqXXXaZpbUA8vPzSU1NZdu2babj6sEoIpFGgYmISGi5eu/eva2bN29eFOxCfOgAkIi7GesLwK21XVBQUEB8fDzDhw/nueees3xTEWie3vby5ZnIIiIidUgCMAvw1KHYwN1H7VlgT6CKEqkDupSUlFzcsmXLLcEuxB8SEhK4//77LX1GWVkZc+fOZc6cORw/ftx0zqBBg0hLS+Piiy+2tBa4wwun08n27dtNxzt27EhycrJPwotNmzaRmprKsmXLTMerejCOHTvW8rHKBw8eJD8/nxYtWnDzzTdb+iwREasUmIiIhBZbeXn5IGBBsAvxg/XAbbgferwIdKppcnl5OfPmzWPx4sU+O3PX38rKypg3bx4zZ87k6NGjvxiz2+1MnjyZdu3aBak6ERGRsNMRd1Byew1zfgSeBD4OSEUidcypU6fswKvBriMU5efn43A4+Omnn0zHL774Yp8dN7xx40ZSU1P59NNPTccbNmzIqFGjfBZeZGdnk5OTQ0VFRbXxqKgoBg8ezKRJkyz3YKyoqGDBggVMnz6dgwcPAvDcc8/xzDPPWPpcERErrO05FBERf4icBh7m8oDLgaeBw7VNPnjwIE6nkwEDBni8QQgF+fn59OvXj8zMzF+EJVdeeSXvv/8+OTk5CktERES8E4t7d+oaPIclx4F04CoUloj4U6Tfm5yxtWvXMnjwYEaMGGEaljRu3JiJEyeybNkyy2HJwYMHcTgcHu+FoqKiGDJkCJ999hlJSUmWwpKKigoWLlxI7969mTdvnmlYcu211/KXv/yFl19+2XJYUlBQgN1uZ+LEif8KSwAWLVpk6XNFRKzSDhMRkdATbxiGzWazVT/8NnKUAzOB93CfNf4oUOP2kY0bN/LAAw9gt9vJyMjgoosu8n+VXli7di1Op5MVK1b84udNmzZl3LhxPPTQQyG/M0ZERCSE3Iy7p0TXGuYsAcYA5mfSiIgvDTQMI8Zms1V/el7HHGci8SYAACAASURBVDhwgBdeeIH58+dz6lT1NklVOy+cTicXXHCBpbXKy8t59913ycrKYv/+/aZzevTogcvl4oorrrC0FkBhYSGpqamsW7fOdLxVq1akpKQwZMgQyz0Yt23bxtSpU8nLyzMdP3HihKXPFxGxSoGJiEjoablr165rgNXBLiQAioCRuJvDvwT0ru2C/Px8Pv30U4YPH86ECRNo1KiRv2s05emGKTY2lhEjRvDss8+GXe8VERGRIGoFPA/8DvD0NG4LMBb4IFBFiQjn7dq161fA58EuJFiqmqzPmDGDw4fNN8j37NkTl8tF1641Zb3eKSgoIDU1lfXr15uOt27dmuTkZJ+EF1u3biUrK8tjeBEXF8cjjzzikx6MR48e5aWXXuL111/n5MmTlj5LRMSfFJiIiIQgm80WT90ITKqsBPpQe1NX4N/9TZYsWUJSUhIPPPAAUVGBOWWyphumPn36kJGRwSWXXBKQWkRERCJAFPB73GFJEw9zyoG5wB+AYwGqS0ROi46OjqeOBiYFBQU4nU42bNhgOt6mTRsmTJjA0KFDLa/lTXgxevRonnzySerXr29prePHjzN37lxmzZrlMbzwVQ9GwzDIzc0lMzOTPXv2WPosEZFAUA8TEZEQZLPZ6upZwXm4j+BIBo7WMpeSkhLGjx/P7bffztdff+334goKCoiPj8fpdP4iLOnUqRMLFizg3XffVVgiIiLivetwP4R9Fc9hyadAN9w9TRSWiASBYRjxwa4h0LZs2cLw4cMZNmyYaVgSFxdHUlISy5cvtxyWHD58mMzMTPr3728althsNhISEvjHP/5BUlKSpbCksrKSRYsW0aNHD7Kzs03DkquuuspnPRi/+uorbrvtNhITE03DkubNm3PfffdZWkNExNcUmIiIhKbeu3fvbhDsIoLkODANd2P4BUCtvVy+/fZb7rrrLkaOHMmuXbt8XtCWLVsYMWJEtRumJk2aMHHiRJYuXcrAgQN9vq6IiEiEOg93L7MvgRs8zCkGRgADgB8CVJeImLtx+/btTYNdRCD8Z3jx8ccfVxuvCi/++c9/kpSUxDnnnHPWa1WFF3369GHOnDmm4cXVV1/N+++/z6uvvkrbtm3Pei2Ab775hrvuuovExET27t1bbbxZs2a4XC4++OADbrzxRktrFRcX89RTT/Gb3/yGb7/9ttp4bGwsjz76KAUFBdx1112W1hIR8TUdySUiEprqA32BvwW7kCDaCQwH5uB+qFLjb+2GYZCXl8cnn3zCE088wZgxYyzdwID7hmnWrFm89tprlJeX/+vnUVFR3HPPPTgcDssNHUVEROoQG/AgMB1o4WFOJfA68Bxg3ixARAItOjY2tj/wP8EuxF8qKytZvHgxGRkZ/Pzzz6ZzrrnmGjIyMrj++ustr/f555/jdDr5/vvvTcdbtmzps6OHi4qKmDp1KosXL8Ywqr+LFhsby/Dhwxk/fjznnnuupbXKysqYN28eM2fO5OhR8wMDdIyxiIQ6BSYiIqHLTt0OTKp8AfTE3QT2eaBlTZOPHz9OdnY2b7/99lmfJ1zTDVOvXr1wuVxcfvnlZ/y5IiIiddgluF+CGFTDnFXAE7h3nohIaLEToYHJ8uXLSU1N5YcfzDezhWt4UVpayhtvvMFLL73EsWPmJxr26dOHyZMn06VLF0trAeTn5zNp0iR27NhhOt6pUydSU1MZNKimrwERkeBTYCIiErrq3FnBNagE3sR9k/Ys7h4nNW4f2b17N4mJibz33nukp6fTtWtXrxb67LPPcDqd1W6Y2rRpQ3JyMkOGDDmrfwAREZE6qgEwHkgB6nmYcxBIA2YDpwJTloicoV8HuwBf2717N7///e/54IMPTMfPOeccRo0axdixY2nQwNppyaWlpbzyyivMmTOHsrIy0zl2ux2Xy0X79u0trQXehRdpaWk+OVZ47dq1OJ1OVqxYYTrepEkTxowZw+OPP05sbKzl9URE/E2BiYhI6Lpy586dbdu2bbsz2IWEkKO4H6j8GcgEat0+snz5cuLj4xk8eDBOp9PjEVq7d+8mKyuL3NzcX/y8QYMGPjviS0REpI5JAGYBnp7+GcBC3C9DVO8GLCKhpMOOHTs6t2vXblOwC/GVjz76yOOYr8ILwzBYsmQJGRkZ7NxpflvXuXNn0tPT6d+/v6W1AL777jscDgdffmm+Ua9JkyYkJSXx0EMPERNj7ZHggQMHeOGFF5g/fz6nTlXPuqOiomq9BxMRCUUKTEREQlh0dPQgYH6w6whBG4F7gYHAS8CVNU2urKwkNzeXv//974wdO/YXbzdVve01e/ZsTpw48a9rbDYbd9xxB6mpqbRp08Z//yQiIiKR52LcQcltNczZADwJfBKQikTEspiYmHggYgITM127dsXlctGzZ0/Ln7VmzRocDgdfffWV6fh5553HuHHjfBJe7N+/nxdffNFjeBETE8N9993HhAkTOP/88y2tVV5eTk5ODjNmzODwYfNWUzrGWETCmQITEZEQZhiGHQUmNfkEuA4YDaQCTWuafPjwYTIzM3nvvfdIS0vj559/ZsqUKZSUlPxiXrdu3cjIyKB79+5+K1xERCQCxeL+Ts4EGnqYcxx30/cpwMkA1SUiPnD63uSVYNfhD1XhxcMPP0x0dLSlzyopKSE7O5u33nqLysrKauNV4UVycjLNmjWztFZVeDF9+nSOHDliOqd3796kp6f7JLwoKCjA4XDw448/mo63adPmrPtIioiECgUmIiKhLd4wjCibzVb9N22pUg7MxH1MVwbwGFDjXc7GjRv57W9/W+3nLVu2ZOLEidxzzz3YbDZ/1CoiIhKp+uFu6l5T07AlwBhgeyAKEhGfG2gYRqzNZisPdiFnw2wXR2xsLA8//DDjxo2jcePGlj7f2/DC5XJx2WWXWVoL3H1KUlNT2bZtm+l4hw4dSElJISEhwfJamzdvJi0tjU8+Md8UqGOMRSSSKDAREQltFxQVFXUDVgW7kDDwM/AE7vDkRc6gMWW9evV47LHHSExMpFGjRv6qL2SdPHmS//3f/+XIkSPcfffdlt90ExGROqUV8DzwO8DT2wZbgLGAeWdlEQkX5xYVFd0IFAa7kLNht9t54403/rXrY+DAgaSlpdGpUyfLn52fn4/T6WT7dvM8uGPHjiQnJ/skvNi0aRNpaWksXbrUdNyX4cWhQ4eYPXs2r732GuXl1XOyqmOMnU4nF154oaW1RERChQITEZHQF48CkzOxHrgVd6PZl3Cfo16jdu3aMXHiRH/XFZL+9re/4XK5/vVm2vz581m6dOm/eryIiIh4EAX8HvfxWp5eyy4H5gJ/AI4FqC4R8aPTx3KFZWDSp08f3nvvPQoKCujVqxe9e/e2/JmbNm0iNTWVZcuWmY43bNiQUaNGMXbsWOrVq2dprUOHDjFjxgxycnKoqKioNm6z2bjnnnuYNGkSLVq0sLRWRUUFCxcuZPr06Rw4cMB0Tvfu3cnIyKBbt26W1hIRCTUKTEREQtzpm5KsYNcRhvKAfOAZ3A9qPG4d2bJlCydOnKhT28fXr1+P0+mksPCX97ubN29mw4YNXHnllUGqTEREwsB1uIOQG2qY8ynufibrAlGQiARMPO7egWGpZ8+ePmnofvDgQbKzsz2GF1FRUQwePBiHw0Hz5s0trVVRUcE777zDtGnT2Ldvn+mca6+9FpfL5ZMejIWFhaSmprJunfkf361bt2bixIncfffdlo8x/umnn5g3b56lzxAR8TUFJiIiIc5ms/Xes2dPoxYtWhwNdi1hqAyYCswH0nC/CRv135MMw6CioqJOBCa1vZkG7iO6RERETJwHpANP4rlfWBGQDLwZqKJEJHBsNtuvduzY0axdu3b7g11LMFSFF1lZWezfb/6v4LrrrsPlcnHddddZXq+28KJVq1akpKQwZMgQy+HF9u3bcblcfPjhh6bj9evXZ9SoUYwZM4YGDRpYWuvYsWPMmjWLV199lRMnTvxizOpOHBERqxSYiIiEvnqnTp3qi879tqIIGIn7+IA6+QCnoqKCN998kxkzZnDw4MFglyMiIuHFBjyI+/gtT+e8VAKvA88BhwNUl4gEXnRMTMwAIDfYhQRaYWEhTqeT9evXm463bt2a5ORkn4QX27ZtY+rUqeTl5ZmO169fn0cffZSnn36ahg0bWlrr6NGjvPzyy7z22mseX5xKSEjA4XDQtm1bS2sZhkFubi5TpkyhpKTEdM6dd95paQ0REasUmIiIhIHTx3IpMLGuTh4LUtubaSIiIjW4FJgDDKxhzkrgCeCrgFQkIkF1+t6kzgQmW7duJSsry2N4ERcXxyOPPOKT8OL48ePMnTuXWbNmeQwv7HY7kydPpl27dpbWqqysZNGiRWRlZXkML6644goyMjK46aabLK0FsGrVKpxOJ6tWmbfnbNasGcnJyfz2t7+1vJaIiBUKTEREwkN8sAuQ8LN161bS0tLIz883HY+Li2P06NG88sorlJaWBrg6EREJcQ2A8UAK4Ol8lAO4j+iahXuHiYjUDbcEu4BAOHbsGH/84x9rDS8yMzN9tvMiMzOTPXv2mM656qqrcLlc3HjjjZbWAli9ejVOp5Ovv/7adLxp06Y888wzPPzww0RHezqB0TslJSVkZ2fz1ltvUVlZ/asiNjaWYcOGkZycTLNmzSytJSLiCwpMRETCQ9ddu3a1u/DCC3cEuxAJfWf6Ztqrr74a4ApFRCTEJeAOQdp7GDeAhcCzgPmTPRGJZO137tx5Sdu2bX8MdiH+UFlZyeLFi5k8eTJ79+41nXP11Vfjcrm44YYbLK/3zTff4HQ6Wblypel4oMOL4cOH89xzz9G4cWNLa5WXl5OTk8Pzzz/P0aPm7Tj79OlDeno6l112maW1RER8SYGJiEj4sANvBLsICV2BfjNNREQizsW4g5LbapizAXfT908CUpGIhCSbzRYPRFxgUtuxUS1btiQpKYn777/fcnhRXFzMlClTWLx4MYZhVBv3ZXhRVlbGvHnzmDlzZo3hhcvl4tJLL7W0FkB+fj5Op5Pt27ebjnfs2JHk5GQSEhIsryUi4msKTEREwkRUVJQCE/EokG+miYhIxIkFRgOZgKcD+I/jbvo+BTDfvigidcbpe5PZwa7DV4qKipg6dWqt4cX48eM599xzLa1VFV689NJLHDt2zHROnz59yMjI4JJLLrG0FrjDC4fDwU8//WQ6fvHFF5Oamordbre81saNG0lNTeXTTz81HW/YsCGjRo1i7Nix1Kvn6bRHEZHgUmAiIhImDMOwG4YRZbPZdEa4/Esg30wTEZGI1A94Bbi8hjlLcO8qMX/aJiJ1jmEY/Q3DiLXZbOXBrsWK0tJS3njjjRrDC7vdTnp6Oh06dLC8Xn5+PpMmTWLHDvOTljt16kRaWhoDBw60vNbatWtxOp2sWLHCdLxx48aMHTuWxx9/nNjYWEtrHTx4kOzsbObPn8+pU6eqjUdFRTF48GAcDgfNmze3tJaIiL8pMBERCR/nFxUVXQeYd+aTOsWbmztfvpkmIiIRpzUwDXiwhjlbgLHABwGpSETCyblFRUU9gH8Gu5CzYRgGS5YsISMjg507d5rO6dy5M2lpaQwYMMDyet999x1Op5MvvvjCdLxJkyaMGTPGJ+HFgQMHeOGFF2oNL5xOJxdccIGltcrLy3n33XfJyspi//79pnN69OiBy+XiiiuusLSWiEigKDAREQkv8SgwqfMC+WaaiIhEnCjg97iP1/K09bAceAFIA8oCU5aIhCE7YRiYrFmzBqfTyZdffmk63qRJE5KSknjooYeIibH22Mzb8CI1NZXzzz/f0lpVTdZnzJjB4cOHTef07NkTl8tF165dLa0FUFBQgNPpZMOGDabjrVu3Jjk5mSFDhmCz2SyvJyISKApMRETCix332eFSBwXyzTQREYlI3YG5wK9qmLMM9/Fb6wJSkYiEs3jAEewivFVSUkJ2djZvv/22aXgRExPDfffdx4QJEwISXvTq1QuXy8Xll9d0IqJ3agsv2rRpw4QJExg6dKjltbZu3UpWVhZ5eXmm43FxcYwePZonn3yS+vXrW15PRCTQFJiIiISXnnv27GnUokWLo8EuRAJn//79vPjiix7fTPPlzZ2IiESkprh3i4zBvcPETBGQDLwZoJpEJPxdv3v37gvatGnzc7AL8cbMmTNZuHCh6Vjv3r1JT0/3WXjhcDj48ccfTcc7dOhASkoKCQkJltfasmULaWlpfPzxx6bjVeHFmDFjOOeccyytdfjwYWbNmsWf/vQnTp48WW3cZrNxxx134HA4aNu2raW1RESCSYGJiEh4qVdZWdkPd/NViXBVb6ZNnz6dI0eOmM7x5c2diIhEHBvuHiXTgRYe5lTgbvruAMxfgxYRMRdls9kGAO8Fu5Cz1bFjR9LS0rDb7ZY/a8OGDaSmpvLPf5qfUtaoUSMSExN57LHHqFevnqW1qsKL1157jfLy8mrjVeGF0+nkwgsvtLRWZWUlixcvZvLkyezdu9d0ztVXX43L5eKGG26wtJaISChQYCIiEmYMw4hHgUnEy8/PJzU1lW3btpmO+/LNNBERiUhX4w5CetUwZyXwBPBVQCoSkYhz+t4kLAMTu93O66+/bvko24MHDzJ9+nQWLFhARUVFtfGoqCiGDh1KSkoKLVp4yq69UxVeZGRk8PPP5ht7rrnmGjIyMrj++ustrQXw+eef43Q6+f77703HW7ZsSVJSEg888ABRUZ42MIqIhBcFJiIiYeb0TYlEqM2bN5OamsrSpUtNxxs0aMATTzzhk231IiISkRoA44EUwNMrzAeAdGAWUBmgukQkMt0S7ALOVtu2bS2FJRUVFbzzzjtMmzaNffv2mc7p1q0bGRkZdO/e/azXqfLZZ5/hdDr54YcfTMd9GV4UFRUxdepUFi9ejGEY1cZjY2MZPnw448eP59xzz7W0lohIqFFgIiISfi4tLi7u2KpVq63BLkR859ChQ8yYMYOcnBzTN9NsNhv33HMPkyZNsvxmmoiIRKwEYDZwkYdxA1gIJAHm56qIiJyZtrt37768TZs264JdSCAVFhaSmprKunXm/9itWrUiJSWFIUOGYLPZLK21e/dusrKyyM3NNR2vCi8mTJhAo0aNLK1VWlrKK6+8wpw5cygrKzOdY7fbcblctG/f3tJaIiKhSoGJiEgYqqysHAT8Kdh1iHWBfjNNREQiUifgZeC2GuasAUYDywNSkYjUJfFAnQhMtm3bxtSpU8nLyzMdr1+/Po8++iiJiYk+Cy9mz57NiRMnTOf4KrwwDIMlS5aQkZHBzp07Ted07tyZ9PR0+vfvb2ktEZFQp8BERCQ82VFgEva+//57xowZw4YNG0zH27Rpw6RJk7jrrrssv5kmIiIRKRYYB6QB9T3MOY676fsU4GRgyhKROsYOzAx2Ef50/Phx5s6dW2t4kZGRwUUXedrk552q8MLlcrFr1y7TOV26dCE9PZ1+/fpZWgtgzZo1OBwOvvrKvJ3Veeedx7hx43jooYeIidFjRBGJfPqTTkQkPA0yDCPaZrOdCnYhcvYeeeQRduzYUe3ncXFxjB49mtGjRxMXFxeEykREJAz0B+YAl9cwZwnwJPBTQCoSkbqq38aNG8/p0qWLeZIQxgzDIDc3l8zMTPbs2WM658orr8TlcnHTTTdZXu/bb7/F4XDw9ddfm45XhRcPP/ww0dHRltYqKSkhOzubt956i8rK6u2sYmJiuO+++0hOTqZZs2aW1hIRCScKTEREwlPTkpKS64Evgl2InJ2jR49WC0tsNhsJCQk4HA4uvPDCIFUmIiIhrjUwDXiwhjmbgbHAhwGpSETquoaNGjXqCSwLdiG+tHr1ahwOBytXrjQdb9q0Kc8880xAwovY2FiGDRvmk/CivLycnJwcpk+fzpEjR0zn9O7dG5fLxWWXXWZpLRGRcKTAREQkTBmGEY8Ck7BlGEa1n7355psMHDgwCNWIiEgYiMG9W8QFNPYwpxx4AfcRXebdekVE/MAwDDsREpgUFxczZcoUFi9ebPo7e1WT9eeee47GjT39ceydqvDi+eef5+jRo6Zz+vTpg8vl4tJLL7W0FkB+fj5Op5Pt27ebjnfs2JHk5GQSEhIsryUiEq4UmIiIhKnTNyUZwa5DfKdr167BLkFEREJTd2Au8Ksa5izD3dR9fUAqEhH5pXjgD8EuwoqysjLmzZvHzJkzawwvMjIyuOSSSyyv5014kZaWht1ut7zWpk2bSE1NZdky80yrYcOGjBo1irFjx1KvXj3L64mIhDMFJiIi4avH/v37mzRr1uxQsAsRERERv2iKe7fIGCDKw5wiIBl4M0A1iYiYuba4uLhFq1atzBt9hLj8/HwmTZpk2l8Q4OKLLyYtLY1BgwZZXmvjxo2kpqby6aefmo43btyYsWPH8thjj1kOLw4ePEh2djY5OTlUVFRUG4+KimLw4ME4HA6aN29uaa1A+eijjzz2eBER8QUFJiIi4SumtLS0H/CXYBciIiIiPmXD3aNkBuDpCVYF8ArgAA4HqC4REU+iTp06NRB4O9iFnIm1a9fidDpZsWKF6XiTJk0YM2YMjz/+OLGxsZbWqgov5s+fz6lTp6qN+zK8qKio4J133iErK4v9+/ebzrnuuutIT0+ne/fultYKlM2bN5OamsrSpUuDXYqIRDgFJiIi4c2OAhMREZFIcjXuIKRXDXO+Bp44/VcRkZAQFRVlJ4wCk//7v/8jJyfHtMl6dHQ0v/vd7xg/fjxNmza1tE55eTnvvvtujeFFjx49cLlcXHHFFZbWAigsLMTpdLJ+vfkJja1btyY5OZkhQ4Zgs9ksr+dvBw8eZPr06SxYsMB0l8x/Tw9ETSIS2RSYiIiEMZvNFh/sGkRERMQnGgDjgRTA0xksB4B0YBZQ/QmfiEgQGYYRbxiGzWazVe+UHoL27DE/PaxXr164XC4uv/xyy2sUFBTgdDrZsGGD6bgvw4utW7eSlZVFXl6e6XhcXByPPPIITz/9NA0bNrS0ViBUVFSwYMECpk+fzsGDXuUgFUCun8sSkTpAgYmISHjrUlJScnHLli23BLsQEREROWsJwGzgIg/jBrAQSAL2BqooEZEzdGFxcXFX4PtgF3I22rdvj9Pp5NZbb7X8WVu3biUtLY38/HzT8bi4OEaPHs2TTz5J/fr1La117Ngx/vjHPzJr1ixOnjxpOsdut5OZmUnbtm0trRUo//znP0lNTfUYNJk4iHvn5Rr/VSUidYUCExGRMHfq1Ck78Gqw6xAREZEz1gn3bpGans6twf0Q6LOAVCQiYoFhGPGEWWDSsGFDEhMTefzxxy03WT98+DCzZs3iT3/6k2l4YbPZuOOOO3A4HJbDi8rKShYvXszkyZPZu9c8S7/qqqvIyMjghhtusLRWoGzbto2pU6d63CVjohL4M/AcUOK3wkSkTlFgIiIS/hSYiIiIhJdYYByQBnh6tfgY7qbvUwDzV4ZFREKPHXgx2EWYad269S/+PioqiiFDhpCSkkLLli0tfbY34cXVV19NRkYGv/rVryytBbBq1SqcTierVq0yHW/ZsiVJSUncf//9REdHW17P344fP87cuXOZPXs2J06c8PayfwBPA6v9V5mI1EUKTEREwt9AwzBibDZbrR3wREREJOj6427qflkNc5YATwI/BaQiERHfuXnjxo3ndOnSxeun3oEyYsQICgoKWL58OTfeeCNOp5Nu3bpZ/tzPP/8cp9PJ99+bb6ypCi8eeOABoqKiLK1VVFTE1KlTWbx4MYZRvVVMbGwsw4cPZ/z48Zx77rmW1goEwzDIzc0lMzPTY08ZEzuBicAC3EdWioj4lAITEZHwd96uXbt+BXwe7EJERETEo9bANODBGuZsBsYCHwakIhER32sQFxfXG/gk2IX8t8aNG/Pee+/57PMCGV6Ulpbyxhtv8NJLL3Hs2DHTOXa7nfT0dDp06GBprUD55ptvcDqdrFy50ttLjgPTcX+XlvqtMBGp8xSYiIhEgOjo6HgUmIiIiISiGNy7RVxAYw9zTuI+wiYNKAtMWSIi/hEdHW0nBAMTXyktLeWVV15hzpw5lJWZ/5Ftt9txuVy0b9/e0lqGYbBkyRIyMjLYuXOn6ZzOnTuTlpbGgAEDLK0VKMXFxUyZMsVj0GTCAHJx9ynZ7tfiRERQYCIiEhEMw7AD6cGuQ0RERH7hemDu6b96shR3oLI+IBWJiPjZ6cbvycGuw9e8DS/S09Pp37+/5fXWrFmD0+nkyy+/NB1v0qQJSUlJPPTQQ8TEhP7jvbKyMubNm1fjLhkTK4FEYLn/KhMR+aXQ/xNVRES8cdP27dubtm/f/kCwCxERERGa4t4tMgbwdGD9biAFeDNANYmIBEq3PXv2tGrRokVxsAvxlTVr1uBwOPjqq69Mx8877zzGjRvnk/CipKSE7Oxs3n77bU6dOlVtPCYmhvvuu48JEyZw/vnnW1orUPLz85k0aRI7duzw9pIi3N+jrwOV/qpLRMSMAhMRkcgQHRsb2w94P9iFiIiI1GE23D1KZgDNPcypwN303QEcDlBdIiKBZKuoqBgI/DnYhVhVFV689dZbVFZWf25fFV4kJyfTrFkzS2uVl5eTk5PD9OnTOXLkiOmc3r17k56ezuWXX25prUD57rvvcDqdfPHFF95echL4I/qOFJEgUmAiIhI57CgwERERCZarcR+/1bOGOV8DT5z+q4hIJLMTxoGJt+GFy+Xisssus7xefn4+qampbNu2zXS8Q4cOpKSkkJCQYHmtQDhw4AAvvPAC8+fPN90l48ES3MdvbfFfZSIitVNgIiISOX4d7AJERETqoIa4G9GmAPU8zDmAu9fYLHS0iIjUDbcYhmGz2WxedfUOJfn5+TidTrZvN+8v3rFjR5KTk30SXmzatIm0tDSWLl1qOt6gQQOeeOIJxo4dS716nr5iQkdV0DRjxgwOH/Z6g8h64rKsWwAAIABJREFU4Bngb/6rTETEewpMREQiR8eSkpJOLVu23BzsQkREROqIBGA2cJGHcQNYCCQBewNVlIhICGhVUlJyJfBdsAvx1qZNm0hNTWXZsmWm4w0bNmTUqFE+CS8OHjxIdnY2OTk5VFRUVBu32Wzcc889TJo0iRYtWlhaK1AKCgpwOBz8+OOP3l6yH3ABc3AfVykiEhIUmIiIRJDKysp43MeBiIiIiP90wh2U1LS781tgNPBZQCoSEQkxhmHEEwaBSW3hRVRUFIMHD8bhcNC8uaf2VN6pqKjgnXfeYdq0aezbt890zrXXXovL5aJ79+6W1gqUzZs3k5aWxieffOLtJRXAG8BE4Ge/FSYicpYUmIiIRBDDMOwoMBEREfGXeriPDUkD6nuYcwzIALLRG7MiUoedDkyyg12HJ1XhRVZWFvv37zedc9111+Fyubjuuussr1dYWEhqairr1q0zHW/VqhUpKSkMGTIEm81meT1/O3ToELNnz+a1116jvLzc28s+AZ4G1vqvMhERaxSYiIhEloGGYcTabDavf2MVERERrwzAfWxITd19l+DeVbIjIBWJiIS2vjt27Ihr165dabAL+W+FhYU4nU7Wr19vOt66dWuSk5N9El5s27aNqVOnkpeXZzpev359Hn30UZ5++mkaNmxoaa1AqKysZPHixbhcLo+7ZExsxL2jZJH/KhMR8Q0FJiIikaVxUVHRjUBhsAsRERGJEG2ALODBGuZsBsaghrUiEaGysjLYJUSK+tHR0X2Avwe7kCpbt24lKyvLY3gRFxfHI4884pPw4vjx48ydO5dZs2Zx8uRJ0zl2u53JkyfTrl07S2sFyvLly3E6nR53yZg4inuX0VTghN8KExHxoahgFyAiIr51+lguERERsSYGSATW4TksKQPSgStRWCISMTZv3sy99957Jg+FxYNQujd566236Nevn2lYYrPZGDx4MIWFhUycONFSWFJZWcnbb79Njx49yM7ONg1Lrr76av7yl7+Qk5MTFmHJtm3bGDlyJEOHDvX2/xeVwAKgM+5jLBWWiEjY0A4TEZHIEw+kBrsIERGRMNYbeAW4qoY5S4EnAfPzXEQkHHjcSlJYWMivf/1rhg8fzrPPPkuTJk0CWVfEiIqKigeeC3YdAGvXrjXttdGtWzcyMjJ80mT9yy+/xOFw8N135r3uW7RoQXJyMvfeey9RUaH/DnPVLpnZs2dz4oTXmccXuF84+MJ/lYmI+E/o/+ksIiJnxGaz/WrHjh3Ngl2HiIhIGGoKzAT+ieewZDcwAhiIwhKRcLe1psHy8nLmzZtHr169yMnJ4dSpU4GqK2IYhnHV3r17Wwe7DjPNmzfnxRdfZMmSJZbDkl27djFq1Cjuvvtu07AkNjaW0aNHU1BQwH333RfyYYlhGCxatIiePXuSnZ3tbViyE/f3Yw8UlohIGAvtP6FFRORsRMfExAwIdhEiIiJhxAYMx92U9qnTf//fKoCXcTd9fzNwpYmIHy3Fiwe7+/fvJyUlhfj4eAoL1SrwDNkqKipC5liu/3THHXcwbNgwS+FFaWkp2dnZ9O3bl7/+9a8YhlFtTnx8PP/4xz+YNGkS5557rpWSA2L16tXceeedJCYmsmfPHm8uOQ5MAy7H/f1Y/V+CiEgYUWAiIhKBQumsYBERkRB3DVAI5ADne5hTCFyH+4iRIwGqS0T8rwK4BXidGo7nqrJu3TruvfdeHn30UbZv3+734iJFpN6b5Ofn069fP7KzsyktLa023qlTJxYsWMD8+fPp0KFD4As8Q8XFxTz11FPcfvvtrFy50ptLDGAR0BVIxt3gXUQk7CkwERGJTLcEuwAREZEQ1xDIAlYCPWuY9xZwM2B+IL2IhLtDwGPA9biP46vVhx9+SN++fXE4HBw5ogzVC3bDMMx27oWl7777jrvvvpsRI0awY8eOauNNmjRh4sSJLF26lIEDBwahwjNTVlbGnDlz6Nu3L7m5uaa7ZEysBPoC9wJKD0UkoigwERGJTO137tx5SbCLEBERCVEJwAZgAhDtYc5JYCLuo7pqffNcRMLeN7jD0TuppbcJ/Lu/Sd++fVm4cKH6m9Ss5a5du64JdhFW7d+/H4fDwW233cYXX1Q/yS0mJobf/e53FBYW8uSTTxIbGxuEKs9M1S6ZzMxMjh71aoNIETASuBH37ksRkYijwEREJELZbLb4YNcgIiISYjoDHwJ/BS6sYd7fgHbAFEBPQUXqljzgCtxHDNW6faSkpITx48dz++238+WXX/q9uHAVzvcm5eXlvP766/To0YN58+aZhmO9e/fmo48+4vnnn+f88z2d7hg61q5dy+DBgxkxYgQ//fSTN5eU8+8+Xq+h70YRiWAKTEREIlRUVFREnhUsIiJyFuKANGAt8Osa5u3FfazlrYBXnW5FJCKV8u8m1gvwoon1mjVruPvuuxk5ciQ7d+70d31hx2azheW9SUFBAYMGDcLpdJoev9ahQwdeffVV3nvvPS6//PIgVHhmDhw4gMPh4NZbb2XFihXeXrYE9/8XEoHDfitORCREKDAREYlQhmH0Nwwj9PeBi4iI+NcAYDWQCpzjYc4p4EWgLfD3ANUlIqFvF+5j+W4EPq9tsmEY5OXlcfPNN5OZmcmxY8f8XmAY6VNcXNww2EV4a/PmzTz44IMMGzaMjRs3Vhtv0KABSUlJLFu2jISEhCBUeGa82SVjYj1wG+5jLDf7tUARkRCiwEREJHKdW1RU1CPYRYiIiARJG+BN4BOgpr5eXwCdgHG4+5aIiPy3r4BewAiguLbJpaWl/2qivWjRIm+baEe6cyorK/sEu4jaHDp0CIfDQf/+/fnkk0+qjdtsNoYMGcJnn31GUlIS55zjKYcPHQUFBdjtdpxOJ4cPe7VBZD/wNHAV7mMsRUTqFAUmIiKRLSy3vouIiFgQg/vYkA3AgzXMOwDcDdwEbA9AXSIS3gzcIWxnIB0oq+2CoqIiEhMTSUhIYNWqVf6uLxyE7L1JRUUFCxcupHfv3sybN4+Kiopqc7p168Zf//pXXn75ZVq0aBGEKs/Mli1bGD58OMOGDePHH3/05pIK3P1JLgNmnv57EZE6R4GJiEhkC9vmiiIiImehN/AN8BLQyMMcA3dPgnbA/waoLhGJHMdw90S6EljkzQWrVq3izjvv5KmnnmLv3r3+rC3UheS9SWFhIbfccgvjx49n37591cZbtWrFzJkz+b//+z+6d+8ehArPzKFDh8jMzKR///58/PHH3l72CXAdMBJ3Py8RkTpLgYmISGS7fvfu3RcEuwgRERE/a4b7bdh/4H6I6cn60+PDcT/0FBE5W5uBe4GBwJraJldWVpKbm0vPnj3Jzs7m5Mk6eQLglTt37mwb7CKq7Ny5k4cffph7772XdevWVRuvX78+48aNY/ny5QwdOhSbzRaEKr1XWVnJokWL6NOnD3PmzKG8vNybyzbh/t/xIOA7vxYoIhImFJiIiES2KJvNNiDYRYiIiPiJDXf4sRF4Cs/3N8dxvzXbFfghMKWJSB2xFLgWd3+TWt/MP3bsGNnZ2fTv35+8vDy/FxdqoqOjBwW7hir5+fl89NFHpmN2u51//OMfPPvss8TFxQW4sjO3fPly7HY7iYmJ/Pzzz95ccgz30XJe75QSEakrFJiIiEQ4wzBC9qxgERERC64BlgM5uHeYeJILtMZ9Lrs6L4uIP1Ti7m9yKTANqHX7yNatWxk5ciT33nsv69ev93d9ISPU702uuuoq3n//fXJycmjXrl2wy6nV7t27eeqppxg6dKjpLhkTlbiPpeyE+2i5E34sT0QkLCkwERGJfL8OdgEiIiI+1BDIAlYCPWqYt/P0+FDgcADqEhE5ACQDVwMfeHNBYWEh8fHxjB8/nv379/u1uBARbxhGyD2Latq0KS6Xiw8++IAbb7wx2OXU6vjx42RnZ9OrVy9yc3O9vexLoBfunZklfitORCTMhdyXlIiI+Fzb3bt3XxbsIkRERHwgAdgATACiPcw5CUwEOgArAlOWiMgvbABuB+x4cQxgRUUFCxcupHfv3rz++utUVFT4vcAguqCoqKhbMBaOiYmp9rPY2FieeOIJVqxYwe9//3uioz19tYQGwzDIy8vj5ptvJjs7mxMnvNogsgv3kXE3oe9FEZFaKTAREakb4oNdgIiIiAWdgb8BfwUurGHe34B2wBTgVADqEhGpycdAN+Bp4FBtkw8ePIjT6WTAgAEsW7bM78UFUVDuTeLj44mK+vdjMLvdzqefforD4eDcc88NRklnZPXq1dx1112MHDmSXbt2eXPJcdxHxF2G+8g4HUspIuIFBSYiInVAqJ8VLCIi4kEc7jPW1wK31DDv59PjtwJ7/F+WiIjXyoGZuHtGvIwXYe6mTZv47W9/y4gRI9i+fbu/6wu4YN2b9O7dm8WLF/PMM8+Qm5tLTk4OHTt2DEYpZ6SkpITx48dzxx138PXXX3t72RLgCtxHxB31W3EiIhFIgYmISB1gs9n6b9y48Zxg1yEiInIGBgKrgVTA03fYKeBF3LtO/h6gukREzsY+IBG4ASjw5oL8/Hz69u2Lw+HgyJEjfi0ukGw2W+89e/Y0CsbaN954I8899xw9e/YMxvJnpKysjDlz5tCnTx8WLlxIZWWlN5etAvriPsJymz/rExGJVApMRETqhoaNGjWqqTGuiIhIqGiD++iQj4FLapj3Be43tsfh7lsiIhIOqh5o34kXD7TLy8uZN28effv2PZOH5qGu3qlTp/oGu4hQlp+fT79+/cjMzOToUa82iPyM++g3rwM5ERExp8BERKSO0LFcIiIS4mJwv329AXiwhnkHgbtxN6+NvLNqRKSuyAO64uWRSVXHMt1222189dVXfi/O3wzDUI9FE2vXrmXw4MGMGDGCn376yZtLynEf9dYJ99Fv6t8lImKRAhMRkbpDNyUiIhKq+uA+fuslwNMxLQawAHdT9/8NUF0iIv5Uyr+bci/Ai6bca9as4Te/+Q0jR45k586d/q7Pn3Rv8h8OHDiAw+Hg1ltvZcWKFd5etgS4HPfLBof9VpyISB2jwEREpO64rqioqHmwixAREfkPzXC/Efsp7ua0nqwHrgSGo+a1IhJ5duH+8+0m4PPaJhuGQV5eHjfffDPZ2dmUlZX5vUA/uHz37t0XBbuIYCsvL+f111+nR48ezJs3j1OnvNogsgG4DXefks1+LVBEpA5SYCIiUndEVVZWDgx2ESIiIoAN98PBjcBTeL4vOQ6MxH1szQ+BKU1EJGi+BHoBI4Di2iaXlpaSnZ1Nr169WLRoEYZR6waVkFLXjwwuKCggPj4ep9PJ4cNebRA5gLtPyZXAh34tTkSkDlNgIiJSh0RFRWnru4iIBFs3YDmQg3uHiSd5wEXAa3hxTI2ISIQwgDeBzkA6UOv2kaKiIhITExkyZAjff/+9v+vzmaioqDoZmGzZsoURI0YwbNgwNmzY4M0lFbi/Cy/FvSuzwp/1iYjUdQpMRETqEMMw4g3DsAW7DhERqZMaAlnASqBHDfN+wn0szZ3AvgDUJSISio4BacBVwCJvLvj888+55ZZbeOqpp9i7d68/a/MJwzAGGYZRZ55LHT58mMzMTPr3709+fr63ly0FrsO92zL0/6OKiESAOvPFJCIiAFxYXFzcNdhFiIhInZOA+8z1CXi+BzkJTAQuBr4IUF0iIqFuE3AvMBD4rrbJlZWV5Obm0qdPH+bMmcPJkyf9XqAF5xcXF3cPdhH+VllZyaJFi+jduzdz5syhvLzcm8vO6L+7iIj4jgITEZE6xjAMHcslIiKB0hn4G/BX4MIa5i3FffzWFMCrjrciInXMGe00+M/dDHl5eX4v7mxF+r3JZ599Rnx8PImJifz888/eXHIM91FsV+LlziIREfEtBSYiInVPnTwrWEREAioO91Ey3wO31DBv7+nxgUCJ/8sSEQlr/9nL4mW86GWxdetWRo78/+zdeXRUVdb38W9VBkiYg8xjIiiCIuCIQFQ0YAuoj6I4oOCIE6DQhgRIAgEk0qRlEBUFH1AabXB4BNp+FVtREG0JIAgoBJkTCEOAAAmZ6r5/lCiXGlIZakjy+6zFWnDuuffuBEhV3X3O3sMYNGgQv/76q7fjK4sq+dkkMzOTESNGMHDgQLZt2+bJKQbwHvaFBhOAfC+GJyIibihhIiJS/dyYnp5ew99BiIhIldUP2AYkAaEu5hQDrwKtgC98FJeISFVxHBiJfRfCZ56csHr1avr27UtsbCzZ2dleDa6Ubjh27FhdfwdRUfLy8khNTaVHjx58+OGHnp72I3AD8AhwyGvBiYiIR5QwERGpfsLDwsJ6+jsIERGpcpoD7wIrgLZu5v0X+wraUWgFrYhIeWzHnqSOAX4paXJhYSGLFi2iZ8+ezJs3j+LigKiAGHL27Nkb/R1EeRmGwfLly4mOjiY1NZX8fI9e3jKAIcD1wA9eDVBERDymhImISDUUFBRUJbe+i4iIXwRjX+m8HXjYzbxTwIPYHwzt8X5YIiLVxpfAlcALQE5Jk0+cOEFiYiK9e/dm1apV3o6tRFartVJ/Ntm0aRN33nknw4YNIyMjw5NT8oBXgA7YFxoY3oxPRERKRwkTEZFqqKo3VxQREZ/pBfwEzABqu5hjAAuw70B53zdhiYhUO4XATOBi7P1NStw+kp6ezoMPPsiQIUPYu3evt+NzqbJ+NsnKyiI2NpZ+/fqRlpbm6WkrgI5AHHDaa8GJiEiZKWEiIlI9dTl8+HBTfwchIiKVVgQwF/gG6ORm3nbgCuBR9GBIRMQXjmLf9XctsNqTE1auXEl0dDQJCQmcOnXKq8G5cOmhQ4ci/XHjsigsLGTevHn06tWLRYsWYbPZPDltAxANDEC7LEVEApoSJiIi1ZOlqKjoFn8HISIilY4Fe1PaHcBTv//ZmVxgGHAZsNU3oYmIyHnOPaC/Aw8e0BcWFjJ//nyio6NLkwSoMDab7Vaf3rCMziWXEhMTOX3ao3UAx7CXSvM4gSUiIv6lhImISPVVqWsFi4iIz3UB1gILgYZu5i0HWgNvobrsIiL+thz7TkCPSkCdX2Zq3bp1Xg/uPAH92aQM5csKsZdGuxh7qbQSS6SJiEhgUMJERKT66msYhquVwSIiIufUw/6wZz32hu2u7Ae6Y1/NfMwHcYmIiGdy+bPJ+Ht4kMzetGkTd911V2kamZfXrYZhBPniRqVx4sQJEhIS6N27N6tWrfL0tC+xLzIYCZz0VmwiIuIdSpiIiFRfTbOysi73dxAiIhLQBgDbgBG4/uxQAIwDIoEffBSXiIiUXgb2sorX48HPa8MwWL58OdHR0aSmppKfn+/N2BpkZWVd7c0blEZhYSGLFi2iZ8+ezJ8/n+JijzaIbAf6Yd8ts82rAYqIiNcoYSIiUo0ZhtHH3zGIiEhAag98DiwDmruZ9xX28lsvo3IjIiKVxY/ADcAQ4FBJk/Py8khNTaVHjx4sXboUw/BOtcVA+WyyevVq+vTpQ2xsLNnZ2Z6cchx7ybPOwGdeDU5ERLxOCRMRkWrMMIyArhUsIiI+FwZMALYA7h5cHQFuA24BsrwfloiIVDADeBdoB0wEStw+kpmZyciRI7n33nvZtq3iN1D4+7PJrl27GDJkCIMGDWL79u2enGLDXuLsUuwlzwq8GZ+IiPiGEiYiItXbjfv37w/zdxAiIhIQ+mMvIZIEhLqYUwy8CrTCvgNFREQqtzPYE+WXA0s9OWHt2rX06dOHESNGcPTo0YqMpXt2dna9irygJ3JycpgyZQq9e/dm5cqVnp72FdAVe4mzI14LTkREfE4JExGR6q2m1Wrt6e8gRETEr1pgX2W8HGjrZt5/sa9EHoUHK5FFRKRS2QncB9wK/FzSZJvNxocffkjPnj2ZM2cOBQUVsrkiOC8v76aKuJAnbDYbS5cupVevXqX5Gn7D/n26Bdjs1QBFRMQvlDARERGV5RIRqZ5CgJHAr8DDbuadAh7H3iR4j/fDEhERP/oP0A0Yhgc7J8q4O8Mdn3w2+f777+nTpw8jR47kyBGPNoicwV66zOOdOCIiUjkpYSIiUs1ZLJaAaK4oIiI+1QvYCMwAaruYYwALsDd9f8c3YYmISAAoAt7C3ptj1u9/dqsM/T+c8vZnk4MHDzJixAgGDhzoaR8WA3ufknbYS5ed9WJ4IiISAJQwERGRzkeOHGnm7yBERMQnIoC5wDdAJzfztgNXAI8Cp30Ql4iIBJ7j2HciXgH825MTVq9eTZ8+fUhISCAnJ6cs92w/Y8aMNmU50Z28vDxSU1O54YYb+PDDDzEMw5PT1gE9sPcpOVTRMYmISGBSwkRERCyFhYW3+jsIERHxKgv2Bz47gKd+/7MzZ4ERwGXAVt+EJiIiAe5X4HbgDuw9PNwqLCxk/vz5XH/99cybN4/i4uJS3axHjx7RZQvTkWEYLF++nOjoaFJTU8nP96gFVwYwBLgO+L6iYhERkcpBCRMREQH1MRERqcq6AmuBhUBDN/OWAy2B2dhLkIiIiJxvOfaE+gtAidtHTpw4QWJiIr1792bVqlUe36RBgwY3lTXA823atIm77rqLYcOGkZGR4ckpecAr2L/Gd9FroYhItaSEiYiIAPQxDMPVamMREamc6gEzgTTsDdtd2Q/cgH3l8DEfxCUiIpVXIfbXlg7Y+5yUuH0kPT2dBx98kCFDhrBv374SbxAWFtYzODi4zAFmZWURGxtLv379WLdunaenrcBeqjIOOFXmm4uISKWnhImIiAA0ycjI6OzvIEREpMIMwF5SawSu3/MXAuOASFRyRERESucgMAy4FljjyQkrV66kV69eJCQkcPq06/ZYFoulbpcuXUodUGFhIfPmzSM6OppFixZhs9k8OW0jcCP2183dpb6piIhUOUqYiIgIAEFBQX38HYOIiJRbe+BzYBnQws2874Ao4GU8WB0sIiLiwgagF/ZdintLmnyuv0mvXr3cJjVuvPHGUgWxcuVKoqOjSUxM5NQpjzaIHMNeWuwa4NtS3UxERKo0JUxERAQAwzDUx0REpPIKAyYAWwB3CfAjwF+AnsAB74clIiLVxHKgI/aSVq63j/zu/LJZaWlpDsc9TZikp6fz0EMPMWTIEPbuLTFfA/bdlbOAi7GXFtOiARERMVHCREREzumVmZkZ7u8gRESk1AYAvwBJQKiLOcXAdKAV8P98FJeIiFQvufzZNP09PGiavmnTJu68806Hxuxdu3alXr16Ls87ceIECQkJ9O7dm6+//trT+L4EugAjgZOeniQiItWLEiYiInJOTSDa30GIiIjHWgDvYi+/1cbNvP9iL9X1EpDvg7hERKR6OwA8AnTH/hrklmEYLF++nOjoaFJTU8nPzycoKIgePXo4zC0qKmLRokX07NmT+fPnU1zs0QaR7UB/IAbYVqqvREREqh0lTERE5HwqyyUiEvhCsK+O3Q487GbeKeBx4HrUyFZERHzvv8ANwBAgq6TJeXl5pKam0qNHD5YuXUp0tONargceeIDY2Fiys7M9uf9x7K+XVwD/KlXkIiJSbSlhIiIi51PjdxGRwBYN/ATMAGq5mGMAC7DvQHnHN2GJiIg4ZcO+G7IdMBEPdjpmZmYycuRIlixZ4nAsK6vEvMu5e74HdMDer6SwFPGKiEg1p4SJiIic7/IDBw609HcQIiLioCEwF1iFvamuK78AnYFHse8wERERCQSngQnYd3ss9eSEDRs2lOU+XwNdsZcEO1yWC4iISPWmhImIiJgEBQXd6u8YRETkD1bsD312AE8BFhfzzgIjgE7AFt+EJiIiUmrpwH3AbdiT/BVlF3A30BvYXIHXFRGRakYJExERMTEMQ31MREQCQ1fgO2AhEOFm3nKgFTAbezkuERGRQPc5cCXwAvZeI2V1Bnupr07AJxUQl4iIVHNKmIiIyIX6GIah1wcREf+pD8wE0rA3bHdlH9ADuAM46oO4REREKlIh9te7S4A3geJSnGvD3q+rPfZSX2crODYREamm9EBMREQudNHBgwe7+DsIEZFq6l5gO/byWq7eqxcC44AoYK2P4hIREfGWo8AzQDfgKw/mf499QcGjwEEvxiUiItWQEiYiIuJMH38HICJSzbQHvgCWAI3dzFsDXAy8TOlW4oqIiAS6zcAtwD3ACSfHTwODse+uXOfDuEREpBpRwkRERByoj4mIiM+EYS8lsgVw97P3KHA70AvY7/2wRERE/OZjoDnwKZAL5GFfVNAC+Afq1yUiIl4U7O8AREQk8Fgslp6HDx+u3bhx49P+jkVEpAobgL1Rexs3c4qBV4HxQL4vghIREQkAecBd/g5CRESqH+0wERERZ0KLi4uj/R2EiEgV1QJYCizDfbJkI9AJeAklS0RERERERLxOCRMREXFKZblERCpcCDASe1P3gW7mnQIex978drsP4hIRERERERFUkktERFxT43cRkYoTDbwBdHQzxwAWAiOwJ01ERERERETEh7TDREREXOmYkZHRyt9BiIhUck2Bd4FVuE+W/Ap0Bh5FyRIRERERERG/UMJERETcUVkuEZGysQKPAFuBhwGLi3lngTHYe5Vs8U1oIiIiIiIi4owSJiIi4pLValXCRESk9LoCa7GX14pwM2850AqYBth8EJeIiIiIiIi4oYSJiIi4ZBhGjGEYeq0QEfFMfWAmkAZc52bePqAHcAdw1AdxiYiIiIiIiAf0EExERNxpePDgwW7+DkJEpBK4F9iOvWG7q/fYRUAycDH2HSgiIiIiIiISQJQwERGRkvTxdwAiIgHsEuALYAnQ2M28NUAUkIQ9cSIiIiIiIiIBRgkTEREpifqYVGHr168nPz/f32GIVEbhwATgZ9z/nDwK3A70AvZ7PywREREREREpKyVMRESkJDccPny4tr+DkIp16NAhhg8fzh133EFhYaHpmNWqtwciJRgAbMO+WyTUxZxiYDr2pu7/9lFcIiIiIiIiUg7B/g5ARETYMGgBAAAgAElEQVQCXqjNZrsJWOHvQKT88vPzefPNN5k9eza5ubkOx+vUqUNUVJQfIhOpFFoCrwIDS5j3E/AA8KvXIxIREREREZEKoyWkIiJSIpvNprJcVcCKFSuIjo7mlVdecZosufjii/nHP/5B3bp1/RCdSEALAUZiT4C4S5acAh4HuqJkiYiIiIiISKWjHSYiIuIJNX6vxNLT00lKSmLVqlVOj9etW5fhw4fz5JNPEhrqqrqQSLV1I/A60NHNHANYgD2pcsoHMYmIiIiIiIgXKGEiIiKe6HDw4MG2zZo12+PvQMRzJ06cIDU1lQULFlBcXOxw3Gq1cvfdd5OQkECjRo38EKFIQGsKTAMGAxY3834F7sPe/F1EREREREQqMSVMRETEI4Zh3ArM83ccUrLCwkIWLlzI9OnTycnJcTqne/fuJCcn06lTJx9HJxLwrNiTJK8CEW7m5QOJ2Bu723wQl4iIiIiIiHiZEiYiIuKpPihhEvBWr15NYmIi27dvd3q8WbNmxMXFMXDgQCwWd4vmRaqlbsAbwLUlzFsGPAEc8XpEIiIiIiIi4jNKmIiIiKduNQwjyGKxONZ2Er/btWsXEydOZOXKlU6Ph4WF8eyzz/Lcc89Rs2ZNH0cnEvDqAxOB57HvMHFlH/Ag8J0vghIRERERERHfUsJEREQ81SArK+tq4L/+DkT+lJOTw+zZs3n77bcpKChwOG6xWOjfvz8JCQm0bNnSDxGKBLx7gTmAu0Y+RcBkYMrvvxcREREREZEqSAkTERHxmGEYfVDCJCDYbDY++ugjJk2axNGjR53O6dy5M5MmTeKaa67xcXQilcIl2BMlt5Ywbw3wEPbdJSIiIiIiIlKFKWEiIiIeMwwjBpjk7ziqu7Vr15KYmMi2bducHm/SpAmjR4/mwQcfxGp1V11IpFoKB2KBsUCIm3lHgSHAZ74ISkRERERERPxPCRMRESmN7tnZ2fUiIiJO+juQ6ujgwYNMnTqVjz76CMMwHI6HhITwyCOPEBsbS506dfwQoUjAGwC8BrR2M8eGfedJLHDWF0GJiIiIiIhIYFDCRERESiM4Ly/vJuBTfwdSneTl5fH666/z2muvkZ+f73ROTEwMycnJtGnTxsfRiVQKLYEZwD0lzPsJeAD41esRiYiIiIiISMBRwkREREorBiVMfMIwDFasWEFycjIZGRlO57Rr146JEydy8803+zg6kUohBHgWe7P2Wm7mnQZGAu/4IigREREREREJTEqYiIhIqVgslj7+jqE62LRpE4mJiaxbt87p8fr16zNq1CiGDh1KcLBezl35z3/+w6effkqHDh148sknCQlx17JCqpgbgdeBjm7mGMAC4AUgxwcxiYiIiIiISADTExYRESmt9llZWVFNmjTZ5e9AqqKsrCxSU1NZvHgxNpvN4XhwcDD3338/cXFxRERE+CHCyiE9PZ2kpCRWrVr1x9jJkyeJj4/3X1DiK02BacBgwOJmXjrwIJDmi6BEREREREQk8ClhIiIipVZcXBwDzPV3HFXNm2++yeLFizlz5ozT4zfffDMTJkygffv2Po6s8jh58iSpqaksXLiQwsJC07EffvjBT1GJj1iBJ4C/AXXdzMsHEoHp2Bu8i4iIiIiIiABKmIiISNkoYeIFb7/9ttPxyMhI4uLiGDBggI8jqjxsNhsfffQRkyZN4ujRoy7nSJXVDXgDuLaEecuwJ1WOeD0iERERERERqXSUMBERkbK4xTCMYIvFUuTvQKqyunXr8sILL/D444+r94Yba9asISkpiV9++cXfoYjv1QcmAs8BQW7m7cdefmuNL4ISERERERGRykkJExERKYv6GRkZ1wDf+zuQqshqtXL33XeTkJBAo0aN/B1OwNq7dy+TJk3is88+83co4nsW4GHsZbXc/Scp+n1OElDgg7hERERERESkElPCREREyiQoKKgPSpiUWWhoKBaLBcMwTOPXX389ycnJXH755X6KLPDl5ubyxhtv8Nprr5Gfn+90TkxMDJ06dWLGjBk+jk584BJgDnBrCfPWAA8B+7wekYiIiIiIiFQJVn8HICIilZNhGDH+jqEyq1GjhqknScuWLZk7dy4ff/yxkiUuGIbB8uXLufHGG0lNTXWaLGnfvj2LFy9m4cKFtG7d2g9RiheFAxOALbhPlhwF+gO9ULJERERERERESkE7TEREpKyuy87OrhcREXHS34FUVq+99hr9+/enuLiYvn37UrNmTX+HFLA2bdpEQkICaWlpTo/Xr1+fUaNG8eijjxIU5K6VhVRSA4DXAHdZMBv2nSexwFlfBCUiIiIiIiJVixImIiJSVsFnz57tDXzi70Aqq+DgYPr37+/vMAJaVlYWqampLF68GJvN5nA8JCSEQYMGERcXR0REhB8iFC+LAmYDt5cw7yfsTd1/8XpEIiIiIiIiUmUpYSIiIuURgxIm4gWFhYUsXLiQadOmcfr0aadzevXqRXJyMpdeeqmPoxMfCAGeBV7GXorLldPASOAdXwQlIiIiIiIiVZsSJiIiUh63+TsAqXpWrlxJQkIC+/Y5bz8RFRVFUlISMTFqo1NF3YS9tFZHN3MMYAHwApDj/ZBERERERESkOlDCREREyiMyKyvr4iZNmvzm70Ck8ktPTycpKYlVq1Y5PV63bl2GDx/Ok08+SWhoqG+DE19oCkwDBgMWN/N2Yi+/tc4XQYmIiIiIiEj1oYSJiIiUi81m6wO84e84pPI6ceIEqampLFiwgOLiYofjVquVu+++m4SEBBo1auSHCMXLrMATwHSgjpt5+UACkIq9wbuIiIiIiIhIhVLCREREysUwjBiUMJEyONenZPr06eTkOK+qdMMNN5CcnEzHju6qM0kl1g37z49rS5i3DHgSOOz1iERERERERKTaUsJERETK6xbDMEIsFkuhvwORymP16tUkJiayfft2p8ebNWtGXFwcAwcOxGJxV51JKqn6wETgOSDIzbyDwMPAf3wRlIiIiIiIiFRvSpiIiEh51c3MzLwW+M7fgUjg27lzJxMmTOCrr75yejw8PJzhw4fz9NNPU6NGDR9HJz5gwZ4AmQ64q69W9PucJKDAB3GJiIiIiIiIKGEiIiIVIgYlTMSNnJwcZs+ezdtvv01BgePzb4vFQv/+/UlMTKRFixblupfNZuOjjz5i6tSp5bqOVLhLgTnALSXMW4O98fter0ckIiIiIiIich4lTEREpNysVmsfYIK/45DAU1xczOLFi5k2bRrHjh1zOqdbt24kJyfTrVu3ct/vhx9+IDExkS1btjgcq1PHXT9x8aJwIBYYC4S4mXcMGAqs8EFMIiIiIiIiIg6UMBERkXIzDOPa/fv3R7Rq1Srb37FI4Fi7di2JiYls27bN6fEmTZowduzYCulTcuDAASZNmsTy5cudHg8LC+OZZ54p1z2kTAYArwGt3cyxAfOBF4EzvghKRERERERExBklTEREpCIEBQcH9wY+9Hcg4n/79u1j0qRJ/Otf/3J6vEaNGgwbNozhw4dTq1atct0rNzeXOXPm8MYbb3D27Fmnc2677TYSExNp27Ztue4lpRIFzAZuL2HeJuAB4BevRyQiIiIiIiJSAiVMRESkQhiGEYMSJtVaXl4er7/+Oq+99hr5+flO58TExJCcnEybNm3KdS/DMFixYgWTJk3iwIEDTue0a9eOCRMm0Lt373LdS0olBHgWeBl7KS5XTgMjgXd8EZSIiIiIiIiIJ5QwERGRitLX3wGIf5xLXiQnJ5ORkeF0Tvv27Zk4cSI33XRTue+3efNmEhMT+fHHH50er1+/PqNGjWLo0KEEB+utjg/dBLwOXOZmjgG8DzwD5PggJpFyS09Pr3HixInuQGur1VrT3/GIlEMhcNAwjO+vvvrqk/4OpjJLS0u7wmKxXAbU93csIuVk2Gy2rKCgoLRu3bpl+juYslqzZk2dsLCwG4DmuO+ZJxKwbDZbsdVqzSoqKvr+uuuuc94AVHxCTxFERKSitDlw4MAlLVu23OHvQMR3Nm3aRGJiIuvWrXN6/Fzy4tFHHyUoKKhc98rKyiI1NZXFixdjs9kcjgcHB3P//fczZswYGjZsWK57Sak0A14BHi5h3m/Ag4DzTJdIAFq/fv1zJ0+eTLZYLBFgTxCLVAH569atmxUeHj6+U6dOBf4OpjJZt27dtRaLZS7QRT8PpKqwWCzYbDYjLS1tKfDc1VdffdTfMXkqLS0tBEgGXjAMQ4sapFKzWCwYhkFQUFDRunXr3gkPDx/dqVOn0/6Oqzqy+jsAERGpOiwWSx9/xyC+kZWVRWxsLP369XOaLAkODmbw4MGsWbOGJ554olzJksLCQubNm0d0dDSLFi1ymizp2bMnn3/+OdOmTVOyxHeswFPAdtwnS/KBl4BLUbJEKpG0tLSXDcN4DYjwdywiFayGxWJ5KS8v75MlS5aUbzVDNZKWltbTYrGsArr4OxYRL7AA9wHfrV27tlK87hmGYQWWAHGAkiVSlQRbLJan8vLyVq5duzbM38FUR0qYiIhIhbFarTH+jkG8y5PkRa9evfjiiy+YNm0aERHl+7y1cuVKbrzxRhITEzl16pTD8bZt2zJ37lyWLFnCZZe5qwQlFewq4AdgLlDHzbxlQGtgOlDsg7hEKsT69euvx/4ARqQquz0qKuopfwdRGWzdujUUeBfQgyup6i4JDQ19xd9BeCItLW0ocJe/4xDxoutDQkLG+DuI6kgJExERqTCGYdxsGIZqxlZRK1euJDo62mXyIjIykrlz5/LPf/6TDh06lOteO3fuZPDgwQwZMoQ9e/Y4HA8PD2f06NGsWrWKAQMGlOteUioNgJnYd4pc42beISAGuBM47IO4RCqUzWZ7CvtqW5Gqbpi/A6gMzp492weI9HccIj4yeOvWrbX9HURJLBaLEr5S5Vkslqd+300lPqQeJiIiUpHqHDx4sDvwrb8DkYqTnp5OUlISq1atcnq8Vq1aPP300wwfPpzQ0NBy3evEiROkpqaycOFCioqKHI5brVbuvvtuxo8fT+PGjct1LykVC/ayW9OBRm7mFf0+JwlQXXyptCwWSzdXx3448gNfHfrKNFY7uDbPX/Y81jKsR3tn5zscyjtkGru64dX0ae7dKpfL9i9jy4ktprG2tdryYNSDpb5Wga2A1359jbPFZ03j/Vr248oGV5YrzpLMS5/H4bPmvOy1F13Lrc1uLfW1jpw9wts73nZIlQ29eCjNw5uXI0r3CmwFzP5lNvm2fNN4/5b96dygc6mvt+3ENv5v//+ZxoItwQy/bDhhQQ4bJK5IS0sLufrqqwtLfaNqxDCMrv6OQcSHap45c+YywHmTwgBgGIZl/fr1TsvjFRRYeeqpS9i3z1yla+jQQzzyyCFnp7j1/vuNeftt82tA8+b5vP32dsLCHHfbV5TDh0N44okOnD5trpw4ceJuevU6WerrTZnShv/8p4Fp7Oqrc3jllV1YvLhEZPPm2rz44sUYxp83CQ218eabO2jb9qybMx0VFVl47rn2pKeHm8bvu+8wTz+dWSHxurJs2UXMmNHSNHbRRQXMn7+dOnVKt5H++PFgHn+8AydOmB/Lx8XtpU+f4xdOb7Zx48amgHe/QDFRwkRERCpaDEqYVAnnkhcLFiyguNjxTeC55EVCQgKNGrl7hl6yoqIiPvjgA1JSUsjOznY6p2vXriQnJ3PVVVeV615Sap2B14EeJcxbAwwG9no9IhHvq+XqQLeG3Zj1yyx25OwwjdcIqsGwS0q3WP/jvR/z+q+vm8Ya1mhY6uuUxfWNrmfWL7M4UXDCfP+aDenbvG+prjVj2wyW7FliGutUvxMvdXqp3HGW5LqLruPJtU9SZPyZZF+xfwWtarXi0rqXenwdm2Ej6ackfjxqbrV0Z6s7vZosAQi1hhJZJ5KXN79sGl+TtYbF0YupH1rf42udKjxF3Po4MvPMz1X+2umvzpIlANagoKBawAlnB+UPLn8mBB8/TvvnnyfotLkv7/6//pWTvXqV+kbN33qLiH/9yzSWd+ml/JaSAlbvLTIO37GDqDFj4Lxyq0ZQEL+lpnI2spSbawyDyHHjqLV1q2n4eEwMGc8/XxHhutTgyy9pMXu2aayoXj3S58yhuI67KqKOrLm5tB8+nJCj5h7oB594gmNe3uHcbN48Gi5fbhrLa9+eXdOmYZTy30GNzEzajRyJpeC8tSwWC7uTkznT2XlSNjg4uG6pg/ahbdu2hQA1nB0LDbUxfvxehgzpQH7+n9+rOXOa07nzabp08byH9rZt4cya1ZLCwj8f9gcHG8TG7vNqsgSgceNCRo48wJgxUabxpKRI/vGPbTRr5vnapC++iOCTTy4yjUVEFPHSS/u9miwB6Nz5NAMHHmH+/GbnjQYxZkwUCxf+Ss2ann8f58xpwfr15v/H7dvn8dhjpU+EldaAAUdZvboeX3/952tyTk4YSUmRpKbu9Pj7aBgwaVJb9u0z//ONiTnuLFkCgM1mq4sSJj6lLT0iIlLR1Pi9kissLGTRokX07NmT+fPnO02WdO/enc8//5xZs2aVO1myZs0a+vbtS2xsrNNkSdOmTZk5cyYrVqxQssS3woEJQBrukyXHgAFAL5QskWog1BpKylUphAeZVzfOT5/Pf4/+1+Pr/HbqN/6+7e+mMavFyuSuk2lYo2GFxOpO45qNmdhlIpYLtlNM3TyVjNwMj6/z1aGvHJIldUPqMrXbVEKs3q/SeUWDK3jqEnNVlgJbAfHr4zlTdMbj67yd/rZDsiSqdhQvXe79pA/A3a3v5i8t/mIaO3z2MIkbEzEMw+PrTNo8ySFZ0qtJLwa1HVQhcYqjogYNOPTYY9TIyDD9ikxKIvTgwVJdq+7atTSbN890nZDjx8l49lmvJksAci+5hOy+fU33rrlvH1FjxmA9W7pV4E3ee4+IL74wXQuLhUNDh3on+PMcv+UW8i65xHTvWtu2EZmYaH9SWQqtX3mF2ps2ma5V0KwZ2f36eSn6P2U98gi2WrVM966/ahXN5s0r1XUsRUVEjh9Pzd27Tdc6ER3tMllSFbRrl8eoUQdMY8XFFsaOjXRY1e/KqVNBxMdHmZIlACNGZNC5s+evL+Vxyy3HGTjwiGksJyeIsWOjKCry7An9vn01mDy5tWnMaoXk5N00auSbzYXDhmVy7bXmks6//RbG3//eyuNrrF1bj0WLmpjGwsNtpKTsIjTUu8krAIsFEhP30Ly5eTfot9/WY+lSzz8PL1zYlG+/rWcaa9Uqn/Hj9TEqkChhIiIiFe3qzMzMi0qeJoFo9erVbpMXzZo1Y+bMmXz44Yd06tSpXPfas2cPw4YN47777uOXX35xOB4WFsZzzz3H6tWruffee7F4e/mTnG8A8Cv20lqunnjagLeBtsAK34QlEhha12rNuCvHmcZsho2EjQkczT/q4qw/5RXnEbc+zqGE1VOXPMU1F7lrD1SxejTu4VCC63TRaeI3xFNoK/khyqG8Q0zeNNk0ZsFC4pWJXt+Vcb6h7YbSvVF309i+M/uYsnmKR+dvyN7A/B3zTWOh1lCmdJtCzaCaLs6qePFXxNOmVhvT2Noja3lv13senf/B7g/46qC5XFyTmk2Y0GWCXkO97Pgtt3Dk3ntNY0E5OUTFx2NxUmLUmZDsbNpOnGja4QGwNy6Os23bVlSobmU+9RSnrr3WNBa2axetUlM9vkatrVtp8cYbpjEjOJjdkydTXNsHbTEsFvYkJpLf3PwzqN7q1TReutTjyzRctoyGF+z0KYyIYPfkyaXe4VEWttBQdqWkUBxuTs43mzePuj/+6OIsRy1nzaLW5s2msdyOHckYPrxC4gxk99xzhNtuM3+eOXw4lKSkth7lzlJSWpORYd4F0KPHSR54IKsiwyzRqFH7ufTSXNPYzz/X4q23Sn6dLSiwEhcXRW6uuazX0KEHuf76nAqN0x2rFSZP3k3Dhub3Fh9/fBH//ndEiecfPhxKYqLj31t8/F7atCldQrc86tQpZurU3YSEmAOZMaMVv/4a7uKsP23ZUos33zT/vYWGGkyduotatUpX1ku8SwkTERGpaFaLxdLb30FI6ezevZthw4YxaNAgfv31V4fjYWFhjB49mu+++67cyYvc3FxSU1O56aabWH5BqYFzYmJiWLVqFePGjaNWLZdVMDySkZFBXl5eua5RjUQB/wKWAe6WfP0EXAE8BXhe10CkCunbvC/9W/Y3jWXnZzN+w3hsuF/pmPJzCrtP7zaNXdXwKh5r/1iFx1mS4ZcNd+iTse3ENmb/OtvFGXZFRhFjN4wlp9D8wOWBqAe4qelNFR2mW1aLleSuyTSqaV7h+UXmFyzbv8ztudn52YzbMM7h7yzuijja121f4bG6Ex4cTspVKdSwmh/Qzfl1DpuOb3J7bnpOOrN+mWUaC7IE8fJVL1MvpJ6Ls6Qi7X/xRXI7dDCN1dqyheZvvlnyyTYbkePHE3LsmGn46F13kX377RUZpntWK7snT6awoXmX20WffELEZ5+VeHrQqVNExsdjKTQ/FD3wwgucufzyCg3VneI6ddidkoIRYl7z0XLGDMKdLNK5UM19+2g1fbp50Gplz6RJFF7ku3VhZ1u3Zv9LF+xys9loO368Q5kwZ+qtWUPj9983jRXXrs2uqVMdvjdV1dixjg/Uv/uuHosXN3Fxht2SJY34/HPzg/zGjQuYOHGP10tYXSg01CAlxfGB+oIFTfn+e/eV06ZPb8WOHeYH+VdccYannird7reKEBFRSFLSHofNclOntmHvXteLE4qLLYwb57gz6O67j/CXvzgv5exNnTqd4ZlnzDtxCwosxMdHceZMkIuzXO8MevHF/XTokOviLPEXJUxERKTCGYYR4+8YxDNnzpwhNTWVm2++2WnywmKxMGDAAL755htGjx5NzZplX2lrs9lYunQp3bt3JzU1lYICx7q7V1xxBZ988gkLFy6kVSvPt2g7s27dOv7yl79wzTXX0K1bN9avX1+u61VxIcAYYBvg7snMaeBxoNvvc0WqtTFXjCGqjrm2eNqxNP43/X9dnrNs/zL+dcC8ajmiRgRTuk0pU9P48gq2BDP1qqkOD9Xf3/U+qw6tcnnerG2z2HzcvGq5Y/2OPN/Bu/0JXGkQ2sDp9zDl5xTSc9KdnmMzbCT+lMiRs+ZyJ32a9+GOVnd4LVZ32tdtz8iOI01jxUYxY9eP5WSh8ya/uUW5xK2Po8Bmfl19rsNzXNngSq/FKmZGaCi7pk6l+IKFHk0XLqTet+7b+zV/6y3qXLBrIC8qiv1//WuFx1mSc7soLnyq2SYlhZp79rg+0TBom5xMjUxzSbiTvXpxeJDvS8Kd6djRXsrsPJaCAqLi4x36zZzPWlBAVFwcQbnmB5gHH3+cnOuu80qs7hwbMIBjF5QAC8nOJnL8eCw218n50Kws2iYlOZQh2xcfT36LFl6JNRC5Ktk0e3YLNm92vuMpPT2MmTPNzb2DggymTt1N/fqe7RiraM5KNtlskJgYyZEjzpNfK1c24OOPzQm+unWLefnlXQQHl648XUW54YYcHn7Y3G8kN9e+C+b8fjPne/PN5mzcaP67uvjiPEaPPuB0vi88/HAWN95obv21f38NJk9u43S+YcDEiW3JzAw1jffufZx77z3i9BzxLyVMRETEG27zdwDi3rnkxQ033OAyedG5c2c++eQT5s6dS8uWLZ1cxXMbN27kzjvvZOTIkRw54vimMCIiguTkZD777DOuK+eH0czMTJ599lnuuusuNm2yr8g9efIkM2fOLNd1q7CbgU1ACi6aZwIGsBhoCbzz+59Fqr2woDBSrkpxKNs0d8dc1h1d5zB/35l9TN9iXrVstViZ1HUSF9XwXzXLP8o2ndfPxMAgeVMymbmOPUbXHF7D+7vNq5bDg8KZ3HUyodZQh/m+0i2iG09e8qRprMBWwLgN4xzKnwEs+G0BPxz5wTTWqlYrxnUe5zDXl+5rex99m/c1jWWdzWLCTxOc9jOZ+vNU9p4xP0i7odENPBz1sFfjFEf5rVqxd/x486Bh0HbSJEIOH3Z6Tp3162n6zjumMVtoKLunTMFWjoUq5XHqmms49MgjpjFrbi5RcXFY8/OdntP4gw+o//XXprGCJk3YM2ECPl+S/7uswYM5ceONprEaBw7QZvJkF2dAq5QUwnbsMI2d7taNg08+6eIM79sXF8fZyEjTWJ20NJosWOB0vqW4mMixYwk+aU6yHrnvPrL79nV6TlXWvn0eI0eadwQUFVmIj48kJ8e8a8HVw/tnnsnkyiv9u6k6JuY4d91l3ll0/Hgw48ZFYrOZ/48dOOD48N5igaSkPaVqFu8Nzz6bSZcu5u+lPUnlmMhLS6vDwoXm3UBhYfYkWI0a3u9b4oqr76WzJBXAP/7RhG++qW8aa9q0gPHj93k1Tik7JUxERMQbWmZmZnYoeZr4w/fff0/fvn1dJi+aNGnCtGnT+Oyzz7j2gjrWpXXw4EFGjBhB//79ne7wCAkJ4fHHH+f777/niSeeICjI9Tbmkpw9e5Y5c+Zw00038X//938OD5WOHz9e5mtXUc2Ad4GvgMvczNsJXA88BDhf3ixSjTlrDG4zbIzfOJ5j+X+W1ymwFRC3Po7cYvOq5cfaPcZ1F/l+1fKFejXpxaBI8yrwnMIch34mWWezSNqYhHFB3nRs57G0rmVuKusPj7d/3OH7uev0LqZtmWYa25i9kbnb55rGQq2hpFyVQq3g8pWCrAjxneNpEW5+eLQ6azUf7PnANPbR3o/4d8a/TWONazYmuWuy+pb4yfGYGI7+z/+YxoKPHyfKyY6A4OxsIseNcxjfFxdHXnvfloS7UOYzz3C6SxfTWNjOnbScMcNhbvi2bbScbS7jZwQFsXvqVIrq+bEknMXCnqQkCpo1Mw03+PJLGn38scP0Bl98wUXLzGX8iho0YJeP+pa4YgsLY1dKikMCrfmbb1JnnWNyvsWcOdTeZPoH+9kAACAASURBVC7jl9euHQdGjnSYW10MGnSY3r3NOwKyshz7maSkOJaHuuGGHB55xLwrwl9iY/dzySXm9xEbNtRh3rw//40XFFiIi3MsDzV4sOOuCH8ICjJ4+WXH3TpLljQ2lUHLzg5xmgyKi9tHZKTv+pa44mq3zoVl0LZtq8WcOebX8+Bgg5df3kXduv7ZsSQlU8JERES8pY+/AxCzc8mLgQMHsnXrVofj55IX3377LYMHD8Zajg+GeXl5zJkzh+joaD788EOnK2J79erFl19+yaRJk6hTp06Z72UYBsuWLaNXr15MmTKF027KLAgAwcBIYDvgbvlxPvAS0AHwvLuoSDV0Z6s7ub2FuZrdsfxjTNw0EZthfxD6ys+vsCPHvGq5a0RXhx0R/vRCxxe4osEVprGtJ7byxnZ7A2dXpaEGthnIbS0CY3Opqx07y/Yv47MMew+GnMIcEjYmUGyY68GP7jSaS+te6rNY3akdXJup3aYSYjWXWpm5bSY/H/8ZgN9O/cbft/7ddNxqsTKxy0Tqh5pXsopv7X/pJXIvucQ0VnvDBpq9/fafAzYbkQkJDr0ojvfpw7E7/FMS7nxGUBC7X36Zovrmf0uNli4l4vPP//hzUG6uvTzUBbuVM557jtOdzf2R/KG4bl17z45g806CltOnE759+x9/rrF/P22mTDGfbLGwJyGBwsaNfRGqW3kXX8z+0aNNYxabjcikJIJP/PkQvN7atTR57z3TPFt4uD3hUsPVRmKfqA00wI/PIRMS9tC8uXmH1OrV9ViyxP73+/HHF/HZZ+a+Ja76bvhLaKh9d0V4uPn1a968Zvz4o72fyYwZLR0akHfseIZnnzXvsvEnV/1gUlJak5lZA5sNxo9vy7Fj5tfAO+44Rr9+5l5P/nTFFWcYNsy8E7egwL5LKTc3iFOngoiLi6Sw0PyFjhiRQefOZ3wZqpRSgPyXFxGRqkZ9TAJHXl4eqamp9OjRw2XyIiYmhm+//bbcyQuAlStXctNNNzFlyhTOnHF8I3jxxRfz3nvv8c9//pP25Vw9uWXLFu655x6efvppMjIC50NAALsKWAvMANz9Rf8/oDUwHSh2M09Efhd3RRxta7c1ja09vJZFuxbxReYXfLr/U9OxuiF1mdR1EkGWsu+sq2jBlmAmdZ1E7WBzrfD3fnuPb7O+ddp8vF2ddrzY6UVfhlmiiBoRTO422aGfydTNU9l9ejcTfprAoTzzauFbmt3CPW3u8WWYJepYvyPDOww3jRUZRYzfOJ7DZw8Ttz6OfJv54d+wS4ZxzUXX+DJMccIWGsqulBSKw80PLZvNn0/d//7X/vt33vnj9+fkt27N3nH+LQl3voLGjdmTnOxQUqv11KnU+P19V+uXX6bmPnNZmZM33EDWw4FTEu7M5ZeT+fTTpjHruX4mZ8782bfkgvethx55hJPR0b4M1a2j//M/ZN9uTs6HHD5M28REMAzT78+3Ny6Os23b+jBSp94DsoG2/gqgTp1ipk7dTUiI+fszc2ZLli9vSGqquX+i1WrvW9KwYSGBpHXrfMaM2W8as/czacuHHzb6IwF0Tt26xaSk7HL4uv2tR4+TPPRQlmns1Kkg4uMjefPNFn8kgM6JjDzLSy8FXgmrIUMO0b17jmls374apKS0YtKktmRmmhOV0dEneeAB89ctgSe45CkiIiKlZ7FYbk5PT6/Rvn1754WOxesMw2DFihVMmjSJAwecN8Vr164dEydO5Oabby73/X7++WcSEhL48UfnmxHq1avH6NGjGTp0KMHB5XsLcuTIEV555RU++OADbE4aXgYFBdGhQwenO2mqqQbABOB53C+YOYR918mXPohJpEoJDw7n5W4vM3TNUFPz7dd/fZ3QIHNfDwsWJnWdRNOwpr4Os0Qtw1sy/srxxK2P+2PMwCBxYyJniswPE8ODw3nl6leoYfXrqmWnrm54NY+1f4x56fP+GMsrzuOx7x7jVOEp09wW4S1IuDLB1yF65IHIB1h/bD3fZH3zx1hGbgaDvhnk8HVce9G1PNruUV+HWJF6AeWrBWqWC7xRgdcrlfzWrdkfF2d/gH2OzUbbxET2//WvNHvrLdN8W2gov6WkODSN97dzyY8m7777x1jQ6dNExcdz7LbbiPh//880v9BFksXfDj3yCHU2bKDu2rV/jNXYt4/Wr7xCcViYabcJwOnOncl85hlfh1mifXFxhG/ZYkpS1Vu7lqYLFlDv++9Nu00Ajt51l0OSpTrr1OkMzz+fwauv/tmfsaDAwsSJbR3mPvHEQa666pTDeCDo1+8YaWl1WL684R9jR4+GkJLiWBpz/Pg9NG/u374lrgwfnsHmzbXYvPnPhRpbt9Zi61bzz8HQUBtTpuwiLMx/fUtcsVohOXk3Dz7YkSNH/twR89lnDR3mNm5cQGKi484aCTxKmIiIiLfUql27dndglb8DqY42b95MQkIC65zUNQaoX78+o0aNqpDkRXZ2Nq+++ioLFiyguNhxM0JwcDD3338/Y8aMoWFDxzeOpVFYWMjChQuZPn06OTk5Tuf06NGD5ORkNm3axKhRo8p1vyrAgj0Bkgq46yhdhH03SRIQmJ+oRCqBS+pewuhOo5n689Q/xoqMIoqKzDWqH774YXo07uHr8Dx2a7NbGdhmIB/u/fCPsdNFjuUO466Io02tNg7jgeKpS55i8/HN/Hj0z0T+hUmGYEswk7tOdthVEygsFgsTukzgoW8fIjPvz7IfF34dETUiSO6ajNVSqYtI9APGVOD1juDHhAnAsdtvp05aGg3P64sRcuwYUfHxDnMPjB5N3gVlvAJFxnPPUWvTJlNfjPBt2wjfts080Wpl98SJDmW8AsLvsXV86CFCDh/+Yzjis88cphbXrcvuyZMdyngFguLwcHZNm0aHIUOw5v+5Lq3FnDkOc/Oiotj/17/6MjyAMOzPGkuTaWiE/f+rTzz4YBYbN9Zm1SrX/067dTvFE08ERt8SV2Jj97F1ay127arpco6z3i2BJCjIvovnwQcv4+RJ1//f7L1b8nwYWek0aFDElCm7efrp9g49V85x1btFAlOlfjclIiKBTWW5fC8rK4vY2Fhuv/12p8mS4OBgBg8ezJo1a3jiiSfKlSwpLCxk3rx5dO/enfnz5ztNlvTs2ZPPP/+cadOmlTtZsnr1amJiYkhMTHSaLGnevDkzZ85k6dKlXHaZux7m1UZnYDWwEPfJktVAeyAeJUtEyu2eNvfwlxZ/cXm8U/1OPHNp4K1avtCoTqPoUK+Dy+N3tLrDoW9LoLFarEzuNpmGNVy//ozsONKhb0ugqRNSh6lXOfYzOcdV3xYJDPvi4kpMhBy/9VaO3BNYJeHO90c/kxIauGc+/TSnrgncknB/NHAPclMK0WJhT2IiBc2b+y6wUspr144DL7ovheiqUbwPjMHeJ+8R7At33GkOvAtsBuqWMLfCWCyQmOh610VEhP3ht9UaWCWsLhQWZu9nUrOm810X7dvnMXJk4JcsbtKkgAkTXO+6iIk5zl13HXV+MIB063aKJ5886PL4M89k0qWLem1WFkqYiIiIN6nxu4+cS15ER0ezaNEip2WqevbsyRdffMG0adOIiIhwchXPrVy5khtvvJHExEROnXJcQNa2bVvmzp3LkiVLyp28+O2333j44YcZNGgQO3bscDgeHh7O6NGj+e6777j33nvLda8qIhx7+a00wN0S9hPAfUA0sMfrUYlUI7GXxxIeHO4wXiekDilXpbh88B1IQq2hjO883umxyNqRxF4e6+OIyiYiNILhlw13eiy6STT3t73fxxGVTaf6nbiv7X1Ojw1tN5TrLrrOxxF5xRtAzwr81c+34TtnCw1l9+TJLh9c57dsyd7xzv+vBZKCJk3YM3Giy1Jbp66+mkNDh/o2qDI43a0bB596yuXxrAce4MRNN/kuoDI6MnAg2bfd5vL4vthYzkZF+TCiP4QAEdgX7KwEnGXeQ7EnVnZg3wl9AGjiqwDB3tcjOtr5zounn86kUaPA6lviSmRkHp06OW8eHh+/l9DQwCth5cy1155y+j0PDTWIjw+8viWu9Ot3jKAgx0Rbq1b5PPJIYO9YErPA218oIiJVSbeDBw82atasmc+2WFdHK1euJDExkb179zo9HhkZSVxcHAMGDCj3vXbu3MmECRP46quvnB4PDw/nmWee4fnnn6dGjfLVtD958iSvvfYab731FoWFjm+gLRYL/fv3JzExkRYtWpTrXlXIAGAO0MrNHBswHxgFaJmTiBd8su8TcotyHcZzi3I5cvYIzcKa+SGq0lu8a7HT8RMFJzhVeIqaQT5fuVxqRUYRH+39yOmxzNxMCowCalgCrwfLhbLzs/k843Onx/adrjwPk0qw9/dfVU5eVBQ5111H/W++cTi2b8wYimsHZkm4C+V0705+q1bUuKDJu2G1smfiRAxr5ViTe+See2g6fz7WAvMOg8LGjckY7jzBGoiO3HefQw8ZgFPXXsuxCnjfX0bjgLeBScCDwCbg78C5phS9gdHYEyk7gfHAEsCn2zk2bKjDkiWNnB57770m9O2bTa1ajrvnA82SJY1Zv76O02Pz5jVnxox0KsN/y+nTW3H4sONikoICCwsWNGXECOf9OANJcbGFxMRIiosdk8r799fg3/9uSL9+x/wQmZRFJfhvIyIilZjVZrPd4u8gqqqdO3fy0EMPMWTIEKfJklq1ajF69Gi+/vrrcidLTp48SUJCAr1793aaLLFYLAwcOJC1a9cyevTociVLbDYbS5cupVevXsyZM8dpsqRLly58+umnzJ07V8kSu4uBz4BluE+WbMRequsplCwR8YqtJ7byxnbnbROKjWLi18eTU+i8B1MgWbZ/GZ9lONb2BzhecJxxG8ZhI/BXrs76ZRY/H//Z6bGdp3Yyc9tMH0dUejbDRsLGBI7mOy9J8uXBL/lk3yc+jkpKo8GXXzpNlgA0WbwYnOwMDkTN5s51SJYAWGw2Gn/wgR8iKgPDoM3kyQ7JEoCQw4eJ+OILPwRVeta8PNpMnuz0WO0NG6i1ebOPIzLZg33nyBXAp0AccK5U89vYS8XGAZcD/8THyZLs7GDGjYt02Wti//4aTJ4cuP25zklPD2PWLNefg9aurcuiRU19GFHZrFzZgE8+cV1S8r33mvDttwHYF+kCb7zRnJ9+cp38TklpzZ49gb/QROyUMBEREa+yWq3qY1LBTpw48Ufy4uuvv3Y4brVaTcmL0NDQMt+rqKiIRYsW0bNnT+bPn+/QuBiga9euLFu2jFmzZtG4ceMy3wvgu+++IyYmhpEjR3L0qOODoSZNmjBt2jRWrFjB1VdfXa57VREh2EsabAVcN02wJ0ceB676fa6IeMGpwlPEr4+n0Oa6lEfW2Swm/DQBwwjc2ui7Tu1i2pZpbudsyN7AvB3zfBRR2aw5vIb3d73vds6SPUv46qDzXZOB4n93/i//Pfpft3P+tuVv7MhxLFsp/lfjwAGXD7YB6n7/PU3fe8+HEZVNnbQ0mi5Y4PJ4k0WLqP/tt74LqIyavP8+9Vetcnm8dUoKNXfv9l1AZdT6b3+j5q5dTo9ZioqIGjuWYCc9/3xsG/ZeJp+eN3YK+47oV4B8Zyd5k80GSUmRHDli3s1wYaW5lSsbsGxZ4PaFOnMmiNjYi8nPNz/WvfDreP315mzeXItA5Sw5deHXYBiQnNzG6Q6UQPH993V5911zcurCryMvz8rYsVEUFOhRfGWgvyUREfEqwzD6+juGqsKT5EW3bt349NNPmTVrFo0aOd9m7qk1a9bQt29fYmNjOXbMcftw06ZNmTlzJitWrOCqq64q170yMzMZMWIE9957L7/88ovD8Zo1a/Lcc8+xevVqBg8ejLUy7C33vpuxN8lMAVxt6TGAj4G2wDv4eAWfSHViGAYTN00kMy/TNB7dJJqmYeYP0d9mfcvSvUt9GZ7HzhafJX5DPGeLz5rG72h1h0MJrnk75rH+2HpfhuexQ3mHSNyYiHHejz0LFu5rex+WC/oQT948mczczAsvERA2Zm/krR1vmcZqBtXkjlZ3mMYKbAWM2zCOvOI8X4ZX0SYAORX46zefRu+EpaiIyIQEgk6739TZ/PXXqb1pk4+iKr3g7Gwix4/H4m4njGHQZsIEQg8Fbp3+8G3baDF7tts51rw8ouLisOb7/Fm+xxp88QUNly1zOyf00CFaT5nio4icsgJDsfcpuRM4t6WnBrAG+/vSlr4OasGCpnz/vbm/fOvW+fz97zsdmrynpLQiPT3Ml+F5LCWlNfv3m9/+9+hxktGj95vGioosxMdHcfJk4HVkKCiwx3bmTJBp/NFHDzk0eT9xIpjx46Nc7gryp+zsECZMaOuwUTApaQ9XXmn+2b9jRxivvurzf/ZSBnraICIi3tbi4MGDHf0dRGW3Zs0a+vTpQ2xsLNnZ2Q7HmzVrxsyZM1m+fHm5kxd79uxh2LBh3HfffSUmL+69914sLpp/eiI3N5fU1FR69OjBhx9+6HROTEwMq1atYty4cdSuJDW+vawZ8C7wFc4baZ7zG9AduAdQwVwRL/tgzwesOrTKNNY0rCkTukzglateIdhiflgxY9sMfj35qw8j9MzftvyN306ZnzNf1fAqxl85nr92+qtp3IaN+PXxHMsPrB8xxUYx4zaMcyh9dn/k/cReHsugyEGm8ZzCHOLWx7ndGeQPOYU5JGxMoNgw19GPvTyW8Z3Hc+1F15rGd5/ezd+2/M2XIVa0mkCdCv7lVy1nzKDWz+aScGc6deLAiy+axizFxUSOHUvwyZO+DM8zNhuRCQmEXLDz9+hdd3H0f/7HNBack0NkQgKW4sDr/RB0+jRR8fFYLij1euDFFzndpYtpLOy332j56qu+DM9jNfbto82FiRCrlV3/n707j4uq6v8A/pkBBoZVEUEQEMgld0VNRXFHy63FtR5TS8uttCQRBAaYASGVfkJqj6kVSZpri2UpuQFiuaWmpqmAoGwqCMg2wMzvDx6sw73DdmdB+75fr+f1ejzn3HsOSjD3fs/5fiMjoXRk62O1PnIEbffx13DSsTEAzgH4HIARgDkAfvpf3ygAO1ATTLkFIAaAXvItXb5sgU8/dWLaJBIVoqJS4e1diHnz2GCfUilGYKA7ystb1qvT/fvt8NNPtkybvb0SYWHpmDkzDyNHssXsc3MlCA11Q0s72Lp+vTOuXTNn2nr0KMHbb2fBzy8TnTuzGwDOn7fEli0tqwacSgUEBbnhwQP29Msrr9zHxIkPEBmZBhsbdpPjnj1tcegQ++9HWp6W9V89IYSQp5JarR5r6DU8qdLS0h4HL65d475Yk0qlWLJkCRITE7UWvBgxYgQOHDjAO8bHxwcnTpxAYGAgLCyaf7xbrVbjwIEDGDZsGKKjo1HBs4uvR48e2L9/P+Li4uDq6trsuZ4ixgCWAbiOmrzQmlQAWAGgC4D6c7gQQrTiRtENfPwnu2vZWGSM1Z6rYW1ije6tumNhl4VMv1KlRMD5AJRUlehzqfVKyErAd5nfMW22prYI7xsOMcR4yfUljHcez/TnK/MRdjEMKnXLqcGw6domXCxgd+t3temKd7vWFHNe2nUpnrVh481XC69qrD1jCGq1GqEXQpFTxr7A83HywWSXyRCLxAj3DEcb0zZMf321Z54A6QBOavF/Bv0daJOUBPtdu5i2amtrpEZGIvc//8HDUaOYPkluLtxCQtDS3mo6btsG69/Yv8oyDw9kfvABMlesQFnnzkyf5e+/w3HLFn0usVFcIyNhevcu01bo7Y3c115D2urVqGrFvrNvu3cvbA8d0ucSGyRWKuEREACjEvb3Rva8eSjw8UHq6tVQG7PBeefoaJhfv67PZX4NIAFAN9Sk3eqMmo0+td/Y2ahJ0+UDIBXAUtQUf++ly0UVFRkhIMADVVXss9IHH9xB586lAIC33srCc88VM/2pqVJER9dXHlC/UlOl+Ogjdj1isRphYelo1armxbxMlg4nJ/bZKinJBrt3C0udrE1JSTbYs4ddj7V1NSIjU2FsrIZEokJ4eBrMzNjPFtu2OeL0afaEkCFt3erEWY+HRxmWL6856VMbyKr7iB4V5YqsrObX/CS6RwETQggh+kABkyYqKSlBdHQ0Ro4cqZfgxZ49e+Dl5YXo6GgoeYpg9uzZE9988w3i4uLg4iLsoeHcuXOYMGECFixYgKwsbgoUOzs7rF27Fj///DMGDRokaK6nSH8ApwCsR/07Zn8G0AHAOgAtb3snIU+h0qpS+J/zh1LF/uxc2m0perX++/3PnGfmwNvBmxmTWZKJiEsGTZnyWGZJJsIvsXUWxCIx5H3kaGv2d4pH/x7+6GDB5htPyUtBfGq8XtbZkJS8FGxPZetBmBubI9wzHBJxTU0viViCqH5RsDBmf3duv7UdibktowbD9lTuWlwsXBDUK+jxn20ltojwjIBYxD7WR16KRPqjdH0sU9v+C2CoFv83Sb/L/5skNxduoaFs8EMkQrpMBqVTzQ739OBgVDixu91tkpM5QRZDsjx/nhP8UEkkSIuIgMrMDCqJBKlRUag2Z3eJO372GSfIYkht9+zhBD+UDg5IDw0FRCIo7e2RHhbGKTrAF2QxJL7gxyNPT2S/9RYAoKRnT2S//TbT/zjIUlqqr2UeBnACgCdqCrtr2hVwBDVBkvdQk7brqq4WpFYDYWFuyM5m6zqOGVOAV1659/jPYjEQHp6GNm3YU0jffGOHgwcNfyKgrEwMf38PzomXhQuzMWDA34EeK6tqREamwcSEDb7GxHBPdBhCbq4EISFudX88IiQkHY6Of3+W8vAow4oVbIoxTSc6DOH8eSts3cqmXJVKa04s/TPQM3RoIWbOzGPGFRcbwd/fHZWVLS/FGKlBARNCCCH6MPzGjRu0haIRVCpVo4IX3377LeLi4uDsLCwH6u+//47Jkydj2bJlyMvL4/S3bt0acrkcBw8exMCBAwXNlZ2djXfeeQeTJ0/GhQsXOP0mJiZYuHAhkpOT8Z///EdQnZKKigqcOXNGyHJbitaoSVXwG2qCJprkoiYw+cL//j8hRE8i/4jE7ZLbTNsQ+yF41e1Vpk0kEkHWW8YEHwDgcNZhfJ9Zfy56XdN02mVux7kY1JYNXJsbmyOqXxRMxeyv9Y3XNnJOdeibptMuAT0DOEEeZ3NnJvgAAGqoobioQF459/ehPvGddpGIJYj0jOQEefq36Y/Zz8xm2sqqy+B/zh8VqpZbg+Fppim9Vt7MmXg4YsTjP1dbWSEtKgpqE/bFn/P69bC4fFkfS62XcVER3GUyTt2STH9/lHXq9PjP5a6uyPyATdcHlQpuPGm8DEF68yac169n2tRGRjWnSmxsHrcVDhmC3FfZn9ua0ngZAl96rSpra6TJ5VD/4zNz9ty5KKqz4cg0IwOu4WxAXIc+BzACwJVGjK1EzefcIQC4xRm1ZMcOB5w4wZ4gcnauQFDQbc5YW9tKhITwnQjogNu3zTjj9WnNGlekprJr6N+/GHPncusGde9egkWL2I1pSqUI/v7cmiH6VF0tQkCAO4qK2JNQr76ai+HDH3LGv/jifYwfz6b9zM83QWCgO6dmiD4VFBj/bw3sN4qfXwY8PMo545ctu4OePdnPWFevWmDjxvY6XSdpPgqYEEII0QdzqVQ61NCLaOnOnz//OHhx7949Tr+DgwPWrFmDgwcP4rnnnuO5Q+Pl5ORg6dKlmDhxIs6d4xbsNTExwbx583Dq1CnMnz8fRkbN/2BdXl6O//u//4O3tzf2798PNU+qiTFjxuDYsWOQyWSwthZ2zPrHH3/E8OHDsXPnTqZdSLoyAxChJl3BX6hJVaDpM1sVaoq+d0BN+gNCiB7tz9iPn+7+xLTZm9kjrE8Y78+c1pLWNScC6vwnHfVHFG4U3dDpWuvDV0+lR6seeLvz27zjO1l3wtJuS5m2anU1Vp1bhcJKw9RgUKlVCDofxKmn8kqHV/BC+xd4r/Fx8sFLri8xbQXKAgT9HgQVDPMmpriyGP5nufVU3uv2HieNWK1FXRahd+veTNvN4puIuRqjs3USzZw2buQUcC/t2hV33n2XM7akWzfcXbSIaRNVVcE9KKjBQvE6paGAe4GPD+5PnswZ/mDyZDwYz6brM2lMoXgd01TAPWvJEjzq3Zsz/u7SpSjp2ZNpM796Fe03bNDpOhtievcuOigUbKNIhNuhoVC2Y3e4QyxGmlyOSjs7ptn28GG0+eEHHa8UwN+pt3R9TaNcvWqODRvYl9LGxmooFGmwtOQ/jO3lVYTXX2f3H5WW1pzuUCoN8xr18GFbHDjApmC0ta1CeHgap1h9rddfz8GwYezv5Dt3TBEe3oF3vD5s2NAely6xNSm7dSvFu+9qPsnl758BNzc2CHH2rBW+/LKdhit0S60G5HI33LvHBrvHji3ApEn8Nd00fc999RU3mEdaBgqYEEII0QsjIyMfQ6+hpcrOzsbSpUsxadIknD9/ntNfG7xITEzErFmzBAcvNm7cCG9vb+zdu5c3eOHt7Y2EhAQoFArBwYvvv/8ew4YNw9q1a1HKkwqgY8eO+Oqrr/Dll1/Cw8ND0FxXr17F1KlT8dZbbyEjI4PT37dvX0H316NeAJIBxAGwq2dcEoBOAAJQU7eEEKJHt4pv4aMrHzFtRiIjrPZcjVYSzQ+/nraemNd5HtOmVCkReD4Q5dXcXYm6djTnKHan72barE2sEdkvklOo/p9muM3AyHYjmbbc8lyEXgjl/d2ia1tvbMXp+6eZNg9LDyzvtrze6/x6+KGzNVuD4fyD89j611atr7ExFJcUyCpjdwV7O3hjWodpGq8xEhkhsl8kbExsmPbd6btxKKtl1WB42lmnpKBdPJueTmVujrTwcKglEt5rcl9/HQ+HDWPaTO/cQQf9nQjgaLd9O1olsinhKlxccDsoSMMVQEZAAMrd3Jg2q7Nn4RAXp4slNoprZCTM0tOZOsjF7wAAIABJREFUtiIvL+TMmsU7Xm1sjLTwcFRbsi90HXbsQKsTJ3S1zHppCqDxfd/UqrK1RVpEBHPyBABcP/wQZmlpOltrA3JRU7NEb8d1Hj2qqVtSN+3R0qXc3f51LVlyF716sX/nN25IERur/xMBGRmmCA9n6zmKxYBCkQY7O81/nSIREBycDnt7dkxCQmt8+219jxi6kZJig/h4B6bN3Lwa4eHc9GHsmJo0V6ambPD1k0+ccPGipYardOeLL9ohKYn9feviUoHAQO6JpX/iO9WkKV0cMTwKmBBCCNELKvzOVVZWho0bN2LYsGEagxe1dUoUCgWsrOorXdGwhIQEDB8+HBERESgp4T4kPPPMM9i+fTt27dqFznUKeDbV5cuX8corr2DhwoW4c+cOp9/GxgZyuRxHjhzByJEjee7QeA8ePMDKlSsxbtw4pKSkcPqNjIwwZ84c+Pv7C5pHDywAhAI4C8CrnnGFAGYAGIaaArmEED2rTXlUN8CxoMsC9LHt0+D1b3V6C8/ZsScFUx+lIvpKtFbX2ZCcshyEX2RfyopQkzrMUerY4PWy3jI4mbM1GJJyk7D79m4NV+jG+XxugENqJEVUvyiYGdWfQkUiliC8bzhnHF8ARtd2pe/C0eyjTJuDmYPGE0v/ZG9mj7C+YRCBHRf1RxQnAEN0wyQ/H25hYaibJ+Z2QADKO9Szo1vDSYHWv/wCu2++0cVS62Vx5QqcPmFTwqklEqRGRqK6npp5KqkUqVFRUJmy6fqc/vtfWPKkYtU1u++/R5uDB5m2SltbpIeE1Lxt1qCifXvcDg5mG9VquIWFQZKdrYul1ss5NhYWf/zBtPGdTKqruF8/5LzxBtP2+MRNuf6D8wAWAngGQGZDA7UlMtIVd++y349Dhxbi1VcbTrtoZKRGZGQarK3ZTGFff22PY8f0dyJAqRQjIMADpaXshrk33sjGwIFFDV7funUVwsNTOadQ1qxxwV9/SbW61vrk5ZlAJmPrlgDAqlUZcHVt+PuxY8cyLFvGnkKpTe9VWKh5c4e2Xb5sgc2b2c89EokaUVGpsLBouHxkTd0cNlVhUZERZDJ3VFc/UdkQnnoUMCGEEKIvffLy8gxzbrYFaih40bFjR8THxyMuLg5udXbrNdUff/yBl19+GXPmzEFmJvcZxcbGBoGBgTh69ChGjx4taK6CggIEBwfjhRdewK+//srpF4vFmDp1KpKSkjB//nyYmDS/YF9lZSXi4+MxfPhwbN++HdXV3A+pgwcPxs8//4zIyEhIpfp7KGiGSagpdhkCQNNfigrAFgDOAPT7NpIQwvjwjw+R9ojdpdu/TX/M7Ti3UdeLRWKEe4ajjSmbXuObjG9w8M5BDVdpV5W6CqvOr0JRJfvC5VX3VzGi3YhG3cPKxAqRnpEwEbM/tmKuxnBSfOlKgbIAgecDOSm0VvRYAQ+rxp1c9LDywIoeK5g2TSm+dOVG0Q3EXo1l2mpPjlibNO6051D7oZjpPpNp05Tii2iZSgX3oCCYPGC/X+6/8gryX+BPCfdPfLUoAMBl7VpI//pLq0utj1FxMdx5anZkvvceSp/lTwn3T2UdO+LOe+8xbY9rujzk1ifQFWlqKlzWrGEbxWKkhYejsk0b/ov+oWD0aNybMoVpMyoqgseqVRBV6azUBodNcjLs66SY1VT7hk/WggUoHjCAaZPeugXnjz7ScMXTY8+etjh0iC3Ubm+vRFgYtz6JJg4O/OPlcjdkZennREB0tDOuX2cLtfft+whvv9344J2n5yPMn8+m11MqxQgK4haQ1wWVCggJccfDh2xgY8qUe3j++fxG32f69DyMHcuOz8vjFpDXlaIiI6xa5YGqKvYbYvnyTHTpws2koMkHH2Sic2d2/O+/W2LLloY3qhD9oYAJIYQQfRFVVVUJexv/FLh06RJeeuklzJkzp96TF0ePHsWoUaMEzVUbvBg/fjx+++03Tn9t8CI5ORlLliwRHLzYunUrBg8ejG3btvEGL7y8vHD48GHExsbCzk7YMfCkpCSMHTsWfn5+yM/nftB2dHRETEwM9u7di+7duwuaS8eeAfATgO8BuNYz7gJqUnW9DcCASc0JIYezDuOHO2weeFtTW4R7hnNqk9THVmKLkN4hEIvq1DO5HMUpIq8LG/7cgEsFl5i2bq264d2u3DoL9eneqjsWdlnItClVSvif8+cUkdc2lVoF2e8y3Ctn636NdRqLyS7cOgv1edHlRYxvz9ZgyFfmI/RCKKeIvLaVVpXyFmlf8uwS9Grdq0n3WtZtGXq2ZmswXC28ik3XNwleJ9HM6dNPYXWaPZFU5uGBzOX1p4T7p0eensh+6y2mTaxUwsPfH0Y8aU21Tq2Gm1wO0yz2RFKhtzfuTdOcEq6ue9OmIX/cOKZNkpcHt5AQ6OOtpliphHtQEOcURdb8+ShuQg3AO76+KK1z4trijz/g+OmnWllnQyS5ubx/Z+nBwahwctJwVR1iMdLCwlDVij0R0Xb/ftj+/LO2ltri3Lwpxfr1zkxb7YkRG5umBby8vQsxbRp7IqW4mD/Vl7YdOdIa+/a1Zdqsrashl6fByKhp/y3Nn5+F555jN0ikppph7VoXwetsyObNTjhzhs2U8MwzZVi+nPss3JCAgAw4ObG/K5OTbfD11/aC1tiQ2roldQNlo0cXYOpUbu3R+kgkNSnGzM3Z5+XPPnPEb78JS4dNtIcCJoQQQvTpX1vHJDc3F35+fpgwYQJOn+am+DA2NsasWbOQnJyM+fPnw9i4+UeLGxO8GDJkCBISEhAbG4s2jdhpV5/a4IVMJkNREfdouJOT0+PgRbdu3QTNlZaWhgULFmDGjBm4fv06p18qlcLX1xcnT57EtGnTWnKhdwmAlQCuAHi+nnGPALwJwPN/YwkhBpRRksFJYSUWiaHoq4CdadMDwV72XpjlwebSr315rlQpBa21Pin3UvBV6ldMm7mxOcL7hnNOizTGbI/ZGObA5tK/U3oH4Zd0W4Mh7lYcTt07xbS5WLggsFdgs+7n39MfbpZuTNupe6ewPXV7c5fYKHxBMi97L7zu8XqT72UsMoairwKWxmxe9/hb8UjMTdRwFRHC6tw5tPvsM6btcXoqs/pTwtWVPW8eiuq81DfLyIDzunWC19kQ+6+/Rqtjx5g2pYMD0sPC0Ogt+f+T4e/Pealvc/Ik57SELrh8+CHnVE6xpydy5s9v0n1UEglSo6JQbc7u7nf84gtY82xE0qbHp3IK2YLdedOn42ETN1RV2tsjXS7n/Bt2WL0aZjw1/550KhXw+eft4OFRjq5dSx//b9myO+jdu3l7jt577w6GDStk7qdSiXD4sG3DFzdTcbER9u5ty8zZtWsp5PI0ODo2/fOBWAyEhaWjV69HzP3++sscly5pTrUnVHq6GU6dsmbm7NatBB9+yK1J0hhWVtVYvTqN8/eSkNAaeXnN3/zXkJMnbZCbK2HmHDCgmFOTpLFcXSvg75/B3K9Ll1Ls3GkPpZJe1bcEorNnzzY6LCkSidb069dvpS4XRAghTwkFAE5VRG9vb+zatcsAy2kxchwdHZ1EIpH+q8HW6A/gDF/HjRs3YFFPXubmqqysRFxcHNauXYvi4mLeMUOHDkVYWBi6du0qeL6kpCQEBwfjLw3pG9q3bw8/Pz9Ma8JOQU1SU1MRGhqKX375hbdfKpVi8eLFeOedd2BaJ591UxUVFeHjjz/Gli1boFRyHxJEIhEmTpyI4OBgODs789yhcSZNmoRz587xdQUAiGr2jVmjAGwEUF9uCzWAb1BzokQ/+WAIIY+dPXv2BoCOdduLKotQXMn+LDcRm8DerPk7G6vV1cgpy+G025nZwVQs7GenJg8qHnDqr0iNpLA1bf7Ln/Lqct70VY5SR84pGm3JKctBtZrdFGBtYg0rk+bX/CquLOakKTMSGaGdVDdZRVVqFbLLuKlV2pi2abD+Sn3ylfkoqypj2syMzDhp4ADAyMiodd++ffWXL+kJdPbs2SjUbHRgiEtL0emddzipuLLfegsPJk5s1lwm9++j07vvQlznVEnGqlUoGjiwWfdsiOndu+j43nsQ/fMzlkiEtPBwlPTo0ax7Wly5AvfAQOaEhNrEBDfXr0eFgM9q9bE6fRodIiKYNpVUihsff4zKtm01XFU/24MH4bR5M9NW1aYNbmzYwAmmaEvb3bvh8BUb1FY6OeFGTAzUkualgnLatAm2hw4xbaXduiE1IoK3potYLB7j6el5pFmT6cGVK1ckZWVlFQ2PJOSp0LV///76yXX6lDp37tyHarXar7Hj9VcZhxBCCAHa5ebm9gDwR4MjnwIJCQkICQlBeno6b7+bmxsCAgIwadIkwXPdunULoaGhOHKE/7nG3NwcixYt0mrw4tNPP0VlJTcnem3wQiaToX379oLmUqlU2LdvH8LDw3HvHv9x5169ekEul+O5JqRZMBAn1ARdGtoyfAvALADcIjCEEH3h3b5pbWLd6HoSjWUkMkJ7c2E/K5uK76W5UGZGZnr/OnQRxLAysRIUcGkqsUisk783W4ltzVnGRqCXjo3C+zNBZW6O63VOlwhVaWeHq3o4ifFPFe3b48qePVq9Z0n37rj87bdavWdDip97Dpe/+06r98wfPx7548c3PFCL7k2fjnvTp2v1nlmLFyNr8eJGj1epVPRzgRDyr0UBE0IIIXqlVqvH4ikPmNy8eROhoaE4evQob39t8OLdd9+FpJm7xGoVFhZiw4YN9QYvpkyZgqCgINjbC8vtWhu8UCgUuH//Pu+Y3r17Q6FQoH///oLmAoBTp05BJpPhyhX+TFQODg7w9fXFa6+9BjHPzrgWxBjAEtScPKvvLVwFak6m/R8Abh41Qog+pQIQlkOQkCdDlpeXV1nDw/7dRCJRqlofVYUJaRnUqNnAQwgh/0oUMCGEEKJXarXaB0C0odehC4WFhVi3bh3i4uJQVcUtKKiL4IVcLseDB/wZm/r06QOFQoF+/foJmgsAUlJSIJPJcPXqVd5+bQYvsrOzERkZiX379oHv5YSJiQlmz54NPz8/WFnpbxdwMw0FsAlAzwbGHUfNyZOmVz8khGidWq3eLRKJmpdPh5AniFqt3m3oNTwJRCLRj2q1uhSAbnIwEdKyJPfv35+bK5AQQv4lKGBCCCFE34ZnZmZKXVxcnprdjFVVVfj666/x4Ycfagxe9O3bF3K5XCvBi+TkZISEhODPP//k7W/Xrh0CAgIwdepUwUXPs7KyEBUVhb179/L21wYvVq5cCUtLS94xjVVWVoZNmzZh48aNKC8v5x3j4+MDuVyODh06CJpLD1oDCAXwDoD6Iki5AGYDOKyHNRFCGiktLW2Hh4fH26gJehLytMoUiUQRDQ8jnp6e986ePSsDoPvq64QYVjmA9wy9CEIIMSQKmBBCCNE3M7FYPBRAgqEXoi3Lly/XGFBo3749goODMWnSJMHBi/T0dISFheFQnYKNtczMzLB48WIsWbIEUqlU0FylpaX45JNPsGHDBlRU8Kcw1lbwQq1W44cffoBCocCdO/wHLDp27IiwsDCMHDlS0Fx6IELNSZFoAHb1jKsCsBZAGGpScRFCWpDp06dXp6SkvCiRSHYAGGfo9RCiA1fUavWUAQMG8OfYJBz9+/ePPnv2rBSADICJoddDiA7kqdXqWQMGDDhv6IUQQoghUcCEEEKIIfjgKQqYFBUVcdqkUikWL16MxYsXCw5ePHr0CDExMdiyZQuUSt6ao5g8eTKCgoLg7OwsaK7a4IVcLsfdu3d5x3Tq1AlhYWEYMWKEoLkA4NKlSwgODsaZM2d4+1u1aoXly5dj7ty5MDZu8R9beqMm/ZZXA+NOAHgDQJrOV0QIaTYvL698AM+fP39+dHV19USRSKTfiuaE6IBIJMoHcLSoqGj/yJEjuflDSb369+8ffvbs2Z0AXgPQBYCwYnSEtAwlarX61+rq6p2DBg3iPtgQQsi/TIt/80AIIeTpIxKJxgLwM/Q6dGXIkCGIiYmBk5OToPuoVCrs2bMHkZGRyMvL4x3To0cPKBQKDBw4UNBcAHDx4kUEBwfj7NmzvP21wYs33ngDRkZGgubKzc1FdHQ0duzYAZVKxek3NjbGzJkz4e/vD1tbW0Fz6YEFgGAAvqj/s1UhgGUA4vSxKEKIdnh6eh4BcMTQ6yCEtAz9+/e/BUBh6HUQQgghRDcoYEIIIcQQet27d8+xbdu2T2UxweHDhwsOlpw5cwYymQwXL17k7bezs4O/vz9mzpwpuMh6Q8ELExMTzJgxQyvBi8rKSsTFxWHt2rUoLi7mHTN06FDI5XI8++yzguYCgMOHD+PAgQPo1KkTFi1aBBMTrWfQmARgIwCXesaoAGwDsBzAI20vgBBCCCGEEEIIIdpBARNCCCGGIKqsrBwDYLuhF9LS5OTkYPXq1di3bx/UajWnv7bI+ooVK2BtbS1ortrgxZo1a/DoEf97fG9vb8jlcnTp0kXQXACQkJAAmUyG27dv8/a7u7vD398fkyZNEjzXtWvXEBISgqSkpMdtxcXFCAwMFHzv/+kI4GMAzzcw7iKAWQAua2tiQgghhBBCCD+lUoyQEDcUFrIn4mfMuIfhwx82+X4pKTaIj7dn2iwtqxEWlg6plLvZTFvy8kwQHu6GqjrJE99//w46dSpr8v12726L48dbMW0dOlTAzy8DAktt1uvSJQv897/sZkKJRI2wsHTY2DQ9M+T//Z8zbtxgU14PHlyE11/PFbTOhvz0ky0OHGjDtLVtWwmZ7DaMjLjP7fVRKkUIDXXDw4fsa/mpU+9h1Kimf48S7aOACSGEEEPxAQVMHisvL8e2bdsQExNTb/BCoVCgc+fOgudLSEhAcHAwMjIyePs9PDwQEhICHx8fwXPdvHkTISEhOHbsGG+/hYUFFi5ciHfffRcSibBU4AUFBVi3bh22b9+OqjpPF6dPnxZ07/+RAlgJwB+AaT3jSlGTomszgKZ9giaEEEIIIYQ0i0SiwoQJD/D++x3xz/1nf/5pga+++hNOThWNvldengQyGffFdnh4mk6DJQBgb1+JPn0eYdMmNtiwcuUziI//E+bm1Y2+1+XLFvjoIxdUVf0dGZFI1Fi27K5OgyUA0KtXCdq0qcJPP7GZCoKD3RATc7NJ8+/fb4evvnJg2tq0qUR4eLoWVlq/0aML8NVXDrh2zZxpt7evxJIl/LU/NVm/3hmHD7N/H927l8Dbu1DwOol2CMvhQQghhDTfWLVareOPZ0+GhIQEDB8+HBEREbzBEg8PD3z55ZfYtWuX4GDJjRs38Nprr2HOnDm8wRJra2sEBgbi6NGjgoMlDx8+RHBwMEaNGsUbLBGLxZg6dSpSUlLg6+srKFhSVVWF+Ph4DBs2DJ9//jknWAKAN91YE40CcB5ACOoPluwH0AHAf0HBEkIIIYQQQvRq6NBCvPoqe+KguNgI/v7uqKxs3CNodbUIq1a5854CeP75fK2ttT5z52Zj0KAipi0jwxTh4a6NvkdRkRECAjyYYAkALF+eiS5dSrWyzoYEBNxGhw7lTFtKig0n+FGfW7ek+OgjNguyWFwTvLK1rdTKOusjkagRGZkKCws2UPXFF+2QmGjT6PskJtpgzx72xJKVVTUiI1NhYkKPji0FBUwIIYQYisPdu3d7GXoRhnT58mW88sormDNnDjIzMzn9NjY2CAwMxLFjxzBmzBhBc/0zeHH8+HFOf23wIikpCUuWLNFK8GLo0KHYtm0bb/DC09MT3333HWJjY9G2bdtmzwUAiYmJGDNmDPz8/PDgwQNB96rHdNQUfa6vsMotAIMBTAFwX1cLIYQQQgghhNRv6dK76NWrhGm7etUCH3/cvlHXf/KJEy5csGTannmmDO+/f0dra2yIWAzI5Wlo25YNCBw+zE0PxUetBsLC3JCdzT7bjR5dgKlT72lzqfUyN1chKioVEgm7ge3jj9vj0iVLDVf9raxMDH9/D5SXs6+x3347CwMG8NfF1AUXlwoEBbHppdVqQKFwQ15ew7Uyc3IkCA11Y04+iUSATJYOJyeltpdLBKCACSGEEIMxMjIaa+g1GEJBQQGCg4Pxwgsv4Ndff+X01w1eCClUXllZia1bt2LQoEHYtm0bqqu5R7e9vLxw+PBhrQQvkpOTMXbsWPj5+SE/n7vzytHRETExMThw4AD69esnaK709HTMnTsXM2fOxF9//SXoXo3Qt56+CgArAHQBwP0HJYQQQgghhOiVsbEaq1enwtqa3by1c6cDp5ZHXWfOWOHLL9sxbVJpzUt/U1PdpuKqy9a2ChERaRCL2dMHa9a4IjXVrN5r4+MdcOIE+7W2b1+B4GD+mpK61KlTGZYtY1NXVVeLEBDgjsLC+itGREW5Ii2N/Vr79SvGm2/maH2dDfHxKcBLL7F74woKjBEU5AGVSvPppaoqEVat8kBREfu1zpyZh5EjqW5JS0MBE0IIIQajVquFF8h4gtQGLwYPHqwxeDFkyBAkJCQgNjYWdnZ2guZLSkrC2LFjIZPJUFRUxOmvDV7s2bMH3bp1EzRXWloaFixYgOnTp+PatWucfqlUiiVLliAxMRHTpk2DSECy3NLSUkRHR2PEiBE4fPgw7xgfHx+8//77zZ6jCY6jpgD8OgCNTyRMCCGEEEII0al27ZQIDU1n6mSo1YBc7oasLP4T9fn5JggKckfdbL4BARlwdy/nvUbXPD2LMX8+GxzQdOqi1tWrFti0iT1NY2ysRnh4GiwtDfPYMmNGHqeoeW4u99TFPx040AY//sieptEURNIXP79MdO7MpjM7f94SW7Y4arwmNrY9Ll2yYNq6di3Fu+/q78QSaTwKmBBCCDEk76ysLPOGhz35kpKS4OPjozF44eTk9Dh40bVrV0FzpaamYs6cOZgxYwauX7/O6ZdKpfD19UVKSorg4EVJSQmio6MxcuRIHDhwgHeMj48PTpw4gcDAQFhYWPCOaQy1Wo09e/bAy8sL0dHRUCq5x5Z79uyJb775BnFxcXBxceG5i9bkAngewEgA9CmXEEIIIYSQFmjYsEJMm5bHtNXW9ahbz0SlAoKC3PHgAXvCf/Lk+xg/Xmepfxtl/vwsPPcc+xyZmirF2rXcZx5N9VqWLr2Dnj1LOOP1KTg4HU5OFUxbUpINdu2y54zNyDDjfH1iMaBQpMHOTvd1SzSRSGpOG5mbs4Gnbdsc8dtv1pzxyck22LmTrddibq5CREQaJBKqW9ISUcCEEEKIIZkB8Db0InTp1q1bmD17NmbMmMGbNsrc3By+vr44efIkpk2bJmiuoqIiREREYNSoUUhISOD0i0QiTJo0CYmJifD19YWpaX11y+unUqkaFbz49ttvERcXB2dn52bPBQC///47Jk+ejGXLliEvL4/T37p1a8jlchw8eBADBw4UNFcDqgBEoqao+yFdTkQIIYQQQggR7r337qBrV/ZEwJUrFvjvf52Yti1bnHD6tBXT5uFRDj8/br1JfaspcJ7OCRR8950dDh5kT2DUnKBhn/WGDi3Eq69yn6P0zcqqGlFRaZwC5+vXO+OPP/7eXKdU1pygKS01Ysa98UY2Bg7kbkDUN1fXCgQFZTBtKhUQHOyO+/f/Drjl5UkQEsI9QbNq1W24uhrmxBJpGAVMCCGEGNpTmZarsLDwcfDil19+4fTXBi9OnDihteDF0KFDsXHjRt7gRe/evfHtt99i8+bNaN++cYUONTl//vzj4MW9e9xigQ4ODlizZg0OHjyI5557TtBcOTk5WLp0KSZOnIhz585x+k1MTDBv3jycOnUK8+fPh5GREc9dtCYRQGcAq1BTt4QQQgghhBDSwkkkakRGpnJSUX35ZTskJtbU+Dh3zgrbtrWrc50K4eGpMDPTb90STWxtKxEezk1FFRXlivT0mhofX39tj2PH2LolDg5KhIWxqckMqVu3Erz7LlvPpKpKhOBgdzx6VPM89+GHLvjrLykzpm/fR3j77Wy9rbMhY8fmY9Ik9uRRfr7x/1K6iTTWaJk69R6ef55b75O0HPVX1SGEEEJ0bxyADwy9CG06cuQIPvnkExQUFPD29+vXDwqFAn369BE8V0pKCmQyGa5evcrb7+DgAF9fX7z22msQi4Xtk8jOzkZkZCT27dsHNU+SWRMTE8yePRt+fn6wsrLiuUPjlZeXY9u2bVi/fj1KSviPjXt7e0OhUKBz586C5mqkPQCm62MiQgghhBBCiHY5O1cgKOg2/P09Hrep1UBoaAds2FCJwEB3TtHulSsz0blzmb6XWq/+/Ysxd24OPvvs73oZpaU1pzFWrsxAbCx7st/ISI3Vq9NgY1Ol76XW69VXc3H+vCWOH/87uHPnjikUig4YPboA333H1vO0tq6CQpEGI6OWlcLKzy8DV65YIDX176L0Z89a4fPP26GkRIyLFy2Z8c88U4b336eMzi0dBUwIIYQYWo87d+44Ozs7PzWfGn777Tfedm0GL7KyshAVFaWX4EVZWRk+++yzeoMXPj4+CAsLg5ubm6C5ACAhIQFBQUHIzOQ/+v7MM88gNDQUo0ePFjxXE5zX52SEEEIIIYQQ7RozpgBTptzDvn1tH7cVFRnjzTe7oKqKDZa88EI+Xnzxvr6X2CgLFmTjwgUrnD//98v4mzelWLSoM+frWLw4C717P9L3EhskEgEy2W1cu2aOnBzJ4/YjR1rjxIlWnLEKRTrateNmUjA0qbSmnsns2c+ivPzvZ/zNmx2hVrP/FubmKqxZkwpT05ZxYoloRim5CCGEGJyRkdEYQ69Bl8zMzPDee+/h5MmTmDVrlqBgSVlZGaKjozFkyBDs3buXN1ji4+ODxMREKBQKQcEStVqNAwcOYPjw4YiIiOANlnTs2BHx8fGIi4sTHCz5448/8PLLL2POnDm8wRIbGxsEBgbi6NGj+g6WEEIIIYQQQp4Cvr530KULW8+kbpDBxaUC/v5sfYqWxMhIjfDwVLRqxZ4aqfvgAbUEAAAgAElEQVR1eHkV4fXXc/S5tCaxtq7Chx+mcuqZ1P06Xn89F0OGFOpzaU3i4VGGFSvY51eVSsSpW7JyZQY6dKC6JU8CCpgQQggxOLVa/VTWMQFqghfHjx+Hn58fzM3Nm32f2uDFsGHDEB0djYoKbgmNTp06YceOHYiLi0OHDh2ELBuXLl3Cyy+/jAULFuDOHe7hHxsbG8jlchw9ehSjRo0SNFdBQQGCg4Mxfvx43tM5YrEYU6dORXJyMpYsWQITExOeuxBCCCGEEEJI/SSSmhMBFhbVGvrV9fa3FPb2lZDL06FpL56tbSVCQjT3txTdu5dg0aKsBvrvauxvKV588T7Gj3+gsX/y5PuYMEFzP2lZWvh/NoQQQv4lxqrV6if2d5KlpSWnrXv37ti3bx/i4uLg6uoq6P4XL17ESy+9hAULFuDuXe6HxVatWj0OXowYMULQXLm5ufDz88OECRNw+vRpTr+xsTFmzZqF5ORkzJ8/H8bGzc/uWVlZia1bt2Lw4MHYtm0bqqu5DyVDhgxBQkICYmNj0aZNm2bPRQghhBBCCCFAzQmSKVP4020tWnSXcwKlpfLyKsTAgUW8fXJ5Otq0qdTzippn1qxc2Ntz023VBq/qnkBpqZYtu8tbY8XJSQk/P/5006RlemJfThFCCHmq2GVnZwuvgG4gc+fOhVQqBQDY2dlhzZo1+PnnnzF48GBB9/1n8OLMmTOc/rrBCyMjo2bPVRu8GDZsGOLj43mDF0OHDsWhQ4ewZs0awcGLpKQk+Pj4QCaToaiI+yG/ffv2iImJwZ49e9C1a1dBcxFCCCGEEEJIrcxMU+zbZ8fbl5Rkwyn+3lKlpFjjt9+sefuSkmz0vJrmi493QF6ehNOuVIrw66/8X19LFBPTHtXV3O+d3FwTXLvW/GwTRP+o6DshhJCWYiye0MLa/fv3x6lTp3Djxg306dMHFhYWgu5XWVmJuLg4rF27FsXFxbxjvL29ERYWhmeffVbQXEBNkfWQkBCkp6fz9ru5uSEgIACTJk0SPNf169cREhKCxMRE3n5LS0ssW7YMb731FiQS7odmQgghhBBCCGkupVIEf38PlJTwbzY7f94KW7e2w9tvZ+t5ZU2Tn2+CsDA3qDTUD9+1yx79+hVj1KiHel1XU125YoFPPnHS2L92rQu6dy9B585lelxV033/vR0OHuTfVFhdLcKqVe7YseNPTt0Z0jLRCRNCCCEtwpNex8Te3h5DhgwRHCxJSEjAsGHDIJPJeIMl7u7u2Lx5M3bt2iU4WHLz5k3MmjULc+bM4Q2WmJubw9fXF8ePHxccLCksLERERATGjh3LGywRiURMnRIhwRKVSoU9e/Zg9erVQpZMCCGEEEIIecr83/+54Pr1+nf7b93qhNOnrfS0oqZTqYCgIHc8eFB/bUeFwg1ZWaZ6WlXTFRcbISDAHZWVmk/0KJVi+Pt7oLS0+dkUdC0jwwzr1jnXOyYvT4KQEDdOIXjSMlHAhBBCSIsgEomG5uXlcYuB/EvcuHEDr732GubMmYPbt29z+i0sLODr64tjx44JDl48fPgQwcHBGDVqFI4ePcrprw1epKSkwNfXV1DwoqqqCp9//jm8vLywceNGVFZy8+j2798fBw8eRGxsLOzt7Zs9FwAkJyfDx8cHy5Ytw/37bF5ia+sn5zg3IYQQQgghRLuOHm2NPXvaMm2tWlVh4UK26LhKBYSEuKOgoGUm5tmyhRvQ6dSpDFOm3GPaiouNEBjojqqqlpdiTK0G5HJuQGf06AL0789uHKwJSLjoc3mNVl4uxooV3IDO7Nm5cHKqYNpOnrTBzp3CnneJflDAhBBCSEshqa6uHmboRejbP4MXx48f5/SLxWKtBi/i4+Ph7e2Nbdu2oaqKexy4b9+++P7777USvEhKSsLYsWMRGBiIgoICTr+joyM2btyI7777Dr179xY01+3btzF//nxMnz4df/75J6ff3NwcixYtEjQHIYQQQggh5MmUkyNBeLgr0yYSAcHBtzF/fjbGj89n+u7dM0FIiLvGlFeGcv68FbZta8e0SaUqrF6dCl/fTDz7LFuw/o8/LLBpk+aUV4aya5c9jh1rxbS1a6dEYGAGVq9O4xSs//77NhpTXhnSunUuuHVLyrT161eMd965i6ioNE7B+thYZ/zxh7CsFET3KGBCCCGkxXjS03I1RWVlJeLj4zF06FBs27aNt8j64MGDcejQIcTGxqJt27Y8d2m85ORkjBs3Dn5+fnjw4AGnv127doiJicEPP/yAfv36CZorPT0db775JmbMmIFr165x+s3MzLB8+XIkJyfj5ZdfhkjU/B1PJSUliIyMxIgRI3Dw4EHeMRMnTsSxY8cwdOjQZs9DCCGEEEIIeTJVVYmwapUHiorYEyOzZuVi+PCaGh/+/rfRoUM505+SYo34eAe9rbMh+fnGCAx05xSl9/fPgLt7OSQSNaKiUmFhwT5bbt/eDomJLacI/I0bUsTGtmfajI3VWL06FdbWVbC1rUR4eBrEdd5aR0a6Ij3dTI8rrV9CQmt8+60d02ZrW/W/tavRrVsJFi++y/RXVYkQFOSOR49abooxQgETQgghLctYQy9AH5KSkh4HL/Lz8zn9jo6OiImJwd69e9G9e3dBc6Wnp2PBggUaT16YmZlhyZIlSEpKwrRp0wQFL0pLSxEdHY2RI0fi559/5h3j4+OD48eP44MPPoBUKuUd0xhqtRoHDhzAiBEj8PHHH6OiooIzplOnTtixYwc+/fRTuLi0zCPchBBCCCGEEN36+OP2uHSJ3dVf92W2ubkKUVGpkEjYIyUbN7bHpUuGzxytUgEymTvu3WPrlkya9AATJvy9Ic7ZuQJBQWyKZ7W6pp5JXl79NU/0obS0piaJUsm+kl669C569Sp5/OcBA4oxe3YOM6asrObaigrDv87OzDRFeHgHpk0sBuTyNLRt+/fpmH8G5Wrdvcu9lrQshv8OI4QQQv7W7e7du0/tm+20tDQsWLBA48kLqVQKX19fnDx5UmvBixEjRuDAgQO8Y3x8fHDixAkEBgYKKlavVquxZ88eeHl5ITo6mjd40aNHD+zfvx9xcXFwdXXluUvjXbx4ES+++CIWLFiAu3fvcvpbtWoFuVyOo0ePYsSIEYLmIoQQQgghhDy5Tp60wY4d7CkRK6tq3nRJnTqVYelS9vmiulqEgAB3FBYatp7JF1+0w6+/sjUZXV0rsGJFJmesj08BXnqJredYUGCMoCAPzukUfYuM7IDbt9lTIkOGFOLVV3M5YxctykLv3o+Ytps3pYiJqb/Auq4plSIEBHigpIQ9JTJ3bg4GDSpi2kQiICQkHe3aKZn2X35pjf37hWWRILpDARNCCCEtzVOXlqukpOTxyQu+4IVIJMKkSZNw4sQJ+Pr6wsys+ceM6wYvlEolZ0zPnj3xzTffIC4uTvDJiwsXLmDy5MlYtmwZ8vLyOP2tW7eGXC7HTz/9hEGDBgmaKzc3F35+fpgwYQLOnj3L6TcxMcG8efPw66+/Yv78+TAyomPOhBBCCCGE/Fvl5UkQEuIGNRsXgb9/Bqcgd62ZM/MwciR7IiA3V4LQUO599OXyZQt8+ilbh0QiqTkRY27OTe0MAH5+mejcuYxpO3/eElu3OupsnQ3Zv98OP/1ky7TZ2ysRFpYOvr2CRkZqrF6dBhsbtvbm7t1tcfiwLfcCPVm/3gXXrpkzbT16lODtt7N4x1tbV0OhSIOREfsNtG6dM/76y5z3GmJYFDAhhBDSoojF4qcmYKJSqRoMXvTq1QvffPMNNm/eDGdnYTtlfv/990YFLw4ePIiBAwcKmisnJwdLly7FhAkTcO7cOU5/bfDi1KlTgoMXlZWV2Lp1K7y9vREfHw8VT+VFb29vHD58GAqFAtbW1jx3IYQQQgghhPxbVFeLsGqVOx4+ZE+GTJ9+D+PGcdMi/5NMlg4nJ/bZLSnJBnv22Gt9nQ0pKjJCQIAHqqrYiMIHH9xB586lGq6qCaiEh6fBzIx9dtq61RGnT+v/eSk1VYqPPmI364nFaoSFpaNVqyoNVwEODvwBlchIV2RlmepiqfVKTLTBnj3syRBr62pERqbC2FhzRK1v30d4661spk2prEkxVlpKG/1aGgqYEEIIaVHUarWPWq1+4n8/nTp1CuPGjcOyZctw7949Tr+DgwPWrFmDgwcP4rnnnhM0V23wYuLEiToPXpSXl2Pjxo0YNmwY9u7dCzXPNitvb28kJCRoJXiRkJAAb29vyGQyPHr0iNPv4eGBuLg47Nq1C126dBE0FyGEEEIIIeTpsHmzEy5cYGuPdOxYhmXL7jR4rZVVzQvwuim71q935pws0CW1GggLc0N2toRpHz26AK+8wn3GrMvDo4yTskulAoKC3PDggf7qmdTWHikvZx/zFy7MxoABxQ1eP3RoIWbMYDcEFhcbwd/fHZWV+ksxlpPDPWlUm3LL0ZG7ObKuN9/MxsCBbMqujAxTrF371GYlf2I98S+kCCGEPHXaZGdnexp6Ec2VnZ2NpUuXYurUqbhy5QqnvzZ4kZiYiFmzZkEsbv6v4rKyMmzcuBHe3t56C16MGDECERERGoMXX375JXbt2oXOnTsLmuvKlSuYMmUK5syZg4yMDE6/tbU1AgMDcfToUfj4PDWHkgghhBBCCCECnT1rhS++YOuWSKU1KaxMTbmn1fl0716ChQvZFEuaalfoyo4dDjhxohXT1r59BYKDb2u4guvFF+9j/Hj2RE1+vglCQ93Ac3BfJ9ascUVqKpt2ul+/Ysydm6PhCq733ruDHj1KmLarVy2waVN7rayxIVVVIqxa5YGiIvbE0quvcou6ayIWAwpFOuzsKpn2Awfa4Mcf22htrUQ4CpgQQghpicYaegFNVVZWhujoaAwZMkRj8MLHxweJiYlQKBSwsrISNN8/gxclJSWc/meeeQbbt2/XSvDi8uXLeOWVVxoMXhw7dgxjxowRNNfDhw8RHByM559/HqdOneL0i8ViTJ06FcnJyViyZAkkEgnPXQghhBBCCCH/Rvn5JggKcucUNw8IyICbW3mT7jV7dg6GDStk2jIzTREe3kHwOhty9ao5NmxggwHGxmqEh6fB0pK/bokm/v63OV/7qVPW2L69neB1NuTwYVscOMAGA2xtqxARkQaxuPFFYTR97fHxDkhMbKXhKu3ZsKE9Ll2yYNq6dSvFu+/ebdJ9bG0rER7O/dqjolyRltb8WqZEuyhgQgghpCV6oo4MHDp0CEOGDEF0dDTKy7kfwrt27Yrdu3cjLi4OHToI+3B96dIlvPjii5gzZw4yMzM5/a1atUJERASOHTuG0aNHC5qroKAAwcHBeOGFF/Drr79y+usGL0xMmn+su7ZOyaBBg7Bt2zZUV3MfAry8vHD48GHExsbCzs6u2XMRQgghhBBCnj4qFRAc7Ib799nnksmTH2D8+AdNvp9IBAQHp6NtW/ZEQEJCa3z3ne6eRx49qqlbUjfd1NKld9CzJ3ezXEPMzflP12za5ISLFy01XCVcRoYpwsNdmbaaUxZpnFMWjeHsXIGgIPZ0jVoNhIZ2QE6O7jbSpaTY4Kuv2BNL5uY1NWLqpm1rjP79izF3bi7TVpu2rKKCXtW3BMYNDyGEEEL0zisvL8/S3t6em/epBdq5cydycrjHiW1tbbFixQrMmjVLUN0QAMjLy0NUVBR2797NW/Tc2NgYr7/+Oj744AO0bt1a0FyVlZWIi4vDunXrUFRUxDtmyJAhkMvl6Nq1q6C5ACApKQkymQzXr1/n7Xd0dIS/vz+mTp0KUd1qf4QQQgghhBCCmpfxGzfe0Oo9W7euwk8/XdLqPRtiaVmN7767rNV7duxYhpMnf9fqPRvi6lqBxMQLWr3nmDEFOHuWW7dTl7y8CnHmjHbnXLz4LhYvbtrpFKI/FDAhhBDSEklUKtUIAD8YeiHNYWxsjJkzZ8Lf3x+2traC7lUbvFi7di2Ki/kL4g0dOhRhYWFaC14EBwfjr7/+4u13cnLCypUrMW3aNMFzpaamIiwsDAkJCbz9UqkUixcvxjvvvANTU1PB8xFCCCGEEEIIIYTUhwImhBBCWiSVSuWDJzRg8v777+P9998XfJ9Dhw4hLCwM6enpvP1ubm4ICQnBuHHjBM+VmpqK0NBQ/PLLL7z95ubmWLRokVaCF0VFRfj444+xZcsWKJVKTr9IJMLEiRMhk8nQvr1+ivgRQgghhBBCCCGEUMCEEEJIS/XEFX6vJaSWBwDcunULoaGhOHLkCG+/NoMXhYWF2LBhAz799FNUVnLzyGozeKFSqbBv3z4oFArcv3+fd0zv3r0hl8sxYMAAQXMRQgghhBBCCCGENBUFTAghhLRUz2ZnZ7s5OjqmG3oh+tKY4MWUKVMQFBQEe3t7QXM1JnjRp08fyOVy9O/fX9BcAJCSkgKZTIarV6/y9js4OMDX1xevvfYaxGIqdEcIIYQQQgghhBD9o4AJIYSQFkutVo8BsNXQ69C1qqoqfP311/jwww/x4MED3jF9+vSBQqFAv379BM938uRJyGQy/Pnnn7z92gxeZGVlISoqCvv27YNareb0m5iYYPbs2fDz84OVlZWguQghhBBCCCGEEEKEoIAJIYSQFkutVvvgKQ+YJCcnIyQkRGPwol27dggICMDUqVMhEokEzVUbvNi7dy9vf23wYuXKlbC0tBQ0V1lZGTZt2oQNGzagoqKCd4yPjw/kcjk6dOggaC5CCCGEEEIIIYQQbaCACSGEkBZLJBL5qNVqI5FIVG3otWhbeno6IiMjceDAAd5+MzMzzJs3D8uWLRMcvCgtLcUnn3zSYPBCoVDA1dVV0FxqtRo//PAD5HI57t69yzumU6dOCAsLw4gRIwTNRQghhBBCCCGEEKJNFDAhhBDSkrXOycnpB+C0oReiLY0NXoSHh8PFxUXQXI0JXnTv3h1yuRyDBw8WNBcAXLx4ETKZDGfOnOHtb9WqFZYvX4433ngDRkZGgucjhBBCCCGEEEII0SYKmBBCCGnR1Gr1WDwFARO1Wo29e/ciIiICeXl5vGN69OgBuVyOQYMGCZ7vwoULkMlkOHv2LG+/NoMXubm5iI6Oxo4dO6BSqTj9xsbGmDlzJvz9/WFraytoLkIIIYQQQgjRRKkUY9u2dqiqYtMZjxtXgM6dS5t8v9RUKX78kX2GMTJS4403ciCVcp99tCUvzwS7dtlz2v/znzzY2lY2+X6nT1vjt9/YmpE2NtV4/fUcCMz8XK+rV81x5Ehrpk0iUePNN7NhYsKtcdmQgwdtceuWlGnz8CjHhAn8tUC1JSnJBhcusJkf2ratxMyZ/M/29VGrgfh4Bzx8yL6WHzCgGIMGFQlaJ9EOCpgQQghp6cYCCDf0IoS4cOECgoODce7cOd7+1q1b4/3339dL8KK2TsmKFStgbW0taK7KykrExcVh7dq1KC4u5h3j7e2NsLAwPPvss4LmIoQQQgghhJCGSCQqWFlVY/16Z6b9yJHWiI//E5aWjc/2XFYmxsqVHkhLM2PaFy/O0mmwBADs7Svx4IEJfvihDdN+5YoFNm26AbG48cGGnBwJ/P3dUVT092tgkQhYu/aWToMlANC5cxnWrXPFpUsWTHtJiRjLl99p0r3On7dCaKgbVKq/Fy2RqBAXd00ra61P9+4lWL26A+7dM2Hazc2rMXly04I1u3bZIyaG/f50cFBi9uxcwesk2iE29AIIIYSQBgzOz8+3MfQimiMnJwdLly7FhAkTeIMlJiYmmDdvHk6dOoX58+cLCpZUVlZi69at8Pb2Rnx8PG+wxNvbG4cPH4ZCoRAcLElISMCwYcMgk8l4gyXu7u7YvHkzdu3a9UQES3Jzc+Hn54cLFy4YeimEEEIIIYQQAf7zn1wMH/6QabtzxxTh4R2adJ+oKFdOsKR//2LMnZsjeI2NsXJlBjw8ypm2s2et8MUX7Rp9j6oqEVat8mCCJQDw6qu5GDHioYartMfYWI3Vq1NhbV3FtO/c6YDjx1s1+j75+cYIDHRngiUA4O+fgU6dyrSy1vrY2lYhIiKNE6iKinLFjRtSDVdx3bghRWxse6bNyEiNyMg02NhUabiK6BsFTAghhLR0xmVlZSMMvYimKC8vx8aNG+Ht7Y29e/dCrebu/vH29kZCQoLWghfe3t6QyWR49OgRp9/DwwNxcXHYtWsXunTpImiuGzdu4LXXXsOcOXNw+/ZtTr+FhQV8fX1x7NgxTJo0SdBc+qBUKh//W8XHx6O6WuOOs6afFyeEEEIIIYTonUgEhISkw8lJybT/8ktr7NvXtlH3+P77NvjxR/Z0h61tJcLDuS/NdUUqVSEqKhVmZuxmuP/+1wlnzlhpuIoVG+vMOd3RrVsp3n2Xv8alLrRrp0RYWDpzmkWtBuRyN2RlSRq8XqUCZDJ3zumOsWPzm3y6QwhPz2LMn5/NtCmVYgQGuqO8vOFX7KWlYvj7e0CpZMe+885d9OrFfY4nhkMBE0IIIU8CH0MvoCnWr1+PiIgIlJSUcPo6d+6MnTt3YteuXejcubOgea5cuYIpU6Zgzpw5yMjI4PRbW1sjMDAQR48ehY+PsL/Chw8fIjg4GKNGjcLx48c5/WKxGFOnTkVKSgp8fX0hkTT8wdfQfv75Z4wYMQIRERG8gaY6MvWxJkIIIYQQQohw1tbVWL06FcbGbHAjOtoF16+b13ttRoYZ1q1zYdrEYkChSIedXdPrhwjh4VGGDz5gH0VUKiAkxJ1TA6Ou5GQb7NzJ1kGxtKxGZGRqs+qHCOHtXYjp09l6H0VFRggI8EBlZf15wT7/3BG//spuMnR1rUBQEPcZWNfmz8/GwIFsnZHUVCnWrnXRcMXfVq/ugNu32RNLXl6FmDWLUnG1NBQwIYQQ0uKJRKKxhl5DU/Clw7KxsYFCocAvv/yC4cOHC7p/QUEBgoOD8fzzz+PUqVOc/trgRXJyMpYsWSIoeFFZWYn4+HgMHToU27Zt4z2B4enpie+//x6xsbFo27ZxO7YM6dq1a5gxYwbefPNNpKenN+aSWwC+0+2qCCGEEEIIIdrUo0cJFi7MYtqUShH8/T1QUsKfDlmprDkFUFrK9s+bx31Rri8vvXQf48fnM215eSaQydzA8+gJAMjNlSAkxA11kx0EBGSgffsKHa20fsuW3UHXrqVM25UrFvjkEyeN1/z+uyU+/dSRaZNIVIiMTIW5eePr0WiLpsDZd9/Z4eDBNhquAvbta4uff7Zl2uztKyGXp+u8jgxpOgqYEEIIeRJ0ys3N9TD0IpqjNniRlJSEefPmwdi4/l1A9amtUzJ48GCNwQsvLy8cPnwYsbGxsLOzE7J0JCUlYdy4cfDz80N+fj6n39HRETExMThw4AA8PT0FzaUPBQUFCAwMxNixY5GUlNTYyw4CGAGAe1yIEEIIIYQQ0qLNmZODYcMKmbbMTFNERPDXM4mKcsFff7E1KTw9H+Gtt7J5x+uLv/9tuLmx9UxSUmwQH8+tZ1JdLcKqVe4oLGSfPadNu4dx47jPdfoikagRGZkKS0v2OXb79nZITOTWMykqMkZwsDuqq9mIgq/vHXTpUsoZry+aUrNFRnJr3gDAzZtSfPQRW+RdLAbCwtLQqhXVLWmJKGBCCPl/9u48PKr6auD4NwmEHQQEBBEBca3FuuHCplTQulaKUq2KfcsrrW3BCqVRSUB2F1rR0laF2lexWsFWi9oFd3AX9x0N+76HJZBl5v1jQLmZmWSyTDIh38/z8Dyd372/e08SLJl75pwj1QrFxcUp25YrLc5HQnr16sX8+fOrLHkxYMAAcnJyyMuL/mRThw4dmD59OnPnzuW4446r1L2WLFnCsGHDGDx4MJ999lnU8UaNGjFy5EheeeUVLrvssrhff6ooKipi9uzZ9OnThwceeICiooR+Kf0CuAi4AFiZ1AAlSZIkJUVaGmRnL6Vt22BFwH//25Innzw4au2f/wyutWxZxMSJudU2tySexo0j80waNAiWlMyY0YH3329a5lq3bvnccEPNv63p2HEPY8YEZ2GGwzBu3OGsXZtZ6hrAOeds4Qc/2FAtsZbmlFO2c+21awNr+fmR6qQ9e9JLXQP46U9Xc+qp26slVpWfCRNJUm2RsgmT448/PvD68MMPZ9asWTz22GMce+yxlbp2bm4uQ4YMYfDgwXz++edRx0smLypj586dTJs2jbPPPpt58+ZFHU9LS+Oiiy7ipZdeYuTIkTRsGP3pmVSzcOHCr6tkNm1KaCDgViAL6A48ldTgJEmSJCXdvqRHRkYw6XHbbd9Uk8SqOomXbKkp3brl86tfBZMeJatJYlWdxEu21JRYSY+S1SSxqk5iJVtqUqykx1dfBatJpkzpxNKlwffNsZItSi0V7wsiSVL1+m44HK6XlpaWcjWrv/zlL9m5cyeLFi3i3HPPZejQoZUeep6Xl8c999zD/fffT0FBQdTxtLQ0LrzwQnJycjj00EMrda9QKMTjjz/OxIkT2bAh9qd1unfvzvjx4+nRo0el7lVdli5dypQpU2ImfuIIAQ8DvwacuidJkiQdQE46aQfXXbcmMC9j37ySP//585hzTa65JrqdV00bNGgD773XNDAPY9+8kptuWh5zrklW1vKodl41beTIFXz0URM+/7zx12vvvtuUe+9tT9++26LmmtSrF2bChCVR7bxqUno6TJy4hCuvPJZNm+p/vf744234znd2UFCQHjXXpFWropjtvJRaTJhIkmqLg1atWnUqED3lvIZlZmaSk5NTJdfal7yYMGECGzdujHnOCSecwPjx4zn11FMrfb/XXnuNnJwcPv7445jH27Vrx8iRI7nyyitJT0/9wtRdu3bxxz/+kXvuuSdmoimOF4EbgPeTFpgkSZKkGvXjH6/hnXea8sYbzb9eW768IYMHHxd44A3QvftOfvaz1SUvkRJuumk5H33UhJUrG3y9tnBhC6655hi2bg0+6r3kko2cf35ClZ1F/SEAACAASURBVPbVKjLPZAlXXXUMu3Z9k6j6y1/a88QTbSgsDLZ9HjFiJd/+duqNlWzdupCxY5dyww1HBhJVU6d2ipq9Ekmw5EYNjFfqSf0nH5Ik7ZWRkTGgpmNIpldffZUBAwYwYsSImMmSdu3acfvtt/P0009XOlmyZs0ahg8fzqBBg2ImS+rXr89PfvITXn75Za666qqUT5aEw2HmzJnDmWeeybRp0xJNlqwEhgD9MFkiSZIkHdDS02HChCW0aRN8YF0yWdK8eTETJ+ZSr15qVgE0aVLMHXd8RWZmsJSk5NfRtWs+v/71iuoMrVw6ddpNdnawxVYoBJs3B5M+vXtv44c/XF+doZXLmWfmcfXVwRZbO3dmsHt38D30T36yhh49nFtSG6T20w9JkvYTDodTdo5JZaxevfrr5MUnn3wSdbwqkxf5+flMmzaNnj17MnfuXMLh6DcB/fv356WXXmLChAk0a9aswveqLu+++y4XX3wxI0aMYP36hH6R3gXcChwJPAik5jshSZIkSVWqVasiJk2K3xIpLQ1ycpbSoUPC1eo14sgj8xkxYlXc45mZISZNWkLDhqkxtySe/v238P3vx+6sANCuXQHjxi0lLS3uKSnh+utX853v7Ih7/KSTdvC//7umGiNSZZgwkSTVJqdt3ry5RU0HUVVKJi9i6d+/Py+//HKlkxfhcJh58+bRt29fpk2bxu7d0T1su3XrxsMPP8z//d//0blz5wrfq7qsXbuW4cOHc+GFF7Jo0aJEtoSBOcCxwDggtRr5SpIkSUq6k07azuWXx57d+MMfruess7ZWc0QVM3jwek4+OXbFQlbWCo48Mr+aI6qYX/96BW3bRrepqlcvzJQpubRokXJjTKNkZIQZP34JGRnRibiWLYuYODHXuSW1iDNMJEm1Sb3du3f3A/5R04FURjgc5qmnnmL8+PGsWhX7U0FHHnkkt956K2eddVal7/fBBx+QnZ3NW2+9FfP4QQcdxI033si1115LvXqp/6tBfn4+f/7zn7nrrrvYuTPhPrZvE5lT8kryIpMkSZKU6vLyMnj55YNiHivZRimV5eY24uOPm8Q8lp9fe76ON99sxoYN9aPWQ6E0du/OiLEjNT39dOuouSUARUVpFBXVnp+HrDCRJNU+tbot1/vvv8/3v/99hg0bFjNZctBBBzF+/Hief/75SidL1q1bx+jRozn//PNjJkvq1avHVVddxcKFCxk6dGitSJbMnz+fs846i0mTJiWaLFkDDANOw2SJJEmSVKeFwzB+fGdWr86Mefwf/ziYZ55pVc1Rld+ePencckuXuAme6dM78tlnjas5qvJbty6TceM6E6NTNKEQjBnTOWo2Syp6552m3H9/+5jHtm/PICurS9Qge6UuEyaSpNrmvJoOoCL2JS8uuOCCmMmL+vXrB5IXGRkV/yRNYWEhM2fOpE+fPsyePZtQKLpvba9evfjvf//L7bffTqtWqf+G4MMPP+TSSy9lyJAhrFiR0ODCAuBu4BjgPiC1m/dKkiRJSrpHHmnHiy/Gri7ZZ+rUw1m2rGE1RVQxt93WicWLG8U9XlCQRlZWV3buTN0KjeLiNG66qQvbtsX/4N7mzfW55ZYuhEKpm2zYsqUeY8Z0LTXGTz5pwowZh1ZjVKoMEyaSpNqmy7p1646o6SASlUjyonfv3vznP/+pkuTF/Pnz6dOnDzk5OWzfHt3PtkuXLtx777089thjHHPMMZW6V3XYsmUL2dnZnH/++bzxxhuJbnuKyJySEUBe0oKTJEmSVGt88klj7rkn+NC6fv0w3/3ulsDarl2R6o2CgtR8SP/MM6345z9bB9Zaty6kR4/g+7+VKxsweXKn6gytXGbMOJQPPmgaWDvuuF106hQcNfn228148MF21RlawsJhGDu2M+vXB6tgevfeRpMmxYG1hx9ux4IFB8xI1gOaCRNJUq0TCoUG1HQMiUg0efG3v/2t0smLL7/8kh/96EcMGTKEZcuWRR1v3LgxI0eO5IUXXuCiiy6q1L2qw75E0xlnnMGsWbMoLi4uexN8SqQC6SIgN6kBSpIkSao1du3KYMyY6LZIw4evZPLkJXTvviOw/tlnjbn77o7VGWJCVqxowG23BZMg6ekwfvxSJk3KjRqe/p//tOKJJw6uzhAT8uqrLXjooWASpHHjYiZOXMLtt+fSoEHwg4Z//GMH3n8/mFxJBQ8+eAivvhpMghx22B4mTVpCdnbwfXkkudKFNWtit4NT6jBhIkmqdcLhcErPMVm8eDFXXnll3ORF8+bNueWWW6okebF161ays7Pp168fL7zwQtTx9PR0Bg0axGuvvcbIkSPJzEz9X84WLFjAOeecQ05ODnl5CRWIbCYy0P3bwH+SGpwkSZKkWmfy5E4sXx5ss9Wr1zZ++MP1ZGSEmTJlCS1aFAWOP/poW154ofT2XdUpXputH/94DaedlkfLlkVMnJhLenpwIMjttx/GF1/Eb99V3TZtqs+4cYdHzS25+ebldOq0m27d8hkxIjjvM5H2XdXt44+b8Kc/dQisZWaGmTo1l8aNiznnnC0MHLgxcDwvL4OcnC4xh8MrdZgwkSTVRt8Nh8MpN/lt/+TFiy++GHV8X/JiwYIF/PznP69U8qKoqIjZs2fTq1cvZs2aRVFRUdQ5J554Ik8++SR33303bdq0qfC9qstXX33F1VdfzeDBg1m8eHEiW4qIzCc5GpgOJFSGIkmSJKnumDu3Df/+d7D1cdu2Bdx661LS9j63bteugHHjvnm9T2kD4qvbb397GJ9/HhzkfuKJO7juujVfvz7ppB0MHbomcE5BQTpjxnSNOyC+OkUGuXdh8+bg2/lBgzZw3nmbv359+eXrGTBgc+Cc9eszGTs29oD46rZ9ewY33dQ1qmLpxhtXcPTRu75+PWrUCo46alfgnHffbcp998UeEK/UUPP/pUhSHbJlyxZ2795d9okqS/PVq1f3qOkg9iksLAwkL2K1jzrjjDP4z3/+UyXJi4ULFzJgwABGjx7N5s2bo463b9+e6dOn89RTT3HyySdX6l7VYdu2bUyaNIl+/frx3HPPJbrtWeBEYBiwsYxzJUmSJNVBX33ViN/9LthaK15FSe/e27jssvWBtXgPxqvbc8+1ZO7c4PvI5s2LGT9+CRkZwQzC0KFr6NEjWKmfm9uQO+44LOlxluW++zrw1lvNAmtHHJHPr361Murcm25aTocOewJrCxe24NFH2yY1xrKEw7ETad/97hYGDdoQWMvMDH1dcbK/Bx5ozxtvNE96rKoYEyaSVI0++ugjevbsyZw5cwinwsciareUacv1q1/9Km7y4rDDDuPee+/l8ccf51vf+lal7pObm8uQIUO4/PLL+eyzz6KON2rUiFGjRvHKK69w2WWXkVby41EpZv8qmRkzZlBYWFj2JlgMXE7k5/9RUgOUJEmSVGvl56eTldWVPXuCjz9/9rPVnHDCjph7brhhJcccE6wIiNV6qTqtXZvJpEnBuSVpaTB27FLaty+IOj89HSZOXErr1sH3V08+eTDPPNM66vzqsmhRM/7850MCa40aRRIKJWeWADRrVszUqUuoXz/47GT69I58+GGTpMZamkceiW7VdsghBdxyy/KY53fqtIdf/3pFYC0UguzsLmzcmHKNM4QJE0lKluj+SHutWbOGESNGMGjQID7++OPqjOlAc25NB7DPjh3Rv2w3btyY0aNH89JLL1V6TkleXh4TJkzg7LPPZv78+VHH09LSuPTSS1m4cCE33ngjDRs2jHGV1LJw4ULOPfdcRo8ezaZNmxLZsgO4lcickjlJDU6SJElSrTd1aieWLAm+NzrllO1cc83auHsyM8NMmZJLkybBioAHHzyEl19uEWdX8hQVpXHzzV3JywvO7vjRj9bRt+/WuPtatSpk3LilpJd48jt1aieWLq3+94ubN9fjllu6EAoFP9SXlbWcLl3id+E47ridXH99cJ5JUVEa2dld2LEjI86u5Pn008b8/vfBiqV69cJMnpxL8+ZxHwNx0UWbuOCC4PvezZvrMWZM9PdENc+EiSQlx7tlnfDaa69x3nnnMXr0aDZutKNQeaWlpZ26YsWKVmWfWf169erFwoULueGGGyqVvAiFQvz1r3+lV69e/PGPf4xZgXHCCSfw5JNPMmPGDNq3T/0+qEuXLmXYsGFcfvnlfPrpp4lsCQEPAd2AccCeUs+WJEmSVOf985+tefrpYDVFq1aFTJq0JCqJUNJhh+1hzJhlgbVwGCZM6MyGDdVbEXD33YfywQfBaorjjtvJz3++Ks6Ob5xxRh5XXx1MDu3aFbvqJplCIcjJia6muPDC6CRCLFddtY4+fYLJoZUrGzBx4uFVGmdZdu1K55ZbulBQEExw/PKXq+jefWeZ+2Mlh95+uxl/+Uu7Ko1TlWfCRJKS4yngybJOKi4u/rol0b333ptoSyJFZGRkZJxd00HE0qdPHw455JCyTyzFG2+8wXnnnceoUaNiJtTatm3L7373O55++mlOOeWUSt2rOuzatYtp06Zx9tlnM2/evES3vQScDFwDrEtacJIkSZIOGMuXN+TOO4PzOuK1qYqnf/8tXHJJ8H3Yli2xqySS5ZVXWvDII8GH6fHaVMVz/fXR7ce+/LIR06cfWmVxluUvf2nP668H53V06rSH0aNXxNkRlJYG48Yt45BDgu3Hnn22JX//+8FVFmdZJk8+nOXLgx+I7NlzG1demdhb1Xjtx+69twPvvde0yuJU5ZkwkaTkCAE/AH4BRA+2KCEvL49bb72Vfv368eyzzyY9uANIyswxqSpr1qxh+PDhDBw4kI8+ih7RUb9+fX7yk5+wYMECBg8eTHpZH4+qYeFwmDlz5nDmmWcybdo09uxJqEBkJTAEOBt4L6kBSpIkSTpgFBREKih27Qq2a4o1CL0sv/nNCo46Kj+w9s47zZg5M/mV/evXZzJ2bGdKjj7NyooehF6ajIwwkydHD7h/7LG2/Pe/yW/Y8OGHTbjvvuD3K94g9NI0b17EhAnRA+7vvPMwvviicZXEWprHH2/Dv/8d/H61bVvArbcupTyjQ2MNuC8uTuPmm7uwdWu9OLtU3VL7KYsk1W7FwAwirYRuA6KnsZXw1Vdfcc0118Qd6q0oKTPHpLLy8/OZMWMGffr0Ye7cuYRL/mYM9O/fn5deeokJEybQrFmzGoiyfN577z0uvvhiRowYwfr16xPZsovInJKjgAeBxD42JUmSJEnAHXccxhdfNAqsnXTSDoYOXVPua2Vmhpg4cQkNGwYrAmbObM+bbybv/Vi8B+iXXbaBc88t8/OYUdq1i/1gf8qUTqxe3aAyoZYqLy+Dm2/uSlFR8MajRq3kqKN2lft6J564g//93+DPMV6CrCp99VUjfvvb4NyS9PQw48cv5aCD4s8tiWfQoOifY7wEmWqGqStJSr4tQBbwAPBb4PyyNixcuJABAwbwwx/+kKysLFq1SslRHamg88qVK4/q2LHjFzUdSGXMnz+fW265hZUrV8Y83q1bN8aNG0e/fv2qObKKWbt2LZMnT+bxxx+PmfiJIQzMBX4NLCvjXEmSJEmKEgqlMXDgBgYO3BBY79hxD+npFXsS3bVrPo8++gnbtwcfyDdrlnh1RHnt2ZPGyJHR7aqOOCI/xtmJ6dVrG48++knU/I369UNxdlRecXEat9/+VWAtPR2OPrr8yZJ9/ud/1tCz57ao9aLy5y0S1qRJMTNnfh5Ya9QoROfO8YfVl2XMmGVcdVV0K6/CwnQyM5P3M1FiTJhIUvX5HLgAOAeYDhxX2slFRUXMnj2bp556ihtvvJFrr72WevX8v+2S0tLSBgC1MmHy4Ycfkp2dzZtvvhnzeIsWLRg5cmSt+dnv3r2bWbNmcdddd7FzZ9lD7/ZaBNwALExeZJIkSZIOdOnpYY49tuIP4+Pp2DHxFlhVoXHjUFK+jsokXCqiZcsiWras2kxGejpJ+d6U5pBDCqLmp1RWo0bJ+RmratiSS5Kq37PAd4g8JI7+aEQJW7duJScnh379+vHCCy8kPbjaJj09vdbNMVm3bh2jR4/m/PPPj5ksqVevHldddRULFy5k6NChtSJZMn/+fPr27cukSZMSTZasAYYBPTBZIkmSJEmSUoAJE0mqGYVEqkyOAO4mMu+kVF9++SU/+tGPGDJkCMuW2bVon3A4fHY4HK5f03EkorCwkJkzZ9KnTx9mz55NcXH0j71Xr1785z//4fbbb6d169Y1EGX5fPjhh1x66aUMGTKEFSuiy8ZjKCDyd/4Y4D7AemNJkiRJkpQSTJhIUs3aBIwg8in7BYlsmD9/Pn369CE7O5vt27cnNbhaotmaNWvOqOkgyrKvAiMnJyfmz61z587ce++9PPbYYxx77LE1EGH5bNmyhezsbM4//3zeeOONRLc9BRxL5O98XtKCkyRJkiRJqgATJpKUGt4B+gAXA0vLOrmwsJBZs2Z9XakQCtX5D+mnbFuuL7/8kquuuoohQ4awdOnSqOONGzdm5MiRvPjii1x00UXVH2A57auSOeOMM5g1a1bMKpkYPgO+B1wE5CY1QEmSJEmSpAoyYSJJqWUekWHwWcCOsk7efxbGW2+9lfTgUtiAmg6gpG3btpGdnU2/fv14/vnno46npaUxaNAgXn31VUaOHElmZmYNRFk+CxYsoH///uTk5JCXl1CByGYis3q+Dfw7qcFJkiRJkiRVkgkTSUo9+cBtRGY8PASEy9rwwQcf8P3vf59hw4axcuXKZMeXik5euXJlygz8mD9//tcVGEVFRVHHe/Towb/+9S/uvvtu2rZtWwMRls9XX33F1VdfzeDBg/niiy8S2VJEZD7J0URm9UR/EyRJkiRJklKMCRNJSl2rgGuA04HXyzo5HA4zb948+vbty7Rp09i9e3fSA0whGRkZGd+t6SD2eeutt9i6dWvU+iGHHML06dP5xz/+Qffu3WsgsvLZtm0bkyZNol+/fjz33HOJbnsOOBEYBmxMWnCSJEmSJElVrF5NByBJKtObwJnA1UQqTw4p7eT8/HymTZvGX//6V7Kyshg0aBBpaWnVEWeNCofD/YHHajqOWBo1asT111/P9ddfT6NGjWo6nDKFQiEef/xxJkyYwMaNCec8FgO3AHOSF5kkSZIkxVdQkM7LL7eIWj/ppB20alVY7utt2VKPRYuaRa337LmNRo2SN0t08+b6vPNO06j1Pn22kZlZ/vuuWNGAzz9vHFirVy9M375bSebjgmXLGrJ4cfA9cGZmmD59oj9gmIhPP23MqlUNAmsHHVTEKadsr3CMifj44yasWRNso92qVREnnVSx+775ZjPy8oKP5Tt23MMxx+yqcIyqOiZMJKl2CAMPAo8DvyYy46RBaRvWrFnDiBEjePTRRxk/fjzf+ta3qiHMGnVeTQcQS//+/Zk4cSKHHXZYTYeSkFdeeYWcnBw+/fTTRLfsAKYBU4A9SQtMkiRJksqQmRnizTeb8/e/HxxYP/HEHfzpT1+QkVFmx+uvhUIwZkwX3nijeWB9wIDNnHPOliqJN54WLYr429/a8u67waTJoEEbyMpaXq5r7dqVzogR3Vi+vGFg/YYbViY1WQLQsmUhd999JKtXB5MNWVnLGTRoQ7mutWJFA37606PYuTPj67X0dJg+fXGVxFqaRo1CjBvXmd27v2nWlJ4OM2Z8wamnli9p8uqrzbnhhiMJ7Zf3atw4xEMPJfweXElmSy5Jql12AuOA40nwk/yvvfYa5557LsOHD2fDhvL9QlLLdFy9evUxNXHjpk2jP/nTvXt3nnjiCf7v//6vViRLVq9ezfDhw7nssssSTZaEiMzY6Ubk76TJEkmSJEk1btSoFRx9dPCT+u++25T77mtfrus88ED7qGRJp057GDOmfAmLisjICDNp0hIOOig4DnLu3Db8+9+tynWtyZMPj0qWnHnmNn70o3WVjrMszZsXM3lyLvXqBRNVv/3tYVEVL6UpKEgjK6trIFkCMGTIWs44I69KYi1N1675jBq1IrC2L6G2aVP9hK+zaVN9br21cyBZApCVtYzDD69TbdVTmgkTSaqdvgQuB74LfFjWyaFQiLlz59K7d29mzJhBQUFB0gOsIQNq4qY//vGPadw48stemzZtmDZtGs888ww9evSoiXDKZdeuXUybNo2ePXsyd+7cRLe9QaRN3DVA8n/LliRJkqQEZWaGmDIllyZNigPrDzzQntdfbx5nV9A770QnWDIzQ0ydmkvjxsVxdlWttm0LGD9+aVQVyOTJh7NsWcPYm0qIlWCJd91kOf74nfzsZ6sDa/ESIPFMmxadYDn++J0MG7Y6zo6q9/3vb+T88zcF1uIlQGKJl2C59NKNnH/+5iqMVJVlwkSSarfngZOIDNgus3wkLy+PSZMmcfbZZzNv3rykB1fd9s4xqXYnn3wyr7/+OnPnzuX111/niiuuID09tf+JDYfDzJkzhzPPPJNp06axZ09CBSIrgSHAGUSSJpIkSZKUcjp12sMttywLrIVCkJPThQ0bSq8IyMurR05OF4qLgxmFUaNWcNRR1Ttj4swzt3H11cHPqO3alU5WVlcKCkp/z/nll4343e86BtYyMsJMnhxduZJs11yzNmpuyYoVDZg48fAy9z73XEsef7xNYK1582KmTImuXEm2rKzldO4crAR59dXmPPRQqaNmAbj33g689VZwHk7XrvmMHLkizg7VlNR+miNJSkQRcB9wNHD33telWrJkCcOGDWPw4MF8/vnnyY6v2qSlpZ29ePHiUme7JMvBBx/MmWeeWSuGur/33ntcfPHFjBgxgvXr1yeyZRdwG3AskVk61ftbqSRJkiSV04ABW7j44o2Btc2b6zFmTBdCodjlFeEwjBt3OGvXBmdunHPOFgYO3BhzT7L9/OerOOGEHYG1xYsbcffdh8bdsy+psmdP8NHvsGGr+c53dsTZlTxpaTBu3DIOOSTY7WL+/JY8+eTBcXbBypUNmDAhmFRJS4OxY5fSvn31d85o3DhSZdSgQbCk5A9/6MD770e36t7n7beb8cADwaRKo0aRazVsmEB5iqqVCRNJOnBsAUYQmW/yr0Q2LFiwgAEDBjB69Gg2bz4gSkCbNG3a9IyaDiJVrV27luHDh3PBBRewaNGiRLc9BRwHZBEZ8C5JkiRJtUJW1gqOOio/sLZoUTNmzYpdEfDgg4fw8ssHBdY6dtzDmDHLYp5fHfZVhbRoEfxs5KOPtuX55w+KuWfq1E4sXRps23XKKdu59tqa66jcvHkR48cvISMj+Pm72247jC++iP7gYVFRGtnZXdixI9i268or19G379ao86tLt275/OpXKwNrxcVp3HRTF7ZurRd1/ubN9WMm6UaPXk7Xrs4tSUUmTCTpwPM5cD7QHyhzendhYSGzZ8+mV69ezJw5k+Li6unHmiw11ZYrle3evZsZM2bQp08f5s6dSzicUIHIIqA3cBFQc+8OJEmSJKmC4s0duf/+Drz5ZrA90scfN+GPf+xQYn+YKVNyadq0Zt8nt2tXwK23Rs8dmTChM6tXB5ssPPHEwTzzTOvAWqtWhUycuIT09JptFnDSSTu47ro1gbWCgkg1zK5dwcTIXXd15MMPmwTWjjtuJ7/4xaqkx1mWQYM2cN55wQ+drl+fydixndn/7XYoBNnZndm4MdgGbsCAzVx0UXAeilKHCRNJOnA9C5wA3ADklXXy1q1bycnJoV+/frz44ovJji2ZamTwe6qaP38+Z511FpMmTWLHjoQKRNYQmYlzGrAwqcFJkiRJUpJ16rSbUaOCcyJKDuDOy8vgppu6UlQUzEiMGLGSY4+t3rkl8fTqtY0rrgi2VN6+PYOsrC4UFkbizs1txJ13HhY4Jz0dJk5cysEHF1ZbrKX58Y/XcPrpwUcUy5c35I47vol7wYIW/O1vbQPnNGtWzNSpS6hfPzU6RN988zIOPzxYIfLKKy145JF2X7+eNas9b7zRPHBOp057GDNmebXEqIoxYSJJB7ZCYDpwBJH5JmV+LGbx4sVceeWVDBkyhGXLamVhwUlr1qxpU/ZpB7aPPvqIgQMHMmTIEJYvT+iXsUIif0eOITITp3aXGkmSJEnSXhdfvIkLLgh+on//Vknjx3dm9erg3JLevbdx+eUJzXysNsOHr6R7952BtU8+acKMGYeSnx+p1Ni9O/i4d+jQNfToUeZnKKtNejqMH7+ENm2CCZx581rz1FOtWbcuk3HjgpUaEBm43qHDnmqMtHT75plkZgZnkNx996F88EET3nmnGfff3z5wLF7Fk1KLCRNJqhs2Eplv0gNYkMiG+fPn06dPH7KzsxOtTEgV6aFQ6Ls1HURN2bJlC9nZ2Xzve9/j9ddfT3TbU0QGuo8ggWokSZIkSaptsrKW07lzsCLgrbeaMXToUbz4YnAWSIcOBdx665KoFlg1rV69MBMnLqFZs+AD94cfbsfPf34UubnBuSUnn7ydoUODLbBSQatWRUyYEN0i7LbbOvGrX3Vj27bgLJDLL9/Aueem3tzVI4/MZ8SIYIuwoqI0xozpyi23RM8tGTVqJUcdlRoVS4rPhIkk1S3vAH2Ai4GlZZ1cWFjIrFmz6N27N7NnzyYUCpW1JSWkp6fXuTkmhYWFzJw5kzPOOINZs2YlOovmMyLzbi4CvkpqgJIkSZJUgxo1CnHbbbk0bBh8X/vBB00DrzMyIkmJ5s1TswqgQ4c9UcmccBg++CA476Nly6KUmFsSzymnbGfo0LWBtfz89KgB8N265TNiRHDIeioZPHg9/foFh9CvXp3Jhg3BuSXnnLOFgQM3VGdoqiATJpJUN80DvgVkAWWWj6xbt47Ro0dzwQUX8Pbbbyc9uMoKh8Pn1nQM1WnBggX079+fnJwc8vISKhDZTGS2zbeBfyU1OEmSJElKEUcckc/IkStKPecXv1hF9+6p3WWhT59tXHZZ/HZhaWmQnb00qu1Vqhk6sJt3vwAAHrdJREFUdHWp7cL2tb1q0CC1P7yZnb201HZhHTvuYcyYWtnyvE4yYSJJddcu4DYiMyseAsr82Mn777/PJZdcwrBhw1i1alVZp9ekQ9esWXNcTQeRbLm5uVxzzTUMHjyYL774IpEtRUTmkxxDZLZNUTLjkyRJkqRUc+mlGxkwYEvMY716beOqq9ZVc0QVc8MNKzn66Njtna65Zi19+myr5ojKLzLPZCktW8Z+a3rzzcui2qilombNipkyZQkZGdGPVTIzw0yZkkvTpqlZsaRoJkwkSauAa4DTgTKHXoTDYebNm0efPn2YNm0ae/akztC1/YXD4QE1HUOy5OXlMWnSJM4++2yeffbZRLc9B5wEDAOsA5YkSZJUJxUVpUUNeN+ne/edKTe3JJ4dOzLYvLl+zGMnnJDaFTL727SpPjt3ZkStZ2aGOe642jPvY9WqBhQXR//ladmykMMOS83nJorNhIkkaZ83gZ7AEGBtGeeSn5/PtGnT6NmzJ3PmzEl6cBVwwM0xCYVCzJkzh169ejFjxgwKCxMqr/4SuBw4B/gwqQFKkiRJUor7/e8P5aOPmsQ8du+97aNmmqSicBgmTOgcNSdjnwkTOrN+fexjqWTXrnRuvrkLBQXRiYaCgjRGj+7Knj2p//h65coGTJrUKeaxdesymTjx8GqOSJWR+n/jJEnVKQQ8CHQDbgXK/BjE6tWrGTFiBIMGDeKTTz5JdnzlcdbixYsb1HQQVeWVV16hf//+jBgxgo0bNyayZSeRn+HxQEpmtCRJkiSpOr36agsefrhd3OPFxWncdFMXtm2rV41Rld9f/nIICxa0iHt8y5Z6jBnTlVAotctlpk49nGXLGsY9/uWXjZg+vWM1RlR+BQVpZGV1jVkls8+zz7bk739vU41RqTJMmEiSYtkJjKMcD9tfffVVBgwYwPDhwxN9oJ9sjZs1a9azpoOorNWrVzN8+HAuu+wyPv3000S2hInMpOlG5Gdo7a8kSZKkOm/9+kxycjoTLjFmolu3/MDrfRUBJc9LFR980JQ//alDYC0zM0SnTsG3fu+805T7729fnaGVyxNPHMwzz7QKrLVtW0Dz5sF5Jo891obnn29ZnaGVy/TpHfnss8aBta5dd5OeHvwLNG1aRxYvblSdoamCTJhIkkpTrnZOoVCIuXPnft0yqqCgIOkBlqY2zzHZtWvX1y3P5s6dm+i2N4EzicykKbOtmiRJkiTVBaFQGmPHdmbr1mDlyOWXb+D++z+nQ4dgsuGFFw5izpy21RliQvLyMhgzpkvUrIxRo1Zy551f0rBhKLA+a1Z73nyzeXWGmJDc3EbceedhgbWMjDCTJy9h/PilUXNkJkw4nNWrU6+BxIIFLXjsseDfk+bNi5k+fTHXXbcmsL5nTzq/+c0R7NoVvxJFqcGEiSQpEeUaGL5vKHm/fv2YP39+0oOLpzYmTMLhMPPmzaNv375MmzaNPXsSKhBZRWT2zOnA60kNUJIkSZJqmT/9qT1vvdUssNatWz4jRqykWbNipkxZQv36wYqAu+6KrhyoSeEwjB/fOWpg/Xe/u4WBAzfQtetuRo9eETgWCsGYMZ3ZtCl15pnk56eTldWV3buDj6WHDVvNd76zg169tjF48PrAse3bM8jK6kJhYeq0GFu3LpNx44IVS2lpMHbsUtq3L+B//mcNp52WF9izfHkD7rjjMJTaTJhIkhJVBNwHHAPcvfd1qXJzcxkyZAiDBw/m888/T3Z8sXxn/fr1h9TEjSvivffe45JLLmHYsGGsWrUqkS27gNuI/EweJNKOS5IkSZK019tvN+Mvfwm+LWzUKMTUqbk0aBCpyPjWt3by05+uDpxTUJDGTTeVPpuiOj3ySDtefPGgwNqhh+4hO3vZ168vvngj55+/KXDO5s31GTeuM6Fg8UmNueOOTuTmBueWnHLKdq69dt3Xr2+4YSXHH78zcM4nnzThD384tFpiLEu8WTdXXLGOvn23ApCeDhMmLOXggwsD58yb15qnn25dbbGq/EyYSJLKazMwAvg28K9ENixYsIABAwaQnZ1NXl5e2RuqTlpRUdF3q/OGFbFu3TpGjx7NhRdeyNtvv53otqeAbwFZwI6kBSdJkiRJtdTmzfUYM6ZL1PDzm25aTufOuwNr11yzlj59tgXWVqxowMSJhyc9zrJ88klj7rknmCyoVy/MxIlLaNq0OLCelRX9tb32WnMeeqjmP0v43/+25J//DCYLWrUqYuLEJYGZH/G+ttmz2/Hyy8GkUU34/e8P5YMPmgbWjjtuF7/8ZfCDj61aFUZ9bQBTp3ZiyZL4w+5Vs0yYSJIq6jPgfOBi4KuyTi4sLGTWrFmcfvrpzJw5k+Li4rK2VJX+1XWj8iosLGTmzJn07t2b2bNnE0rsIz/vAH2Ai4ClyYxPkiRJkmqrUAiys7uwcWOwHVWsKgyItFPKzl5KmzbBioD581vy5JMHJzXW0uzaFZlbUrId1fDhK/n2t3dGnd+4cbB6Zp8//KED77/fNOr86rJiRQMmTQomnyJVGEuiqjAAOnbcw5gxywJr4TCMG3c4a9dmRp1fXV59tQWzZ7cLrDVuXMzEidFt3SC6ega+aUu2Z4+P5lORPxVJUmXNA44FbgDKLB/ZunUrOTk5nHfeebz22mtJDw44NxwOp06j073mz59P7969ycnJYceOhApENhL5HvcAFiQ1OEmSJEmq5f785/a88UZw4HmnTrsZNWpl3D0tWxYxaVJ0RcBttx3GF180SkqcZZk8uRPLlwerEXr12sYVV6yPs2PffJZgtUNxcRo33xzdRqo6FBSkkZUV3d7sxz+OnvOxv3PO2cLAgRsDa3l59cjOjh58Xx3Wr69PTk5wbgnAzTcvp1On3bE38c18lv199VUjfve7jskIU5VkwkSSVBUKgelEZmncB5RZPvLxxx/zgx/8gCFDhrB8+fJkxnbIunXrjk/mDcrj448/ZuDAgeX5uguJzIw5gsj3uNpKcyRJkiSpNnr33abcf3/7wFpmZqTyonHj0t9SnXTSdoYOXRtYKyhIZ8yY6EHlyTZ3bhv+/e9WgbW2bQu49dalpJWRL7j88vUMGLA5sLZuXSZjx0Y/8E+23/72MD7/vHFg7cQTd3DddWvK3Dtq1AqOOio/sBbr55tsoRCMHduFrVuDCacf/GAD5523Oc6uiIyMMJMnL+Ggg4KjYGP9fFXzTJhIkqrSGmAYcBqwMJEN+yotsrOzE620KLdwODwgKRcuhy1btpCdnc15553H66+/nui2Z4ETiMyMqdbhL5IkSZJUG8WrQPj1r6MfvMczdOhqevTYHljLzW3IHXccVmVxliVWBcK+B+8tWhTF2RV0003L6dBhT2Bt4cIW/O1vbasszrI891xL5s5tE1hr3ryY8eOXkJFRduYmXqIrVgVRMt17bwfeeqtZYO2II/K58cb4FUv7i5fomjq1E6tWNaiqMFUFTJhIkpJhEZE5G5cDy8o49+v5JuWc5ZGwcDhcY3NM9s0pOeOMM5g1a1ais1s+By4gMn/l06QGKEmSJEkHiHgzLvr338Kll26MsytaejpMnLiE1q2DszWefPJgnnkm+RUB8WZc/PSn0a2dStOsWTFTp0bP1rjrro589FGTKom1NGvXZjJpUqfAWloajB27lPbtCxK+TqSV2orAWmRGTeeoGTXJsGhRMx544JDAWqNGsWfFlKZnz21ccUVwnsmOHRncdFPXqBk1qjkmTCRJyRIG5gDHAVlAmb/VrVu3jtGjR3PBBRfw9ttvV2UsfVesWFHtDWcXLFjAgAEDyMnJIS8voQKRLUTmlBwPPJPU4CRJkiTpAPPQQ+14+eWDAmuxhocnolWrQsaOXUp6iaenU6ceztKlDWNvqiJTp3ZiyZLgPU45ZTtDhqyLsyO+447byc9+FpxnUlSUxpgxXdixIyPOrsorKkrj5pu7kpcXbGH1ox+to2/freW+3sUXb+KCCzYF1jZvrs+YMV0IhZKXbNi8uR633BJ9j6ys5XTpEn9uSTzDh6+ie/edgbVPPmnM739/aKXiVNWp/ik/kqS6ZhdwG/AwMBm4Cij1t5n333+fSy65hAsvvJCcnBwOPbTSvzg0TE9P70UkIZF0ubm53HrrrcyfPz/RLUXAn4ExwIakBSZJkiRJB6hQKI2DDiri5puDyZGTTtpBkyYVGwV55pl53Hnnl1FVDJs316dz5/I/LE/E9u0ZnHDCDk44IfiZw7PO2ho1jD5RV1+9jtati9izJ/hWfN26TJo2TaxNWXmtW5fJhRdu5MILv6nsSU8nKulRHr/5zfKo7wvApk31aNOmMMaOylu7tgHXXbc6sNa0aTEDBlTs8UK9emEmT87l1VeD7cTS0iKzcjIzq7bjhsov7e233074v7S0tLTbTz755N8kMyBJ0gHvNCLDy09L5OTGjRvzs5/9jF/84hc0aFDxvp7hcPiOQw899DHgrVjHFy9eTJMmlStJzsvL45577uG+++6jsDDhX9aeJ1JV8mGlbi5JkiRJdUA4HE5ftGjRbiD5vZikmnf4Kaecsrymg6jNFi1adFs4HB6d6Pm25JIkVbc3gDOBIUCZ9cS7du1i2rRp9OzZkzlz5lT4pmlpaUkb/B4KhZgzZw69evVixowZiSZLviQy4+W7mCyRJEmSpISkpaWFgC9qOg6pGmzbvn376rJPU1UyYSJJqgkh4EGgG3ArsKesDatXr2bEiBFcdtllfPppheagd7/00ksPrsjG0rz66qsMGDCAESNGsHFjQkMEdxL5mr9NZMaLJEmSJKkcwuHwgzUdg1QNHj777LOLajqIusaEiSSpJu0AxlGO5MErr7xC//79GT58eKIJin3Srrjiih7lDzG21atXM3z4cAYNGsQnn3ySyJYw8BCRJNE4IDkNbyVJkiTpALdjx467w+Hw2zUdh5RES4uLi3NqOoi6yISJJCkVLCbSnuoc4KOyTg6FQsydO7e8LbDo1q1bQnNTSpOfn/91i7C5c+cmuu1NoCdwDbC2sjFIkiRJUl129tln727QoMEA4B81HYtU1cLh8MuhUKjPaaedtqmmY6mL6tV0AJIk7ec54ETgf4BJQKkttPLy8pg0aRKPPPII48aN45xzzin14q1btz49LS2NcDhc7sDC4TBPPfUU48ePZ9WqVYluWwXcTKSypPw3lSRJkiTF1L179y3AwEWLFnUH+oXD4UNqOiapMtLS0jalpaUtPOmkk16r6VjqMhMmkqRUUwTcB8wFxgLXU8a/V7m5uVxzzTX07t2b8ePHc/TRR8c8r379+q2OPfbYRFtofe39998nOzubt99OuOI7H7gbmEik7ZgkSZIkKQlOPvnkD4APajoOSQcGW3JJklLVZmAEkfkm/05kw4IFCxgwYADZ2dnk5eXFPOess85KOIB169YxevRoLrjggvIkS54CjgOyMFkiSZIkSZJUa5gwkSSlus+A7wEXA7llnVxYWMisWbM444wzmDlzJsXFxYHjffr0KfOGhYWFzJw5k969ezN79mxCoVAicb4D9AEuApYmskGSJEmSJEmpw4SJJKm2mAccC9wAxC4f2c+WLVvIycnhe9/7Hq+//vrX66eddhqNGjWKu2/+/Pn06dOHnJwcduxIqEBk096YegALEtkgSZIkSZKk1GPCRJJUmxQA04FjiMw5KbP046OPPmLgwIEMGTKE5cuX06BBA0477bSo8xYvXsyVV17JkCFDWLZsWSKxFBKZU3LE3piKSz9dkiRJkiRJqcyEiSSpNloDDCNS1fFKIhvmz5/PWWedxaRJkzj99NOjjl944YW8+OKLid7/n8C3iMxY2ZboJkmSJEmSJKWuejUdgCRJlbAI6A0MAu4ADi/t5N27dzNjxgxat24ddSzBOSWfAzcCz5Q7UkmSJEmSJKU0K0wkSbVdGJhDpOJjErC7rA2bNm0q7z02A8OB4zFZIkmSJEmSdEAyYSJJOlDsBMYQGQw/t4quGQIeIjIz5R6gqIquK0mSJEmSpBRjwkSSdKBZClwGnA28X4nrvACcCFwDbKh8WJIkSZIkSUplJkwkSQeqF4GTgZ9SvoTHV8ClQD/gg6oPS5IkSZIkSanIhIkk6UBWDNwLHAX8Digs5dztQBaRWShPJD80SZIkSZIkpRITJpKkumArcCPwbeCTGMefJZJUuQ3YU41xSZIkSZIkKUWYMJEk1SWfE6kguRF4D3gTuBzoD6ytwbgkSZIkSZJUw+rVdACSJNWA3+39I0mSJEmSJAFWmEiSJEmSJEmSJJkwkSRJkiRJkiRJMmEiSZIkSZIkSZLqPBMmkiRJkiRJkiSpzjNhIkmSJEmSJEmS6jwTJpIkSZIkSZIkqc4zYSJJkiRJkiRJkuo8EyaSJEmSJEmSJKnOM2EiSZIkSZIkSZLqPBMmkiRJkiRJkiSpzjNhIkmSJEmSJEmS6jwTJpIkSZIkSZIkqc4zYSJJkiRJkiRJkuo8EyaSJEmSJEmSJKnOM2EiSZIkSZIkSZLqPBMmkiRJkiRJkiSpzqtX0wFIkqQKqw8cBZy8359Tgcz9zlkCdK3+0CRJkiRJkmoXEyaSJNUuPwZ6A6cAx+K/5ZIkSZIkSVXChyySJNUu44GONR2EJEmSJEnSgcYZJpIkSZIkSZIkqc6zwkSSpNotH3gPWLT3z1CgZ41GJEmSJEmSVAuZMJEkqXZ5G3iSbxIknwBF+x2/tCaCkiRJkiRJqu1MmEiSVLuYEJEkSZIkSUoCZ5hIkvY5CEir5ns2AFoCmRXc3whoWnXhJKw50KIG7itJkiRJkqQkscJEkg5c1xFJRuzzNPDR3v+dAQwErgBOBNoTSV4UAquB/wIPAy+V854HAz8psXYXsGfv/24IXEmkSuIU4JD9zvsXcH4p104H+gMXAv2ATnyTLMkH1gIvA88A/wR2lzP2eI7fG1d/4FtEvsb6e4+FgCVEvq8v7r33F1V0X0mSJEmSJFUjEyaSdOAaBRy53+u1RB7snwA8CHSPsac+cDjwv3v/PAFcD6xJ8J7tgKkl1v5IJGFyEfAHoGOcvQeXct1+wJ1EkjuxNAK67P0zBFgG3Aw8AoQTCTyG7wC3Eok7XuVNOnDE3j+XAL8DXgF+CKys4H0lSZIkSZJUA2zJJUl1S09gAbGTJbF8H3gL6FrJ+/6cSPIlXrIE4v+b9BvgWeInS2I5nEiFzCwq9uGAXxD5ui+m/G3KehKp2JEkSZIkSVItYoWJJNUd7YlUaTTb+zpEpIXVm8AmoBVwKnAWweTFocBzwOnAugrc9zzg7hLXXAYsBvKItOX6FrETE+OAsTHWtwP/JtIOq4BIguRcoG2J835MZN7IZSReaTINuDHGehh4B1gErN/7uiVwHJH2Ys0TvL4kSZIkSZJSkAkTSao7buKbh/qvE0kmfBbjvCOBvwBn7rfWGfg9kcRDef2eb5IlfyeSBPmwxDkNgNNKrJ0NZJdYKyLS8msKsKvEsXrAUOB2vkkKAfyASMXIPQnEOoToZEkx8AAwHlgRZ1+9vfFeRWQujCRJkiRJkmoZW3JJUt2xL1nyEpGH+7GSJRCp/OgHvFBifRClD2WPpw2RaoxRRJIXJZMlEJlx8vJ+rzOJJCn2/3cqBPyISBKlZLIEIsmUPxEZzr6jxLHbiAyJL01XIjNWSsZ1OZF5LvGSJfvuPZ9IwqUbkcoXSZIkSZIk1SImTCSpbtlKpEpkdxnn7UsUbCmxHqtVVSL+TKTVVaJ+QKTN1v7uAB5LYO8bRCpK9teIyPD60owCGpdYu45IVUx5LAc2lnOPJEmSJEmSapgJE0mqW6YCGxI8dyMwucRaPyIVFOWRD4wu556SyY21wIRy7H+QyND2/f2ESOuvWNoQaVG2v6f2XkeSJEmSJEl1gAkTSao7iil/AuBBIu2m9kkjMsS9PP4BbC7H+U2BM0qsPQzsLMc1wsB9JdYOBk6Kc/4AoGGJtTvLcT9JkiRJkiTVciZMJKnueAdYU84964kMiN9fj3Je4/lynn8qkFFi7YlyXgMiiZpwibWSiZh9+pZ4vYrIrBdJkiRJkiTVESZMJKnueK+K9p2Y5PuWvH6oAtcA2AQsLbH2nTjnlkwCvVGB+0mSJEmSJKkWM2EiSXVHbhXtO7ic+8s7AL1ViddrgB3lvMY+i0u8jhd7mxKvP6vg/SRJkiRJklRLmTCRpLojr4L7tpV43TLJ9y15/YrGDbC1jGvvUzJJs6US95QkSZIkSVItZMJEkuqO3RXcl1/idQOiZ4yUpric92tU4nVF4461t+S1IfK1NCixVvJrliRJkiRJ0gHOhIkk1R1NK7iveYnX2yl/EqQ8Sla0VDRuiI69ZMUJRL6W7SXWWlTinpIkSZIkSaqFTJhIUt1Rsu1URffFSjpUpZLXr2jcAK3LuPY+m0q8Lu+cFkmSJEmSJNVyJkwkqe44ror2rahsIGVYVeJ1a6BDBa6TBhxfxrX3WVbi9YkVuJ8kSZIkSZJqMRMmklR3nFLBfaeWeP1WZQMpw5sx1k6rwHWOInrI+xtxzl1Y4vWpxJ53IkmSJEmSpAOUCRNJqju6UP6kyQnA0SXWXq+acOL6mOiZIoMrcJ0rY6zFi/2lEq+bAFdU4J6SJEmSJEmqpUyYSFLd8otynj+8xOvtwNNVFEs8xcDfS6x9HziiHNdoDlxXYu094Is4578I5JZYywIal+OekiRJkiRJqsVMmEhS3XI10DPBc08Hri2x9gjR1R/J8PsSrxsA95D4v1tTgENKrN1TyvlFwG9LrB0JTCcyC0WSJEmSJEkHOBMmklS3pAP/oOwB8McATxL8d2IXcFuS4irpbeCpEmvfA/4E1CtlXxqQDVxfYv1z4K9l3HMW8H6JtaHAn0m80qQR8Esi81MkSZIkSZJUi5T20EmSdGD5AOgOtCEyuH0C8ACwbr9z2hCpKhlLZI7H/sYR3bYqmf4X+BA4uMTaKXtj+Q+wZ+96BtAXuAk4p8R1iohU1uwu4367gcuJJGua7bd+LdAfuAOYR/T34CAiQ+Iv3bu/NdCjjHtVxglEkjvxlGxd1oHI1xTPFODxygYlSZIkSZJU25kwkaS6424iiYO+RCompgATgaXAJqAV0JnY/zb8jeiWVcm2FhgE/JPITJJ9TiRS/bIbWA0UAJ2IXQVSRCTJ8laC9/wCuIRIAqHlfuuHAnft/bOFSJIpvPeckq2/kq0pcHI5zm9QxvltKheOJEmSJEnSgcGWXJJUdxQBA4HX9lvLIFKR0APoRuxkyaNEEi3FyQ4whpeAs4AVMY41BLoSaR8WK1mSB/wA+Es57/kCkTkvn8Y53nLvPY+l+pMlkiRJkiRJShITJpJUt2wG+gGTgB1lnLsGuBK4AihMclyleZdIgiIb2JrA+buBPxBJAP2zgvf8lEj7sqEk3oYsDLwJXEeklZgkSZIkSZJqEVtySVLdsxsYA9wJnE+kxVV7oB2wEVhJZD7IC5S/quQzIq299re9MsHutYtI+7CpQC8iSZ/DiLSTygA2EGnh9TLw/N7zK6uIyKyQWUSqSc4lkoRpR2RuSSGR9lxLiCRIXiQ4DyZZ3iD6e1wZVfG9kiRJkiRJqvVMmEhS3bUV+OveP1WlmEgSIVmKiCQmXkziPWL5lPgtuqpbEcn9HkuSJEmSJNVJtuSSJEmSJEmSJEl1ngkTSZIkSZIkSZJU55kwkSRJkiRJkiRJdZ4JE0mSJEmSJEmSVOeZMJEkSZIkSZIkSXWeCRNJkiRJkiRJklTnmTCRJEmSJEmSJEl1Xr2aDkCSlDQfA3n7vd5UU4FIkiRJkiRJqc6EiSQduC6t6QAkSZIkSZKk2sKWXJIkSZIkSZIkqc4zYSJJkiRJkiRJkuo8EyaSJEmSJEmSJKnOM2EiSZIkSZIkSZLqPBMmkiRJkiRJkiSpzjNhIkmSJEmSJEmS6jwTJpIkSZIkSZIkqc4zYSJJkiRJkiRJkuo8EyaSJEmSJEmSJKnOM2EiSZIkSZIkSZLqPBMmkiRJkiRJkiSpzjNhIkmSJEmSJEmS6jwTJpIkSZIkSZIkqc4zYSJJkiRJkiRJkuo8EyaSJEmSJEmSJKnOM2EiSZIkSZIkSZLqPBMmkiRJkiRJkiSpzjNhIkmSJEmSJEmS6jwTJpIkSf/fzh2jNBAEUBh+2ZWtvYXdwFZp7VN6Ew8iOUi8g62wsLVFqqSPbYolVvYGjIPM95XDMLz+hwEAAACaJ5gAAAAAAADNE0wAAAAAAIDmCSYAAAAAAEDzBBMAAAAAAKB5q2maLlfcf0/ydqMtAAAAAAAAv+Uxyfqnl++ufHx9zeMAAAAAAAD/gS+5AAAAAACA5gkmAAAAAABA8wQTAAAAAACgeYIJAAAAAADQvC7JufYIAAAAAACAis5dkn3tFQAAAAAAABXtuyS72isAAAAAAAAq2nXDMGyTHGovAQAAAAAAqOAwDMO2K6WckmySHGsvAgAAAAAA+EPHJJtSymn1fTLP8/2yLM9JnpI8JOlrrQMAAAAAALiRJclHkte+71/GcfxMki8C9gR4ZK8kCgAAAABJRU5ErkJggg=="
|
|
}
|
|
},
|
|
"cell_type": "markdown",
|
|
"id": "fb6b572b",
|
|
"metadata": {},
|
|
"source": [
|
|
"\n",
|
|
"<div>\n",
|
|
"<img src=\"attachment:fig_matmul_machines_2.png\" align=\"left\" width=\"450\"/>\n",
|
|
"</div>\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "a662afa4",
|
|
"metadata": {},
|
|
"source": [
|
|
"A possible implementation of this algorithm in Julia is as follows:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 15,
|
|
"id": "365dc58e",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"matmul_dist_2! (generic function with 1 method)"
|
|
]
|
|
},
|
|
"execution_count": 15,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"function matmul_dist_2!(C, A, B)\n",
|
|
" m = size(A,1)\n",
|
|
" n = size(A,2)\n",
|
|
" l = size(B,2)\n",
|
|
" z = zero(eltype(C))\n",
|
|
" @assert nworkers() == m\n",
|
|
" iw = 0\n",
|
|
" @sync for i in 1:m\n",
|
|
" Ai = A[i,:]\n",
|
|
" iw += 1\n",
|
|
" w = workers()[iw]\n",
|
|
" ftr = @spawnat w begin\n",
|
|
" Ci = fill(z,l)\n",
|
|
" for j in 1:l\n",
|
|
" for k in 1:n\n",
|
|
" Ci[j] += Ai[k]*B[k,j]\n",
|
|
" end\n",
|
|
" end\n",
|
|
" Ci\n",
|
|
" end\n",
|
|
" @async C[i,:] = fetch(ftr)\n",
|
|
" end\n",
|
|
" C\n",
|
|
" end"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 16,
|
|
"id": "267ac8b2",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"\u001b[32m\u001b[1mTest Passed\u001b[22m\u001b[39m"
|
|
]
|
|
},
|
|
"execution_count": 16,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"using Test\n",
|
|
"N = 4\n",
|
|
"A = rand(N,N)\n",
|
|
"B = rand(N,N)\n",
|
|
"C = similar(A)\n",
|
|
"@test matmul_dist_2!(C,A,B) ≈ A*B"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "e2c6f60a",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Complexity"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "c2eefd9b",
|
|
"metadata": {},
|
|
"source": [
|
|
"<div class=\"alert alert-block alert-success\">\n",
|
|
"<b>Question:</b> Which is the complexity of the communication and computations done by a worker in algorithm?\n",
|
|
"</div>\n",
|
|
"\n",
|
|
"- a) $O(N)$ communication and $O(N^2)$ computation\n",
|
|
"- b) $O(N^2)$ communication and $O(N^2)$ computation\n",
|
|
"- c) $O(N^3)$ communication and $O(N)$ computation\n",
|
|
"- d) $O(N)$ communication and $O(N)$ computation"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "1bf8feff",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"answer = \"x\"\n",
|
|
"alg_2_complex_check(answer)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "aec3851f",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Speedup\n",
|
|
"\n",
|
|
"Based on the complexity of algorithm 2, we can model the computation and communication time on worker as\n",
|
|
"\n",
|
|
"- The time of communication in a worker is $C_n N^2$\n",
|
|
"- The time of computation in a worker is $C_w N^2$\n",
|
|
"\n",
|
|
"Thus, we can model the speedup as:\n",
|
|
"\n",
|
|
"$$\n",
|
|
"S_P = \\dfrac{T_1}{T_P} = \\dfrac{C_m N^3}{C_n N^2 + C_w N^2},\n",
|
|
"$$\n",
|
|
"\n",
|
|
"The optimal speedup will be achieved when\n",
|
|
"$$\n",
|
|
"\\dfrac{C_m N^3}{C_n N + C_w N} = P\n",
|
|
"$$\n",
|
|
"\n",
|
|
"Since each worker computes a single row of the result, the number of workers needs to be $P=N$.\n",
|
|
"\n",
|
|
"$$\n",
|
|
"\\dfrac{C_m N^3}{C_n N^2 + C_w N^2} = N\n",
|
|
"$$\n",
|
|
"\n",
|
|
"We can simplify the equation to get:\n",
|
|
"\n",
|
|
"$$\n",
|
|
"\\dfrac{C_m}{C_n + C_w} = 1\n",
|
|
"$$\n",
|
|
"\n",
|
|
"and therefore:\n",
|
|
"\n",
|
|
"$$\n",
|
|
"C_m = C_n + C_w\n",
|
|
"$$\n",
|
|
"\n",
|
|
"We end up this the same result as for algorithm 1. Which means that this second algorithm is also not efficient in practice.\n",
|
|
"\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "df8087bc",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "1c9a52b9",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "edd3cb69",
|
|
"metadata": {},
|
|
"source": [
|
|
"<div class=\"alert alert-block alert-info\">\n",
|
|
"<b>Note:</b> Do not forget to execute the cells below before starting this notebook!\n",
|
|
"</div>"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "36579ad9",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"function answer_checker(answer,solution)\n",
|
|
" if answer == solution\n",
|
|
" \"🥳 Well done! \"\n",
|
|
" else\n",
|
|
" \"It's not correct. Keep trying! 💪\"\n",
|
|
" end |> println\n",
|
|
"end\n",
|
|
"alg_seq_check(answer) = answer_checker(answer,\"c\")\n",
|
|
"alg_seq_loops_check(answer) = answer_checker(answer,\"d\")\n",
|
|
"alg_1_deps_check(answer) = answer_checker(answer,\"b\")\n",
|
|
"alg_1_complex_check(answer) = answer_checker(answer,\"d\")\n",
|
|
"alg_1_time_check(answer) = answer_checker(answer,\"a\")\n",
|
|
"alg_1_v2_complex_check(answer) = answer_checker(answer,\"c\")\n",
|
|
"alg_1_v2_time_check(answer) = answer_checker(answer,\"a\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "5d2c98d5",
|
|
"metadata": {},
|
|
"source": [
|
|
"<div class=\"alert alert-block alert-success\">\n",
|
|
"<b>Question:</b> Which is the computational complexity (in terms of number of operations) of the sequential algorithm above when multiplying square matrices of size N by N ? \n",
|
|
"</div>\n",
|
|
"\n",
|
|
" a) O(N)\n",
|
|
" b) O(N^2)\n",
|
|
" c) O(N^3)\n",
|
|
" d) O(log(N)*N)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "e219a674",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# replace x with a, b, c, or, d;\n",
|
|
"# and run the cell to check you answer\n",
|
|
"answer = \"c\" \n",
|
|
"alg_seq_check(answer)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "0c2aeebd",
|
|
"metadata": {},
|
|
"source": [
|
|
"<div class=\"alert alert-block alert-success\">\n",
|
|
"<b>Question:</b> The serial implementation above is written using three nested loops. Which are the ones that are trivially parallelizable? In other words, which are the loops that contain completely independent operations at each loop iteration and whose order can be changed without affecting the result?\n",
|
|
"</div>\n",
|
|
"\n",
|
|
" a) loop over k\n",
|
|
" b) loops over i and k\n",
|
|
" c) all loops\n",
|
|
" d) loops over i and j"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "b7ad3f54",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"answer = \"d\"\n",
|
|
"alg_seq_loops_check(answer)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "48b73bf6",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Parallel algorithms\n",
|
|
"\n",
|
|
"We study three different parallel algorithms. For simplicity, we assume that matrices A, B, and C are N by N square matrices.\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "d04c4659",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Parallel algorithm 1\n",
|
|
"\n",
|
|
"Each worker computes one entry of `C` in parallel. We need `P=N^2` workers."
|
|
]
|
|
},
|
|
{
|
|
"attachments": {
|
|
"fig_matmul_intro_q_1.png": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAyIAAAECCAYAAAACfmNBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAACAASURBVHic7J15mFxVtbffVd0ZgAAJMk8qk2KYZBK9VxH1ekXQ65SBeUo6CRGEMIZMp5PIPA8hnZCEmQyin/eieK8DOCOTgoADoAgECUNIgEiS7q71/bFPJ1V7n6qu6q46pzpZ7/PwkNqnzq5V1XXq7LX2Wr8lGJlw9tlnb7JmzZqt8/n81qq6pqmpafmsWbNezdouwzAMwzAMw0gDydqAjYlRo0btl8vlTgQ+D+yb8JQ3gN+KyOJNN9303muuuea9pHnGjBlzLfDvScdUNQ+sFJFl+Xz+D7lc7odtbW3PlLJp9OjRX87lclPjhy+2tbV9rdL3M3r06K/mcrlJAPl8/u9z584dVum55Tj55JMH9u/ff39VPUhEDgKGikgzgKreOWfOnGtr8TqGYRiGYRhGdjRnbcDGwKmnnrpjU1PTlSIyAsiVeerWwJdU9UurVq26tqWlJdpxxx1nR1HUUfgkVd0DOKjca6oqInKcql4xevToH6rqmFtuueXlpNdU1a65Nq/mfeVyuW26zhWRTao5N4kxY8Z8SlWvA4YC/UTW+8mq2vXPB3v7OoZhGIZhGEb2mCNSZ+JdkPuAXQqGVwO/AP4IvCYi/fP5/LYicihwCM5ZeR9ww9KlS5cC3yvzEiuA5d7YVsDgrgci8kUReXjs2LGfmD179gu9flP1Y1fggKyNMAzDMAzDMOqPOSJ1ZNy4cbt1dnY+CAyJh94TkSva29uvnD9//jtJ54waNWq7XC53JvAtYLNcLlc2fU5Vb5w7d+4Uf7ylpeXDwCTg+Hhoh87OzgXAET18O2nyhog8pqqPichjwCmqenTWRhmGYRiGYRi1wxyROnHGGWcMWLNmzRLWOyFv5XK5L82ePfvX5c675ZZblgGTxo4dOyufzy/u6evPmTPnz8AJY8aMeVtVTwcQkU+PGTPm4La2tkd7Om896ezs/LGqfmDevHn/KBxvaWn5SlY2GYZhGIZhGPWhXL2C0QvWrl17CnBg12NVPbE7J6SQ2bNnL33rrbeOaG9vf6g3dnR0dEwB2rse5/P5/+jNfPXklltuWeY7IYZhGIZhGMaGiTkidWDYsGFNqnpO12NV/c7cuXPvq3aeJUuWrJ0/f/4rvbFl3rx5y4Gnux6LyPt7M59hGIZhGIZh1AJzROrAlltueQiwR9fjpqammzI0B+Dtgn9vlpkVhmEYhmEYhhFjjkgdyOVynyp4+Pb222//i8yMcRQqdvkKW4ZhGIZhGIaROuaI1IdDu/4hIo9GUZTPypCxY8d+FPhggT1PZmWLYRiGYRiGYXRhjkgdEJFtu/6tqpkVX7e0tGydz+fnFwytaW9vvz8rewzDMAzDMAyjC5PvrQOqulXBw5V1frkdRo0aVdRlXUS2zeVyh6nqGGC7gvEbelv8bhiGYRiGYRi1wByR+lD4uXbW84VE5DQROc0fV1V/6N4ddthhYj1tMQzDMAzDMIxKMUekPqwrCBeRLbI0BHhCRK5ua2u7Awi8E8MwDMMwDMPIAnNE6sM6R0RVt6/nC4nIz4D/Kxhqz+fzK0RkWS6X+8Ps2bOXVjNdjc0zDMMwDMMwjETMEakPTwBHxf8+qNwTe0s+n//N3LlzL+vp+SKyuuDhJtWcq6qbFjxc01MbDMMwDMMwjI0PU82qA6pa2Ddkx1GjRu2dmTHdICIrCh4OprpdkcKifOtPYhiGYRiGYVSMOSJ1YPXq1b8C3up6nMvlWjI0pyydnZ0vFzwc1NLSskvJJ3uo6joHS0ReqqlhhmEYhmEYxgaNOSJ14I477lgF3FwwNKalpeXDPZlr2LBh/WtjVTIrV658Gni767Gqfq6S81paWvqJyKcLhn5bY9MMwzAMwzCMDRhzROpELpe7DngtfrgJsGjs2LHbljmliCiKmkePHn3V4MGDj+r+2T1nyZIlnar6g67HIvLNYcOGNXV3nqoeB2wdP2zv7Oz8Yb1sNAzDMAzDMDY8zBHpAZXsUsyePfs1ETkeyMdD++Xz+V+PGjXqM92dO3r06P985ZVXHhaRCblcru5KVrlc7mrWS/t+dMiQITdFUVRSyGD06NGfEJGrC4YW3nLLLS+Xer5hGIZhGIZh+JhqVpW0tLRMEpG9geO7e25bW9uPx4wZM0pV24B+wB65XO6nLS0tvwXuV9UngDdUtSmXy20PHAwcDXyknu8hwc5HR48efbmIXBAPjXnllVc+3dLSMk9VH25qanoT2FRVd1fVo4ERQNeuyUvAhFrZ0tLSshB4nzc8tODf32hpadnfO/78nDlzxtbKBsMwDMMwDKP+mCNSIS0tLTuIyAWqeqaq/hKnLtVtg8C2trYFY8eO/Xs+n58PfDAe/jjwcRG32dH1fw8F7ly7du0va/IGumHFihWThgwZMgA4Kx76EHC5iJDP50ud9hfgK3PmzHmjhqZ8EtixzPH3x/8VsnXSEw3DMAzDMIzGxRyRbhg2bFjT4MGDTwIuU9WtcalWP6CKLuWzZ89+cNiwYR8eMmTIaap6sogcxPodBZ83RWQRMKetre2JXr+BClmyZEkncHZLS8t/q+pEEflMGRuXAjd2dHTcNH/+/HfSstEwDMMwDMPYcLBO2mVoaWnZHbiOuDmhqv4amDR37tyf92be0047batcLncgsB2wtYisFpHXVfWZOXPm/IUqnJx6ceqpp27er1+/w4AdVHUr4D1VfQP449y5c/+asXmGYRiGYRhGH8cckWRkzJgxp6rqFcAQoAM4e8cdd5wdRVFHxrYZhmEYhmEYRp/HHBGPeCfgKlUdDSAiDwEntrW1PZuxaYZhGIZhGIaxwWCOSAGjRo06KJfLLQZ2A9qBaM6cORdnbJZhGIZhGIZhbHCYIxLT0tIyDJgLbAk8JyJj29rafpqxWYZhGIZhGIaxQbLROyItLS1bishNcadwgP9bu3btiFtvvXVFpoYZhmEYhmEYxgbMRt1ZfezYsR8FnoydkHYRmb7jjjseZU6IYRiGYRiGYdSXjXZHZMyYMSeq6hxgAPAscMKcOXN+l7FZhmEYhmEYhrFRsNE5IlEU5V555ZUpQBQP/feAAQNOuOGGG97O0CzDMAzDMAzD2KjY6DqrL126tFVEJgOIyPTly5dPj7uKG4ZhGIZhGIaREhuNIzJs2LCmrbbaaqKqXgioqo6aM2fO/KztMgzDMAzDMIyNkY3GERkyZMitqnp8/PCKuXPnmhNiGIZhGIZhGBmxwTsiw4YNaxoyZMgC4HhgraqOmjt37h1Z22UYhmEYhmEYGzMbvHzv4MGDI+AEYI2IjDYnxDAMwzAMwzCyZ4NWzRozZswxqno3gKoeP3fu3LuytskwDMMwDMMwjA14R6SlpWVfVb05fvhtc0IMwzAMwzAMo3HYIB2R8ePHvw/4PrCliPxsxx13nJq1TYZhGIZhGIZhrGeDdETa29vnAB8Enm9vb/9KFEX5rG0yDMMwDMMwDGM9G5wjMnr06BnA14D3gOHz589/J2OTDMMwDMMwDMPw6FPF6qNHjz61f//+329vb397zpw57f7xUaNGHZTL5X4H5FT11Llz596avpWGYRiGYRiGYXRHn9kRGTZsWJOIXNfe3v5noM0/3tLS0i+Xy90FNAF3mRNiGIZhGIZhGI1Ln3FElixZ0qmqxwFbA19raWnpV3hcRFqBDwEvtre3T8jCRsMwDMMwDMMwKqPPOCIAInI/8AZODesjXePjxo0boqrj4+ecvWDBgtezstEwDMMwDMMwjO7pU45IXBfyTPzww13j+Xx+JrAF8ERbW9v3srDNMAzDMAzDMIzK6VOOSMzfAfL5/C4AY8eO3VZVxwAqIucBmqVxhmEYhmEYhmF0T59zRFT19wAisj9APp+fAfwauLatre3HWdpmGIZhGIZhGEZlNGdtQLWIyEPxP/cbN27cbp2dnacCzao6MUu7DMMwDMMwDMOonD7niDQ3Nz/d0dEB8IGOjo7xItIM/HTu3Lm/8Z8bRVHzK6+8sqOqfjKXy23W1tY2J3WDDcMwDMMwDMMI6HOOyKxZs1a1tLSsBrYQkZEAqnozwLBhw/q/733vOySfzx8GfO6VV145GNhaRFDVVwFzRAzDMAzDMAyjAehzjgjFxeg7AD8RkXfGjBkzR1W/ls/n3+c9/x2c0tZPUrPQMAzDMAzDMIyy9EVHBFV9R0QGAgIcAvyv6jr/5A3g58ADIvJ8W1vb/2JKWoZhGIZhGIbRUPRJRySXyy1T1W3ih1sCrwPfVdV7VqxY8dslS5aszdA8wzAMwzAMwzC6oU86Iqr6JrBcRP47n8/fu2LFivuXLFnSmbVdhmEYhmEYhmFURl91RFp22mmn56Ioymdti2EYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhrEhIsAOwAm9nOd1YEHhwEMPPbRFc3PzJ4EdRCTXy/mrtqe5ufnX+++//2spv66xcXI6MKiXc7QBK2tgy4bEfwL793KOnwKP1cAWw+hr7A58vZdz/ANYVANbGpEtgTG9nONdYFYNbDGMvsgpwDbdPqs8dwjwMeChXk70FLAvwOLFi5t22223CDgH2KSX8/aGTlWd179//wn777//qgztMDZ8/gls38s5dgf+VgNbNiTmAqN6OcdZwHU1sMUw+hpHA//TyzkeAD5TA1sakd2A53s5x6u4YK5hbIz8Edinl3McVtjQ8F1gSQ8nehlAVeWxxx67HTi2l4bVgiYRaWlvb//Is88++7k999xzTdYGGRss9wCDe3juCfTRxqIp8jjwRA/PfbqWhhhGH+JFvEyFKvgg8OnamdLQdAB39PDcFbU0xDD6GN8DHunhucOIM0kKF0BvAKf2xqJHH3306yLSCE5IIf++cuXKs4FLszbE2GCZ0Itzh2OOSHd8F/h21kYYRh/jSXp+Tx/JxuOIrKGXax/D2EiZ2otzjyB2RGpauyEio2s5Xw1pydoAwzAMwzAMwzDWU+tIbMnC0gdefYDfvv7borGtB2zN6D1HIyJVvUindnLTn2/i3Y53i8Y/t8PnOHTrQ5NO+eBDDz20xWGHHfZ2VS+URCvfQvmIN/o7IuZXPdfFbMNapuM7hE1cyRSe7bmR3RDRDFyMK9YrZAkRP+nBfAcSFv21AxcS8W7CGbWh1p9fK19F+YI3+ioREaA9NdNoXBSacNeCn1r3HYEf92C+jwJjveF2YKLAOz2zsqLX3RqYQRhcukrgrz2Y77+AL3rDrwKR1PFaUDgAGOcN9/jzUzgTGOoNPywwr4cmVvq6XwGO9IZ79PnV+jtqpI1+DpeGUsgKYBJIR5VzCRAR1iTeD/L/emhgpa99GuAvsJ4Gub4Hcw3CZan08w7MBvl9j8yr7HUFmEZY19PDz0/3wtVDF5IHpoC80RMLK3zdGn9+id/RlcBF1X9Hq6fWjshmpQ4c/L6DufaZa1n6r6VF45v325xjPnhMVS8y+y+zuf3524vG9th8D84Z6n8f1jNw4MDNgd47IsJPUC4GNi0YHUUr/2AaP61qprXMA77kjS+uqxMCENFBxMOENUHDmMlHmcw/Kp7rMjbnPe4B9vKOnFNXJwTgIl4nYgVwYdF4Jx/naj7GBN6reK6IvVBuAzYvGM0jfAFzQjZYBDoVfgV83z1cxzCFAwVeqHQuddvM9wAf8g6dV08nBEDgDYXlwEXeoY8rfEyo/FpQ2BOXM198LcAX6umExDyBW2R92RvfGpcuVDHqirWvpfjvuoJ00nR/ClxG+Lu4Arimyrki4Hxv7Cng7B5ZZqTNr4DLcUGKQtYCU6qc6yzCdJh/ABN7ZlpV/B/uO/2+4mF9GeS7Vc41i1Ct9Uf0vBawQkRBH8Bdn00FB44DPRTkmcrn0gHAQsK/6yX1dUIA5F3QvwNXegc+C3oQSBUKnLoz7r61tXfg2DScEKhxalY5Nu+3OZcceAn9csUO3HXPXMeTbz1Z8TyPvPEItz13W9HYJk2bcOlBlzIgN6AmtpZlKk8jnOmN5lDuIqpCOSniAkIn5DkgnfS2iO8Qyg4OoYNFtAVedmneYzbhzfaHRFXfbHvKFNwPfSH78jZXVDxDxEBgMcULL4AZTLOI44aOOGWhm7zhIcBCDSNO5ZhN6ITcD1zVC/OqYSrwM29s32peXyl5LcxMI/oeOzqn4AqtCxmhcFql8yjsAtxKsROiwKkCf++tnd0RO57H4uoPCrlM4eOVzqMuj9pfZK4Chgv8q3dWGukgq3G1gH4g9CLQz1c+jx5C6ES3AyNBlvfGwsqQl4CTCIMR80A/WPk8ehqhE7IMOAUk3xsLK0N+Dsz0BjcDFoNumnBCKa4hdEJ+h9txSYOrcQG0QnbHqU1WiDaT7ITcBHJPb4yrhlT7e3xk8Ec4Y+8zisY6tIOLHr+It9u736xYvnY5k38/mTzF39WJ+03kA4M+UEtTyzONeYQqG9sBd7G4yMtOZjofA6Z7o2uAEUQ12LWplK2YgFMkKuRj/DOwLZmI0wkV0l4m+ceqPkR0AMfgxBYKGU8rlW613USYVvhzPsKM3ppn9BnOJelaoLLvgLp0rOO84ZeBE1PYRQDc7g7u2vOvhXFauZLhDbj0qEJ+Qfh7VTfE7eycgFMzKuRGraCvTOw8LiSI3HK9OJWXVBDXv+YCb7gfzsHdqrvzteueQnBPOV3gT7Wx0kgHeY6wVjUH3AG6Y/fn62BcP5f+3oHzQXrbfqEK5AeEcuixberbloAOBfxUrjxwHMirtbCwQqZDkIY+lIql3vUbhCmkbwEjQNp7a1xlSFfQxs9gGQbqpweXYibw797YH4HzemlcVaTdaJBjPnAMn97+00Vjr773KjOf8B3UYvKaZ/Ljk3lzzZtF41/e5ct8cSc/lTkFNmMc4c3gM/wp2EIv5hKGkGcRYaR1AlGwEKovZ8bOTxipuYDWYLemmOnsS7gt6JyCKFgI1ZeohPOj3EzEbmXPbWUEoWLK68CxDKezhlYaDYy4QMBwwqaS52uYJlSEOh31q73hTuAkCZ2CuiKx80Po/LRpuFtThLr37/dteR04NnZyUkOc89PqDQ8EFmu4W+NzKfAJbyzJKUiD6wmdn12B27R4t6YIXbdIDXLZbxW4PeEUo+GRRRDUkm4L3A3aXQBzHk5SuZAkpyANzgd+640dAlxS/jSNdx3wdx1aQapJa68BkgeOx9VtFTIK9Pjy5+ruwC3+IG5Hp/K09pogsfOD7/xcC+rv1njoFwgdjneB4SCVp7XXgNQdERFh6v5T2XHT4iDAz179GUteKN3GZO6zc3n4jYeLxnbbfDfO36f8ur9unOe2x/Fzr5XpRIGH2YWwhgXA+73x7xBl1J01SkwHE5R5zGSnEucMIs9iwoaVU4iCNKl0iPgh4WJwS2AR15OcsxexB8ocb1QRTiPilTpYaTQw4pqbhdcCLFC3eAzQdVv6wbUwVcI0qVQQlw7mBwkG4RbxA5POUdiDcEtfgdMEliackgYX4/LSC9mLMKK6DnUF9n7txLs4Zyr1XlLxbtiphOlgRwPjy5w6BfgPb+yvEKQFG32L8YR1EIcDk0ufot8EvuYNxmlSkkH9osTpYPjpYGeDfqXMiTdCIPTzczKTZpdluJ1iP8hyM+iHk8/RfsCdhEI/V4P4aVIpIb8jrBsagEs12yL5HN0e12PI9wHGgfy51hZ2R+qOCMAW/bZIrBe55plr+PPK8DN47M3HmPfXYpGT/rn+zPzoTAY2Jd5X0yHiKSS46bmcuyjIuYNWJuDUaAp5kVBxKl0iFhMuQrahg7tLpJrdDPgX6s9wBXlZciHwG2/sYJYnFKeurwvxL9RLmdbrbsRGH0WcgEObN7wVcKcmi3vcDOztjT2AK+rMkouAX3tj+5Fgl7qb1iLCa+Fy6X1n7h4jLmXjBAiCAier2wEtQmFn4DbCnYYxPVEOqxXiCtRH4IqTC7lS4SD/+eoWpn4R82pcXUhdRQ+MerOuXsT/O06NlYs8dD/C+2qcjixvhs9PC3kROJninVcB5oN+IHy+joyfX8hruILoDDMPJOm3ehBuEe8Hl8AFeA7zxh4hFAlJm8sIf6v3gCDQCmgOl/Lp1zTfAnJnPYzrjkwcEYChg4cy7kPFKXZr82uZ+PhEVnWsWje2fM1yJj0+KagLuXDfC9lrC79GOgOm0Yb7oxayM277fP0NcTqHxGpbhbSTYyRREFnIgjOBP3hjn+IZz9NuZTRuS7OQZcBxRKRQaFaGiA6aGQn4P9DfopWvemPJhWY7pFZoZjQuZwG+BOIn8YoQ4+LppKLL49JOZfKRdYuV4Fo4U8Po6tXAgd7Yw1Sv6FNzZN1iJfg8b9ICB1C7AkBh0eXNAnfX18rukeTFygBgkRZEVxW2wdnrB4DOkLorChnpIEk7WzngzjhSHaPxgjjYbZ0E4gcZMkBKinzEOwcxuifhgjgOMkgjZB6UEvnwdpX1aOAM73lxkEH8IEPKiOLuR/7u9YhYHKCQVuAz3tjTwLfqZFy3ZOaIAJyw2wkcvt3hRWMvrXqJmU+6epG85pn6h6m8saY4zfrzO36eL+9SNm07bcYCf/HGjox3QCBicFwXEhaaTQ1yLbMhYjVNiZGaybTGKQLTGYpyrXc8j3AcUZBrmQ2TeYmkSI0ynxlxjm0rwwh7PbxFMyMYE+RaGhsZEkefSVC5Ufg8gLrCxqSiy+MF/ll/K7tH1qVvhCo3GuebK3wDON07/hYwQsK840wQl76RqHKj6/PNk4ounyLU+M+Ssio3BXUhfvHyYglz0o0+jdyK270rZDuK60WSVPh+RJh2mSXn4uqvCikQ+dBSKnyXgPhplxkhnbi6Or+e73TQWORDk1T4AE4DqbsKX2WIq21NEPkAjUU+tKQKH0hmKnyZOiIiwrQDprHDJsX1eD9+5cd878XvseC5BTz0erEgxC6b7cKk/SalaWb3RF0FPkG9yKVM598oVWgWZVJoVhrXvyRU9lDuJGKPuC6kuNBMmF5l/5T6E3Ef4SJxMJ0sZAZ7owm58MIpVfVPMTZoxElpJ6rcKOyGi1r7RZczJFRiyRRxBa1+8GAwLhK/J2EaWpfE7QspmFcNSSo3+wDXKiQVXXZJ3KZadFmOAmniF7xDw9Sl514I/Kd3LD1JdyNtxgN+34ojgAtAxxCq8L1KahK3lSJdgjeByAfol3H3YV+F7yFCIYqMkaU4Z8T/bGfHSl9JKnw39qB/Sp2RkiIfcZF9kgrfN6vrn1J7MnVEwNWLzPjoDJqk+LO54qkrmPPX4t28/rn+XHbQZWzWXLJvYnZEPIkEN8Nm8vyIMBXiRZKVbbInYiHJyh6/Jyw0e4C9g0hlo3A+Lh2ikEPp5GHCQrNrmBZEKo2NHHF1E34keltcisx+3viDVCj1mwEX4lKtCjkEJ1fsy8heJ1DnDs3VE9eLnIhLfStkNK6ux7+XjW1EiVtxu03HEUYtryVcQHTVhaQn6W6kiKzCLeJ9Z7mVMHjQiesX0hiZB0XI84RBG8Eten0n+g1gWHoSt9Ug90PQf2xznOPkq/A9jtsNakQuJuz5tBcu9d5X4bsj3p3LlMwdEYADtjqAsR8qzpRZm19LpxanBZ8z9JzGqAspxTRuwuUpFzLIe9xBjmMbpC6kFEnKHv77eA04vmElbiPW4tJO/M/Zfx+PkE5XWqNvcgbdXwuv0wB1IaUQVyQ9jO6vhUfJRuK2IuKUt2MIP2f/fcwXp2zTkIgT1PBVkgYSiiGcI2GtkrFBIU8R1os0E6rbRXEjvgZFFuNSyQrxr0sFRoG8nI5NPWIyociH/z7exRXZp67CVxnrpIn9+hv/fTxLeeW+1GgIRwTgpN1P4uPblG44+9kdPsvX3//1FC3qIQMZB/ytzDMmMTX4ojcWEavJcRylO/e6QrNGl7iNeBEJIjWFrKCJEbHTYhgBBfUipdSKuiRuG/paELcLW67R6EpcXUhDXwviFMlCFbz1PENYUNqIXA78d5nj9woZSbobKSO3EDZILuRBuu3R0RAkiXwUcmV2EreVIh04aeJy/Z/Ggvg1wQ2GlBL56CK+r0lDqPA1jCOSkxyT9ptELsGkHTbZgSn7Zy7gUhkXspJQx76LHxMFW3+NyVSepnRR3JVEgb5/YzKNe4H7Shwdw5RA398wioilX68qcfiqLCVuq0HcdVDqWhgr5QMojUSEc6x81uJSmTIruqyUuF5kPMkLhRcJG0saGzZnkvy9fQMn1duQu63FyBpKR9gfBRqsuLcU8jKla1gWgPgqqQ2K/JzSO8PngvgqqZnRMI4IwILnFgQyvQBvrnmTV/7V0AHH9UQ0Q8nu6h8iYkia5vSYiG0pfTM8mKixvjslmc4hxEpHCfhFdIYREEuqltpZO0jD4r+GROFgwmLoLvrStXAiyQ0m+wP7p2xLb5hI8ndnW8Kmt8aGzQRC8QtwwhK7p2xLD1GhdGrnrrjf0T6ADgK+WeLgPqC++mmDonsS1id30VC/9w2zmPzpP3/Kvf+4N/HY2vxaJv9+Mqs7V6dsVY+YCfxbiWO7EqrUNB5RSRnJLj5DaWercSgtm9zFBbSWXJgZBuqKLudR+lqIVW4aG3VFl3dR+lo4X+FLKZrUI9QVXfqFvIW0xc9paBS+Tiib3MVAnDSxL3lqbJDopyndEC/uj6O+YlMjcg5hw+YutqVYmriRuZlQNrmLQyDoB9eAlJRN7mIUqN8PLjMawhFZ+q+lzHiivODM3975G1c81eBZTVGijKTPN2hlXDfPyZoLKb2L0MWMWJq4kZlFKJtcSA7lDqKSi0zDuIDuF+itGvawaDRmU36BLrj+IjulZE/V6DoZyrIL9EHA3XG3+IZEXUAqoeNxEXtBg8m7G3VA4wV62V3VXYDb4h2HBkUPAb7dzZMOp+HTszSpYbPPBNBSDlejcC3d73rcDPrhNIzpjswdkfZ8OxMfn8i7He8WjX9l168wpH9xFtP319cWXQAAIABJREFUX/o+9y+9P03zKsctZm8n/EyvwJdqVK5meoOmEET8O2F+5HuEUchm8txNFMh/NgatjMcp7BTyAqGq2TbAnSzuG+k1Rnqok2z0IyTJ14Jb/DZk1FJhHK5wsZB/EHYc3wa4s4FTzW4gTL36KaE08UGUL2jPDHU7UksIZZPnE0oTn6JwQiqGGRmgcTf1QFL1HsJeM0cRqms1CDoYFyDwd1uvJZQmngp6OA2J7kPo/HcQSvrGu+S6cypmVY0Ox/UlKuR1Qin6QbhdqsyDNpk7Itf/6XqeWVHcS2Xo4KFcuO+FtB7QSk6KTbzkj5fwwrsvpGhhBbhUptsJcyBnE3E+MM0bH0ie7xCxRSr2VcolDMH9MPoykmcScTauqU8hu+Led2NFaqazLxr8eDjZZDgVeNI7dgR/CuQ0jY0YhSG4VCb/WjhLnBiF79DuAtyuDXYtKOxLWGjfgXNMTiOUJv400HDKIOqUy/yatddwC/UkaeJvKXwlDduq5FLgUG/sEZyzmCRNfLNCQ0QtjZpzEfAf3tgzuO/5cEIFuytAD0vDsCqZB3zAG7sX5GzgW954E7AQdLs0DKsc3QzXN2oT78BUkPMJU+rfh1vE+/eHjNHdCXdbFfdbP45QmvijhI5W6mTqiPzqtV+x8O/Fa9vN+23OJQdeQrM084ltP8HxuxXvkv2r419c+NiFrMk3lITzNOCz3thTbMGE+N+XQqAytQfdb8+nibCGBYRFkouJ1nnS4yBQmTqK1gaK1EQMijvA+z8oE5nKb2Np4mPxFUqUqbQGf0NjIyR2JuYT3lyXyPprNkmm+4s4CcuGQGEzSLwWJgn8JpYmTpLpnqLwuTRsrAR1v5VzveE8cILAP2Np4qSGavM1/BtmhiZ/P1YQyybH0sSXe8c3w9WL+H9Do0+jnyQMUK7G9af4F8gjhL1m+gF3gvoNeTNEzyC5YXN8PcpcXECnkO2BBQ2WanYjSQ2b11+PZ+EaAhaS9DfMEO2H+6z978flIP8TSxMfA7zpHT8DtFRReypk5ogsW72Mab+fhhbI2gvC1P2nsuOm61P2x394PPsPKd6Nf+6d57jumQZJn52emPe4iiaGMyHelozivhuuIVchI4g4ue42VkIrEwgLzZ6nsDNqxApyjMCP1ChXENEokZqbCSOI9xMVRIWn8jQSLAhyKHcRsX29DTQanrMIo+lF14LEfTcIo5aXKZRuiJQuSdfCjyiQ5RZ4mjDlI4dL0cr8WohrPRZBsHt8iRQEdwTuJey7MQRYqG4BlykKOwO3Ee6YnSbFwZ2pwK+85+xLaSl1o8+hQ3BiMH40/QyQwh3KKwl7zexO6JRnhO4HXOYNtuM6wBfuUI4F/L4bR9Iwncl1JATrsGXAcetlk6VUP6mLQP1dray4EviYN/Yw7jclRl7CvVe/n9Q80HL1tHUlE0ekUzu56LGLWNm+smh85AdHcsT2RxSNNUkTFx90MVv2K3byFr+wmJ/982d1t7UsEduSTyw0O50p/Ml7bqkGMzcSBZ54ukznEDRQglgDDCfi7aLRqTxC6Hi5SM2lgSeeLhGjCAvNluLkPosvvGnMJdTY3g5Y0GekiY2aE0vc+vUF7cDxsfOxDnHa+BO95/bDLX4zrZ1Sl4Lo1xcsA04RijXSxaVW+A3VtgNu1ezTd68GDvTGHiJZ538CYUO1j5V4bmroOuUjtvYO3Sjw3cIBcWlzxxA2VDtdw5o3o8+hAiUyD1xjwwJEgVMIe+YMAy3XqDcFdBDJu60TQX5bPCTv4hbxvuzpxaCfqJeFlaF7EmamxIFj8QLH8izhzmtc56N+nU/K6NGEjVxXACNAvGCZ3IertytkMLAoK2niTG4ys/48iyfeKk5N3nvLvTlj7+SGuNsN3I7ogAjxgkkznpzBK+9l1F+ktMTtrUTcXuKcBwml31z6RJSoIV5/SkncCucR8XiJc64C/A6pu7M6w0jNdIYSFprlgROJSnZJHUcYqfkCDROpMdKkjMTteeIWv0lcQ3gtZCrTrTCU8EaTB44TeLXEaacDf/bG/pPuVQDrRgmJ27eAkeKcwyKkK3iCFzyBC7R7FcB6Mp1QVe2PlJBAF3gZOIkwanmzllcBNBqfcwkzD56jMPOgCFmOC651eAeuA82yF8RsQonb+3GBgwTkSUKZ82ZcvUhGQZuSErczQX6cfI4sxO1sFpKxNLHuAtxK8W6rAqeCvFDipHOB33ljh+DaT6RO6o7Ib177DXf8rTj4tmnzpsw8cCb9c6WdsU9u90lGfHBE0dg77e9w4aMX0p4P7klpkCRx+yybdFsvEQH+Vs5Q3IImC5Ikbu9jGjeWOUcZwCk45Z1ChtEaqDXUnyvYLK4L8Z25aUTBZ72eiK5Ija/s8e0+IE1s1J4kidsfANeXOiHukJ10LXwjVqtKlVji9i7Ca6FVnMJUIkLJa2Gmlu6LVDdKSNwqbkfH/6zXIW5RlxS1vENL94KpG5rcc+ldXAd4/7Neh8APCdXZtgQWaeleMEZDo0kLvTW4qLXvPBcgv8Q5s4XEi2jNoNeMtuBqywp5GTgx3sUpgVwPfM8bzFKaOEni9heEn7XPePAyXpzIx4W1MasatGu31VdsvB7E/6wLkHbc33Cld+Bc0C/X0sJKSNURWb52Oa1PtJLX4u7pE/edyPs3676R7FkfOYt9Bu9TNPbMyme4+S8319TObnH1EJE36nIILwhyCP1z8zRzIuHWewutwcVdXyK+Sbjd/xL9E3MIi5nIW+Q4gVCa+FqilLt2rkosNHuQj3BJt+dGPIkkRGry3MPFjSnHatQedZF3X+L2JeAk6eZaEBelH0EYpb9GnSpJmtxEKHH7c7rX+EdclN7fAWkG7klTmjiu6VhImN52tYS7TwHiakrme8Pb4iSWU4taqktvu4vwNcdJuPuUxAWAl+bSVxqqGcVonPoSOJHngiRnHhTzbcCP0u9JmSBJfdB9CIOmncBJIKUyDwo5lVDw5mjc4j5FdBihxO1yXEqWnz7vIatwQRtf5KMV9DO1srBCLiYMFD1GRU12pbgGOB7ECQnsWgvjKiU1RySveSY/Ppk31xQX7H9t169x5E5HVjRHszQz88CZDGoeVDR+x/N38Itlv6iZrWVxErcLCQsgv0UUqCokM5mlSELdgjKbGSU7etaW6exLqNDSAYzkokBVIZmp/JIw/9pFai5LqStwRFKh2Wv041iGB/U4yUzjBrxcbWAX1gbbncYGiCYXA3cAx0ioMJKIuG3uyBsegFM8SkWmW50zdKo3/BpwrIS1aYmIc2SSpIlvS1Ga+DLCgv9HKN19OonxhDLdqTVU03W540HB/y0S1qYlIusKfwNp4glauoO10ZjMJynzwF1vFSB5XIqWL3hzMuiJvbStQrRLhS/MPEAqLNiVFbjvtC/ycSWoXwtWJzSp4D/e2Ra/HqcE8hSsU0Xtogm3u+PXgtUJTSr4fxdXZF+hrKwsIdx53gq4I81Us9QckbnPzuXhN4r7Tu2++e5MGOr/Lcuz86Y7M3n/YlU7RYn+EPHqe6XSn2tGKYnbJURVSvFO437Cxc8gOllMxMBe2Ng9pSRuhYuI+E2Vs11MUqTmvRSkiWeQXGgmHM+k4Ae7O04jKVITBQVgxgZEGYnbyRJqrndHZjLdmvw6XRK31RbSnU6STHcKDdW6k7itdB5ZJ4UaRC2naSi1Xg+mEkogP03YV6EssTSxH7kVYIGG9yGjIdEzga96gy/hdhHKZx4UIa/h0mn8oMIs0L17Y2GF3AT4r/MAVTcPlYcJexXF6nha56BNSYnbK0B8hbJukDZCaeKdgdvrn2qmO5Hcw20siF/32h3fIpQm/hRFalv1JRVH5PHljzPvr/OKxjZp2oRLD7qUgU3Vr7k/t8Pn+Oquxdf12+1vM+X3U8gXC8LUllIStwNLFZp1y0UQLPyTJPFqTbKs57QeSEQ6aeKkSM1IIuoXqYkYSCeLCAvNLmFa4BhVMl+yNDFcThSo9hgbDknXwv/SgyZPQmmZbg137WpGLHG7mHDn5TIJHaNukXVqK2FDNQ3lIWtGGYnb0yV0jLpFkhf+OeCuOG2qLqjbefF7QKzG7Uz5jlG3CHwHV79UyBBc3UuDNVQzikmUuHWZB8UStxUiDyTMFwdTtI69ZnQkTkChkNgx6i6VKZErgP/xxpL6BdWaJInbR+h5E9exwF+9sSNxTW/rhHY10PZ3XuaA+I5RBZSUJp4Mmko/KcH9UR4CXqCXihyPPvroO7i28UW81/leUFDeLM1s2txzoahO7WRVx6pgfFC/QeQS/Kvm5uadDzjggKU9fkGAiC0Y4OX7DmD1un4hPeF6BrDK2+pcgxKxosdzlke4hMHB6BpWEVUecQyI2JQBDCgay9HRbc1Mz1+vmQEJ6V9rWBk7Rz2dN/wbr2ENUfULiAp5F3cj2Z2wQd7Gzlxcl+HJVFDjUC1xqlF4LcCqaqLvCfNuCt61AB0S/tDXhHgxmpQKudKX6q1y3i0I6xvW9GQxXeHrDSBM+9DYMerNvEMShnv1N+7m9TYjrAVojwUBejpnE8kpfm9XmnZXJSNxKXoP4AruN0R2w/UHWkXCuqU2aNJvQWf54vRu58wRRvQB3omb1tUB3ZzQ6V3jmi/2eM7+uGvFZ0V1O0VVveZgwkDHvypPZUqccxMIslh6+Tcu+3qlfgt6+ffXQYQlB2vjmph68Hdcw9nDah1NWUPCBb1J0yZs0lRbZ71JmtiiX+W7eGvWrPE1rKvH76lRC85kDe5zSwtlIm/VfFa3UK/XYj3p9TqgLu+jTj8eRqMRF6HX/DsUL9RTuxbi3hP1eB+pXgux/G7NfwulHr8T5V9vFe6/Ws7ZScrvw6gFUoffAsmT+ndB6hBEkbXUKRhQ5jXrEOCV9yijgFeH16vTb4H0OFDSW2qdmvVsjeerFW8ceuihPdgGNQzDMAzDMAyjHtTaEVlY4/lqgogsFKnXVp9hGIZhGIZhGNVSU0dkyy23nK2qj9Zyzhrwooh016DGMAzDMAzDMIwUqakjsueee64RkSNxqjONwOPAZw488MDXszbEMAzDMAzDMIz11Fz67+CDD34D+MJjjz32SVX9vKpuW+vXqICVwIMHH3zwj0Skjnq+hmEYhmEYhmH0hLppkB900EG/BH5Zr/kNwzAMwzAMw+i7pNZZ3TAMwzAMwzAMo4v0urJGfAFh/6IxZSkRd/ZwvhbEa1Ql/Iapdd6FaeUkYPuiMeUxIn5S9VxXswnv8E18h1D5HlHQrbN2tNGPf3IG4jWvUX5AxFNVzxexK8Ix3lwKzK5rX46I7ZGg2yso84h4owfzHYpwhDfXKiJuwvWcMDYw1DVw+iZhA7ofCvyxB/PtAhybcGi2uJTRuhB3Cj854dB8gapr5BQOIWxktwqY1ZsmiRW87n64zsSFrAFujPulVDvfl4CPeMN/F9eJvm4o/CdwgDf8isAdPZxvFPA+b/i3Ar/oyXxGmuingI97g8tBethFXI8HdvIG/wBS59pcHYZrAlnIMyB+h/RK5mrG/e76zR5/BPJEj8yr7HUFGE/YSPEBkId7MN82wKkJB24FWVb9fBW/7pa4ru4+94C82IP59gGO8gbbgRtA2hNOqCnpOSLNPE0Hd+L/mEb8i4jvVjVXK2NQZntLw6Uo83prZrco/wDmUdxxeBURhxLxTFVzvc11wGhv9BfAVb2ysTvG0E5EDuVS78hoLuUgLqxiwRTRDNyD8gnvyPV1bw4Y8SoR+wDHe0cOx11UlTsPEdsC/w9lh6Jx4eSq5jH6FALtcYf14FpQOKga5yHucH4P8G/eoRvr6YQACCxTGAqc4B36tMJR1TgPSnwtwI7eoVPq6YTE/AW4FfioN74NMKmaiWJn6jsUO5ntwKd6YV+lPAPchXe/U+gQ9x2pmNgJ8Rety4DbemWhkRZP4RzQXYuHVUFuqW4q/RJwO8Xdwd8CDuyNgRXyl/i1C7uIt4N+GuQ3Vc7VClzkjT0FXN9z8ypBFPRN4AbvwDLQj4L8s/K5VIBbgC97BxaDXNYrM7tFVoLujHPmCvka6CfjZpEVooNwv5Mf8g6cm4YTAmmmZk3mJUhc1M1jBh+seJ6IfVCu8UY7gRN7FAWvlogHgYu90c2AxURsWsU8wwmdkOXACXHX8PoScRXwfW90d1YHN7zuuBQCJ+RJ4IKemlYl44A/e2NH0sq5Fc8QkQPuBM8JgVuZZjf7jYBrcAvvQnbH3WSq4WJCJ+RJ4Pwe2lUtpxNeC18Azqt0AnX3hDsInZCF4hyEuhJ3Vx9O2NX9wniXoSIUBgOLCHe6zhV4qHdWdo/AS8BJhPe7WRpGlUsSO5fXecN54DiBV3tnpZEOshwXLPPv6zeA+rtmZdBdcddgoROiwKkgL/TKxIqQpN+yfsBCUH+3rgx6BOH6YBUwPO5SXmfkHkInfjvgLtCmhBNKcT6hE/Ic4bquXpwLPOaNHQrMrHKeNkIn5IfA1T20q2rSrRGJuI/Q4x1MJ4uIghtGyBXxgh82KRoXphHxs1qZWQER8FNvbChwbYVn70EY4VLgFCJ6sK3WI5QBnAL8wxsfRpS45RfSypHABG/0XZoYTsTqGtjYPRHvkmM4UPwDplzM9GBRWIrJwH94Y8+yCWfWwEKjwZF1N3Ne8A59Q52j2y3q0ol85/ddYLj43806IfHrEb7eTIV/r3Cai4DPe2PPAi29NK9iJPlmngPu0NBBKsU8CAJc9xFGQuuGwA8I7wmDgUUaOkgByrr7nR/giiS8/xgNjfwSt24oZCCwGHTz7s/XeMHPVt6Ba0H8IEodkRsgyGDZBbg13iHoBt0OuJvijBKAcSB/qoGBlTIeggyWI4CJlZ2uHwNmeINrgBEg9c0EWYfErxfstp8L6jtIJdBxhKnELwMnud2jdEi/WH0HzgN+640eQrjLELKKWcDe3ugD7B2kVdSXiDz9OI4wIjWaKEgTKuZ6BuAidVt4R64g4r9rZ2QFTOQtcozApSsUcg3Tg9SIYiJ2RoMtYhDGMoW/1NTO7pjKHwkXgc3kuYeLg7zqYiI+BUz1RlcDw7mAd2pnpNHIiEtvGAH4W9rXaJgmVIS6fO3wWoBxQrrXQlzX4gcHmoF7FLYud67CJ4Fp3vBqnDOV6rUQ13D4O1LbAHdruIgpQuFM4Gve8EvAyZJ+muUFhPe7gwlTAZO4ibC+5UEquVcajcglwP95Y3sCcyo49zLCOpNHgQtrYFe1nAb83Rs7Gjij/GnalXmwvXdgPkiPaqd6jsQ7MPzLO9AK6tfGeegQnFPYzzswAeTxWllYGfI8YdBGgAWg7y9/ru5LWAbQARwDUv/sogLSd0TG0A6MxKUhFTKBVv6r5HkRpwIneqPL6MdxDKeztkZWwCSWAcdB8No3E/Hhkuct52rCfM6HgSk1ta9SpvI7woX4QPIsJgqcJUe0LhfeX9jMZhp31d7ICoiYhYu0FLILa7mNcIHouNgtbPAXNsKZRPyhDlYaDYwkX4cDgMUaBg4AiBfFtxNeC3OEHgpx9BKB2RBchzsDt2mJa0FdpPVOwrrBbwmZXQtnEL724ZT5rYyL3f387A5gpMCbtTWve4SS97uzFL5S6jyFYyAQ4ngNOFbCe47RJ5A8robrFe/ASNBQdGUdehRwlje4Ehd9r6IWoFbICpKDNleCHlbmxKnA57yxZ+jWgakX8jQEWQ85XIqW7yzFqADzgQ94B+4FmVVjAytEluB+8wvZCpcy5ztLMTqIpOwimAryq1pb2B3ZyPdGvIgEW/2CsoCZhF7cdIYSbqnnEU5gElUUF9UYlw52uTfq/sBXB39gaOXruDzuQlwkNgou6vSIuAzwlS/2oHSkZjphqsdTbBFEYtNlE8ZCoDZ2FBHfSni2sJZ5hOoji5lWdZ2MseFwBQQ7k0mplF20EqpLPQWcXWO7qmUs4W7MF0mwS9dF0PxiWpZIZdHauiBdO5PhbswUDRc0aNdvb3ExLcBFAtUW09YMgRcJ60UEmK/hggaFvXB524XkgeOFDO93Rg2Q13CpML4zeROov/tFXJCcFEwbB/K3elhYGfII4W5MP+DOWNHJQw/HpUAXsho4FsTflUgRmUeoZLc9bkchaX18NmEA4UVSTF0twVnA772xwwh3uLuYBUHA/AHC9WwqZNdHZBr34raeCxlCB4toK9jyihhInrsI82RnMo0f19nKSphK2LhxX97myqKRiF3R4KbuctOjIDc9bZT+nAYs9cZHxDtR64n4DGHB2iqaGM6EdHLhS3IB75DjWFyuZiGXM93b1o64ACftWUiahWZGAyJdtVph7dTwWL1oHepyiv2b8SpcKlOGN9ey9SKXaigucR5h0WXSln/qSHJ9Sg64U0NxiaSiy/vB+y3OAHH1KTd6w0Pw6kV0Xd0Aft3AxUJD3O+MXiM/J6wviOuBtGCdo824FCA/vXhWXHCdNddSkciHbktyXcj4+kr1Vsw4wK9P+QJBurcegkuvKyTe8RR/xzNlpJTIx0RQr+ZPRxGqKy7DOYWZ7LZm29BwK84B/Jy6j/FPphc8ngVe/xH4BR8pek52OIWrYyFQ7DqdKC4CaqNUodl1RMGFnA0X8TruffjKHjcxPf78v92lLBH8oJzOlOBCzoapPEaSskeehUTx5z+dj0Hw/XGFX/WWHDYaHnFpNCMJa6du0Lg3hFLyWhgv4U0tEyRZsasfsFDjxY06lZWkosvh9ZYcrhRxv523esPbAXd11YvEogJ+0eVS4MQM6kJKcQ6hYpf/+d9IeL/7JW7nzdhwmEHoWA6lWMzn24QqfEn1kBkhJUU+4iJo4l2FJBW+RSDz62xghayrF/GDNt8GjT9/LaXCdwGIXwOWEVJS5AM0/vy1lArf8SCZqfBl64icyRqaGE54w7uAVr5ExEhcdLKQ12nm2EzqQkoR8TLCiYQ3vNlE7MU/uYLkQrO0JG4rI+IXhDc8Vy9yKVvSzl0kFZpF3J6OgRUScT2hsoeTPozYijyL8AvNhHOIAqfY2EiJJV4jb3ggrl5kS0rIPUuD9XYQt7D1o6e7ALfGdSFJN9fzJAwQZc03SVa5uVAhqegyj3NCUi26LEdcL3I84f3uPIUvq1sMneYdW45Lyaq/pLuRIuvqRfxUu9NATwAtqcKXjsRtpUhJkQ/Xl4OJhCp8z5F9KpOHJKXTxjtSujXJKnw/pFKl1NSQJJGPeEdKtyBZhW8GSPUNuWtIto4IwBSeRxjjjUrcnNDPy84DJzI5SCHKnmmJKQCbA/9LWBDlCs2yrAspzcWEkZq9WM3vgc964xkWmnXDAEYRRmq+hHMA/Tqke5kWpAkaxqUkq9z8nrBG4U+EzaUahdNJVrl5lLBG4XuEKUSZI+v6DAQpbxFOJjcouhRSlXSvCElOeRPcQsdfQChwQlxjYmxwyDKcAI/fJHQWTgDDX5+NBfH7BDUA8jBh/ccAXJ+yyBtfDQxLT+K2GqQNF5gpZGeciImvwvcicEKaErdVcCZu56yQw3HCH34d0gOEO+Kpk70jAjCNRYTFedvgig8LuZyIH6VjVI+4CPi1N/YBQonbcURkWGhWhqhrmy5Q9vCjAavJcSxRtrnwJXHSxMMJIzX++2iEQjOjARGquBbgmHix3HAIrICKroWXgFENlMpUhMDThIGPZtwOTyEPUJk8biYILAFu9oa3JqwLuUJc1NXYYJGfEMoxDyJU4bsFJBtFysq4krBB8i6EKnwTQBpZkXIUociH/zsZp+NnXRdSCnkP+DqhyIf/Pl7HpWRlnl3UGI6II6nqv5DfsUMgM9tYRHTQzDGUl4mcxbQgVaKxiHgtLvou9wUdz1QaodCsNFN5hPINitrJMZIokNY0DACEdbVT5a6FM4TGvhak+1TQdpzEbUNfC+KkM8ulgi7DdR3P/ObaDWdTPv0tO0l3I22mUb5B5dOQqPzYQEgpkY9CvgPiO+ANhpQS+ShkMogfcG4wpLsmtHFqoPhBtkxoHEck6pJyS7yBLAeGxz1IGpvJvISUTFf6A65gsfGZys+Ba0ocvYuIBik064aIayiVoiFcwNSg2ZhhFCHwc8IahC7ukTClplG5DiiVCzwxS4nbKhmP6/7rk8c5IQ0vcStOEKDU/e4tnFhAI6buGjVH8jh556Tsgn/h6kIaM/OgCHkLT1mwgL+VOdZgyJOEKWVd/Agn8d4HkIW43dckLgP53zStKUfjOCKOr5DcNbeDvlSspxxd4kg7YT5oYxIxEPiPEkf7wI9iTMQuxEpHAZqx3LDRJ4glVf2Cyy76zrXg8p1LdYnvS9fCIYRCAeB+W33p7kbmvyh9v2v8oJtRS75AWEQM7jvd6Lt7hfi1FF100lfWPk422Zf276KDBk1dDdFtCVXXumio3/vGcUSSJVW7cFX/ixN/tBuLiNMJZSS7OAQnydcXSJKR7GI0EcenaUyPKC2b3MU1TC+5MDOMLq6nlDMLp2moyd5w6DoFmKAnQRdXa2knpWFQdy9Ikk0G9x7v0TC/vuEoIZvcxTbA3Zr8Ho0NDvVlewuJm3Sq36SzAdFv4GS0k9iTDJujVskMwobNXRxNowr0FFFSNrmLCNRvxJsZjeGIXMIQ8izEl1Qt5nD+xEVpmdQjprMv3TfPOodW/isNc3pMlCgj6XMzM4LmYY3FP7mUUDa5kIHkWcRlQZGoYQAQS6p219hvloZdahuNSwgbGRYyACdNvEVK9lSNxo0MSd4N6WJn4DYNO1E3DAqlehIUktSJ2tjg0IG4Zn9JuyFd7Adclo49PUV3JRQc8hkJemIa1vQcTWrY7HM56IFpWNMLLqT0Lj6439LbY2nizGkER0RYw62EMpI/wd8+UqYxncPTMatKIgaRZwmhjOR93mNBuYWInVOyrDpmsCdhznueUL1lEJ3czfUMSMewKok4mlAX/C3gV97YnrzXeHKlRvYo7EGyhPgPvLFBuEh8Q0YtFY4irE1bgWuUV8ge0NAy1hcphqV4AAAgAElEQVQRpos+TShN/EUatLg3dpAWEN7vfkqY5jdF4dMpmGVkx004R6OQX+HuVYWcAfqVdEyqFu0PfIcw8+CHJEoTa4MGbXRHXM8lf13sr+EGAIvivhwNiP4bYT+49wjrA3cCbgPNPGiTvSPSylnAl73R5xnIN5BgIdlEnruIGnLrfRYEOwT3E/Flwi3JrYG7iQJpu2y5ngF0spBQRvJiXD6zX8x6IMsbsHDLOXkLCKOio3Cydn4x64m0clIaphl9A113swl2CC7F1bL5qikH0P1uaOqo2yG4lfBaOB34BqE08fEaNpHNHIVP4dSFCukSOElqqHa5wmFp2FYlZ+K+P4W8iNt5852nJmChhk1kjQ0CHYHrTF7Ia7jvgt8gOXZg9QPp2FYVl+HSzgt5GPgqbie2kM2AJaB+wDZjNIdrRrutd6ANtz79b288KUjVAOgQXOqqv7Y8C/f38KWJv0gDCChl64hEHIwGeu9ryDGCC1nJNNpwH2ohO+HkGzP34tYRcSphnvhS1v+YfAunmFXIJ6HB5IiXczXgbzn+EmiNpYlHEkoTn0ErX03Fvkpwzt09hHniNxDxXSJeI0mtRrmJGeydjpFGH+BKwmvhd0AUd7lOkukerzAyDeMqIa4xuI3wWrhJnNpX8rUAN2jY+Coz4g7wdxDeXMcLPCnwCARpu/2AuxS2TMPGSlA4iDDFZp1scqy+dqd3fDtggWZ9rzZqjO5BGKCM+xbJP0HuI9ydjFP6tFxKX8roUYQO9ApgJMhaXPDAV63cB7g6BeOqYSphk9qncH1PuqSJ/caiw0G7S9tNEe3abfUbNi8BmVMgTbzaO34JaLm03bqT3Y/bpWxJcp7s+UzlsYLHYwm9uCNp5dx6mlcx0xkK3OCNug7wEW8ATpq4ieGEDWYm0VpSmSpdWvk6LkpayFs0cwJRrFg2mZeAk/FVI5T5zAia5WTFdMJCsyfZoqCHQsSDJEVqOllMVDZX19gIUFeQON4bfgsYIbGakbjmfycRKqjcrGHjqKxoBfyCxD8C53U9iKWJfQGNzXD1IplfCwWpTLt6hxbFPUW6uJqwodpuNIi0srr0vbshSGW9QCiSEB8H+N2zv0DB38zo6+gAYDHhbuu3QX5c8Phcwl4zh1Ja1CdldGdcoMMPCp8KEqdLSifud/IN7zljQUuJ+qSMJtVjraJINlmW44LNftDmetBSoj5pMwGC+uPnKapxlCdx9SOFxEImWkrUp+5k54is5mbcjaKQ+4i8RX3Eu+Q4Dl+WUbmYqGzxZf2JGEieu/Bv2EJE5EUBpvAsblu+kBzKnXy7bPFl/YnYFQ2iM4pwCpO9BkUR90FQUzGYThYSlS2+rD8RSYVm79LEcCYEcnV9JVJjpIi6bsD+zVWBU8Rr1iWuVsRXuxkMLNLyhch1R+EIwhvOu7j+FP610ErYUG0ocG2dzKuG8whTd5/Da9YVd4NPaqj2DYUx9TOvYtqAvbyxH+J9xhL/jQj/RjO1tBSn0be4llCh7pcEDoaswaUdvu0993zQUvKyKaGlVPiuB/le8ZC8TJhqBtAG6l8TKaNOkTVUqBsP8qfiIfkFoRM4EKdqlrHgjR6CS6EvpB04DmSlN3494P2Nuu572dSLZOOIOInbY7zRl+ifEG0HmMpjSNAV2F0IUUlp1jRIkrh9kL2DL4Qj4lbCrsDb0s5dmUkTl5a4vYppQYTRsRXnkRypKSVHWX++zXYky3qOY0qwowYReZo5kTBSM4ZWjquPkUYjUyBx618L10gYbe/iPOAhbyxTmW6l5LVwuoTRdiRuBAi86h0arWR3LZSQuF2Dc6b8xRnidq1GEvbguFZLyy/XHXW7+n7092XgJEm434nbtfIDKl3SxKXkl40+gX4D930oZDkuJSuhV5o8R6jaJ8A80J3qYWGFzCR0jJ+EYJ0WI/cTBvkGAXdll2pWUuJ2IchtJU6aCfzYG9uLTIM2WkqF71yQ34XPF8XVJr3gHTiaMCsmFdJ3RJIlbjvIcQwXBTnX65lWzovLoF4kWeL2NeA4hpdpQLQZpwOep80R/CmIXqZDssTtI8CkkuecyZo41cxfDJwXF+enS0SOdu4kLOqcSxTkXK9nMkuRhEiNMrvhpYmNepAkcfsoMLHUCXGq1vGAH3U6R8Nt8roT1xLcQShxO0/ceCICy3A7Cr7KzWwNRTjqThmJ2wkCvy91njin0FeMGYhLNUs9aqnJu6wdwDESBkHWIS7I9V1veBfg1kaWJjbKoUmpgvFOnvj1BwXI4oTztgHuBs0ggKlJqYLxTp749QeFTKQ4DRHgYAjqhNMiSeL2Wbzd1mIkj0vR8gVvTgXNqp/ULMJ04PsISwYKkBUki3xclYU0cbqOiJO4XUwocTuJqYEKjU9pLy4K8rnrS1RS1vMEokCFppjzunIPA2ni1ji1KD0ivkgocbuCJkYQBV/QYqb4uYeAu0HewkzSjtQkFZo9jVOKKM807geu8kYH0cldDStNbNQchSMJ1UNW4upCyl4LEuThdg2zQMPCwXozmVDi9hnCtNAAgR8RBokG4RbxqUkTxwvt+YQSt/eKu+l2xyXA/3ljqTdU07jWhvB+N1VCGfEkTiOUJu4jDdWMYrQfbpfSF0+4EsRXZEriDOAJb+xTwJQaGFcFuh2uZstfO44FCTMPipB23I7lcu/AWelLE+vHgMgbXI1zpvxaXg9Zhtsp9gPON6cvTazjScougpPjnY8yyMOEgkmZSBOnvSMyi7DxV9LNL5mILi/O33q/kihQuKkPbnGaVGh2KVFw80sm6lJjKMIp3KQlTewkbpN2k8YxJbj5lZojOVLTwd2ppZpNT2z85WQ9o0CXvxRJkZqDWN7oTaSMWhBL3CYp8Y0T+FslcwgsIVzoDgHu0FDtqS7EErf+jWU1cKyEPSpKMYlQpjvthmpnQqDE9yJlI5Xrka6gUBi1HKmkKtM9CwIlvgeAyys5WaBU1PLyWIHL6DtcQSgn/QgVN62ULqnqoNcMqB+EqxOawzlTYeYB4qublkCSruM48JCWNLEOwe22+g20zwLx1U1LIEnXcRx4SEuaWPeFoH1CrOgopbOLirkc+B9vLHVp4vQckVZOI5S4dekAUZAOUJqI0l5clEJXYCdx6xea/Y4dAu+6PBGzcUVShZRaENWW0hK3NxGxsMrZkiM1z6QgTXwx25AvUWgW8WTF8zhVsKRIzZlEgea/sQFRRuL2ZnHXSDWUkun2+1/UHF2XqhFcC2dIeH2WJJYmTpLpPlND56DmdCdxW+k8ZaSJb9LQOag5cS8Wv4v0MuA4CW0qiSQvVgfgBBEatKGaUYweRbgjGTuZUj7zoAhJ2tnMAXeCptFrZhrwWW+sssyDIuRewp3NITjlJt85qDElJW6/A9JdZ3ifqYQ7m0mlB3VAB5G82zoZpLvsogJEcTuvfibPcFC/x03dSMcRmc5QNFCXySMcRxQUSHZPxGVk4cWVlrgdwZhgl6Z7NmEs8Fdv9EiiIF2q1iRJ3P6RLXogERl1bWcG0sSTiYJ0qdoRkWNtYqHZIqIiWc9K53sRCcQSXKQmClJEjA2HJInbp+hBkyeh5LVwkYbpUjVD1xWvBimRi6UH8rVCCZlumK9hulTNKCNxO1HCHctuEUrIdLtUs7pFLdUVr17nDeeBEyTcpamEKwkbqu1OQzZUM4rRUnWsp62XuK0GmUdY6xWLU2gd13N6OGHdqCdxWxUTCGu9ktKlak2SxO3fcM2Oq0S6+kn5tV6ng/rpUrXmZpKzi3rQYFpep0TQBnS/nhhXLel09hbyhH/8FUzj0R7OqAzgJNYkbE9HDIwXx7VHeQl/QdHES4HEbaVcwDvM5PN0sKd3pIooSZX8//bOO8yuqtz/nzVJSBBEiEpRioKiVEWlWBCwXQGvXgtJIHRUOlIltMyehB7pEHqTlgS8V6XZrhT1iiA/FQSVokgRA0oAE0lIMuv3x7tnsme9a5/Z58w5e++ZvJ/nyaOsfc4+a2bO2mu97fsmdAE/IZSuHcMjEYnbovd8LJVSHuiV6WogPjB0VkY26ND7ECoYFaebW0n4GKEc86iKFM2MjpIe4H+KHFizPBqRuC2Eg8c9kbWgIwztZGVEkjF09rS8FhzclsrFrhRc6uSe8SZ0/5ZeJJ2pVRLk7xseBN9Ii3/jAnQBXwrGXkmjG03jwKcpZR8Kr3lYsdXvqlEKK6CbnP4bXJj+2AwHodU3QZ4DSk2uTbyK9LPJ8vc0StMCblEaKdokuNArBpUrniXTHA+gnUKPRyRuC+KeBf8xREgiS6f+DoAfhxi3obLXg63/3tw94LdBREKyNO9gb5GtEc9XC9a5YRhDZD6y/sKeOoZ4fD2NFNwMw+gEk5C1F/ZaaidfRRSTQmO3LNZHfsb5FX2+YSzP/AVZf1tX19DQMAzDMIzllYlI34k3DPZCwzBGLmaIGIZhGIZhGIZROuXUiBiGUTZvgqYV0AbjDHQ9hWEYRiO2Q9SELqaYYtg2iBR1IZljwzCGN2aIGMbIZCy6uHCo5HbmNgzDyOFMYCukIfHB5CugvQWpGdkn/e//QTpdG4YxgrHULMMYmXhETaed/5aU+hMYhjES+BLS7HMz4BeI4tPqmesO6bnyKNLT4P8Bn8GMEMNYLrCIiGGMTF7EikANw6ie54D9EXnpU5HGxjsDi9LrP0VkXJ9EGuTOQfewMQxjhGIREcMwDMMwOs0jSD+xbZEmcmul429HDJCNgNmYEWIYyxXlRUQSNiXW8G6q6q5ZjGlsTS9vDEafJlGdytuLNO4LPc1PkfBEC/fqwrEDPmi2NYZHOKGlDrxFP3c0sH3kykMkvNDC/VZBcoAHshK/5BgWNH2/opzGatGmlvDzlppaJqxN2K3UsZRu7sY2xxGJh1HIWggb3j3kaH4teHLWAtznOtivwEsjKtXwDvhFKw3vvBwONwqGlwJ3uw6uBQ/rIp3Jsyx2cE+L99sI3XH+ZUfLzXSLfq7e7+AlJ2lHrdxvK+S7leUZB39q5X4VsgKwMbBeZuxNSHH6nUhUZITh30O04Z27v8X7bQG8ORj8O7jft3a/wp/7IXTDu+fA/aHF+20HjAkGHwP3dGv3K/SZDnneh02K/wDuuRbutyLS+DXk1+Bebv5+hT93JeDDkQv3g2uhmaJfHQi7qHvgbnBFBCaGRHmGSBdj6eU2pIhW6GUx09iOqbnFa3ESPksvtzMwojOfUdGNuN1sCFwdjM3lFLZo2nhwHIfn5GD0cUZHD9ftI2EJCV8ADgmu3E/CtiRNd3a/Gt1J+HaO4X9bnmMRNuBVHuU44BPBlUuAA5u61wxWYgE/RDbJZXi6GVpn56oYTfxgOhQep7MdwkvHwVIPnwcOCy7d72FbR9Nr4RJg12DsDuBzrc6xIK8CU4BPBuOXIWkxhfEwDrgdeF9wKXGdXwv/Aq5g4EEVD/s7+VkKkxo1PwfGDxzmi3TYEEH2pu8DK2bGlnjYzkFTXbW9PN9+xMDD03xgyyHPsjy6kJSsacjf5ZfAPxBD8TpgMhItmQmckl4bKSwFvsNAQ7IX/E7gftjcrfyWyHd6hczgIuAjQ5xjEVYHbmOg0+YV8B8A9+fmbuW/DlwaDD4HvH8oExwc58FvC/QEFx6V3637d5M3PBf4ejD2M/SZpN38GxF++K9g/DvAV5q7lR8N/DfaoDofXGfPcCnlpWZN5UHgm8HoGHqZRTJgo2hMwprIwTec+4GcVIJ3KOEa4NpgdA0WcwNzlJWdzzS2xZMEowvpYiLH8q+hTbIA4zkaeDAY3QqY3tR9Eg5BGyHPsAJ70ekowgSWMpo90ZvWASTs1tS9FnAhoRECd7MxpwxhhlUyHtns2/nvP0r9CcrjaOC+YGwrUE6Chng4CG2EPAvs1ckoAoCDXuQw9/fg0te9jDfDRWgj5B6a/H20goN5SFfvxcGl83wThxQvntZZoPaWcxx8b2izHBwHD6H3u9HALK+92bl4WAO4Ae3BPcjBH4c2y9L4FLLXXAOsDBwOfAw5eIKsvw8ixuHhSMfl00FlPAxT3BPA14LBLuA68G8rfh+/KpK6tkJw4WhwLUXamsPdAZwdDL5J5uTDOTXAbwqcEwwuBfYEV4YBejLw42BsY+CC5m7jd0EbIS8Bu4PrsLCL84gK3VPBhS+DP6jJm52KNkIeQpqNlkK5NSIJ5yOWV5Z1kYN9mBoRe38X8lAOQ96XkXB9O6ZYiJU4GFH4yLIDf2BKofcnjKeX6wgjUo7DW05Va5bDWMQoJgKvBFeOIeHzhe6RsDla630JXezK8SV5zk/kORx7IgexLJcynfcUukfCJGDvYPQFYDITCuneG8MYJ4feyei1cLQXL+2geFEE+lYwvASY5Ery7jqYi0ifhmvhEk+xteCl2/W+wfALwG6uWA+IIePEKOwOhscBc3zxw+mZ6NSFB4Djhji9wji4ELgpGF4HuMYX2O+87M/Xo/e7K9zwktI+AjFsr0NSX89Df0d/hxgneyHe3kOB1UqcY4dxc4DLg8G3AjeCL+DA9A64CnhncOE2xHFQFlPQEb0PIT2mCuBXQsQIwvT2bnA/HerkiuF6gd1BZbDsC37PYvfwG6D/nh7Yp7OpZVncPOR5HUbtz5YoVRH8jogjIMt8YAK45tPbW8QBWyMP/qfQX/L2k7Aqkic78LMch9E9iEWaMB04MRh9BNiKhGZDakNjGpvQy/0MXFC9wKdJaLSgHAnfBXXYv5mECe2e5qD0sAueOcHoS8AWJOQvqISVEQ/WwAOO45t0M6Pd0xyUhDPQHsiHgK0b1otM590s5UEGHnB6gR1J+FHb56mZD6wEbIAUcLaLN6AfMEPlv4EO5yEP4HLgq8ia73hkyktI++ZgeB6whYO/Nnjfysgh973BpSmu8AbdPjycBsop8hCwTaN6EQ/vQjzXQQoJOzpKWQvZuXQhKW1hFG6W01Gn8L07A7cy8LD/MvABJ9720khrdx4E1g8uHe7kQN7ovT3A1GD4EWArR8f3u0mIEXUXQ08z2QCJTD0QjP8YiZasjqj89TEeOdx2+ju3PlKTsgBZwx3Gj0Miy2Fkbxq40PAO3/sNJA0oyzNyL/dSu2ZYDL8O8BsGRvY88GVw/zPIe69FpJqz3AV8uoxahGAu2wM/YWC0cQGwZeO6Fz8WMcbCw/6Z4EqLImTmcwzaIfwE8MHG9SJ+beTv+Jbgwu7gbmjnDHP4C/AOZF8q2RABmMaW9EbyHLv4aJrCpelhBzw/Rn9ptiJR0YlySPgq2iqWPMckxwvawzF49aV5knF8kCnKI1sOCRcDBwSjkueY5PSOkAhUmPJxJwk7U0VhtxTg340OMV5AovL/+96TtzGcTMJJ7Z5iDp0yREYCpRoiAF68i2Fo+z7g406nC/W95zrEw5blB8DOTnt+O46XSOtdiIc5y0VO14X1vWccsrluEVw61cEJ7Z/l4HjxGP8GXWy+j5M0n9h7YockkIhOGJ0oBS+H6l8wcL9bjHynwpTAvvdsjz4kLQS2TtO+Ok07DZE88gyRsijZEAHw74ao4+uz4MJ0ob73fBD5/ozNDC4GtgfXVL1R+/CfQ2qglLEPLsfY93sTq6+FLcB1TpynIX4aqL3+98BW4HKcNv5CpD4jy/3AtuCarSlsA94hzT/D6P0ccBNz3jMKMfTDtX0puPAs2Cn6DZFq5HunRkPkY+llNqfzJvX6U1gDH8mTdRxcmRECkHAFOkT+duDbaRpZ+PqtIsXpi+hiYmVGCMB4DgeVErYtqBoWoYf90UbIc4inoxp1KTGYJqHTYA4lUTUsfZyPNkJ+hi5kM5YfjkQrG21DzlrwkvsdGiFzkcNy6UYIgJOUsF3Ra+Fgnx9NOBdthNxH3jOgBJwcTndDp4Rd7LXCS58BdhPaCLmwKiMEIFXoCj2lY4AbPHq/83Iwv5F4XUgZRojRMdzj6LqCNAXPr6Vf79+IfBfGBheOq84IAXC3IftnllWBWfF6Eb9h5PW9wB7VGSGAPN/CguxYDUuK/0+0o+plYGI1Rgik9SL7oKP2E8CHtUl9TEMbIb9H0ihLp7o+IgnnAN8NRjdgYRBhSOhiMdexTHO8j1l0q6LxKjgIXTSo8+4kJU0XmjmOyY0ClcVhLAImIMo7WY4j4TMDRhI2xatF2gvsmRsFKotECoPRxtCVTA+ifZIGFy5SKTTLiwIZIx4nCjQT0Wthig/ShLw0YQvTJXqByU4XjZeKkyL5mGNgpg/ShDzsglbWmofUt0SjQGXh4F60Y2AccKPXeeaxosuH0SmbVXAe4rXMsj6iENaP7y9iVvvdbKe9ycOd6cT3nRGOm4X+W64O3BCpF7kELWd9J7povAqOAaV4GhH58OOQupCwvuvk/ChQWbg8kY/9wQfOVr8uEonNRoHSonH3VMemWAiXJ/JxPvjA2ep3QDtGFiB1IU1LvbeDKhsaesZGq/53ST3ufZwIfDp4zeOsqLwK1ZAwny4moHOvT2Fa/6bYV2j2juA1t9HNhR2eYTGkD0pc2SNBlD1m0FdotmLwuu5B6mLKI+EOtDdjVZYymyQ1AhPeRV6hWaO6GGO5wJG/FjyyFjzkFV32OO1hqwQnB5azguFVgdk+dYh4SQmMroVGdTElcwpa5WYTMh5WH3P+pEWXrfRRaTeu/8Ci9ruv+IFS48dD4PwR2ex67Hft5V6kJmvRYC8cgRyEjm7twIBMEX8gKPXH1MHgatDXyi1GDr9hjcrR4LNpQheiVfjuRbzyNcDNRYwRJfKR9oABfJ4K3/mD18WUhYtFsFMj0KdGoF+DnGhr6/1ghk61ndWPYx5dESvOcy7T2IJpbIcu1lsITChF4rYoU3kYx1HB6Gh6uYlTeTMJ30C067M8wwrsTZ0a5SXMAa4MRiVNYA6jWMBMdJOzu9iY00qZX1HWYgraU7MlcCrnMxaJTIXNwb5FwvfLmJ5Rf5wYGVGVm7QJ4kXE5J5LqmVpguOIq9yc7ulfC2F60FllSNwWJU1xi6nc7OdhD9+XDquVqA6sk8St60/hUCo353j4gJd02LBoeSEw0S13UYORjluIGBmh6EAP+E+A3wztREhTLkuRuC2IexodTXXA1eDXAz8R2C+4nqZcll2c3gj3U3TB98rIIX5FRHQkVOF7kBIlbgtyOhD2pnk3cBn4PBW+q8F9u4zJ5VGtIQIwlV+hlbDG0csseqOW2zdI+G05k2uCbi4GpT61Dq/zfbRyzmK62KU0idtmWIVDkXSGLNvxKD9Bq138nTHsWjuJ2/1ZjDzk5wVXjuQlfohWu7iPtaopyDVqzTfQXsvtkCLivYLxucCuZUncFiWtF4mthcORgvqweeqvEK98rUi73O+B9lrORFJ8Q+WXyx0lSroXxElRa/isGYt4W29CNxk+wun6PWNE4B5Bi0d0IUb1LcQyD3A/L2NmzeFuQUsIr4b8DKEzR9K4W+pi3nFOQppFZtkcUe87PBh/BakLqVk0z6W/X/4WXJiEROo/FYw/ikhlV0r1hghAwgxQ3ugNSdMgMswhaa67bsnsB6qp4kfQdSHHpQZY/TiS1xAZ0zDitH3w37049uQE5pYyr2ZJeAqdI++Qg2SWlxnFbqnxYhj9pCk9xdYC7Fl1XUgeaYpVbC1sH7z0ZcSYquVaSFPewojTykiEJ8sj6INDnTgLHXF6N1od7GYnNQLGiMVdjRgeWd6Orgu5iwqkwJvgKLTIx4fQdSFngvtBOVNqFpcn8rE9Otp6ELgny5hV87gXiIt8bB/8dxqVcwvKmFUj6mGI9DeCaZif/yQ6b7teJH2NYBr0rYA76a5FoVk+CY/hVLg15GS6Vd52vUi4DRrW4Hgc+3JSub0FjOGDK5aff2rZfTaaxUnjs1C1JmS/svtstEBC4xqcBUhdSLl9pZrALdvvGtXg1H+/M9rFQUCj/Py51C6VKcTliXxkuR+dal8zXJ7IR5aLwd1Y0oRaxN3D4DU4h4L7XRmzGYy6GCKQ8BJd7E48tUFUnZJhkCeb8BD5eYPPsgJ7UKe6kDy6uQlyVcnuYeO6FJoNwniOQXtq+jifbqVkYxgDcJI2k6dYNJzknr+JSMnGuMBJw8pa4/pTO3L7ThziqFDSvSBOUuUa7XcTHRVKuhsl4hYgqTMxB+ZSpC6kltHWgbgn0P3I+ngJ2CUtcK85Liby0cfvEIn34cDJkCsidCO4K3KulU59DBGAXt6OrgkB+BsrqZSnOrNOzvhDHK8UJuqJ9EFZO+fqvbWrC8ljAW9A9xXo4+4SZ2IMU1JJ1dy1kNZhDAfegK6l6OPuEucxVMYTb0D3OtL4bbjwNuL73fPoFF9jZLMGYQq38E90zWadyTv7PIb0GhsurJsz/stUaGA4MA4RG4pxd4nzGJT6GCIiqXppztV3soDaWG8N6WFHUApafexET7yzce1wnAB8MufqCSQd67bbThyLuBJYL+f6lSS5DxzD6OM4tIR4/zWfv07qxpVoCfE+rvD566Q2pLLJs9GFvCAHue/4+LVakcom59U7vgOGyX5ntAG/BpJ9EDuPrQ58O+2eXXP8VkhvmBjbUPu0rD78AUiKfYz9wYcKqHXlfKQ5Y4xzwIcKqJVRD0MkX1I1yyQSpdpULxLWxkdlJJfhmUGiVJvqRcLH8UpGMosoeyS53tV60MNhaNnkLOOB60mUUo1hAJBKqiYNXtKFdMgOJRFrhRdllC81eMlqSJ+Uuq+FC9GyyVk2Q8tw1gqfdlUn0lU9w0QPe5czI6M6+iVVI13V+9mR2qcD+dWINWweyIngQ9WmmuE3pXGzyLQnnH9HOfNpFT8BLZucJe2D5WvhtKmHIfIS30JLqv6RmFRjwnvLmVSTyGH2RnTqQ5ivLEZX0tDoqg4xLmKyyeHP8XZ0l9H6MI0P4pXKyOtIs7os2zJsPDVGmXj610J4OA/XwhrAVb6ma8HLs3VGMJy3FpIy5tQKXuR79w6Gn0dLEx/iGxtdVfMtYOtgLLjZVp0AACAASURBVLbfXeh13yZjZHEiWlL1CXSvmVPTiEMN8WnfEBVtDZ+TqTSxz0sXqhi/MnHZ5PDnWBW4IW1yWEP8u9ER1V50T6XBjK7SqN4QSfgccHAwOo/RfBZpzpJlJeBmzq5l6D1BNvIsDyON9G4NxmOdveuAQ9I3QhnJ2azINkieZ5ad6amhpyZhZXq5ATH6shwL7IyWYz2BntzUG2M5JDUqrkDXhsxBDpFhDn+ss3fleKmluBG9Fo4DdkKvheN8fhpaZXiRtw17FfQVrsdUbq708M4y5tYMHj6H1u2fh3x/QmnilYCbvdT2GCMO/3G0E2wB8AVgSjC+AnAz+LCzdx34BjLnLE8irQuuC8bXAmaBj9VGVc1FwHuCsR8gMsSh4M1HqE1n+Cy+rydRKJt8GvJcD6WJDwC/Wxkza0S1hsjJrIPkRmY9iR7HPpzIX5Eus2GDmU15tR5WXD897IB+cIiUb8K/WYH90IVaE0j4ainzK0rCMcDng9EngK9zLP+ii90QRZdleE5jmuo4WjWXoB8ot5NwXipN/I3gWhee6zilYXjcWL44Cr25PgF8zZEr032qlw2qTlyMXgt3AOfkSBN3Adf7xqkipeKl6HI2enOd7uAnqTTxBcG1VYHZvnGqSKl4KeS9hnC/g30dPIU4s0KVm02Ac0qYnlEq/q3EMw8OAfcocC7SqDPLuuTXFVWE/xDaYbwY2B3cK8CBaE/8DoiCX43w+6AbNs8F9gH3GnFp4mPB/2cZs2uCs4g1bIaeVJp4L7TT5hLwYd+aUqnOELmUMSxhFpKnn+VsutNmTwl5DWYOIKFyKw6AU1gDzw3oB8qBJOkCPJ4XiTeYuYBpvK/zkyxAQqzQbBFdGdnkqTyINrjG0MssEvV3rIaEA4DJweizrJBZgN3EmkitwWJuYE5UxcZYjvASxQy9032Sqq8COKIy3aOBWT5fpa1UvBgZuwfDzwJ7pb0s+qSJQ5nu1YEbfVzRqQrOBbYIxu5l4PPqaFBNYrdEJCwrJ629uQn93TjPpQfOjDRxuN993etnmjFs8XmZB7PAXSP/13lgX8RAzfJl8Ad1dn5F8W+EaObBMeDuk//rFiBOm9eC10wD/7FOz7AYfkPgvGCwF5i8TDbZPYHu65P+HX3YeLsi/JeJZRfBpGWyye4OtGMj/Tv6ypw21Rkiz3Ma2nv4AHD8gJGEPCvuUhLVfbRcErpYzHVo7+EVJFwfvPZenDroj6OXOZyhPH3lkoj3EN0B/gim8pvgtedRV09NEs15XEIXkziefw4YXSnaRGoHHs3tAWMsB3hy1gIc5YLwvBNVkrAPzTrANVXXi/i4J30J0jk9POgejF4L26OdDqXjYRdQzVVfBHZzGcdO2g1+Mrr3xtFeR3mr4FTgo8GYcuw4iZzHUs0u8TqyZQxPjgVCT3okOunSQyRh742zwYeGeRVcgu4Afzuqcap7GJ22mhrmvmKnjR+HpNuGZ7AecEHjVDcHMSCzpJGtqlPNfOwMljZOdWHj1CnAL4OxWGSrNKoxRHqiKhAvM4qJJKpICxJiVtzKwA0klYbeT0TnUz8CKvVH8EwHfhKMbshrnNv+qRUmVYFQhWa30M3Fkdd7xuZ4anqUNV4eM/pUIFT90ElMjfQWOIY8T00PCTXx1BgVcCW6tuBWYGbO6/dFdyP/HFQn0+37FVFUbUG306muOPrXQtiNvMdTnUx3KnEb1tJ5pAO86kng4t3IHXC1z+8L0HF8vH5oPmJMLQpf7+BOpKA9y8rAnDRNzRi2+K3RtQULgYngwnotwP0KlILlWETxqELBG38gqKyUZ4C90mhOgJuJRASzrA1cW7E08YWgslLuQUfE+zgEaWqYZTvkLFgRfgzkZBfhvqdf7xYjBm7Y0+5w8GE6cimUb4jkSdw6DuIktaEvY62aWXEJsUKzhcBuJGpD73tPL2PYHQi7pO5LD3u0f5IFiEvcPo32Qi7jOOYhOZMDPTWesyqTJl7ATLTCzE9pJOWZ8Huc6vkinpq6SxMbbSdH4vZpYG+nPdQAOHgZeaiHDpQZXufqlsVFaInbu0CpyPXj4Pdo59Ao4Fqf3wSxYzSQuD3TafGPfhzcjPYMjkekiUv3WnpJv4lJuu/vtPhHluOB/wvGNqdCr6UxVPxqyIExVFs6AtxvIm/o4wzgh8HYu6gsC8Fvhu48nqbRu39G3tDHgcCfg7GdyXPcdpyoxO0LwG7gcho2u4VI5DU8400FX1U/qdNB1enq7KIBuKfR9YGp+pkvvZ9UuYaI5N9fi97YZtKtrOWB7E++FZfwX22bYxFOJa/Q7GASHmr43hOYi2M3QqlGz8WlSxPHJW4X08UkkkE6wCfcjzbEqpEm7iGv0GwyiZLEHIhEfXI8NfWUYzXaj5dDXrgWlgCTnH7mDMDB/cBJwfBYxINd6lrw8ozcKxh+AZjsdI3aAJw0lL0xGF4b+HYFqWYxidvYMyfGN9Bey5jjqKP4frlStd9d6vTveQAu/e6hv3uH+ca9kYxa4vMzD3CXNH6v60Wkq/8WXJiYFlmXiM/LPDgRnM48GIB7BXFghk6bM8Fv064ZFsPHlEvT37MLf88B7hHgsGCwC6mzKLmflN8JOCIYTH/PTmcXDcB9B1TWS9oPplxp4nINkUeZhg71P8wqBWUvk6inXhZ4ktsxuN04XucKdKHZHBKuKnSHbu5Ce+plgZclTZwvcTuFqSrylHePMxDFmizlemoSNsRHC812J1GRpzjjop6anejh8DbM0Kg5qcRtbHM9zukobB4z0J76WGpRx0glbsO11wvs7qTfRhH2R3vqS22oliNx+zJiFA6yuYKTyPQEtDTxiSVLE/eg97tY5CmK6091GRCNc0jPmne0Y4JGaRwOymHaOPNgAC5P8GYm+M2HOrkmuBiUw/SH6D5FObhfoz31afTTN2rw2UZ8XgPtM8D9qNg93JUQ1AFLP6mr0yaVJeDzHKYHgsvPLhrIEUAYjduakvtJlWeIiMRtWAgsuclHqjz9fBJuIW7FzeJSFfJsPz18k7jEbZibPBgngapd2IxXiy7oIXMpMVnPpCmpSM8K7EvMU5Ow75BmV4SEvEKz6SSqFiefKcQ9NZ4zaihNbLSfmNzznej0g1zS1K2oTLen8zLdae1AbC2c4uDHRe+TShNrmW44zevwf9vJkbgFkbgturmSpj1pmW5J0eq419JLsf9xwfACYILTaR25pNLEYf+UPmnimjZUMwaSK3E7CVzjzIMBuFjtwjikWLqEXjN+X1Ap5HOBvdOoTVHOBsLahfXRTfg6xdnotNlYLc5gxKSJP0sp/aR8nwqfzi7CNc4uGoBbhDhtQmniKeA/M5QZNkM5hkiexK3LSNw2w/gcK+75DltxCVvhVaHZIuTgHf4hB7tXX+g9zKk8mB52bX2ShT77AHShWZ46WWOO58W0v0joqbmIhE57ai5AF5rdy8ZKnWxwEn6NPjjUS5rYaDupxG0ojfocsGdeXUgejnyZbq+/p+3mPOD9wdjPaKHplouoOSGH3lleF0S2jVTidhZa4vZ8p9XJBsWRI9PdYWlin8ofE0nddVqdrAhHoxuqbUUtG6oZA/FvIq7Cdyy4otHWLD1AoObEJtBpwRu/CbpXj2Qe9EvcFsWlak6Eak5fAV8wQtQq/stAKH8cSNwWxfX1kwod6aeADxXy2s00UKI6MXWyAjjpFTeQLuC6sqSJR5fxISxmPXSo52W6mdPS/Q5jEdP5MktVmL2XhBWiylvt4S2EKQOOx+lWm0QxEp4lYSfCA4RvnMs9RByOBfggJNzFL5mqZD2LMZV7SPg8ugt154pcz+CNvMYDSFHWMsZwKxNa/P0lnEMPL+JVis7aDFInYAw/0rqH19DpEfdFJG4L4eBeL9Kc6wSXOrYW0tSyB9E/x21prUErnIc4ScpcC32pBtm+Jr3o7szNcDA68gxikAySC94ysf3uFScH0qZxsMjDl4HQQ9nrYWxMecuoDeuha89eQ6f1FMT1gt8DLf+L9PWIKW+1hTXQtQjPgiueeTAANy9tBhhGWRdKPU1MeastjEI/J38L7qnWbuceBr8zkhabpYNpZn4FJJU8/Dl+nDZfbAE3G7xHoq1Z1qZzz8kBbI14/gqHvQ3DaBvzkfW3ftUTqSGXI7+bE6qeiGEsZ0xC1l7Y6X0ksT7yM86veiKGsRzyF2T9bV1dQ0PDMAzDMAzDMJZbzBAxDMMwDMMwDKN0zBAxDMMwDMMwDKN0zBAxDMMwDMMwDKN0zBAxDMMwDMMwDKN0zBAxDMMwDMMwDKN0zBAxDMMwDMMwDKN0ymloCHAKa7FYNceaT8ILtbhfUU5mPZYEHXPH8U+m8EpL90t4B6FBOJT7FfvM0cC6kSt/I2Fh5fcrygxWYgFrRK48RUJv2+6X9OtdGyOMtJt37Lv7vNMdc4dyv785OrcWPKwE8bXgaH4ttPt+TXzuasi/LIsdPNPi/cajm3S1fL8mPndN4A3B8HxHa/uTh7XQzSVbvp9RJn51pOloltfAPd/G+/27+Q7nTX/uOsCYYPBlcC02OG33/Qp9pgPeGbkwF9yCFu7XBbyjffcr/LnjgFjX86fBtdDEtt33a47yIiJL+ADwBPBk5t+fSFpo5DaNzVg84D5yL9iwbfPNYwn7BJ/7JAv5BYnadAanh4lIU5fs/e5jISu1b8IREpYCZxH+HK13MD4zcq/ZdPDAAsACHHC7+mzHMU3fK6GLBXxX3Uua6ZkRMnJZCnyL9q2F0yP3mkM536HbIp99bLM38bIv/E/kXid20ghJeTPwm+Bz/+qjnaQb48UA+TX65/hC22abT2y/e8K3sEd52DRyr8eQcaP+rA/8kYF/vz+D36L5W/n1gD8E93oCaUzdaT6PXku/Bf/m5m/lPwE8Fdzrd8Dq7ZlqHs4DJ6J/jtvAj2r0zhyOjdzrh0Ar92qGpcANkc8+vcX7XRW51/np53Sc8gyRbm4Hzg1GVwVmk7BC4fskrEwvc9DeoZNI+PnQJlmIacBPgrFNkD9acRLeheeyYNTj2I+Evw1hfkXwjGVf5EGQ5SskHNTUnRJ2Ag4PRl8BJpLwesszLPbZ8+liAqHn2nMy0/hok3ebCnwqGHsUOLT1CRp1x4mBsC/iEMjyZQ8HN3MvDzsCRwbD84HJDha1PsvBcbAAmAD8O7g0zcPHmrzdicCng7HHgG+0OL3CODlUfU0Pc6WHtxe9j5f3XIX2ft4KXDSkSRbAwR3A2cHwG4EbPYwtep80MjUHHV2Z6kZ21/MRhLsP6A4GxwGzwb+x+H38GGAWEuXLcja47w1lhsVwFwE3BYPrANemkYaC+DWQQ3R4/jwQ3B+HMsOCHIQYPVm2R5yOTeC3BnqCwYXABHCvtji3grjFwGRQmTNHgm/S0eIPBnYNBp8B9koNt45Tbo3IWhwL/DIY/RDNWXEzgfcGYz9FvPKdJ6GXMewOhGHV/ehhj0L3OJ+xyOaySnDldLq5deiTLMBxzAMmgjIWzibhA4XukbA2cC2y6S/DcSAJf27DLAdnKg+jD3+j6WUWCW8pdI9pbIccvrIspIvdSNTBzhhhOHgZmIReC2d5iq0FD2sD3yZcC7C/k2htx3Hwe+CIYHg0cJOn2Frw8HHEKM+yEJjg4F9Dn+XgOHk2hk6atyKH+KKexsOALwZjTwN7u/IinFOA/wvGPgic0cQ9ZgIbBWN3NXkPo3rOQDzlWd6N/p43YgawTTD2AHD8EObVLAeC2tt3RtZbAXwXYoSsGVy4HNz1Q51cMdxC5BAf7u3d4D9Z7B5+NSTrI0wtOwLcb4Y6w2K4PwNfDQeBq9PIWQH8Zsj3KssSYFdw/xzqDItSriGyP4uRDT/MATychP8a9P0JXwV12J8LTG6pJqBVTmAujsmEYSvPxUxXm4bmJc4FwrDsr1hLeU06S8L9wEnB6FgkShUaSeF7RyPemfCAM5Nu5TXpLAmXIA+3LHEjSb93dXq5EX3AOZipymtijFAc3I/2iI0FZnvtMBhAWhdyE3otXOLgxvbNcnCcHGzCDX1t4Nt+kLXg08M+ei0c6rQHsdN8A0nRyvJxtGdZ4cW5FR7UFwOTnN57OoaTDX0SEG7oh3ltJCk87APsGQzPRSJspaRMGO3C9SJnl+eCC5PA7zP4+/3n0If9l4GJ4DqbeTAAJ9kOOsI7A/yHC9wgAcLD/iPorIoO4x4BDgkGUyPJh0ZSgE8P+4SH/VvAXdKuGRbD3YI4K7KkRpIPjaQAvzJEs4tOBPeLds2wCOWrZiU8DezFQK+UhNGTaNGPMI1NgPOC0V5gdxI6XKQVoZu70JGclVjKHM5Wf9hlJHwFOCAYncdoJqaGWrkkzAC+H4y+C7h8kHeeDCr96WFW4eh2Ta1JDkB7nnciUR7iZSR0IbUAYZHWbBKuau/0jGHAWUCY4lBkLUxDpz/9Hh2pK4sDkZz0LDsCR+W9ITVSrkSnP81xcEV7pzc4aWH/RCBMcTjB67Sxfjy8CfFUhulPU5yOxnectCh+byL7nY8XzYK8eBPgwmC4F9jD6Wi8MSxwLwK7oY3ImeDfl/8+vw5wDdqRsB+4MKW0BNyv0bVnadqYD9PGMvjt0dGbNKXUVZB54K5GothZ0rQx3+hsfBS6zuxJdHSiLI4E/l8wFksbC7kYnV30A3SEpONUI9+bcBv6IStWXKxeZAYrpXUhA/NkHdNIVL1GmUxF5+luyqsqN1iYzgboTd3j2IcT+WsH5lcEj3jews+fkEagNAmfBVUQPh+YwJHNKw21hST9fK10dDoJH8l51xTgM8HYE8DX2zw7YxjgGqwFn/Od8PAJ4JvB8AIklamSteDIXQunee086ONYdEF4rF6jNBw8jv69dwHXpypSMS4GJYByB3BOm6dXGCciAmEN4arALI/e77zUD9yArguZ7uDHnZmlUQ7uXvQBcRxwI/iI4I3vi7aGBeEXgPvvTsywIOcjghZZ1iU31cyvTjzaegi4R9s9uSY4CCn+zxJ7pqf4rYBTgsHFwO5ptKgC3CLiTpsp4HNEPvzXgd2DwbnAPmn0rlSq6yOyFkcB9wWjWwHT1WsXcBGwcTB6DxtxcmcmVxBJB5sMKiJzAD1MHjByKWNYyvWIxy7L2XQrL2y5JLyEpBCEEZkLSHh/8No1kbCkLjRLlBe2XBIeQj9AxFNzavAgT9gGCRNnWUQXE0jUgjaWExz9tVPhWjjPB+mUvt97pjbXA53e3ErFwcOgopN99SID1oIX79m04LWLgIlOb26l4iS6EUYnVydSL5KKC4RFl88Ce5VYF5LHMeiITOxQA5JqEXrI7yG2NxrDkVPQBuXGaOcswGlo58FDtKCG115crshHWvycwXch6aKh82AWuGs6NMGCuDyRj+nggyi3XxVJRw+dB0enggQV4nJFPsAHUW6/Kdoxk55lOy0BHac6Q2R/FjOK3dFV/8eQ8Pn+/+phVySVK8sLwG5MqEGerKSF7UMoa+m5hOm8p/+/n+csqi80yyfhPvTBfBwwhzN4Y/qavEKzK0hUXno1JFxITNnj9UxoO2E88kAZmEPpOIKpKi/dWM5w8Ct0wfY4pF7kjdAvcRtbC1e51qV/24qTA21Yo7IOcG1fvYjvzydWRZdHOh3ur4qDiavc9D87PeQWXTr4R0dnVwBHbn3kUT6T5uHFCA5rBl4EdrO6kJGCk5RynWK3D/hMTZCPpVOm0U5XTebBAFxao6JFPsBnRT5OQKdTxqKdFeF+j65RSSNRPq3783kqfLcBF3R4ggVxuSIfy6SJfZ4KXwLufzs8wVyq7ax+UjSvTgqBEtZlOu/Gc2lwXYq+Oi9xW5wkmle3MkuZQ8I4Ej6HLox6mVElSNw2x+nElD1e6/9y9yBhyyyPUIKsZ5MchFb2+Bw9HEK/qkSk0Kybi8uYnDEsOAOUgl1W5aYbXXRZR7nnAxDp3Sw7IwXTeWvhO04XQFaG65fEVKpdiYdPemnuFiu6nOooRdK9EE5Uu8LDlwOu9rCej6soeWA/R432O6MNOHGmxutFNgKfp8J3ALhSVPiK4WLOVBG8wa8CPiYw0SdxW4oKXzHc5eSIfKRGSEyFL63/KkfitiB5Ih99jrWYCt/dwKmdnVZjqjVEABJuAXUAHA9cz1K+Q+qBzHA6CT8qZW7NcSIQKg1sjljRsQfKfpykwprVIqlme6I3vUkkXExeoVndJG4TXqYrIsfqmUHC5ZCJuAlPMq6yQjOjhqSpPPsRUbnxcAla7vnfSF1IrdZCKrk7Ga1ycyZy6A2LLv9CdUWXuTgxpkLVoC7k2Xoduujyh9RQ4tbBd9B9TFZDomu3oBXaznDaIDZGBO5udGreSki0PqbCdxm4UB2yDpyNRAayvAtZm7G6kMPB/baMiTXJQWinzY6IWEnYHmIxolhWmsRtMdxCJD11fnDhRPAXE1fh2xVcpdHW6g0RgPEcgU4D2BYJt2e5j7VU+lA9SPqlGsM0gF2RjSbLhSRUWWiWT8ILdEU9NQegvy+HkFBloVk+U3kAnUc7FjlcZpFCsykqRdBYznFpSgyS4pNlf/RaONRJdLB2OOkuHtZOrYA2OBYj0rAvlzKxJnGiHHRtMPw2UNLvc5F+IaUXXRbkKPR+91HEcZUlliJojCx60A2SNyeuwpevAFkpziMH3KeCC19Aq/DdDC7McqkJ7l/AV9AiH/uh60JOAFe6Cl8x3J/Qz/YutFprKildTV1IlnoYIoeRV/WfZR6jmVSJxG1REimMpHFh5EOskqfIUBOmcg+6eDVkFgnXlDCb1kk4D63sMRDHMWl9jGEoHMRUbkJmO11QXSucqNwM5vw4tgqJ2yY5GBo6P3qB3Z0WEKkNTqJTE9D1kVnmIX1P6rvfGW2gv16k0fe1Qonborh5xAVvsjxJhSp8xXAP00DmPOVO4FslTGYIuJjIR8ip4GqhwlcPQwQgaSgVWbXEbXES7oAc+V6Yz6gKJW6b42TypSIfZ8W6FJo1JE/Zo4/b6FaymoYRcirkpoMOJ7nn/chfC7cD55Y4l5Zw/Yey3BS4aU57mGuHa3wo88C+TnuYjRGJm0u8XqSPg8FVqsJXDPcrdIPkPlJnc1USt83gLia/Ee1zwJ41qwvJIyby0cfPGNzBVhr1MUQAunie+GL8ExupHMT64nINpts4STXdqydSL5JXIHkZx6rC0bryb/K6KTvOpnpZT6PmpCk+Ya1IH5dXLXHbBP9Gd/nu45waSNwWZR5ikIS8jtTvDBf+Rny/exyrC1ne+AfxaMLfEVW74ULe2efn4B4sdSZDI+/scwO4ylX4CvI6+c/7C8GFKceVUR9D5DRWo5fr0IVNAO/l0VxLu14kbI7PLZKcSKLymetJwiS0bPKyq4kqDq0rZwIfjF7xXEaiikMNYwA5kqp9TPVahaSunA58KOfapV4XSteOVDb5WkSWMmQFRIEqFAapHX5ZgXpsv9sQrTRkjFj8SoixMS5ycU1qnwbUh9+AfEfAJ8HvW+ZsWicqm9zHEeA/XOZshsAJaJXTPs4HH0rPV0ZdDBHHoqiMZJaTSPhUWRNqiSRXRrIP0aJOeEdpc2qF6VEZySyiRX127s9ZD0Q2OVTayfIuRBHDMKJ4+Y4MuhZ8/pqvBV4ke0Ot/CwbMDzWwlRouA/sCBxZ0lxaooFscpYTvO69YIxMLqKxM+Ng8GGjzprhU8le1bA5y0XgQ0GGmuHfTlzltA9pkIwPBYhqht+WxkIXawDXpM0mK6cWkyDhKLSMZJhOI1KNCauXM6mWuAwyTQyF8OdYDbiehNHlTKlJEsaxlFvQssnhz7EZr9bYU3My6yGe0+wDxSNpHVkm0KOUtAwDLx7Km9GRgnAtbEp+XVjleFgXvblG14KvoXRvHx52QMsmL0BLE5+WdouvK0dQcL/zcmAwRix+L3TmwTx0muRM8GEzvToxA515EH6nxwE3gA+b6dUEPwqpDQllk8OfY11Q/e1qhH8LIv8cnjHDn+M/gGNKmdIgVG+ITGNLtJb2Irr4FLpD8VrATWmH73qR8HVEqjfLs4xmc3SDmY9So0KhgHPRMpL3MJoPoKWJD6JH/czVkzCaJdyA9KPJci5dfJEwL9tzIYn6mQ3jbOD9wdi9EF0LB3gpOK0VXjajG9Fr4XxE9jasUbjAw/vKmFszeEnFuh6dynQQWqZ7DBKlCn/myvGwJXBaMLwIiX58OxhfE7jJx9O3jGGPfze6K3cvsAtwXjC+KtIkMJSRrQE+1rB5HvJdD7t1b0p9RTESpPlfloeRNhJh7csu4EM53BrgHXAlWjZ5NrA9Wpr4ZPAfLWFiDan2QJ+wKr3MRms0H8lUfoNsMn8Mrn0CrYlfLdPYBDgnGF0C7MqJPIeovIQFrVNI+EwZ0ytMD7sgPRKySC8FUSzT0sSemUynbp6aUxBjL8uvgSmpNPHJwbVxwI0k1NRTY5SNFz35A4Phl4A9nGxKe6K9lpd4ye+vE9PRa+FBRKr3XrRM9zjkEB9GRCsjrQu5DukZkuUaJ4f389Ey3evSOKWudHz/YVLtd8c46StyEBCqI+2ANrSMYY8fh6Rxh+tsGrj/Rc44oax8zGlbMX4dpL9PGG3dB9yfkWaqoTTx18DvXs78iuK3B44LBucjssl/Q+oEQzGBc8BvUcLkmuEYdMPmVNnRPYyOgIwGbgL/5jIml0fVkYUrQR1iv0PCTAAS5tPFBLQVN51panOthhmsRC9zIDjEOqaS8HNApImdkviUzTVRm2s1TGcDvMoR9zj2I0kVJESaOPRmrMpSZpOozbUaEj4LHB2MSnfppL/T+jS0xOcmaC+UsRzi46F3D+zj4GkAJ1ryYTrWG4EbvD5oVoKX0HvotJmPNC3sS2eKyXRvSL28lsciP0uWx0nrv9wyme6ngtd82YuEZV2Yid7vbgMuhAHSxOF+1+N1gztjeHMeOtqacZK5xcghPpS7PQp8mNZXEX400gU+PMSeA+578n/dXEToDRy4CQAAEMpJREFUI2wuejH4MI29IvzqxDvAHwQudYS7X4Fqpj0OiVLVxGnjt0IcT1nSnkUudYS7i5C0rSzrANem0ZRKqM4Q6eFQ4EvB6NOEmvxTeRgXseJ6mcWpagGUzwIuBDYORu9iI84cMNLNbKRAMYssgDkVh94vZQxLuR5daHYm3YGM5FocS9xTc2rnJliQhDWR33H4vT6AhMcyr+tlTLSJ1FdJqJmnxigT31+MqNJ6vuXg+8HYcegGgB9C1KkqxfcXI+q14FgmIe76u+uqtbCvl/FKSWs9wjTWhcAExzIJ8bQbfMxreZaHyr2WqUEUprE+g3SA74+sOemgHRbbj0ZStMLcdWNY4iegew9J5gEukyrp/oyu2UqFDnwjoYOyOA34SDD2a1Rkwf0ArfyVCvv4mFJYifguJOVzreDCVeDC0oDT0f2kBhP2KQm/KrJv6ewiXFgacBC6n9TOwKEdmtygVGOIxCVuF9PFJJJIz4duLkJ+yVnW5nVVjFwuInG7dzA6lzFMZkJEH34VDgYeCka341FO6MwEC/I8M4BtgtH7iakuSGf7mKfmSHpUAWZ5SN3QDUhedZZLSCLNiU4g31MzfKSJjfZzBhDKMz6ALpIm7Xo9CV0EeLinOpnuNJUpthYuczI+AAd5DdVmeqpbC6nE7WzEOMxyuIPfhq938WfWWCTVrDJpYi855jOC4SXAri6i8+9EAjV8Zq0NXDscpImNRviYOp0H9ktTgALcLejo7GrAdWlEoiKiEreSeYB7PfKGE4BfBGObQ26rg7I4Aa1O9yjRQ7nrc9o8H1yYlIoOVMlVxLKLcDP1S12f0yb8O30LfCUiH+UbInkSt47jmKq8i1kOJGbF9TSUZ+0ccYnbXhx7cIL6ogpH8hpd7IbuCtxND5/swCwHp4ed0RK38kVN1BdVSIh7ajxXp2pVVZCgNbN/zyoNpDwTfoA+IMj3s+7SxEbb8bATWuL2ZWCi0w9tAFwsipvKdHsqk+meCup58gii1hTFwV0QRHHTtVCFNHEDidubXWPFmjPQzQAHk2DuGJ5cSfcTnD6YZTkAMlFcIfb9NIYNfizyXQiN4jPANWpgeTja8N6WynrN5ErcHgAu/M6mOKmZ1Yb3YeC/2O4ZFiMqcbsQiUyFZ7QU9wJxp81F4CvqJ+UPA8LfYWxfyuAeAOUAH4OomjWSYO4IVURELkZL3N5J9yDylwkv0xWx4jwzSJQ3v7OIxO1sdKHZyXSrfOuBTOURnNpMuvDckKYWlcfJrIOPSNw69iVR+dYDSbgF3bxoNZYwi0uVB7OzJGwPHB+MLmAUEzhS5VuHnIg+EGzGq+pQZoxgfOpxRm+u+zntABmAg+8AoedpNWCW1978juJhO+IStxOcdoCETIW0rm0ZMW9+GcQkbp8EvtboTa7fu6w6I0/0UkdSNjPRUaVYqsoAXL93WRnAZ3gdsTOGBzMQxb0s8cyDAbiFSO3Qv4ILx4MvudeMlzYKOk3wYnA682AA7hkkgyQU+biqfGliPx5JyQqjSoeC+13j97q70ano0lutdGliH4sqpZF6p7OLBnIW8L1grJJ+UuUaIiJxG+bgP0tcgUYzlTwr7npOb9hIp92ci847vpeNlQJNnG4uRxZBljUQD2A5oXeRuL0JXWh2Pt1KgSaPI9DSxNvwfImemoT8QrOTlAJN7P1LGB311BxComqYjBFIKnE7C725XuDgvwve5kj0WojVN3QMT+5aOMRJukFDXJ/Sn5YmPtjr+oaOkSNxuxjY3emUUIXrz7fXXkuvpck7RtqTJayzmYuIHoQpoQrXp/Q3kDGIgVs7aWKjEbkStxPTwvRBcI+jPdxpfYMP6xs6yTRimQf5ncgD3G1oyeK0vqEsaWLfF21dN7gwB9wVBW+SAD8NxkruJ+X7oq1hnc1x4BplF6W4VN0sKk3cIJrSfsozROISt73AXiRq48sn4Sx00egGLCzJiotL3L4E7BGtC8nnQDJFoymfpUcpPnWKmMTtQ+iNL5+EhYxiItpTcxw9JXQFTsgrNLuWRGny53Miz+Ai0sRwZQ2liY32E5O4fZgmZFNdvzqJkuk+1tN5me4GEreznRStF8KJYyi2FmZ6nYPcdgaRuA1FMnJx5Mt0+1DhsAP4uApfL6JYFgoDNOJctNey5g3VjIH4VJVISdzuC+6p4vdxs9C9ZlZH0mlKELzxO6DPB6nSmxss8yDLNxG56iwxxadOEZO4HTTaOhDXizjQw7Pr/uDL6id1CbHsoqaMITcPcZYsCS6cB760flLlGCJ5ErfQTaKsysHos+KeDsZ3SSMunSNP4hb2IVHzaUzSp1HNwuBup5IoJYr2Epe4nc8oJpAE8xmMk4h7ajzXc4oyENrN8ehCs8dZsQX1h25uJ+apqZM0sdF2fLwv0XwklamZzRXXr9c+gC7gOq8NhHYzBW3wxOYzKA7uIKehWgnSxDGJ29uRXiHNMg3dUG0TOixN7Pv6Eun9bprT82mIW7bfhV7Lr3ipIzFqTb/EbaShqPtuCzfM6zVT3IHYEj41eKISt4NnHgzA5TltjgH/n63OsBhFJG6L4p4jns1zKfgO95Py+yOpm1nS+bjBs4sG4H5GTj+psqSJy1Fd+DcfR3KPs/nH/6RVydeEl0jYFfHcZdmYhHFNH6aL0sunEG9dlt+RqAhNMRIeImEf5EGSZXvg/1q65+Cf2YVo0ochyFs5SUVoit5zFj2sh2f9AeNL+AQRlZ62cDpvYiFrERahdnEhx6oITTHG801eYimS75m959bAz1qbqFFX0oLoHdBr4TanG6kWwslhfV2kQDrLJ9DpmG3Bi+z229EF2Rc5vdkX5Vi5dbAW6Nxa8LAREl3N/hy9SGF3k5urSBN7OShMJUh59bCe04f7drE9Er3JRnDmoSM0hXAwz4s62z7BpY08rNiswWyUyoeR1KXfZ8YWoJvnFcQtAD8Rneb1NikydoOmLrbIp9EiEH8GVzzzYADuSfCTgdDw2Br87WnEoRN8Ch0hvgtcGKEpiLsT/CFAGD3YAS020Sb8OORZGT7vrwVXPLtoIKcgghphqv7HkChLx9kaecg3LMg0DKMjzEfW3/qDvXA55HLkd1OtvLVhLH9MQtZesxkLw4n1kZ9xftUTMYzlkL8g62/rqjurG4ZhGIZhGIaxHJJNzXorOu2oCP+P6pvSGEbVnIJOxynC2HZPZAQykdbUjr6FNCM0jOWVdWlNfnmddk+kxoyltbPPE1i01jCORctSF+Gt2f/oS81q9d/trc3dMEYU9zO0dWSpWZq+1KxW/1XUKMswasPmDG0NLQ+pWa3+u7/8KRtG7bidoa2jrUcjeVph4VMzPDWE9xrGSOFMpBdMq7RaZDaSuQHdUbgZhvJewxgJPMfQ9vdn2zWRGvIPhva7mduuiRjGMGYmorTYKlafbhiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRhV4KqegDEEElbG8VFgGzxvBcYD44AFwN+BhxnFLziJJ6ucpmEYhmEYhmGEmCEyHEnYBpgC7AyMLvCOR4CrgCtIeLWTUzMMY/nFw9XAZjmX/wl81oEvcUqGYQw7/I7A9AIv7AVeAV4FngAeBn4I7sUOTs5oM0UOsUZdSFgV2ej/q8l3bgKcBXwE+Eq7p2UYhuFhPWBPoKvBy7YF7i1nRoZhDFPGAx9s8b294GcDU8A93cY5GR2i0YZh1InpbAT8muaNkCz29zYMo1PsweDPmL3KmIhhGMstXcCuwK/Av6fqyRiDYwfT4cAprMFS7gQ2GOSVzwC/AR4F/tHxeRmGYSxj9wKv+YqHN3R8JoZhLO+sCVxe9SSMwbHUrPrjWMx3kLSHGK8AZwLfJuHZAVcS3gV8FjgQ2LiTkzQMY/nFw4eBIt7HVYAvAjd0dkaGYYxA/g50Z/77DUjq+WRgxcjrt5WoiPtTGZMzWsMMkbrTw5fwfDTn6pOM4j9yVbESngAuBC4kYRLk3scwDGMo5KVcLQVGRV5rhohhGM3yMrjL9LC/Evg5+lkD8CHADJEaY4ZI3fFMzbmyAPhcYWnehFnArHZNyzAMA8CLZPiEyKU/Ao8Bnw/GP+lhHSeppIZhGEPE3Qf+D8CmkYvjy56N0RxWI1JnEtYHNs+5eh4JfyxzOoZhGBE+D6wWGb8JmB0Z7wJ26+iMDMNY3hiTM/58qbMwmsYMkXrzmdwro4mEJw3DMEonLy1rFvA9JHobsm/npmMYxvKF/wzw7siFJcCvSp6M0SSWmlVv3pcz/hdO5K+lzsQwDCPAwxrEHSYPOknLwsPt6NStDT1s6eCBTs/RMIwRw1vBn57579HAhsBOxB3rV4GzFNCaY4ZIvXlLzvjjpc7CMAwjzu7E95FsPdps4jUke2GGiGEYxXkzcGyB13ngeuCQzk7HaAeWmlVv8oqsXil1FoZhGHH2jIx54ObMf99B/Jm1q4exHZmVYRjLM3cBCbjFVU/EGBwzROrNaznjtnkbhlEpHrYgLqbxC8ey1FEHC5FakZDxwM4dmp5hGMsvnwD+AH7/qidiDI4ZIvUmrzv66qXOwjAMQxOLhkBcJjymngX5he6GYRghC4CfBP8eAV6PvHYF4GLwXyhvekYrmCFSb57LGX8fCSuUOhPDMIwUL3UhkyKXlgK3RMZ/BLwYGd8pLXg3DMMYjGfAfTr4tymimHV75PUOOBu8nXVrjBWr15t7gOMj4yvi+A/g1pLnYxiGAbAjsGZk/FVgmo+/J5Zq2mfQnNeuiRmGsbzhngY/GXgBlJN2fWAz4HelT8sohBkidWYVfsarvAasqK55ppBwOwm95U/MMIzlnLyUqtWAr7dwLzNEDMMYAu4V8I8R767+LswQqS0WrqozR/IacHXO1Y8AUwvfK2E00/hoO6ZlGMbyi5ci88+18ZZb+HjRu2EYRjOskjP+1lJnYTSFGSJ1ZzSnIqozMbpJOJ8kd/GJAdLDLsBv6OWoTkzRMIzlikm0X7lvjzbfzzCM5Qr/PmCdnIux+jSjJriqJ2AUoIf98VzS4BX/AL4L/BLJkRyHYy08WwKfAtZKX/c/JHyps5M1DGMk4+E+YOvIpeeARYO83QHvjIz/HVjHwZIhTs8wjGGPn4w0JAz5I7iNMq8bDbwd+AyQAG+L3Qx4h9SRGHXEakSGA91cSsJ7gcNzXvEW4KvpPyGnWtQwDKNVPGxI3AhZALzHyf8Odo9HgY2C4TWBTwN3DnmShmGMVN4LvtnTzU/NCKk3lpo1XEg4AtifuF62YRhGGeydM/7dIkZIypyccespYhhGO5kHHFz1JIzGmCEynEi4DNgW0eRvlhdx5m00DKM1vOwXu+dcvqmJW+W99gseVm1uVoZhGFEeArYH96eqJ2I0xmpEhisJHwB2AbYDtkSn2XngKeCXOL6L51aS3KJ3wzCMhnipN/tx5NJLwFquiWith98A749c2t/BZS1O0TCMEUFujchgPI3Uys4BvgvO2hsMA8wQGQnMYRSP8mZG8WY8b8DxMivwAsfyr6qnZhjGyMCL6EWsGPRfDh5r8l7rIbVtIf904kAxDGO5xY8nLmoRoxd4BXgRnJ15hiH/H8Phg89jllwPAAAAAElFTkSuQmCC"
|
|
}
|
|
},
|
|
"cell_type": "markdown",
|
|
"id": "639dffce",
|
|
"metadata": {},
|
|
"source": [
|
|
" <div>\n",
|
|
"<img src=\"attachment:fig_matmul_intro_q_1.png\" align=\"left\" width=\"450\"/>\n",
|
|
"</div>"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "b5973043",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Data dependencies"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "a69b4b9e",
|
|
"metadata": {},
|
|
"source": [
|
|
"<div class=\"alert alert-block alert-success\">\n",
|
|
"<b>Question:</b> Which are the data dependencies of the computations done by the worker in charge of computing entry C[i,j] ? \n",
|
|
"</div>\n",
|
|
"\n",
|
|
" a) column A[:,i] and row B[j,:]\n",
|
|
" b) row A[i,:] and column B[:,j]\n",
|
|
" c) the whole matrices A and B\n",
|
|
" d) row A[i,:] and the whole matrix B"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "dbf21585",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"answer = \"x\"\n",
|
|
"alg_1_deps_check(answer)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "9126a56b",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Complexity"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "56a7e26e",
|
|
"metadata": {},
|
|
"source": [
|
|
"<div class=\"alert alert-block alert-success\">\n",
|
|
"<b>Question:</b> Which is the complexity of the communication and computations done by a worker?\n",
|
|
"</div>\n",
|
|
"\n",
|
|
" a) O(N) communication and O(N^2) computation\n",
|
|
" b) O(N^2) communication and O(N) computation\n",
|
|
" c) O(N^3) communication and O(N) computation\n",
|
|
" d) O(N) communication and O(N) computation"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "c068b2c2",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"answer = \"x\"\n",
|
|
"alg_1_complex_check(answer)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "e16d6ee8",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Parallel efficiency\n",
|
|
"\n",
|
|
"The *speedup* represents how faster a parallel algorithm runs with respect to the serial one\n",
|
|
"\n",
|
|
"$$\\text{speedup} = \\dfrac{\\text{time serial algorithm}}{\\text{time parallel algorithm}}$$\n",
|
|
"\n",
|
|
"If we run an optimal parallel algorithm with P processes we expect it to run P times faster than the sequential implementation. I.e., the *optimal* speedup of a parallel algorithm on P processes is equal to P,\n",
|
|
"\n",
|
|
"$$\\text{optimal speedup} = P.$$\n",
|
|
"\n",
|
|
"However, the *observed* speedup would be lower in practice. The closer the observed speedup is to the optimal one, the more efficient will be the parallel algorithm. To quantify how close (or how far) a parallel algorithm is from an optimal one, the parallel efficiency is defined:\n",
|
|
"\n",
|
|
"$$\\text{efficiency} = \\dfrac{\\text{speedup}}{\\text{optimal speedup}} = \\dfrac{\\text{speedup}}{P}.$$\n",
|
|
"\n",
|
|
"\n",
|
|
"An optimal parallel algorithm will have efficiency equal to 1. A real parallel algorithm will usually have efficiency less than 1.\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "5bdb9e58",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Efficiency of algorithm 1\n",
|
|
"\n",
|
|
"To determine the (theoretical) efficiency of algorithm 1, we need to estimate the time of the serial algorithm and the time of the parallel one. Remember that when we say that an algorithm has complexity O(X), this is equivalent to say that the cost (e.g. the time) of running the algorithm is proportional to X (for X large enough). In other words, the time of the algorithm can be written as C*X for a suitable constant C.\n",
|
|
"\n",
|
|
"Using the computational complexities of the sequential and parallel algorithm 1 we can model the run times as follows\n",
|
|
"\n",
|
|
"- The time of the sequential algorithm is Cm*N^3\n",
|
|
"- The time of the parallel algorithm in each worker is (Cn + Cw)*N\n",
|
|
"\n",
|
|
"where\n",
|
|
"\n",
|
|
"- Cn is a constant related the network throughput (the smaller Cn the faster the network).\n",
|
|
"- Cm and Cw are constants related with the FLOPS in the master and workers respectively (the smaller Cm and Cw the faster the computations)."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "961fb287",
|
|
"metadata": {},
|
|
"source": [
|
|
"<div class=\"alert alert-block alert-success\">\n",
|
|
"<b>Question:</b> For which values of Cn, Cm, Cm the parallel algorithm 1 achieves the optimal efficiency? Assume that the time of the parallel algorithm is mainly the time spent in the workers. Since all the workers run in parallel, the time of the parallel algorithm can be approximated as the time in a worker.\n",
|
|
"</div>\n",
|
|
"\n",
|
|
" a) Cm == Cn + Cw\n",
|
|
" b) Cm*N^2 == Cn + Cw\n",
|
|
" c) Cm == (Cn + Cw)*N\n",
|
|
" d) Cm == (Cn + Cw)*P\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "f8527cba",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"answer = \"x\"\n",
|
|
"alg_1_time_check(answer)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "fd92d631",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Implementation of algorithm 1"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "8452d659",
|
|
"metadata": {},
|
|
"source": [
|
|
"The following cells contain an implementation of the parallel algorihtm 1 using Julia's Distribtued module. Take a look and try to understand it."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "6d8a1383",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"using Distributed"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "d5842410",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"if procs() == workers()\n",
|
|
" addprocs(4)\n",
|
|
"end"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "2aec1209",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"function matmul_dist_1!(C, A, B)\n",
|
|
" m = size(A,1)\n",
|
|
" n = size(A,2)\n",
|
|
" l = size(B,2)\n",
|
|
" z = zero(eltype(C))\n",
|
|
" @assert nworkers() == m*n\n",
|
|
" iw = 0 \n",
|
|
" @sync for j in 1:l\n",
|
|
" for i in 1:m\n",
|
|
" Ai = A[i,:]\n",
|
|
" Bj = B[:,j]\n",
|
|
" iw += 1\n",
|
|
" w = workers()[iw]\n",
|
|
" ftr = @spawnat w begin\n",
|
|
" Cij = z\n",
|
|
" for k in 1:n\n",
|
|
" Cij += Ai[k]*Bj[k]\n",
|
|
" end\n",
|
|
" Cij\n",
|
|
" end\n",
|
|
" @async C[i,j] = fetch(ftr)\n",
|
|
" end\n",
|
|
" end\n",
|
|
" C\n",
|
|
" end"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "847ade81",
|
|
"metadata": {},
|
|
"source": [
|
|
"You can execute the following cells to test this implementation."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "b920bde0",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"using Test\n",
|
|
"N = 2\n",
|
|
"A = rand(N,N)\n",
|
|
"B = rand(N,N)\n",
|
|
"C = similar(A)\n",
|
|
"@test matmul_dist_1!(C,A,B) ≈ A*B"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "fa8d7f40",
|
|
"metadata": {},
|
|
"source": [
|
|
"### A more practical version of algorithm 1"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "0e7c607e",
|
|
"metadata": {},
|
|
"source": [
|
|
"The implementation of algorithm 1 is very impractical. One needs as many processors as entries in the result matrix C. For 1000 times 1000 matrix one would need a supercomputer with one million processes! We can easily fix this problem by using less processors and spawning the computation of an entry in any of the available processes.\n",
|
|
"See the following code:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "023b20d1",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"function matmul_dist_1_v2!(C, A, B)\n",
|
|
" m = size(A,1)\n",
|
|
" n = size(A,2)\n",
|
|
" l = size(B,2)\n",
|
|
" z = zero(eltype(C))\n",
|
|
" @sync for j in 1:l\n",
|
|
" for i in 1:m\n",
|
|
" Ai = A[i,:]\n",
|
|
" Bj = B[:,j]\n",
|
|
" # Note the :any\n",
|
|
" ftr = @spawnat :any begin\n",
|
|
" Cij = z\n",
|
|
" for k in 1:n\n",
|
|
" Cij += Ai[k]*Bj[k]\n",
|
|
" end\n",
|
|
" Cij\n",
|
|
" end\n",
|
|
" @async C[i,j] = fetch(ftr)\n",
|
|
" end\n",
|
|
" end\n",
|
|
" C\n",
|
|
" end"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "52005ca1",
|
|
"metadata": {},
|
|
"source": [
|
|
"With this new implementation, we can multiply matrices of arbitrary size with a fixed number of workers. Test it:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "c1d3595b",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"using Test\n",
|
|
"N = 40\n",
|
|
"A = rand(N,N)\n",
|
|
"B = rand(N,N)\n",
|
|
"C = similar(A)\n",
|
|
"@test matmul_dist_1_v2!(C,A,B) ≈ A*B"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "9f6424c8",
|
|
"metadata": {},
|
|
"source": [
|
|
"Note that each worker will process on average N^2/P entries instead of a single one as in the original implementation. This invalidates our complexity analysis."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "75f30a9c",
|
|
"metadata": {},
|
|
"source": [
|
|
"<div class=\"alert alert-block alert-success\">\n",
|
|
"<b>Question:</b> Which is the computational complexity of the work done in a worker for this variation of algorithm 1?\n",
|
|
"</div>\n",
|
|
"\n",
|
|
" a) O(N/P) communication and O(N^2) computation\n",
|
|
" b) O(N^2) communication and O(N/P) computation\n",
|
|
" c) O(N^3/P) communication and O(N^3/P) computation\n",
|
|
" d) O(N/P) communication and O(N/P) computation"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "76a18834",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"answer = \"x\"\n",
|
|
"alg_1_v2_complex_check(answer)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "8bf21c75",
|
|
"metadata": {},
|
|
"source": [
|
|
"<div class=\"alert alert-block alert-success\">\n",
|
|
"<b>Question:</b> For which values of Cn, Cm, Cm the this variation of the parallel algorithm 1 achieves the optimal efficiency?\n",
|
|
"</div>\n",
|
|
"\n",
|
|
" a) Cm == Cn + Cw\n",
|
|
" b) Cm*N^2 == Cn + Cw\n",
|
|
" c) Cm == (Cn + Cw)*N\n",
|
|
" d) Cm == (Cn + Cw)*P\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "6de8d00f",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"answer = \"x\"\n",
|
|
"alg_1_v2_time_check(answer)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "3e0d32fc",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Parallel algorithm 2\n",
|
|
"\n",
|
|
"Each worker computes a row of `C`. We need `P=N` workers.\n"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {
|
|
"fig_matmul_intro_q_2.png": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAyIAAAECCAYAAAACfmNBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAACAASURBVHic7J13mFXV1YfffadQBYagKAgqiFHBRonGxJYYEzUx0QREBUXKABKMDQWkXDpWFBRhBhRUFDEx+b4Y02M0+UwUsYsNGyiIhaL0mbn7+2OfGe/Z+9w2c++5d2C9z+Mjs06565Zzzl57r/VbCkEIkcGDB+9XXFx8QCwWa6OU+qqqqurTJUuWbMm3X4IgCIIgCEK4qHw7IOz9DB8+/Byt9S+As4COAbu8p5R6OhaLLevYseM/otFoLOg85eXl/1JKNQvaprXeA2wFPtJaP1dUVPQ/CxYs+DSRT+Xl5VOVUud4x/62oqJiRrrvp7y8fIZS6ofesb+uqKiYne6xyRg0aFCbkpKS3pFIpFcsFusdiUQOq91WU1Nz9aJFi/6VjdcRBEEQBEEoBIrz7YCw91JeXn6iUuoOrfVJKXbtorXuopQatH79+tXDhg27prKy8s8B+52gtW6R6nWVUkNjsdi88vLye1q0aDF+zpw5OwN2O1Rr3cv796pU54xHa30Y0Mt7rWczOTaI4cOHj9Za/wro6p0fpRRa67p9ioqK2jT0dQRBEARBEAqJSL4dEPZOhg8ffhHwTysI+QJ4FJgJ3ABMARYB78Ttc7RS6k9Dhgxpm+IlNgDvxf33PhAfcDQBrtq2bdsTo0ePbtKgN5NjYrHYcXhBiCAIgiAIwr6CrIgIWWfYsGE/11ov4+vUv4+ACZs3b37w0UcfrUlwTHel1ASgH2kEyEqpgQsXLvx7vK1v375Fbdq0+S5ws1LqW95+p+/evXssJugpdN7XWq9SSq1SSq3SWt8PHJhvpwRBEARBEHKBBCJCVhkyZMjhSqnFfB2EvAycXVFRsSHZcZWVla8DF40YMeKuWCy2oj6v7QU5Tw0aNOi00tLS/wN6epuuikajM6LRaHV9zptrYrHYbOD6xYsXb4q3l5eXF6S/giAIgiAI2UBSs4SsUlxcPANo7f25ORaL/ThVEBLPggUL/q+4uLhX8+bNt9fXhyVLluzSWk+OM7XZsGFDn/qeL9csXrx4jR2ECIIgCIIg7O3IioiQNUaOHNmlpqbm53GmiYsWLfoo0/PMnz//k4b6opTyKUzFYrFDgP809LyCIAiCIAhCdpAVESFr1NTU9AOKvD+/qq6uvj9fvmzevHkbUCc7FYlEUqptCYIgCIIgCOEhgYiQTU6N+/c/77333q/y5UirVq0OJq5PTiwWk9QnQRAEQRCEAkICESGbfKv2H0qp5/LpSFFR0QXxfyulXsmXL4IgCIIgCIKLBCJCVohGo8VAfO+Ptfnypby8vCcQX6z+WkVFxbv58kcQBEEQBEFwkWJ1ISt8+OGHZSUlJSrOtDXHL9lt6NChW+L+LikqKuqgtT4LuAxo6tm11npcjn0RBEEQBEEQMkQCESErlJSU+H5LWuuc9sDQWt8TiURsm71bDXBDZWXl47n0RRAEQRAEQcgcSc0SskKTJk3sYvDWgTuGQ0xr/YTW+tSKiorb8uiHIAiCIAiCkABZERGywrx583aXl5dvB2plctvn+CUXKaXW1P6htd6plNpSU1PzUSQSWVVZWZl2aphSSqXeq/77C4IgCIIgCC4SiAjZ5GXgZO/fvXP5Qkqp5QsXLvx7A06xu/YfWutmGR7bPO7Y3cl2FARBEARBEIKR1Cwhmzwd9+/T+vbtW5RwzzyjlIovdC/L8PA6dTCllPQnEQRBEARBqAcSiAhZQ2v9+7g/O7Zp0+bcvDmTAq31urg/j8rw8CMTnEcQBEEQBEFIEwlEhKxRWVn5DPBM7d9KqVmDBg1qmuSQQPr27VuU69UUrfV/4v48rLy8vGs6x3k9StolOI8gCIIgCIKQJhKICFklFotNBGLen0eXlpZWeM0O0+Lyyy/fv6ys7M+tWrXKqepWx44dXwRqVzOU1vpX6Rxn7fdGZWXlO1l3ThAEQRAEYR9AAhEhbfr27Vuaap9Fixb9Q2s9M840cP369X8YPnx4t2THlZeXl5SXl48sKSl5Bfh+Q31NRTQarVZK3VH7t1LqiuHDh1+a7Jhhw4ZdoZQaWPu31vpWwGleIgiCIAiCIKRGVLOElESj0cjHH3/8e6XU48A9qfbfsmVLtKysbH9guGc6S2v9enl5+R+Bvyql3ovFYp9FIpFWQMdYLHYqcC5wYM7eRAAHHXTQ3PXr158PfBco0lovLS8vH6i1XhGJRF5TSn1VU1PTKhKJHAtcrLU+pfZYrfUTlZWV92XDj6FDhx4ciUSCzrV/3OtNLS8vvzJ+o1LqNwsXLlyQDR8EQRAEQRDCRgIRISnl5eXHrF+//nal1JlKqefTOebRRx+tAUYMHz78da31DGA/oAQ4DzhPa41Sqq4TutWWYztwU6dOnb7M6hsJIBqNVpeXl58PrADO8MxnKqXO1Fpj+1mLUurxJk2aXEKWVkOUUs2BM1Psdrxt0Fq/mo3XFwRBEARByAeSmiUEUl5e3rq8vHwG8CJmkLwVvzxvShYuXDgP6ALMBlLVUryjlJoIdKuoqJgWjUar6+F2xlRUVHzeoUOHs5RSg4HXUuz+AnDJQQcd9NN58+blPFASBEEQBEHYm5EO0YLD8OHDf6C1vg04BkAptaS6unrG4sWL16Q4NClDhw49LBKJHI1RnSrTWn8JfKqUWlVRUbGh4Z43nPLy8oO01n2Adkqp1kqpLbFY7DOt9cpFixZtzLd/giAIgiAIewsSiAh1DBw4sEXTpk2nKqVGY1KpNimlzl+4cGFGKyGCIAiCIAiCkAoJRAQAhgwZckhxcfFyrfVJmNqHxTU1NTcsXrxYOocLgiAIgiAIWUcCEYHhw4cP0FovBJoD64FRFRUVv8uzW4IgCIIgCMJejAQi+zB9+/YtKisrmwKMx/wW/lZTUzOyobUggiAIgiAIgpAKUc3aRxk5cuQ327Zt+yxwIyYImdGhQ4ezJQgRBEEQBEEQwkBWRPZBhg0bNlAptQCTivW5UmrkwoULf51vvwRBEARBEIR9BwlE9iH69u1bWlZWdgtwJYBS6s9a68sLRTpXEARBEARB2HeQQGQfYfDgwfsVFxcvA36CUcWaWlFRMYUsdQcXBEEQBEEQhEwoyrcDQu6JRqORHTt2/BX4AbBda923srJyYb79EgRBEARBEPZdZEVkL2fkyJFlsVhsgda6H7BJa/2jysrKlfn2SxAEQRAEQdi3Kc63A0LuGDRoUJuampqngR7ATqXUsIqKCglCBEEQBEEQhLwjgcheyogRIw6IxWJ/wQQh65RSFyxcuPD5fPslCIIgCIIgCCB9RPZK+vbtWxqLxZYDxwHrI5HITyUIEQRBEARBEAoJWRHZCykrK5sHnAFs01qfsWDBgrfz7ZMgCIIgCIIgxCMrInsZ5eXllwHlQEwpdUFlZaUEIYIgCIIgCELBIYHIXsSIESO+BSzy/py6cOHCv+bTH0EQBEEQBEFIhMj37iWUl5e3Bl4EDgMeqaiouAhpVigIgiAIgiAUKLIishcQjUaLtda/wwQh7zRp0qQcCUIEQRAEQRCEAkaK1QucK664olNVVdVxVVVV/16yZMmWoH0+/vjjUUqp0zENC/vNmzfvy3C9FARBEARBEITMkBWRAqe6urqDUur3paWl7wwbNmywvb28vPxIpdQsAK31mMrKypfC91IQBEEQBEEQMkMCkQKnoqLiWWAO0E4pNSBgl8VAM631Ex07dlwSqnOCIAiCIAiCUE8kEGkEaK3v9/55TN++fYtq7cOHD/8+cDLwZVFR0ahoNBrLi4OCIAiCIAiCkCESiDQCWrZs+RawG2jXunXrdmC6p2utb/F2WbJgwYIP8uWfIAiCIAiCIGSKBCKNgDlz5uwEPgEoKirqBFBWVnYOcALweSwWm5lH9wRBEARBEAQhYyQQaTysAtBaHx+NRiPAFK31E0qp6xctWrQxz74JgiAIgiAIQkZIINJI0Fo/7/3/2A0bNgwAjlVKnVhVVfXrPLsmCIIgCIIgCBkjfUQaD68CRCKR7lrrb3m2O++9996v7B379u1bWlZW9k3gRK31J5WVlY+H6aggCIIgCIIgpEICkUZCJBL5QmuN1voIoD2wHVgKUF5e3lop9e1YLHY6cKJS6ttAE+/QhwEJRARBEARBEISCQgKRxkc7IKK1nquU+u6wYcP6AT/UWjdVSsXv9ynwQiQSeSIvXgqCIAiCIAhCEiQQaSRorTd7/2wK7FFKXQM0iQs+3gb+AzyplHp94cKFz+fBTUEQBEEQBEFICwlEGgkdOnRYs379+j1AqfcfwJvAo1rrRzp27PiGNDQUBEEQBEEQGgsq9S5CgaDKy8urtNYfKaV+HYvFHl60aNGqfDslCIIgCIIgCMJeTDQajYwcOfKb+fZDEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARh30ABBwEDG3iez4D7Gu6OIDRKrgBaNvAcC4GtWfBlb+KHwHENPMffAem3I+yLdAV+3sBzfAg8kgVfCpHWwPAGnmMbMD8LvghCY+RyYP8GnuMBBZwI/LeBJ3oNOAbg+eefP0spNUBr3Q0oaeB5BSHf7NJavxSJRCp69er1SoJ9NgAHNvB1ugLvNfAcexuVwNAGnuMq4M4s+CIIjY0fA79v4DmeBL6XBV8KkS7Auw08xyeYyVxB2Bd5FejRwHOcVBz3xzbg0Xqe6KPXX3+9dNeuXUu11v211g30SxAKB6XUd7TWI1euXDmpT58+MwJ2eRhoU8/TDwSKU+61b/MC8HI9j309m44IQiNiLfXPVDgMOD17rhQ01cAD9Tx2SzYdEYRGxm+BlfU8ti9eJkn8AOhzYHB9vdm5c+fdQP/6Hi8IBU5EKTV91apV63v16mU/3K9pwHn7IYFIKh4DggJAQRAS8wr1f6b3Z98JRHbTgLGPIOzDTGrAsWfgBSKRbHiyatWqw2l4rqUgFDxa69nPP/+8pBwKgiAIgiA0kKzMxGqtzwWKku3z5CdP8p/P/uOztWvSjmHdhqGUyuj1anQNd795N9uqt/nsZx50Jt9q962MzpUpD7//MO9ve99n69GmB+d1Oi/jc23es5kFby1A409lG9BlAJ1bdG6Qn8nI9uf35tY3eWztYz5bsSrml0f+kubFzRvkazKy/fkF/Ua/0eQblHcrj/+NHoCpq/p3vZwWCgpt7lszcVPrfq3gr/U43wnACMtcBYxT8FX9vEzrddsB03Anl25T8HY9zvdT4BzL/AkQVZCz3FsNxwMjLXO9Pz8NVwLdLfNzChbX08V0X/dnwNmWuV6fX7Z/o0LY6DMxaSjxbAFuBFWd4bkUEMWtSfwjqN/V08F0X3sIYA8QXgc1tx7nagnMxq0jXgDqxXq5l97rKmAybl1PPT8/fQRwrWWMARNBfV4fD9N83Sx/foG/0a3A+Mx/o5mTrZSQg1Pt0Psbvblj9R18vONjn32/kv246LCLMnqxBW8t4P537/fZDt/vcK7tbv8ess+J+5/I3W/eza6aXXW23639HQc2OzCjQbzWmmkvT+PpjU/77D/o8IOcBiEARaqI7m26c8OqG3z2v63/G8tOXcZBzdKvvdtRs4PxL4xn7fa1PvvVR1+d0yAEoKy0jP1K9mPJmiU++yubXmHpKUtpEmmS9rnWbl/L5Bcns6NmR50toiLMO3FeUKCc2y9ICA0FNdoElf9j/qyjr4aeCj5I91zaLDM/DHzT2jQml0EIgILPNWwCxlubvq3hRAU70z2Xhm6YnPn94swx4Ee5DEI8XsYMsuyZnXZkmPqrTbH2Hfi/1y2YB3iu+TtwE3CEZd8CzMnwXFHgesv2GnB1vTwTwubfwM2YSYp49gATMzzXVbjpMB8C4+rnWkb8BfOb/obfrD8C9VjQAUmYj6vW+ifqXwuYJkqDfhJzfcZPnl8C+lugVqd/Lt0EWI77vc7KbRACoLaBfh+41drwfdC9QGWgwKkPxjy32lkbLg4jCIEspWZprVMGNPuV7MesnrMoifgDuDtX38krmxOJEbms/HwlS9cs9dmaFTVjdq/ZGQ0860uXll0Y02OMzxbTMSa8MIEvdn+R9nmWvrvUCUI6tejEhGMnZMXPVHz/oO/T91B/APxl1ZeMWzWOap3+b2/mKzOdIOQ7B3yHiw+7OCt+pmLkN0dyfNvjfbY1X63hztXpCyXtie1h7KqxviAEYGi3oZzY7sSgQyQ1ay9CGWWhuy1zGbBcZ/ZdL8ANQv4I3NYA9zJhEvAPy3ZMJq+voSmwAn8QAjA9jNl3L9C5HFNoHc+FGoakex4NnYAl+IMQDQxW8H7gQVnECzwvxtQfxHOThm+nex5t8qjtQeZ2oJ+CHQGHCAWH2oWpBfzS2jAe9Fnpn0f3wQ2iq4D+oDY1xMP0UOuAy3AnIxaDPiz98+ghuEHIRuByULGGeJge6ilgumVsAawAncns6RzcIORZzIpLGNyOmUCLpytGbTJNdDHBQcjdoB5uiHOZkJVAJF2ObnM0o48a7bNV62rGvzCeL6vsa9Rl055NTHhxAjH8v9Vxx47j0JaHZtPVpPy00085p6M/ayGRb0G8tuU1Fry1wGcrjZQyq+csWhS3yKqvybj66Ks5svWRKX1LxKMfPMqfPv6Tz3ZA0wOYcvyUjNPt6kuRKmJmz5m0KfVnLaz4YAV/Xv/ntM4x+9XZvP2lP3ulZ9ueDD2iocqxQiPiOow6VzwnYtKdUqJNOtYllvkj4NIQVhEAs7qDGSjYs3EjtRkUp8M8THpUPE8DUxvoXtoos7IzEKNmFM9dOo2+Ml7wuBxn5pa5yqi8hIIy/WtusMwlmAC3barjNbQHluGmPV+h4I3seCmEg1oDlFvGCPAA6A6pj9dtMP1cSq0N14NqaPuFDFB/wJVD93zTtm8B6O6AncoVAy4B9Uk2PEyTqcDfLFt30pZ617/ATSHdDFwIqqqhzqWHqp20+dDa0Be0nR6ciOnAdy3bq8CYgH1zRqiBCMBFh17E6Qee7rN9svMTpr9sB6h+Eq06nNfpPCcoCINxx47jsJb+SYCg1RqbRKsOQUFBrkkU/Cxd467W2Kz5ag13rL7DZ0sUFOSauuAHf/Az65VZTiqgzV/W/4X/Xfe/PltZaRkzes4gEv7lIeQJZWau++E2lbxeu2lCPrTRUb/dMtcAlyk3KMgpygt+cIOfhdpdrfGhzfu3o+/PgIu9ICc0lAl+pljmpsAK7a7W2MwGTrZsQUFBGMzFDX46A0s1JJyt0XWDVCeXfYmC+wMOEQoe9Qhwr2U8AHgIdNIaW0xNk73qEBQUhMH1wH8sWx9gVvLDtLfqgL3qMAXU37PlXHqoGDAAU7cVz1DQA5Ifq7sCi2wjZkXHDgpyjPKCH+zg5w7Q9mqNhf4RbsCxDegHKu1U3mwQ+khLKcWk4ybRobl/EuAfn/yDRz9I3Mak8p1Knvv8OZ+ty35duL6HnTobDonSwRa8tYCXNr0UeIzWmikvTWHDzg0+e1CaVFgEpYNpTP3Kp7s+DTxmR/UOxq4ay+6YP+sgKE0qLL5zwHe4pIt/Qnpb9TbGvTCOPbE9gces276OGa/4VWEVionHTWT/pg1tFio0NpRpbjbMNXOfTlAXpOuW9GlmbZqk3DSpUFAmHczOHW6JGcQ3DTpGw+G4S/oaGKIgeTSfO2Zi8tLjOQJ3RrUObQrs7dqJbZhgyk6Tyjneathg3HSwHwOjkhw6EfiBZXsbU3wvNF5G4dZBnAYkycnWvwQusIxempTKQ9M25aWDYaeDXQ36Z0kOvAs42rI9Rd6k2dVGzEqxPclyD+gEs8K6BHgQaG1tuB2UnSYVEupZ3LqhJphUs1bBx+gDMT2G7BhgJKg3s+1hKvIy5duqpFVgvcic1XN4c6v7Gaz6YhWL3/aLnJRGSpl+wnSaFgU+V0Oh635dubaHv0C+Rtcw/oXxbNnj9jla9v4yntr4lM92YLMDufHYG3PqZyp+0OEHnN/5fJ9t857NCVPNZr82mw+2feCz9WnXh0u7XppLN1My+qjRHFt2rM+2estq7nrzLmff2rqQ7dXbffZBhw/i1Pan5tRPoXBRpqnrQsvcFnhQB4t73AMcZdmexBR15pPxwP9ZtmMJ8Eubh9YjgP3Qulk1vDN3vVEmZWMgsN7aNEibFDQf2oimLMVdaRheH+WwbKFMgfqFmOLkeG7V0MveX5uBqV3EvAtTF5JT0QMh19TVi9jf4yRPuchCH4spdI+nGrgIVPpFqVlHrQUG4V95VcC9oA9199f9vf3j+RRTEB3qaqsfFXSvbokZxNuTS2AmeE6ybCtxRULC5ibce/XhQIW7q45gUj5t5bVFoB7MhXOpyFvuSfc23Rn5TX+K3Z7YHsa9MM43ONy0exM3vnCjMyAee8xYjmhlC5KEzwWdL+Dsjn6Vxk93fcqkFycR32F+9dbV3P2mvx62WBUzs+dMWpUkCFpDZEyPMc7n+cIXL1D5tn+S9Ldrf8sTHz3hs7Utbcv0E6YTUflNZSpSRczqNYvWJf7Jioffe5gnP3nSZ7vt9dt468u3fLYebXow/JvSDkfgKsCWQDwFqwjRK54OKrq8JOxUJhtVN1jBHqxcqd3Z1duBnpbtOTJX9Mk6qm6w4nyed+u4ANALEoOKLu9R8FBuvUyNCh6sNAEe0XGzqxr2x/hrp+qMVjlXFBLCQQWtbEWAB72Zag/tDYid1dYbQdmTDHlAJRT58FYOPHQ33AGxN8mg7EmGfJBI5MNaVdY/BkZb+3mTDCo47SI0lMY8j+zV6ws9cYB4pgDfs2yvA7/KkXMpyevIcWCXgZzW/jSfbd32dUx/xdSLxHSMSS9N4vPd/jTrszqcVa++Hbli3DHjOKTFIT7bM589w7L3lwHwVdVXjH1+LFUxfxrflUdd6czg54vSSCmze82meZE/fXPxO4t59vNnAXhv23vc9rpfgCeiIkzvOZ1vNLHrQvND+6btiR4f9dWLaDRTX57K+p3mnve3DX/jNx/+xndcq5JWzOo1i2IlTc73dZQ3+0yAyo2GswC0KWwMKrocoGADBYCqS99wVW60l2+u4RfAFdb2zcCFys07zgvKpG8Eqtzor/PNg4ouX8PV+M8nSVVu4upC7OLlFcrNSRcaNWoJZvUunvb460WCVPj+hJt2mU+uw9RfxRMn8qETqfDNAmWnXeYJVYOpq7Pr+a4A7Yl86CAVPoAhoHKuwpce6jPMpI0j8gHaE/nQCVX4QOVNhS+vgYhSisnHT3b6Vvx1/V/57drfct+a+/jvZ35BiE4tOuU9lcmmeXHzwHqReW/M4+XNLzPtlWl1g+BavnvAdzPun5JrOrfozITj/KmqMR1j4osTWbd9HWNXjfX1TwEjcZvrJpKZckr7U+h/mL/lwFdVXzFu1Tje3/a+I4ygCP4dCvsuChKq3Gjogpm1tosupylXiSWvKFPQeodlboOZie+Gm4ZWK3H7QQjuZUKQyk0P4A4NQUWXtRK3oRZdJiNOmvgDa1NfDcOBscAPrW1rcOuWhL2DUYDdt+IM4AbQw3FV+D4hNInbdFG7MWmHjsgH6PMwkzV24eh/cYUo8oz6GBOM2J/tAk/pK0iF76569E/JMSqhyIdXZB+kwvfLzPqnZB+FiV7/i7k5ZqAF/TUrV66co5S6qr5OvLTpJYb/Zzg1+uvV99JIKTW6xrEt+e6SgkjJCmLFByu4+TV/Omfz4ubsqPYHmgc2O5CHTn2oIFKygpj68lRHSSroffT+Rm/mf3t+QapLVcWqGPJ/Q1i91X99Bb2PS7pcwtVHZ9QbbFDv3r2Ty6OlzzbM7G5X4L0snXNvoRKj4jSBPBU06q99iGcbJo84nn8CZ+Y7JSsIbSQ//4XbFTnofdyhCrRRnjYKUi9iZo7jCXofA5UpKi04tFH0egp/zdEu72/bdrJy0wTDoD8m1e1J3DSOvYUuGIGK7bi/n5DQPTBpkPHpV9Xef/EFsDXA970eGAWI7oepM4sn6Lr8HDgB1EehuJUxejauul7Q+3gBONkLxAoMHcGsnNliF0Hv4wFQ+SrufR84FDipIEaQx7c9nhHf9Mse74nt8QUhANd2v7ZggxCAfof244cd/BNa9qC3SBUxo+eMgg1CILj+xn4fbZu0ZdoJ0woyCAEoiZRwc++bnc/Zfh9Htz6aXx75yzBdExoXo3Fz8+2b+WcUQF1IIpQpku6Lq3Jjv4/nyY/EbVp4KW8X4X7O9vu4t1CDEAAFz+CqJDXFFUO4Nk9BiBAa6jXcepFiXHW7aOEGIQBqBSaVLB77utTA0MINQgBzXdr1N/b72IYpsi/AIATipInt+hv7fbxDcuW+0CiYUeRlXS/j2/snbjj7/YO+z88P+XmIHtWPcceOo2Pzjgm3jzpyFMeVpezJlVdKI6VM75lYkSyiIkw9fmrBS9we2OxAJ9Usnv1K9mN279mOepsg1BJXL5JIrahW4rYQii4Tokyn8qB6kVq2YupC8lx0mRxlZujt7tLxrMYtKC1Ebgb+N8n23yiYH5YzQj5RizC1QYn4Jyl7dBQEQSIf8dyaP4nbdFHVmNXAZP2fRoB6K8n2AkAlEvmoxXuuqYJQ4SuYQCSiItx47I2BM+wHNTuIicflXcAlLVoWt+Ta7sH1kSe2O5GBXWyRncKkS8suDOwa7OuALgM4aX9bwa4w+d6B3+OU9qcEbht/zHg6NEujqa2wT+NJv96WYPNt+ZS4zQQFj2P+C2KEajypgVFMYGWzB1MXkreiy3Tx6kVGETxQWIubDijs3VxJ8O/2c4xUb0GutvpRu0k8w/48UFjFvQlRH5G4huU+UMvC9Kb+qKdIvDJ8Hajghnd5oGACEYD71twX2Lfii91fsH5HQU841lGjaxJ2V/9w+4d8VV0QAWhKNu3exO/W/i5w2xtb3yCmC6heLgmrt652BA9qefvLvLUWEBoRnqSqXbheSy/tFv8VJBp64xZD7/3glAAAIABJREFU15KfTqT141KCG0yWAoW93OxnHMG/nQOAQwLswt7LNbjiF2CEJbqG7Es90YrEqZ2dMffRRoBuCSTK1+4BujRMb+qP7oYr1V5LQd3vCyYQ+fuGvzuSqrXsie1hwosTHMWmQmT+m/N5eXOw3PsnOz9xOnkXIrWyyZ/t+ixw+8rPV3L/u/eH7FXmJJJNrmXpu0v5z2f/CdkroTGhjaDHYlxJ1Vo8lZvCRhv5zGWYwXoQ12v4SYgu1QttOqvbKmDxLPT2KWg0/BxXNrmWphhpYlvyVNgr0aeTuCGe1x9HF4Y+fnKuBX6aYNsB+KWJC5l7cGWTa+kDzAzRl3qSUDa5lqGgB4ToUFIKIhD5eMfHTHt5WtJ93vvqPW557ZaQPKofz3z6DA+8lyzV0wRcv/7w1yF5VD+WrFmScBWhlnveuidhwFUozH51tiObHE9Mx5j0YuKASxAwQUaqAfoU7fawKDQWkHyArjD9RRIXuOUZXSdDmXSA3hJ4yOsWX5BoMzsc0PHYxxHAnSG4I+QV7Q3Qk66qdgKWeisOBYruQ2plw9Mo+PQsPQxT6J2Ma0AnCrgKhTtIvepxD+gjw3AmFXkPRKpiVYx7YRzbqrf57D/r/DPKSst8tv9Z9z/88eM/hule2ny26zMmvzTZSVm6tOulFCn/Peb2128v2LSglza9xMK3/a0FmkSacHGXi322Gl3DjS/cyJdVds+3wmDFByv48/o/+2wdmndwVM0279nMxBcnBqYECvs2nsyqPUOyE3dGvhgz+C3IWUsNIzGFi/F8iNtxfH/gwQJONZuHm3r1d4z8aTy9SF7Qnjc8KeVHgbbWpnuBjZbtcg2No6hQqAfa66aO3cDqYdxeM+fiqmsVCLoNZoLAXm29A7ePzyTQp1GQ6B64wX81YM+Ae6vk+uBQ3MoY3Q/Tlyiez3CborbErFLlfdIm74HI3DfmsnqLv9dD9zbdGXvMWKYcP4WI8rs469VZfLDtgxA9TE1Mx5j80mQ279nss//8kJ9z5VFXMvwI/29iT2wPN6y6ge3V28N0MyVfVn3JxBcnOrLJY3qM4Zqjr+GsDmf57J/s/IRJL05C60RCPPlhzVdruHO1/35SpIqYfsJ0Jh8/mW6tuvm2Pf/F8yx6WxoXC1+joQyTymRLql7l9dl42LJ3Au7XbufdvKLhGNxC+2pMYDIEV5r4dKDglEG0US6zC7g/xQzUg6SJf6XhZ2H4liGzcfu5rMQEi0HSxPdoKIhZSyHrjMft9bAa8zvvh6tgdwvoQlSJWYzpBxHPb0BdDfzKshcBy0HbvYDyjG6B6YPSzNowCdT1uI1fv4EZxNvPhzyju+KutmrMvX4krjTxCbiBVujkNRD596f/Zvn7y322/Ur2Y1bPWRSrYk4+4GQGdPGvku2o3sHYVWPZHSscCefKdyp57nP/pFzX/bpyTfdrABh0+CBHZWrd9nUFVS+itWbKS1PYsHODz/6DDj/gZ53N83zcMeMclal/f/pvln/g/w7zSaLfxy+P/CXHlh1LaaSUGT1nONLEi95Z5HyHwr6JF0zci/twfVR9fZMfiasydQ5GwrIg0KZR5grch+uNCp7xpIkvwVXrmajhzDB8TAcNh2MaS8YTwzQt3OBJE9tiAgq4V7vfYd7Qwb+PLXiyyZ408c3W9haYehH7OxQaNfoUYLJl3IXpT7ED1ErcXjMlwIOgW4fhYXro0bgF0XHXo6rETOjEcyBwX4Glmt0FHG3Z4q/HqwBbZSroO8wjugTzWdu/j5tB/d6TJr4I+MLaPhp0oqL2UMhbILJx10YmvzgZHSdrr1BMOm4SHZp/PdgN6rsRNOOdL17Y9AKL317sszUrasbsXrNpEjErXrV9N9o1aefb7y/r/8Lv1xWG8uey95fx1EZ/v6SDmx/MhGO/vhcm6rtx5+o7eXXzq6H4mYrZr812VsxO3t8f0HZp2cWRWI7pGBNemMAXu+1rVNgHuQp3Nv1dYFjtH8rru4E7a3mThsQNkcLlHtzZ9D8Bt9b+oeB13JSPCCZF68Dcupcar9bjEcDuADtLwV9q/1DwG9y+G2XAcm0GcHlFw8HAUtwVsyHKdBiuZRLwb2ufY4j7zoTGji7D9A2xZ9NHg4pfobwVt9dMV9ygPE/oY4GbLGMV0B9U/ArlCMDuu3E2cF0OncsA3R8YZBk3Apd8LZusEvWTGg/aXtXKF7cCJ1q25zD3FA+1DvNe7TSWxaAPy6FvSclLIFKjaxi/ajxbq7b67P0P688ZB57hsxWpImb2mknrEn+Qt+KDFfxjwz9y7msyNu3exI0v3OjUF4w9ZiyHtfR/p22btGVGzxlOn5SbX7uZ977Kr3z/6q2rufvNu3220kgps3vNpkVxC5/96NZHc8U3/WIv1bqaiS9OdOp8wuZ3a3/HEx894bMd0PQApp4wFaX8z//zO5/POQef47Nt2rOJKS9PaTTSxEL28SRu7fqCKmCAF3zUoYw2/jhr3xLM4NeuAQgVDYNx6ws2Apcr/DcsZVIrbJWN9sASnf/03duBnpbtvwTr/F+D21DtxAT7hoauUz6inbXpLgWPxRuUSZu7CLeh2hXa2IVGjVbAfbjyzCu8xoZxKA1cjtszpy/oRHLiIaFbErzaOg6UJUWptmEG8bbs6UzQJ+fKw/TQ3XBTmWLAQFD+9BDUO7grr16dj7brfEJG/xi3kesW4EJQ1mSZehxTbxdPG+CRfEkT5+UhEyRxe1Troxh9VHBD3PZN2xM9PoqyJpOmvTItqSpSLkkkcfuTTj/h3IPPDTym1zd6MbjbYJ9tZ81Oxq4amzdp4kQSt786+lcc2To4NXlAlwGc1t5fb/bRjo+Y/vL0nPmZive2vcetr/snDSMqwpTjp9CmtE3gMWN7jOWQFv7nwTOfPsOD7yXqASTszSSRuB2jzOA3iDmA3S24M25OcWho6I77oIkBlyj4JMFhVwBvWrYfAmOy7F7aJJC43Qz0VyY49KFgN2bAYyto3KDhLHv/EJmKq6r2KnB90M4KPgIuw521vEdD3mYthaxwHa7E7RriVlv9qE0YFadqa8OdoPPZC2IBrsTtHzETBwGoV3Blzosx9SJ5mrRJKHE7HdRfg49RyzErm/HkWZpYdwKW4F9t1cBgUB8kOOg64FnL1gfIyyAu9EAkSOK2eXFzpvecTmkkcTB2SvtTuPCwC322VH0ickmQxG3nFp0Z0yP5c7v8iHL6tOvjs7237T1uX53g+s0xQRK3p7Q/hX6H9Et4jFKKycdP5qBm/kmAv234G4+tfSzBUbkjUTA3/IjhzmcdT/Pi5r4UulrufvPugpcmFnJCkMTtH4C5iQ7wOmRfjlGhiucXnlpVqHgSt8twm6NNUUZhKhAFtbOWtsrNdA3fya6XqUkgcasxKzr2Z12HMoO6oFnLB3TiXjA5Q8P3cAOObZgO8PZnXYeCJ3DV2VoDj+jEvWCEgkYHDfR2Y2atk8hPqn9hgtl4vEG0zkOvGV2OqS2L5yPgUm8VJwFqLvBby5hPaeIgiduncT9rm1HAG5btdGBsdtzKBF272morNs4FZX/WcagqzHe41dpwHejzsulhOoQaiCRKfRl3zDhnZjqIq46+ih5tevhsq7eu5p637smqn6l4dfOrVLztf0bWpjI1Lwpqjvo1iWbpH/vwsdCliYMkbutWn1Ty+0KrklZMPWGqI01862u3hi5NHJTe1usbvbi82+Upj+3WqhtXHu1PkU+UOijsvWgz825L3K4DLlPuzLQPZWbpL8SdpZ+jjSpJmNyNK3H7FKk1/lFmlt6eSSkGHg5Tmtir6ViOm952u3JXnxyUqSm51zIfgJFYDm3WUpv0tmW4rzlSuatPQdwA2B1XG0lDNcGP9lJfnCDyOlAvpHGCGYA9S9+NJJMkuUH3wKwCx1MDXAbKTicMYjD+miiAH2MG9yGi++JK3G7CpGTZynUWajtm0sYW+ZgC+nvZ8jBNZuJOFK0irSa7ylf3WGvECAl0zoZz6RJaIJKoGPiCzhdwdsez0zpHsSpmes/ptCxu6bM/8O4DPL3x6az5mowvq75k/Avjqdb+ldLrul/HEa3Sa+hbV7dgpZrNenUWH25PONmXVRJJ3M7qNcupx0nECW1PoPwI/+Tjntgexq4ay44a+xrNDUEF/4nqcRJx4aEX8r2D/PePjbs2En0pWnDSxEL20cHFwNXARcpVGAlEmWXuqGVuglE8sgutc4I2wdBgy/wpcLFyZWEDUSaQCZImXhqiNPFNuAX/K0ncfTqIUcArli20hmq6LnfcKfhfpIw9Jaqu8NeRJr5GJ+5gLRQm9+Km1T2Oud7SQMUwKVpW3QKDQF/aQN/SRNeq8NmzrZNBpVmwq7ZgftO2yMetoO1asByhgwr+vZVtZdfjJEC9hqlJi6cIs7pj14LlCB1U8L8NU2SfpqysehR35bkt8ECYqWahBSKpJG7T5eDmBzPhOL+qnUYTfSnKJzsTpT9nh0QSt2cedCYXHJKZ+tnJ+5/MwK7+WtJa6dk9MfsazS6JJG5HHTmKY8uOzehclx9+OSe28ws1rN2+NpR6kaDXiagI006Y5iiUpWLisRMdaeJ/bfwXj3zwSIP9FAqXJBK3E5SruZ6K2cQpOXkcTuou2g1GB79OrcRtpoV0V+DOWobSUC2VxG2651F1UqjOrOVkDd9vmJdpMQlXAvl13L4KSfGkie2ZWwXcp92CZ6Eg0VcC51vGdZhVhAxmutSnmHQae1JhPuijGuJhmtwN2K/zJBk3D1XP4fYq8tTxdI4nbRJK3N4CylYoS4FaiCtNfDBwf+5TzXRH8zrO5NAIULZCWSp+hStNfCo+ta3cEkogkkzi1u7nkA5nHnQm53f2X9e1zfhy2SE7ocTtcbbcd3oEDfzf+fId5r6R29XWQInbA05mYJfMm/gmGvj/Zf1f+MNHf2iIm0nZE9vDuFXjnJWXQV0HOYFROiSSJp77xlze3JpOFoXQSAmSuP0z9WjypOrUVpxZywu1Kw+ZNTyJ2xW4Ky83KTcwSomqU1txG6ppVx4yaySRuL1CuYFRSlTwwD8CLPPSpnKCNisv9kNhF2ZlKuOlYgW/xtQvxVOGqXspsIZqgp9AidtqXInbNFFPBpzPm0zROew1o/tjBBTi8QKjVKlMgdwC2L0LgvoFZZsgiduV1L+J6wjAzkU/G9P0NkfoCCYIsWdbK0DZgVEaJJQmngA6lH5SCvOl/Bf4gHoqcqxcuXKOUiphI6+dNTudgvJiVUzz4uT1FMmo0TWBnclblrRMOyUnU7ZXb3e6jjcpauIUO2fCntgep8haodivJDc1aFprvqq2f28mMLQH4Zmwq2aXs5JTHClOWTNTXxJ+/8Utiaj6f/9B33FppNQOmAf17t3bVs6oL9swD5KuuA3y9nUqMV2GJ5BGjUOmeKlGQZJq2zOZfQ84b3NMcBBPtXJv9FnBG4wG3TC22lK9GZ63FW59w+76DKbTfL0muGkf2guMGnLesgBzg77jFK/XArcWoMoTBKjvOYsITvH7Mt20uwzpj0nRexJTcL830gXTH2g70DLFvvVEB90LapIXp6c8ZwR3Rh/gK69pXQ7Q++EGvbtN88V6n7MUc63YbMlspSij12yDO9GxI/1UpsBzNsOIB8TTwO846esluhc08PvXLXF7Lu3xamJywfuYhrMnhTKb0qyoGc2KshusF6kiWpWEknpdh91TIxuURkqTqoVlG6VUTj63pkVN67W6VV9y9f2n8x1rKRzZK/CK0Dfn4Lw7yNFgPcHrVZOb95GjB2nC19uN+S/b5836Z5Pi9bZj/svmOWsI+X0I2UDl4F6gYoT+W1A5mERRe8jRZECS12zQpEaCc+4kiQJeDl4vR/cClbdGcFlZOlBKyQ1S2GeIRCL1WFIXBEEQBEEQ4slKIKK1tiUGBWFvpUYpZTcCEgRBEARBEDIkK4FI7969/w5IBzhhr0drfX/Pnj0/y7cfgiAIgiAIjZ1spWbFtNYXAhuzcT5BKFBerKmpSSjKIAiCIAiCIKRP1uSl+vTp81Z1dXVv4CGMVKEg7C1sAW4tKSk55aSTTgq1gFcQBEEQBGFvJauqWSeddNJHwCXPP/9881gsdlhRUYgySoKQA2Kx2LZt27a9e8YZZ+RIFlEQBEEQBGHfJCfyvb17996BaSYlCIIgCIIgCILgEF5X1ig/QnGcz6b5mCgP1vN85SirUZXiGSbxr3r7mA5TuAw40GfTrCLK3zI+1+004yt+iZ0ip/ktUadbZ/ZYSAkbGI2ymtdo/kCU1zI+X5TOKC6yzqWBBURz2IsgyoEop9sraBYT5fN6nO9bKM6wzrWdKHdjek4IexnaNHD6JW4DuicUvFqP83UCLg7YtEDB1nq4mO7rtie4e/u9CjIWV9DQB7eR3XZgfkOaJKbxusdiOhPHsxu4y+uXkun5fgIcbZnfV6YTfc7Q8EPgeMu8XsED9TzfUOAblvk/Cp6uz/mEMNGnAt+2jJtA1bOLuB4AdLSML4H6c/3Ol/br9sU0gYxnNSi7Q3o65yrG3HftZo9/ApVD4SOtgFG4jRSfBPVcPc63PzA4YMMSUDmsmdatMV3dbR4GtbYe5+sBnGsZq4B5oKoCDsgq4QUixbxONQ9i30yj7CDKYxmdawrD0SywhoYfo1ncUDdTovkQWIy/4/B2onyLKKszOteX3AkMs6xPA7c1yMdUDKeKKBE0s60tw5hNL8ZmMGCKUgw8jOZka8vcnAYh5rU/IUoPYIC15TTMRZV+8BDlAOB3aA7y2RWDMjqP0KhQUOV1WHeuBQ29MgkevA7nDwPfsTbdlcsgBEDBRg3dgYHWptM1nJtJ8KDxrgXoYG26PJdBiMdbwBLgBMu+P3BjJifygqlf4w8yq4BTG+BfuqwGlmE97zRUK/MbSRsvCLEHrRuBpQ3yUAiL1zABaGe/WWtQizI7lf4JcD/+7uCbgZ4NcTBN3vJeOz7lvgr06aCeyfBcU4Dxlu01YG793UsHpUF/AcyzNmwEfQKoDemfSytgEXCetWEFqJsa5GZK1FbQB2OCuXguAH2K1ywyTXRLzH3ym9aG68IIQiCLxeopmcA6CBzULWYah6V9nig90MyxrDXApfWaBc+UKP8EZlrWFsAKojTP4Dz9cIOQTcBAopnP/GVMlNuA/7GsXdnlPPBSMRucIOQV4Ib6upYhI4E3LdvZTOG6tM8QJQI8CFYQAkuYLA/7fYA5mIF3PF0xD5lMmIkbhLwCXF9PvzLlCtxr4UfAmHRPoM0z4QHcIGS5MgFCTvG6q/fD7eo+1ltlSAsNbYBHcFe6rlPw34Z5mRoF64DLcJ9387U7q5wQL7i80zLHgEsUfNIwL4VwUJswk2X2c30eaHvVLAm6M+YajA9CNDAY1AcNcjEtVNC9rARYDtperUuCPgN3fLAd6Od1Kc8x6mHcIL49sAx0UcABibgeNwhZgzuuyxXXAass27eA6RmeZyFuEPIEcHs9/cqY8AIRgCiP40a8bajhEaLOA8PlFm/AD818dsVkovwjW26mQRT4u2XrDtyR5tGH485waeByotRjWa1eaJpwOfChZe9LNHDJz2UKZwPXWNZtFNGPaEjKaVG2EaEf4L+BaWYy1RkUJmIC8APL9g7NuDILHgoFjqp7mPOBtekX2gS6KdEmncgOfrcB/ZT928wRyns93NebruG7aZ5mPHCWZXsHKG+ge2mjgh/mEeAB7QZIiVgMzgTX47gzoTlDwR9wnwltgEe0GyA5aOqed/YEV1S5zx+hoFH/wowb4mkKrAC9X+rjtTfgp6214Q5Q9iRKDlHzwMlg6QQs8VYIUqDbY5RV7QH/SFBvZMHBdBkFTgbLGcC49A7XJwLTLONu4EJQISlrKu/1nNX260DbAVIC9EjcVOKPgMvM6lE4hBuIABzEGMDuxN4Hd5XBZTvzgaMs65Mc5aRV5JYoMUq4BHdGahhRJ03Iz1yaYGbqWllbbiHK/2bPyTQYx2YiXIhJV4hnDlOd1Ag/UQ5GO0vEoBjBRN7Kqp+pmMSruIPAYmI8zEwnr9pPlFOBSZZ1F9CPG/gqe04KhYwy6Q0XAvaS9hztpgn50CZf270WYKQi3GvBq2uxJweKgYc1tEt2rIZTgMmWeRcmmAr1WvBqOOwVqf2Bh7Q7iPGh4UrgAsu8Dhikwk+zvAH3edcbNxUwiLtx61v+STrPSqEQmQX8xbJ1AyrSOPYm3DqT54GxWfArU4YA71u2HwOjkx+mazMPDrQ23AuqXrVT9Ud5KzDssDZMAW3XxlnoMkxQWGJtuAbUC9nyMD3Uu7iTNgq4D/QhyY/Vx+CWAVQDF4HKfXZRHOEHIsOpAvpj0pDiuYYp/DThcVEGA5da1o2UcAn9qMmuk2lwIxuBS8B57XuIcmTC4zZxO24+53PAxKz6ly6TeBZ3IN6UGCuIOsGSIVqXC28PbBYwmWXZdzINoszHzLTE04k9LMUdIBpmmoEN9sBGcSVRXsqBl0IBo4KvwybACu1OHADgDYrvx70WKhT1FOJoIAoWgHMdHgws1QmuBW1mWh/ErRv8lSJv18Jo3Nc+jST3Sq/Y3c7Prgb6K/giu+6lRpHweXeVhp8lOk7DReAIcXwKXKzcZ47QKFAxTA3XemtDf9Cu6Eod+lzAbqS7FTP7nkEtQLZQWwietLkV9ElJDpwEnGnZVpMygMkV6nVwsh4imBQtO1jy0Aq4FzjU2vAbUPOz7GCaqEcx9/x42mJS5uxgyUO3JCi7CCaB+ne2PUxF+IEIQJS1KGepX6G5j+m4UdxUuuMuqcdQDORGMiguyjImHexmy2q+4NudLxim8HNMHnc8ZiY26lzU4RHlJsBWvjicxDM1U3FTPV6jlTMTGy7NGAGO2ti5RPlVwN6KPSzGVR9ZweSM62SEvYdbwFmZDEqlrGUKrrrUa8DVWfYrU0bgrsacQ4Bfum4GzS6m5VGV3mxtTlC1K5PuasxE7Q5o0LX3Xn8xLcB4BZkW02YNBWtx60UUcK92BzRoOAKTtx1PDBigyOPzTsgC6lNMKowdTN4N2l79witIDppMGwnqvVx4mB5qJe5qTAnwoKfoZKFPw6RAx7MLuBiUvSoRImoxrpLdgZgVhaDx8dW4EwhrCTF1NQFXAS9atpNwV7hrmQ/OhPmTuOPZUMhPIAIwmd9glp7jKaOaR1gYt+QVpSkxluHmyU5nMn/NsZfpMAkcyeBj+JJbfZYondHOQ93kpked3PSw0ZQyBPjYsl/orUR9TZTv4RasbaeIflwTTi58Qm7gKyJcjMnVjOdmplrL2lFuwEh7xhNmoZlQgKjaWi23dqqfp15UhzY5xfbDeDsmlSmPD9ek9SKztSsuMQa36DJoyT90VHB9SgR4ULviEkFFl38E616cB5SpT7nLMpdh1YvouroB7LqBmYqCeN4JDUY9hVtf4NUD6bhxji7GpADZ6cXzvYLrfHMHaYl86AMIrgsZlVup3rQZCdj1KT/CSffWfTDpdfF4K57KXvEMGZVI5GMcaKvmTw/FVVfciAkK87Lamr9ABKAt1wJ2Tt2JbGBq3N/zweo/Ak9ztG+f/GEUri4GR7HrCqJeEdBCEhWa3UnUuZDzw3g+w7wPW9njbqZ6n/+MWmUJ54ZyBROdCzk/TGIVQcoeMZYT9T7/qZwIzu/HFH7lWnJYKHiUSaPpj1s7NU97vSE0Ca+FUcp9qOUFFazYVQIs197gRhuVlaCiy365lhxOF2XunUssc3tgWW29iCcqYBddfgxcmoe6kERci6vYZX/+d+E+7/6FWXkT9h6m4QaW3fGL+czAVeELqofMEyqhyIdXBI23qhCkwvcIqHtz7GCa1NWL2JM2M0B7n79OpMJ3Ayi7BixPqIQiH6C9z18nUuEbACpvKnz5DUSuZDdF9MN94N3AFH5ClP6Y2cl4PqOYi/NSF5KIKB+huBT3gbeAKEewgVsILjQLS+I2PaI8jfvAM/Uis2lNFcsIKjSLcn84DqZJlLm4yh5G+jBKW2I8gl1opriWqBMUC/sonsRr1DI3xdSLtCaB3LMqsN4Oygxs7dnTTsASry4k6OE6RrkTRPnmlwSr3IzVEFR0GcMEIaEWXSbDqxcZgPu8G6PhPG0GQ0OsbZswKVm5l3QXQqSuXsROtRsCeiDohCp84UjcpotKKPJh+nIwDleFbw35T2WyUEHptN6KlG5HsArfE6SrlBoaKkjkw1uR0q0IVuGbBirzhtxZJL+BCMBE3kUx3LIqrzmhnZcdAy5lgpNClH8mB6YA7Af8GbcgyhSa5bMuJDEzcWdqjmAXLwLft+x5LDRLQROG4s7U/AQTANp1SL9hspMmKAizCVa5eRG3RuEN3OZShcIVBKvcPI9bo/Bb3BSivKPq+gw4KW9RjEyuU3SpCFXSPS1UcMqbwgx07AGEBgZ6NSbCXofaiBHgsZuEzscIYNjjsxGg7D5BBYB6Drf+owmmT1nUsu8C+oYncZsJaiFmYiaegzEiJrYK31pgYJgStxlwJWblLJ7TMMIfdh3Sk7gr4qGT/0AEYDKP4Bbn7Y8pPoznZqL8KRyn6sV44P8s26G4ErcjiZLHQrMkRGuX6RxlD3s2YBcRLiaa31z4hBhp4n64MzX2+yiEQjOhAFFkcC3ARd5gueBQsAXSuhbWAUMLKJXJh4LXcSc+ijErPPE8SXryuHlBwaPAPZa5HW5dyC3KzLoKey3qb7hyzC1xVfgWgcqPImV63IrbILkTrgrfNaAKWZFyKK7Ih32f9NLx810Xkgi1E/g5rsiH/T4+w6Rk5T27qDACEUNQ1X88z3KQIzNbWESpppiLSC4TOZ/JTqpEYRHlU6/oO9kPdBSTKIRCs8RMYiXJGxRVEaE/UUdaUxAAUNTVTiW7FkYrCvtaUKlTQaswErcFfS0oI52ZLBV0I6breN4frim4muTpb/mTdBfCZjLJG1S+DoHKjwWESiTyEc+vQdkBeIG3NWSnAAAgAElEQVShEol8xDMBlD3hXGCoVE1ovdRAZU+y5YXCCUSitVJugQ+QTUA/rwdJYTOBdaiE6UovYQoWC59JPAXMSbB1GVEKpNAsBVHmkChFQ3EDk5xmY4LgQ8FTuDUItTys3JSaQuVOIFEu8Lh8StxmyChM91+bGCYIKXiJW2UEARI97zZjxAIKMXVXyDoqhpF3Dsou2IGpCynMzAMfajOWsmAc7yXZVmCoV3BTymr5E0bivRGglmNWX4O4CdSfw/QmGYUTiBh+RnDX3GoaU7Ge5scJtlTh5oMWJlGaAj9IsLUR3BQ9onTCUzpy0HmWGxYaBZ6kql1wWUvjuRZMvnOiLvGN6VrogysUAObeakt3FzI/JfHzrvAn3YRs8iPcImIwv+lCX92Lx66lqKWGxjL2MbLJtrR/LdUUaOqqiz4AV3WtloK63xdOIBIsqVqLqfpfEXjTLiyiXIErI1lLH4wkX2MgSEaylmFEGRCmM/UisWxyLXOYmnBgJgi1zCVRMAtDtKvJXnDoOgUYpydBLbfrxEFKwaDNsyBINhnMe3xYu/n1BUcC2eRa9gce0sHvUdjr0LZsbzxek05tN+ksQPQvMDLaQXQjj81RM2QabsPmWn5MoQr0+Egom1xLFLTdiDdvFEYgMosyYizHllT1cxpvMD4sl+rFVI4hdfOsa5nCT8Nwp95EA2Ukbe5hmtM8rLDYwGxc2eR4mhLjEW5yikQFAQBPUjVVY7/52u1SW2jMwm1kGE8TjDRxq5D8yRjtNTIkeDWkloOBpdrtRF0waEjUkyCeoE7Uwl6Hbopp9he0GlLLscBN4fhTX3RnXMEhm/6gLw3Dm/qjgxo229wMumcY3jSAsSRexQdzL73fkybOO4UQiCh2swRXRvJv2MtHmslM5bRw3MqQKC2J8SiujOTj1t8KzSKiHBySZ5kxjW64Oe8xXPWWltTwEHNpEo5jGRLlx7i64JuBf1u2buwsPLlSIf9oOJxgCfE/WLaWmJn4gpy11HAubm3aFkyjvHgOh4KWsR6Pmy76Oq408TkUaHGvFyDdh/u8+ztumt9EDaeH4JaQP+7GBBrx/BvzrIpnNOifheNSpuhS4Ne4mQdPEChNrAt00kZ3wPRcssfF9hiuCfCI15ejANHfwe0HtxO3PrAjsBR03idt8h+ITOEq4DzL+i5N+QXKGUgWEWMZ0YJcep8PzgrBH4lyHu6SZDvgIaKOtF1+mUsTaliOKyM5E5PPbBez9mRTARZumSDvPtxZ0aEYWTu7mPVSpnBZGK4JjQNd97BxVghmY2rZbNWU40m9Gho62qwQLMG9Fq4AfoErTTxAu01k846GUzHqQvHUCpwENVS7WcNJYfiWIVdifj/xrMWsvNnBUxGwXLtNZIW9An0hpjN5PJ9ifgt2g2QvgNWHhuNbRtyESTuP5zngfMxKbDwtgEdB2xO2eUZHMM1oD7A2LMSMT//XsgdNUhUAugyTumqPLa/CfB+2NPE5FICAUn4DkSi90Y7e+24iXMhYtjKZhZgPNZ6OGPnGvEdxdUQZjJsn/jFf30x+hVHMiucUKDA54k3cDthLjv8CpnjSxP1xpYlHM4XzQ/EvHUxw9zBunvg8ojxGlE8JUqvR3M00jgrHSaERcCvutfAsEPW6XAfJdI/S0D8M59LBqzFYinst3K2M2lfwtQDztNv4Km94HeAfwH24jlLwioKV4KTtlgDLNLQOw8d00NALN8WmTjbZU1970NreHrhP5/tZLWQZfTjuBKXXt0htAPU47uqkl9Knk6X0hYw+FzeA3gL0B7UHM3lgq1b2AG4PwblMmITbpPY1TN+TWmliu7FoP9Cp0nZDRNeuttoNmx8FVREnTbzL2j4LdLK03ZyTv5vbbFoTnCd7PZNYFff3CNwo7mymcF0u3UubqXQH5llW0wE+yueAkSYuoh9ug5kbmZJQmSpcpvBzzCxpPJspZiBRT7FsAuuAQdiqEZp7meY0y8kXU3ELzV6hVVwPhSj/JGimpoYVRJPm6gr7ANoUJI6yzJuBC5WnZqRM87/LcBVU7tFu46h8MQWwCxJfBcbU/uFJE9sCGi0w9SJ5vxbiUpk6W5se8XqK1HI7bkO1LhSItLI26XsPgZPKeoPCJyE+ErC7Z/+IuO9MaOzoJsAK3NXWGaD+Gvf3dbi9Zr5FYlGfkNEHYyY67EnhwaC8dElVg7lPfm7tMwJ0IlGfkNFB9Vjb8ckmq02YyWZ70mYu6ESiPmFzDTj1x+/iq3FUr2DqR+LxhEx0IlGfnJO/QGQX92AeFPE8TtQa1EfZRoRLsGUZNTOJJi2+zD1RmhJjGfYDWxElas0CTOQdzLJ8PBE0DzIjafFl7onSGe3MzmgUlzPBalAU5XFwairaUMNyokmLL3NPlKBCs20U0Y9rHLm6xjJTI4SINt2A7YerBi5XVrMuZWpFbLWbNsAjOnkhcs7RcAbuA2cbpj+FfS1MwW2o1h24I0fuZcIY3NTdNVjNurxu8EEN1X6hYXju3EubhcARlu0JrM9Yed8R7nc0XSeW4hQaF3fgKtT9CyfAULsxaYdfWvteDzqRvGxI6EQqfHNB/dZvUh/hppoBLARtXxMho40iq6tQNwrUG36Teho3CGyKUTXLs+CN7oNJoY+nCrgE1FbLPhewvqPa515+6kXyE4gYiduLLOs6SgNm2wEmsQrldAU2F0I0oTRrGARJ3P6To5wfhCHKEtyuwAdQxbK8SRMnlri9jcnODKOhLWMInqlJJEeZe2bQnmBZz5FMdFbUIEqMYi7FnakZzhQuyY2TQiETJ3FrXwtzlDvbXssY4L+WLa8y3ZqE18IVyp1tR3mNAIFPrE3DNPm7FhJI3O7GBFP24AxlVq364/bguEMnll/OOdqs6tuzvx8Bl6mA550yq1b2hEqtNHEi+WWhUaB/gfk9xLMJk5IV0CtNrcFV7VPAYtAdc+FhmkzHDYxfAWec5qH+iDvJ1xJYlr9Us4QSt8tBLU1w0HTgr5btCPI6aaMTqfBdB+pZd3+lMbVJH1gbfoybFRMK4QciwRK31US4iPFOzvXXTE4WxeWhXiRY4vZT4BL6JWlA1IIrACvS5gzecGYvwyFY4nYlcGPCY65kt5dqZg8GxnjF+eESJUIVD+IWdVYSdXKuv2YCH6MCZmo0CwpemljIBUESt88D4xId4KVqDQDsWadrtbtMnnO8WoIHcCVuFytjD0TBRsyKgq1ys0C7Ihw5J4nE7TUKXkx0nDJBoa0Y0xSTahb6rKUOXmWtBi5S7iRIHcpMcj1mmTsBSwpZmlhIhg5KFfRW8pRdfxCHWhFw3P7AQ6DzMIGpg1IFvZU8ZdcfxDMOfxoiQG9w6oTDIkji9h2s1VY/KoZJ0bIFbwaDzlc/qfm46cCP45YMxKG2ECzycVs+pInDDUSMxO0KXInbG5nkqNDYJI7iok4+d26JJpT1HEjUUaHxM6Y299CRJp7ipRaFR5RzcCVut1DEhUSdH6ifiXbuIWAekIuYTtgzNUGFZq9jlCKSM5k/ArdZ1pbUsKxgpYmFrKPhbFz1kK2YupCk14Jy8nBrzdyn3cLBXDMBV+J2NW5aqIOCP+FOErXEDOJDkyb2Btr34krc/kaZh24qZgF/sWyhN1TTXq0N7vNuknJlxIMYgitN3Egaqgl+dAlmldIWT7gVlK3IFMRo4GXLdiowMQvOZYBuj6nZsseOI0C5mQc+VBVmxXKTteGq8KWJ9YlA1DLuwgRTdi2vhdqIWSm2J5zvCV+aWI8iKLsIBnkrH0lQz+EKJuVFmjjsFZH5uI2/gh5+wUSpjeLspfdbiToKN7nBDE6DCs1mE3UefsFEa9UYfBiFm7CkiY3EbdBq0kgmOg+/ROcInqmp5qHQUs2mBjb+MrKeUUeXPxFBMzW92FToTaSEbOBJ3AYp8Y1U8F4651DwKO5Atwx4QLtqTznBk7i1Hyy7gIuV26MiETfiynSH3VDtSnCU+NaSdKbya1TtpJA7a9lfE6pM93xwlPieBG5O52AFiWYtb/YUuITGwy24ctIrSbtppaqVqnZ6zYC2J+FyhI5ggik38+D/2zvzMDuqMv9/TichQRAhKsjI4oCirA4qy6gIuI2AozMqSSDsOLIjqwkQ0tUJO7JDwr7IlgSY0QFER0cWdUSUnyObyqIMixhQEjCRhCR9fn+81Z3q8566Xff2vVXVnffzPHmUU/fWPd19T53zbt8XF6qb5uBi6zh1PJQlTezXQaKtYQPtY8CF6qY5uNg6Th0PZUkT+61BtU9IFR1dfnbRQM4B7gzGSpcmLs8Q6eFgtMStpAMkKh0gn4R8Ky4poSuwSNyGhWY/Z31lXTcm4XKkSCpL3oGoveRL3F5Gwpwm7xb31DxRgjTxGbyT3pxCs4RHCt9HVMFinpqjSZTmvzGCaCBxO9vJGmmGPJnusP9F2/H9qRpqLRzl9PrMJZUmjsl0H+21cdB2BpO4LXqfBtLEl3ltHLSdtBdL2EV6PjDZ6Tnl4uKH1bGIIEJNG6oZA/F7oCOSqZHpGmceDMDFIptdwE3gy+g10w18KhgrlnkwAHcHOrK5DqLcFBoHbSZX4vZ2cIN1hg+Zjo5sxkoPOoBfk3i0dRq4wbKLMjiPRF7DTJ4J4MMeNx2jHENkBlvilbpML47JJKpAcnASzqYKKy5f4nYih6gozeCszqHAk8HobiQqXardxCRuH2WtFiQik75wppImnkai0qXaR0IXb0YLzeaSDJD1LHq/53BKLEE8NYlKETFGDjGJ28doocmTI3ctnOx1ulTb8P3Fqyolcp5rQb7WkSPTDdd6nS7VNhpI3J7kdMRyUBw5Mt2SatYxr6WX4tWLguFeYF+nozRF+Ca6odqm1LKhmjEQn1fHevBKidtmcNega71ScQrfwfOc3xldNxpI3DbFcehar1i6VLuJSdz+Hml23CSur59UWOt1OPgwXardzCaeXdRCg2n3CjlOG/DbtDK5Zimns7ejF/3HX0g3v2zxjp6x7M/SSHg6YVx6OG4/nucJDxSjeF5J3BZlCn/lND7Lct4XXGnCS9IkCV3ADwmla8fweETitug9n0yllAd6ZboaiA8MnTWRDTr0PoQKRsXp5k4SPk4oxzyqIkUzo6OkB/gfIQfWLE9EJG4L4eApT2Qt6AhDO1kTkWQMnT0trwUHd6VysWsElzq5Z7wN3b+lF0lnapUE+fuGB8G30uLfuABdwJeCsdfS6EbTOPBpStlHwmseVm/1u2qUwmroJqd/AxemPzbD4Wj1TZDngFKTaxOvI/1ssvwpjdK0gFuaRoq2DC70ikHlimfJNMcv0E6hpyIStwVxL4D/OCIkkaVTfwfAj0OM21DZ6+HWf2/ufvA7IiIhWZp3sLfIDojnqwXr3DCMIbIIWX9hTx1DPL6eRgpuhmF0gknI2gt7LbWTryKKSaGxWxabID/jooo+3zBWZf6ArL8dqmtoaBiGYRjGqspEpO/EWwZ7oWEYIxczRAzDMAzDMAzDKJ1yakQMwyibt0HTCmiDcTa6nsIwDKMROyNqQrMpphi2I6I210LhrWEYww0zRAxjZDIWXVw4VHI7cxuGYeRwDrA90pD4cPJFFN6BqJz1yYZ+G+l0bRjGCMZSswxjZOIRNZ12/lte6k9gGMZI4EtIs8+tkWaZ3wLWzVx3SM+VJ5AC9v8HfBYzQgxjlcAiIoYxMnkFKwI1DKN6XgQOQeSlz0AaG+8BLE2v/wiRcX0GaZA7D93DxjCMEYpFRAzDMAzD6DSPI/3EdkKayK2fjr8bMUA2B+ZiRohhrFKUFxFJ2IpYw7vpqrtmMWawA728NRh9jkR1Km8v0rgv9DQ/S8LTLdyrC8eu+KDZ1hge55SWOvAW/dzRwC6RK4+Q8HIL91sLyQEeyBr8jBNZ3PT9inIm60SbWsJPWmpqmbABYbdSxwq6uQ/bHEckHkYhayFsePeIo/m14MlZC/Cg62C/Ai+NqFTDO+CnrTS883I43DwYXgHc5zq4FjxshHQmz7LMwf0t3m9zdMf5hY6Wm+kW/Vy938GrTtKOWrnf9sh3K8vzDn7Xyv0qZDVgC2DjzNjbgE8A9yBRkRGGfz/RhnfuoRbvty3w9mDwT+Aea+1+hT/3I+iGdy+C+02L99sZGBMMPgnuudbuV+gzHfK8D5sU/wbciy3cb3Wk8WvIL8EtbP5+hT93DeAfIxceAtdCM0W/LhB2UffAfeCKCEwMifIMkS7G0stdSBGt0MsyZrAz0/lZU/dK+By93M3AiM4iRkU34nazGXBdMDaf09m2aePBcRKe04LRpxgdPVy3j4TlJHwRODK48hAJO5E03dn9OnQn4bs5kf9ueY5F2JTXeYKTgE8GVy4HDmvqXueyBov5PrJJrsTTzdA6O1fFaOIH06HwFJ3tEF46DlZ4+AJwdHDpIQ87OZpeC5cDewVj3wU+3+ocC/I6MBX4VDB+JZIWUxgP44C7gQ8GlxLX+bXwV+BqBh5U8XCIk5+lMKlR8xNg/MBh/pUOGyLI3vSfwOqZseUednZSJ1EYL8+3/2Lg4WkRsN2QZ1keXUhK1gzk7/Iz4M+IoXgjMBmJlswCTk+vjRRWAHcw0JDsBb87uO83dyu/HfKdXi0zuBT46BDnWIR1gbsY6LR5DfyHwP2+uVv5rwFXBIMvAv8wlAkOjvPgdwJ6ggtPyO/W/a3JG14IfC0Y+zH6TNJu/gYcAfxLMH4H8JXmbuVHA/+ONqguBtfZM1xKealZ03kY+EYwOoZe5pAM2Cgak/Au5OAbzv0wTi3BO5RwPXBDMLoey7iZecrKzmcGO+FJgtEldDGRKfx1aJMswHhOAB4ORrcHZjZ1n4Qj0UbI86zG/nQ6ijCBFYxmP/SmdSgJezd1r8VcSmiEwH1swelDmGGVjEc2+3b++6dSf4LyOAGt5LM9KCdBQ7woAoVGyAvA/p2MIgA46EUOc38KLn3Ny3gzXIY2Qu6nyd9HKzhYgHT1XhZcusg3cUjx4mmdA2pvucDBd4Y2y8Fx8Ah6vxsNzPHam52Lh/WAm9Ee3MMd/HZosyyNTyN7zfXAmsAxwMeRgyfI+vswYhweg3RcPgtUxsMwxT0N/Fsw2AXcCP7vit/Hr42krq0WXDgBXEuRtuZw3wXODwbfJnPy4Zwa4LcCLggGVwD7gSvDAD0N+EEwtgVwSXO38XuijZBXgX3AdVjYxXlEXe7Z4MKXwR/e5M3OQBshjyDNRkuh3BqRhIsRyyvLRsjBPkyNiL2/C3kohyHvK0m4qR1TLMQaHIEofGTZld8wtdD7E8bTy42EESnHMS2nqjXL0SxlFBOB14IrJ5LwhUL3SNgGkWbMspwu9uLkkjzn03gRx37IQSzLFczk/YXukTAJOCAYfRmYzIRCuvfGMMbJoXcyei2c4MVLOyheFIG+GQwvBya5kry7DuYDB6LXwuWeYmvBS7frg4Lhl4G9XbEeEEPGiVHYHQyPA+b54ofTc9CpC78AThri9Arj4FLg1mB4Q+B6X2C/87I/34Te7652w0tK+1jEsL0RSX29CP0d/TVinOyPeHuPAtYpcY4dxs0DrgoG3wncAr6AA9M74Frg74MLdyGOg7KYio7ofQTpMVUAvwYiRhCmt3eD+9FQJ1cM1wvsAyqD5SDw+xW7h98U/ff0wIGdTS3L4hYgz+swan++RKmK4HdDHAFZFgETwDWf3t4iDtgBefA/i/6St5+EtZE82YGf5Tia7kEs0oSZwLRg9HFgexKaDakNjRlsSS8PMXBB9QKfIaHRgnIkfBvUYf82Eia0e5qD0sOeeOYFo68C25KQv6AS1kQ8WAMPOI5v0F1BI6qEs9EeyEeAHRrWi8zkfazgYQYecHqB3Uj4r7bPU7MIWAPYFCngbBdvQT9ghsq/Ax3OQx7AVYic5zTofGTKS0j7tmB4AbCtg/9r8L41kUPuB4JLU13hDbp9eOnFEDpFHgF2bFQv4uG9iOc6SCFhN0cpayE7ly4kpS2Mws1xOuoUvncP4E4GHvYXAh9y4m0vjbR252Fgk+DSMU4O5I3e2wNMD4YfB7Z3dHy/m4QYUfcy9DSTTZHI1C+C8R8g0ZJ1EZW/PsYjh9tOf+c2QWpSFiNruMP4cUhkOYzszQAXGt7he7+OpAFleV7u5V5t1wyL4TcEfsXAyJ4HvgzuPwZ57w2IVHOWe4HPlFGLEMxlF+CHDIw2Lga2a1z34scixlh42D8HXGlRhMx8TkQ7hJ8GPty4XsRvgPwd3xFc2Afcze2cYQ5/AN6D7EslGyIAM9iO3kieYxcfS1O4ND3siucH6C/N9iQqOlEOCV9FW8WS55jkeEF7OBGvvjTPMI4PM1V5ZMshYTZwaDAqeY5JTu8IiUCFKR/3kLAHVRR2SwH+fegQ4yUkKv+/7z15G8NpJJza7inm0ClDZCRQqiEC4MW7GIa2HwQ+4XS6UN97bkQ8bFm+B+zhtOe343iJtN6LeJizXOZ0XVjfe8Yhm+u2waUzHJzS/lkOjheP8a/QxeYHOknzib0ndkgCieiE0YlS8HKo/ikD97tlyHcq2tzPS0FteEhaAuyQpn11mnYaInnkGSJlUbIhAuDfB1HH1+fAhelCfe/5MPL9GZsZXAbsAq6peqP24T+P1EApYx9cjrHvDyBWXwvbguucOE9D/AxQe/1jwPbgcpw2/lKkPiPLQ8BO4JqtKWwD3gH/gY7ezwM3Mec9oxBDP1zbV4ALz4Kdot8QqUa+d3o0RD6WXuZyFm9Trz+d9fCRPFnHEZUZIQAJV6ND5O8GvpWmkYWv3z5SnL6ULiZWZoQAjOcYUClhO4GqYRF6OARthLyIeDqqUZcSg2kSOg3mKBJVw9LHxWgj5MfoQjZj1eE4tLLRjuSsBS+536ERMh85LJduhAA4SQnbC70WjvD50YQL0UbIg+Q9A0rAyeF0b3RK2GyvFV76DLBb0UbIpVUZIQCpQlfoKR0D3OzR+52Xg/ktxOtCyjBCjI7hnkLXFaQpeH59/Xr/VuS7MDa4cFJ1RgiAuwvZP7OsDcyJ14v4zSKv7wX2rc4IAeT5FhZkx2pYUvw/ox1VC4GJ1RghkNaLHIiO2k8AH9Ym9TEDbYQ8hqRRlk51fUQSLgC+HYxuypIgwpDQxTJuZKXmeB9z6FZF41VwOLpoUOfdSUqaLjRznJgbBSqLo1kKTECUd7KcRMJnB4wkbIVXi7QX2C83ClQWiRQGo42ha5gZRPskDS5cpFJolhcFMkY8ThRoJqLXwlQfpAl5acIWpkv0ApOdLhovFSdF8jHHwCwfpAl52BOtrLUAqW+JRoHKwsEDaMfAOOAWr/PMY0WXj6JTNqvgIsRrmWUTRCGsH99fxKz2u7lOe5OHOzOJ7zsjHDcH/bdcF7g5Ui9yOVrO+h500XgVnAhK8TQi8uHHIXUhYX3XaflRoLJweSIfh4APnK1+IyQSm40CpUXj7tmOTbEQLk/k42LwgbPV74p2jCxG6kKalnpvB1U2NPSMjVb975l63PuYBnwmeM1TrK68CtWQsIguJqBzr09nRv+m2Fdo9p7gNXfRzaUdnmExpA9KXNkjQZQ9zqWv0Gz14HXdg9TFlEfCd9HejLVZwVyS1AhMeC95hWaN6mKMVQJH/lrwyFrwkFd02eO0h60SnBxYzguG1wbm+tQh4iUlMLoWGtXFlMzpaJWbLcl4WH3M+ZMWXbbSR6XduP4Di9rvvuIHSo2fDIHzR2Sz67HftZcHkJqspYO9cARyODq6tSsDMkX8YaDUH1MHg6tBXyu3DDn8hjUqJ4DPpgldilbhewDxytcANx8xRpTIR9oDBvB5KnwXD14XUxYuFsFOjUCfGoF+PXKira33gxk61XZWP4kFdEWsOM+FzGBbZrAzulhvCTChFInbokznURzHB6Oj6eVWzuDtJHwd0a7P8jyrcQB1apSXMA+4JhiVNIF5jGIxs9BNzu5lC84sZX5FWZ+paE/NdsAZXMxYJDIVNgf7Jgn/Wcb0jPrjxMiIqtykTRAvIyb3XFItSxOcRFzl5ixP/1oI04POK0PitihpiltM5eZgD/v6vnRYrUR1WJ0kbl1/CodSubnAw4e8pMOGRctLgIlulYsajHTcEsTICEUHesB/EvzWaCdCmnJZisRtQdxz6GiqA64DvzH4icDBwfU05bLs4vRGuB+hC77XRA7xqyOiI6EK38OUKHFbkLOAsDfN+4Arweep8F0H7ltlTC6Pag0RgOn8HK2ENY5e5tAbtdy+TsL/ljO5JuhmNij1qQ15k/9EK+cso4s9S5O4bYa1OApJZ8iyM0/wQ7TaxZ8Yw161k7g9hGXIQ35BcOU4XuX7aLWLB1m/moJco9Z8He213BkpIt4/GJ8P7FWWxG1R0nqR2Fo4BimoD5un/hzxyteKtMv9vmiv5SwkxTdUfrnKUaKke0GcFLWGz5qxiLf1VnST4WOdrt8zRgTucbR4RBdiVN9OLPMA95MyZtYc7na0hPA6yM8QOnMkjbulLuYd51SkWWSWbRD1vmOC8deQupCaRfNc+vvlj8GFSUik/tPB+BOIVHalVG+IACScC8obvRlpGkSGeSTNddctmYNBNVX8KLou5KTUAKsfx/EGImMaRpx2Cf67F8d+nML8UubVLAnPonPkHXKQzLKQUeydGi+G0U+a0lNsLcB+VdeF5JGmWMXWwi7BSxcixlQt10Ka8hZGnNZEIjxZHkcfHOrEeeiI0/vQ6mC3OakRMEYs7jrE8MjybnRdyL1UIAXeBMejRT4+gq4LOQfc98qZUrO4PJGPXdDR1sPBPVPGrJrHvUxc5GOX4L/TqJxbXMasGlEPQ6S/EUzD/Pxn0Hnb9SLpawTToG8F3EN3LQrN8kl4EqfCrSGn0a3ytutFwl3QsAbH4ziIU8vtLWAMH1yx/Pwzyu6z0SxOGp+FqjUhB5fdZ6MFEhrX4CxG6kLK7SvVBG7lfteoBqf++53RLg4HGuXnz6d2qUwhLk/kI24HSHAAACAASURBVMtD6FT7muHyRD6yzAZ3S0kTahF3P4PX4BwF7tdlzGYw6mKIQMKrdLEP8dQGUXVKhkGebMIj5OcNvsBq7Eud6kLy6OZWyFUlu58t6lJoNgjjORHtqenjYrqVko1hDMBJ2kyeYtFwknv+BiIlG+MSJw0ra43rT+3I7TtxpKNCSfeCOEmVa7TfTXRUKOlulIhbjKTOxByYK5C6kFpGWwfinkb3I+vjVWDPtMC95riYyEcfv0Yk3ocDp0GuiNAt4K7OuVY69TFEAHp5N7omBOCPrKFSnurMhjnjj3CyUpioJ9IHZYOcqw/Uri4kj8W8Bd1XoI/7SpyJMUxJJVVz10JahzEceAu6lqKP+0qcx1AZT7wB3ZtI47fhwt8R3+9eQqf4GiOb9QhTuIW/oGs260ze2edJpNfYcGGjnPGfpUIDw4FxiNhQjPtKnMeg1McQEUnVK3Ku/j2LqY311pAedgOloNXH7vTEOxvXDscpwKdyrp5C0rFuu+3EsZRrgI1zrl9DkvvAMYw+TkJLiPdf8/nrpG5cg5YQ7+Nqn79OakMqmzwXXcgLcpC7w8ev1YpUNjmv3vE9MEz2O6MN+PWQ7IPYeWxd4Ftp9+ya47dHesPE2JHap2X14Q9FUuxjHAI+VECtKxcjzRljXAA+VECtjHoYIvmSqlkmkSjVpnqRsAE+KiO5Es+5JEq1qV4kfAKvZCSziLJHkutdrQc9HI2WTc4yHriJRCnVGAYAqaRq0uAlXUiH7FASsVZ4UUb5UoOXrIP0San7WrgULZucZWu0DGet8GlXdSJd1TNM9HBAOTMyqqNfUjXSVb2f3ah9OpBfh1jD5oFMAx+qNtUMvxWNm0WmPeH8e8qZT6v4CWjZ5CxpHyxfC6dNPQyRV/kmWlL1t8SkGhM+UM6kmkQOs7egUx/CfGUxupKGRld1iHERk00Of453o7uM1ocZfBivVEbeRJrVZdmJYeOpMcrE078WwsN5uBbWA671NV0LXp6t5wbDeWshKWNOreBFvveAYPgltDTxkb6x0VU13wR2CMZi+92lXvdtMkYW09CSqk+je82ckUYcaohP+4aoaGv4nEyliX1eulDF+DWJyyaHP8fawM1pk8Ma4t+Hjqj2onsqDWZ0lUb1hkjC54EjgtEFjOZzSHOWLGsAt3F+LUPvCbKRZ3kUaaR3ZzAe6+xdBxySvhHKSM5ldXZE8jyz7EFPDT01CWvSy82I0ZdlCrAHWo71FHpyU2+MVZDUqLgaXRsyDzlEhjn8sc7eleOlluIW9Fo4CdgdvRZO8vlpaJXhRd427FXQV7geU7m5xsPflzG3ZvDwebRu/wLk+xNKE68B3OaltscYcfhPoJ1gi4EvAlOD8dWA28CHnb3rwNeROWd5BmldcGMwvj4wB3ysNqpqLgPeH4x9D5EhDgVvPkptOsNn8X09iULZ5DOR53ooTXwo+L3LmFkjqjVETmNDJDcy60n0OA5kGv+HdJkNG8xsxev1sOL66WFX9INDpHwT/sZqHIwu1JpAwldLmV9REk4EvhCMPg18jSn8lS72RhRdVuI5kxmq42jVXI5+oNxNwkWpNPHXg2tdeG7k9IbhcWPV4nj05vo08G+OXJnuM7xsUHViNnotfBe4IEeauAu4yTdOFSkVL0WXc9Gb60wHP0yliS8Jrq0NzPWNU0VKxUsh7/WE+x0c5OBZxJkVqtxsCVxQwvSMUvHvJJ55cCS4J4ALkUadWTYiv66oIvxH0A7jZcA+4F4DDkN74ndFFPxqhD8Q3bB5PnAguDeISxNPAf/PZcyuCc4j1rAZelJp4v3RTpvLwYd9a0qlOkPkCsawnDlInn6W8+lOmz0l5DWYOZSEyq04AE5nPTw3ox8oh5GkC/BkXiHeYOYSZvDBzk+yAAmxQrOldGVkk6fzMNrgGkMvc0jU37EaEg4FJgejL7BaZgF2E2sitR7LuJl5URUbYxXCSxQz9E73Saq+DuCIynSPBub4fJW2UvFiZOwTDL8A7J/2suiTJg5lutcFbvFxRacquBDYNhh7gIHPqxNANYndDpGwrJy09uZW9HfjIpceODPSxOF+9zWvn2nGsMXnZR7MAXe9/F/ngYMQAzXLl8Ef3tn5FcW/FaKZByeCe1D+r1uMOG3eCF4zA/zHOz3DYvjNgIuCwV5g8krZZPc0uq9P+nf0YePtivBfJpZdBJNWyia776IdG+nf0VfmtKnOEHmJM9Hew18AJw8YSciz4q4gUd1HyyWhi2XciPYeXk3CTcFrH8Cpg/44epnH2crTVy6JeA/RHeCPZTq/Cl57EXX11CTRnMfldDGJk/nLgNE1ok2kduWJ3B4wxiqAJ2ctwPEuCM87USUJ+9BsCFxfdb2Ij3vSlyOd08OD7hHotbAL2ulQOh72BNVc9RVgb5dx7KTd4Ceje2+c4HWUtwrOAD4WjCnHjpPIeSzV7HKvI1vG8GQKEHrSI9FJlx4iCXtvnA8+NMyr4HJ0B/i7UY1T3aPotNXUMPcVO238OCTdNjyD9YALGqe6eYgBmSWNbFWdauZjZ7C0caoLG6dOBX4WjMUiW6VRjSHSE1WBWMgoJpKoIi1IiFlxawI3k1Qaep+Gzqd+HFTqj+CZCfwwGN2MN7iw/VMrTKoCoQrNbqeb2ZHXe8bmeGp6lDVeHuf2qUCo+qFTmR7pLXAieZ6aHhJq4qkxKuAadG3BncCsnNcfhO5G/nmoTqbb9yuiqNqCbqdTXXH0r4WwG3mPpzqZ7lTiNqyl80gHeNWTwMW7kTvgOp/fF6Dj+Hj90CLEmFoavt7BPUhBe5Y1gXlpmpoxbPE7oGsLlgATwYX1WoD7OSgFy7GI4lGFgjf+MFBZKc8D+6fRnAA3C4kIZtkAuKFiaeJLQWWl3I+OiPdxJNLUMMvOyFmwIvwYyMkuwn1Hv94tQwzcsKfdMeDDdORSKN8QyZO4dRzOqWpDX8n6NbPiEmKFZkuAvUnUht73nl7GsA8Qdkk9iB72bf8kCxCXuH0O7YVcyUksQHImB3pqPOdVJk28mFlohZkf0UjKM+ExnOr5Ip6auksTG20nR+L2OeAApz3UADhYiDzUQwfKuV7n6pbFZWiJ23tBqcj14+AxtHNoFHCDz2+C2DEaSNye47T4Rz8ObkN7Bscj0sSley29pN/EJN0PcVr8I8vJwP8EY9tQodfSGCp+HeTAGKotHQvuV5E39HE28P1g7L1UloXgt0Z3Hk/T6N1fIm/o4zDg98HYHuQ5bjtOVOL2ZWBvcDkNm90SJPIanvGmg6+qn9RZoOp0dXbRANxz6PrAVP3Ml95PqlxDRPLvb0BvbLPoVtbyQA4h34pL+Je2zbEIZ5BXaHYECY80fO8pzMexN6FUo2d26dLEcYnbZXQxiWSQDvAJD6ENsWqkiXvIKzSbTKIkMQciUZ8cT0095ViN9uPlkBeuheXAJKefOQNw8BBwajA8FvFgl7oWvDwj9w+GXwYmO12jNgAnDWVvCYY3AL5VQapZTOI29syJ8XW01zLmOOoovl+uVO13Vzj9ex6AS7976O/e0b5xbySjlvj8zAPc5Y3f63oR6eo/BhcmpkXWJeLzMg+mgdOZBwNwryEOzNBpcw74Hds1w2L4mHJp+nt24e85wD0OHB0MdiF1FiX3k/K7A8cGg+nv2ensogG4O0BlvaT9YMqVJi7XEHmCGehQ/6OsVVD2Mol66mWBJ7kdg9uN402uRheazSPh2kJ36OZetKdeFnhZ0sT5ErdTma4iT3n3OBtRrMlSrqcmYTN8tNBsHxIVeYozLuqp2Z0ejmnDDI2ak0rcxjbXk5yOwuZxLtpTH0st6hipxG249nqBfZz02yjCIWhPfakN1XIkbhciRuEgmys4iUxPQEsTTytZmrgHvd/FIk9RXH+qy4BonEN61rynHRM0SuMYUA7TxpkHA3B5gjezwG8z1Mk1wWxQDtPvo/sU5eB+ifbUp9FP36jBZxvxeQ20zwb3X8Xu4a6BoA5Y+kldlzapLAGf5zA9DFx+dtFAjgXCaNwOlNxPqjxDRCRuw0JgyU0+TuXp55NwO3Erbg5XqJBn++nhG8QlbsPc5ME4FVTtwta8XnRBD5kriMl6Jk1JRXpW4yBinpqEg4Y0uyIk5BWazSRRtTj5TCXuqfGcXUNpYqP9xOSe70GnH+SSpm5FZbo9nZfpTmsHYmvhdAc/KHqfVJpYy3TDmV6H/9tOjsQtiMRt0c2VNO1Jy3RLilbHvZZeiv1PCoYXAxOcTuvIJZUmDvun9EkT17ShmjGQXInbSeAaZx4MwMVqF8YhxdIl9JrxB4FKIZ8PHJBGbYpyPhDWLmyCbsLXKc5Hp83GanEGIyZN/DlK6Sfl+1T4dHYRrnF20QDcUsRpE0oTTwX/2aHMsBnKMUTyJG5dRuK2GcbnWHEvddiKS9gerwrNliIH7/APOdi9+kLvYU7lEfSwV+uTLPTZh6ILzfLUyRpzMq+k/UVCT81lJHTaU3MJutDsAbZQ6mSDk/BL9MGhXtLERttJJW5DadQXgf3y6kLycOTLdHv9PW03FwH/EIz9mBaabrmImhNy6J3jdUFk20glbuegJW4vdlqdbFAcOTLdHZYm9qn8MZHUXafVyYpwArqh2vbUsqGaMRD/NuIqfFPAFY22ZukBAjUntoROC974LdG9eiTzoF/itiguVXMiVHP6CviCEaJW8V8GQvnjQOK2KK6vn1ToSD8dfKiQ125mgBLViamTFcBJr7iBdAE3liVNPLqMD2EZG6NDPQvpZl5L9zuapczky6xQYfZeElaLKm+1h3cQpgw4nqJbbRLFSHiBhN0JDxC+cS73EHE4FuODkHAXP2O6kvUsxnTuJ+EL6C7UnStyPZu38ga/QIqyVjKGO5nQ4u8v4QJ6eAWvUnQ2YJA6AWP4kdY9vIFOj3gwInFbCAcPeJHm3DC41LG1kKaWPYz+Oe5Kaw1a4SLESVLmWuhLNcj2NelFd2duhiPQkWcQg2SQXPCWie13rzk5kDaNg6UevgyEHspeD2NjyltGbdgYXXv2BjqtpyCuF/y+aPlfpK9HTHmrLayHrkV4AVzxzIMBuAVpM8AwyrpE6mliylttYRT6Ofm/4J5t7XbuUfB7IGmxWTqYZuZXQ1LJw5/jB2nzxRZwc8F7JNqaZQM695wcwA6I569w2NswjLaxCFl/m1Q9kRpyFfK7OaXqiRjGKsYkZO2Fnd5HEpsgP+OiqidiGKsgf0DW3w7VNTQ0DMMwDMMwDGOVxQwRwzAMwzAMwzBKxwwRwzAMwzAMwzBKxwwRwzAMwzAMwzBKxwwRwzAMwzAMwzBKxwwRwzAMwzAMwzBKxwwRwzAMwzAMwzBKp5yGhgCnsz7LVHOsRSS8XIv7FeU0NmZ50DF3HH9hKq+1dL+E9xAahEO5X7HPHA1sFLnyRxKWVH6/opzLGixmvciVZ0nobdv9kn69a2OEkXbzjn13X3K6Y+5Q7vdHR+fWgoc1IL4WHM2vhXbfr4nPXQf5l2WZg+dbvN94dJOulu/XxOe+C3hLMLzI0dr+5GF9dHPJlu9nlIlfF2k6muUNcC+18X5/a77DedOfuyEwJhhcCK7FBqftvl+hz3TA30cuzAe3uIX7dQHvad/9Cn/uOCDW9fw5cC00sW33/ZqjvIjIcj4EPA08k/n3O5IWGrnNYGuWDbiP3As2a9t881jOgcHnPsMSfkqiNp3B6WEi0tQle78HWcIa7ZtwhIQVwHmEP0frHYzPidxrLh08sACwGAfcrT7bcWLT90roYjHfVveSZnpmhIxcVgDfpH1r4azIveZRznforshnT2n2Jl72hf+I3GtaJ42QlLcDvwo+9/98tJN0Y7wYIL9E/xxfbNts84ntd0/7FvYoD1tF7vUkMm7Un02A3zLw7/d78Ns2fyu/MfCb4F5PI42pO80X0Gvpf8G/vflb+U8Czwb3+jWwbnummofzwDT0z3EX+FGN3pnDlMi9vg+0cq9mWAHcHPnss1q837WRe12cfk7HKc8Q6eZu4MJgdG1gLgmrFb5Pwpr0Mg/tHTqVhJ8MbZKFmAH8MBjbEvmjFSfhvXiuDEY9joNJ+OMQ5lcEz1gOQh4EWb5CwuFN3Slhd+CYYPQ1YCIJb7Y8w2KfvYguJhB6rj2nMYOPNXm36cCng7EngKNan6BRd5wYCAchDoEsX/ZwRDP38rAbcFwwvAiY7GBp67McHAeLgQnA34JLMzx8vMnbTQM+E4w9CXy9xekVxsmh6t/0MNd4eHfR+3h5z7Vo7+edwGVDmmQBHHwXOD8Yfitwi4exRe+TRqbmoaMr093I7no+gnAPAt3B4DhgLvi3Fr+PHwPMQaJ8Wc4H952hzLAY7jLg1mBwQ+CGNNJQEL8ecogOz5+HgfvtUGZYkMMRoyfLLojTsQn8DkBPMLgEmADu9RbnVhC3DJgMKnPmOPBNOlr8EcBeweDzwP6p4dZxyq0RWZ8pwM+C0Y/QnBU3C/hAMPYjxCvfeRJ6GcM+QBhWPZge9i10j4sZi2wuawVXzqKbO4c+yQKcxAJgIihj4XwSPlToHgkbADcgm/5KHIeR8Ps2zHJwpvMo+vA3ml7mkPCOQveYwc7I4SvLErrYm0Qd7IwRhoOFwCT0WjjPU2wteNgA+BbhWoBDnERrO46Dx4Bjg+HRwK2eYmvBwycQozzLEmCCg78OfZaD4+TZGDpp3okc4ot6Go8G/jUYew44wJUX4ZwK/E8w9mHg7CbuMQvYPBi7t8l7GNVzNuIpz/I+9Pe8EecCOwZjvwBOHsK8muUwUHv7Hsh6K4DvQoyQdwUXrgJ301AnVwy3BDnEh3t7N/hPFbuHXwfJ+ghTy44F96uhzrAY7vfAV8NB4Lo0clYAvzXyvcqyHNgL3F+GOsOilGuIHMIyZMMPcwCPIeFfBn1/wldBHfbnA5NbqglolVOYj2MyYdjKM5uZatPQvMqFQBiW/TnrK69JZ0l4CDg1GB2LRKlCIyl872jEOxMecGbRrbwmnSXhcuThliVuJOn3rksvt6APOEcwXXlNjBGKg4fQHrGxwFyvHQYDSOtCbkWvhcsd3NK+WQ6Ok4NNuKFvAHzLD7IWfHrYR6+Fo5z2IHaaryMpWlk+gfYsK7w4t8KD+jJgktN7T8dwsqFPAsIN/WivjSSFhwOB/YLh+UiErZSUCaNduF7k7PJicGES+AMHf7//PPqwvxCYCK6zmQcDcJLtoCO854L/xwI3SIDwsP84Oquiw7jHgSODwdRI8qGRFODTwz7hYf92cJe3a4bFcLcjzoosqZHkQyMpwK8J0eyiaeB+2q4ZFqF81ayE54D9GeiVkjB6Ei36EWawJXBRMNoL7ENCh4u0InRzLzqSswYrmMf56g+7koSvAIcGowsYzcTUUCuXhHOB/wxG3wtcNcg7TwOV/vQoa3FCu6bWJIeiPc+7kygP8UoSupBagLBIay4J17Z3esYw4DwgTHEoshZmoNOfHkNH6sriMCQnPctuwPF5b0iNlGvQ6U/zHFzd3ukNTlrYPxEIUxxO8TptrB8Pb0M8lWH601Sno/EdJy2KP4DIfufjRbMgL94SuDQY7gX2dToabwwL3CvA3mgjchb4D+a/z28IXI92JBwMLkwpLQH3S3TtWZo25sO0sQx+F3T0Jk0pdRVkHrjrkCh2ljRtzDc6Gx+PrjN7Bh2dKIvjgP8XjMXSxkJmo7OLvoeOkHScauR7E+5CP2TFiovVi5zLGmldyMA8WccMElWvUSbT0Xm6W/G6yg0WZrIpelP3OA5kGv/XgfkVwSOet/DzJ6QRKE3C50AVhC8CJnBc80pDbSFJP18rHZ1Fwkdz3jUV+Gww9jTwtTbPzhgGuAZrwed8Jzx8EvhGMLwYSWWqZC04ctfCmV47D/qYgi4Ij9VrlIaDp9C/9y7gplRFKsZsUAIo3wUuaPP0CuNERCCsIVwbmOPR+52X+oGb0XUhMx38oDOzNMrBPYA+II4DbgEfEbzxfdHWsCD8EnD/3okZFuRiRNAiy0bkppr5dYlHW48E90S7J9cEhyPF/1liz/QUvz1wejC4DNgnjRZVgFtK3GkzFXyOyIf/GrBPMDgfODCN3pVKdX1E1ud44MFgdHtgpnrtYi4DtghG72dzTuvM5Aoi6WCTQUVkDqWHyQNGrmAMK7gJ8dhlOZ9u5YUtl4RXkRSCMCJzCQn/ELz2XUhYUheaJcoLWy4Jj6AfIOKpOSN4kCfsiISJsyyliwkkakEbqwiO/tqpcC1c5IN0St/vPVOb62FOb26l4uBRUNHJvnqRAWvBi/dsRvDapcBEpze3UnES3Qijk+sSqRdJxQXCossXgP1LrAvJ40R0RCZ2qAFJtQg95PcT2xuN4cjpaINyC7RzFuBMtPPgEVpQw2svLlfkIy1+zuC7kHTR0HkwB9z1HZpgQVyeyMdM8EGU26+NpKOHzoMTUkGCCnG5Ih/ggyi33wrtmEnPsp2WgI5TnSFyCMsYxT7oqv8TSfhC/3/1sBeSypXlZWBvJtQgT1bSwg4klLX0XM5M3t//3y9xHtUXmuWT8CD6YD4OmMfZvDV9TV6h2dUkKi+9GhIuJabs8WYmtJ0wHnmgDMyhdBzLdJWXbqxiOPg5umB7HFIv8lbol7iNrYVrXevSv23FyYE2rFHZELihr17E9+cTq6LL45wO91fFEcRVbvqfnR5yiy4d/LmjsyuAI7c+8nifSfPwYgSHNQOvAHtbXchIwUlKuU6xOxB8pibIx9Ip02inqybzYAAurVHRIh/gsyIfp6DTKWPRzopwj6FrVNJIlE/r/nyeCt9dwCUdnmBBXK7Ix0ppYp+nwpeA++8OTzCXajurnxrNq5NCoISNmMn78FwRXJeir85L3BYniebVrckK5pEwjoTPowujFjKqBInb5jiLmLLHG/1f7h4kbJnlcUqQ9WySw9HKHp+nhyPpV5WIFJp1M7uMyRnDgrNBKdhlVW660UWXdZR7PhSR3s2yB1IwnbcW7nC6ALIyXL8kplLtSjx8yktzt1jR5XRHKZLuhXCi2hUevhxwnYeNfVxFyQMHO2q03xltwIkzNV4vsjn4PBW+Q8GVosJXDBdzporgDX4t8DGBiT6J21JU+IrhriJH5CM1QmIqfGn9VzkStwXJE/noc6zFVPjuA87o7LQaU60hApBwO6gD4HjgJlZwB6kHMsNZJPxXKXNrjmlAqDSwDWJFxx4oB3OqCmtWi6Sa7Yfe9CaRMJu8QrO6SdwmLKQrIsfqOZeEqyATcROeYVxlhWZGDUlTeQ4monLj4XK03PPfkLqQWq2FVHJ3Mlrl5hzk0BsWXf6B6oouc3FiTIWqQV3Is/VGdNHl96mhxK2DO9B9TNZBomu3oxXaznbaIDZGBO4+dGreGki0PqbCdyW4UB2yDpyPRAayvBdZm7G6kGPA/W8ZE2uSw9FOm90QsZKwPcQyRLGsNInbYrglSHrqouDCNPCziavw7QWu0mhr9YYIwHiORacB7ISE27M8yPoqfageJP1SjWEawF7IRpPlUhKqLDTLJ+FluqKemkPR35cjSaiy0Cyf6fwCnUc7FjlcZpFCs6kqRdBYxXFpSgyS4pPlEPRaOMpJdLB2OOkuHtZOrYY2OJYh0rALS5lYkzhRDrohGP47UNLv85F+IaUXXRbkePR+9zHEcZUlliJojCx60A2StyGuwpevAFkpziMH3GeDC19Eq/DdBi7McqkJ7q/AV9AiHwej60JOAVe6Cl8x3O/Qz/YutFprKildTV1IlnoYIkeTV/WfZQGjmVSJxG1REimMpHFh5COslafIUBOmcz+6eDVkDgnXlzCb1km4CK3sMRDHiWl9jGEoHMRUbkLmOl1QXSucqNwM5vyYUoXEbZMcAQ2dH73APk4LiNQGJ9GpCej6yCwLkL4n9d3vjDbQXy/S6PtaocRtUdwC4oI3WZ6hQhW+YrhHaSBznnIP8M0SJjMEXEzkI+QMcLVQ4auHIQKQNJSKrFritjgJ34Uc+V5YxKgKJW6b4zTypSKfYvW6FJo1JE/Zo4+76FaymoYRcgbkpoMOJ7nng8lfC3cDF5Y4l5Zw/Yey3BS4GU57mGuHa3wo88BBTnuYjRGJm0+8XqSPI8BVqsJXDPdzdIPkPlJnc1USt83gZpPfiPZFYL+a1YXkERP56OPHDO5gK436GCIAXbxEfDH+js1VDmJ9cbkG012cqpru1ROpF8krkLySKapwtK78jbxuyo7zqV7W06g5aYpPWCvSx1VVS9w2wd/QXb77uKAGErdFWYAYJCFvIvU7w4U/Et/vnsLqQlY1/kw8mvAnRNVuuJB39vkJuIdLncnQyDv73AyuchW+grxJ/vP+UnBhynFl1McQOZN16OVGdGETwAd4ItfSrhcJ2+BziyQnkqh85nqSMAktm7zyaqKKQ+vKOcCHo1c8V5Ko4lDDGECOpGof071WIakrZwEfybl2hdeF0rUjlU2+AZGlDFkNUaAKhUFqh19ZoB7b7zZDKw0ZIxa/BmJsjItcfBe1TwPqw29KviPgU+APKnM2rROVTe7jWPD/WOZshsApaJXTPi4GH0rPV0ZdDBHH0qiMZJZTSfh0WRNqiSRXRrIP0aJOeE9pc2qFmVEZySyiRX1+7s9ZD0Q2OVTayfJeRBHDMKJ4+Y4MuhZ8/pqvBV4ke0Ot/CybMjzWwnRouA/sBhxX0lxaooFscpZTvO69YIxMLqOxM+MI8GGjzprhU8le1bA5y2XgQ0GGmuHfTVzltA9pkIwPBYhqht+JxkIX6wHXp80mK6cWkyDheLSMZJhOI1KNCeuWM6mWuBIyTQyF8OdYB7iJhNHlTKlJEsaxgtvRssnhz7E1r9fYU3MaGyOe0+wDxSNpHVkm0KOUtAwDLx7K29CRgnAtbEV+XVjleNgIvblG14KvoXRvHx52RcsmL0ZLE5+ZdouvK8dScL/zcmAwRix+f3TmwQJ0muQs8GEzvTpxLjrzIPxOJSLXigAAE9RJREFUjwNuBh8206sJfhRSGxLKJoc/x0ag+tvVCP8ORP45PGOGP8c/ASeWMqVBqN4QmcF2aC3tpXTxaXSH4vWBW9MO3/Ui4WuIVG+WFxjNNugGMx+jRoVCAReiZSTvZzQfQksTH06P+pmrJ2E0y7kZ6UeT5UK6+FfCvGzPpSTqZzaM84F/CMYegOhaONRLwWmt8LIZ3YJeCxcjsrdhjcIlHj5YxtyawUsq1k3oVKbD0TLdY5AoVfgzV46H7YAzg+GlSPTjW8H4u4BbfTx9yxj2+Pehu3L3AnsCFwXjayNNAkMZ2RrgYw2bFyDf9bBb91bUVxQjQZr/ZXkUaSMR1r7sCT6Uw60B3gHXoGWT5wK7oKWJTwP/sRIm1pBqD/QJa9PLXLRG83FM51fIJvPb4Non0Zr41TKDLYELgtHlwF5M40VE5SUsaJ1KwmfLmF5hetgT6ZGQRXopiGKZlib2zGImdfPUnI4Ye1l+CUxNpYlPC66NA24hoaaeGqNsvOjJHxYMvwrs62RT2g/ttbzcS35/nZiJXgsPI1K9D6Bluschh/gwIloZaV3IjUjPkCzXOzm8X4yW6d6Ixil1peP7D5NqvzvRSV+Rw4FQHWlXtKFlDHv8OCSNO1xnM8D9N3LGCWXlY07bivEbIv19wmjrgeB+jzRTDaWJ/w38PuXMryh+F+CkYHARIpv8R6ROMBQTuAD8tiVMrhlORDdsTpUd3aPoCMho4Fbwby9jcnlUHVm4BtQh9g4SZgGQsIguJqCtuJnMUJtrNZzLGvQyD4JDrGM6CT8BRJrYKYlP2VwTtblWw0w2xasccY/jYJJUQUKkiUNvxtqsYC6J2lyrIeFzwAnBqHSXTvo7rc9AS3xuifZCGasgPh5698CBDp4DcKIlH6ZjvRW42euDZiV4Cb2HTptFSNPCvnSmmEz3ZtTLazkF+VmyPEVa/+VWynQ/G7zmy14kLOvCLPR+dxdwKQyQJg73ux6vG9wZw5uL0NHWjJPMLUMO8aHc7fHgw7S+ivCjkS7w4SH2AnDfkf/r5iNCH2Fz0dngwzT2ivDrEu8Afzi41BHufg6qmfY4JEpVE6eN3x5xPGVJexa51BHuLkPStrJsCNyQRlMqoTpDpIejgC8Fo88RavJP51FcxIrrZQ5nqAVQPou5FNgiGL2XzTlnwEg3c5ECxSyyAOZVHHq/gjGs4CZ0odk5dAcykuszhbin5ozOTbAgCe9Cfsfh9/pQEp7MvK6XMdEmUl8loWaeGqNMfH8xokrr+aaD/wzGTkI3APwIok5VKb6/GFGvBcdKCXHX311XrYWDvIxXSlrrEaaxLgEmOFZKiKfd4GNey/M8VO61TA2iMI31eaQDfH9kzUkH7bDYfjSSohXmrhvDEj8B3XtIMg9wmVRJ93t0zVYqdOAbCR2UxZnAR4OxX6IiC+57aOWvVNjHx5TCSsR3ISmf6wcXrgUXlgache4nNZiwT0n4tZF9S2cX4cLSgMPR/aT2AI7q0OQGpRpDJC5xu4wuJpFEej50cxnyS86yAW+qYuRyEYnbA4LR+YxhMhMi+vBrcQTwSDC6M09wSmcmWJCXOBfYMRh9iJjqgnS2j3lqjqNHFWCWh9QN3YzkVWe5nCTSnOgU8j01w0ea2Gg/ZwOhPOMv0EXSpF2vJ6GLAI/xVCfTnaYyxdbClU7GB+Agr6HaLE91ayGVuJ2LGIdZjnHwv+HrXfyZNRZJNatMmthLjvm5wfByYC8X0fl3IoEaPrM2AG4YDtLERiN8TJ3OAwenKUAB7nZ0dHYd4MY0IlERUYlbyTzAvRl5wynAT4OxbSC31UFZnIJWp3uC6KHc9TltXgouTEpFB6rkWmLZRbhZ+qWuz2kT/p2+Cb4SkY/yDZE8iVvHSUxX3sUshxGz4noayrN2jrjEbS+OfTlFfVGF43iDLvZGdwXupodPdWCWg9PDHmiJW/miJuqLKiTEPTWe61K1qipI0JrZj7FWAynPhO+hDwjy/ay7NLHRdjzsjpa4XQhMdPqhDYCLRXFTmW5PZTLd00E9Tx5H1JqiOLgXgihuuhaqkCZuIHF7m2usWHM2uhngYBLMHcOTK+l+itMHsyyHQiaKK8S+n8awwY9FvguhUXw2uEYNLI9BG947UVmvmVyJ20PBhd/ZFCc1s9rwPhr8v7Z7hsWIStwuQSJT4Rktxb1M3GlzGfiK+kn5o4HwdxjblzK4X4BygI9BVM0aSTB3hCoiIrPRErf30D2I/GXCQroiVpznXBLlze8sInE7F11odhrdKt96INN5HKc2ky48N6epReVxGhviIxK3joNIVL71QBJuRzcvWoflzOEK5cHsLAm7ACcHo4sZxQSOU/nWIdPQB4KteV0dyowRjE89zujN9WCnHSADcHAHEHqe1gHmeO3N7ygediYucTvBaQdIyHRI69pWEvPml0FM4vYZ4N8avcn1e5dVZ+SJXupIymYWOqoUS1UZgOv3LisD+GyvI3bG8OBcRHEvSzzzYABuCVI79NfgwsngS+4146WNgk4TnA1OZx4MwD2PZJCEIh/Xli9N7McjKVlhVOkocL9u/F53HzoVXXqrlS5N7GNRpTRS73R20UDOA74TjFXST6pcQ0QkbsMc/BeIK9BoppNnxd3EWQ0b6bSbC9F5xw+whVKgidPNVcgiyLIe4gEsJ/QuEre3ogvNLqZbKdDkcSxamnhHXirRU5OQX2h2qlKgib1/OaOjnpojSVQNkzECSSVu56A310sc/HvB2xyHXgux+oaO4cldC0c6STdoiOtT+tPSxEd4Xd/QMXIkbpcB+zidEqpw/fn22mvptTR5x0h7soR1NvMR0YMwJVTh+pT+BjIGMXBrJ01sNCJX4nZiWpg+CO4ptIc7rW/wYX1DJ5lBLPMgvxN5gLsLLVmc1jeUJU3s+6KtGwUX5oG7uuBNEuBHwVjJ/aR8X7Q1rLM5CVyj7KIUl6qbRaWJG0RT2k95hkhc4rYX2J9EbXz5JJyHLhrdlCUlWXFxidtXgX2jdSH5HEamaDTlc/QoxadOEZO4fQS98eWTsIRRTER7ak6ip4SuwAl5hWY3kChN/nym8TwuIk0M19RQmthoPzGJ20dpQjbV9auTKJnuKZ7Oy3Q3kLid66RovRBOHEOxtTDL6xzktjOIxG0okpGLI1+m24cKhx3Ax1X4ehHFslAYoBEXor2WNW+oZgzEp6pESuL2IHDPFr+Pm4PuNbMukk5TguCN3xV9PkiV3txgmQdZvoHIVWeJKT51ipjE7aDR1oG4XsSBHp5dDwFfVj+py4llFzVlDLkFiLNkeXDhIvCl9ZMqxxDJk7iFbhJlVQ5GnxX3XDC+Zxpx6Rx5ErdwIImaT2OSPo1qlgR3O4NEKVG0l7jE7SJGMYEkmM9gnErcU+O5idOVgdBuTkYXmj3F6i2oP3RzNzFPTZ2kiY224+N9iRYhqUzNbK64fr32AXQBN3ptILSbqWiDJzafQXHwXXIaqpUgTRyTuL0b6RXSLDPQDdW2pMPSxL6vL5He72Y4PZ+GuJX7Xei1/IqXOhKj1vRL3EYairpvt3DDvF4zxR2ILeFTgycqcTt45sEAXJ7T5kTw/9zqDItRROK2KO5F4tk8V4DvcD8pfwiSupklnY8bPLtoAO7H5PSTKkuauBzVhb/xCST3OJt//BdalXxNeJWEvRDPXZYtSBjX9GG6KL18GvHWZfk1iYrQFCPhERIORB4kWXYB/qelew7+mV2IJn0YgryTU1WEpug959DDxng2GTC+nE8SUelpC2fxNpawPmERaheXMkVFaIoxnm/wKiuQfM/sPXcAftzaRI26khZE74peC3c53Ui1EE4O6xshBdJZPolOx2wLXmS3340uyL7M6c2+KFPk1sFaoHNrwcPmSHQ1+3P0IoXdTW6uIk3s5aAwnSDl1cPGTh/u28UuSPQmG8FZgI7QFMLBAi/qbAcGlzb3sHqzBrNRKv+IpC49lhlbjG6eVxC3GPxEdJrX30mRsRs0dbFFPoMWgfg9uOKZBwNwz4CfDISGxw7g704jDp3g0+gI8b3gwghNQdw94I8EwujBrmixiTbhxyHPyvB5fwO44tlFAzkdEdQIU/U/jkRZOs4OyEO+YUGmYRgdYRGy/jYZ7IWrIFchv5tq5a0NY9VjErL2ms1YGE5sgvyMi6qeiGGsgvwBWX87VN1Z3TAMwzAMwzCMVZBsatY70WlHRfh/VN+UxjCq5nR0Ok4RxrZ7IiOQibSmdvRNpBmhYayqbERr8ssbtnsiNWYsrZ19nsaitYYxBS1LXYR3Zv+jLzWr1X93tzZ3wxhRPMTQ1pGlZmn6UrNa/VdRoyzDqA3bMLQ1tCqkZrX676Hyp2wYteNuhraOdhiN5GmFhU/N8OwQ3msYI4VzkF4wrdJqkdlI5mZ0R+FmGMp7DWMk8CJD299faNdEasifGdrvZn67JmIYw5hZiNJiq1h9umEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmFUgat6AsYQSFgTx8eAHfG8ExgPjAMWA38CHmUUP+VUnqlymoZhGIZhGIYRYobIcCRhR2AqsAcwusA7HgeuBa4m4fVOTs0wjFUXD9cBW+dc/gvwOQe+xCkZhjHs8LsBMwu8sBd4DXgdeBp4FPg+uFc6ODmjzRQ5xBp1IWFtZKP/lybfuSVwHvBR4CvtnpZhGIaHjYH9gK4GL9sJeKCcGRmGMUwZD3y4xff2gp8LTAX3XBvnZHSIRhuGUSdmsjnwS5o3QrLY39swjE6xL4M/Y/YvYyKGYayydAF7AT8H//6qJ2MMjh1MhwOnsx4ruAfYdJBXPg/8CngC+HPH52UYhrGSfQq85ise3tLxmRiGsarzLuCqqidhDI6lZtUfxzLuQNIeYrwGnAN8i4QXBlxJeC/wOeAwYItOTtIwjFUXD/8IFPE+rgX8K3BzZ2dkGMYI5E9Ad+a/34Kknk8GVo+8fieJirjflTE5ozXMEKk7PXwJz8dyrj7DKP4pVxUr4WngUuBSEiZB7n0MwzCGQl7K1QpgVOS1ZogYhtEsC8FdqYf9NcBP0M8agI8AZojUGDNE6o5nes6VxcDnC0vzJswB5rRrWoZhGABeJMMnRC79FngS+EIw/ikPGzpJJTUMwxgi7kHwvwG2ilwcX/ZsjOawGpE6k7AJsE3O1YtI+G2Z0zEMw4jwBWCdyPitwNzIeBewd0dnZBjGqsaYnPGXSp2F0TRmiNSbz+ZeGU0kPGkYhlE6eWlZc4DvINHbkIM6Nx3DMFYt/GeB90UuLAd+XvJkjCax1Kx688Gc8T8wjf8rdSaGYRgBHtYj7jB52ElaFh7uRqdubeZhOwe/6PQcDcMYMbwT/FmZ/x4NbAbsTtyxfi04SwGtOWaI1Jt35Iw/VeosDMMw4uxDfB/J1qPNJV5Dsj9miBiGUZy3A1MKvM4DNwFHdnY6Rjuw1Kx6k1dk9VqpszAMw4izX2TMA7dl/vu7xJ9Ze3kY25FZGYaxKnMvkIBbVvVEjMExQ6TevJEzbpu3YRiV4mFb4mIaP3WsTB11sASpFQkZD+zRoekZhrHq8kngN+APqXoixuCYIVJv8rqjr1vqLAzDMDSxaAjEZcJj6lmQX+huGIYRshj4YfDvceDNyGtXA2aD/2J50zNawQyRevNizvgHSVit1JkYhmGkeKkLmRS5tAK4PTL+X8ArkfHd04J3wzCMwXge3GeCf1shill3R17vgPPB21m3xlixer25Hzg5Mr46jn8C7ix5PoZhGAC7Ae+KjL8OzPDx98RSTfsMmovaNTHDMFY13HPgJwMvg3LSbgJsDfy69GkZhTBDpM6sxY95nTeA1dU1z1QS7iaht/yJGYaxipOXUrUO8LUW7mWGiGEYQ8C9Bv5J4t3V34sZIrXFwlV15jjeAK7LufpRYHrheyWMZgYfa8e0DMNYdfFSZP75Nt5yWx8vejcMw2iGtXLG31nqLIymMEOk7ozmDER1JkY3CReT5C4+MUB62BP4Fb0c34kpGoaxSjGJ9iv37dvm+xmGsUrhPwhsmHMxVp9m1ARX9QSMAvRwCJ7LG7ziz8C3gZ8hOZLjcKyPZzvg08D66ev+g4QvdXayhmGMZDw8COwQufQisHSQtzvg7yPjfwI2dLB8iNMzDGPY4ycjDQlDfgtu88zrRgPvBj4LJMDfxW4GvEfqSIw6YjUiw4FuriDhA8AxOa94B/DV9J+QUy1qGIbRKh42I26ELAbe7+R/B7vHE8DmwfC7gM8A9wx5koZhjFQ+AL7Z082PzAipN5aaNVxIOBY4hLhetmEYRhkckDP+7SJGSMq8nHHrKWIYRjtZABxR9SSMxpghMpxIuBLYCdHkb5ZXcOZtNAyjNbzsF/vkXL61iVvlvfaLHtZublaGYRhRHgF2Afe7qidiNMZqRIYrCR8C9gR2BrZDp9l54FngZzi+jedOktyid8MwjIZ4qTf7QeTSq8D6rolorYdfAf8QuXSIgytbnKJhGCOC3BqRwXgOqZWdB3wbnLU3GAaYITISmMconuDtjOLteN6CYyGr8TJT+GvVUzMMY2TgRfQiVgz6VwdPNnmvjZHatpC/OHGgGIaxyuLHExe1iNELvAa8As7OPMOQ/w8j6NSLobDrOAAAAABJRU5ErkJggg=="
|
|
}
|
|
},
|
|
"cell_type": "markdown",
|
|
"id": "9bc5cb16",
|
|
"metadata": {},
|
|
"source": [
|
|
"<div>\n",
|
|
"<img src=\"attachment:fig_matmul_intro_q_2.png\" align=\"left\" width=\"450\"/>\n",
|
|
"</div>"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "c9c40141",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Data dependencies"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "b5c89c45",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Complexity"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "caafe52f",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Efficiency"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "78c8c975",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Implementation"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "710edd44",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"function matmul_dist_2!(C, A, B)\n",
|
|
" m = size(A,1)\n",
|
|
" n = size(A,2)\n",
|
|
" l = size(B,2)\n",
|
|
" z = zero(eltype(C))\n",
|
|
" @assert nworkers() == m\n",
|
|
" iw = 0\n",
|
|
" @sync for i in 1:m\n",
|
|
" Ai = A[i,:]\n",
|
|
" iw += 1\n",
|
|
" w = workers()[iw]\n",
|
|
" ftr = @spawnat w begin\n",
|
|
" Ci = fill(z,l)\n",
|
|
" for j in 1:n\n",
|
|
" for k in 1:n\n",
|
|
" Ci[j] += Ai[k]*B[k,j]\n",
|
|
" end\n",
|
|
" end\n",
|
|
" Ci\n",
|
|
" end\n",
|
|
" @async C[i,:] = fetch(ftr)\n",
|
|
" end\n",
|
|
" C\n",
|
|
" end"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "c2378bba",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"using Test\n",
|
|
"N = 4\n",
|
|
"A = rand(N,N)\n",
|
|
"B = rand(N,N)\n",
|
|
"C = similar(A)\n",
|
|
"@test matmul_dist_2!(C,A,B) ≈ A*B"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "30e6cb67",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Parallel algorithm 3"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "d294e05a",
|
|
"metadata": {},
|
|
"source": [
|
|
"Each worker computes N/P consecutive rows of `C`."
|
|
]
|
|
},
|
|
{
|
|
"attachments": {
|
|
"fig_matmul_intro_q_3.png": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAyIAAAECCAYAAAACfmNBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAACAASURBVHic7J13mJTV9cc/d7bQyyLSQQVBBUSqJsYeNVETEzUgKigWFlCxoyxSlr4aO6KwgIJKVEg0xZhYorH8NIqAImBDQECaSK9b5v7+uLPrvPe+szuzOw04n+fxkTlvO1P2fe+595zvUQhCErnuuuvqZWZmNgkGgw2VUruKi4s3z549e3uq/RIEQRAEQRCSi0q1A8Khz6BBgy7UWv8BOB9o6bPLSqXUu8FgcG7Lli3fys/PD/qdJzc39z2lVC2/bVrrImAHsE5r/XFGRsbfpk2btjmST7m5ueOUUheGjn25sLBwYrTvJzc3d6JS6lehY/9cWFhYEO2xFTFgwICGWVlZPQOBQI9gMNgzEAgcU7attLT09pkzZ74Xj+sIgiAIgiCkA5mpdkA4dMnNzT1FKfWI1vpnlezaVmvdVik1YP369csHDhx4x4wZM17z2a+b1rpOZddVSt0QDAan5ObmPlmnTp0RDz/88D6f3Y7WWvcI/XthZecMR2t9DNAjdK2PYjnWj0GDBg3VWt8KtAudH6UUWuvyfTIyMhpW9zqCIAiCIAjpRCDVDgiHJoMGDboC+K8VhPwIzAcmAfcAY4GZwDdh+3RUSv37+uuvb1TJJTYAK8P+WwWEBxw1gNt279796tChQ2tU680kmGAweBKhIEQQBEEQBOFwQVZEhLgzcODAy7TWc/kp9W8dMHLbtm3PzZ8/vzTCMZ2UUiOBPkQRICul+k+fPv0/4bbevXtnNGzY8DTgfqXUyaH9zjpw4MBwTNCT7qzSWi9USi1USi3UWj8DNEu1U4IgCIIgCIlAAhEhrlx//fXHKqVm8VMQ8hlwQWFh4YaKjpsxY8Yy4IrBgwc/HgwG51Xl2qEg550BAwacmZ2d/X9A99Cm2/Lz8yfm5+eXVOW8iSYYDBYAd8+aNWtruD03Nzct/RUEQRAEQYgHkpolxJXMzMyJQIPQy23BYPA3lQUh4UybNu3/MjMze9SuXXtPVX2YPXv2fq31mDBTww0bNvSq6vkSzaxZs1bYQYggCIIgCMKhjqyICHFjyJAhbUtLSy8LM42aOXPmuljP88QTT2ysri9KKY/CVDAYPAr4sLrnFQRBEARBEOKDrIgIcaO0tLQPkBF6uaukpOSZVPmybdu23UC57FQgEKhUbUsQBEEQBEFIHhKICPHkjLB///epp57alSpH6tev34qwPjnBYFBSnwRBEARBENIICUSEeHJy2T+UUh+n0pGMjIxLw18rpZakyhdBEARBEATBRQIRIS7k5+dnAuG9P9akypfc3NzuQHix+tLCwsJvU+WPIAiCIAiC4CLF6kJc+O6773KysrJUmGlHgi/Z/oYbbtge9jorIyOjhdb6fOAaoGbIrrXWeQn2RRAEQRAEQYgRCUSEuJCVleX5LWmtE9oDQ2v9ZCAQsG32bqXAPTNmzHglkb4IgiAIgiAIsSOpWUJcqFGjhl0M3sB3x+QQ1Fq/qrU+o7Cw8MEU+iEIgiAIgiBEQFZEhLgwZcqUA7m5uXuAMpncpgm+5Eyl1IqyF1rrfUqp7aWlpesCgcDCGTNmRJ0appRSle9V9f0FQRAEQRAEFwlEhHjyGXBq6N89E3khpdQL06dP/081TnGg7B9a61oxHls77NgDFe0oCIIgCIIg+COpWUI8eTfs32f27t07I+KeKUYpFV7onhPj4eXqYEop6U8iCIIgCIJQBSQQEeKG1vofYS9bNmzY8KKUOVMJWuu1YS9PiPHw4yOcRxAEQRAEQYgSCUSEuDFjxowPgA/KXiulJg8YMKBmBYf40rt374xEr6ZorT8Me3lMbm5uu2iOC/UoaRzhPIIgCIIgCEKUSCAixJVgMDgKCIZedszOzi4MNTuMimuvvfbInJyc1+rXr59Q1a2WLVsuBspWM5TW+tZojrP2+2LGjBnfxN05QRAEQRCEwwAJRISo6d27d3Zl+8ycOfMtrfWkMFP/9evX/3PQoEHtKzouNzc3Kzc3d0hWVtYS4JfV9bUy8vPzS5RSj5S9VkrdOGjQoKsrOmbgwIE3KqX6l73WWj8AOM1LBEEQBEEQhMoR1SyhUvLz8wPff//9P5RSrwBPVrb/9u3b83Nyco4EBoVM52utl+Xm5v4LeEMptTIYDP4QCATqAy2DweAZwEVAs4S9CR+aN2/+2Pr16y8BTgMytNZzcnNz+2ut5wUCgaVKqV2lpaX1A4FAF+BKrfXpZcdqrV+dMWPG0/Hw44YbbmgVCAT8znVk2PXG5ebm3hK+USn1l+nTp0+Lhw+CIAiCIAjJRgIRoUJyc3NPXL9+/UNKqXOVUp9Ec8z8+fNLgcGDBg1aprWeCNQDsoCLgYu11iilyjuhW2059gD3tW7demdc34gP+fn5Jbm5uZcA84CzQ+ZzlVLnaq2x/SxDKfVKjRo1riJOqyFKqdrAuZXs1tU2aK0/j8f1BUEQBEEQUoGkZgm+5ObmNsjNzZ0ILMYMknfgleetlOnTp08B2gIFQGW1FN8opUYB7QsLC8fn5+eXVMHtmCksLNzSokWL85VS1wFLK9l9EXBV8+bNfzdlypSEB0qCIAiCIAiHMtIhWnAYNGjQeVrrB4ETAZRSs0tKSibOmjVrRSWHVsgNN9xwTCAQ6IhRncrRWu8ENiulFhYWFm6ovufVJzc3t7nWuhfQWCnVQCm1PRgM/qC1XjBz5sxNqfZPEARBEAThUEECEaGc/v3716lZs+Y4pdRQTCrVVqXUJdOnT49pJUQQBEEQBEEQKkMCEQGA66+//qjMzMwXtNY/w9Q+zCotLb1n1qxZ0jlcEARBEARBiDsSiAgMGjSon9Z6OlAbWA/cVFhY+NcUuyUIgiAIgiAcwkggchjTu3fvjJycnLHACMxv4c3S0tIh1a0FEQRBEARBEITKENWsw5QhQ4Yc16hRo4+AezFByMQWLVpcIEGIIAiCIAiCkAxkReQwZODAgf2VUtMwqVhblFJDpk+f/udU+yUIgiAIgiAcPkggchjRu3fv7JycnD8CtwAopV7TWl+bLtK5giAIgiAIwuGDBCKHCdddd129zMzMucBvMapY4woLC8cSp+7ggiAIgiAIghALGal2QEg8+fn5gT179rwOnA/s0Vr3njFjxvRU+yUIgiAIgiAcvsiKyCHOkCFDcoLB4DStdR/gR631BTNmzFiQar8EQRAEQRCEw5vMVDsgJI4BAwY0LC0tfRfoDOxTSuUWFhZKECIIgiAIgiCkHAlEDlEGDx7cJBgMvo4JQtYqpS6dPn36J6n2SxAEQRAEQRBA+ogckvTu3Ts7GAy+AJwErA8EAr+TIEQQBEEQBEFIJ2RF5BAkJydnCnA2sFtrffa0adO+TrVPgiAIgiAIghCOrIgcYuTm5l4D5AJBpdSlM2bMkCBEEARBEARBSDskEDmEGDx48MnAzNDLcdOnT38jlf4IgiAIgiAIQiREvvcQITc3twGwGDgGeLGwsPAKpFmhIAiCIAiCkKbIisghQH5+fqbW+q+YIOSbGjVq5CJBiCAIgiAIgpDGSLF6mnPjjTe2Li4uPqm4uPj92bNnb/fb5/vvv79JKXUWsFVr3WfKlCk7k+ulIAiCIAiCIMSGrIikOSUlJS2UUv/Izs7+ZuDAgdfZ23Nzc49XSk0G0FoPmzFjxqfJ91IQBEEQBEEQYkMCkTSnsLDwI+BhoLFSqp/PLrOAWlrrV1u2bDk7qc4JgiAIgiAIQhWRQOQgQGv9TOifJ/bu3TujzD5o0KBfAqcCOzMyMm7Kz88PpsRBQRAEQRAEQYgRCUQOAurWrfsVcABo3KBBg8Zguqdrrf8Y2mX2tGnTVqfKP0EQBEEQBEGIFQlEDgIefvjhfcBGgIyMjNYAOTk5FwLdgC3BYHBSCt0TBEEQBEEQhJiRQOTgYSGA1rprfn5+ABirtX5VKXX3zJkzN6XYN0EQBEEQBEGICQlEDhK01p+E/t9lw4YN/YAuSqlTiouL/5xi1wRBEARBEAQhZqSPyMHD5wCBQKCT1vrkkO3Rp556ape9Y+/evbNzcnKOA07RWm+cMWPGK8l0VBAEQRAEQRAqQwKRg4RAIPCj1hqtdQegKbAHmAOQm5vbQCn182AweBZwilLq50CN0KHPAxKICIIgCIIgCGmFBCIHH42BgNb6MaXUaQMHDuwD/EprXVMpFb7fZmBRIBB4NSVeCoIgCIIgCEIFSCBykKC13hb6Z02gSCl1B1AjLPj4GvgQeFsptWz69OmfpMBNQRAEQRAEQYgKCUQOElq0aLFi/fr1RUB26D+AL4H5WusXW7Zs+YU0NBQEQRAEQRAOFlTluwhpgsrNzS3WWq9TSv05GAw+P3PmzIWpdkoQBEEQBEEQhEOY/Pz8wJAhQ45LtR+CIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiHBwpoDvSv5nl+AJ6uvjuCcFByI1C3mueYDuyIgy+HEr8CTqrmOf4DSL8d4XCkHXBZNc/xHfBiHHxJRxoAg6p5jt3AE3HwRRAORq4FjqzmOZ5VwCnA/6p5oqXAiQCffPLJ+Uqpflrr9kBWNc8rCKlmv9b600AgUNijR48lEfbZADSr5nXaASureY5DjRnADdU8x23Ao3HwRRAONn4D/KOa53gbOCcOvqQjbYFvq3mOjZjJXEE4HPkc6FzNc/wsM+zFbmB+FU+0btmyZdn79++fo7Xuq7Wupl+CkD4opX6htR6yYMGC0b169Zros8vzQMMqnr4/kFnpXoc3i4DPqnjssng6IggHEWuoeqbCMcBZ8XMlrSkBnq3isdvj6YggHGS8DCyo4rG9CWWShA+AtgDXVdWbffv2TQX6VvV4QUhzAkqpCQsXLlzfo0cP++F+RzXO2wcJRCrjJcAvABQEITJLqPozvS+HTyBygGqMfQThMGZ0NY49m1AgEoiHJwsXLjyW6udaCkLao7Uu+OSTTyTlUBAEQRAEoZrEZSZWa30RkFHRPm9vfJsPf/jQY2tcozED2w9EKRXT9Up1KVO/nMrukt0e+7nNz+XkxifHdK5YeX7V86zavcpj69ywMxe3vjjmc20r2sa0r6ah8aay9WvbjzZ12lTLz4qI9+f35Y4veWnNSx5bpsrk5uNvpnZm7Wr5WhHx/vz8fqNH1DiC3Pa54b/RJpi6qver5LSQVmhz35qEm1r3ZwVvVOF83YDBlrkYyFOwq2peRnXdxsB43MmlBxV8XYXz/Q640DJvBPIVJCz3VkNXYIhlrvLnp+EWoJNl/ljBrCq6GO11fw9cYJmr9PnF+zcqJBt9LiYNJZztwL2gSmI8lwLycWsS/wXqr1V0MNprXw/YA4RloB6rwrnqAgW4dcTTQC2uknvRXVcBY3Dreqr4+ekOwJ2WMQiMArWlKh5Ged04f36+v9EdwIjYf6OxE6+UkFaV7dDziJ48svwRvt/7vcdeL6seVxxzRUwXm/bVNJ759hmP7dh6x3JnJ/v3EH9OOfIUpn45lf2l+8ttf13zV5rVahbTIF5rzfjPxvPupnc99vNanJfQIAQgQ2XQqWEn7ll4j8f+5vo3mXvGXJrXir72bm/pXkYsGsGaPWs89ts73p7QIAQgJzuHeln1mL1itse+ZOsS5pw+hxqBGlGfa82eNYxZPIa9pXvLbQEVYMopU/wC5cR+QULSUFCqTVD5N/OynN4auitYHe25tFlmfh44zto0LJFBCICCLRq2AiOsTT/XcIqCfdGeS0N7TM58vTBzEPh1IoOQEJ9hBln2zE5jYkz91aZY+xG83+t2zAM80fwHuA/oYNm3Aw/HeK584G7LthS4vUqeCcnmfeB+zCRFOEXAqBjPdRtuOsx3QF7VXIuJ1zG/6SO8Zr0O1Et+B1TAE7hqrf+m6rWAUaI06Lcxf5/hk+dXgT4Z1PLoz6VrAC/gfq+TExuEAKjdoFcBD1gbfgm6B6gYFDh1K8xzq7G14cpkBCEQp9QsrXWlAU29rHpM7j6ZrIA3gHt0+aMs2RZJjMhlwZYFzFkxx2OrlVGLgh4FMQ08q0rbum0Z1nmYxxbUQUYuGsmPB36M+jxzvp3jBCGt67RmZJeRcfGzMn7Z/Jf0PtobAO8s3knewjxKdPS/vUlLJjlByC+a/IIrj7kyLn5WxpDjhtC1UVePbcWuFTy6PHqhpKJgEcMXDvcEIQA3tL+BUxqf4neIpGYdQiijLDTVMucAL+jYvutpuEHIv4AHq+FeLIwG3rJsJ8ZyfQ01gXl4gxCACcmYfQ8FOtdiCq3DuVzD9dGeR0NrYDbeIEQD1ylY5XtQHAkFnldi6g/CuU/Dz6M9jzZ51PYgcw/QR8Fen0OEtEPtx9QC7rQ2jAB9fvTn0b1wg+hioC+ordXxMDrUWuAa3MmIWaCPif48+nrcIGQTcC2oYHU8jA71DjDBMtYB5oGOZfb0Ydwg5CPMiksyeAgzgRZOO4zaZJToTPyDkKmgnq+Oc7EQl0AkWjo27MjQE4Z6bCW6hBGLRrCz2P4bddlatJWRi0cSxPtbzeuSx9F1j46nqxXyu9a/48KW3qyFSL75sXT7UqZ9Nc1jyw5kM7n7ZOpk1omrrxVxe8fbOb7B8ZX6Fon5q+fz7+//7bE1qdmEsV3HxpxuV1UyVAaTuk+iYbY3a2He6nm8tv61qM5R8HkBX+/0Zq90b9SdGzpUVzlWOIi4C6POFc4pmHSnStEmHesqy7wOuDoJqwiAWd3BDBTs2bgh2gyKo2EKJj0qnHeBcdV0L2qUWdnpj1EzCudxHUVfmVDw+ALOzC2PKaPykhSU6V9zj2XOwgS4jSo7XkNTYC5u2vONCr6Ij5dCclArgFzLGACeBd2i8uN1Q0w/l2xrw92gqtt+IQbUP3Hl0EO+ads3H3QnwE7lCgJXgdoYDw+jZBzwpmXrRNRS7/oPuCmk24DLQRVX17noUGWTNt9ZG3qDttODIzEBOM2yfQ4M89k3YSQ1EAG44ugrOKvZWR7bxn0bmfCZHaB6ibTqcHHri52gIBnkdcnjmLreSQC/1RqbSKsOfkFBookU/MxZ4a7W2KzYtYJHlj/isUUKChJNefCDN/iZvGSykwpo8/r61/n72r97bDnZOUzsPpFA8v88hBShzMx1H9ymkndrN03IgzY66g9Z5lLgGuUGBQlFhYIf3OBnunZXazxo8/7t6PsH4MpQkJM0lAl+xlrmmsA87a7W2BQAp1o2v6AgGTyGG/y0AeZoiDhbo8sHqU4u+2wFz/gcIqQ96kXgKcvYBPgT6AprbDE1Tfaqg19QkAzuBj60bL2AyRUfpkOrDtirDmNB/SdezkWHCgL9MHVb4dwAul/Fx+p2wEzbiFnRsYOCBKNCwQ928PMIaHu1xkL/Gjfg2A30ARV1Km88SPpISynF6JNG06K2dxLgrY1vMX915DYmM76ZwcdbPvbY2tZry92d7dTZ5BApHWzaV9P4dOunvsdorRn76Vg27NvgsfulSSULv3Qwjalf2bx/s+8xe0v2MnzhcA4EvVkHfmlSyeIXTX7BVW29E9K7S3aTtyiPomCR7zFr96xl4hKvKqxCMeqkURxZs7rNQoWDDWWamw10zTytI9QF6fIlfWpZm0YrN00qKSiTDmbnDtfFDOJr+h2j4VjcJX0NXK+g4mg+cUzC5KWH0wF3RrUcbQrs7dqJ3Zhgyk6TSjih1bDrcNPBfgPcVMGho4DzLNvXmOJ74eDlJtw6iDOBCnKy9c3ApZYxlCalUtC0TYXSwbDTwW4H/fsKDnwc6GjZ3iFl0uxqE2al2J5keRJ0hFlhnQU8BzSwNjwEyk6TShLqI9y6oRqYVLP6/sfoZpgeQ3YMMATUl/H2sDJSMuVbP6u+b73Iw8sf5ssd7mew8MeFzPraK3KSHchmQrcJ1Mzwfa4mhXb12nFnZ2+BfKkuZcSiEWwvcvsczV01l3c2veOxNavVjHu73JtQPyvjvBbncUmbSzy2bUXbIqaaFSwtYPXu1R5br8a9uLrd1Yl0s1KGnjCULjldPLbl25fz+JePO/uW1YXsKdnjsQ84dgBnND0joX4K6YsyTV2nW+ZGwHPaX9zjSeAEy/Y2pqgzlYwA/s+ydcHHL20eWi8C9kPrflX9ztxVRpmUjf7AemvTAG1S0DxoI5oyB3elYVBVlMPihTIF6pdjipPDeUBDD3t/bQamdhHzfkxdSEJFD4REU14vYn+Po0PKRRa6C6bQPZwS4ApQ0Relxh21BhiAd+VVAU+BPtrdX/cN7R/OZkxBdFJXW70ov3t1Xcwg3p5cAjPB8zPLtgBXJCTZ3Id7rz4WKHR31QFMyqetvDYT1HOJcK4yUpZ70qlhJ4Yc502xKwoWkbcozzM43HpgK/cuutcZEA8/cTgd6tuCJMnn0jaXckFLr0rj5v2bGb14NOEd5pfvWM7UL731sJkqk0ndJ1E/K0LQmkSGdR7mfJ6LflzEjK+9k6Qvr3mZV9e96rE1ym7EhG4TCKjUpjJlqAwm95hMgyzvZMXzK5/n7Y1ve2wPLnuQr3Z+5bF1btiZQcdJOxyB2wBbAvF0rCLEUPG0X9HlVclOZbJR5YMV7MHKLdqdXX0I6G7ZPiZ2RZ+4o8oHK87nOVWHBYChINGv6PJJBX9KrJeVo/wHKzWAF3XY7KqGIzH+2qk6Q1XCFYWE5KD8VrYCwHOhmeoQOjQgdlZb7wVlTzKkABVR5CO0chBCt8cdEIcmGZQ9yZAKIol8WKvK+jfAUGu/0CSD8k+7SBpKY55H9ur15SFxgHDGAudYtmXArQlyrlJSOnLs37Y/ZzY902Nbu2ctE5aYepGgDjL609FsOeBNsz6/xflV6tuRKPJOzOOoOkd5bB/88AFzV80FYFfxLoZ/MpzioDeN75YTbnFm8FNFdiCbgh4F1M7wpm/O+mYWH235CICVu1fy4DKvAE9ABZjQfQJH1LDrQlND05pNye+a76kX0WjGfTaO9fvMPe/NDW/yl+/+4jmuflZ9JveYTKaSJueHOyo0+4yPyo2G8wG0KWz0K7rsp2ADaYAqT99wVW50KN9cwx+AG63t24DLlZt3nBKUSd/wVbnRP+Wb+xVdLsXV+E8lFarchNWF2MXL85Sbky4c1KjZmNW7cJrirRfxU+H7N27aZSq5C1N/FU6YyIeOpMI3GZSddpkiVCmmrs6u57sRdEjkQ/up8AFcDyrhKnzRoX7ATNo4Ih+gQyIfOqIKH6iUqfClNBBRSjGm6xinb8Ub69/g5TUv8/SKp/nfD15BiNZ1Wqc8lcmmdmZt33qRKV9M4bNtnzF+yfjyQXAZpzU5Leb+KYmmTZ02jDzJm6oa1EFGLR7F2j1rGb5wuKd/ChiJ20Q3kYyV05ueTt9jvC0HdhXvIm9hHqt2r3KEERT+v0Ph8EVBRJUbDW0xs9Z20eV45SqxpBRlClofscwNMTPx7XHT0Mokblcnwb1Y8FO56Qw8osGv6LJM4japRZcVESZNvNra1FvDIGA48Ctr2wrcuiXh0OAmwO5bcTZwD+hBuCp8G0maxG20qAOYtENH5AP0xZjJGrtw9H+4QhQpRn2PCUbsz3ZaSOnLT4Xv8Sr0T0kwKqLIR6jI3k+F7+bY+qfEH4WJXv+HuTnGoAX9EwsWLHhYKXVbVZ34dOunDPpwEKX6p9X37EA2pbrUsc0+bXZapGT5MW/1PO5f6k3nrJ1Zm70l3kCzWa1m/OmMP6VFSpYf4z4b5yhJ+b2Pnkf05ImfP5GW6lLFwWKu/7/rWb7D+/fl9z6uansVt3eMqTfYgJ49e1YsjxY9uzGzu+2AlXE656HCDIyK00hSVNCof/IhnN2YPOJw/gucm+qULD+0kfx8D7crst/7eESlaaM8bRSkFmNmjsPxex/9lSkqTTu0UfR6B2/N0f7Qa9t2qnLTBJNBX0yq29u4aRyHCm0xAhV7cH8/SUJ3xqRBhqdflYT+Cy+ALQV+GeqBkYboPpg6s3D8/i63AN1ArUuKWzGjC3DV9fzexyLg1FAglmboAGblzBa78Hsfz4JKVXHvKuBo4GdpMYLs2qgrg4/zyh4XBYs8QQjAnZ3uTNsgBKDP0X34VQvvhJY96M1QGUzsPjFtgxDwr7+x30ejGo0Y3218WgYhAFmBLO7veb/zOdvvo2ODjtx8/M3JdE04uBiKm5tv38x/IA3qQiKhTJF0b1yVG/t9fEJqJG6jIpTydgXu52y/j6fSNQgBUPABrkpSTVwxhDtTFIQISUMtxa0XycRVt8tP3yAEQM3DpJKFY/9dauCG9A1CAPN3adff2O9jN6bIPg2DEAiTJrbrb+z38Q0VK/cljbQZRV7T7hp+fmTkhrO/bP5LLjvqsiR6VDXyuuTRsnbLiNtvOv4mTsqptCdXSskOZDOhe2RFsoAKMK7ruLSXuG1Wq5mTahZOvax6FPQscNTbBKGMsHqRSGpFZRK36VB0GRFlOpX71YuUsQNTF5LiosuKUWaG3u4uHc5y3ILSdOR+4O8VbP+LgieS5YyQStRMTG1QJP5LpT060gI/kY9wHkidxG20qBLMamBF/Z8Gg/qqgu1pgIok8lFG6Lmm0kKFL20CkYAKcG+Xe31n2JvXas6ok1Iu4BIVdTPrcmcn//rIUxqfQv+2tshOetK2blv6t/P3tV/bfvzsSFvBLj05p9k5nN70dN9tI04cQYtaUTS1FQ5rQtKvD0bY/GAqJW5jQcErmP/8GKwOntTAfExgZVOEqQtJWdFltITqRW7Cf6CwBjcdUDi0uQX/3+0WjFRvWq62elEHiDzD/gmQXsW9EVHriFzD8jSoucn0puqod4i8MnwXKP+GdykgbQIRgKdXPO3bt+LHAz+yfm9aTziWU6pLI3ZX/27Pd+wqSYsAtFK2HtjKX9f81XfbFzu+IKjTqF6uApbvWO4IHpTx9c6UtRYQDiJCkqp24XoZPbRb/JeWaOiJWwxdRmo6kVaNq/FvMJkNu/xpwAAAIABJREFUpPdys5c8/H87TYCjfOzCocsduOIXYIQl2iXZlyqiFZFTO9tg7qMHAbouEClfuzPo7GR6U3V0e1yp9jLS6n6fNoHIfzb8x5FULaMoWMTIxSMdxaZ05Ikvn+Czbf5y7xv3bXQ6eacjZbLJP+z/wXf7gi0LeObbZ5LsVexEkk0uY863c/jwhw+T7JVwMKGNoMcsXEnVMkIqN+mNNvKZczGDdT/u1vDbJLpUJbTprG6rgIUzPbRPWqPhMlzZ5DJqYqSJbclT4ZBEn0Xkhnih/jg6PfTxK+ZO4HcRtjXBK02czjyJK5tcRi9gUhJ9qSIRZZPLuAF0vyQ6VCFpEYh8v/d7xn82vsJ9Vu5ayR+X/jFJHlWNDzZ/wLMrK0r1NAHXn7/7c5I8qhqzV8yOuIpQxpNfPRkx4EoXCj4vcGSTwwnqIKMXRw64BAETZFQ2QB+r3R4W6cY0Kh6gK0x/kcgFbilGl8tQVjhArwv8KdQtPi3RZnbYp+Oxhw7Ao0lwR0gpOjRAr3BVtTUwJ7TikKboXlSubHgmaZ+epQdiCr0r4g7QkQKudOERKl/1eBL08clwpjJSHogUB4vJW5TH7pLdHvvv2/yenOwcj+1va//Gv77/VzLdi5of9v/AmE/HOClLV7e7mgzlvcc8tOyhtE0L+nTrp0z/2ttaoEagBle2vdJjK9Wl3LvoXnYW2z3f0oN5q+fx2vrXPLYWtVs4qmbbirYxavEo35RA4fAmJLNqz5Dsw52Rz8QMftNy1lLDEEzhYjjf4XYcPxJ4Lo1Tzabgpl79ByN/Gk4PKi5oTxkhKeX5QCNr01PAJst2rYaDo6hQqAI61E0du4HV87i9Zi7CVddKE3RDzASBvdr6CG4fn9GgzyQt0Z1xg/8SwJ4BD62S61ZJcStmdB9MX6JwfsBtiloXs0qV8kmblAcij33xGMu3e3s9dGrYieEnDmds17EElNfFyZ9PZvXu1Un0sHKCOsiYT8ewrWibx37ZUZdxywm3MKiD9zdRFCzinoX3sKdkTzLdrJSdxTsZtXiUI5s8rPMw7uh4B+e3ON9j37hvI6MXj0brSEI8qWHFrhU8utx7P8lQGUzoNoExXcfQvn57z7ZPfvyEmV9L42LhJzTkYFKZbEnV20J9Np637K2BZ7TbeTelaDgRt9C+BBOYXI8rTXwWkHbKINool9kF3JsxA3U/aeJbNfw+Gb7FSAFuP5cFmGDRT5r4SQ1pMWspxJ0RuL0elmN+531wFez+CDodVWJmYfpBhPMXULcDt1r2DOAF0HYvoBSj62D6oNSyNowGdTdu49cjMIN4+/mQYnQ73NVWjbnXD8GVJu6GG2glnZQGIu9vfp8XVr3gsdXLqsfk7pPJVJmc2uRU+rX1rpLtLdnL8IXDORBMHwnnGd/M4OMt3km5dvXacUenOwAYcOwAR2Vq7Z61aVUvorVm7Kdj2bBvg8d+Xovz+H0b8zzPOzHPUZl6f/P7vLDa+x2mkki/j5uPv5kuOV3IDmQzsftER5p45jczne9QODwJBRNP4T5c56ufbvJDcFWmLsRIWKYF2jTKnIf7cL1XwQchaeKrcNV6Rmk4Nxk+RoOGYzGNJcMJYpoWbghJE9tiAgp4SrvfYcrQ/r+P7YRkk0PSxPdb2+tg6kXs71A4qNGnA2Ms435Mf4q9oBbg9prJAp4D3SAZHkaHHopbEB3296hmYCZ0wmkGPJ1mqWaPAx0tW/jf422ArTLl9x2mEJ2F+azt38f9oP4Rkia+AvjR2j4UdKSi9qSQskBk0/5NjFk8Bh0ma69QjD5pNC1q/zTY9eu74TfjnSoWbV3ErK9neWy1MmpR0KOAGgGz4lXWd6Nxjcae/V5f/zr/WJseyp9zV83lnU3efkmtardiZJef7oWR+m48uvxRPt/2eVL8rIyCpQXOitmpR3oD2rZ12zoSy0EdZOSikfx4wP4bFQ5DbsOdTf8WGFj2QoX6buDOWt6nIXJDpOTyJO5s+r+BB8peKFiGm/IRwKRoNUuse5UTqvV4EbA7wE5W8HrZCwV/we27kQO8oM0ALqVoaAXMwV0xu16ZDsNljAbet/Y5kbDvTDjY0TmYviH2bPpQUOErlA/g9ppphxuUpwjdBbjPMhYDfUGFr1AOBuy+GxcAdyXQuRjQfYEBlnETcNVPsskqUj+pEaDtVa1U8QBwimX7GHNPCaHWYt6rncYyC/QxCfStQlISiJTqUkYsHMGO4h0ee99j+nJ2s7M9tgyVwaQek2iQ5Q3y5q2ex1sb3kq4rxWx9cBW7l10r1NfMPzE4RxT1/udNqrRiIndJzp9Uu5fej8rd6VWvn/5juVM/XKqx5YdyKagRwF1Mut47B0bdOTG47xiLyW6hFGLRzl1Psnmr2v+yqvrXvXYmtRswrhu41DK+/y/pM0lXNjqQo9ta9FWxn429qCRJhbiT0ji1q4vKAb6hYKPcpTRxs+z9s3CDH7tGoCkouE63PqCTcC1Cu8NS5nUCltloykwW6c+ffchoLtl+x/+Ov934DZUOyXCvklDlysf0dja9LiCl8INyqTNXYHbUO1GbezCQY1WwNO48szzQo0Nw1AauBa3Z05v0JHkxJOErov/amseKEuKUu3GDOJt2dNJoE9NlIfRodvjpjIFgf6gvOkhqG9wV15DdT7arvNJMvo3uI1ctwOXg7Imy9QrmHq7cBoCL6ZKmjglDxk/idsTGpzA0BP8G+I2rdmU/K75KGsyafyS8RWqIiWSSBK3v239Wy5qdZHvMT2O6MF17a/z2PaV7mP4wuEpkyaOJHF7a8dbOb6Bf2pyv7b9OLOpt95s3d51TPhsQsL8rIyVu1fywDLvpGFABRjbdSwNsxv6HjO883COquN9Hnyw+QOeWxmpB5BwKFOBxO0wZQa/fjwM2N2C2+DmFCcNDZ1wHzRB4CoFGyMcdiPwpWX7FTAszu5FTQSJ221AX2WCQw8KDmAGPLaCxj0azrf3TyLjcFXVPgfu9ttZwTrgGtxZyyc1pGzWUogLd+FK3K4gbLXVi9qKUXEqsTY8CjqVvSCm4Urc/gszceCDWoIrc56JqRdJ0aRNRInbCaDe8D9GvYBZ2QwnxdLEujUwG+9qqwauA7U6wkF3AR9Ztl5ASgZxSQ9E/CRua2fWZkL3CWQHIgdjpzc9ncuPudxjq6xPRCLxk7htU6cNwzpX/NzO7ZBLr8a9PLaVu1fy0PIIf78Jxk/i9vSmp9PnqD4Rj1FKMabrGJrX8k4CvLnhTV5a81KEoxJHpGBuUIdBzmcdTu3M2p4UujKmfjk17aWJhYTgJ3H7T+CxSAeEOmRfi1GhCucPIbWqpBKSuJ2L2xxtrDIKU74oKJu1tFVuJmj4RXy9rJwIErcas6Jjf9blKDOo85u1fFZH7gWTMDScgxtw7MZ0gLc/63IUvIqrztYAeFFH7gUjpDXab6B3ADNrXYH8pHoPE8yGExpE6xT0mtG5mNqycNYBV4dWcSKgHgNetoyplCb2k7h9F/eztrkJ+MKynQUMj49bsaDLVlttxcbHQNmfdRiqGPMd7rA23AX64nh6GA1JDUQipb7knZjnzEz7cVvH2+jcsLPHtnzHcp786sm4+lkZn2/7nMKvvc/IslSm2hl+zVF/ItIs/UvfvZR0aWI/idvy1SdV8X2hflZ9xnUb50gTP7D0gaRLE/ult/U4ogfXtr+20mPb12/PLR29KfKRUgeFQxdtZt5tidu1wDXKnZn2oMws/eW4s/QPa6NKkkym4krcvkPlGv8oM0tvz6RkAs8nU5o4VNPxAm5620PKXX1yUKam5CnL3AQjsZy0WUtt0tvm4l5ziHJXn/y4B7A7rh4kDdUELzqU+uIEkXeBWhTFCSYC9ix9eyqYJEkMujNmFTicUuAaUHY6oR/X4a2JAvgNZnCfRHRvXInbrZiULFu5zkLtwUza2CIfY0GfEy8Po2QS7kTRQqJqsqs8dY9lRoyQQJt4OBctSQtEIhUDX9rmUi5oeUFU58hUmUzoPoG6mXU99me/fZZ3N70bN18rYmfxTkYsGkGJ9q6U3tXpLjrUj66hb3ndgpVqNvnzyXy3J+JkX1yJJHE7ucdkpx4nEt0adSO3g3fysShYxPCFw9lbav+NJga/gv9I9TiRuPzoyzmnuff+sWn/JvI/zU87aWIh/mj/YuAS4ArlKoz4oswyd75lroFRPLILrROCNsHQdZZ5M3ClcmVhfVEmkPGTJp6TRGni+3AL/hcQufu0HzcBSyxb0hqq6fLccafgf6Yy9kpR5YW/jjTxHTpyB2shPXkKN63uFczfWxSoICZFy6pbYADoq6vpW5ToMhU+e7Z1DKgoC3bVdsxv2hb5eAC0XQuWILRfwX9oZVvZ9TgRUEsxNWnhZGBWd+xasASh/Qr+d2OK7KOUlVXzcVeeGwHPJjPVLGmBSGUSt9HSqnYrRp7kVbXTaPI/zWfjvkjpz/EhksTtuc3P5dKjYlM/O/XIU+nfzltLWiY9WxS0/0bjSySJ25uOv4kuOV1iOte1x17LKY29Qg1r9qxJSr2I33UCKsD4buMdhbLKGNVllCNN/N6m93hx9YvV9lNIXyqQuB2pXM31yiggTMkpxLFU3kW72mj/65RJ3MZaSHcj7qxlUhqqVSZxG+15VLkUqjNrOUbDL6vnZVSMxpVAXobbV6FCQtLE9sytAp7WbsGzkJboW4BLLONazCpCDDNdajMmncaeVHgC9AnV8TBKpgL2dd4m5uah6mPcXkUhdTyd4EmbiBK3fwRlK5RVgpqOK03cCngm8almuqW5jjM5NBiUrVBWGbfiShOfgUdtK7EkJRCpSOLW7ucQDec2P5dL2nj/rsua8SWyQ3ZEiduTbLnv6PAb+H+z8xse+yKxq62+ErdNTqV/29ib+EYa+L++/nX+ue6f1XGzQoqCReQtzHNWXga0G+AERtEQSZr4sS8e48sd0WRRCAcpfhK3r1GFJk+qXG3FmbW8XLvykHEjJHE7D3fl5T7lBkaVosrVVtyGatqVh4wbFUjc3qjcwKhSlP/APwDMDaVNJQRtVl7sh8J+zMpUzEvFCv6MqV8KJwdT95JmDdUEL74StyW4ErdRot72OV9oMkUnsNeM7osRUAgnFBhVlsrkyx8Bu3eBX7+geOMncbuAqjdxHQzYuegXYJreJggdwAQh9mxrISg7MIqCiNLEI0EnpZ+Uwnwp/wNWU0VFjgULFjyslIrYyGtf6T6noDxTZVI7s+J6iooo1aW+ncnrZtWNOiUnVvaU7HG6jtfIqOEUO8dCUbDIKbJWKOplJaYGTWvNrhL792YCQ3sQHgv7S/c7KzmZgcxKa2aqSsTvP7MuAVX179/vO84OZNsB84CePXvayhlVZTfmQdIOt0He4c4MTJfhkURR4xAroVQjP0m1PbHMvvuctzYmOAinRLk3+rgQGoz63TB22FK9MZ63Pm59w4GqDKajvF4N3LQPHQqMqnPeHB9ztb7jSq5XB7cWoDgkCFDVc2bgn+K3M9q0uxjpi0nRextTcH8o0hbTH2gPULeSfauI9rsXlFZcnF7pOQO4M/oAu0JN6xKArocb9B4wzRerfM5szN+KzfbYVopiumZD3ImOvdGnMvmesxZGPCCcan7HFV4v0r2gmt+/rovbc6koVBOTCFZhGs7+LCmzKbUyalErI77BeobKoH5WUlKvy7F7asSD7EB2hWph8UYplZDPrWZGzSqtblWVRH3/ifiOhfQkVIS+LQHn3UuCBusRrldCYt5Hgh6kEa93APNfvM8b98+mkuvtwfwXz3OWkuT3IcQDlYB7gQqS9N+CSsAkiioiQZMBFVyzWpMaEc65jwoU8BJwvQTdC1TKGsGlulmVIAiCIAiCIAiHIRKICIIgCIIgCIKQdCQQEQRBEARBEAQh6UggIgiCIAiCIAhC0pFARBAEQRAEQRCEpCOBiCAIgiAIgiAISUcCEUEQBEEQBEEQkk7SurJ+sPkDvtn1jcd2ZI0jubDVhVU630vfveQ05uuS04VujbpV2cdoeGXdK/x44EeP7YQGJ3By45NjPteB4AFeXPUiGm/vnrObnU2bOm2q5WdFlOgSXlz1IiXa2/vmtCan0a5eu5jPt3HfRl5b/5rHplBcdtRlCe3L8eOBH3ll3SuO/Xetf0fDbL8+dRWzbPsyPvnxE4+tVkYteh/VG6XsHkjCoYA2DZxuxm1A96qCz6twvtbAlT6bpinYUQUXo71uU/y7tz+l4IcqnK8XbiO7PcAT1WmSGMV1u2A6E4dzAHg81C8l1vP9FuhomVcp04k+YWj4FdDVMq9X8GwVz3cDcIRl/lDBu1U5n5BM9BnAzy3jVlBV7CKu+wEtLeOnoF7z2zt+6N6YJpDhLAdld0iP5lyZmPuu3ezx36A+q5J70V1XATfhNlJ8G9THVTjfkcB1Phtmg9oU+/mivm4DTFd3m+dBranC+ToDF1nGYmAKqGKfA+JK0gKRdvXbMWrxKHYUe5/FNTNqck7z2Bq3vrTmJSZ9Pslja1KzCb9r/btq+1kZzWs1Z9yn4wiGPYtrZdRizmlzaFvP/hutmAeWPsDLa1722Lof0Z1+bfvFxddIZKpMgjrIlC+meOwvf/cyz53xHHUzo28yW6pLGbFoBEu2LfHY+x7TN+HNAY+ocQTf7vqWV9e96rEv3LKQR09+NKbgYeuBrdy54E62HNjised3zZcg5BBGQXGow3qBtWmghh6xBA+hDufPA7+wNj2eyCAEQMEmDZ2A/tamszRcFEvwoKEJ8FeghbXp2kQGISG+AmYD9ozSkcC9sZwoFEz9GW+QWQycUQ3/omU5MBcreNBQosxvJGpCQYg9aN0EzKmWh0KyWIoJQK3ZRa1BzYztVPq3wDN4u4NvA7pXx8Eo+Sp07fDOxcWgzwL1QYznGguMsGxLgceq7l40KA36R2CKtWET6G6gNkR/Lq2AmcDF1oZ5oO6rlpuVonaAboUJ5sK5FPTpoWaRUaLrYu6Tx1kb7kpGEAJJTM1qWrOpGdThHdSNXzKe9fvWR32eb3d9y4NLH/TYAgQY23VslWbBY6XHET24rr03AN5Xuo/hC4ezv3R/1Od5Y/0bThBSP6s+47qOI0NlxMXXiujXth9nNj3TY1u3dx0TPpsQ03mmfDHFCULa12/PLSfcUm0fo2F45+EcXfdoj+2DHz7g2ZXRTzwGdZBRi0c5QchvW/+W37T6TTzcFNKbhzED73DaYR4ysTAJNwhZAtxdRb9i5UbgS8v2a2BYtCfQ5pnwLG4Q8oIyAUJCCXVX74Pb1X14aJUhKjQ0BF7EXem6S8H/qudl5ShYC1xjXPHwhHZnlSMSCi4ftcxB4CoFG6vnpZAc1FagH+6K3hTQ9qpZBeg2mL/B8EGUBq4DtbpaLkaF8ruXZQEvgLZX6ypAnw3cYxn3AH1CXcoTjHoeN4hvCswFHcvg627cIGQFMLAazsXCXcBCy3YyENsgDqbjBiGvAg9V0a+YSWqNyOlNT6fvMX09tl3Fuxj+yXCKg5UHXmUD/gPBAx774OMH06txr7j6WhG5HXKdVKyVu1fy4LIHIxzhZe2etUxY4v2tKBT5XfNpVqtZ3PysCKUUY7qOoXmt5h77mxve5C/f/SWqc3zwwwfMXTnXY6udWZuCHgVkB+znf2Iou16NgHeFd+qXU/lsW3QrvLO+mcVHWz7y2NrUacOwzlGP34SDGFX+MGe1tekPGoZEcw5t0onussy7gT4KkvBwBRW6Hu71Jmg4LcrTjADOt2zfALnVdC9qlP/DPAA8q90AKRKzgGMs2yu4M6EJQ8E/gUcsc0PgRe0GSA7apI/MA2pbm/IV/Cc+XgrJQb0H5FvGmsA80PUqP16HBvw0sjY8AsqeREkgagrwkmVsDcwOrRBUgm4K/AmwB/xDQH0RBwej5SbMqmU4ZwN50R2uTwHGW8YDwOWg7EmUBKFC13NW2+8CbQdIEdBDcFOJ1wHXmNWj5JD0YvVbO95Kl5wuHtvyHcuZ+uXUSo8t+LyAVbtXeWw9j+jJgGMHxNPFSgmoABO6T+CIGt5JgJfXvOykCdkUBYvIW5THnpI9Hnv/dv05o2kyMgZ+on5WfSb3mEym8mboPbjsQb7a+VWFx27ev5nRi0c79S15J+ZxVJ2j4u5rRRxb71hu63ibx1aqSxmxcISTCmiz6MdFzPjam/WQHcimoEcBtTPs579wqKJMesPlgL2k/bB204Q8aJOvbadLAAxRJp0haYTqWu6wzJnA8xoaV3SshtOBMZZ5PyaY2uVzSMII1XDYK1JHAn/S7iDGg4ZbgEst81pggHJXKBLNPcCHlq0nbiqgH1Nx61v+i1l5Ew4+JgOvW7b2QGEUx96HW2fyCTA8Dn7FyvXAKsv2G2BoxYfpAPAcYM+2PgWqSrVTVUeFVmDYa20YC7qSWgGdgwkKs6wNd4BaFC8Po0N9iztpo4CnQVcyENMnAvbseQlwBagtPgckjKQHIpkqk0ndJ1E/q77HPnflXN7Z9E7E4/6+9u/8c90/PbZG2Y2Y0H0CgRSIfzXKbsSEbu61C5YWsHr36ojHPbz8Yb7c4c2e6NSwE0OOi2riNe50btiZwcd5a56KgkUMXzjcCZbKKKsL2V603WO/7KjLuKClXWeaHHof3Ztft/y1x7Zp/ybGLB6D1v5jj21F2xi5eKSn3gdgWOdhdKjfIWG+CumJgo+BUZa5BjBPQ32fQwgNip/BHeQXKvPQTToKpmHqE8JpBczRbrAEgDYzrc/h1g3equDT+HsZFUNxr30m7ndUTqjY3c7PLgH6KvjR55CEokxNSl9gq7XpNg2/j3SchiswqV3hbAauVFAaXy+F5KCCmBouOxe9L2j7uw5DXwTcZhl3YGbfY6gFiBdqO/6TNg+A/lkFB44GzrVsy6k0gEkUahlm0iKcACZFK0JqilbAU8DR1oa/gHoizg5GiZqPueeH0wiTMmcHSyF0XcxkTy1rw2hQ78fbw8pIiXxvs1rNGHnSSI9Noxn76Vg27HNrhVbuXsn9S+/32AIqwPju42lco8JJvoTSq3EvrjnWe//YW7LXN30M4K2NbzF/9XyPrX5WfSZ3n0xWIMLvJQlc0+4aZzVm7Z61TFwy0Xf/aV9N49Ot3vFBu3rtuKOTPRGbXEZ0GeGojb2/+X2eX+XWhmqtGf/ZeDbv3+yxn9fiPC5pc0lC/RTSmj8Cf7dsx+IWC5cxFlddailwe5z9ipXBuKsxF+Ljly6fQbOLaZmvoputTQgqtBqDuxozSrsDGjSUPVxrWptGKIi1mDZuKFiDWy+igKe0O6BBQwdM3nY4QaCfghiKaYX0Q23GpMLYweRU0PbqF6GC5Dn4rLaCWpkID6NDLcBdjckCngspOlnoM4GRlnE/cCUoe1UiiahZuEp2zTArCn7j49txJxDWkMTU1QjcBiy2bD/DXeEu4wngeMv2NnC/z74JJ2V9RM5pdg59ju7jse0s3knewjyPrGxRsIiRi0Y6heDXt7+eUxqfkhRfK2LwcYMdyeAVu1bwyHJvavDGfRudQnCFYvRJo2lRO9q058SglGLUSaNoUrOJx/76+tf5+1rvmGzBlgXMWeGt86qVUcu3TiPZ1M6ozcTuE536lMe+eMwpqJ/z7Rze3eRVvmxdpzUju9j3SuFwIpS6cy3wnbWpT0i9qBxtcorth/EeTCpTCh+uFdaLFGg41bINwy269FvyTzrKvz4lADynobll9yu6/BfwQILcixpl6lMet8w5WPUiurxuALtuYJKCNxLrpZAc1Du49QWheiAdlg+sMzEpQHYh+BOhgutU8whRiXzoJvjXhdyUWKneqBkC2PUpv8ap+dO9MOl14YRWPJW94plkVCSRjzzQVs2fvgFXXXETJihMyWprShsa3tbxNo5v4A3Klm5fyrSvflplKvi8gK93fu3Zp/sR3RnYIeXPSAAyVAYTu090FLvmr57Pv7//N2D6doxYNIKdxd7fyBVtr+CsZmcly9UKycnOYUK3CY5iV/jnv7Voq28q0/ATh3NMXbsuNDWc0OAER7HL/vzt3xiYupDJ3ScnXHJYSH+USaPpi3nIhDNFh3pD6HKVFffhqtyHWkpQ/opdWcALOjS40UZlxa/osk+iJYejRZnB2GzL3BSYW1YvEhIVsIsuvweuTkFdSCTuxFXssj//x4GTrH3ew6y8CYcO43EDy0545Wsn4qrwfY4ripEiVESRj1ARNKFVBT8VvhdBPZVgB6OkvF7EnrSZCDr0+etIKnz3gLJrwFKEiijyATr0+etIKnz9QKVMhS+lgUhZUbDdt2LOCjNb7TcjXzZgTkVdSCSa1GzCuG7jHGniSUsmsWbPGh5d/qgzI9+xYUeGHp+i1MgIdD+iO7kdvJOPZfUiu0t2M3LRSKeZ48WtL+aiVnYfnNTS95i+Tm+ajfs2kv9pvu+qG/gHxcLhS0jiNd8y18TUizTA1FPYM/KzVZr1dlBmYGvPnrYGZofqQvwersMUJLnoslJuxl/lZrgGv6LLICYISWrRZUWE6kX64QZ4wzRcrM1g6Hpr21ZMSlbMzRyFdKa8XsROtbsedH/QEVX4kiNxGy0qosiH6ctBHq4K3wpSn8pkofzSaUMrUrox/ip8r+Kq4qUY5SfyEVqR0vXxV+EbD+rNZHgXCQWcgnnorsb9oKNiwYIFDyul7GKqqHl9/euMWOTtbZOTncOB4AH2lvyU4RBQAR7p9QinNrEzC9KDx754jGe+fcZja1G7BRv2bvCoS9XNrMvcM+bSsrbdHDX1BHWQoR8NdeRsW9Rq4fR7aVuvLc+c9gw1M+yU7NSzs3gn/d7rx/q9Xp/93sc5zc7h/p4xpUYO6NmzZ7wGnLsxy/LtgBTm/KYlMzDpUCMxs4NJJdRT41+4D9JVuPfKL4BeyqRmpRWhnhqLcH32ex8vA5el0SpCOaGeGh/jfZCWYAZzra3dR6oU/GaiQUNv3M7uWzArHDRcAAAgAElEQVTCCPW8u/IbZQY8yaYvJoB9G7cG6lChLSYFcQ+mvigF6HOB1/BOCu/G1E/YBbD9QNkiFGmCHoZbX7AWM1kTLoCxH/g5qFQJYFSCfgETWIXjd59cA3RLfUqWH7oW8BFmgiYcv/fxNnBeilKyVmFq5H6WFssK57c4n0vbeNUWtxVt8wQhAFe3uzptgxCAm46/iZNyvKvq6/eudyVuu+SlZRACIRGAbuM5suaRHrs9eM8OZDOh24S0DELAiAAU9ChwRADs9+EnnCAIAKp8ydpRubFv5vuBK9IxCAFQsB0z227PWtrvYy1wQzoGIQAKluEq7GTiBiFvE508bkpQMB940jI3xq0L+WOKghAhaag3ceWY6+IGITPTNwgBTB3W3yxba1wVvjvSNwgBzMSXLfJh3ydLMPUUaRiEQGjF7DJckQ/7ffyACW5TrsKXFoEIwF2d7+K4+nad4U/4ycymGxkqg0k9JtEgy0c0IkTvo3vzqxZRNwhOCY1qNGJi94kVpr8NP3F42kvcdmzQkZuPvzni9khS0oJQhjI3az+Vm3CGKkiHosuIKNNzwO5mHE4xRuI2TR+uBmWkM5+pYJdNmK7jKX+4VsLtVJz+5iclLRyajKHiBpXLgFuT5EsVUZFEPsL5Myg7AE8zVCSRj3BGgvq/JDlURVRlTWhDqYHKnmRLCWkTiGQHsiMOfstmt+3Ge+lI05pNuftEuz7U0KF+B27vmGpVz+jo3qg7V7W7ynfbBS0v4OLWUTbuTDFXHnMlvRr38t12S8dbnOaagmCj4B3cGoQynlduTm668igQKRc4L5UStzFyE6b7r00QE4SkvcStMoIAkQLcbRixgBT0iBCSjwpi5J39lPb2YupCUqrCFx1qG5ayYBgrK9iWZqgluPWBZfwbI/F+EKBewKy++nEfqNeS6U1FpE0gAvDfjf91FJkAMgOZjppTOvPepvd87Zkq0yloT1eKgkV89MNHvtvSNR3Lj037N/HVDv/m1qmWGxYODkKSqnadSBkHwQChnFZE7hKfRgWwldILVygATCDiNnBKX36Hf5f4ElzFNuHQ5te4RcRgftPpvroXzqUR7KXgM7hLS3Qm8NsIG0tI09RVF90EV3WtjLS636dNIOInqVrG1gNbuXfRvb5BSroRLttrs3zHcp74KkXNN2Pkvs/vc2STy3h5zcu8ui79U5cjySaX8eCyB/lqp3+QIghhPEZItteH67WryZ526HIFGKcnQRkP6chBStqgjQKMn2wymPf4vHbz69OOCLLJZRwJ/En7v0fhkEPbsr3hhJp06oNg9k//ASOj7Ud7UtgcNUbGA6dF2PYbUtYJPhYiyiaXkQ86bUQo0iIQ2Vm8kxGLRjiSquEs2rqIp75JE9npCPg1MrR57tvneGfTO0nyqGq8sf4N/rbWrjvzUrC0gO/2VJQOmnqmfDHFkU0OpyhYRN7CPPaWHkyT2kIyCUmqVta06AntdqlNNybjNjIMpwZGmjhtC6ZCKmZ+ssnhtALmaLcTddoQUjHzk00Ox68TtXDIoWtimv35rYaU0QW4Lzn+VBXdBtNQtCL6gr46Gd5UHX0Obu8lm/tBd0+GN9VgOJFX8cHcS58JSROnnJQHIlpr8j/Nd2RWT258spM6U/hVIYu2ppu8vWFvyV7u+eQeDgS9mQGnNz3d81qjGf/ZeDbv35xM96JmzZ41jP/MO1EXUAF+0cS7wre3ZC/3LrqXomB6pjG/t+k9/rTyTx5b/az6dG3kndhes2cN932e5vd4ISVoOBYjIRxOEPinZauLmYlPy1lLDRdhmumFsx3TKC+cY4GpSXGqaowAzrNsyzAykOFcSJoW94YCpKcxspXh/Ac3zW+UhrOS4JaQOqZiAo1w3sfUCYUzFPTvk+NSrOhs4M+YvkThvIqbjvUE6DSdtNEtMJLV9rj4Fet1DeDFUF+ONET/ArcB6j7c+sCWwBzQKZ+0SXkg8vzq53l307seW6varbi/5/3c2dn77AwSZOSikWwv2p5MF6Oi4HN3heDUI0/loZ4PcelR3rTJ7UXbuXfRvZTq9Er9LAoWMWLRCGeF4Npjr+WhXg85hd1f7viSR5fbTTpTz+b9mxn72VhHNnlkl5Hc3+N+GtfwTgL8c90/eWWdfa8RDmd0+cPGWSEoAH4P2KopXTESlmmFNisEs3FXCG4E/oArTdxPG/WbtELDGRh1oXD2Ywq+/Rqq3a/hZ8nwLUZuwfx+wlmDWXmzg6cM4AUNzZLhmJBs9OWYzuThbMb8Fq7GW4sQCmD10cnxLSbuw9RthfMxcAlmJTacOsD8UK+LNEIHMM1om1gbpgMXA3+37H6TVGmAzsGkrtrKTrdhvg87F/1C3EmqpJPSQGT59uVM+WKKx5YdyGZyj8nUzazLpW0u5YKWF3i2b96/mdGLR6N1+tQL/X3t33n1e2/NRHm3daW4q9NdjtTt4q2LmfF1ev2OH17+MF/u+NJj69aoG7kdcslQGUzuMdmRJn5x9Yu8vfHtZLpZIaW6lBGLRjjB6uVHX845zc+JKE183+f3sWq3PbEqHMY8ANjL7x8B+aEu11cAP1rbb9KmEVxaEKoxmINbMzFVGbWvzfgrN03R0DEZPkZDqAP8s7gP15sULFGwALNaEk4WMFdDZC31JKOhB26KTblsckh97Tlre1PgaZ0Gk4ZCPNHH4tZMhPoWqQ2gXsFdnQyl9OmKUvqSjL4IN4DeDvQFVYSZPHjL2t4ZeCgJzsXCaOBcy7YU0/ekTJp4jbW9D+jK0naTiC5bbT3K2jAfVGGYNPF+a/tk0Clt0Jeym9vukt3kLcqjOOgVB7nlhFs4ocEJ5a/zTszjqDrez/WDHz7g2ZXPJsXPyli5eyX3L/U2FA2oAGO7jqVhdkPABFcFPQqoneFNA31qxVNOB/NU8dbGt5i/2qv0Vj+rPuO6jStXLGtasyn5XfMd5a9xn41zGgWmimlfTePTrd5+Se3rt+eWjreUv+5xRA+ube+d9N1Xuo/hC4ezv9T+GxUON7QpSLzJMm8DLlchNSNlmv9dg6ug8qR2G0elirG4XbE/B4aVvQhJE9sdyOtg6kUqyltPCmGpTG2sTS+GeoqU8RBuQ7W2pIm0sjbpe3/CrLSFc4+CD8NeDwG+tPb5NWHfmXCwo2sA83BXWyeCeiPs9V24vWZOBsYl0LkY0K0wEx32aut1oEKzeqoUc5/cYu0zGPSVifYwOrRfPdYePLLJaitGlMSetHkM9EmkB3dglPjC+RZPjaNagqkfCSckZKLt1LqkkbJAZPKSyXy/93uP7fSmp3P50Zd7bLUzazOh+wSyA95JgKlfTq2wEDkZFAWLGLlopDN4ze2Q6/SuaFOnDcM6e58lQR1k1OJRbDlg/40ml437NjLhswkem0IxpusYmtfy1oWe3vR0+hzdx2PbVbyLvIVuUJlsFmxZwJwVczy22pm1KehR4NQbDeowyPmOvt31LQ8tS7eJGiGZaNMN2H64auBaZTXrUqZWxFa7aQi8qCsuRE44Gs7GfeDsxvSnsKUbx+I2VOsEVKy8kRyGYVIjwlmB1awr1A3er6HaHzQMSpx7UTMdsDvAvor1GavQd4T7HU3QkaU4hYOLR3AV6t7DCTDUAUzaoS37eDfoSPKySUJHUuF7DNTLXpNah5tqBjAddIq7IusmmAkCW6HuJlBfeE3qXdwgsCZG1axeojyMDt0LmGQZi4GrQO2w7I8B1ndU9txLTb1ISgKR+avn89p6by+V8tl25X4OJzQ4gaEneBXTSnUpeQvzIkqzJgM/idseR/TguvZ22qfht61/y0WtLvLYth7YyshFI1MmTRxJ4rZfu36c2fRM32Nu7Xgrxzfw1pst276MJ79KXdPUrUVbGbnY/RyHdx7urKiBu2pVxktrXuJf3/8rob4K6UmYxK09M/SwcmfbyxgG/M+y9cJdZUga2qTz+Enc3qjc2XZUqBEgsNHaNFAbe0qIIHF7ABNMOTd+ZVat+uL24HhER5ZfTjgaBmNS4MJZB1yjfHoSKLNqZSv3lEkTR5JfFg4K9B8wv4dwtmJSsnxkQ9UKXNU+BcwC3TIRHkbJBNzAeAlwj//u6l+46Vh1gbmpSzWLKHH7Aqg5PgeAed9vWLYOpHTSRkdS4bsLlE/Kzf+3d95hchVX3n5rJCERLWQTTVqSTbTJLF6S05LWXi9GEiCy1wQBJhgjgdDckcg5ipyTJGDXXoNx+kxwwgRjk2yTjMEYCwwCLIGEpKnvj3Nn1F2nbs/tnu7bd0bnfR49NnW7a2qkrq466XecR2qTXgke7IXUDhZO4YZITOJ2iBvCmVudqeoPKhm7zlh2XXXXqrFZ82bR+bvOttSLxCRuRw0fxelbnB7tDt/DhM0m8C/LVWduPP7249z04k2tWGafxCRuN/7Yxhz1qezPY0+q2bJDl60av/WlW5XwQBF0exExeHt+dcr+19b6GnussUfm+3rreILI8llPn1V6aWKjJcQkbh8HJma9IU3VGgeEXqcTvQ6Tt5y0luBWtMTt9U7GoziYhUQUQo/IVR4+1dxV9k0NidsTHDyZ9T4nRmGoGDMCSTUr3Gvp4/nwC4F9nU5X6cXB5cD/BMNrAjeVWZrYqIWPpQqmkTwX1h9U4GZG3rcScAf4NvSa8bFUwTSS52rlNk+kOg0RYGtEAKQdxCRuXyCItlbjupEUrTeCB4eCb1c/qWnodOB7gcsir01x7xIX+bigHdLEhRoiHyz8gAlPTFASt+M/PZ7PrFg7zc45x+TPTGb1ZaqN15/P+jl3/SWri31reG3ua5z+VHUqU4frYMpnp7DSiJVqvnfpIUtHU4Wu+uNVPPaPx5q+1lr88s1fKonb5Yctz9lbn82wjmE137vGMmswafPqtMp2SRNf98J1PPqPR6vG1l1uXU7cpG8xiB1W2oFx642rGvtg4QdM+u2k0koTG83Hw+5o9ZD3kLqQmh8Ep/Jwe4a50evCwVYzCS1x+xyi1lQTBz9EK38th1ziC5MmTi/aN6Albu9xcuj2xVnAj4Oxwhuq+bTWBggVgiY7kWjti8PQ0sQDpKGaUY0fhkQpQ2/r+eBCRaYYxwC/D8Z2Ak5rwuLqwK+C1GyFd8cjwPXRHdgtQCKW7wQPjitemthvByTB4DzEmPpn7fe6WUikOKwXubJ4aWI/HhFOqeQ14OA08lED9yhSpF9JW6SJCzVEzn76bF6Z80rV2A4r78C4dcfF3xCw/LDlOWvLsxjqqsVTLn7uYqX21Co+6v6ICU9MYO7CuVXjB69/MNuvlE8tcr3l1+OETU6oGuumm87fdRYmTfzmvDclmhRkBkzcbCKrL53VjLOaL63+Jf5zrervj9kfzY6mSLWK377zW657vtpZtFTHUpyx5RmMGJLv7nT0p49W0sR/eO8PStHNGJykEre3oD3NRzp4Oc8cDu5CX3RXBG71Wu2pJaQSt+HBMg/Yz+keFVmcCvwqGCu6odqxiNRkJa9S01O5mDTVLOa1HOulcLYopgEbBWMPAOdGXqtwoj6UJU28Vf+XZxTIeWg56cfI3bTS9UhVq14z4EO1pxbhOxBjKpSTvhbc7fnmcLF9nDoeipIm9isi0dbQ23ocuN9F3hDBxfZx6ngoSprYb4Z8ripJFR1dqOiYxbnA94OxwqWJCzNEvvfa95TE7ailRtH5mU46XP5lbDJyE474VHWK5UfdHzHxtxOVcdAKLnruIv70frXhv+nITfnmhrnOyF72XntvdvvkblVjRUkTZ0ncjl5nNF9evVYzTs13Nv2Okib+7du/LUSaePZHszn1t6fqupDNJrDBChvknmeIG8KZW57JCsOqnQDT/zydB//+YDOWapSUGhK3VzppblUP3wLCg2xHdP+LpuN7UzVUXcgxTntSM0mliceipYmP9do4aDp9SdzmnaeGNPEVXhsHTSftxRJ2kZ4F7O/0mjJx8cvqcEQQoaQN1Yxq/J7oiGRqZLo6wu4uFtnsAG4DX0SvmU7gC8HYs0iPijpw96Ajmysiyk21UzH6TabE7d3g+uoMHzIZHdncjEL6SfnliEdbJ4ELe1zVwHkk8hrKno4GHy92bgGFGCIvz3mZ856pNtw6XAenb3k6Hx9ef+3dQesdxE6r7FQ1FkuXajZZErdnbaWjNHk4ZfNTWGvZalXKX731K+748x0Z72gOMYnb9Zdfn29tXH8z4ixp4utfuF6lSzWTbt/N5Ccn89a8t6rGv7z6l/nKmqHITt+suvSqSprY40Wa+INySBMbLSEmcfsMDTR5cr2hfcLQ/ilep0s1Dd9bvEpYvDrTNSBf63pD+6qQ+gav06WaRg2J24lO55b3iYMHiTdUm+n1Ad40vBSvhp1eu4EDnI7S5OF8dEO19ShlQzWjGh9T4QM4bLHEbT2469G1Xqk4hW/hfc7vjERLKwkkbuviBHStVyxdqtnEJG5fBr5R/1Sup59UWOt1FPgwXarZXAmEaWA/REdIcuDeIsNpA37zyBuajkP+8R9BKugb0r9/7LHHLnLOZVrFf57zZ3VhXG7ocmw8svGeWe8veD+ajvXZUZ9VUr/N4tl3n1VRl1WWXiWqypSXNz58g9fmvlY1NtQNZcuPt6ZeqNt388TbT6iUrHWXX1d1HK+Hl/75kioW/9hSH+NTK7SmznXuwrk8++6zanzTkZuyzNDG2x88NfspJce8+jKrs8Yya/T+t/f+oG222eaWhn9INXOQy9F65EwDWoK4FjkgJtECFar0Ar8r2iHznNMeonrm3RSdvvB2rSLr/pAWYW8XefRIKgfb6Lz/inw2K3nFiXxu0/FiSIXRim7ggZi6VM45hwC7oC+CT6VRk6bj5YKwRjD8XhrdaHTOkUhhb8gvI3LMzWAsEhF8AG2oDxbWReq75iJGcAvw66HvVR+AC9Mf65lzOXSaF8Cj4FokI+q3QCu2/R3cM/2YczVEJrySbuDBtCi8Bfid0AIYL4DrhzqN/xQiJFHJ+2kNRgvwI4B/izx4Atzsfsy7NfI9U8nrWsa4afwZcWxt3yxDJHHOtTz9wDDKgPf+q9tss02eAsM8mCGSTUsNEcMwMinCEPkGko8+FTEGiqYAQ8QwjAx6DZFmhfLK0R7cMFpPt/e+dTlnhmEYSwZjkL4TjYewDcMY8DTFEJkzZ85PgFaFbwyjTMzYdtttw8ZvhmEYhmEYRp00RVZy1113XfjEE0+M9d4/iKgfGMZg5I8fffTR0e1eRE4+hnQJbybnIAXAhmEYedkZURO6knyKYdsjanMNFN4ahjHQaJq+/VZbbfXU448/vo33/iLn3B5oGUnDGKh86Jy7paOjY8IOO+xQTKOX/jMc2K3PV9VHZmduwzCMDM4FtgUOBY5CalJjfAJROeuRDf0u0unaMIxBTFMbbW299dYvAV956qmnVly4cOGnFy1aFCquGMaAoqOjY7b3/g9bbbVVIxKF7cTTfDWdhU2ezzCMwc9/IT0XDkWaZd4GfLviuUN6rpyP9MN5HJiAGSGGscSwHXJpaUDT2jCMfjIH2X/rtnshJeRa5O8m1K83DKO1jEX23s+aOOcmwPfSed9GJLI90rfHI7LQY9BSy61i3fTnNixxbRhGw/wZ2X/bFdZZ3TAMwzCMJZZnkWZyOyJS5aul458EjkF6yMygwZ4xhmEMTJqamlWTJNLkq4O3mdxgk68pbEc3ywejr5LwfGMLzEnCDmi5wVdIGmjyldCBY1d84AEaxrOc2lAH3rw/dyjS5CvkKZIGmnwlrIDkAFezLL/mpBbqw5/Fisxnq8iTX5AwLzJem4Q1CLuVOhbRyYPY4TgoaXbDO0/GXuhnc8EcP7epDe8ymgsuAh5stLlgzp+7FtKZvJIFDh5qcL6N0B3n33WS/tMyMppavuPgtw3Oty3y2arkNQd/amS+NrIUsDFQ2QX4Y8BOwP1IX49BRrMb3rWiuWCun9vkhnd+Z2BYMPg8uFcbmy/Xz3TI931Yw/wHcK83MN/SwOciDx4H18J6Ur8s0nA2pMGmln5lIOyi7pHmknkEJvpFcYZIB8Pp5l6kiFboZgFT2JnJ/LquuRJ2o5v7qJYfnsOQ6EHcbDYEbgzGZnEGW9RtPDgm4jk9GH2BodHLdfNIWEjCV4FQAepREnYk4aM6Z7wRyQOu5D5O4v81vMY8rMf7PMdEdMOtq4Aj65rrPJZlLj9CDsnFeDqRpl4DjaHEL6b94QUkpWLQ4GCRh68AxwaPHvWwo6PuvXAVsG8w9gNgr0bXmJP3kbz6LwTj1wCH1zORhxHAfcBngkeJa/1e+CdwHdUXVTwc7uR3yU1q1PwCGFU9zNdosSGCnE3/ByxdMbbQw85O6iRy4+X77cdUX57mANv0e5XF0QEcAExB/l1+DfwDMRRvBfZHoiXTkOal/2jPMlvCIuAeqg3JbvB7gPtRfVP5bZDPdGV38PnADv1cYx5WBu6l2mnzHvgtwdXZjNd/E7g6GHwd+Gx/Ftg3zoPfEegKHjwnf7eu3lrQi4FvBmM/p3VNQHv4ABgP/Gcwfg/w9fqm8kOB/0EbVJeCa+0dLqW41KzJPAF8JxgdRjfTSaoOitokrIpcfMO1H8lpBXiHEm4Cbg5GV2EBtzOzDqWwKeyIJwlG59HBGE7mn/1bZA5G8W3giWB0W6TLbX4SjkYbIa+xFAfR6ijCaBYxlAPRh9YRJOxX11xzuZzQCIEH2XjAdvQehRz2zfzz74X+BsXxbbSSz7agnAQ18aIIFBohfwUOamUUAcBBN3KZC3vcfNPLeD1cgTZCHqLOv49GcDAbqU9YEDy6xNdxSfHiaZ0O6my5yEmdQktx8BT6vBsKTPfam52Jh1WA29Ee3KMc/LF/qyyMLyJnzU1IB/PjgH9DLp4g+28rxDg8DskdPxtUxsMAxb0I/Hcw2AHcCn71/PP4kUjq2lLBg5PANRRpqw/3A+DCYPBjsiYfrqkGflPgomCwGzgQXBEG6OnAT4KxjYHL6pvG74M2Qt4BxoFrsbCL84j4wyvBg73BH1XnZGeijZCnkGajhVBsjUjCpYjlVclayMW+7wK1hA7kSzkMeV9Lwm3NWGIulmU88Fwwuit/YEKu9yeMoptbCSNSjuMaTlWrl2OZzxDGAO8FT04i4Su55kjYHJFmrGQhHezLKQV5zifxOo4DkS+ySq5mKp/KNUfCWODgYPRNYH9G59K9NwYwTi69+6P3wre9eGn7xEufhPOD4YXAWFeQd9fBLOAQ9F64ypNvL3gpFj40GH4T2M/l6wHRb5wYhZ3B8Ahgps9/OT0XnbrwGDCxn8vLjYPLgTuD4TWBm3yO887L+Xwb+ry73g0sKe3jEcP2ViT19RL0Z/T3iHFyEOLtPYZB1ZPMzUTENypZCbgDfA4HpnfADcC/BA/uRT5nRTEBHdHbGukxlQO/LDATnd4+GVwzhRFq4LqBcaAyWA4Ff2C+Ofx66H9PDxzS2tSyStxs5Ps6jNpfKFGqPPjdqVawA4m2jgZXf3p7gzhENesRxLIKP+TNJ2Ekkidb/bMcx9LZh0WaMBWYFIw+C2xLQrHyqlPYhG4epXpDdQNfIqmpNOJI+C6oy/5dJIxu9jL7pIt98MwMRt8BtiAhe0MlLId4sMILzskkyjhpPQnnoD2QTwHb1awXmcoGLOIJqi843cDuJPy46evUzAGWBdZDCjibxTLoL5j+8j+Iwk1RXAt8A9nzLY9MeQlp3xUMzwa2cPCXGu9bDrnkfjp4NNGJZ7dQvPRiCJ0iTwHb16oX8bA+4rkOUkjY3VHIXqhcSweS0hZG4aY7HXUK37sn8H2qL/vvAlu6gtUh09qdJ9CqeMc5uZDXem8XIntbybPAto6Wn3djESPqAfqfZrIeEpl6LBj/CRItWRl4q2J8FHK5bfVnbl2kJmUusodbjB+BRJbDyN4UcKHhHb73W0gaUCWvyVzunWatMB9+TeBJqiN7Htgb3P/28d6bEanmSh4AvlRELUKwll2An1IdbZwLbFO77sUPR4yx8LJ/LrjCoggV6zkJ7RB+Ediqdr2IXwP5d/xE8GAcuNubucIM/gysg5xLBRsiAFPYhu5InmMHn0tTuDRd7IrnJ+gPzbYkKjpRDAnfQFvFkueYZHhBuzgJrz40LzGCrZigPLLFkHAlcEQwKnmOSUbvCIlAhSkf9wN7kShvV+uRAvwH0SHGy0hU/n/Pe7IOhjNIlMHbKlpliAwGCjVEALykJYWh7UeAnZxOF+p5z62Ih62SHwJ7Ou35bTleIq0PIB7mSq5wui6s5z0jkMN1i+DRma5N8slePMZPoovND3GS5hN7T+ySBBLRCaMTheDlUv1Lqs+7BchnKtrcz0tBbXhJmgdsl6Z9tZpmGiJZZBkiRVGwIQLgN4Co42s3cGG6UM97tkI+P8MrBhcCO4Orq96oefi9kBooZeyDyzD2/cHo+to3EWOqdeI8NfFTgNOCwWeAbcFlOG385Uh9RiWPAjuCq7emsAl4B/wvOno/E9yYjPcMQQz9cG9fDS68C7aKXkOkPfK9k6Mh8uF0M4Oz+Zh6/Rmsgo/kyTrGt80IAUi4Dh0i/yRwS5pGFr5+20hx+gI62L9tRgjAKI4DlRK2I6gaFqGLw9FGyOvAgW0xQoDUYBqLToM5hkTVsPRwKdoI+TlZv7exJHACWtloezI+E15yv0MjZBZyWW7LXnBySdkXvRfG++xowsVoI+QR2rgXnFxO90OnhF3ptcJLjwF2J9oIuaJdRghAqtAVekqHAbd79Hnn5WJ+B/G6kCKMEKNluBfQdQVpCp5fTb/eL498FoYHDya0zwgBcPci52clI4Hp8XoRv2Hk9WmKVLuMEEC+38KC7FgNS4r/D7Sj6l1gbHuMEEjrRQ5BR+1Hgw9rk3qYgjZCnkHOv8JpXx+RhIuA7waj6zEviDAkdLCAW1msOd7DdDpV0Xg7OApdNKjz7iQlTReaOU5kMr9p4fr65ljmA6MR5Z1KJpLw5RIGwJ8AACAASURBVKqRhE3xGYVmWVGgokikMBhdGHw9U4Non6TBhZv0HYZyQGYUyBj0OFGgGYPeCxN8kCbkpUFbmC7RDezvdNF4oTgpkj8QvRem+SBNyMM+aGWt2Uh9SzQKVBQOHkYr3IwA7vA6zzxWdPk0cFKLllcPlyBey0rWRRTCevG9RczqvJvhtDd5oDOV+LkzyHHT0f+WKwO3R+pFrkLLWd+PLhpvByeBUjyNiHz4EUhdSFjfdXp2FKgoXJbIx+HgA2erXwuJxFZGgdKi8awoUFG4LJGPS8EHzla/K9oxMhepCym2xCGlnQ0NPcOjVf/7pB73HiYBXwpe8wJLK69Ce0iYQwej0bnXZzCl91DsKTRbJ3jNvXQWWmiWjfRBiSt7JIiyx3n0FJotHbyus4+6mOJI+AHamzGSRcwgSY3AhPXJKjSblF0LYCwZOLL3gkf2goesossupz1sbcHJheWCYHgkMMOnDhEvKYHRvVCrLqZgzkCr3GxChYfVx5w/adFlI31Umo3rvbCo8+7rvlpq/BQInD/yeSzHeddcHkZqsua3eyFt4Ch0dGtXqjJF/JGg1B9TB4MrQV8rtwC5/IY1Kt8GX5kmdDlahe9hxCtfAtwsxBhRIh9pDxjAZ6nwXdp3XUxRuFgEOzUCfWoE+lXIiLY23g+m/7S3s/pEZtMRseI8FzOFLZjCzuhivXnA6EIkbvMymadxnBiMDqWbOzmTj5PwLUS7vpLXWIqDKVOjvISZwPXBqKQJzGQIc5mGbnL2IBtzViHry8tqTEB7arYBzuRShiORqbA52Pkk/F8RyzPKjxMjI6pykzZBvAIt9/wQBdWy1MFE4io3Z3t690KYHnRhERK3eXG9KRxK5eYwDwf4nnRYrUR1ZJkkbp2kcMRUbi7ysKWXdNiwaHkeYkwtYVGDwY6bhxgZoQe6C/znwW+GdiIslPcUInGbE/cqOprqgBvBrw1+DHBY8DxNuSy6OL0W7mfogu/lkEv80ogqWKjC9wQFStzm5Gwg7E2zAXAN+CwVvpvA3VLA2jJpryECpGlJYWHwCLqZTnfUcvsWCb8rZnF10MmVoNSn1uQj/g8tbbcAGF2YxG09rMAxSDpDJTvzHD9Fq138Hdi3dBK3h7MA+ZKfHTw5gXf4EVrt4hFWa09BrlFqvoX2Wu6MFBEfFIzPAvYtSuI2L6738qL2wnFIQX3YPPU3FChxm5e0y/0BaK/lNCTFN1R+uc5RoKR7TpwUtYbfNcMRb+ud6CbDxztdv2cMCtyzaPGIDsSovptY5gHu50WsrD7c3YhjppIVkd8hFm09qLEu5i3nNKRZZCWbI+p9xwXj7wFjwJUsmufSfiz8LXgwFonUfzEY/wMZAiZF0n5DBCDhPFDe6A1J0yAquIukvu66BXMYqKaKO6AbEJ1CEldLaTsn8CEiYxpGnHYJ/rsbx4Ek7c2FzyThFXSOvEMukpW8yxD2S40Xw+glTenJtxfgQKc99qUgTbGK7YVdgpe+ixhTpdwLacpbGHFaDonwVPIsYkSWlQvQEacN0OpgdzupETAGLe5GxPCo5JPoupAHyN2roy2ciBb52BpdF3IuuPuLWVK9uCyRj13Q0dajwL1UxKrqx71JXORjl+C/5wH7gptbxKpqUQ5DpLcRTI2+FSJxm6UAUA6SnkYwNfpWwP0kKuRaLhKex6lwa8gZdKq87XKR9NnsyeM4lNOK7S1gDBwcxFRuQs4qus9GvThpfBaq1oQcVnSfjQZIqF2DMxdJZWpL0WUe3OLzrlYNzkuIdLUx+DkK8UxnkdYwlCmVKcRliXxU8ig61b5kuCyRj0quAndHQQtqEPcQfdfgHAPu90Wspi/KYohAwjt0MI54aoOoOrVT4jYvCU+RnTeY50NeDjq5EzJVyR5mY6VkU05GcRLaU9PDZXQqJRvDqMJJ2kyWYtFAknv+DiIlG+NyJw0rS43rUejL7jtxtKONku45cZIql3XefYQolpX/vDOagJuLpM7EHJiLkHqKUkZbq3EvovuR9fAOsE/7JG7rwcVEPnr4PXB8gYvpD6dDpojQneCuy3hWOOUxRAC6+SS6JgTgdZZVKU9lZs2M8d+3XeI2L9IHZY2Mpw+Vri4ki7ksg+4rILiSKH0ZpSaVVM3aCw+ndRgDgWXQtRQ9DKS9MIp4A7qPkMZvA4XViZ93f6NERfZGIayCTuEGeBu5/A4Usu4+zyO9xgYKa2WM/zoVGhgIjEDEhmKU6vu+PIaISKpenfF0XeaWROa2L7rYHZSCVg97krS/MCgXjlOBL2Q8PYWkZd12m4ljPtcDa0efem4gyfzCMYweJqIlxHuf+dZ1nm4216MlxHuf+ax9UiJS2eQZ6EJekIvc3T7+rFSksslZ9Y7roIt8jUGLXwXJPojdx1YGbkm7Z5ccvy3SGybG9ugO5iXFH4Gk2Mc4HPx/FrmafnAp0pwxxsXgQwXUtlEOQyRbUrWSg0mUalO5SFgDH5WRrOR8EqXaVC4SdsIrGclKhgA3k2R6V8tBF8eiZZMrGQXcysyoV9IwSCVVkxov6QBu8dmRhlLg4Rjgv2q8ZEWkT0qo2lQ2LkfLJleyOeUu6sWnXdWJdFWvYKyHg4tZkdE+eiVVI13Ve9mD0qcD+RWJNWyu5jTwoWpTyfCbUrtZZNoTzq9TzHoaxY9GyyZXkvbB8qVw2pTDEHmH89GSqn9ESzVeQcKni1lUnSQMRRrFhBeSMF9ZpBrPUWoS5UCMi5hscvh7rIHuMloeprAVXl1IPkKag1WyE8/VNLqMJZTUuLgDfTkP98IngZt9SfeCl+/W84Lh2F7oy+hqK17kew8Oht9ASxMf42s7INrN+cB2wVjsvLvc675NxuBiElpS9UV0r5mz0ohDCfFp3xAVbQ2/J1NpYp+VLtRm/HLEZZPD32NF4HbwJXXa+A2AsP6jG53u2ZfRVRjtN0QS9gLGB6OzGcpuSHOWSpYD7uLCUobeE+Qgr+RppJHe94PxDfhQfVDKgEPSN0IZyRkszfZInmcle9LFCYWsrB4SlqOb2xGjr5KTgT3Rcqyn0pWZemMsgaRGxXXo2pCZyCUyrFnbA93Zu+14+c68A70XJiJrDvfCRJ+dhtY2vMjbhr0KegrXYwIgN3j4lyLWVg8e9kKiU5XMRjrDh9LEywJ3eantMQYdfie0itRc4KvAhGB8KeAu8GFn7zLwLWTNlbyEtC64NRhfDZieRoLKxhXAp4KxHyIyxKHgzQ5kp6G1Ed/Tkyh0dJ+FfK+HNcpHgN+3iJXVor0fhtNZE8mNrPQkehyHMIm/IF1mwwYzm/J+yeRvu9gV/cUhUr4JH7AUh6ELtUaTlEyeMeEk4CvB6IvANzmZf9LBfoiC2WI8ZzFFdRxtN1ehv1DuI+GSVJo47DHQgedWzqgZHjeWLE5EH64vAv/tyJTpPtPLAVUmrkTvhR8AF2VIE3cAt/naqSKF4qXocgb6cJ3q4KepNPFlwbORwHRfO1WkULwU8t5EeN7BoQ5eQZxZYRHpJpTEa2k0E78S8cyDo8E9B1yMNOqsZC2y64rahN8a7TBeAIwD9x5wJNoTvyui4Fci/CHohs2zgEPAfUhcmvhk8HsVsbo6uIBYw2boSqWJD0I7ba4Ev24Ri8uifYbI1QxjIdORPP1KLqQzbfaUkNVg5kgS9mv9InNwBqvguR39hXIkSboBT+Et4g1mLmMKn2n9InOQECs0m08Ho0nSDTiZJ9AG1zC6mU6i/h3bQ8IRwP7B6F9ZqmIDdhJrIrUKC7jd6kUML1HM0Ds9Hxjj0sPIEZXpHopcfuMqbQXjxcgYFwz/FTgo7WXRI00cynSvDNzu44pO7eBiYItg7GGqv6++jXSFr6RW8WyhpLU3d6I/G5e49MJZIU0cnneHe/2dZgxYfFbmwXRwN8n/dR44FDFQK9kb/FGtXV9e/PIQzTw4CVzasNnNRZw2HwavmQr+c61eYT78hsAlwWA30rslbdjsXgTVx66nXiRsvN0m/N7EsotgLLi0Sa37AXBR8JqPATPAt81p0z5D5A3OQnsPHwNOqRpJyLLiriJR3UeLJaGDBdyK9h5eR8JtwWsfxqlDcQTd3EHS5tB7wkhihWaO45nMk8FrL6GsnpokmvO4kA7GcgpvV40uG20itSvPZfaAMZYAPBl7AU50QXjeiSpJ2IdmTeCmdteLePGkhwfOQqRzenjRHU9sL2inQ+F42AdUc9W3gP1chWMn7Qa/P7r3xkleR3nbwZlAePFSjh0nkfNYqtlVXke2jIHJycB/BGOR6KRLL5EsCF57IfjQMG8HV6E7wN+HapzqnkanrQ5FUrTa7LTxI5B02zDa2gUuaJzqZiIGZCVpZMu32WnjY3ewtHGqCxunTgB+HYxtjaRvtYX2GCIicRvWFrzLEMaQqCItSIhZcWKNJ20NvU9C51M/Cyr1R/BMBX4ajG6MTisoktSqV4Vmd9PJlZHXe4ZneGoS2uepOa9HBULVD53G5EhvgZPI8tR0kfBvLVmjMRC4Hl1b8H1gWsbrD0V3I4/VvRWG71VEUQ6OTqdTXXH07oWwG3lXO6WJU4nbUMbWIx3gVU8CJ3npMa/ljT67L0DL8VL/EV7E5iDG1Pzw9Q7uRwraK1kOiVKF3mdjQOG3Q3e8ngeMARfWawHuN6DEVIYjike1VEZbjD8SVFbKa8BBaTQnwE1DIoKVrAHc3GZp4stBZaU8hI6I93A0uq/LzshdsE34YZCRXYT7nn69W4AYuO8ED44HH6YjF0LxhkiWxK3jKE5TB/piVsu04sL8xGJIiBWazQP2I1EHes97uhnGOODvwZND6eKA5i8yB3GJ21fRXsjFTGQ2kjOpPTVTVApFMcxlGlph5mfAuZnvSXgGp3q+SApF2aWJjaaTIXH7KnCw0x5qABy8i3yphw6U873O1S2KK9AStw9QQ9bWwTNo59AQRA2s8L1QQ+L2XKfFP3pxcBfaMzgKkSYu3GvpJf0mJul+uNPiH5WcAvwqGNuKkksTG7XwKyIXxmHBg+PBPRl5Qw/nAD8KxtanbVkIfjN05/E0jd69HXlDD0cCLwdje5LluG05UYnbN5FO9hkNm908JPIa3vEmg8/qu9ZqzgZVp6uzi6pwr6LrA1P1M194P6liDZGZaf8JfbBNo1NZy9UcTpYVdxwJxTaYOZOsQrPxJDxV872nMgvHfoRSjZ5phUsTxyVuF9DBWBL191xNwqNoQ2w43cwkqdkPpvl0kVVotj+JksSsRqI+GZ6acsqxGs3Hx/tPLATGOv2dU4WDR9HNuoYDM3zt3khNx8t35EHB8JvA/k7XqFXhpKHsHcHwGkiflKL3QkziNvadE+NbaK9lzHHUUnyvXKk67652+u+5Cpd+9tCfvWNLLk1sRPHZmQe4q2q/13Uj0tV/Cx6MSYusC8RnZR5MAqczD6pw7yEOzNBpcy747Zu1wnz49dHR1vTv2YV/zwHuWeDYYLADkfRdtVkrzIeP9ZhJ/56dzi6qwt0DKusl7QfjQ2O5pRRriDzHFHSo/2lWyCl7mUQ99bLBTy+sK7DjI65DF5rNJOGGXDN08gDaU78cMLMwaeJsidsJTFaRp6w5zkEUayop1lOTsCE+Wmg2jkRFnuKMiHpq9qCL45qwQqPk+J69pw/XiU5HYbM4D+2pjx12LSOVuA33Xjcwzkm/jTwcjvbU706BDdUyJG7fRYzCPg5XcBKZHo2WJp7kdc+GVtKFPu9ikacorjfVpSoa5xBp4nWasUCjMI4D5TCtnXlQhcsSvJkGfvP+Lq4OrgTlMP0Ruk9RBu5xtKc+jX76Wg0+m4jPaqB9Drgf55vDXQ9BHTCsgkQUCrpX+yyH6ZHgsrOLqjkeCKNx21FwP6niDBGRuA0LgSU3+QSVp59Nwt3ErLiFzOBqFfJsPl18h7jEbZib3Bengapd2Iz3827ofnM1MVnPRNXi1MKzFIcS89QkHNqv1eUhIavQbCqJqsXJZgJxT43nnBJKExvNJyb3fD86/SCTNHUrKtPtab1MdypxG9sLZzj4Sd55UmliLdMNZ3sd/m86GRK3IBK3eQ9X0rQnLdMt0sQt91p62AXp1VLJXGC002kdmaTSxGH/lJFItK1Qr6XRKJkSt2PB1c48qMLFahdGIMXSBQje+ENBpZDPAg5OozZ5uRAIaxfWpTinzYXotNlYLU5fxKSJd6OQflK+R4VPZxfhamcXVeHmI06bUJp4Avgv92eF9VCMIZIlcesqJG7rYVSGFfdGi624hG3xqtBsPnLxDv8h+5qrJ/Qe5lSOp4vWNpgRiduw0CxLnaw2p/BW2l8k9NRcQUKrPTWXoQvNHmbjBiQ7Ex5HXxzKJU1sNJ1U4jaURn0dODCrLiQLR7ZMt9ef02ZzCfDZYOzn6MLYPnERNSfk0jvd64LIpuF7lXSUxO2lTquT9YkjQ6Yb7mhlvYgX+eNo6q7T6mR5+Da6odq2NPBvaxSNT6VRlajOyeDyRlsr6QICNSc2QSSuW4jfBC2qI5kHvRK3eXGpmhOhmtM+4HNGiBrF7w1KVCeQuM2L6+knFTrSzyhAmngKKFGdmDpZDpz0iqumA7i1KGniYlrUL2BtdKjnXTqZ2dB8xzKfqezNIqVY1U3CUlHlrebwCcKUAccLdKpDIh8JfyVhD8ILhK+dy91PHI65+CAk3MGvmaxkPfMxmYdI+Aq6C3XrilzPYXk+5DGkKGsxw/g+oxv8+0u4iC7ewqsUnTXoo07AGHikdQ8fotMjHolI3ObCwcNepDnXDB61bC+kqWVPoH+Pe9Nag0a4BHGSFLkXelINKvuadKO7M9fDeHTkGcQg6SMXvGFi5917Ti6kdeNgvoe9gdBD2e1heEx5yygNa6Nrzz5Ep/XkxHWDPwAt/4v09YgpbzWFVdDpmX8Flz/zoAo3G/x/oKOs86SeJqa81RSGoL8nfwfulcamc0+D3xNJi62khWlmfikklTz8PX6SNl9sADcDvEeirZWsQeu+J6vYDvH85Q57G4bRNOYg+6+tnU1LyrXI382p7V6IYSxhjEX2XtjpfTCxLvI7zmn3QgxjCeTPyP7brn0NDQ3DMAzDMAzDWGIxQ8QwDMMwDMMwjMIxQ8QwDMMwDMMwjMIxQ8QwDMMwDMMwjMIxQ8QwDMMwDMMwjMIxQ8QwDMMwDMMwjMIxQ8QwDMMwDMMwjMIppqEhwBmsxgLVHGsOCW+WYr68nM7aLAw65o7gbSbwXkPzJaxDaBD2Z758P3MosFbkyd9ImNf2+fJyHssyl1UiT14hobtp8yW9etfGICPt5h377L7hdMfc/sz3N0fr9oKHZSG+Fxz174Vmz1fHz10R+VPJAgevNTjfKHSTrobnq+PnrgosEwzPcTR2PnlYDd1csuH5jCLxKyNNRyv5ENwbTZzvg/o7nNf9c9cEhgWD74JrsMFps+fL9TMd8C+RB7PAzW1gvg5gnebNl/vnjgBiXc9fBddAE9tmz1cfxUVEFrIl8CLwUsWfP5E00MhtCpuxoGoemQs2bNp6s1jIIcHPfYl5/JJEHTp908UYpKlL5XyPMI9lm7fgCAmLgAsIf4/GOxifG5lrBi28sAAwFwfcp36246S650roYC7fVXNJMz0zQgYvi4Dzad5eODsy10yK+QzdG/nZJ9c7iZdz4X8jc01qpRGS8nHgyeDn/sVHO0nXxosB8jj69/hq01abTey8e9E3cEZ52DQy1/PIuFF+1gX+SPW/38vgt6h/Kr828IdgrheRxtSt5ivovfQ78B+vfyr/eeCVYK7fAys3Z6lZOA9MQv8e94IfUuudGZwcmetHQCNz1cMi4PbIzz67wfluiMx1afpzWk5xhkgn9wEXB6MjgRkkLJV7noTl6GYm2jt0Ggm/6N8iczEF+Gkwtgnyj5afhPXxXBOMehyHkfC3fqwvD57hHIp8EVTydRKOqmumhD2A44LR94AxJHzU8Arz/ew5dDCa0HPtOZ0pfK7O2SYDXwzGngOOaXyBRtlxYiAcijgEKtnbw/h65vKwO3BCMDwH2N/B/MZX2TcO5gKjgQ+CR1M8/Fud000CvhSMPQ98q8Hl5cbJpeq/9TDXe/hk3nm8vOcGtPfz+8AV/VpkDhz8ALgwGF4euMPD8LzzpJGpmejoymQ3uLueDyLcI0BnMDgCmAF++fzz+GHAdCTKV8mF4L7XnxXmw10B3BkMrgncnEYacuJXQS7R4f3zSHB/7M8Kc3IUYvRUsgvidKwDvx3QFQzOA0aDe7/BteXELQD2B5U5cwL4Oh0tfjywbzD4GnBQari1nGJrRFbjZODXwejW1GfFTQM+HYz9DPHKt56EboYxDgjDqofRxQG55riU4cjhskLw5Gw6+X7/F5mDicwGxoAyFi4kYctccySsAdyMHPqLcRxJwstNWGXfTOZp9OVvKN1MJ+ETueaYws7I5auSeXSwH4m62BmDDAfvAmPRe+ECT7694GEN4BbCvQCHO4nWthwHzwDHB8NDgTs9+faCh50Qo7ySecBoB//s/yr7xsl3Y+ikWQm5xOf1NB4LfC0YexU42BUX4ZwA/CoY2wo4p445pgEbBWMP1DmH0X7OQTzllWyA/pzX4jxg+2DsMeCUfqyrXo4Edbbviey3HPgOxAhZNXhwLbjb+ru4fLh5yCU+PNs7wX8h3xx+RSTrI0wtOx7ck/1dYT7cy8A3wkHgxjRylgO/GfK5qmQhsC+4t/u7wrwUa4gczgLkwA9zAI8j4T/7fH/CN0Bd9mcB+zdUE9AopzILx/6EYSvPlUxVh4bmHS4GwrDsb1hNeU1aS8KjwGnB6HAkShUaSeF7hyLemfCCM41O5TVpLQlXIV9ulcSNJP3elenmDvQFZzyTldfEGKQ4eBTtERsOzPDaYVBFWhdyJ3ovXOXgjuatsm+cXGzCA30N4Bbfx17w6WUfvReOcdqD2Gq+haRoVbIT2rOs8OLcCi/qC4CxTp89LcPJgT4WCA/0Y702khQeDgEODIZnIRG2QlImjGbhupG7y+vBg7HgD+n7/X4v9GX/XWAMuNZmHlThJNtBR3jPA/+vOSZIgPCy/yw6q6LFuGeBo4PB1EjyoZEU4NPLPuFl/25wVzVrhflwdyPOikpSI8mHRlKAXw6i2UWTwP2yWSvMQ/GqWQmvAgdR7ZWSMHoSLfoRprAJcEkw2g2MI6HFRVoROnkAHclZlkXM5EL1D7uYhK8DRwSjsxnKmNRQK5aE84D/C0bXB67t452ng0p/epoV+HazllYnR6A9z3uQKA/xYhI6kFqAsEhrBgk3NHd5xgDgAiBMccizF6ag05+eQUfqiuJIJCe9kt2BE7PekBop16PTn2Y6uK65y+ubtLB/DBCmOJzqddpYLx4+hngqw/SnCU5H41tOWhR/MJHzzseLZkFevAlweTDcDRzgdDTeGBC4t4D90EbkNPCfyX6fXxO4Ce1IOAxcmFJaAO5xdO1Zmjbmw7SxCvwu6OhNmlLq2pB54G5EotiVpGljvtbd+ER0ndlL6OhEUZwA/DYYi6WNhVyJzi76ITpC0nLaI9+bcC/6S1asuFi9yHksm9aFVOfJOqaQqHqNIpmMztPdlPdVbrAwlfXQh7rHcQiT+EsL1pcHj3jewp8/Oo1AaRJ2A1UQPgcYzQn1Kw01hST9+Vrp6GwSdsh41wTgy8HYi8A3m7w6YwDgauwFn/GZ8PB54DvB8Fwklakte8GRuRfO8tp50MPJ6ILwWL1GYTh4Af333gHclqpIxbgSlADKD4CLmry83DgREQhrCEcC0z36vPNSP3A7ui5kqoOftGaVRjG4h9EXxBHAHeAjgje+J9oaFoRfBu5/WrHCnFyKCFpUshaZqWZ+ZeLR1qPBPdfsxdXBUUjxfyWx7/QUvy1wRjC4ABiXRovagJtP3GkzAXyGyIf/JjAuGJwFHJJG7wqlfX1EVuNE4JFgdFtgqnrtXK4ANg5GH2IjTm/N4nIi6WD7g4rIHEEX+1eNXM0wFnEb4rGr5EI6lRe2WBLeQVIIwojMZSR8NnjtqkhYUheaJcoLWywJT6G/QMRTc2bwRZ6wPRImrmQ+HYwmURvaWEJw9NZOhXvhEh+kU/pe75k6XI90+nArFAdPg4pO9tSLVO0FL96zKcFr5wNjnD7cCsVJdCOMTq5MpF4kFRcIiy7/ChxUYF1IFiehIzKxSw1IqkXoIX+I2NloDETOQBuUG6OdswBnoZ0HT9GAGl5zcZkiH2nxcwW+A0kXDZ0H08Hd1KIF5sRliXxMBR9Euf1IJB09dB58OxUkaCMuU+QDfBDl9puiHTPpXbbVEtBx2meIHM4ChjAOXfV/Eglf6f2vLvZFUrkqeRPYj9ElyJOVtLBDCGUtPVcxlU/1/vcbXED7C82ySXgEfTEfAczkHJZPX5NVaHYdicpLbw8JlxNT9vioIrSdMAr5QqnOoXQcz2SVl24sYTj4DbpgewRSL7I89ErcxvbCDa5x6d+m4uRCG9aorAnc3FMv4nvziVXR5QlOh/vbxXjiKje9350eMosuHfyjpavLgSOzPvJEX5Hm4cUIDmsG3gL2s7qQwYKTlHKdYncI+IqaIB9Lp0yjna49mQdVuLRGRYt8gK8U+TgVnU4Zi3a2CfcMukYljUT5tO7PZ6nw3Qtc1uIF5sRlinwslib2WSp8Cbj/1+IFZtLezuqnRfPqpBAoYS2msgGeq4PnUvTVeonb/CTRvLrlWMRMEkaQsBe6MOpdhhQgcVsfZxNT9viw98PdhYQtK3mWAmQ96+QotLLHXnRxNL2qEpFCs06uLGJxxoDgHFAKdpUqN53oossyyj0fgUjvVrInUjCdtRfucboAsm24XklMpdqVePiCl+ZusaLLyY5CJN1z4US1K7x8OeBGD2v7uIqSBw5zlOi8M5qAE2dqvF5kI/BZKnxHgCtEhS8fLuZMFcEb/ArgYwITPRK3hajw5cNdS4bIR2qExFT40vqvYiRuc5Il8tHjWIupttX6iQAAGTJJREFU8D0InNnaZdWmvYYIQMLdoC6Ao4DbWMQ9pB7ICs4m4ceFrK0+JgGh0sDmiBUd+0I5jNNUWLO9SKrZgehDbywJV5JVaFY2iduEd+mIyLF6ziPhWqiIuAkvMaJthWZGCUlTeQ4jonLj4Sq03PMHSF1IqfZCKrm7P1rl5lzk0hsWXf6Z9hVdZuLEmApVgzqQ79Zb0UWXP6KEErcO7kH3MVkRia7djVZoO8dpg9gYFLgH0al5yyLR+pgK3zXgQnXIMnAhEhmoZH1kb8bqQo4D97siFlYnR6GdNrsjYiVhe4gFiGJZYRK3+XDzkPTUOcGDSeCvJK7Cty+4tkZb22+IAIzieHQawI5IuL2SR1hNpQ+Vg6RXqjFMA9gXOWgquZyEdhaaZZPwJh1RT80R6M/L0SS0s9Asm8k8hs6jHY5cLiuRQrMJKkXQWMJxaUoMkuJTyeHovXCMk+hg6XDSXTysnVoKbXAsQKRh3y1kYXXiRDno5mB4dVDS77OQfiGFF13m5ET0efc5xHFVSSxF0BhcdKEbJG9OXIUvWwGyrTiPXHBfCR58Fa3Cdxe4MMulJLh/Al9Hi3wchq4LORVc4Sp8+XB/Qn+3d6DVWlNJ6fbUhVRSDkPkWLKq/iuZzVDGtkXiNi+JFEZSuzDyKVbIUmQoCZN5CF28GjKdhJsKWE3jJFyCVvaoxnFSWh9jGAoHMZWbkBlOF1SXCicqN305P05uh8RtnYyHms6PbmCc0wIipcFJdGo0uj6yktlI35PynndGE+itF6n1eW2jxG1e3GzigjeVvEQbVfjy4Z6mhsx5yv3A+QUsph+4mMhHyJngSqHCVw5DBCCpKRXZbonb/CT8ADLke2EOQ9oocVsfp5MtFfkCS5el0KwmWcoePdxLp5LVNIyQMyEzHXQgyT0fRvZeuA+4uMC1NITrvZRlpsBNcdrDXDpc7UuZBw512sNsDErcLOL1Ij2MB9dWFb58uN+gGyT3kDqb2yVxWw/uSrIb0b4OHFiyupAsYiIfPfycvh1shVEeQwSggzeIb8Y/sZHKQSwvLtNgupfTVNO9ciL1IlkFktdwsiocLSsfkNVN2XEh7Zf1NEpOmuIT1or0cG27JW7r4AN0l+8eLiqBxG1eZiMGSchHSP3OQOFvxM+7F7C6kCWNfxCPJvwdUbUbKGTdfX4B7olCV9I/su4+t4NruwpfTj4i+/v+cnBhynHbKI8hchYr0s2t6MImgE/zXKalXS4SNsdnFkmOIVH5zOUkYSxaNnnx00QVh5aVc4Gtok8815Co4lDDqCJDUrWHyV6rkJSVs4GtM55d7XWhdOlIZZNvRmQpQ5ZCFKhCYZDS4RcXqMfOuw3RSkPGoMUvixgbIyIPV6X0aUA9+PXIdgR8AfyhRa6mcaKyyT0cD/5fi1xNPzgVrXLaw6XgQ+n5tlEWQ8QxPyojWclpJHyxqAU1RJIpI9mDaFEnrFPYmhphalRGshLRor4w8/csByKbHCrtVLI+oohhGFG8fEb63As+e8+XAi+SvaFWfiXrMTD2wmSoeQ7sDpxQ0FoaooZsciWnet17wRicXEFtZ8Z48GGjzpLhU8le1bC5kivAh4IMJcN/krjKaQ/SIBkfChCVDL8jtYUuVgFuSptNtp1SLIKEE9EykmE6jUg1JqxczKIa4hqoaGIohL/HisBtJAwtZkl1kjCCRdyNlk0Of4/NeL/EnprTWRvxnFZ+oXgkraOS0XQpJS3DwIuH8i50pCDcC5uSXRfWdjyshT5co3vBl1C6twcPu6Jlk+eipYnPSrvFl5XjyXneebkwGIMWfxA682A2Ok1yGviwmV6ZOA+deRB+pkcAt4MPm+mVBD8EqQ0JZZPD32MtUP3tSoT/BCL/HN4xw9/j34GTCllSH7TfEJnCNmgt7fl08EV0h+LVgDvTDt/lIuGbiFRvJX9lKJujG8x8jhIVCgVcjJaRfIihbImWJj6KLvU7t5+EoSzkdqQfTSUX08HXCPOyPZeTqN/ZMC4EPhuMPQzRvXCEl4LTUuHlMLoDvRcuRWRvwxqFyzx8poi11YOXVKzb0KlMR6FluochUarwd247HrYBzgqG5yPRj1uC8VWBO308fcsY8PgN0F25u4F9gEuC8ZFIk8BQRrYE+FjD5tnIZz3s1r0p5RXFSJDmf5U8jbSRCGtf9gEfyuGWAO+A69GyyTOAXdDSxKeD/1wBC6tJey/0CSPpZgZao/kEJvMkcsj8MXj2ebQmfnuZwibARcHoQmBfJvE6ovISFrROIOHLRSwvN13sg/RIqER6KYhimZYm9kxjKmXz1JyBGHuVPA5MSKWJTw+ejQDuIKGknhqjaLzoyR8ZDL8DHODkUDoQ7bW8ykt+f5mYit4LTyBSvQ+jZbpHIJf4MCLaNtK6kFuRniGV3OTk8n4pWqZ7LWqn1BWO771MqvPuJCd9RY4CQnWkXdGGljHg8SOQNO5wn00B9/+QO04oKx9z2rYZvybS3yeMth4C7mWkmWooTfzf4McVs768+F2AicHgHEQ2+W9InWAoJnAR+C0KWFw9nIRu2JwqO7qn0RGQocCd4D9exOKyaHdk4XpQl9h7SJgGQMIcOhiNtuKmMkUdru3hPJalm5kQXGIdk0n4BSDSxE5JfMrhmqjDtT1MZT28yhH3OA4jSRUkRJo49GaMZBEzSNTh2h4SdgO+HYxKd+mkt9P6FLTE5yZoL5SxBOLjoXcPHOLgVQAnWvJhOtbywO1eXzTbgpfQe+i0mYM0LexJZ4rJdG9IubyWJyO/SyUvkNZ/ucUy3a8Er9nbi4RlWZiGPu/uBS6HKmni8Lzr8rrBnTGwuQQdba1wkrkFyCU+lLs9EXyY1tcm/FCkC3x4ib0I3Pfk/7pZiNBH2Fz0SvBhGnub8CsT7wB/FLjUEe5+A6qZ9ggkSlUSp43fFnE8VZL2LHKpI9xdgaRtVbImcHMaTWkL7TNEujgG+K9g9FVCTf7JPI2LWHHdTOdMtQGKZy6XAxsHow+wEedWjXQyAylQrEQ2wMw2h96vZhiLuA1daHYunYGM5GqcTNxTc2brFpiThFWRv+Pwc30ECc9XvK6bYdEmUt8goWSeGqNIfG8xokrrOd/B/wVjE9ENALdG1Knaiu8tRtR7wbFYQtz1dtdVe+FQL+NtJa31CNNY5wGjHYslxNNu8DGv5QUe2u61TA2iMI31NaQDfG9kzUkH7bDYfiiSohXmrhsDEj8a3XtIMg9wFamS7mV0zVYqdOBrCR0UxVnADsHY46jIgvshWvkrFfbxMaWwAvEdSMrnasGDG8CFpQFno/tJ9SXsUxB+JHJu6ewiXFgacBS6n9SewDEtWlyftMcQiUvcLqCDsSSRng+dXIH8JVeyBh+pYuRiEYnbg4PRWQxjf0ZH9OFXYDzwVDC6M89xamsWmJM3OA/YPhh9lJjqgnS2j3lqTqBLFWAWh9QN3Y7kVVdyFUmkOdGpZHtqBo40sdF8zgFCecbH0EXSpF2vx6KLAI/ztE+mO01liu2Fa5yMV+Egq6HaNE/79kIqcTsDMQ4rOc7B78LXu/h31nAk1axt0sRecszPC4YXAvu6iM6/EwnU8DtrDeDmgSBNbNTCx9TpPHBYmgIU4O5GR2dXBG5NIxJtIipxK5kHuI8ibzgV+GUwtjlktjooilPR6nTPEb2Uux6nzRvBg7Gp6EA7uYFYdhFumn6p63HahP9O54Nvi8hH8YZIlsStYyKTlXexkiOJWXFdNeVZW0dc4rYbxwGcqj6owgl8SAf7obsCd9LFF1qwyr7pYk+0xK18UBP1QRUS4p4az42pWlU7SNCa2c+wQg0pz4Qfoi8I8vksuzSx0XQ87IGWuH0XGOP0lzYALhbFTWW6PW2T6Z4M6vvkWUStKYqDByCI4qZ7oR3SxDUkbu9ytRVrzkE3A+xLgrlleDIl3U91+mJWyRFQEcUVYp9PY8DghyOfhdAoPgdcrQaWx6EN7x1pW6+ZTInbI8CFn9kUJzWz2vA+FvzXmr3CfEQlbuchkanwjpbi3iTutLkCfJv6SfljgfDvMHYuVeAeA+UAH4aomtWSYG4J7YiIXImWuL2fzj7kLxPepSNixXnOI1He/NYiErcz0IVmp9Op8q2rmcyzOHWYdOC5PU0tKo7TWRMfkbh1HEqi8q2rSbgb3bxoRRYynauVB7O1JOwCnBKMzmUIozlB5VuHTEJfCDbjfXUpMwYxPvU4ow/Xw5x2gFTh4B4g9DytCEz32pvfUjzsTFzidrTTDpCQyZDWtS0m5s0vgpjE7UvAf9d6k+v1LqvOyGO81JEUzTR0VCmWqlKF6/UuKwP4HK8jdsbA4DxEca+SeOZBFW4eUjv0z+DBKeAL7jXjpY2CThO8EpzOPKjCvYZkkIQiHzcUL03sRyEpWWFU6Rhwv6/9XvcgOhVdeqsVLk3sY1GlNFLvdHZRNRcA3wvG2tJPqlhDRCRuwxz8vxJXoNFMJsuKu42zazbSaTYXo/OOH2ZjpUATp5NrkU1QySqIB7CY0LtI3N6JLjS7lE6lQJPF8Whp4u15o0BPTUJ2odlpSoEm9v6FDI16ao4mUTVMxiAklbidjj5cL3PwPzmnOQG9F2L1DS3Dk7kXjnaSblAT16P0p6WJx3td39AyMiRuFwDjnE4JVbjefHvttfRamrxlpD1ZwjqbWYjoQZgSqnA9Sn/VDEMM3NJJExu1yJS4HZMWpveBewHt4U7rG3xY39BKphDLPMjuRB7g7kVLFqf1DUVJE/ueaOtawYOZ4K7LOUkC/CwYK7iflO+JtoZ1NhPB1couSnGpullUmrhGNKX5FGeIxCVuu4GDSNTBl03CBeii0fWYV5AVF5e4fQc4IFoXks2RVBSNpuxGl1J8ahUxidun0AdfNgnzGMIYtKdmIl0FdAVOyCo0u5lEafJnM4nXcBFpYri+hNLERvOJSdw+TR2yqa5XnUTJdJ/sab1Mdw2J2xlOitZz4cQxFNsL07zOQW46fUjchiIZmTiyZbp9qHDYAnxcha8bUSwLhQFqcTHaa1nyhmpGNT5VJVISt4eCeyX/PG46utfMykg6TQGCN35X9P0gVXpzfWUeVPIdRK66kpjiU6uISdz2GW2txnUjDvTw7no4+KL6SV1FLLuoLmPIzUacJQuDB5eAL6yfVDGGSJbELXSSKKuyL3qsuFeD8X3SiEvryJK4hUNI1Hpqk/RoVDMvmO1MEqVE0VziErdzGMJokmA9fXEacU+N5zbOUAZCszkFXWj2Aks3oP7QyX3EPDVlkiY2mo6P9yWag6Qy1XO44nr12qvoAG712kBoNhPQBk9sPX3i4AdkNFQrQJo4JnF7H9IrpF6moBuqbUKLpYl9T18ifd5NcXo9NXGLz7vQa/l1L3UkRqnplbiNNBR1321gwqxeM/kdiA3hU4MnKnHbd+ZBFS7LaXMS+P9odIX5yCNxmxf3OvFsnqvBt7iflD8cSd2sJF2P6zu7qAr3czL6SRUlTVyM6sIH7ITkHlfmH79No5KvCe+QsC/iuatkYxJG1H2Zzks3X0S8dZX8nkRFaPKR8BQJhyBfJJXsAvyqoTn7/pkdiCZ9GIL8PqepCE3eOafTxdp41q0aX8jniaj0NIWz+RjzWI2wCLWDyzlZRWjyMYrv8A6LkHzPyjm3A37e2EKNspIWRO+K3gv3Ot1INRdOLutrIQXSlXwenY7ZFLzIbn8SXZB9hdOHfV5OlqmDvUDr9oKHjZDoauXv0Y0Udtd5uIo0sZeLwmSClFcPazt9uW8WuyDRm8oIzmx0hCYXDmZ7UWc7JHi0kYel6zWYjUL5VyR16ZmKsbno5nk5cXPBj0Gnea0uRcauz9TFBvkSWgTiZXD5Mw+qcC+B3x8IDY/twN+XRhxawRfREeIHwIURmpy4+8EfDYTRg13RYhNNwo9AvivD7/ubweXPLqrmDERQI0zV/zckytJytkO+5GsWZBqG0RLmIPtv3b5euARyLfJ30155a8NY8hiL7L16MxYGEusiv+Ocdi/EMJZA/ozsv+3a3VndMAzDMAzDMIwlkMrUrJXQaUd5+C3tb0pjGO3mDHQ6Th6GN3shg5AxNKZ2dD7SjNAwllTWojH55TWbvZASM5zG7j4vYtFawzgZLUudh5Uq/6MnNavRP/c1tnbDGFQ8Sv/2kaVmaXpSsxr906ZGWYZRGjanf3toSUjNavTPo8Uv2TBKx330bx9tNxTJ0woLn+rhlX681zAGC+civWAapdEis8HM7eiOwvXQn/caxmDgdfp3vv+1WQspIf+gf383s5q1EMMYwExDlBYbxerTDcMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDKMduHYvwOgHCcvh+BywPZ6VgFHACGAu8HfgaYbwS07jpXYu0zAMwzAMwzBCzBAZiCRsD0wA9gSG5njHs8ANwHUkvN/KpRmGseTi4UZgs4zHbwO7OfAFLskwjAGH3x2YmuOF3cB7wPvAi8DTwI/AvdXCxRlNJs8l1igLCSORg/4/63znJsAFwA7A15u9LMMwDA9rAwcCHTVetiPwcDErMgxjgDIK2KrB93aDnwFMAPdqE9dktIhaB4ZRJqayEfA49Rshldi/t2EYreIA+v6OOaiIhRiGscTSAewL/Ab8p9q9GKNv7GI6EDiDVVjE/cB6fbzyNeBJ4DngHy1fl2EYxmLG5XjN1z0s0/KVGIaxpLMqcG27F2H0jaVmlR/HAu5B0h5ivAecC9xCwl+rniSsD+wGHAls3MpFGoax5OLhX4E83scVgK8Bt7d2RYZhDEL+DnRW/PcySOr5/sDSkdfvKFER96ciFmc0hhkiZaeL/8LzuYynLzGEf89UxUp4EbgcuJyEsZA5j2EYRn/ISrlaBAyJvNYMEcMw6uVdcNfoYX898Av0dw3A1oAZIiXGDJGy45mc8WQusFduad6E6cD0Zi3LMAwDwItk+OjIoz8CzwNfCca/4GFNJ6mkhmEY/cQ9Av4PwKaRh6OKXo1RH1YjUmYS1gU2z3h6CQl/LHI5hmEYEb4CrBgZvxOYERnvAPZr6YoMw1jSGJYx/kahqzDqxgyRcvPlzCdDiYQnDcMwCicrLWs68D0kehtyaOuWYxjGkoX/MrBB5MFC4DcFL8aoE0vNKjefyRj/M5P4S6ErMQzDCPCwCnGHyRNO0rLwcB86dWtDD9s4eKzVazQMY9CwEvizK/57KLAhsAdxx/oN4CwFtOSYIVJuPpEx/kKhqzAMw4gzjvg5UlmPNoN4DclBmCFiGEZ+Pg6cnON1HrgNOLq1yzGagaVmlZusIqv3Cl2FYRhGnAMjYx64q+K/f0D8O2tfD8NbsirDMJZkHgAScAvavRCjb8wQKTcfZozb4W0YRlvxsAVxMY1fOhanjjqYh9SKhIwC9mzR8gzDWHL5PPAH8Ie3eyFG35ghUm6yuqOvXOgqDMMwNLFoCMRlwmPqWZBd6G4YhhEyF/hp8OdZ4KPIa5cCrgT/1eKWZzSCGSLl5vWM8c+QsFShKzEMw0jxUhcyNvJoEXB3ZPzHwFuR8T3SgnfDMIy+eA3cl4I/myKKWfdFXu+AC8HbXbfEWLF6uXkIOCUyvjSOfwe+X/B6DMMwAHYHVo2Mvw9M8fH3xFJNewyaS5q1MMMwljTcq+D3B94E5aRdF9gM+H3hyzJyYYZImVmBn/M+HwJLq2eeCSTcR0J38QszDGMJJyulakXgmw3MZYaIYRj9wL0H/nni3dXXxwyR0mLhqjJzAh8CN2Y83QGYnHuuhKFM4XPNWJZhGEsuXorM92rilFv4eNG7YRhGPayQMb5Soasw6sIMkbIzlDMR1ZkYnSRcSpK5+cQA6WIf4Em6ObEVSzQMY4liLM1X7jugyfMZhrFE4T8DrJnxMFafZpQE1+4FGDno4nA8V9V4xT+A7wK/RnIkR+BYDc82wBeB1dLX/S8J/9XaxRqGMZjx8AiwXeTR68D8Pt7ugH+JjP8dWNPBwn4uzzCMAY/fH2lIGPJHcBtVvG4o8Engy0ACrB6bDFhH6kiMMmI1IgOBTq4m4dPAcRmv+ATwjfSPkFEtahiG0SgeNiRuhMwFPuXkf/ua4zlgo2B4VeBLwP39XqRhGIOVT4Ov93bzMzNCyo2lZg0UEo4HDieul20YhlEEB2eMfzePEZIyM2PceooYhtFMZgPj270IozZmiAwkEq4BdkQ0+evlLZx5Gw3DaAwv58W4jMd31jFV1mu/6mFkfasyDMOI8hSwC7g/tXshRm2sRmSgkrAlsA+wM7ANOs3OA68Av8bxXTzfJ8ksejcMw6iJl3qzn0QevQOs5uqI1np4Evhs5NHhDq5pcImGYQwKMmtE+uJVpFZ2JvBdcNbeYABghshgYCZDeI6PM4SP41kGx7ssxZuczD/bvTTDMAYHXkQvYsWg/3TwfJ1zrY3UtoW87cSBYhjGEosfRVzUIkY38B7wFji78wxA/j+XkLPl+KIIKgAAAABJRU5ErkJggg=="
|
|
}
|
|
},
|
|
"cell_type": "markdown",
|
|
"id": "47868612",
|
|
"metadata": {},
|
|
"source": [
|
|
"<div>\n",
|
|
"<img src=\"attachment:fig_matmul_intro_q_3.png\" align=\"left\" width=\"450\"/>\n",
|
|
"</div>"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "0a04b344",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Data dependencies"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "019bd08a",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Complexity"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "93c30b29",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Efficiency"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "4587a17e",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Implementation\n",
|
|
"\n",
|
|
"The implementation of this algorithm is let as an exercise (see below). The following function is a helper to compute which subset of rows will be processed by a given worker."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "3bbf0055",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"function local_rows(i,N)\n",
|
|
" p = i\n",
|
|
" P = nworkers()\n",
|
|
" l = N ÷ P\n",
|
|
" offset = l * (p-1)\n",
|
|
" rem = N % P\n",
|
|
" if rem >= (P-p+1)\n",
|
|
" l = l + 1\n",
|
|
" offset = offset + p - (P-rem) - 1\n",
|
|
" end\n",
|
|
" start = 1+offset\n",
|
|
" stop = l+offset\n",
|
|
" start:stop\n",
|
|
"end"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "768c4c8d",
|
|
"metadata": {},
|
|
"source": [
|
|
"Run the following cell to understand what function `local_rows` does."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "79627008",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"N = 12\n",
|
|
"for i in 1:nworkers()\n",
|
|
" rows = local_rows(i,N)\n",
|
|
" @show rows\n",
|
|
"end"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "d67bfd59",
|
|
"metadata": {},
|
|
"source": [
|
|
"Implement the parallel algorithm 3 in the function below. Test it with the provided test."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "efa65ae4",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"function matmul_dist_3!(C, A, B)\n",
|
|
" ## Implement your code here\n",
|
|
" C\n",
|
|
"end"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "b07001dc",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"using Test\n",
|
|
"N = 4\n",
|
|
"A = rand(N,N)\n",
|
|
"B = rand(N,N)\n",
|
|
"C = similar(A)\n",
|
|
"@test matmul_dist_3!(C,A,B) ≈ A*B"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "5e6a89dd",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Efficiency\n",
|
|
"\n",
|
|
"The usual bottleneck in distributed computations is the overhead associated with the communication between processes.\n",
|
|
"\n",
|
|
"As we can see, the distributed function is much slower than the handwritten serial version. The additional runtime is due to the communication between the master process and the worker processes. \n",
|
|
"But how can we analyze the efficiency of this algorithm in general? In order to determine the efficiency, we have to compare how much computation time we can save to how much communication overhead there is in addition to the serial program. \n",
|
|
"\n",
|
|
"### Exercise 4\n",
|
|
"Determine the complexity of the serial algorithm and compare it with the complexity of the coordinator's work in the parallel algorithm. How much compute time does the coordinator save by offloading work to nodes? "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "c800dd33",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"a = \"O(√N)\"\n",
|
|
"b = \"O(N)\"\n",
|
|
"c = \"O(N²)\"\n",
|
|
"d = \"O(N³)\"\n",
|
|
"\n",
|
|
"compute_time_serial = #TODO\n",
|
|
"compute_time_coordinator = #TODO\n",
|
|
"compute_time_saved = #TODO\n",
|
|
"\n",
|
|
"@test (compute_time_serial, compute_time_coordinator, compute_time_saved) == solution_mm_par_04()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "a98a10b9",
|
|
"metadata": {},
|
|
"source": [
|
|
"The complexity of the sequential algorithm is $O(N^3)$. The coordinator loops over the number of workers (= the number of elements in $C$, i.e. $N^2$). The computation of the dot-product is outsourced to the workers. So the complexity of the coordinator's work is $O(N^2)$. Thus, the coordinator saves $\\frac{O(N^2)}{O(N^3)} = O(N)$ compute time."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "1ca84016",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Exercise 5\n",
|
|
"How much communication overhead is there between the coordinator and the workers? In order to determine this, evaluate the size of the data that is passed between coordinator and workers."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "50543fef",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"a = \"O(log(N))\"\n",
|
|
"b = \"O(√N)\"\n",
|
|
"c = \"O(N)\"\n",
|
|
"d = \"O(N²)\"\n",
|
|
"\n",
|
|
"comm_overhead = #TODO\n",
|
|
"@test comm_overhead == solution_mm_par_05()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "432fbe4f",
|
|
"metadata": {},
|
|
"source": [
|
|
"The coordinator sends 2 arrays of length `n` to each worker. After the worker is done computing, it sends 1 float back to the coordinator. So the complexity of the communication overhead is $O(2N +1) = O(N)$.\n",
|
|
"```julia\n",
|
|
"@async C[i,j] = @fetchfrom w dot(Ai, Bj) # <------- Send 2 Arrays of length n to workers, Receive 1 number\n",
|
|
"\n",
|
|
"```"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "9ee43181",
|
|
"metadata": {},
|
|
"source": [
|
|
"In conclusion, we found out that the computation/communication ratio is $O(N)/O(N) = O(1)$, so algorithm 1 provides no gain in efficiency. \n",
|
|
"\n",
|
|
"\n",
|
|
"# Parallel Algorithm 2\n",
|
|
"Another idea to parallelize the matrix multiplication is to let each processor compute one _row_ ($N$ elements) of $C$. This approach requires only $N$ workers. \n",
|
|
"\n",
|
|
"## Data Dependencies"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "dc2d1264",
|
|
"metadata": {},
|
|
"source": [
|
|
"Each worker requires the entire $B$ matrix and one row of $A$ as an input. Each processor can re-use the row of A $N$-times to compute the $N$-elements in its row. \n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "4415d376",
|
|
"metadata": {},
|
|
"source": [
|
|
"The image below depicts the structure of Parallel Algorithm 2. \n",
|
|
"The coordinator sends the $i$-th row of $A$ and the entire matrix B to worker node $i$. The worker nodes compute the whole row and send the result back to the coordinator.\n",
|
|
"\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "3ace3b41",
|
|
"metadata": {},
|
|
"source": [
|
|
"Let's first remove all unnecessary workers. "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "8547d6c1",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"rmprocs(6:26)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "13a3ab88",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"workers()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "8b3ccbe4",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Exercise 6\n",
|
|
"Provide the code for Parallel Algorithm 2. Test your algorithm using Julia's `@test` macro. You can view the solution to this exercise at the bottom of the notebook. "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "68d34ae0",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"function matmul_dist2!(C, A, B)\n",
|
|
" n = size(A,1)\n",
|
|
" @assert size(A,2) == n\n",
|
|
" @assert size(B,1) == n\n",
|
|
" @assert size(B,2) == n\n",
|
|
" @assert size(C,1) == n\n",
|
|
" @assert size(C,2) == n\n",
|
|
" @assert nworkers() == n\n",
|
|
" \n",
|
|
" # TODO: finish the code for algorithm 2\n",
|
|
" \n",
|
|
" C\n",
|
|
"end \n",
|
|
"\n",
|
|
"# TODO: test your code"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "2e9e7902",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Efficiency\n",
|
|
"\n",
|
|
"### Exercise 7\n",
|
|
"How efficient is Parallel Algorithm 2? Answer the following questions to determine the computation/communication ratio: \n",
|
|
"1. How much compute time does the coordinator save by offloading work to nodes?\n",
|
|
"2. How much communication overhead is there between the coordinator and the workers?"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "e0ee39a7",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"a = \"O(1)\"\n",
|
|
"b = \"O(√N)\"\n",
|
|
"c = \"O(N)\"\n",
|
|
"d = \"O(N²)\"\n",
|
|
"e = \"O(N³)\"\n",
|
|
"\n",
|
|
"compute_time_saved = #TODO\n",
|
|
"comm_overhead = #TODO\n",
|
|
"comp_comm_ratio = #TODO\n",
|
|
"\n",
|
|
"@test (compute_time_saved, comm_overhead, comp_comm_ratio) == solution_mm_par_07()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "57092027",
|
|
"metadata": {},
|
|
"source": [
|
|
" 1. The coordinator saves $O(N^2)$ computations. \n",
|
|
" 2. The coordinator sends $N + N^2$ floats to each worker and receives $N$ floats from each worker. Thus, the communication overhead is $O(2N + N^2) = O(N^2)$. \n",
|
|
" \n",
|
|
"This results in a computation/communication ratio of $O(N^2)/O(N^2) = O(1)$. \n",
|
|
"\n",
|
|
"```julia\n",
|
|
"\n",
|
|
"@async C[i,:] = @fetchfrom w Ai*B # <----- Worker does N² computations/ Send N + N² floats, receive N floats \n",
|
|
"```"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "d02d9321",
|
|
"metadata": {},
|
|
"source": [
|
|
"To conclude, our second algorithm is still inefficient. How can we design an algorithm that does more computation than communication? \n",
|
|
"\n",
|
|
"# Parallel Algorithm 3\n",
|
|
"\n",
|
|
"Think of how to design an efficient algorithm to solve matrix multiplication in parallel. Hint: Assume that we are dealing with large problem sizes, thus $N >> P$ (where $P$ is the number of processors). "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "def4265c",
|
|
"metadata": {},
|
|
"source": [
|
|
"If $N >> P$, we can assign _many rows_ to one processor. Each processor computes $N/P$ rows of $C$. "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "a6d4bab7",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Data Dependencies"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "7fd516bb",
|
|
"metadata": {},
|
|
"source": [
|
|
"Each processor needs the entire $B$ matrix and $N/P$ rows of $A$. \n",
|
|
"\n",
|
|
""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "3b67c60a",
|
|
"metadata": {},
|
|
"source": [
|
|
"Now let's start coding Algorithm 3. We'll use $P = 2$, so let's remove all other workers. "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "6f6d154e",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"rmprocs(4:5)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "7511e301",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"workers()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "bfc5dddc",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Exercise 8\n",
|
|
"Write a function that calculates the row indices for each partition of matrix $A$. The function should store the result in the input variable `indices`, which is of the type `Array{Int64}[]` (a list of arrays). You can add arrays to this variable by calling `push!(indices, my_array)`. The $i$-th entry of `indices` should be an array of row indices of matrix $A$ for the $i$-th worker. The function also receives the number of rows `n` and the number of processors `p` as input parameters. You can assume that `p` divides `n` without remainder, thus $n \\pmod p = 0$."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "4375aa9f",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"function calculate_partition!(indices, n, p)\n",
|
|
" @assert mod(n,p) == 0\n",
|
|
" # TODO: Calculate the row indices of matrix A for each worker. \n",
|
|
" # Store arrays of row indices in the variable indices.\n",
|
|
" \n",
|
|
"end"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "57b766cb",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"indices = Array{Int64}[]\n",
|
|
"n = 8\n",
|
|
"p = 2\n",
|
|
"calculate_partition!(indices, n, p)\n",
|
|
"@test indices == [[1,2,3,4], [5,6,7,8]]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "7a0ebd30",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Exercise 9\n",
|
|
"Provide the code for Parallel Algorithm 3. Test your implementation using Julia macro `@test`. "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "7d7c0193",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"function matmul_dist3!(C, A, B)\n",
|
|
" n = size(A,1)\n",
|
|
" p = nworkers()\n",
|
|
" @assert size(A,2) == n\n",
|
|
" @assert size(B,1) == n\n",
|
|
" @assert size(B,2) == n\n",
|
|
" @assert size(C,1) == n\n",
|
|
" @assert size(C,2) == n\n",
|
|
" @assert mod(n, p) == 0\n",
|
|
" indices = Array{Int64}[]\n",
|
|
" calculate_partition!(indices, n, p)\n",
|
|
" @sync for (i, w) in enumerate(workers())\n",
|
|
" # TODO: do matrix multiplication in parallel\n",
|
|
" end\n",
|
|
" C\n",
|
|
"end\n",
|
|
"\n",
|
|
"# TODO: test your solution"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "cfc6bc65",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Efficiency again\n",
|
|
"Let's have a look at the efficiency of Parallel Algorithm 3. \n",
|
|
"\n",
|
|
"### Exercise 10\n",
|
|
"How efficient is this parallel algorithm? Determine the computation/communication ratio like in Exercise 7. "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "8a1efe1f",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"a = \"O(1)\"\n",
|
|
"b = \"O(N/P)\"\n",
|
|
"c = \"O(N)\"\n",
|
|
"d = \"O(N²/P)\"\n",
|
|
"e = \"O(N²)\"\n",
|
|
"f = \"O(N³/P)\"\n",
|
|
"g = \"O(N³)\"\n",
|
|
"\n",
|
|
"compute_time_saved = #TODO\n",
|
|
"comm_overhead = #TODO\n",
|
|
"comp_comm_ratio = #TODO\n",
|
|
"\n",
|
|
"@test (compute_time_saved, comm_overhead, comp_comm_ratio) == solution_mm_par_10()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "f548576d",
|
|
"metadata": {},
|
|
"source": [
|
|
"- The workers now do $N/P \\times N \\times N$ computations, thus the complexity is $O(N³/P)$. \n",
|
|
"\n",
|
|
"- The coordinator sends the whole $B$ matrix ($N²$) and a part of the $A$ matrix ($N²/P$) and receives part of the $C$ matrix ($N²/P$). Hence, the complexity of the communication overhead is $O(N²/P)$. \n",
|
|
"- Finally, we obtain a computation/communication ratio of $O(N³/P) / O(N²/P) = O(N/P)$. \n",
|
|
"\n",
|
|
"\n",
|
|
"```julia\n",
|
|
"\n",
|
|
"@async C[rows_w,:] = @fetchfrom w Aw*B # <----- Send N² + N²/P floats, get N²/P floats. Worker does N/P * N * N multiplications/additions. \n",
|
|
"```"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "5ca61b7f",
|
|
"metadata": {},
|
|
"source": [
|
|
"The table below compares the three parallel algorithms. \n",
|
|
"\n",
|
|
"<div id = \"div1\"></div>\n",
|
|
"\n",
|
|
"| Algorithm | Parallelism <br>(#jobs) | Communication <br>per job | Computation <br>per job | Ratio computation/<br>communication |\n",
|
|
"|---|---|---|---|---|\n",
|
|
"| 1 | N² | 2N + 1 | N | O(1) |\n",
|
|
"| 2 | N | N + N² | N² | O(1) |\n",
|
|
"| 3 | P | N²/P + N² + N²/P | N³/P | O(N/P) |"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "2eaaa1da",
|
|
"metadata": {
|
|
"tags": [
|
|
"hide_cell"
|
|
]
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"HTML(\"\"\"\n",
|
|
"<style>\n",
|
|
"#div1 + table{\n",
|
|
" font-size: 16px;\n",
|
|
" border: 1px solid;\n",
|
|
" width: 80%;\n",
|
|
"}\n",
|
|
"\n",
|
|
"#div1 + table thead tr{\n",
|
|
" background-color: #A5F1C2\n",
|
|
"}\n",
|
|
"\n",
|
|
"#div1 + table tbody tr:nth-child(even){\n",
|
|
" background-color: #CBF0D9\n",
|
|
"}\n",
|
|
"\n",
|
|
"#div1 + table tbody tr:nth-child(odd){\n",
|
|
" background-color: #E7EBE8\n",
|
|
"}\n",
|
|
"</style>\"\"\")\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "e5f0c0cb",
|
|
"metadata": {},
|
|
"source": [
|
|
"To conclude, only algorithm 3 provides an increase in efficiency, especially for large problem sizes. If $N >> P$, algorithm 3 will have a low communication overhead. \n",
|
|
"\n",
|
|
"## Scalability \n",
|
|
"The matrices we have looked at in the previous examples were of a very small size. In the previous paragraph, we have established that the efficiency for Algorithm 3 is better especially for large matrices. Let's examine this by running the algorithm for different matrix sizes. First we will construct three matrices of different sizes. Next, we run the parallel algorithm for different numbers of processors. We evaluate the performance against the handwritten sequential version `matmul_hand!()` presented at the top of the notebook. We measure the performance by calculating the _speedup_, which is defined as \n",
|
|
"\n",
|
|
"$$\n",
|
|
"S_p = \\frac{T_1}{T_p},\n",
|
|
"$$\n",
|
|
"\n",
|
|
"where $T_1$ denotes the runtimes of the sequential algorithm on one node, $T_p$ denotes the runtime of the parallel algorithm on $p$ nodes. The ideal speedup is $S_p = p$. We will look more into speedups and how to measure efficiency in a later section of this course. NB: the following cells take about 6 - 10 minutes of compute time. "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "7c2b1423",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"matrix_sizes = [84, 420, 2100]\n",
|
|
"\n",
|
|
"function initialize_matrices!(array_A, array_B, array_C)\n",
|
|
" for n in matrix_sizes\n",
|
|
" A = rand(n, n)\n",
|
|
" B = rand(n, n)\n",
|
|
" C = rand(n, n)\n",
|
|
" push!(array_A, A)\n",
|
|
" push!(array_B, B)\n",
|
|
" push!(array_C, C)\n",
|
|
" end\n",
|
|
"end\n",
|
|
"\n",
|
|
"matrices_A = Matrix{Float64}[]\n",
|
|
"matrices_B = Matrix{Float64}[]\n",
|
|
"matrices_C = Matrix{Float64}[]\n",
|
|
"\n",
|
|
"initialize_matrices!(matrices_A, matrices_B, matrices_C)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "2b3feb47",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"n_workers = [0, 1, 2, 4, 7]\n",
|
|
"rmprocs(workers())\n",
|
|
"runtimes = zeros(length(n_workers), length(matrix_sizes));\n",
|
|
"\n",
|
|
" \n",
|
|
"for (i,p) in enumerate(n_workers)\n",
|
|
" # Add sufficient worker processes\n",
|
|
" if p >= 1\n",
|
|
" addprocs(p)\n",
|
|
" end\n",
|
|
" for (j,n) in enumerate(matrix_sizes)\n",
|
|
" @show p, n\n",
|
|
" C = matrices_C[j]\n",
|
|
" A = matrices_A[j]\n",
|
|
" B = matrices_B[j]\n",
|
|
" if nprocs() == 1\n",
|
|
" # Run sequential algorithm if 0 workers\n",
|
|
" runtimes[i,j] = @belapsed matmul_hand!(C, A, B)\n",
|
|
" else\n",
|
|
" runtimes[i,j] = @belapsed matmul_dist3!(C, A, B)\n",
|
|
" end\n",
|
|
" @show runtimes[i,j]\n",
|
|
" end\n",
|
|
"end"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "153ca8a0",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Plot runtimes \n",
|
|
"using Plots\n",
|
|
"\n",
|
|
"function calculate_speedups!(speedup, runtimes, reference)\n",
|
|
" @assert length(reference) == size(runtimes,2)\n",
|
|
" @assert size(speedup,1) == size(runtimes,1)\n",
|
|
" @assert size(speedup,2) == size(runtimes,2)\n",
|
|
" for j in 1:size(runtimes,2)\n",
|
|
" for i in 1:size(runtimes,1)\n",
|
|
" Sₚ = reference[j] / runtimes[i,j] \n",
|
|
" speedup[i,j] = Sₚ\n",
|
|
" end\n",
|
|
" end\n",
|
|
"end\n",
|
|
"\n",
|
|
"speedups = zeros(length(n_workers)-1, length(matrix_sizes))\n",
|
|
"reference = runtimes[1,:]\n",
|
|
"calculate_speedups!(speedups, runtimes[2:end, :], reference)\n",
|
|
"\n",
|
|
"plot(n_workers[2:end], \n",
|
|
" [speedups[:,1], speedups[:,2], speedups[:,3]], \n",
|
|
" label=[\"N=$(matrix_sizes[1])\" \"N=$(matrix_sizes[2])\" \"N=$(matrix_sizes[3])\"],\n",
|
|
" xlabel=\"# workers\", ylabel=\"speedup\",\n",
|
|
" title=\"Speedups compared with sequential version matmul_hand!\")\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "39cd37f0",
|
|
"metadata": {},
|
|
"source": [
|
|
"As we can see, the speedups are higher for larger matrix sizes. We can also observe that the speedups decrease when using more processors. The speedups are superlinear, that is, much larger than the theoretical ideal speedup. The reason for this is that we compare to a very slow handwritten solution whilst using the optimized Julia built-in function ` * ` on the workers in the parallel computation. If we were to compare the performance with Julia's `A * B`, we would see that the parallel algorithm performs worse even for large matrix sizes, since this function is highly optimized. We will get more into the efficiency analysis of parallel algorithms later in the course.\n",
|
|
"\n",
|
|
"# Discussion\n",
|
|
"The first problem we have looked at, Matrix Multiplication, can be parallelized by sending parts of the input matrices to each worker and collecting the result at the end. This problem is **trivial to parallelize**, since the workers can do their computations independently from one another. In the following sections, we will look at other algorithms which require intermediate communication. \n",
|
|
"\n",
|
|
"Another key insight is that we can attain a better performance by chosing a **large grain size**, thus by dividing the matrix $A$ into larger chunks of data.\n",
|
|
"\n",
|
|
"Finally, the time saved by doing more computation than communication is increased in **large problem sizes**. \n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "0de5e8ac",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Solution to Exercises\n",
|
|
"### Solution to Exercise 3\n",
|
|
"\n",
|
|
"The following cell shows the code for the first parallel algorithm with the correct macros."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "4e60911e",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"@everywhere using LinearAlgebra \n",
|
|
"\n",
|
|
"function matmul_dist1!(C, A, B)\n",
|
|
" n = size(A,1)\n",
|
|
" @assert size(A,2) == n\n",
|
|
" @assert size(B,1) == n\n",
|
|
" @assert size(B,2) == n\n",
|
|
" @assert size(C,1) == n\n",
|
|
" @assert size(C,2) == n\n",
|
|
" @assert nworkers() == n^2 \n",
|
|
" # Let each worker compute one element \n",
|
|
" @sync for w in workers()\n",
|
|
" # Compute row and column index from worker id\n",
|
|
" i, j = index_from_wid(w)\n",
|
|
" Ai = A[i,:]\n",
|
|
" Bj = B[:,j]\n",
|
|
" # Do element computation in parallel\n",
|
|
" @async C[i,j] = @fetchfrom w dot(Ai, Bj)\n",
|
|
" end\n",
|
|
" C\n",
|
|
"end"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "4e5f3056",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Solution to Exercise 6\n",
|
|
"The cell below contains the code for parallel algorithm 2."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "72c86b2e",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"function matmul_dist2!(C, A, B)\n",
|
|
" n = size(A,1)\n",
|
|
" @assert size(A,2) == n\n",
|
|
" @assert size(B,1) == n\n",
|
|
" @assert size(B,2) == n\n",
|
|
" @assert size(C,1) == n\n",
|
|
" @assert size(C,2) == n\n",
|
|
" @assert nworkers() == n\n",
|
|
" # Let each worker compute one row \n",
|
|
" @sync for w in workers()\n",
|
|
" # Compute row index from worker id \n",
|
|
" i = w - 1\n",
|
|
" # Make sure Ai is an array, not a vector\n",
|
|
" Ai = A[[i],:]\n",
|
|
" # Do row computation in parallel\n",
|
|
" @async C[i,:] = @fetchfrom w Ai*B\n",
|
|
" end\n",
|
|
" C\n",
|
|
"end\n",
|
|
"\n",
|
|
"# Test solution\n",
|
|
"C1 = matmul_dist2!(C, A, B)\n",
|
|
"@test C1 ≈ A * B"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "21fa8bbc",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Solution to Exercise 8"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "7ed7e697",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"function calculate_partition!(indices, n, p)\n",
|
|
" @assert mod(n,p) == 0\n",
|
|
" nrows = div(n,p)\n",
|
|
" for i in 1:p\n",
|
|
" range =((i-1) * nrows + 1) : (i*nrows)\n",
|
|
" push!(indices, range)\n",
|
|
" end\n",
|
|
"end\n",
|
|
" "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "666bd69c",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Solution to Exercise 9\n",
|
|
"The following cell contains the code for parallel algorithm 3."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "b40d341c",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"function matmul_dist3!(C, A, B)\n",
|
|
" n = size(A,1)\n",
|
|
" p = nworkers()\n",
|
|
" @assert size(A,2) == n\n",
|
|
" @assert size(B,1) == n\n",
|
|
" @assert size(B,2) == n\n",
|
|
" @assert size(C,1) == n\n",
|
|
" @assert size(C,2) == n\n",
|
|
" @assert mod(n, p) == 0\n",
|
|
" indices = Array{Int64}[]\n",
|
|
" calculate_partition!(indices, n, p)\n",
|
|
" @sync for (i, w) in enumerate(workers())\n",
|
|
" # Get row indices of this partition\n",
|
|
" rows_w = indices[i]\n",
|
|
" Aw = A[rows_w,:]\n",
|
|
" # Do partition computation in parallel\n",
|
|
" @async C[rows_w,:] = @fetchfrom w Aw*B\n",
|
|
" end\n",
|
|
" C\n",
|
|
"end\n",
|
|
"\n",
|
|
"# Test solution\n",
|
|
"C1 = matmul_dist3!(C, A, B)\n",
|
|
"@test C1 ≈ A * B"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "066b5483",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Solutions"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "161421d7",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"function matmul_dist_1!(C, A, B)\n",
|
|
" m = size(A,1)\n",
|
|
" n = size(A,2)\n",
|
|
" l = size(B,2)\n",
|
|
" @assert size(B,1) == n\n",
|
|
" @assert size(C,1) == m\n",
|
|
" @assert size(C,2) == l\n",
|
|
" @sync for j in 1:l # Note the @sync!\n",
|
|
" for i in 1:m\n",
|
|
" Ai = A[i,:]\n",
|
|
" Bj = B[:,j]\n",
|
|
" # Compute this entry in any of the available workers \n",
|
|
" @async C[i,j] = fetch(@spawnat :any dot(Ai, Bj))\n",
|
|
" end\n",
|
|
" end\n",
|
|
" C\n",
|
|
"end"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "e1248015",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Julia 1.9.0",
|
|
"language": "julia",
|
|
"name": "julia-1.9"
|
|
},
|
|
"language_info": {
|
|
"file_extension": ".jl",
|
|
"mimetype": "application/julia",
|
|
"name": "julia",
|
|
"version": "1.9.0"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|