Add Text File containing relevant datasource urls.

First diary entries written.
Wiki entries on how to setup a python virtual env for the project
This commit is contained in:
Sebastian Lenzlinger 2023-11-16 18:40:42 +01:00
parent 8cf5940a4d
commit 77bf140efc
8 changed files with 247 additions and 0 deletions

View File

@ -0,0 +1 @@
https://data.stadt-zuerich.ch/dataset/sid_dav_strassenverkehrsunfallorte/download/RoadTrafficAccidentLocations.json

22
docs/all_csv_urls.txt Normal file
View File

@ -0,0 +1,22 @@
https://data.stadt-zuerich.ch/dataset/sid_dav_verkehrszaehlung_miv_od2031/download/sid_dav_verkehrszaehlung_miv_OD2031_2012.csv
https://data.stadt-zuerich.ch/dataset/sid_dav_verkehrszaehlung_miv_od2031/download/sid_dav_verkehrszaehlung_miv_OD2031_2013.csv
https://data.stadt-zuerich.ch/dataset/sid_dav_verkehrszaehlung_miv_od2031/download/sid_dav_verkehrszaehlung_miv_OD2031_2014.csv
https://data.stadt-zuerich.ch/dataset/sid_dav_verkehrszaehlung_miv_od2031/download/sid_dav_verkehrszaehlung_miv_OD2031_2015.csv
https://data.stadt-zuerich.ch/dataset/sid_dav_verkehrszaehlung_miv_od2031/download/sid_dav_verkehrszaehlung_miv_OD2031_2016.csv
https://data.stadt-zuerich.ch/dataset/sid_dav_verkehrszaehlung_miv_od2031/download/sid_dav_verkehrszaehlung_miv_OD2031_2017.csv
https://data.stadt-zuerich.ch/dataset/sid_dav_verkehrszaehlung_miv_od2031/download/sid_dav_verkehrszaehlung_miv_OD2031_2018.csv
https://data.stadt-zuerich.ch/dataset/sid_dav_verkehrszaehlung_miv_od2031/download/sid_dav_verkehrszaehlung_miv_OD2031_2019.csv
https://data.stadt-zuerich.ch/dataset/sid_dav_verkehrszaehlung_miv_od2031/download/sid_dav_verkehrszaehlung_miv_OD2031_2020.csv
https://data.stadt-zuerich.ch/dataset/sid_dav_verkehrszaehlung_miv_od2031/download/sid_dav_verkehrszaehlung_miv_OD2031_2021.csv
https://data.stadt-zuerich.ch/dataset/sid_dav_verkehrszaehlung_miv_od2031/download/sid_dav_verkehrszaehlung_miv_OD2031_2022.csv
https://data.stadt-zuerich.ch/dataset/ted_taz_verkehrszaehlungen_werte_fussgaenger_velo/download/2012_verkehrszaehlungen_werte_fussgaenger_velo.csv
https://data.stadt-zuerich.ch/dataset/ted_taz_verkehrszaehlungen_werte_fussgaenger_velo/download/2013_verkehrszaehlungen_werte_fussgaenger_velo.csv
https://data.stadt-zuerich.ch/dataset/ted_taz_verkehrszaehlungen_werte_fussgaenger_velo/download/2014_verkehrszaehlungen_werte_fussgaenger_velo.csv
https://data.stadt-zuerich.ch/dataset/ted_taz_verkehrszaehlungen_werte_fussgaenger_velo/download/2015_verkehrszaehlungen_werte_fussgaenger_velo.csv
https://data.stadt-zuerich.ch/dataset/ted_taz_verkehrszaehlungen_werte_fussgaenger_velo/download/2016_verkehrszaehlungen_werte_fussgaenger_velo.csv
https://data.stadt-zuerich.ch/dataset/ted_taz_verkehrszaehlungen_werte_fussgaenger_velo/download/2017_verkehrszaehlungen_werte_fussgaenger_velo.csv
https://data.stadt-zuerich.ch/dataset/ted_taz_verkehrszaehlungen_werte_fussgaenger_velo/download/2018_verkehrszaehlungen_werte_fussgaenger_velo.csv
https://data.stadt-zuerich.ch/dataset/ted_taz_verkehrszaehlungen_werte_fussgaenger_velo/download/2019_verkehrszaehlungen_werte_fussgaenger_velo.csv
https://data.stadt-zuerich.ch/dataset/ted_taz_verkehrszaehlungen_werte_fussgaenger_velo/download/2020_verkehrszaehlungen_werte_fussgaenger_velo.csv
https://data.stadt-zuerich.ch/dataset/ted_taz_verkehrszaehlungen_werte_fussgaenger_velo/download/2021_verkehrszaehlungen_werte_fussgaenger_velo.csv
https://data.stadt-zuerich.ch/dataset/ted_taz_verkehrszaehlungen_werte_fussgaenger_velo/download/2022_verkehrszaehlungen_werte_fussgaenger_velo.csv

View File

@ -1,3 +1,7 @@
# TODOs
* Write a script that makes tables and inserts the data.
* Find out if data cleaning can be done in python with pandas or if it all must be SQL scipts.
# Project Diary
| Version<br/> 0.00 | Author: <br />michel.romancuk@stud.unibas.ch<br />sebastian.lenzlinger@unibas.ch<br /> | HS 2023<br />Databases<br /> |

View File

@ -0,0 +1,11 @@
https://data.stadt-zuerich.ch/dataset/ted_taz_verkehrszaehlungen_werte_fussgaenger_velo/download/2012_verkehrszaehlungen_werte_fussgaenger_velo.csv
https://data.stadt-zuerich.ch/dataset/ted_taz_verkehrszaehlungen_werte_fussgaenger_velo/download/2013_verkehrszaehlungen_werte_fussgaenger_velo.csv
https://data.stadt-zuerich.ch/dataset/ted_taz_verkehrszaehlungen_werte_fussgaenger_velo/download/2014_verkehrszaehlungen_werte_fussgaenger_velo.csv
https://data.stadt-zuerich.ch/dataset/ted_taz_verkehrszaehlungen_werte_fussgaenger_velo/download/2015_verkehrszaehlungen_werte_fussgaenger_velo.csv
https://data.stadt-zuerich.ch/dataset/ted_taz_verkehrszaehlungen_werte_fussgaenger_velo/download/2016_verkehrszaehlungen_werte_fussgaenger_velo.csv
https://data.stadt-zuerich.ch/dataset/ted_taz_verkehrszaehlungen_werte_fussgaenger_velo/download/2017_verkehrszaehlungen_werte_fussgaenger_velo.csv
https://data.stadt-zuerich.ch/dataset/ted_taz_verkehrszaehlungen_werte_fussgaenger_velo/download/2018_verkehrszaehlungen_werte_fussgaenger_velo.csv
https://data.stadt-zuerich.ch/dataset/ted_taz_verkehrszaehlungen_werte_fussgaenger_velo/download/2019_verkehrszaehlungen_werte_fussgaenger_velo.csv
https://data.stadt-zuerich.ch/dataset/ted_taz_verkehrszaehlungen_werte_fussgaenger_velo/download/2020_verkehrszaehlungen_werte_fussgaenger_velo.csv
https://data.stadt-zuerich.ch/dataset/ted_taz_verkehrszaehlungen_werte_fussgaenger_velo/download/2021_verkehrszaehlungen_werte_fussgaenger_velo.csv
https://data.stadt-zuerich.ch/dataset/ted_taz_verkehrszaehlungen_werte_fussgaenger_velo/download/2022_verkehrszaehlungen_werte_fussgaenger_velo.csv

View File

@ -0,0 +1,11 @@
https://data.stadt-zuerich.ch/dataset/sid_dav_verkehrszaehlung_miv_od2031/download/sid_dav_verkehrszaehlung_miv_OD2031_2012.csv
https://data.stadt-zuerich.ch/dataset/sid_dav_verkehrszaehlung_miv_od2031/download/sid_dav_verkehrszaehlung_miv_OD2031_2013.csv
https://data.stadt-zuerich.ch/dataset/sid_dav_verkehrszaehlung_miv_od2031/download/sid_dav_verkehrszaehlung_miv_OD2031_2014.csv
https://data.stadt-zuerich.ch/dataset/sid_dav_verkehrszaehlung_miv_od2031/download/sid_dav_verkehrszaehlung_miv_OD2031_2015.csv
https://data.stadt-zuerich.ch/dataset/sid_dav_verkehrszaehlung_miv_od2031/download/sid_dav_verkehrszaehlung_miv_OD2031_2016.csv
https://data.stadt-zuerich.ch/dataset/sid_dav_verkehrszaehlung_miv_od2031/download/sid_dav_verkehrszaehlung_miv_OD2031_2017.csv
https://data.stadt-zuerich.ch/dataset/sid_dav_verkehrszaehlung_miv_od2031/download/sid_dav_verkehrszaehlung_miv_OD2031_2018.csv
https://data.stadt-zuerich.ch/dataset/sid_dav_verkehrszaehlung_miv_od2031/download/sid_dav_verkehrszaehlung_miv_OD2031_2019.csv
https://data.stadt-zuerich.ch/dataset/sid_dav_verkehrszaehlung_miv_od2031/download/sid_dav_verkehrszaehlung_miv_OD2031_2020.csv
https://data.stadt-zuerich.ch/dataset/sid_dav_verkehrszaehlung_miv_od2031/download/sid_dav_verkehrszaehlung_miv_OD2031_2021.csv
https://data.stadt-zuerich.ch/dataset/sid_dav_verkehrszaehlung_miv_od2031/download/sid_dav_verkehrszaehlung_miv_OD2031_2022.csv

118
src/data_utils.py Normal file
View File

@ -0,0 +1,118 @@
# data_utils.py
import os
import pandas as pd
import requests
from urllib.parse import urlparse
import geopandas as gpd
from concurrent.futures import ThreadPoolExecutor as tpe
def download_csv(url, local_filename):
with requests.get(url, stream=True) as r:
r.raise_for_status()
with open(local_filename, 'wb') as f:
for chunk in r.iter_content(chunk_size=8192):
f.write(chunk)
def process_urls(data_dir, urls_file):
# Ensure the data directory exists
if not os.path.exists(data_dir):
os.makedirs(data_dir)
# Read URLs from the file
with open(urls_file, 'r') as file:
urls = file.readlines()
# Process each URL
for url in urls:
url = url.strip()
filename = os.path.basename(urlparse(url).path)
local_filename = os.path.join(data_dir, filename)
# Check if the file already exists
if not os.path.isfile(local_filename):
print(f"Downloading {url}...")
download_csv(url, local_filename)
print(f"Saved to {local_filename}")
else:
print(f"File {filename} already exists in {data_dir}, skipping download.")
def load_dataframe_from_csv(filepath):
try:
df = pd.read_csv(filepath, low_memory=False)
return df
except Exception as e:
print(f"Error loading {filepath}: {e}")
return None
def load_dataframes_from_csv_files(data_dir, u_string):
dataframes = []
with tpe(max_workers=5) as executor:
for filename in os.listdir(data_dir):
if (u_string in filename) and filename.endswith('.csv'):
filepath = os.path.join(data_dir, filename)
future = executor.submit(load_dataframe_from_csv, filepath)
dataframes.append(future)
dataframes = [future.result() for future in dataframes if future.result() is not None]
return dataframes
# for filename in os.listdir(data_dir):
# if (u_string in filename) and filename.endswith('.csv'):
# filepath = os.path.join(data_dir, filename)
# df = pd.read_csv(filepath, low_memory=False)
# dataframes.append(df)
# return dataframes
def load_dataframes_from_geojson_files(data_dir, u_string):
print('u_string', u_string)
gdf = gpd.GeoDataFrame()
for filename in os.listdir(data_dir):
print("Filename:", filename)
if (u_string in filename) and filename.endswith('.json'):
filepath = os.path.join(data_dir, filename)
print("Filepath:", filepath)
gdf = gpd.read_file(filepath) # Read GeoJSON directly as GeoDataFrame
return gdf
def combine_dataframes(dataframes):
if dataframes:
combined_dataframe = pd.concat(dataframes, ignore_index=True)
return combined_dataframe
else:
print("No dataframes to combine")
return pd.DataFrame() # Return an empty DataFrame
def create_unified_df(urls_file, u_string, data_dir, files_present=False):
df_list = []
df_unified = None
if not files_present:
process_urls(data_dir, urls_file)
df_list = load_dataframes_from_csv_files(data_dir, u_string)
df_unified = combine_dataframes(df_list)
return df_unified
def save_dataframe_to_csv(df, integrated_dir, filename):
pass
if __name__ == "__main__":
# Test the functions here if necessary
csv_urls_file = '../docs/all_csv_urls.txt'
datasets_dir = 'datasets/'
output_file = 'column_names.txt'
process_urls(datasets_dir, csv_urls_file)
# extract_column_names(datasets_dir, output_file)

77
src/integrate.py Normal file
View File

@ -0,0 +1,77 @@
import data_utils as du
from datetime import datetime as dt
import os
import requests
import pandas as pd
foot_bike_urls_file = '../docs/foot_bike_zaehlung_urls.txt'
miv_file_urls = '../docs/verkehrszaehlung_moto_urls.txt'
accident_file_url = '../docs/accident_loc_urls.txt'
# Using u_string to discriminate between files that belong to each other
motor_file_u_string = 'sid_dav_verkehrszaehlung_miv_OD2031'
foot_bike_file_u_string = 'velo.csv'
accident_file_u_string = 'RoadTrafficAccidentLocations.json'
data_dir = 'datasets/'
integrated_dir = 'datasets/integrated/'
weekday_names = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']
def process_foot_bike_data():
fb_df_unified = du.create_unified_df(foot_bike_urls_file, foot_bike_file_u_string, data_dir, files_present=True)
fb_df_unified[['DATE', "TIME"]] = fb_df_unified['DATUM'].str.split('T', expand=True)
fb_df_unified[['HRS', 'MINS']] = fb_df_unified['TIME'].str.split(':', expand=True)
## Evt brauchen wir doch FK_ZAEHLER
fb_cols_to_drop = ['DATUM']
fb_df_unified_correct_cols = fb_df_unified.drop(columns=fb_cols_to_drop, axis=1)
fb_df_unified_correct_cols.fillna(0, inplace=True)
fb_df_grouped = fb_df_unified_correct_cols.groupby(['OST', 'NORD', 'DATE', 'HRS']).agg({
'VELO_IN': 'sum',
'VELO_OUT': 'sum',
'FUSS_IN': 'sum',
'FUSS_OUT': 'sum'
}).reset_index()
dt_obj = pd.to_datetime(fb_df_grouped['DATE'])
days = dt_obj.dt.weekday
fb_df_grouped['Weekday_en'] = days.map(lambda x: weekday_names[x])
cleaned_fb_df = fb_df_grouped
return cleaned_fb_df
def process_miv_data():
miv_df_unified = du.create_unified_df(miv_file_urls, motor_file_u_string, data_dir,files_present=True)
miv_df_unified[['Date', "Time"]] = miv_df_unified['MessungDatZeit'].str.split('T', expand=True)
miv_df_unified[['Hrs', 'Mins', 'Sec']] = miv_df_unified['Time'].str.split(':', expand=True)
miv_cols_to_keep = ['MSID','ZSID','Achse', 'EKoord', 'NKoord', 'Richtung', 'AnzFahrzeuge', 'AnzFahrzeugeStatus',
'Date', 'Hrs']
miv_df_cols_dropped = miv_df_unified[miv_cols_to_keep]
dt_obj = pd.to_datetime(miv_df_cols_dropped['Date'])
days = dt_obj.dt.weekday
miv_df_cols_dropped['Weekday_en'] = days.map(lambda x: weekday_names[x])
cleaned_miv_df = miv_df_cols_dropped
return cleaned_miv_df
def process_accident_data():
acc_df_unified = du.load_dataframes_from_geojson_files(data_dir, accident_file_u_string)
acc_cols_to_keep = ['AccidentUID', 'AccidentHour', 'AccidentYear', 'AccidentWeekDay_en', 'AccidentType',
'AccidentSeverityCategory', 'AccidentInvolvingPedestrian', 'AccidentInvolvingBicycle',
'AccidentInvolvingMotorcycle', 'RoadType', 'RoadType_en', 'AccidentLocation_CHLV95_E',
'AccidentLocation_CHLV95_N', 'geometry']
cleaned_acc_df = acc_df_unified[acc_cols_to_keep]
return cleaned_acc_df
if __name__ == '__main__':
fb_df = process_miv_data()
print(fb_df['MessungDatZeit'])
print(fb_df.dtypes)
print(fb_df.head(100))

3
src/preparations.py Normal file
View File

@ -0,0 +1,3 @@
import data_utils