Merge branch 'main' of github.com:sebaschi/keylogger-detector

This commit is contained in:
Sebastian Lenzlinger 2023-06-08 13:27:01 +02:00
commit da25db0825
3 changed files with 69 additions and 1 deletions

View File

@ -177,4 +177,6 @@ All in all, the main functionality works as intended. Basically now would be the
## Wednesday, 7, June 2023
### Michel
I have written 2 systemtap scripts, that can detect, whenever a module registers at the Keyboard-notifier. The Script can currently detect whenever a module registers. However, neither of them can detect which kernel module registered. Here comes Sebastians idea of writing a python script, that can unload all un-known modules and loads them back in, whilst the stap-script is running. Whenever a module is loaded in, and it triggers the stap-script, we know it is tracking key-strokes. Those modules will be shown to the user and the user then has to decide whether to unload and remove them, or keep them.
I have written 1 systemtap scripts, that can detect, whenever a module registers at the Keyboard-notifier. The Script can currently detect whenever a module registers. My script cant detect which kernel module registered. Here comes Sebastians idea of writing a python script, that can unload all un-known modules and loads them back in, whilst the stap-script is running. Whenever a module is loaded in, and it triggers the stap-script, we know it is tracking key-strokes. Those modules will be shown to the user and the user then has to decide whether to unload and remove them, or keep them. My script is based on a redhat-script. The redhat-script is called funcall_tracer2.stp . The idea behind both scripts is the same. My script is simplyfied for the use with python.

8
src/funcall_trace1.stp Normal file
View File

@ -0,0 +1,8 @@
probe kernel.function("register_keyboard_notifier").call
{
printf("%s (%d)\n", execname(),tid())
}
probe end{
printf("end\n")
}

58
src/funcall_trace2.stp Normal file
View File

@ -0,0 +1,58 @@
#! /usr/bin/env stap
#
# Copyright (C) 2010-2015 Red Hat, Inc.
# Written by William Cohen <wcohen@redhat.com>
#
# The linetimes.stp script takes two arguments: where to find the function
# and the function name. linetimes.stp will instrument each line in the
# function. It will print out the number of times that the function is
# called, a table with the average and maximum time each line takes,
# and control flow information when the script exits.
#
# For example all the lines of the do_unlinkat function:
#
# stap linetimes.stp kernel do_unlinkat
global calls, times, last_pp, region, cfg
probe $1.function(@2).call { calls <<< 1 }
probe $1.function(@2).return {
t = gettimeofday_us()
s = times[tid()]
if (s) {
e = t - s
region[last_pp[tid()]] <<< e
cfg[last_pp[tid()], pp()] <<< 1
}
delete times[tid()]
delete last_pp[tid()]
}
probe $1.statement(@2 "@*:*") {
t = gettimeofday_us()
s = times[tid()]
if (s) {
e = t - s
region[last_pp[tid()]] <<< e
cfg[last_pp[tid()], pp()] <<< 1
}
times[tid()] = t
last_pp[tid()] = pp()
}
probe end {
printf("\n%s %s call count: %d\n", @1, @2, @count(calls));
printf("\n%-58s %10s %10s\n", "region", "avg(us)", "max(us)");
foreach (p+ in region) {
printf("%-58s %10d %10d\n", p, @avg(region[p]), @max(region[p]));
}
printf("\n\ncontrol flow graph information\n")
printf("from\n\tto\n=======================\n")
foreach ([src+] in region) {
printf("%-s\n", src)
foreach ([s,dest+] in cfg[src,*]) { # slice for all dest's
printf("\t%-s %d\n", dest, @count(cfg[src,dest]));
}
}
}