add new files for compat layer

This commit is contained in:
Ryan Huber
2025-11-04 04:10:51 +00:00
parent fd1c52127f
commit 608904b9dd
15 changed files with 2565 additions and 0 deletions

View File

@@ -0,0 +1,102 @@
//go:build linux && !android && !e2e_testing
package overlay
import (
"fmt"
"sync"
wgtun "github.com/slackhq/nebula/wgstack/tun"
)
type wireguardTunIO struct {
dev wgtun.Device
mtu int
batchSize int
readMu sync.Mutex
readBufs [][]byte
readLens []int
pending [][]byte
pendIdx int
writeMu sync.Mutex
writeBuf []byte
writeWrap [][]byte
}
func newWireguardTunIO(dev wgtun.Device, mtu int) *wireguardTunIO {
batch := dev.BatchSize()
if batch <= 0 {
batch = 1
}
if mtu <= 0 {
mtu = DefaultMTU
}
bufs := make([][]byte, batch)
for i := range bufs {
bufs[i] = make([]byte, wgtun.VirtioNetHdrLen+mtu)
}
return &wireguardTunIO{
dev: dev,
mtu: mtu,
batchSize: batch,
readBufs: bufs,
readLens: make([]int, batch),
pending: make([][]byte, 0, batch),
writeBuf: make([]byte, wgtun.VirtioNetHdrLen+mtu),
writeWrap: make([][]byte, 1),
}
}
func (w *wireguardTunIO) Read(p []byte) (int, error) {
w.readMu.Lock()
defer w.readMu.Unlock()
for {
if w.pendIdx < len(w.pending) {
segment := w.pending[w.pendIdx]
w.pendIdx++
n := copy(p, segment)
return n, nil
}
n, err := w.dev.Read(w.readBufs, w.readLens, wgtun.VirtioNetHdrLen)
if err != nil {
return 0, err
}
w.pending = w.pending[:0]
w.pendIdx = 0
for i := 0; i < n; i++ {
length := w.readLens[i]
if length == 0 {
continue
}
segment := w.readBufs[i][wgtun.VirtioNetHdrLen : wgtun.VirtioNetHdrLen+length]
w.pending = append(w.pending, segment)
}
}
}
func (w *wireguardTunIO) Write(p []byte) (int, error) {
if len(p) > w.mtu {
return 0, fmt.Errorf("wireguard tun: payload exceeds MTU (%d > %d)", len(p), w.mtu)
}
w.writeMu.Lock()
defer w.writeMu.Unlock()
buf := w.writeBuf[:wgtun.VirtioNetHdrLen+len(p)]
for i := 0; i < wgtun.VirtioNetHdrLen; i++ {
buf[i] = 0
}
copy(buf[wgtun.VirtioNetHdrLen:], p)
w.writeWrap[0] = buf
n, err := w.dev.Write(w.writeWrap, wgtun.VirtioNetHdrLen)
if err != nil {
return n, err
}
return len(p), nil
}
func (w *wireguardTunIO) Close() error {
return nil
}

132
udp/wireguard_conn_linux.go Normal file
View File

@@ -0,0 +1,132 @@
//go:build linux && !android && !e2e_testing
package udp
import (
"errors"
"net"
"net/netip"
"sync"
"sync/atomic"
"github.com/sirupsen/logrus"
"github.com/slackhq/nebula/config"
wgconn "github.com/slackhq/nebula/wgstack/conn"
)
// WGConn adapts WireGuard's batched UDP bind implementation to Nebula's udp.Conn interface.
type WGConn struct {
l *logrus.Logger
bind *wgconn.StdNetBind
recvers []wgconn.ReceiveFunc
batch int
localIP netip.Addr
localPort uint16
closed atomic.Bool
closeOnce sync.Once
}
// NewWireguardListener creates a UDP listener backed by WireGuard's StdNetBind.
func NewWireguardListener(l *logrus.Logger, ip netip.Addr, port int, multi bool, batch int) (Conn, error) {
bind := wgconn.NewStdNetBindForAddr(ip, multi)
recvers, actualPort, err := bind.Open(uint16(port))
if err != nil {
return nil, err
}
if batch <= 0 || batch > bind.BatchSize() {
batch = bind.BatchSize()
}
return &WGConn{
l: l,
bind: bind,
recvers: recvers,
batch: batch,
localIP: ip,
localPort: actualPort,
}, nil
}
func (c *WGConn) Rebind() error {
// WireGuard's bind does not support rebinding in place.
return nil
}
func (c *WGConn) LocalAddr() (netip.AddrPort, error) {
if !c.localIP.IsValid() || c.localIP.IsUnspecified() {
// Fallback to wildcard IPv4 for display purposes.
return netip.AddrPortFrom(netip.IPv4Unspecified(), c.localPort), nil
}
return netip.AddrPortFrom(c.localIP, c.localPort), nil
}
func (c *WGConn) listen(fn wgconn.ReceiveFunc, r EncReader) {
batchSize := c.batch
packets := make([][]byte, batchSize)
for i := range packets {
packets[i] = make([]byte, MTU)
}
sizes := make([]int, batchSize)
endpoints := make([]wgconn.Endpoint, batchSize)
for {
if c.closed.Load() {
return
}
n, err := fn(packets, sizes, endpoints)
if err != nil {
if errors.Is(err, net.ErrClosed) {
return
}
if c.l != nil {
c.l.WithError(err).Debug("wireguard UDP listener receive error")
}
continue
}
for i := 0; i < n; i++ {
if sizes[i] == 0 {
continue
}
stdEp, ok := endpoints[i].(*wgconn.StdNetEndpoint)
if !ok {
if c.l != nil {
c.l.Warn("wireguard UDP listener received unexpected endpoint type")
}
continue
}
addr := stdEp.AddrPort
r(addr, packets[i][:sizes[i]])
endpoints[i] = nil
}
}
}
func (c *WGConn) ListenOut(r EncReader) {
for _, fn := range c.recvers {
go c.listen(fn, r)
}
}
func (c *WGConn) WriteTo(b []byte, addr netip.AddrPort) error {
if len(b) == 0 {
return nil
}
if c.closed.Load() {
return net.ErrClosed
}
ep := &wgconn.StdNetEndpoint{AddrPort: addr}
return c.bind.Send([][]byte{b}, ep)
}
func (c *WGConn) ReloadConfig(*config.C) {
// WireGuard bind currently does not expose runtime configuration knobs.
}
func (c *WGConn) Close() error {
var err error
c.closeOnce.Do(func() {
c.closed.Store(true)
err = c.bind.Close()
})
return err
}

View File

@@ -0,0 +1,15 @@
//go:build !linux || android || e2e_testing
package udp
import (
"fmt"
"net/netip"
"github.com/sirupsen/logrus"
)
// NewWireguardListener is only available on Linux builds.
func NewWireguardListener(*logrus.Logger, netip.Addr, int, bool, int) (Conn, error) {
return nil, fmt.Errorf("wireguard experimental UDP listener is only supported on Linux")
}

513
wgstack/conn/bind_std.go Normal file
View File

@@ -0,0 +1,513 @@
// SPDX-License-Identifier: MIT
//
// Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved.
package conn
import (
"context"
"errors"
"net"
"net/netip"
"runtime"
"strconv"
"sync"
"syscall"
"golang.org/x/net/ipv4"
"golang.org/x/net/ipv6"
"golang.org/x/sys/unix"
)
var (
_ Bind = (*StdNetBind)(nil)
)
// StdNetBind implements Bind for all platforms. While Windows has its own Bind
// (see bind_windows.go), it may fall back to StdNetBind.
// TODO: Remove usage of ipv{4,6}.PacketConn when net.UDPConn has comparable
// methods for sending and receiving multiple datagrams per-syscall. See the
// proposal in https://github.com/golang/go/issues/45886#issuecomment-1218301564.
type StdNetBind struct {
mu sync.Mutex // protects all fields except as specified
ipv4 *net.UDPConn
ipv6 *net.UDPConn
ipv4PC *ipv4.PacketConn // will be nil on non-Linux
ipv6PC *ipv6.PacketConn // will be nil on non-Linux
// these three fields are not guarded by mu
udpAddrPool sync.Pool
ipv4MsgsPool sync.Pool
ipv6MsgsPool sync.Pool
blackhole4 bool
blackhole6 bool
listenAddr4 string
listenAddr6 string
bindV4 bool
bindV6 bool
reusePort bool
}
func newStdNetBind() *StdNetBind {
return &StdNetBind{
udpAddrPool: sync.Pool{
New: func() any {
return &net.UDPAddr{
IP: make([]byte, 16),
}
},
},
ipv4MsgsPool: sync.Pool{
New: func() any {
msgs := make([]ipv4.Message, IdealBatchSize)
for i := range msgs {
msgs[i].Buffers = make(net.Buffers, 1)
msgs[i].OOB = make([]byte, srcControlSize)
}
return &msgs
},
},
ipv6MsgsPool: sync.Pool{
New: func() any {
msgs := make([]ipv6.Message, IdealBatchSize)
for i := range msgs {
msgs[i].Buffers = make(net.Buffers, 1)
msgs[i].OOB = make([]byte, srcControlSize)
}
return &msgs
},
},
bindV4: true,
bindV6: true,
reusePort: false,
}
}
// NewStdNetBind creates a bind that listens on all interfaces.
func NewStdNetBind() *StdNetBind {
return newStdNetBind()
}
// NewStdNetBindForAddr creates a bind that listens on a specific address.
// If addr is IPv4, only the IPv4 socket will be created. For IPv6, only the
// IPv6 socket will be created.
func NewStdNetBindForAddr(addr netip.Addr, reusePort bool) *StdNetBind {
b := newStdNetBind()
if addr.IsValid() {
if addr.Is4() {
b.listenAddr4 = addr.Unmap().String()
b.bindV4 = true
b.bindV6 = false
} else {
b.listenAddr6 = addr.Unmap().String()
b.bindV6 = true
b.bindV4 = false
}
}
b.reusePort = reusePort
return b
}
type StdNetEndpoint struct {
// AddrPort is the endpoint destination.
netip.AddrPort
// src is the current sticky source address and interface index, if supported.
src struct {
netip.Addr
ifidx int32
}
}
var (
_ Bind = (*StdNetBind)(nil)
_ Endpoint = &StdNetEndpoint{}
)
func (*StdNetBind) ParseEndpoint(s string) (Endpoint, error) {
e, err := netip.ParseAddrPort(s)
if err != nil {
return nil, err
}
return &StdNetEndpoint{
AddrPort: e,
}, nil
}
func (e *StdNetEndpoint) ClearSrc() {
e.src.ifidx = 0
e.src.Addr = netip.Addr{}
}
func (e *StdNetEndpoint) DstIP() netip.Addr {
return e.AddrPort.Addr()
}
func (e *StdNetEndpoint) SrcIP() netip.Addr {
return e.src.Addr
}
func (e *StdNetEndpoint) SrcIfidx() int32 {
return e.src.ifidx
}
func (e *StdNetEndpoint) DstToBytes() []byte {
b, _ := e.AddrPort.MarshalBinary()
return b
}
func (e *StdNetEndpoint) DstToString() string {
return e.AddrPort.String()
}
func (e *StdNetEndpoint) SrcToString() string {
return e.src.Addr.String()
}
func (s *StdNetBind) listenNet(network string, host string, port int) (*net.UDPConn, int, error) {
lc := listenConfig()
if s.reusePort {
base := lc.Control
lc.Control = func(network, address string, c syscall.RawConn) error {
if base != nil {
if err := base(network, address, c); err != nil {
return err
}
}
return c.Control(func(fd uintptr) {
_ = unix.SetsockoptInt(int(fd), unix.SOL_SOCKET, unix.SO_REUSEPORT, 1)
})
}
}
addr := ":" + strconv.Itoa(port)
if host != "" {
addr = net.JoinHostPort(host, strconv.Itoa(port))
}
conn, err := lc.ListenPacket(context.Background(), network, addr)
if err != nil {
return nil, 0, err
}
// Retrieve port.
laddr := conn.LocalAddr()
uaddr, err := net.ResolveUDPAddr(
laddr.Network(),
laddr.String(),
)
if err != nil {
return nil, 0, err
}
return conn.(*net.UDPConn), uaddr.Port, nil
}
func (s *StdNetBind) openIPv4(port int) (*net.UDPConn, *ipv4.PacketConn, int, error) {
if !s.bindV4 {
return nil, nil, port, nil
}
host := s.listenAddr4
conn, actualPort, err := s.listenNet("udp4", host, port)
if err != nil {
if errors.Is(err, syscall.EAFNOSUPPORT) {
return nil, nil, port, nil
}
return nil, nil, port, err
}
if runtime.GOOS != "linux" {
return conn, nil, actualPort, nil
}
pc := ipv4.NewPacketConn(conn)
return conn, pc, actualPort, nil
}
func (s *StdNetBind) openIPv6(port int) (*net.UDPConn, *ipv6.PacketConn, int, error) {
if !s.bindV6 {
return nil, nil, port, nil
}
host := s.listenAddr6
conn, actualPort, err := s.listenNet("udp6", host, port)
if err != nil {
if errors.Is(err, syscall.EAFNOSUPPORT) {
return nil, nil, port, nil
}
return nil, nil, port, err
}
if runtime.GOOS != "linux" {
return conn, nil, actualPort, nil
}
pc := ipv6.NewPacketConn(conn)
return conn, pc, actualPort, nil
}
func (s *StdNetBind) Open(uport uint16) ([]ReceiveFunc, uint16, error) {
s.mu.Lock()
defer s.mu.Unlock()
var err error
var tries int
if s.ipv4 != nil || s.ipv6 != nil {
return nil, 0, ErrBindAlreadyOpen
}
// Attempt to open ipv4 and ipv6 listeners on the same port.
// If uport is 0, we can retry on failure.
again:
port := int(uport)
var v4conn *net.UDPConn
var v6conn *net.UDPConn
var v4pc *ipv4.PacketConn
var v6pc *ipv6.PacketConn
v4conn, v4pc, port, err = s.openIPv4(port)
if err != nil {
return nil, 0, err
}
// Listen on the same port as we're using for ipv4.
v6conn, v6pc, port, err = s.openIPv6(port)
if uport == 0 && errors.Is(err, syscall.EADDRINUSE) && tries < 100 {
if v4conn != nil {
v4conn.Close()
}
tries++
goto again
}
if err != nil {
if v4conn != nil {
v4conn.Close()
}
return nil, 0, err
}
var fns []ReceiveFunc
if v4conn != nil {
s.ipv4 = v4conn
if v4pc != nil {
s.ipv4PC = v4pc
}
fns = append(fns, s.makeReceiveIPv4(v4pc, v4conn))
}
if v6conn != nil {
s.ipv6 = v6conn
if v6pc != nil {
s.ipv6PC = v6pc
}
fns = append(fns, s.makeReceiveIPv6(v6pc, v6conn))
}
if len(fns) == 0 {
return nil, 0, syscall.EAFNOSUPPORT
}
return fns, uint16(port), nil
}
func (s *StdNetBind) makeReceiveIPv4(pc *ipv4.PacketConn, conn *net.UDPConn) ReceiveFunc {
return func(bufs [][]byte, sizes []int, eps []Endpoint) (n int, err error) {
msgs := s.ipv4MsgsPool.Get().(*[]ipv4.Message)
defer s.ipv4MsgsPool.Put(msgs)
for i := range bufs {
(*msgs)[i].Buffers[0] = bufs[i]
}
var numMsgs int
if runtime.GOOS == "linux" && pc != nil {
numMsgs, err = pc.ReadBatch(*msgs, 0)
if err != nil {
return 0, err
}
} else {
msg := &(*msgs)[0]
msg.N, msg.NN, _, msg.Addr, err = conn.ReadMsgUDP(msg.Buffers[0], msg.OOB)
if err != nil {
return 0, err
}
numMsgs = 1
}
for i := 0; i < numMsgs; i++ {
msg := &(*msgs)[i]
sizes[i] = msg.N
addrPort := msg.Addr.(*net.UDPAddr).AddrPort()
ep := &StdNetEndpoint{AddrPort: addrPort} // TODO: remove allocation
getSrcFromControl(msg.OOB[:msg.NN], ep)
eps[i] = ep
}
return numMsgs, nil
}
}
func (s *StdNetBind) makeReceiveIPv6(pc *ipv6.PacketConn, conn *net.UDPConn) ReceiveFunc {
return func(bufs [][]byte, sizes []int, eps []Endpoint) (n int, err error) {
msgs := s.ipv6MsgsPool.Get().(*[]ipv6.Message)
defer s.ipv6MsgsPool.Put(msgs)
for i := range bufs {
(*msgs)[i].Buffers[0] = bufs[i]
}
var numMsgs int
if runtime.GOOS == "linux" && pc != nil {
numMsgs, err = pc.ReadBatch(*msgs, 0)
if err != nil {
return 0, err
}
} else {
msg := &(*msgs)[0]
msg.N, msg.NN, _, msg.Addr, err = conn.ReadMsgUDP(msg.Buffers[0], msg.OOB)
if err != nil {
return 0, err
}
numMsgs = 1
}
for i := 0; i < numMsgs; i++ {
msg := &(*msgs)[i]
sizes[i] = msg.N
addrPort := msg.Addr.(*net.UDPAddr).AddrPort()
ep := &StdNetEndpoint{AddrPort: addrPort} // TODO: remove allocation
getSrcFromControl(msg.OOB[:msg.NN], ep)
eps[i] = ep
}
return numMsgs, nil
}
}
// TODO: When all Binds handle IdealBatchSize, remove this dynamic function and
// rename the IdealBatchSize constant to BatchSize.
func (s *StdNetBind) BatchSize() int {
if runtime.GOOS == "linux" {
return IdealBatchSize
}
return 1
}
func (s *StdNetBind) Close() error {
s.mu.Lock()
defer s.mu.Unlock()
var err1, err2 error
if s.ipv4 != nil {
err1 = s.ipv4.Close()
s.ipv4 = nil
s.ipv4PC = nil
}
if s.ipv6 != nil {
err2 = s.ipv6.Close()
s.ipv6 = nil
s.ipv6PC = nil
}
s.blackhole4 = false
s.blackhole6 = false
if err1 != nil {
return err1
}
return err2
}
func (s *StdNetBind) Send(bufs [][]byte, endpoint Endpoint) error {
s.mu.Lock()
blackhole := s.blackhole4
conn := s.ipv4
var (
pc4 *ipv4.PacketConn
pc6 *ipv6.PacketConn
)
is6 := false
if endpoint.DstIP().Is6() {
blackhole = s.blackhole6
conn = s.ipv6
pc6 = s.ipv6PC
is6 = true
} else {
pc4 = s.ipv4PC
}
s.mu.Unlock()
if blackhole {
return nil
}
if conn == nil {
return syscall.EAFNOSUPPORT
}
if is6 {
return s.send6(conn, pc6, endpoint, bufs)
} else {
return s.send4(conn, pc4, endpoint, bufs)
}
}
func (s *StdNetBind) send4(conn *net.UDPConn, pc *ipv4.PacketConn, ep Endpoint, bufs [][]byte) error {
ua := s.udpAddrPool.Get().(*net.UDPAddr)
as4 := ep.DstIP().As4()
copy(ua.IP, as4[:])
ua.IP = ua.IP[:4]
ua.Port = int(ep.(*StdNetEndpoint).Port())
msgs := s.ipv4MsgsPool.Get().(*[]ipv4.Message)
for i, buf := range bufs {
(*msgs)[i].Buffers[0] = buf
(*msgs)[i].Addr = ua
setSrcControl(&(*msgs)[i].OOB, ep.(*StdNetEndpoint))
}
var (
n int
err error
start int
)
if runtime.GOOS == "linux" && pc != nil {
for {
n, err = pc.WriteBatch((*msgs)[start:len(bufs)], 0)
if err != nil || n == len((*msgs)[start:len(bufs)]) {
break
}
start += n
}
} else {
for i, buf := range bufs {
_, _, err = conn.WriteMsgUDP(buf, (*msgs)[i].OOB, ua)
if err != nil {
break
}
}
}
s.udpAddrPool.Put(ua)
s.ipv4MsgsPool.Put(msgs)
return err
}
func (s *StdNetBind) send6(conn *net.UDPConn, pc *ipv6.PacketConn, ep Endpoint, bufs [][]byte) error {
ua := s.udpAddrPool.Get().(*net.UDPAddr)
as16 := ep.DstIP().As16()
copy(ua.IP, as16[:])
ua.IP = ua.IP[:16]
ua.Port = int(ep.(*StdNetEndpoint).Port())
msgs := s.ipv6MsgsPool.Get().(*[]ipv6.Message)
for i, buf := range bufs {
(*msgs)[i].Buffers[0] = buf
(*msgs)[i].Addr = ua
setSrcControl(&(*msgs)[i].OOB, ep.(*StdNetEndpoint))
}
var (
n int
err error
start int
)
if runtime.GOOS == "linux" && pc != nil {
for {
n, err = pc.WriteBatch((*msgs)[start:len(bufs)], 0)
if err != nil || n == len((*msgs)[start:len(bufs)]) {
break
}
start += n
}
} else {
for i, buf := range bufs {
_, _, err = conn.WriteMsgUDP(buf, (*msgs)[i].OOB, ua)
if err != nil {
break
}
}
}
s.udpAddrPool.Put(ua)
s.ipv6MsgsPool.Put(msgs)
return err
}

131
wgstack/conn/conn.go Normal file
View File

@@ -0,0 +1,131 @@
// SPDX-License-Identifier: MIT
//
// Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved.
package conn
import (
"errors"
"fmt"
"net/netip"
"reflect"
"runtime"
"strings"
)
const (
IdealBatchSize = 128 // maximum number of packets handled per read and write
)
// A ReceiveFunc receives at least one packet from the network and writes them
// into packets. On a successful read it returns the number of elements of
// sizes, packets, and endpoints that should be evaluated. Some elements of
// sizes may be zero, and callers should ignore them. Callers must pass a sizes
// and eps slice with a length greater than or equal to the length of packets.
// These lengths must not exceed the length of the associated Bind.BatchSize().
type ReceiveFunc func(packets [][]byte, sizes []int, eps []Endpoint) (n int, err error)
// A Bind listens on a port for both IPv6 and IPv4 UDP traffic.
//
// A Bind interface may also be a PeekLookAtSocketFd or BindSocketToInterface,
// depending on the platform-specific implementation.
type Bind interface {
// Open puts the Bind into a listening state on a given port and reports the actual
// port that it bound to. Passing zero results in a random selection.
// fns is the set of functions that will be called to receive packets.
Open(port uint16) (fns []ReceiveFunc, actualPort uint16, err error)
// Close closes the Bind listener.
// All fns returned by Open must return net.ErrClosed after a call to Close.
Close() error
// SetMark sets the mark for each packet sent through this Bind.
// This mark is passed to the kernel as the socket option SO_MARK.
SetMark(mark uint32) error
// Send writes one or more packets in bufs to address ep. The length of
// bufs must not exceed BatchSize().
Send(bufs [][]byte, ep Endpoint) error
// ParseEndpoint creates a new endpoint from a string.
ParseEndpoint(s string) (Endpoint, error)
// BatchSize is the number of buffers expected to be passed to
// the ReceiveFuncs, and the maximum expected to be passed to SendBatch.
BatchSize() int
}
// BindSocketToInterface is implemented by Bind objects that support being
// tied to a single network interface. Used by wireguard-windows.
type BindSocketToInterface interface {
BindSocketToInterface4(interfaceIndex uint32, blackhole bool) error
BindSocketToInterface6(interfaceIndex uint32, blackhole bool) error
}
// PeekLookAtSocketFd is implemented by Bind objects that support having their
// file descriptor peeked at. Used by wireguard-android.
type PeekLookAtSocketFd interface {
PeekLookAtSocketFd4() (fd int, err error)
PeekLookAtSocketFd6() (fd int, err error)
}
// An Endpoint maintains the source/destination caching for a peer.
//
// dst: the remote address of a peer ("endpoint" in uapi terminology)
// src: the local address from which datagrams originate going to the peer
type Endpoint interface {
ClearSrc() // clears the source address
SrcToString() string // returns the local source address (ip:port)
DstToString() string // returns the destination address (ip:port)
DstToBytes() []byte // used for mac2 cookie calculations
DstIP() netip.Addr
SrcIP() netip.Addr
}
var (
ErrBindAlreadyOpen = errors.New("bind is already open")
ErrWrongEndpointType = errors.New("endpoint type does not correspond with bind type")
)
func (fn ReceiveFunc) PrettyName() string {
name := runtime.FuncForPC(reflect.ValueOf(fn).Pointer()).Name()
// 0. cheese/taco.beansIPv6.func12.func21218-fm
name = strings.TrimSuffix(name, "-fm")
// 1. cheese/taco.beansIPv6.func12.func21218
if idx := strings.LastIndexByte(name, '/'); idx != -1 {
name = name[idx+1:]
// 2. taco.beansIPv6.func12.func21218
}
for {
var idx int
for idx = len(name) - 1; idx >= 0; idx-- {
if name[idx] < '0' || name[idx] > '9' {
break
}
}
if idx == len(name)-1 {
break
}
const dotFunc = ".func"
if !strings.HasSuffix(name[:idx+1], dotFunc) {
break
}
name = name[:idx+1-len(dotFunc)]
// 3. taco.beansIPv6.func12
// 4. taco.beansIPv6
}
if idx := strings.LastIndexByte(name, '.'); idx != -1 {
name = name[idx+1:]
// 5. beansIPv6
}
if name == "" {
return fmt.Sprintf("%p", fn)
}
if strings.HasSuffix(name, "IPv4") {
return "v4"
}
if strings.HasSuffix(name, "IPv6") {
return "v6"
}
return name
}

View File

@@ -0,0 +1,42 @@
// SPDX-License-Identifier: MIT
//
// Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved.
package conn
import (
"net"
"syscall"
)
// UDP socket read/write buffer size (7MB). The value of 7MB is chosen as it is
// the max supported by a default configuration of macOS. Some platforms will
// silently clamp the value to other maximums, such as linux clamping to
// net.core.{r,w}mem_max (see _linux.go for additional implementation that works
// around this limitation)
const socketBufferSize = 7 << 20
// controlFn is the callback function signature from net.ListenConfig.Control.
// It is used to apply platform specific configuration to the socket prior to
// bind.
type controlFn func(network, address string, c syscall.RawConn) error
// controlFns is a list of functions that are called from the listen config
// that can apply socket options.
var controlFns = []controlFn{}
// listenConfig returns a net.ListenConfig that applies the controlFns to the
// socket prior to bind. This is used to apply socket buffer sizing and packet
// information OOB configuration for sticky sockets.
func listenConfig() *net.ListenConfig {
return &net.ListenConfig{
Control: func(network, address string, c syscall.RawConn) error {
for _, fn := range controlFns {
if err := fn(network, address, c); err != nil {
return err
}
}
return nil
},
}
}

View File

@@ -0,0 +1,62 @@
//go:build linux
// SPDX-License-Identifier: MIT
//
// Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved.
package conn
import (
"fmt"
"runtime"
"syscall"
"golang.org/x/sys/unix"
)
func init() {
controlFns = append(controlFns,
// Attempt to set the socket buffer size beyond net.core.{r,w}mem_max by
// using SO_*BUFFORCE. This requires CAP_NET_ADMIN, and is allowed here to
// fail silently - the result of failure is lower performance on very fast
// links or high latency links.
func(network, address string, c syscall.RawConn) error {
return c.Control(func(fd uintptr) {
// Set up to *mem_max
_ = unix.SetsockoptInt(int(fd), unix.SOL_SOCKET, unix.SO_RCVBUF, socketBufferSize)
_ = unix.SetsockoptInt(int(fd), unix.SOL_SOCKET, unix.SO_SNDBUF, socketBufferSize)
// Set beyond *mem_max if CAP_NET_ADMIN
_ = unix.SetsockoptInt(int(fd), unix.SOL_SOCKET, unix.SO_RCVBUFFORCE, socketBufferSize)
_ = unix.SetsockoptInt(int(fd), unix.SOL_SOCKET, unix.SO_SNDBUFFORCE, socketBufferSize)
})
},
// Enable receiving of the packet information (IP_PKTINFO for IPv4,
// IPV6_PKTINFO for IPv6) that is used to implement sticky socket support.
func(network, address string, c syscall.RawConn) error {
var err error
switch network {
case "udp4":
if runtime.GOOS != "android" {
c.Control(func(fd uintptr) {
err = unix.SetsockoptInt(int(fd), unix.IPPROTO_IP, unix.IP_PKTINFO, 1)
})
}
case "udp6":
c.Control(func(fd uintptr) {
if runtime.GOOS != "android" {
err = unix.SetsockoptInt(int(fd), unix.IPPROTO_IPV6, unix.IPV6_RECVPKTINFO, 1)
if err != nil {
return
}
}
err = unix.SetsockoptInt(int(fd), unix.IPPROTO_IPV6, unix.IPV6_V6ONLY, 1)
})
default:
err = fmt.Errorf("unhandled network: %s: %w", network, unix.EINVAL)
}
return err
},
)
}

9
wgstack/conn/default.go Normal file
View File

@@ -0,0 +1,9 @@
//go:build !windows
// SPDX-License-Identifier: MIT
//
// Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved.
package conn
func NewDefaultBind() Bind { return NewStdNetBind() }

64
wgstack/conn/mark_unix.go Normal file
View File

@@ -0,0 +1,64 @@
//go:build linux || openbsd || freebsd
// SPDX-License-Identifier: MIT
//
// Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved.
package conn
import (
"runtime"
"golang.org/x/sys/unix"
)
var fwmarkIoctl int
func init() {
switch runtime.GOOS {
case "linux", "android":
fwmarkIoctl = 36 /* unix.SO_MARK */
case "freebsd":
fwmarkIoctl = 0x1015 /* unix.SO_USER_COOKIE */
case "openbsd":
fwmarkIoctl = 0x1021 /* unix.SO_RTABLE */
}
}
func (s *StdNetBind) SetMark(mark uint32) error {
var operr error
if fwmarkIoctl == 0 {
return nil
}
if s.ipv4 != nil {
fd, err := s.ipv4.SyscallConn()
if err != nil {
return err
}
err = fd.Control(func(fd uintptr) {
operr = unix.SetsockoptInt(int(fd), unix.SOL_SOCKET, fwmarkIoctl, int(mark))
})
if err == nil {
err = operr
}
if err != nil {
return err
}
}
if s.ipv6 != nil {
fd, err := s.ipv6.SyscallConn()
if err != nil {
return err
}
err = fd.Control(func(fd uintptr) {
operr = unix.SetsockoptInt(int(fd), unix.SOL_SOCKET, fwmarkIoctl, int(mark))
})
if err == nil {
err = operr
}
if err != nil {
return err
}
}
return nil
}

View File

@@ -0,0 +1,116 @@
//go:build linux && !android
// SPDX-License-Identifier: MIT
//
// Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved.
package conn
import (
"net/netip"
"unsafe"
"golang.org/x/sys/unix"
)
// getSrcFromControl parses the control for PKTINFO and if found updates ep with
// the source information found.
func getSrcFromControl(control []byte, ep *StdNetEndpoint) {
ep.ClearSrc()
var (
hdr unix.Cmsghdr
data []byte
rem []byte = control
err error
)
for len(rem) > unix.SizeofCmsghdr {
hdr, data, rem, err = unix.ParseOneSocketControlMessage(rem)
if err != nil {
return
}
if hdr.Level == unix.IPPROTO_IP &&
hdr.Type == unix.IP_PKTINFO {
info := pktInfoFromBuf[unix.Inet4Pktinfo](data)
ep.src.Addr = netip.AddrFrom4(info.Spec_dst)
ep.src.ifidx = info.Ifindex
return
}
if hdr.Level == unix.IPPROTO_IPV6 &&
hdr.Type == unix.IPV6_PKTINFO {
info := pktInfoFromBuf[unix.Inet6Pktinfo](data)
ep.src.Addr = netip.AddrFrom16(info.Addr)
ep.src.ifidx = int32(info.Ifindex)
return
}
}
}
// pktInfoFromBuf returns type T populated from the provided buf via copy(). It
// panics if buf is of insufficient size.
func pktInfoFromBuf[T unix.Inet4Pktinfo | unix.Inet6Pktinfo](buf []byte) (t T) {
size := int(unsafe.Sizeof(t))
if len(buf) < size {
panic("pktInfoFromBuf: buffer too small")
}
copy(unsafe.Slice((*byte)(unsafe.Pointer(&t)), size), buf)
return t
}
// setSrcControl sets an IP{V6}_PKTINFO in control based on the source address
// and source ifindex found in ep. control's len will be set to 0 in the event
// that ep is a default value.
func setSrcControl(control *[]byte, ep *StdNetEndpoint) {
*control = (*control)[:cap(*control)]
if len(*control) < int(unsafe.Sizeof(unix.Cmsghdr{})) {
*control = (*control)[:0]
return
}
if ep.src.ifidx == 0 && !ep.SrcIP().IsValid() {
*control = (*control)[:0]
return
}
if len(*control) < srcControlSize {
*control = (*control)[:0]
return
}
hdr := (*unix.Cmsghdr)(unsafe.Pointer(&(*control)[0]))
if ep.SrcIP().Is4() {
hdr.Level = unix.IPPROTO_IP
hdr.Type = unix.IP_PKTINFO
hdr.SetLen(unix.CmsgLen(unix.SizeofInet4Pktinfo))
info := (*unix.Inet4Pktinfo)(unsafe.Pointer(&(*control)[unix.SizeofCmsghdr]))
info.Ifindex = ep.src.ifidx
if ep.SrcIP().IsValid() {
info.Spec_dst = ep.SrcIP().As4()
}
*control = (*control)[:unix.CmsgSpace(unix.SizeofInet4Pktinfo)]
} else {
hdr.Level = unix.IPPROTO_IPV6
hdr.Type = unix.IPV6_PKTINFO
hdr.SetLen(unix.CmsgLen(unix.SizeofInet6Pktinfo))
info := (*unix.Inet6Pktinfo)(unsafe.Pointer(&(*control)[unix.SizeofCmsghdr]))
info.Ifindex = uint32(ep.src.ifidx)
if ep.SrcIP().IsValid() {
info.Addr = ep.SrcIP().As16()
}
*control = (*control)[:unix.CmsgSpace(unix.SizeofInet6Pktinfo)]
}
}
var srcControlSize = unix.CmsgSpace(unix.SizeofInet6Pktinfo)
const StdNetSupportsStickySockets = true

42
wgstack/tun/checksum.go Normal file
View File

@@ -0,0 +1,42 @@
package tun
import "encoding/binary"
// TODO: Explore SIMD and/or other assembly optimizations.
func checksumNoFold(b []byte, initial uint64) uint64 {
ac := initial
i := 0
n := len(b)
for n >= 4 {
ac += uint64(binary.BigEndian.Uint32(b[i : i+4]))
n -= 4
i += 4
}
for n >= 2 {
ac += uint64(binary.BigEndian.Uint16(b[i : i+2]))
n -= 2
i += 2
}
if n == 1 {
ac += uint64(b[i]) << 8
}
return ac
}
func checksum(b []byte, initial uint64) uint16 {
ac := checksumNoFold(b, initial)
ac = (ac >> 16) + (ac & 0xffff)
ac = (ac >> 16) + (ac & 0xffff)
ac = (ac >> 16) + (ac & 0xffff)
ac = (ac >> 16) + (ac & 0xffff)
return uint16(ac)
}
func pseudoHeaderChecksumNoFold(protocol uint8, srcAddr, dstAddr []byte, totalLen uint16) uint64 {
sum := checksumNoFold(srcAddr, 0)
sum = checksumNoFold(dstAddr, sum)
sum = checksumNoFold([]byte{0, protocol}, sum)
tmp := make([]byte, 2)
binary.BigEndian.PutUint16(tmp, totalLen)
return checksumNoFold(tmp, sum)
}

3
wgstack/tun/export.go Normal file
View File

@@ -0,0 +1,3 @@
package tun
const VirtioNetHdrLen = virtioNetHdrLen

View File

@@ -0,0 +1,630 @@
//go:build linux
// SPDX-License-Identifier: MIT
//
// Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved.
package tun
import (
"bytes"
"encoding/binary"
"errors"
"io"
"unsafe"
wgconn "github.com/slackhq/nebula/wgstack/conn"
"golang.org/x/sys/unix"
)
var ErrTooManySegments = errors.New("tun: too many segments for TSO")
const tcpFlagsOffset = 13
const (
tcpFlagFIN uint8 = 0x01
tcpFlagPSH uint8 = 0x08
tcpFlagACK uint8 = 0x10
)
// virtioNetHdr is defined in the kernel in include/uapi/linux/virtio_net.h. The
// kernel symbol is virtio_net_hdr.
type virtioNetHdr struct {
flags uint8
gsoType uint8
hdrLen uint16
gsoSize uint16
csumStart uint16
csumOffset uint16
}
func (v *virtioNetHdr) decode(b []byte) error {
if len(b) < virtioNetHdrLen {
return io.ErrShortBuffer
}
copy(unsafe.Slice((*byte)(unsafe.Pointer(v)), virtioNetHdrLen), b[:virtioNetHdrLen])
return nil
}
func (v *virtioNetHdr) encode(b []byte) error {
if len(b) < virtioNetHdrLen {
return io.ErrShortBuffer
}
copy(b[:virtioNetHdrLen], unsafe.Slice((*byte)(unsafe.Pointer(v)), virtioNetHdrLen))
return nil
}
const (
// virtioNetHdrLen is the length in bytes of virtioNetHdr. This matches the
// shape of the C ABI for its kernel counterpart -- sizeof(virtio_net_hdr).
virtioNetHdrLen = int(unsafe.Sizeof(virtioNetHdr{}))
)
// flowKey represents the key for a flow.
type flowKey struct {
srcAddr, dstAddr [16]byte
srcPort, dstPort uint16
rxAck uint32 // varying ack values should not be coalesced. Treat them as separate flows.
}
// tcpGROTable holds flow and coalescing information for the purposes of GRO.
type tcpGROTable struct {
itemsByFlow map[flowKey][]tcpGROItem
itemsPool [][]tcpGROItem
}
func newTCPGROTable() *tcpGROTable {
t := &tcpGROTable{
itemsByFlow: make(map[flowKey][]tcpGROItem, wgconn.IdealBatchSize),
itemsPool: make([][]tcpGROItem, wgconn.IdealBatchSize),
}
for i := range t.itemsPool {
t.itemsPool[i] = make([]tcpGROItem, 0, wgconn.IdealBatchSize)
}
return t
}
func newFlowKey(pkt []byte, srcAddr, dstAddr, tcphOffset int) flowKey {
key := flowKey{}
addrSize := dstAddr - srcAddr
copy(key.srcAddr[:], pkt[srcAddr:dstAddr])
copy(key.dstAddr[:], pkt[dstAddr:dstAddr+addrSize])
key.srcPort = binary.BigEndian.Uint16(pkt[tcphOffset:])
key.dstPort = binary.BigEndian.Uint16(pkt[tcphOffset+2:])
key.rxAck = binary.BigEndian.Uint32(pkt[tcphOffset+8:])
return key
}
// lookupOrInsert looks up a flow for the provided packet and metadata,
// returning the packets found for the flow, or inserting a new one if none
// is found.
func (t *tcpGROTable) lookupOrInsert(pkt []byte, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, bufsIndex int) ([]tcpGROItem, bool) {
key := newFlowKey(pkt, srcAddrOffset, dstAddrOffset, tcphOffset)
items, ok := t.itemsByFlow[key]
if ok {
return items, ok
}
// TODO: insert() performs another map lookup. This could be rearranged to avoid.
t.insert(pkt, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, bufsIndex)
return nil, false
}
// insert an item in the table for the provided packet and packet metadata.
func (t *tcpGROTable) insert(pkt []byte, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, bufsIndex int) {
key := newFlowKey(pkt, srcAddrOffset, dstAddrOffset, tcphOffset)
item := tcpGROItem{
key: key,
bufsIndex: uint16(bufsIndex),
gsoSize: uint16(len(pkt[tcphOffset+tcphLen:])),
iphLen: uint8(tcphOffset),
tcphLen: uint8(tcphLen),
sentSeq: binary.BigEndian.Uint32(pkt[tcphOffset+4:]),
pshSet: pkt[tcphOffset+tcpFlagsOffset]&tcpFlagPSH != 0,
}
items, ok := t.itemsByFlow[key]
if !ok {
items = t.newItems()
}
items = append(items, item)
t.itemsByFlow[key] = items
}
func (t *tcpGROTable) updateAt(item tcpGROItem, i int) {
items, _ := t.itemsByFlow[item.key]
items[i] = item
}
func (t *tcpGROTable) deleteAt(key flowKey, i int) {
items, _ := t.itemsByFlow[key]
items = append(items[:i], items[i+1:]...)
t.itemsByFlow[key] = items
}
// tcpGROItem represents bookkeeping data for a TCP packet during the lifetime
// of a GRO evaluation across a vector of packets.
type tcpGROItem struct {
key flowKey
sentSeq uint32 // the sequence number
bufsIndex uint16 // the index into the original bufs slice
numMerged uint16 // the number of packets merged into this item
gsoSize uint16 // payload size
iphLen uint8 // ip header len
tcphLen uint8 // tcp header len
pshSet bool // psh flag is set
}
func (t *tcpGROTable) newItems() []tcpGROItem {
var items []tcpGROItem
items, t.itemsPool = t.itemsPool[len(t.itemsPool)-1], t.itemsPool[:len(t.itemsPool)-1]
return items
}
func (t *tcpGROTable) reset() {
for k, items := range t.itemsByFlow {
items = items[:0]
t.itemsPool = append(t.itemsPool, items)
delete(t.itemsByFlow, k)
}
}
// canCoalesce represents the outcome of checking if two TCP packets are
// candidates for coalescing.
type canCoalesce int
const (
coalescePrepend canCoalesce = -1
coalesceUnavailable canCoalesce = 0
coalesceAppend canCoalesce = 1
)
// tcpPacketsCanCoalesce evaluates if pkt can be coalesced with the packet
// described by item. This function makes considerations that match the kernel's
// GRO self tests, which can be found in tools/testing/selftests/net/gro.c.
func tcpPacketsCanCoalesce(pkt []byte, iphLen, tcphLen uint8, seq uint32, pshSet bool, gsoSize uint16, item tcpGROItem, bufs [][]byte, bufsOffset int) canCoalesce {
pktTarget := bufs[item.bufsIndex][bufsOffset:]
if tcphLen != item.tcphLen {
// cannot coalesce with unequal tcp options len
return coalesceUnavailable
}
if tcphLen > 20 {
if !bytes.Equal(pkt[iphLen+20:iphLen+tcphLen], pktTarget[item.iphLen+20:iphLen+tcphLen]) {
// cannot coalesce with unequal tcp options
return coalesceUnavailable
}
}
if pkt[0]>>4 == 6 {
if pkt[0] != pktTarget[0] || pkt[1]>>4 != pktTarget[1]>>4 {
// cannot coalesce with unequal Traffic class values
return coalesceUnavailable
}
if pkt[7] != pktTarget[7] {
// cannot coalesce with unequal Hop limit values
return coalesceUnavailable
}
} else {
if pkt[1] != pktTarget[1] {
// cannot coalesce with unequal ToS values
return coalesceUnavailable
}
if pkt[6]>>5 != pktTarget[6]>>5 {
// cannot coalesce with unequal DF or reserved bits. MF is checked
// further up the stack.
return coalesceUnavailable
}
if pkt[8] != pktTarget[8] {
// cannot coalesce with unequal TTL values
return coalesceUnavailable
}
}
// seq adjacency
lhsLen := item.gsoSize
lhsLen += item.numMerged * item.gsoSize
if seq == item.sentSeq+uint32(lhsLen) { // pkt aligns following item from a seq num perspective
if item.pshSet {
// We cannot append to a segment that has the PSH flag set, PSH
// can only be set on the final segment in a reassembled group.
return coalesceUnavailable
}
if len(pktTarget[iphLen+tcphLen:])%int(item.gsoSize) != 0 {
// A smaller than gsoSize packet has been appended previously.
// Nothing can come after a smaller packet on the end.
return coalesceUnavailable
}
if gsoSize > item.gsoSize {
// We cannot have a larger packet following a smaller one.
return coalesceUnavailable
}
return coalesceAppend
} else if seq+uint32(gsoSize) == item.sentSeq { // pkt aligns in front of item from a seq num perspective
if pshSet {
// We cannot prepend with a segment that has the PSH flag set, PSH
// can only be set on the final segment in a reassembled group.
return coalesceUnavailable
}
if gsoSize < item.gsoSize {
// We cannot have a larger packet following a smaller one.
return coalesceUnavailable
}
if gsoSize > item.gsoSize && item.numMerged > 0 {
// There's at least one previous merge, and we're larger than all
// previous. This would put multiple smaller packets on the end.
return coalesceUnavailable
}
return coalescePrepend
}
return coalesceUnavailable
}
func tcpChecksumValid(pkt []byte, iphLen uint8, isV6 bool) bool {
srcAddrAt := ipv4SrcAddrOffset
addrSize := 4
if isV6 {
srcAddrAt = ipv6SrcAddrOffset
addrSize = 16
}
tcpTotalLen := uint16(len(pkt) - int(iphLen))
tcpCSumNoFold := pseudoHeaderChecksumNoFold(unix.IPPROTO_TCP, pkt[srcAddrAt:srcAddrAt+addrSize], pkt[srcAddrAt+addrSize:srcAddrAt+addrSize*2], tcpTotalLen)
return ^checksum(pkt[iphLen:], tcpCSumNoFold) == 0
}
// coalesceResult represents the result of attempting to coalesce two TCP
// packets.
type coalesceResult int
const (
coalesceInsufficientCap coalesceResult = 0
coalescePSHEnding coalesceResult = 1
coalesceItemInvalidCSum coalesceResult = 2
coalescePktInvalidCSum coalesceResult = 3
coalesceSuccess coalesceResult = 4
)
// coalesceTCPPackets attempts to coalesce pkt with the packet described by
// item, returning the outcome. This function may swap bufs elements in the
// event of a prepend as item's bufs index is already being tracked for writing
// to a Device.
func coalesceTCPPackets(mode canCoalesce, pkt []byte, pktBuffsIndex int, gsoSize uint16, seq uint32, pshSet bool, item *tcpGROItem, bufs [][]byte, bufsOffset int, isV6 bool) coalesceResult {
var pktHead []byte // the packet that will end up at the front
headersLen := item.iphLen + item.tcphLen
coalescedLen := len(bufs[item.bufsIndex][bufsOffset:]) + len(pkt) - int(headersLen)
// Copy data
if mode == coalescePrepend {
pktHead = pkt
if cap(pkt)-bufsOffset < coalescedLen {
// We don't want to allocate a new underlying array if capacity is
// too small.
return coalesceInsufficientCap
}
if pshSet {
return coalescePSHEnding
}
if item.numMerged == 0 {
if !tcpChecksumValid(bufs[item.bufsIndex][bufsOffset:], item.iphLen, isV6) {
return coalesceItemInvalidCSum
}
}
if !tcpChecksumValid(pkt, item.iphLen, isV6) {
return coalescePktInvalidCSum
}
item.sentSeq = seq
extendBy := coalescedLen - len(pktHead)
bufs[pktBuffsIndex] = append(bufs[pktBuffsIndex], make([]byte, extendBy)...)
copy(bufs[pktBuffsIndex][bufsOffset+len(pkt):], bufs[item.bufsIndex][bufsOffset+int(headersLen):])
// Flip the slice headers in bufs as part of prepend. The index of item
// is already being tracked for writing.
bufs[item.bufsIndex], bufs[pktBuffsIndex] = bufs[pktBuffsIndex], bufs[item.bufsIndex]
} else {
pktHead = bufs[item.bufsIndex][bufsOffset:]
if cap(pktHead)-bufsOffset < coalescedLen {
// We don't want to allocate a new underlying array if capacity is
// too small.
return coalesceInsufficientCap
}
if item.numMerged == 0 {
if !tcpChecksumValid(bufs[item.bufsIndex][bufsOffset:], item.iphLen, isV6) {
return coalesceItemInvalidCSum
}
}
if !tcpChecksumValid(pkt, item.iphLen, isV6) {
return coalescePktInvalidCSum
}
if pshSet {
// We are appending a segment with PSH set.
item.pshSet = pshSet
pktHead[item.iphLen+tcpFlagsOffset] |= tcpFlagPSH
}
extendBy := len(pkt) - int(headersLen)
bufs[item.bufsIndex] = append(bufs[item.bufsIndex], make([]byte, extendBy)...)
copy(bufs[item.bufsIndex][bufsOffset+len(pktHead):], pkt[headersLen:])
}
if gsoSize > item.gsoSize {
item.gsoSize = gsoSize
}
hdr := virtioNetHdr{
flags: unix.VIRTIO_NET_HDR_F_NEEDS_CSUM, // this turns into CHECKSUM_PARTIAL in the skb
hdrLen: uint16(headersLen),
gsoSize: uint16(item.gsoSize),
csumStart: uint16(item.iphLen),
csumOffset: 16,
}
// Recalculate the total len (IPv4) or payload len (IPv6). Recalculate the
// (IPv4) header checksum.
if isV6 {
hdr.gsoType = unix.VIRTIO_NET_HDR_GSO_TCPV6
binary.BigEndian.PutUint16(pktHead[4:], uint16(coalescedLen)-uint16(item.iphLen)) // set new payload len
} else {
hdr.gsoType = unix.VIRTIO_NET_HDR_GSO_TCPV4
pktHead[10], pktHead[11] = 0, 0 // clear checksum field
binary.BigEndian.PutUint16(pktHead[2:], uint16(coalescedLen)) // set new total length
iphCSum := ^checksum(pktHead[:item.iphLen], 0) // compute checksum
binary.BigEndian.PutUint16(pktHead[10:], iphCSum) // set checksum field
}
hdr.encode(bufs[item.bufsIndex][bufsOffset-virtioNetHdrLen:])
// Calculate the pseudo header checksum and place it at the TCP checksum
// offset. Downstream checksum offloading will combine this with computation
// of the tcp header and payload checksum.
addrLen := 4
addrOffset := ipv4SrcAddrOffset
if isV6 {
addrLen = 16
addrOffset = ipv6SrcAddrOffset
}
srcAddrAt := bufsOffset + addrOffset
srcAddr := bufs[item.bufsIndex][srcAddrAt : srcAddrAt+addrLen]
dstAddr := bufs[item.bufsIndex][srcAddrAt+addrLen : srcAddrAt+addrLen*2]
psum := pseudoHeaderChecksumNoFold(unix.IPPROTO_TCP, srcAddr, dstAddr, uint16(coalescedLen-int(item.iphLen)))
binary.BigEndian.PutUint16(pktHead[hdr.csumStart+hdr.csumOffset:], checksum([]byte{}, psum))
item.numMerged++
return coalesceSuccess
}
const (
ipv4FlagMoreFragments uint8 = 0x20
)
const (
ipv4SrcAddrOffset = 12
ipv6SrcAddrOffset = 8
maxUint16 = 1<<16 - 1
)
// tcpGRO evaluates the TCP packet at pktI in bufs for coalescing with
// existing packets tracked in table. It will return false when pktI is not
// coalesced, otherwise true. This indicates to the caller if bufs[pktI]
// should be written to the Device.
func tcpGRO(bufs [][]byte, offset int, pktI int, table *tcpGROTable, isV6 bool) (pktCoalesced bool) {
pkt := bufs[pktI][offset:]
if len(pkt) > maxUint16 {
// A valid IPv4 or IPv6 packet will never exceed this.
return false
}
iphLen := int((pkt[0] & 0x0F) * 4)
if isV6 {
iphLen = 40
ipv6HPayloadLen := int(binary.BigEndian.Uint16(pkt[4:]))
if ipv6HPayloadLen != len(pkt)-iphLen {
return false
}
} else {
totalLen := int(binary.BigEndian.Uint16(pkt[2:]))
if totalLen != len(pkt) {
return false
}
}
if len(pkt) < iphLen {
return false
}
tcphLen := int((pkt[iphLen+12] >> 4) * 4)
if tcphLen < 20 || tcphLen > 60 {
return false
}
if len(pkt) < iphLen+tcphLen {
return false
}
if !isV6 {
if pkt[6]&ipv4FlagMoreFragments != 0 || pkt[6]<<3 != 0 || pkt[7] != 0 {
// no GRO support for fragmented segments for now
return false
}
}
tcpFlags := pkt[iphLen+tcpFlagsOffset]
var pshSet bool
// not a candidate if any non-ACK flags (except PSH+ACK) are set
if tcpFlags != tcpFlagACK {
if pkt[iphLen+tcpFlagsOffset] != tcpFlagACK|tcpFlagPSH {
return false
}
pshSet = true
}
gsoSize := uint16(len(pkt) - tcphLen - iphLen)
// not a candidate if payload len is 0
if gsoSize < 1 {
return false
}
seq := binary.BigEndian.Uint32(pkt[iphLen+4:])
srcAddrOffset := ipv4SrcAddrOffset
addrLen := 4
if isV6 {
srcAddrOffset = ipv6SrcAddrOffset
addrLen = 16
}
items, existing := table.lookupOrInsert(pkt, srcAddrOffset, srcAddrOffset+addrLen, iphLen, tcphLen, pktI)
if !existing {
return false
}
for i := len(items) - 1; i >= 0; i-- {
// In the best case of packets arriving in order iterating in reverse is
// more efficient if there are multiple items for a given flow. This
// also enables a natural table.deleteAt() in the
// coalesceItemInvalidCSum case without the need for index tracking.
// This algorithm makes a best effort to coalesce in the event of
// unordered packets, where pkt may land anywhere in items from a
// sequence number perspective, however once an item is inserted into
// the table it is never compared across other items later.
item := items[i]
can := tcpPacketsCanCoalesce(pkt, uint8(iphLen), uint8(tcphLen), seq, pshSet, gsoSize, item, bufs, offset)
if can != coalesceUnavailable {
result := coalesceTCPPackets(can, pkt, pktI, gsoSize, seq, pshSet, &item, bufs, offset, isV6)
switch result {
case coalesceSuccess:
table.updateAt(item, i)
return true
case coalesceItemInvalidCSum:
// delete the item with an invalid csum
table.deleteAt(item.key, i)
case coalescePktInvalidCSum:
// no point in inserting an item that we can't coalesce
return false
default:
}
}
}
// failed to coalesce with any other packets; store the item in the flow
table.insert(pkt, srcAddrOffset, srcAddrOffset+addrLen, iphLen, tcphLen, pktI)
return false
}
func isTCP4NoIPOptions(b []byte) bool {
if len(b) < 40 {
return false
}
if b[0]>>4 != 4 {
return false
}
if b[0]&0x0F != 5 {
return false
}
if b[9] != unix.IPPROTO_TCP {
return false
}
return true
}
func isTCP6NoEH(b []byte) bool {
if len(b) < 60 {
return false
}
if b[0]>>4 != 6 {
return false
}
if b[6] != unix.IPPROTO_TCP {
return false
}
return true
}
// handleGRO evaluates bufs for GRO, and writes the indices of the resulting
// packets into toWrite. toWrite, tcp4Table, and tcp6Table should initially be
// empty (but non-nil), and are passed in to save allocs as the caller may reset
// and recycle them across vectors of packets.
func handleGRO(bufs [][]byte, offset int, tcp4Table, tcp6Table *tcpGROTable, toWrite *[]int) error {
for i := range bufs {
if offset < virtioNetHdrLen || offset > len(bufs[i])-1 {
return errors.New("invalid offset")
}
var coalesced bool
switch {
case isTCP4NoIPOptions(bufs[i][offset:]): // ipv4 packets w/IP options do not coalesce
coalesced = tcpGRO(bufs, offset, i, tcp4Table, false)
case isTCP6NoEH(bufs[i][offset:]): // ipv6 packets w/extension headers do not coalesce
coalesced = tcpGRO(bufs, offset, i, tcp6Table, true)
}
if !coalesced {
hdr := virtioNetHdr{}
err := hdr.encode(bufs[i][offset-virtioNetHdrLen:])
if err != nil {
return err
}
*toWrite = append(*toWrite, i)
}
}
return nil
}
// tcpTSO splits packets from in into outBuffs, writing the size of each
// element into sizes. It returns the number of buffers populated, and/or an
// error.
func tcpTSO(in []byte, hdr virtioNetHdr, outBuffs [][]byte, sizes []int, outOffset int) (int, error) {
iphLen := int(hdr.csumStart)
srcAddrOffset := ipv6SrcAddrOffset
addrLen := 16
if hdr.gsoType == unix.VIRTIO_NET_HDR_GSO_TCPV4 {
in[10], in[11] = 0, 0 // clear ipv4 header checksum
srcAddrOffset = ipv4SrcAddrOffset
addrLen = 4
}
tcpCSumAt := int(hdr.csumStart + hdr.csumOffset)
in[tcpCSumAt], in[tcpCSumAt+1] = 0, 0 // clear tcp checksum
firstTCPSeqNum := binary.BigEndian.Uint32(in[hdr.csumStart+4:])
nextSegmentDataAt := int(hdr.hdrLen)
i := 0
for ; nextSegmentDataAt < len(in); i++ {
if i == len(outBuffs) {
return i - 1, ErrTooManySegments
}
nextSegmentEnd := nextSegmentDataAt + int(hdr.gsoSize)
if nextSegmentEnd > len(in) {
nextSegmentEnd = len(in)
}
segmentDataLen := nextSegmentEnd - nextSegmentDataAt
totalLen := int(hdr.hdrLen) + segmentDataLen
sizes[i] = totalLen
out := outBuffs[i][outOffset:]
copy(out, in[:iphLen])
if hdr.gsoType == unix.VIRTIO_NET_HDR_GSO_TCPV4 {
// For IPv4 we are responsible for incrementing the ID field,
// updating the total len field, and recalculating the header
// checksum.
if i > 0 {
id := binary.BigEndian.Uint16(out[4:])
id += uint16(i)
binary.BigEndian.PutUint16(out[4:], id)
}
binary.BigEndian.PutUint16(out[2:], uint16(totalLen))
ipv4CSum := ^checksum(out[:iphLen], 0)
binary.BigEndian.PutUint16(out[10:], ipv4CSum)
} else {
// For IPv6 we are responsible for updating the payload length field.
binary.BigEndian.PutUint16(out[4:], uint16(totalLen-iphLen))
}
// TCP header
copy(out[hdr.csumStart:hdr.hdrLen], in[hdr.csumStart:hdr.hdrLen])
tcpSeq := firstTCPSeqNum + uint32(hdr.gsoSize*uint16(i))
binary.BigEndian.PutUint32(out[hdr.csumStart+4:], tcpSeq)
if nextSegmentEnd != len(in) {
// FIN and PSH should only be set on last segment
clearFlags := tcpFlagFIN | tcpFlagPSH
out[hdr.csumStart+tcpFlagsOffset] &^= clearFlags
}
// payload
copy(out[hdr.hdrLen:], in[nextSegmentDataAt:nextSegmentEnd])
// TCP checksum
tcpHLen := int(hdr.hdrLen - hdr.csumStart)
tcpLenForPseudo := uint16(tcpHLen + segmentDataLen)
tcpCSumNoFold := pseudoHeaderChecksumNoFold(unix.IPPROTO_TCP, in[srcAddrOffset:srcAddrOffset+addrLen], in[srcAddrOffset+addrLen:srcAddrOffset+addrLen*2], tcpLenForPseudo)
tcpCSum := ^checksum(out[hdr.csumStart:totalLen], tcpCSumNoFold)
binary.BigEndian.PutUint16(out[hdr.csumStart+hdr.csumOffset:], tcpCSum)
nextSegmentDataAt += int(hdr.gsoSize)
}
return i, nil
}
func gsoNoneChecksum(in []byte, cSumStart, cSumOffset uint16) error {
cSumAt := cSumStart + cSumOffset
// The initial value at the checksum offset should be summed with the
// checksum we compute. This is typically the pseudo-header checksum.
initial := binary.BigEndian.Uint16(in[cSumAt:])
in[cSumAt], in[cSumAt+1] = 0, 0
binary.BigEndian.PutUint16(in[cSumAt:], ^checksum(in[cSumStart:], uint64(initial)))
return nil
}

52
wgstack/tun/tun.go Normal file
View File

@@ -0,0 +1,52 @@
// SPDX-License-Identifier: MIT
//
// Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved.
package tun
import (
"os"
)
type Event int
const (
EventUp = 1 << iota
EventDown
EventMTUUpdate
)
type Device interface {
// File returns the file descriptor of the device.
File() *os.File
// Read one or more packets from the Device (without any additional headers).
// On a successful read it returns the number of packets read, and sets
// packet lengths within the sizes slice. len(sizes) must be >= len(bufs).
// A nonzero offset can be used to instruct the Device on where to begin
// reading into each element of the bufs slice.
Read(bufs [][]byte, sizes []int, offset int) (n int, err error)
// Write one or more packets to the device (without any additional headers).
// On a successful write it returns the number of packets written. A nonzero
// offset can be used to instruct the Device on where to begin writing from
// each packet contained within the bufs slice.
Write(bufs [][]byte, offset int) (int, error)
// MTU returns the MTU of the Device.
MTU() (int, error)
// Name returns the current name of the Device.
Name() (string, error)
// Events returns a channel of type Event, which is fed Device events.
Events() <-chan Event
// Close stops the Device and closes the Event channel.
Close() error
// BatchSize returns the preferred/max number of packets that can be read or
// written in a single read/write call. BatchSize must not change over the
// lifetime of a Device.
BatchSize() int
}

652
wgstack/tun/tun_linux.go Normal file
View File

@@ -0,0 +1,652 @@
//go:build linux
// SPDX-License-Identifier: MIT
//
// Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved.
package tun
/* Implementation of the TUN device interface for linux
*/
import (
"errors"
"fmt"
"os"
"sync"
"syscall"
"time"
"unsafe"
wgconn "github.com/slackhq/nebula/wgstack/conn"
"golang.org/x/sys/unix"
"golang.zx2c4.com/wireguard/rwcancel"
)
const (
cloneDevicePath = "/dev/net/tun"
ifReqSize = unix.IFNAMSIZ + 64
)
type NativeTun struct {
tunFile *os.File
index int32 // if index
errors chan error // async error handling
events chan Event // device related events
netlinkSock int
netlinkCancel *rwcancel.RWCancel
hackListenerClosed sync.Mutex
statusListenersShutdown chan struct{}
batchSize int
vnetHdr bool
closeOnce sync.Once
nameOnce sync.Once // guards calling initNameCache, which sets following fields
nameCache string // name of interface
nameErr error
readOpMu sync.Mutex // readOpMu guards readBuff
readBuff [virtioNetHdrLen + 65535]byte // if vnetHdr every read() is prefixed by virtioNetHdr
writeOpMu sync.Mutex // writeOpMu guards toWrite, tcp4GROTable, tcp6GROTable
toWrite []int
tcp4GROTable, tcp6GROTable *tcpGROTable
}
func (tun *NativeTun) File() *os.File {
return tun.tunFile
}
func (tun *NativeTun) routineHackListener() {
defer tun.hackListenerClosed.Unlock()
/* This is needed for the detection to work across network namespaces
* If you are reading this and know a better method, please get in touch.
*/
last := 0
const (
up = 1
down = 2
)
for {
sysconn, err := tun.tunFile.SyscallConn()
if err != nil {
return
}
err2 := sysconn.Control(func(fd uintptr) {
_, err = unix.Write(int(fd), nil)
})
if err2 != nil {
return
}
switch err {
case unix.EINVAL:
if last != up {
// If the tunnel is up, it reports that write() is
// allowed but we provided invalid data.
tun.events <- EventUp
last = up
}
case unix.EIO:
if last != down {
// If the tunnel is down, it reports that no I/O
// is possible, without checking our provided data.
tun.events <- EventDown
last = down
}
default:
return
}
select {
case <-time.After(time.Second):
// nothing
case <-tun.statusListenersShutdown:
return
}
}
}
func createNetlinkSocket() (int, error) {
sock, err := unix.Socket(unix.AF_NETLINK, unix.SOCK_RAW|unix.SOCK_CLOEXEC, unix.NETLINK_ROUTE)
if err != nil {
return -1, err
}
saddr := &unix.SockaddrNetlink{
Family: unix.AF_NETLINK,
Groups: unix.RTMGRP_LINK | unix.RTMGRP_IPV4_IFADDR | unix.RTMGRP_IPV6_IFADDR,
}
err = unix.Bind(sock, saddr)
if err != nil {
return -1, err
}
return sock, nil
}
func (tun *NativeTun) routineNetlinkListener() {
defer func() {
unix.Close(tun.netlinkSock)
tun.hackListenerClosed.Lock()
close(tun.events)
tun.netlinkCancel.Close()
}()
for msg := make([]byte, 1<<16); ; {
var err error
var msgn int
for {
msgn, _, _, _, err = unix.Recvmsg(tun.netlinkSock, msg[:], nil, 0)
if err == nil || !rwcancel.RetryAfterError(err) {
break
}
if !tun.netlinkCancel.ReadyRead() {
tun.errors <- fmt.Errorf("netlink socket closed: %w", err)
return
}
}
if err != nil {
tun.errors <- fmt.Errorf("failed to receive netlink message: %w", err)
return
}
select {
case <-tun.statusListenersShutdown:
return
default:
}
wasEverUp := false
for remain := msg[:msgn]; len(remain) >= unix.SizeofNlMsghdr; {
hdr := *(*unix.NlMsghdr)(unsafe.Pointer(&remain[0]))
if int(hdr.Len) > len(remain) {
break
}
switch hdr.Type {
case unix.NLMSG_DONE:
remain = []byte{}
case unix.RTM_NEWLINK:
info := *(*unix.IfInfomsg)(unsafe.Pointer(&remain[unix.SizeofNlMsghdr]))
remain = remain[hdr.Len:]
if info.Index != tun.index {
// not our interface
continue
}
if info.Flags&unix.IFF_RUNNING != 0 {
tun.events <- EventUp
wasEverUp = true
}
if info.Flags&unix.IFF_RUNNING == 0 {
// Don't emit EventDown before we've ever emitted EventUp.
// This avoids a startup race with HackListener, which
// might detect Up before we have finished reporting Down.
if wasEverUp {
tun.events <- EventDown
}
}
tun.events <- EventMTUUpdate
default:
remain = remain[hdr.Len:]
}
}
}
}
func getIFIndex(name string) (int32, error) {
fd, err := unix.Socket(
unix.AF_INET,
unix.SOCK_DGRAM|unix.SOCK_CLOEXEC,
0,
)
if err != nil {
return 0, err
}
defer unix.Close(fd)
var ifr [ifReqSize]byte
copy(ifr[:], name)
_, _, errno := unix.Syscall(
unix.SYS_IOCTL,
uintptr(fd),
uintptr(unix.SIOCGIFINDEX),
uintptr(unsafe.Pointer(&ifr[0])),
)
if errno != 0 {
return 0, errno
}
return *(*int32)(unsafe.Pointer(&ifr[unix.IFNAMSIZ])), nil
}
func (tun *NativeTun) setMTU(n int) error {
name, err := tun.Name()
if err != nil {
return err
}
// open datagram socket
fd, err := unix.Socket(
unix.AF_INET,
unix.SOCK_DGRAM|unix.SOCK_CLOEXEC,
0,
)
if err != nil {
return err
}
defer unix.Close(fd)
var ifr [ifReqSize]byte
copy(ifr[:], name)
*(*uint32)(unsafe.Pointer(&ifr[unix.IFNAMSIZ])) = uint32(n)
_, _, errno := unix.Syscall(
unix.SYS_IOCTL,
uintptr(fd),
uintptr(unix.SIOCSIFMTU),
uintptr(unsafe.Pointer(&ifr[0])),
)
if errno != 0 {
return errno
}
return nil
}
func (tun *NativeTun) routineNetlinkRead() {
defer func() {
unix.Close(tun.netlinkSock)
tun.hackListenerClosed.Lock()
close(tun.events)
tun.netlinkCancel.Close()
}()
for msg := make([]byte, 1<<16); ; {
var err error
var msgn int
for {
msgn, _, _, _, err = unix.Recvmsg(tun.netlinkSock, msg[:], nil, 0)
if err == nil || !rwcancel.RetryAfterError(err) {
break
}
if !tun.netlinkCancel.ReadyRead() {
tun.errors <- fmt.Errorf("netlink socket closed: %w", err)
return
}
}
if err != nil {
tun.errors <- fmt.Errorf("failed to receive netlink message: %w", err)
return
}
wasEverUp := false
for remain := msg[:msgn]; len(remain) >= unix.SizeofNlMsghdr; {
hdr := *(*unix.NlMsghdr)(unsafe.Pointer(&remain[0]))
if int(hdr.Len) > len(remain) {
break
}
switch hdr.Type {
case unix.NLMSG_DONE:
remain = []byte{}
case unix.RTM_NEWLINK:
info := *(*unix.IfInfomsg)(unsafe.Pointer(&remain[unix.SizeofNlMsghdr]))
remain = remain[hdr.Len:]
if info.Index != tun.index {
continue
}
if info.Flags&unix.IFF_RUNNING != 0 {
tun.events <- EventUp
wasEverUp = true
}
if info.Flags&unix.IFF_RUNNING == 0 {
if wasEverUp {
tun.events <- EventDown
}
}
tun.events <- EventMTUUpdate
default:
remain = remain[hdr.Len:]
}
}
}
}
func (tun *NativeTun) routineNetlink() {
var err error
tun.netlinkSock, err = createNetlinkSocket()
if err != nil {
tun.errors <- fmt.Errorf("failed to create netlink socket: %w", err)
return
}
tun.netlinkCancel, err = rwcancel.NewRWCancel(tun.netlinkSock)
if err != nil {
tun.errors <- fmt.Errorf("failed to create netlink cancel: %w", err)
return
}
go tun.routineNetlinkListener()
}
func (tun *NativeTun) Close() error {
var err1, err2 error
tun.closeOnce.Do(func() {
if tun.statusListenersShutdown != nil {
close(tun.statusListenersShutdown)
if tun.netlinkCancel != nil {
err1 = tun.netlinkCancel.Cancel()
}
} else if tun.events != nil {
close(tun.events)
}
err2 = tun.tunFile.Close()
})
if err1 != nil {
return err1
}
return err2
}
func (tun *NativeTun) BatchSize() int {
return tun.batchSize
}
const (
// TODO: support TSO with ECN bits
tunOffloads = unix.TUN_F_CSUM | unix.TUN_F_TSO4 | unix.TUN_F_TSO6
)
func (tun *NativeTun) initFromFlags(name string) error {
sc, err := tun.tunFile.SyscallConn()
if err != nil {
return err
}
if e := sc.Control(func(fd uintptr) {
var (
ifr *unix.Ifreq
)
ifr, err = unix.NewIfreq(name)
if err != nil {
return
}
err = unix.IoctlIfreq(int(fd), unix.TUNGETIFF, ifr)
if err != nil {
return
}
got := ifr.Uint16()
if got&unix.IFF_VNET_HDR != 0 {
err = unix.IoctlSetInt(int(fd), unix.TUNSETOFFLOAD, tunOffloads)
if err != nil {
return
}
tun.vnetHdr = true
tun.batchSize = wgconn.IdealBatchSize
} else {
tun.batchSize = 1
}
}); e != nil {
return e
}
return err
}
// CreateTUN creates a Device with the provided name and MTU.
func CreateTUN(name string, mtu int) (Device, error) {
nfd, err := unix.Open(cloneDevicePath, unix.O_RDWR|unix.O_CLOEXEC, 0)
if err != nil {
return nil, fmt.Errorf("CreateTUN(%q) failed; %s does not exist", name, cloneDevicePath)
}
fd := os.NewFile(uintptr(nfd), cloneDevicePath)
tun, err := CreateTUNFromFile(fd, mtu)
if err != nil {
return nil, err
}
if name != "tun" {
if err := tun.(*NativeTun).initFromFlags(name); err != nil {
tun.Close()
return nil, fmt.Errorf("CreateTUN(%q) failed to set flags: %w", name, err)
}
}
return tun, nil
}
// CreateTUNFromFile creates a Device from an os.File with the provided MTU.
func CreateTUNFromFile(file *os.File, mtu int) (Device, error) {
tun := &NativeTun{
tunFile: file,
errors: make(chan error, 5),
events: make(chan Event, 5),
}
var err error
tun.index, err = getIFIndex("tun")
if err != nil {
return nil, fmt.Errorf("failed to get TUN index: %w", err)
}
if err = tun.setMTU(mtu); err != nil {
return nil, fmt.Errorf("failed to set MTU: %w", err)
}
tun.statusListenersShutdown = make(chan struct{})
go tun.routineNetlink()
if tun.batchSize == 0 {
tun.batchSize = 1
}
tun.tcp4GROTable = newTCPGROTable()
tun.tcp6GROTable = newTCPGROTable()
return tun, nil
}
func (tun *NativeTun) Name() (string, error) {
tun.nameOnce.Do(tun.initNameCache)
return tun.nameCache, tun.nameErr
}
func (tun *NativeTun) initNameCache() {
sysconn, err := tun.tunFile.SyscallConn()
if err != nil {
tun.nameErr = err
return
}
err = sysconn.Control(func(fd uintptr) {
var ifr [ifReqSize]byte
_, _, errno := unix.Syscall(
unix.SYS_IOCTL,
fd,
uintptr(unix.TUNGETIFF),
uintptr(unsafe.Pointer(&ifr[0])),
)
if errno != 0 {
tun.nameErr = errno
return
}
tun.nameCache = unix.ByteSliceToString(ifr[:])
})
if err != nil && tun.nameErr == nil {
tun.nameErr = err
}
}
func (tun *NativeTun) MTU() (int, error) {
name, err := tun.Name()
if err != nil {
return 0, err
}
// open datagram socket
fd, err := unix.Socket(
unix.AF_INET,
unix.SOCK_DGRAM|unix.SOCK_CLOEXEC,
0,
)
if err != nil {
return 0, err
}
defer unix.Close(fd)
var ifr [ifReqSize]byte
copy(ifr[:], name)
_, _, errno := unix.Syscall(
unix.SYS_IOCTL,
uintptr(fd),
uintptr(unix.SIOCGIFMTU),
uintptr(unsafe.Pointer(&ifr[0])),
)
if errno != 0 {
return 0, errno
}
return int(*(*uint32)(unsafe.Pointer(&ifr[unix.IFNAMSIZ]))), nil
}
func (tun *NativeTun) Events() <-chan Event {
return tun.events
}
func (tun *NativeTun) Write(bufs [][]byte, offset int) (int, error) {
tun.writeOpMu.Lock()
defer func() {
tun.tcp4GROTable.reset()
tun.tcp6GROTable.reset()
tun.writeOpMu.Unlock()
}()
var (
errs error
total int
)
tun.toWrite = tun.toWrite[:0]
if tun.vnetHdr {
err := handleGRO(bufs, offset, tun.tcp4GROTable, tun.tcp6GROTable, &tun.toWrite)
if err != nil {
return 0, err
}
offset -= virtioNetHdrLen
} else {
for i := range bufs {
tun.toWrite = append(tun.toWrite, i)
}
}
for _, bufsI := range tun.toWrite {
n, err := tun.tunFile.Write(bufs[bufsI][offset:])
if errors.Is(err, syscall.EBADFD) {
return total, os.ErrClosed
}
if err != nil {
errs = errors.Join(errs, err)
} else {
total += n
}
}
return total, errs
}
// handleVirtioRead splits in into bufs, leaving offset bytes at the front of
// each buffer. It mutates sizes to reflect the size of each element of bufs,
// and returns the number of packets read.
func handleVirtioRead(in []byte, bufs [][]byte, sizes []int, offset int) (int, error) {
var hdr virtioNetHdr
if err := hdr.decode(in); err != nil {
return 0, err
}
in = in[virtioNetHdrLen:]
if hdr.gsoType == unix.VIRTIO_NET_HDR_GSO_NONE {
if hdr.flags&unix.VIRTIO_NET_HDR_F_NEEDS_CSUM != 0 {
if err := gsoNoneChecksum(in, hdr.csumStart, hdr.csumOffset); err != nil {
return 0, err
}
}
if len(in) > len(bufs[0][offset:]) {
return 0, fmt.Errorf("read len %d overflows bufs element len %d", len(in), len(bufs[0][offset:]))
}
n := copy(bufs[0][offset:], in)
sizes[0] = n
return 1, nil
}
if hdr.gsoType != unix.VIRTIO_NET_HDR_GSO_TCPV4 && hdr.gsoType != unix.VIRTIO_NET_HDR_GSO_TCPV6 {
return 0, fmt.Errorf("unsupported virtio GSO type: %d", hdr.gsoType)
}
ipVersion := in[0] >> 4
switch ipVersion {
case 4:
if hdr.gsoType != unix.VIRTIO_NET_HDR_GSO_TCPV4 {
return 0, fmt.Errorf("ip header version: %d, GSO type: %d", ipVersion, hdr.gsoType)
}
case 6:
if hdr.gsoType != unix.VIRTIO_NET_HDR_GSO_TCPV6 {
return 0, fmt.Errorf("ip header version: %d, GSO type: %d", ipVersion, hdr.gsoType)
}
default:
return 0, fmt.Errorf("invalid ip header version: %d", ipVersion)
}
if len(in) <= int(hdr.csumStart+12) {
return 0, errors.New("packet is too short")
}
tcpHLen := uint16(in[hdr.csumStart+12] >> 4 * 4)
if tcpHLen < 20 || tcpHLen > 60 {
return 0, fmt.Errorf("tcp header len is invalid: %d", tcpHLen)
}
hdr.hdrLen = hdr.csumStart + tcpHLen
if len(in) < int(hdr.hdrLen) {
return 0, fmt.Errorf("length of packet (%d) < virtioNetHdr.hdrLen (%d)", len(in), hdr.hdrLen)
}
if hdr.hdrLen < hdr.csumStart {
return 0, fmt.Errorf("virtioNetHdr.hdrLen (%d) < virtioNetHdr.csumStart (%d)", hdr.hdrLen, hdr.csumStart)
}
cSumAt := int(hdr.csumStart + hdr.csumOffset)
if cSumAt+1 >= len(in) {
return 0, fmt.Errorf("end of checksum offset (%d) exceeds packet length (%d)", cSumAt+1, len(in))
}
return tcpTSO(in, hdr, bufs, sizes, offset)
}
func (tun *NativeTun) Read(bufs [][]byte, sizes []int, offset int) (int, error) {
tun.readOpMu.Lock()
defer tun.readOpMu.Unlock()
select {
case err := <-tun.errors:
return 0, err
default:
readInto := bufs[0][offset:]
if tun.vnetHdr {
readInto = tun.readBuff[:]
}
n, err := tun.tunFile.Read(readInto)
if errors.Is(err, syscall.EBADFD) {
err = os.ErrClosed
}
if err != nil {
return 0, err
}
if tun.vnetHdr {
return handleVirtioRead(readInto[:n], bufs, sizes, offset)
}
sizes[0] = n
return 1, nil
}
}